WO2009121912A1 - Super-resolution, high reading stability optical disk - Google Patents

Super-resolution, high reading stability optical disk Download PDF

Info

Publication number
WO2009121912A1
WO2009121912A1 PCT/EP2009/053895 EP2009053895W WO2009121912A1 WO 2009121912 A1 WO2009121912 A1 WO 2009121912A1 EP 2009053895 W EP2009053895 W EP 2009053895W WO 2009121912 A1 WO2009121912 A1 WO 2009121912A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
active layer
super
interface
resolution
Prior art date
Application number
PCT/EP2009/053895
Other languages
French (fr)
Inventor
Bernard Andre
Bérangère HYOT
Fabien Laulagnet
Joseph Pichon
Marie-Françoise Armand
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Publication of WO2009121912A1 publication Critical patent/WO2009121912A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B7/2578Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25706Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing transition metal elements (Zn, Fe, Co, Ni, Pt)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/2571Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 14 elements except carbon (Si, Ge, Sn, Pb)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25713Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing nitrogen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25715Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing oxygen

Definitions

  • the invention relates to a super-resolution optical disc with high read stability, that is to say a super-resolution disc that accepts a large number of read cycles.
  • the invention applies in particular to the production of ultra-high density super-resolution disks, in particular to the production of prerecorded super-resolution disks.
  • Pre-recorded optical discs or ROMs comprise a structured substrate covered with a reflective layer, the structure of the substrate comprising a series of marks large enough to be detected by a read head optical.
  • the substrate structure includes marks theoretically too small to be detected by an optical pickup. Also, to make possible the detection of these small marks, the substrate is covered with a stack of thin layers, this stack sometimes being called "active stacking" because at least one layer of the stack has optical nonlinear properties .
  • a super-resolution disk comprises small marks with a length of 80 nm and an active stack comprising a layer of InSb semiconductor material encapsulated between two layers of ZnS-SiO 2 dielectric material. The passage of a high power laser on the active stack makes it possible to detect the small marks of the structured substrate.
  • An object of the invention is to improve the reading stability of a super-resolution optical disk, the quality of the signal delivered during its reading, and overall the number of possible read cycles during the lifetime of the disk.
  • the subject of the invention is a super-resolution optical reading disk comprising at least one surface protection layer, a substrate on which is deposited a stack comprising at least one active layer of InSb with the properties non-linear reversible, the active layer being interposed between at least a first dielectric layer deposited under the protective layer and a second dielectric layer deposited on the substrate, the disk being characterized in that at least one interface layer is interposed between at least one of the two dielectric layers and the active layer, the interface layer consisting of a material selected from the following materials: ZrO 2 ; GeN.
  • InSb material and these interface materials is critical from the point of view of the improvement obtained, which could not be obtained for example if using a phase change material in place of InSb.
  • the temperatures at which a phase change material is active are much too high and require diffusion barrier layers between this material and the layers surrounding it, whereas a diffusion barrier is a priori not necessary with a active layer of InSb.
  • the presence of the ZrO 2 or GeN interface layer between the active layer of InSb and the dielectric layer makes it possible in particular to limit the degradation of the signal when the number of reading cycles is increased.
  • the material chosen for the layer interface is the ZrO 2 which offers, in combination with an active layer in InSb, particularly high performances.
  • said interface layer is deposited between the first dielectric layer and the active layer. According to another embodiment, it is deposited between the second dielectric layer and the active layer.
  • a first interface layer is deposited between the first dielectric layer and the active layer, and a second interface layer is deposited between the second dielectric layer and the active layer.
  • each dielectric layer has a thickness substantially equal to 50 nm
  • the active layer has a thickness substantially equal to 20 nm
  • the interface layer (s) has (have) a thickness of between 3 nm and 20 nm.
  • the sum of the thicknesses of interface layers and dielectric layers above the active layer is substantially equal to the sum of the thicknesses of dielectric layer interface layers below the active layer.
  • the dielectric layers comprise ZnS-SiO 2 .
  • FIG. 1 a first embodiment seen in section of a structure of disc according to the invention
  • FIG. 3 schematically represents an image of the crystalline microstructure of the InSb layer, with or without a layer of
  • FIG. 1 shows a first embodiment of a structure used in an optical disk according to the invention.
  • the disc comprises a substrate 1 10 covered with a stack 120 of thin layers, a transparent protective layer 102 being deposited on the stack.
  • numerical values are given for the disk of FIG.
  • the disk is adapted to be read by a digital aperture optical head equal to 0.85, whose resolution limit is 120 nm, the head producing a laser beam whose wavelength is equal to 405 nm.
  • the information carried by the disk is formed by the structured substrate, the latter comprising coded sequences in the form of spaced marks, the marks having lengths between 2T and 9T, T being an equal elementary dimension, in the example at 40 nm against 160 nm for the classic Blu-Ray format.
  • the small marks whose length is equal to 2T or 3T, therefore have a length equal to 80 nm and 120 nm, respectively, less than or equal to the resolution limit of the optical head. Therefore, the super-resolution effect is necessary for the detection of these small marks.
  • the substrate 1 10 is formed, for example, of a polymeric material such as polycarbonate, or glass which bears hollow physical marks and bumps representing the stored information.
  • the protective layer 102 is formed, in the example, of a polycarbonate, preferably of a thickness of the order of 100 micrometers.
  • Thin film stack 120 comprises a first dielectric layer 104a, an interface layer 106, an InSb active layer 108, and a second dielectric layer 104b, in order, from the side of the protective layer 102 towards the side. substrate 1 10.
  • the stack 120 makes it possible to obtain the desired super-resolution effect by being modified under the effect of a high-power laser. More precisely, it is the active layer 108 in InSb that makes it possible to obtain this super-resolution effect because it exhibits optical non-linear properties at the working wavelength.
  • the active layer 108 has a thickness of 20 nm.
  • the dielectric layers 104a, 104b flanking the active layer 108, they make it possible in particular to adjust the optical properties of the disk, but also to thermally isolate the active layer 108.
  • the dielectric layers 104a, 104b are formed from the compound ZnS-SiO 2 .
  • Other materials are conceivable for constituting these dielectric layers 104a, 104b, these materials preferably being dielectric materials such as compounds Si 3 N 4 , AlN, HfO 2 , TiO 2 or SiO 2 .
  • the first dielectric layer 104a has a thickness equal to 35 nm and the second dielectric layer 104b has a thickness substantially equal to 50 nm.
  • the disk according to the invention comprises an interface layer 106 interposed preferably between the first dielectric layer 104a and the active layer of InSb 108, but the interface layer could also, well that it is less favorable, be interposed between the second dielectric layer 104b and the active layer of InSb 108. It is the presence of this interface layer 106 which allows, on the one hand, to increase the quality of the signal for reading and, secondly, to improve the read stability of the disk and thus the number of possible read cycles during the life of the disk.
  • the interface layer 106 has a low absorption, so as not to disturb the optical process for reading the superresolution disk.
  • the interface layer 106 is ZrO 2 , or at least GeN, although ZrO 2 is more efficient.
  • the thickness of the interface layer 106 is between 3 nm and 50 nm, preferably between 5 nm and 20 nm. In the example, the thickness of this interface layer 106 is equal to 15 nm, the thickness of the first dielectric layer 104a being adjusted as a function of the thickness of the interface layer 106, so that The total thickness of dielectric materials on each side of the active layer 108 is 50 nm.
  • a plurality of interface layers are disposed between the first dielectric layer 104a and the active layer 108, but it is the ZrO 2 or GeN layer that is in contact with the InSb layer.
  • bit error rate BER bit error rate BER
  • the maximum error BER maximum acceptable for a commercial application is of the order of 3.10 -4 , and therefore remains well below this maximum.
  • the reading stability of the disk is of the order of 3000 read cycles. Stability increases with an interface layer located between the second dielectric layer and the active layer. It increases again and reaches more than 20000 cycles if the interface layer is located between the laser and the active layer and therefore between the first dielectric layer and the active layer. In addition, the quality of the read signal is improved during the first cycles.
  • the active layer 108 may be framed by two interface layers 106a, 106b respectively placed above the active layer 108 and below it.
  • a second interface layer 106b placed on the side of the substrate 1 10 has been added. It is also in ZrO 2 or at least in GeN. This second interface layer 106b makes it possible to improve the gain on the amplitude of the read signal and to further improve the number of possible readings.
  • the reading of the super-resolution discs generally involves the processing of signals of very low amplitude, signals that are sometimes difficult to exploit with conventional electronic circuits.
  • An advantage of the disk structure according to the invention is that the quality of the read signal is improved, including during the first read cycles, which facilitates signal processing.
  • FIG. 3 schematically represents the microstructure of the InSb layer when it is in contact with ZrO2 interface layers (top diagram, 3A) and without ZrO2 interface layers (bottom diagram, 3B).
  • the microcrystalline structure is thinner in the presence of the ZrO 2 interface layer.
  • the electrons generated under the strong flux light necessary for the local modification of the optical properties of the InSb material remain confined.
  • the small crystalline grains (20 nanometers) make it possible to limit the lateral expansion of the electrons (reduced mobility of the electrons because of the presence of numerous grain boundaries) and make it possible to ensure an optical transition zone that is as efficient as possible.
  • the electrons are less confined. From this less efficient confinement, it follows that the effective diameter LESR of the super-resolution zone is larger in the case of FIG. 3B than in the case of FIG. 3A, for the same read LSBR light spot diameter.
  • the ZrO 2 interface layer therefore plays a role in improving the efficiency of the super-resolution by means of the retention of the fineness of the microcrystalline structure of the InSb layer.
  • the size of the crystallites (microcrystals ) of InSb was of the order of 20 nm in the three directions of space (respectively 18.5 nm in the layer thickness, 25 nm in the plane of the disk and 30 nm in the other direction of the plane of the disk ) while without the addition of these specific layers, the size of the crystallites reaches more than 60 nm in the plane of the disk (that is to say almost the dimension of the marks that one wishes to detect, here 80 nm) .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

The invention relates to a super-resolution, high reading stability optical disk. The disk consists of at least one protective surface layer (102), a substrate (110) on which is deposited a stack (120) including at least one active layer (108) with non-linear reversible properties, the active layer (108) inserted between at least one primary dielectric layer (104a) deposited under the protective layer, and a second dielectric layer (104b) deposited on the substrate (110), the disk moreover including an interface layer (106) inserted between at least one of the two dielectric layers (104a, 104b) and the active layer (108), the interface layer (106) consisting of a material selected from among the following materials: ZrO2 or GeN. The invention particularly applies to the production of ultra-high density, super-resolution disks, in particular to the production of pre-recorded super-resolution disks.

Description

Disque optique à super-résolution à stabilité de lecture élevée Super-resolution optical disk with high readability
L'invention concerne un disque optique à super-résolution à stabilité de lecture élevée, c'est-à-dire un disque à super-résolution acceptant un grand nombre de cycles de lecture. L'invention s'applique notamment à la réalisation de disques à super-résolution de ultra-haute densité, en particulier à la réalisation des disques à super-résolution préenregistrés.The invention relates to a super-resolution optical disc with high read stability, that is to say a super-resolution disc that accepts a large number of read cycles. The invention applies in particular to the production of ultra-high density super-resolution disks, in particular to the production of prerecorded super-resolution disks.
Les disques optiques préenregistrés ou ROM, selon l'acronyme anglo-saxon « Read OnIy Memory », comportent un substrat structuré recouvert d'une couche réfléchissante, la structure du substrat comprenant une série de marques suffisamment grandes pour être détectées par une tête de lecture optique.Pre-recorded optical discs or ROMs, according to the acronym "Read OnIy Memory", comprise a structured substrate covered with a reflective layer, the structure of the substrate comprising a series of marks large enough to be detected by a read head optical.
Pour certains disques, appelés disques à super-résolution, la structure du substrat comprend des marques théoriquement trop petites pour être détectées par une tête de lecture optique. Aussi, pour rendre possible la détection de ces petites marques, le substrat est recouvert d'un empilement de couches minces, cet empilement étant parfois qualifié d' « empilement actif » car au moins une couche de l'empilement a des propriétés non linéaires optiques. A titre d'exemple, un disque à super-résolution comporte des petites marques d'une longueur de 80 nm et un empilement actif comprenant une couche de matériau semi-conducteur InSb encapsulée entre deux couches de matériau diélectrique ZnS-SiO2. Le passage d'un laser de haute puissance sur l'empilement actif permet de détecter les petites marques du substrat structuré.For some discs, called super-resolution discs, the substrate structure includes marks theoretically too small to be detected by an optical pickup. Also, to make possible the detection of these small marks, the substrate is covered with a stack of thin layers, this stack sometimes being called "active stacking" because at least one layer of the stack has optical nonlinear properties . By way of example, a super-resolution disk comprises small marks with a length of 80 nm and an active stack comprising a layer of InSb semiconductor material encapsulated between two layers of ZnS-SiO 2 dielectric material. The passage of a high power laser on the active stack makes it possible to detect the small marks of the structured substrate.
Cependant, un problème est posé lorsque des marques d'un disque sont lues un grand nombre de fois car la lecture du disque à haute puissance produit une élévation de la température de l'empilement actif sous le spot laser. La répétition de cet échauffement à chaque cycle de lecture provoque des changements microstructuraux dans le matériau actif du disque et se traduit in fine par une dégradation de lecture du signal obtenu. Après un nombre de cycles de lecture donné, une modification de la microstructure cristalline de la couche d'InSb peut survenir. D'autres dégradations peuvent également avoir lieu, notamment une déformation des marques du substrat structuré ou un décollement progressif des couches minces constituant l'empilement. Ainsi, contrairement aux disques ROM n'ayant pas de capacités de lecture par super-résolution, qui peuvent être lus quasiment indéfiniment, les disques ROM à super-résolution acceptent un nombre de cycles de lecture limité.However, a problem is raised when marks of a disc are read a large number of times because the reading of the high power disc produces a rise in the temperature of the active stack under the laser spot. The repetition of this heating during each reading cycle causes microstructural changes in the active material of the disc and ultimately results in a degradation of the reading of the signal obtained. After a given number of read cycles, a change in the crystalline microstructure of the InSb layer may occur. other degradations can also take place, in particular a deformation of the marks of the structured substrate or a gradual detachment of the thin layers constituting the stack. Thus, unlike ROMs that do not have super-resolution read capabilities, which can be read almost indefinitely, the super-resolution ROMs accept a limited number of read cycles.
Ce phénomène est particulièrement critique dans le cas de disques à super-résolution.This phenomenon is particularly critical in the case of super-resolution disks.
Un but de l'invention est d'améliorer la stabilité de lecture d'un disque optique à super-résolution, la qualité du signal délivré lors de sa lecture, et globalement le nombre de cycles de lecture possibles au cours de la vie du disque. A cet effet, l'invention a pour objet un disque de stockage optique à lecture par super-résolution comprenant au moins une couche de protection en surface, un substrat sur lequel est déposé un empilement comprenant au moins une couche active d'InSb aux propriétés non linéaires réversibles, la couche active étant intercalée entre au moins une première couche diélectrique déposée sous la couche de protection et une seconde couche diélectrique déposée sur le substrat, le disque étant caractérisé en ce qu'au moins une couche d'interface est intercalée entre au moins une des deux couches diélectriques et la couche active, la couche d'interface étant constituée d'un matériau choisi parmi les matériaux suivants : ZrO2 ; GeN.An object of the invention is to improve the reading stability of a super-resolution optical disk, the quality of the signal delivered during its reading, and overall the number of possible read cycles during the lifetime of the disk. . For this purpose, the subject of the invention is a super-resolution optical reading disk comprising at least one surface protection layer, a substrate on which is deposited a stack comprising at least one active layer of InSb with the properties non-linear reversible, the active layer being interposed between at least a first dielectric layer deposited under the protective layer and a second dielectric layer deposited on the substrate, the disk being characterized in that at least one interface layer is interposed between at least one of the two dielectric layers and the active layer, the interface layer consisting of a material selected from the following materials: ZrO 2 ; GeN.
Le choix du matériau InSb et de ces matériaux d'interface est critique du point de vue de l'amélioration obtenue, laquelle ne pourrait pas être obtenue par exemple si on utilisait un matériau à changement de phase à la place d'InSb. Les températures auxquelles un matériau à changement de phase est actif sont beaucoup trop élevées et nécessitent des couches formant barrière de diffusion entre ce matériau et les couches qui l'entourent, alors qu'une barrière de diffusion n'est a priori pas nécessaire avec une couche active d'InSb.The choice of the InSb material and these interface materials is critical from the point of view of the improvement obtained, which could not be obtained for example if using a phase change material in place of InSb. The temperatures at which a phase change material is active are much too high and require diffusion barrier layers between this material and the layers surrounding it, whereas a diffusion barrier is a priori not necessary with a active layer of InSb.
La présence de la couche d'interface de ZrO2 ou GeN entre la couche active d'InSb et la couche diélectrique permet notamment de limiter la dégradation du signal lors de l'augmentation du nombre de cycles de lecture effectués. De préférence, le matériau choisi pour la couche d'interface est le ZrO2 qui offre, en combinaison avec une couche active en InSb des performances particulièrement élevées.The presence of the ZrO 2 or GeN interface layer between the active layer of InSb and the dielectric layer makes it possible in particular to limit the degradation of the signal when the number of reading cycles is increased. Preferably, the material chosen for the layer interface is the ZrO 2 which offers, in combination with an active layer in InSb, particularly high performances.
Selon un mode de réalisation, ladite couche d'interface est déposée entre la première couche diélectrique et la couche active. Selon un autre mode de réalisation, elle est déposée entre la deuxième couche diélectrique et la couche active.According to one embodiment, said interface layer is deposited between the first dielectric layer and the active layer. According to another embodiment, it is deposited between the second dielectric layer and the active layer.
Selon un troisième mode de réalisation, une première couche d'interface est déposée entre la première couche diélectrique et la couche active, et une deuxième couche d'interface est déposée entre la deuxième couche diélectrique et la couche active.According to a third embodiment, a first interface layer is deposited between the first dielectric layer and the active layer, and a second interface layer is deposited between the second dielectric layer and the active layer.
Selon un mode de réalisation, chaque couche diélectrique a une épaisseur sensiblement égale à 50 nm, la couche active a une épaisseur sensiblement égale à 20 nm, et la (ou les) couche(s) d'interface a (ont) une épaisseur comprise entre 3 nm et 20 nm. Selon un mode de réalisation, la somme des épaisseurs de couches d'interface et de couches diélectriques au-dessus de la couche active est sensiblement égale à la somme des épaisseurs de couches d'interface de couches diélectriques en dessous de la couche active.According to one embodiment, each dielectric layer has a thickness substantially equal to 50 nm, the active layer has a thickness substantially equal to 20 nm, and the interface layer (s) has (have) a thickness of between 3 nm and 20 nm. According to one embodiment, the sum of the thicknesses of interface layers and dielectric layers above the active layer is substantially equal to the sum of the thicknesses of dielectric layer interface layers below the active layer.
Selon un mode de réalisation, les couches diélectriques comprennent du ZnS-SiO2.According to one embodiment, the dielectric layers comprise ZnS-SiO 2 .
D'autres caractéristiques apparaîtront à la lecture de la description détaillée donnée à titre d'exemple et non limitative qui suit faite en regard de dessins annexés qui représentent : - la figure 1 , un premier mode de réalisation vu en coupe d'une structure de disque selon l'invention,Other characteristics will become apparent on reading the detailed description given by way of nonlimiting example, which follows, with reference to appended drawings which represent: FIG. 1, a first embodiment seen in section of a structure of disc according to the invention,
- la figure 2, un deuxième mode de réalisation vu en coupe d'une structure de disque selon l'invention.- Figure 2, a second embodiment seen in section of a disk structure according to the invention.
- La figure 3 représente schématiquement une image de la microstructure cristalline de la couche d'InSb, avec ou sans couche deFIG. 3 schematically represents an image of the crystalline microstructure of the InSb layer, with or without a layer of
ZrO2.ZrO2.
La figure 1 présente un premier mode de réalisation d'une structure utilisée dans un disque optique selon l'invention. Le disque comprend un substrat 1 10 recouvert d'un empilement 120 de couches minces, une couche protectrice transparente 102 étant déposée sur l'empilement. A titre illustratif, des valeurs numériques sont données pour le disque de la figure 1 . Le disque est adapté à être lu par une tête optique d'ouverture numérique égale à 0.85, dont la limite de résolution est 120 nm, la tête produisant un faisceau laser dont la longueur d'onde est égale à 405 nm. L'information portée par le disque est formée par le substrat structuré, celui-ci comprenant des séquences codées sous la forme de marques espacées, les marques ayant des longueurs comprises entre 2T et 9T, T étant une dimension élémentaire égale, dans l'exemple, à 40 nm, contre 1 60 nm pour le format classique Blu-Ray. Les petites marques, dont la longueur est égale à 2T ou 3T, ont donc une longueur respectivement égale à 80 nm et 120 nm, inférieure ou égale à la limite de résolution de la tête optique. Par conséquent, l'effet de super-résolution est nécessaire à la détection de ces petites marques.FIG. 1 shows a first embodiment of a structure used in an optical disk according to the invention. The disc comprises a substrate 1 10 covered with a stack 120 of thin layers, a transparent protective layer 102 being deposited on the stack. As an illustration, numerical values are given for the disk of FIG. The disk is adapted to be read by a digital aperture optical head equal to 0.85, whose resolution limit is 120 nm, the head producing a laser beam whose wavelength is equal to 405 nm. The information carried by the disk is formed by the structured substrate, the latter comprising coded sequences in the form of spaced marks, the marks having lengths between 2T and 9T, T being an equal elementary dimension, in the example at 40 nm against 160 nm for the classic Blu-Ray format. The small marks, whose length is equal to 2T or 3T, therefore have a length equal to 80 nm and 120 nm, respectively, less than or equal to the resolution limit of the optical head. Therefore, the super-resolution effect is necessary for the detection of these small marks.
Le substrat 1 10 est formé, par exemple, d'un matériau polymère comme le polycarbonate, ou de verre qui porte des marques physiques en creux et bosses représentant l'information stockée.The substrate 1 10 is formed, for example, of a polymeric material such as polycarbonate, or glass which bears hollow physical marks and bumps representing the stored information.
La couche protectrice 102 est formée, dans l'exemple, d'un polycarbonate, de préférence d'une épaisseur de l'ordre de 100 micromètres.The protective layer 102 is formed, in the example, of a polycarbonate, preferably of a thickness of the order of 100 micrometers.
L'empilement 120 de couches minces comprend une première couche diélectrique 104a, une couche d'interface 106, une couche active 108 en InSb, et une seconde couche diélectrique 104b, dans l'ordre, du côté de la couche protectrice 102 vers le côté substrat 1 10. L'empilement 120 permet d'obtenir l'effet de super-résolution souhaité en étant modifié sous l'effet d'un laser haute puissance. Plus précisément, c'est la couche active 108 en InSb qui permet d'obtenir cet effet de super-résolution car elle présente des propriétés non linéaires optiques à la longueur d'onde de travail. Dans l'exemple, la couche active 108 a une épaisseur de 20 nm. Quant aux couches diélectriques 104a, 104b encadrant la couche active 108, elles permettent notamment d'ajuster les propriétés optiques du disque, mais également d'isoler thermiquement la couche active 108. Dans l'exemple les couches diélectriques 104a, 104b sont formées du composé ZnS-SiO2. D'autres matériaux sont envisageables pour constituer ces couches diélectriques 104a, 104b, ces matériaux étant de préférence, des matériaux diélectriques tels que les composés Si3N4, AIN, HfO2, TiO2 ou encore SiO2. Dans l'exemple, la première couche diélectrique 104a a une épaisseur égale à 35 nm et la seconde couche diélectrique 104b a une épaisseur sensiblement égale à 50 nm. Contrairement aux disques à super-résolution classique, le disque selon l'invention comporte une couche d'interface 106 intercalée de préférence entre la première couche diélectrique 104a et la couche active d'InSb 108, mais la couche d'interface pourrait aussi, bien que ce soit moins favorable, être intercalée entre la deuxième couche diélectrique 104b et la couche active d'InSb 108. C'est la présence de cette couche d'interface 106 qui permet, d'une part, d'augmenter la qualité du signal de lecture et, d'autre part, d'améliorer la stabilité en lecture du disque et donc le nombre de cycles de lecture possible au cours de la durée de vie du disque. La couche d'interface 106 présente une faible absorption, de manière à ne pas perturber le processus optique permettant la lecture du disque à superrésolution. La couche d'interface 106 est en ZrO2, ou à la rigueur en GeN, bien que ZrO2 s'avère plus performant. L'épaisseur de la couche d'interface 106 est comprise entre 3 nm et 50 nm, de préférence entre 5 nm et 20 nm. Dans l'exemple, l'épaisseur de cette couche d'interface 106 est égale à 15 nm, l'épaisseur de la première couche diélectrique 104a étant ajustée en fonction de l'épaisseur de la couche d'interface 106, de sorte que l'épaisseur totale de matériaux diélectriques de chaque côté de la couche active 108 est égale à 50 nm.Thin film stack 120 comprises a first dielectric layer 104a, an interface layer 106, an InSb active layer 108, and a second dielectric layer 104b, in order, from the side of the protective layer 102 towards the side. substrate 1 10. The stack 120 makes it possible to obtain the desired super-resolution effect by being modified under the effect of a high-power laser. More precisely, it is the active layer 108 in InSb that makes it possible to obtain this super-resolution effect because it exhibits optical non-linear properties at the working wavelength. In the example, the active layer 108 has a thickness of 20 nm. As for the dielectric layers 104a, 104b flanking the active layer 108, they make it possible in particular to adjust the optical properties of the disk, but also to thermally isolate the active layer 108. In the example, the dielectric layers 104a, 104b are formed from the compound ZnS-SiO 2 . Other materials are conceivable for constituting these dielectric layers 104a, 104b, these materials preferably being dielectric materials such as compounds Si 3 N 4 , AlN, HfO 2 , TiO 2 or SiO 2 . In the example, the first dielectric layer 104a has a thickness equal to 35 nm and the second dielectric layer 104b has a thickness substantially equal to 50 nm. Unlike conventional super-resolution disks, the disk according to the invention comprises an interface layer 106 interposed preferably between the first dielectric layer 104a and the active layer of InSb 108, but the interface layer could also, well that it is less favorable, be interposed between the second dielectric layer 104b and the active layer of InSb 108. It is the presence of this interface layer 106 which allows, on the one hand, to increase the quality of the signal for reading and, secondly, to improve the read stability of the disk and thus the number of possible read cycles during the life of the disk. The interface layer 106 has a low absorption, so as not to disturb the optical process for reading the superresolution disk. The interface layer 106 is ZrO 2 , or at least GeN, although ZrO 2 is more efficient. The thickness of the interface layer 106 is between 3 nm and 50 nm, preferably between 5 nm and 20 nm. In the example, the thickness of this interface layer 106 is equal to 15 nm, the thickness of the first dielectric layer 104a being adjusted as a function of the thickness of the interface layer 106, so that The total thickness of dielectric materials on each side of the active layer 108 is 50 nm.
Selon un autre mode de réalisation, plusieurs couches d'interface sont disposées entre la première couche diélectrique 104a et la couche active 108, mais c'est la couche de ZrO2 ou de GeN qui est en contact avec la couche d'InSb.According to another embodiment, a plurality of interface layers are disposed between the first dielectric layer 104a and the active layer 108, but it is the ZrO 2 or GeN layer that is in contact with the InSb layer.
Pour un disque réalisé selon cette configuration et lu à la vitesse de 2,65 m/s, le taux d'erreur binaire TEB (bit error rate BER en anglais) du signal de lecture obtenu est égal à 10"5. Le taux d'erreur maximum TEBmax acceptable pour une application commerciale est de l'ordre de 3.10"4, et on reste donc largement au-dessous de ce maximum. Or, avec un disque à super-résolution classique, c'est à dire avec un empilement actif sans couche d'interface 106, la stabilité de lecture du disque est de l'ordre de 3000 cycles de lecture. La stabilité augmente avec une couche d'interface située entre la deuxième couche diélectrique et la couche active. Elle augmente encore et atteint plus de 20000 cycles si la couche d'interface est située entre le laser et la couche active donc entre la première couche diélectrique et la couche active. De plus, la qualité du signal de lecture est améliorée lors des premiers cycles.For a disk made according to this configuration and read at a speed of 2.65 m / s, the bit error rate BER (bit error rate BER) of the read signal obtained is equal to 10 -5 . The maximum error BER maximum acceptable for a commercial application is of the order of 3.10 -4 , and therefore remains well below this maximum. However, with a conventional super-resolution disk, ie with an active stack without an interface layer 106, the reading stability of the disk is of the order of 3000 read cycles. Stability increases with an interface layer located between the second dielectric layer and the active layer. It increases again and reaches more than 20000 cycles if the interface layer is located between the laser and the active layer and therefore between the first dielectric layer and the active layer. In addition, the quality of the read signal is improved during the first cycles.
Par ailleurs, comme l'illustre la figure 2 présentant un deuxième mode de réalisation vu en coupe d'une structure de disque selon l'invention, la couche active 108 peut être encadrée par deux couches d'interface 106a, 106b placées respectivement au-dessus de la couche active 108 et au- dessous de celle-ci. Ainsi, par rapport au premier mode de réalisation présenté en figure 1 , une deuxième couche d'interface 106b, placée du côté du substrat 1 10 a été ajoutée. Elle est également en ZrO2 ou à la rigueur en GeN. Cette deuxième couche d'interface 106b permet d'améliorer le gain sur l'amplitude du signal de lecture et d'améliorer encore le nombre de lectures possibles.Moreover, as illustrated in FIG. 2, showing a second embodiment seen in section of a disk structure according to the invention, the active layer 108 may be framed by two interface layers 106a, 106b respectively placed above the active layer 108 and below it. Thus, with respect to the first embodiment shown in FIG. 1, a second interface layer 106b, placed on the side of the substrate 1 10 has been added. It is also in ZrO 2 or at least in GeN. This second interface layer 106b makes it possible to improve the gain on the amplitude of the read signal and to further improve the number of possible readings.
La lecture des disques à super-résolution implique généralement le traitement de signaux d'amplitude très faible, signaux parfois difficilement exploitables avec des circuits électroniques conventionnels. Un avantage de la structure du disque selon l'invention est que la qualité du signal de lecture est améliorée, y compris lors des premiers cycles de lecture, ce qui facilite le traitement des signaux.The reading of the super-resolution discs generally involves the processing of signals of very low amplitude, signals that are sometimes difficult to exploit with conventional electronic circuits. An advantage of the disk structure according to the invention is that the quality of the read signal is improved, including during the first read cycles, which facilitates signal processing.
L'introduction d'une couche d'interface spécifique, constitué de ZrO2, intercalée entre au moins une des deux couches diélectriques et la couche active permet de maintenir une microstructure cristalline très fine du matériau actif, nécessaire à l'obtention d'un effet de super-résolution marqué. La figure 3 représente schématiquement la microstructure de la couche d'InSb lorsqu'elle est au contact de couches d'interface en ZrO2 (schéma du haut, 3A) et sans couches d'interface en ZrO2 (schéma du bas, 3B). La structure microcristalline est plus fine en présence de la couche d'interface en ZrO2. En présence de grains cristallins fins d'InSb (largeur de grains de l'ordre de 20 nanomètres), les électrons générés sous le fort flux lumineux nécessaire à la modification locale des propriétés optiques du matériau InSb, restent confinés. Les grains cristallins de petite taille (20 nanomètres) permettent de limiter l'expansion latérale des électrons (mobilité réduite des électrons du fait de la présence de nombreux joints de grains) et permettent d'assurer une zone de transition optique la plus efficace possible. En présence de grains cristallins moins fins (cas de la figure 3A, en l'absence de couche d'interface en ZrO2), les électrons sont moins confinés. De ce confinement moins efficace, il résulte que le diamètre efficace LESR de la zone de super-résolution est plus grand dans le cas de la figure 3B que dans le cas de la figure 3A, pour un même diamètre de spot lumineux LSBR de lecture. La couche d'interface en ZrO2 joue donc un rôle d'amélioration de l'efficacité de la super-résolution par l'intermédiaire de la conservation de la finesse de la structure microcristalline de la couche d'InSb.The introduction of a specific interface layer consisting of ZrO 2 interposed between at least one of the two dielectric layers and the active layer makes it possible to maintain a very fine crystalline microstructure of the active material necessary to obtain a marked super-resolution effect. FIG. 3 schematically represents the microstructure of the InSb layer when it is in contact with ZrO2 interface layers (top diagram, 3A) and without ZrO2 interface layers (bottom diagram, 3B). The microcrystalline structure is thinner in the presence of the ZrO 2 interface layer. In the presence of fine crystalline grains of InSb (grain width of the order of 20 nanometers), the electrons generated under the strong flux light necessary for the local modification of the optical properties of the InSb material, remain confined. The small crystalline grains (20 nanometers) make it possible to limit the lateral expansion of the electrons (reduced mobility of the electrons because of the presence of numerous grain boundaries) and make it possible to ensure an optical transition zone that is as efficient as possible. In the presence of less fine crystalline grains (the case of FIG. 3A, in the absence of a ZrO 2 interface layer), the electrons are less confined. From this less efficient confinement, it follows that the effective diameter LESR of the super-resolution zone is larger in the case of FIG. 3B than in the case of FIG. 3A, for the same read LSBR light spot diameter. The ZrO 2 interface layer therefore plays a role in improving the efficiency of the super-resolution by means of the retention of the fineness of the microcrystalline structure of the InSb layer.
Des mesures par diffraction des rayons X ont permis de montrer qu'après plusieurs dizaines de cycles de lecture et en présence de deux couches d'interface de ZrO2 de part et d'autre de la couche d'InSb, la taille des cristallites (microcristaux) de InSb était de l'ordre de 20 nm dans les trois directions de l'espace (respectivement 18.5 nm dans l'épaisseur de la couche, 25 nm dans le plan du disque et 30 nm dans l'autre direction du plan du disque) alors que sans l'ajout de ces couches spécifiques, la taille des cristallites atteint plus de 60 nm dans le plan du disque (c'est-à-dire presque la dimension des marques que l'on souhaite détecter, ici 80 nm). X-ray diffraction measurements have shown that after several tens of read cycles and in the presence of two ZrO2 interface layers on either side of the InSb layer, the size of the crystallites (microcrystals ) of InSb was of the order of 20 nm in the three directions of space (respectively 18.5 nm in the layer thickness, 25 nm in the plane of the disk and 30 nm in the other direction of the plane of the disk ) while without the addition of these specific layers, the size of the crystallites reaches more than 60 nm in the plane of the disk (that is to say almost the dimension of the marks that one wishes to detect, here 80 nm) .

Claims

REVENDICATIONS
1. Disque de stockage optique à lecture par super-résolution comprenant au moins une couche de protection (102) en surface, un substrat (1 10) sur lequel est déposé un empilement (120) comprenant au moins une couche active (108) en InSb aux propriétés non linéaires réversibles, la couche active (108) étant intercalée entre au moins une première couche diélectrique (104a) déposée sous la couche de protection et une seconde couche diélectrique déposée sur le substrat (1 10), le disque étant caractérisé en ce qu'au moins une couche d'interface (106) en ZrO2 ou GeN est intercalée entre au moins une des deux couches diélectriques (104a, 104b) et la couche active (108).A super-resolution optical storage disc comprising at least one protective layer (102) on the surface, a substrate (1 10) on which is deposited a stack (120) comprising at least one active layer (108) in InSb with reversible nonlinear properties, the active layer (108) being interposed between at least a first dielectric layer (104a) deposited under the protective layer and a second dielectric layer deposited on the substrate (1 10), the disc being characterized in at least one interface layer (106) made of ZrO 2 or GeN is interposed between at least one of the two dielectric layers (104a, 104b) and the active layer (108).
2. Disque de stockage optique selon la revendication 1 , caractérisé en ce que ladite couche d'interface (106a) est déposée entre la première couche diélectrique (104a) et la couche active (108).An optical storage disk according to claim 1, characterized in that said interface layer (106a) is deposited between the first dielectric layer (104a) and the active layer (108).
3. Disque de stockage selon la revendication 1 , caractérisé en ce que ladite couche d'interface (106b) est déposée entre la deuxième couche diélectrique (104b) et la couche active (108).3. Storage disk according to claim 1, characterized in that said interface layer (106b) is deposited between the second dielectric layer (104b) and the active layer (108).
4. Disque de stockage selon la revendication 1 , caractérisé en ce qu'une première couche d'interface (106a) est déposée entre la première couche diélectrique (104a) et la couche active, et une deuxième couche d'interface (106b) est déposée entre la deuxième couche diélectrique (104b) et la couche active.Storage disk according to claim 1, characterized in that a first interface layer (106a) is deposited between the first dielectric layer (104a) and the active layer, and a second interface layer (106b) is deposited between the second dielectric layer (104b) and the active layer.
5. Disque de stockage optique selon l'une des revendications 1 à 4, caractérisé en ce que chaque couche diélectrique (104a, 104b) a une épaisseur sensiblement égale à 50 nm, la couche active (108) a une épaisseur sensiblement égale à 20 nm, et la couche d'interface (106a, 106b) a une épaisseur comprise entre 3 nm et 50 nm, de préférence entre 5 et 20 nm. 5. Optical storage disk according to one of claims 1 to 4, characterized in that each dielectric layer (104a, 104b) has a thickness substantially equal to 50 nm, the active layer (108) has a thickness substantially equal to 20 nm, and the interface layer (106a, 106b) has a thickness of between 3 nm and 50 nm, preferably between 5 and 20 nm.
6. Disque de stockage optique selon l'une quelconque des revendications précédentes, caractérisé en ce que la somme des épaisseurs de couches d'interfaces (106) et de couches diélectriques (104a) au-dessus de la couche active (108) est sensiblement égale à la somme des épaisseurs de couches d'interfaces (106) et de couches diélectriques (104b) en dessous de la couche active (108).An optical storage disk according to any one of the preceding claims, characterized in that the sum of the thicknesses of interface layers (106) and dielectric layers (104a) above the active layer (108) is substantially equal to the sum of the thicknesses of interface layers (106) and dielectric layers (104b) below the active layer (108).
7. Disque de stockage optique selon l'une quelconque des revendications précédentes, caractérisé en ce que les couches diélectriques (104a, 104b) comprennent du ZnS-SiO2. An optical storage disk according to any one of the preceding claims, characterized in that the dielectric layers (104a, 104b) comprise ZnS-SiO 2 .
PCT/EP2009/053895 2008-04-04 2009-04-01 Super-resolution, high reading stability optical disk WO2009121912A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0801870A FR2929747A1 (en) 2008-04-04 2008-04-04 SUPER-RESOLUTION OPTICAL DISK WITH HIGH READING STABILITY
FR0801870 2008-04-04

Publications (1)

Publication Number Publication Date
WO2009121912A1 true WO2009121912A1 (en) 2009-10-08

Family

ID=39651027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/053895 WO2009121912A1 (en) 2008-04-04 2009-04-01 Super-resolution, high reading stability optical disk

Country Status (2)

Country Link
FR (1) FR2929747A1 (en)
WO (1) WO2009121912A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2293298A1 (en) * 2009-09-08 2011-03-09 Thomson Licensing Optical storage medium comprising a Super-Resolution structure with grainy impurities of a dielectric material.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2935530B1 (en) 2008-08-29 2012-05-04 Commissariat Energie Atomique OPTICAL ADDRESSING DATA STORAGE DEVICE.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008077781A (en) * 2006-09-22 2008-04-03 National Institute Of Advanced Industrial & Technology Optical recording medium
EP1912216A1 (en) * 2006-10-13 2008-04-16 Thomson Holding Germany GmbH & Co. OHG Optical storage medium comprising a mask layer with a super resolution near field structure
EP1978517A1 (en) * 2007-04-06 2008-10-08 Commissariat à l'Energie Atomique Super-resolution optical recording medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0153033B1 (en) * 1993-06-18 1998-12-15 가나이 쯔또무 Information recording thin film and information recordng medium
US20060141202A1 (en) * 2003-03-24 2006-06-29 Taeko Suenaga Information recording medium and manufacturing method thereof
TWI220522B (en) * 2003-05-02 2004-08-21 Ind Tech Res Inst Ultra high density recordable optical information record medium and its manufacturing method
KR100754166B1 (en) * 2004-05-17 2007-09-03 삼성전자주식회사 Information storage medium having super resolution structure and apparatus for recording and/or reproducing the same
KR100579460B1 (en) * 2004-05-19 2006-05-12 엘지전자 주식회사 Multi layer super resolution optical disc

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008077781A (en) * 2006-09-22 2008-04-03 National Institute Of Advanced Industrial & Technology Optical recording medium
EP1912216A1 (en) * 2006-10-13 2008-04-16 Thomson Holding Germany GmbH & Co. OHG Optical storage medium comprising a mask layer with a super resolution near field structure
EP1978517A1 (en) * 2007-04-06 2008-10-08 Commissariat à l'Energie Atomique Super-resolution optical recording medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HYOT B ET AL: "Super-Resolution ROM Disc with a Semi-Conductive InSb Active Layer", EPCOS-EUROPEAN PHASE CHANGE AND OVONICS SYMPOSIUM,, 1 January 2007 (2007-01-01), pages 1 - 4, XP002515345 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2293298A1 (en) * 2009-09-08 2011-03-09 Thomson Licensing Optical storage medium comprising a Super-Resolution structure with grainy impurities of a dielectric material.
EP2293299A1 (en) * 2009-09-08 2011-03-09 Thomson Licensing Optical storage medium comprising a super-resolution structure with grainy impurities of a dielectric material.
US8389097B2 (en) 2009-09-08 2013-03-05 Thomson Licensing Optical storage medium comprising a super-resolution structure with grainy impurities of a dielectric material

Also Published As

Publication number Publication date
FR2929747A1 (en) 2009-10-09

Similar Documents

Publication Publication Date Title
EP1067372B1 (en) Bolometric detector with intermediary electrical isolation and method for its manufacture
FR2502825A1 (en) RECORDING ELEMENT FOR OPTICAL INFORMATION
EP1978517B1 (en) Super-resolution optical recording medium
EP2115745B1 (en) High resolution optical information storage medium
WO2009121912A1 (en) Super-resolution, high reading stability optical disk
WO2001093256A1 (en) Irreversible optical recording medium
EP1978512B1 (en) Method for intentionally degrading the content of an optical recording medium
FR2859820A1 (en) Modification of characteristic of one zone in a multizone material uses thermal effect produced by laser beam
FR2813138A1 (en) TRANSPARENT THERMAL WELL MULTI-LEVEL OPTICAL RECORDING MEDIUM FOR LASER READ / WRITE SYSTEM
JP3963427B2 (en) Optical information recording medium
EP1568023B1 (en) Inorganic optical recording medium comprising a heat dissipation layer
EP1568022B1 (en) Optical recording medium based on a tellurium and zinc alloy
CN102013261B (en) Optical storage medium
EP2145331B1 (en) Method and system for reading high density optical information
EP1864287B1 (en) Irreversible optical recording medium by formation of bubbles having a height limited by the gas source generating them
EP1568021B1 (en) Method for making a recordable optical disc, optical disc and writeable layer obtained by said method
EP2250644B1 (en) Structure for high density optical storage
EP1854097B1 (en) Optical data storage medium comprising a semi-reflective tin- and tellurium-based alloy layer
FR2944132A1 (en) OPTICAL INFORMATION STORAGE STRUCTURE AND METHOD FOR OPTIMIZING THE PRODUCTION OF SAID STRUCTURE.
FR2704349A1 (en) Sensitisation of a surface in photon emission under near field microscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09728969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09728969

Country of ref document: EP

Kind code of ref document: A1