WO2009116674A1 - 高炉ガスの分離方法 - Google Patents

高炉ガスの分離方法 Download PDF

Info

Publication number
WO2009116674A1
WO2009116674A1 PCT/JP2009/055722 JP2009055722W WO2009116674A1 WO 2009116674 A1 WO2009116674 A1 WO 2009116674A1 JP 2009055722 W JP2009055722 W JP 2009055722W WO 2009116674 A1 WO2009116674 A1 WO 2009116674A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
separation
hydrogen
components
blast furnace
Prior art date
Application number
PCT/JP2009/055722
Other languages
English (en)
French (fr)
Inventor
中川二彦
原岡たかし
岸本啓
斉間等
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41091769&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009116674(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2008069217A external-priority patent/JP5325435B2/ja
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020107020239A priority Critical patent/KR101244129B1/ko
Priority to CN200980110068.2A priority patent/CN101978234B/zh
Priority to BRPI0909767-8A priority patent/BRPI0909767B1/pt
Priority to EP09723526.1A priority patent/EP2258996B1/en
Publication of WO2009116674A1 publication Critical patent/WO2009116674A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/41Further details for adsorption processes and devices using plural beds of the same adsorbent in series
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/28Increasing the gas reduction potential of recycled exhaust gases by separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a method for separating blast furnace gas discharged from the top of the blast furnace furnace into gases mainly composed of gas components.
  • the blast furnace gas has about 50 to 55% nitrogen and 20 to 20 carbon dioxide.
  • Patent Document 1 a small amount of remaining combustible gas is obtained by burning a gas after separating carbon monoxide from a gas containing nitrogen, carbon monoxide, carbon dioxide such as blast furnace gas under a combustion catalyst. Those who produce inert gas with nitrogen and carbon dioxide as components that remove oxygen The law has been deceived. It is also proposed to separate carbon dioxide from the inert gas to obtain high purity nitrogen.
  • Patent Document 2 discloses that carbon dioxide and nitrogen in blast furnace gas are converted into an alumina system by a pressure fluctuation type adsorption separation method in which adsorption separation is performed by changing the adsorbent under a caloric pressure and then desorbing the pressure under reduced pressure.
  • a method of producing a rich gas of carbon monoxide and hydrogen by selectively adsorbing and separating using an adsorbent and porous polystyrene has been proposed.
  • Patent Document 3 when carbon dioxide is separated and recovered from a by-product gas generated at a steel plant by a chemical absorption method, carbon dioxide is absorbed from the gas by the chemical absorption liquid, and then the chemical absorption liquid is used! It has been proposed to use or utilize the low-grade exhaust heat of 500 ° C or less generated at steelworks in the process of heating and separating carbon dioxide.
  • Patent Document 1 Japanese Patent Application Laid-Open No. Sho 6 1-2 8 4 4 6
  • Patent Document 2 Japanese Patent Application Laid-Open No. Sho 62-1- 9 3 6 2 2
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2 0 0 4-2 9 2 2 9 8
  • Patent Document 1 carbon monoxide in a blast furnace gas is separated by an absorption method.
  • this method about 1 volume of 0 / o3 ⁇ 4g of carbon monoxide is absorbed in the gas after absorbing the carbon monoxide. Remains, and hydrogen is not absorbed and remains as it is (see Patent Document 1, upper left column on page 2). These are completely burned by the fuel ⁇ installed after the separator.
  • the amount of heat generated by the remaining carbon monoxide and hydrogen is enormous, about 1/5 "of the amount of heat of the blast furnace gas. Therefore, it is very difficult to effectively use the amount of heat generated by this combustor. Therefore, in Patent Document 1, it is said that 5% of the amount of heat of blast furnace gas is wasted. Save money.
  • Patent Document 2 an alumina-based adsorbent for adsorbing carbon dioxide in blast furnace gas and porous polystyrene for adsorbing nitrogen are packed into a single adsorption tower, and this adsorption tower is filled with a blast furnace gas. Carbon dioxide and nitrogen in the gas were adsorbed, and the carbon monoxide concentration and hydrogen concentration were relatively increased. Gas is recovered, but the recovery rate of carbon monoxide and hydrogen does not exceed 80%, and the remaining 20% of carbon monoxide and hydrogen are exhausted as a low calorific gas mixed with carbon dioxide and nitrogen. It will be done.
  • Patent Document 3 the force S that separates and collects carbon dioxide in blast furnace gas by chemical absorption method S, the concentration of carbon dioxide in blast furnace gas is about 20%, and the amount of heat increases even when only carbon dioxide is separated.
  • the improvement effect is limited to 25% 3 ⁇ 4g, and a gas with a high calorific value cannot be obtained.
  • Patent Document 1 heating or depressurization of 100 to 150 ° C is performed for P and liquid recovery, and Adsorption is performed in Patent Document 2. ⁇ ⁇ ff to 2 ata at the time and 3 ⁇ 4ff to 0.1 ata at the time of desorption, in Patent Document 3, the caloric heat at 120 is necessary for the regeneration of the absorbent, and the heat source or power treatment for these is Even if waste heat is used, it is necessary.
  • the purpose of the present invention is to separate the blast furnace gas from carbon dioxide and nitrogen to reduce the calorific value, to produce reformed blast furnace gas, etc.
  • a method of separating blast furnace gas that can efficiently recover each gas at a high recovery rate is to be obtained.
  • the present inventors have determined that the separation order and the separation method are particularly suitable for the separation of each component from the blast furnace gas. I got the knowledge that it was feasible.
  • the method for separating blast furnace gas according to the first invention is a method for separating blast furnace gas discharged from the blast furnace top using a two-stage gas separation and purification apparatus.
  • the first stage gas separation and purification apparatus converts the blast furnace gas into a gas composed of carbon dioxide and an infinite impurity gas component, and a gas composed of nitrogen and carbon monoxide and an inevitable impurity gas component.
  • the gas consisting of nitrogen and carbon monoxide and unavoidable impurity gas components separated by t & ia-stage gas separation and refinement by the second stage gas separation and refinement is separated into nitrogen and nitrogen.
  • the separation is divided into a gas composed of an inevitable impurity gas component and a gas composed of carbon monoxide and an inevitable impurity gas component.
  • the method for separating blast furnace gas according to the second invention is the method of separating the blast furnace gas according to the first invention, wherein the first-stage gas separation and refinement device is an adsorption separation device that separates carbon dioxide by adsorption. It is a special feature that the gas separation and purification apparatus M in the second stage is an adsorption apparatus that separates carbon monoxide by adsorption.
  • the method for separating blast furnace gas according to a third invention is the chemical absorption device according to the first invention, wherein the gas separation and purification device at the first stage is a chemical absorption device that separates carbon dioxide by absorption.
  • the gas separation and purification apparatus of the eye is an adsorption apparatus that separates carbon monoxide by adsorption.
  • the first-stage gas separation and purification apparatus is an adsorption component H separation for separating carbon dioxide by adsorption, and the second-stage gas separation and purification apparatus.
  • the gas separation and purification apparatus is a chemical absorption apparatus that separates carbon monoxide by absorption.
  • the blast furnace gas splitting 11 ⁇ method according to the fifth aspect of the present invention is the same as in any of the second to fourth aspects of the present invention, as a third stage gas separation and purification device, An adsorbent that adsorbs components other than ⁇ membrane or hydrogen is arranged, and hydrogen and nitrogen and inevitable impurity gas components are separated from hydrogen and nitrogen separated from the adsorbed components ⁇ and inevitable impurity gas components. It is characterized by separating gas.
  • the method for separating blast furnace gas according to the sixth invention is the method of separating the blast furnace gas according to the fifth invention, wherein an adsorbent that adsorbs components other than hydrogen is disposed as a third-stage gas separation / purification device in tiflB, and hydrogen cannot be absorbed by the adsorbent.
  • the components adsorbed on the adsorbent are Removal by a degassing operation, a hydrogen washing operation or a backwashing operation.
  • the blast furnace gas mainly composed of 7 elements, nitrogen, carbon monoxide and carbon dioxide into the respective gas components carbon dioxide is first separated.
  • Blast furnace gas can be separated with less power, and since it is separated using a two-stage gas separation and purification device, each gas can be separated at a high separation rate.
  • hydrogen is separated using a third-stage gas separation and purification device, high-concentration hydrogen can also be recovered from the blast furnace gas with a high recovery rate. A higher V-reformed blast furnace gas containing carbon monoxide at a higher concentration is obtained, and the effect makes it possible to reduce the input energy and cost spent for separation.
  • FIG. 1 is a process diagram showing a first embodiment of the present invention.
  • FIG. 2 is a process diagram showing a second embodiment of the present invention.
  • FIG. 3 is a process diagram showing a third embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing an operation when a pressure-casing adsorption device is used for the first-stage and second-stage gas separation processes in the first embodiment of the present invention. .
  • FIG. 5 is a schematic diagram of an operation in which the hydrogen content ⁇ is a membrane separation device in the first embodiment of the present invention shown in FIG.
  • FIG. 6 is a schematic diagram of an analysis of 3 ⁇ 4 ⁇ in which the 7_ silicon separation device is an adsorption device in the first embodiment of the present invention shown in FIG. 4.
  • FIG. 7 is a schematic diagram of the separation in the case where the degassing operation is performed on the hydrogen content in the first embodiment of the present invention shown in FIG.
  • FIG. 8 is a schematic diagram of the division of the first embodiment of the present invention shown in FIG. 4 in which the seven-element separation apparatus is cleaned with hydrogen.
  • FIG. 9 is a schematic diagram of an operation in which the hydrogen refractory is back-washed with hydrogen according to the first embodiment of the present invention shown in FIG.
  • the blast furnace gas consists of carbon monoxide: 2 1.1-2 6.2 # 3 ⁇ 4%, carbon dioxide: 19.3 to 23.2 # 3 ⁇ 4%, hydrogen: 2.9 to 5.3 # 3 ⁇ 4% Nitrogen: 52.5 to 59.23 ⁇ 4%. (4th edition Oka Handbook (CD-ROM) No. 1 No.
  • the present invention uses a two-stage gas separation and purification device,
  • the gas separation and purification device separates the blast furnace gas into a gas composed of carbon dioxide and inevitable impurity gas components, and a gas composed of nitrogen, carbon monoxide, and inevitable impurity gas components.
  • a gas composed of nitrogen, carbon monoxide, and unavoidable impurity gas components separated by the separation and purification apparatus by the first stage gas separation purification apparatus is combined with a gas composed of nitrogen and unavoidable impurity gas components. Gas consisting of carbon oxide and inevitable impurity gas components Separated.
  • the inevitable impurity gas component is a target component to be separated among the above four components (carbon monoxide, carbon dioxide, 7_ silicon, nitrogen) in addition to the minute amount contained in the blast furnace gas.
  • a gas component to the efficient incidentally mixed separation in addition contain up to 2 0 vol 0/0.
  • hydrogen is included as an inevitable impurity gas component. That is, among the gases discharged from the adsorbed component ⁇ , there is also a 3 ⁇ 4 ⁇ that separates “gas consisting of hydrogen and nitrogen and inevitable impurity gas components”, and “nitrogen and carbon monoxide as well as inevitable impurity gas.
  • a gas composed of components is a concept that includes both “a gas composed of 7k element and nitrogen and inevitable impurity gas components” and a gas that is not separated.
  • carbon dioxide is separated from blast furnace gas in the first stage gas separation step, so that the load in the carbon monoxide separation step, which is the second stage gas separation step, is reduced. Efficient separation is possible.
  • an adsorption separation device that separates carbon dioxide (hereinafter also referred to as “co 2 ”) by adsorption or a chemical absorption device that separates carbon dioxide by absorption is used. can do.
  • the second stage gas separation and purification equipment the first stage gas separation and purification As with the apparatus, it is possible to use an adsorbent fraction that separates carbon monoxide (hereinafter also referred to as “co”) by adsorption, or a chemical absorption apparatus that separates carbon monoxide by absorption.
  • the adsorption separation method used as the first and second stage gas separation apparatus can be a pressure-casing adsorption device (PSA method), Sit swing adsorption method (TSA method), etc.
  • the chemical absorption equipment used as the gas separation and purification apparatus in the second stage includes the amine method, chilled 'ammonia method, etc. for the age of carbon dioxide, such as copper chloride' hexamethyl phosphate for the age of carbon monoxide.
  • a method using an absorbent such as triamide, aluminum chloride, or toluene can be used.
  • first stage and the second stage's separation ⁇ adsorption method + adsorption method (first embodiment example) or absorption method + adsorption method (second embodiment example)
  • first embodiment example adsorption method + adsorption method
  • second embodiment example absorption method + adsorption method
  • third embodiment absorption method
  • an adsorbent that adsorbs components other than water * capsule or hydrogen is used as the third-stage gas separation apparatus on the outlet side of the adsorption unit (which can be either the first stage or the second stage). It is also possible to separate high-purity hydrogen by arranging a hydrogen separator equipped.
  • FIG. 1 is a process diagram showing a first embodiment of the present invention, in which a CO 2 P and adsorption separation device is arranged as a first-stage gas separation step (s 1), and this co 2 adsorption component Sfg device is used.
  • a CO 2 P and adsorption separation device is arranged as a first-stage gas separation step (s 1), and this co 2 adsorption component Sfg device is used.
  • nitrogen gas composed of inevitable impurity gas components (discharged from the apparatus at the beginning of discharge), nitrogen and carbon monoxide, and impossibility It is separated into a gas composed of unavoidable impurity gas components (discharged in the middle of the discharge) and a gas composed of carbon dioxide and unavoidable impurity gas components (discharged most recently).
  • discharge is a collective term for the steps exhausted from the adsorption tower in each step of the pressure (3 ⁇ 4) swing adsorption method (adsorption, » washing, degassing, etc.)
  • Initial “Mid-term” and “Last” indicate the temporal context within one cycle that summarizes each process.
  • the reason why carbon dioxide is separated in the first gas separation step is as follows. That is, the adsorptive power of each component to the adsorbent separated by adsorption separation is generally strong in the order of “Hydrogen, Nitrogen, Carbon monoxide, Carbon dioxide”. Adsorption power of nitrogen and carbon monoxide In general, the difference is smaller than the difference in adsorption power between these and other components. This means that in order to separate each component from a gas mixture containing hydrogen, nitrogen, carbon monoxide, and carbon dioxide at the adsorbed component ⁇ , carbon dioxide is adsorbed at a lower pressure or at a higher temperature, so it is most easily separated. That is, it shows that the power consumed for separation can be minimized. In addition, since the separation force by the adsorption method is also required for components that do not separate, the separation of each component requires a large amount of power because there is a large amount of other components that are not subject to separation. I need it.
  • FIG. 2 is a process diagram showing a second embodiment of the present invention, in which the first-stage gas separation step (S 1) is separated.
  • the reason why carbon dioxide is separated first is the same as that described in the first difficult embodiment, and the load of the second stage gas adsorption separation process is reduced. It is to do.
  • FIG. 3 is a process diagram showing a third embodiment of the present invention, in which the first-stage gas separation step (S 3)
  • co 2 adsorption fractionation device is arranged, and this co 2 adsorption fractionation device allows blast furnace gas to be discharged from the separation device at the initial stage of discharge, including nitrogen and inevitable impurity gas components.
  • a CO absorption separation device is disposed as the second stage gas separation step (S 2), and by this CO absorption separation device, nitrogen and nitrogen separated by the first stage gas separation: ⁇ step (S 1) A gas consisting of carbon monoxide and inevitable impurity gas components, a gas consisting of nitrogen and inevitable impurity gas components (discharged from the absorption tower), and a gas consisting of carbon monoxide and inevitable impurity gas components Separating the to) and discharged from the regeneration tower.
  • a hydrogen separation device is arranged as the third-stage gas separation step (S3), and the hydrogen separation device separated by the first-stage gas separation step (S1), 7_K elementary and nitrogen, and impossibility. Separate gas consisting of hydrogen and unavoidable impurity gas components from gas consisting of unavoidable impurity gas components.
  • the third-stage gas separation step (S3) is not essential, as in the first embodiment. The first embodiment of the present invention will be described in more detail with reference to examples.
  • FIG. 4 shows a C0 2 adsorption separation device in the first stage gas separation step (S 1) and a CO adsorption separation in the second stage gas separation step (S 2) in the first embodiment of the present invention.
  • PSA pressure swing adsorbers
  • C0 2 — PSA adsorption tower 3 Equipment adsorption tower (hereinafter referred to as “C0 2 — PSA adsorption tower”)
  • symbol 3 is a raw material gas holder for CO adsorption pressure swing adsorption device (hereinafter referred to as “CO—PSA device”)
  • symbol 4 Is the adsorption tower of the CO—PSA apparatus (hereinafter referred to as “CO—PSA adsorption tower”)
  • reference numeral 5 is the hydrogen apparatus described above.
  • the distribution of each gas component in the C0 2 -PSA adsorption tower 2 and CO-PSA adsorption tower 4 is a schematic representation for explanation, and the actual gas distribution in the tower is as shown in the figure. I don't mean.
  • the blast furnace gas discharged from the blast furnace is introduced into the raw gas holder 1 of the C0 2 — PSA apparatus, and in the raw gas holder 1, it returns from the C 0 2 — PSA adsorption tower 2 described later.
  • After being mixed with carbon d and a gas d consisting of inevitable impurity gas components it is introduced from the raw gas holder 1 into the C0 2 — PSA adsorption tower 2. It is preferable to remove the dust (solid particles), mist (liquid fine particles), moisture and sulfur in the cocoon gas before introducing the blast furnace gas into the raw material gas holder 1 in advance.
  • the adsorption pressure is 1 0 0 to 5 0 0 k Pa
  • the desorption pressure is 5 to: LOO k Pa Is preferred.
  • Source gas holder 1 force C 0 2 Gas a introduced into PSA adsorption tower 2 (gas consisting of blast furnace gas, circulating N 2 , CO, C 0 2 and inevitable impurity gas components) is shown in Fig. 4. As shown in Fig. 7, gas consisting of 7k element and nitrogen and inevitable impurity gas components b, nitrogen and carbon monoxide as well as gas c consisting of inevitable impurity gas components, nitrogen, carbon monoxide and carbon dioxide And gas d consisting of unavoidable impurity gas components, and gas e consisting of carbon dioxide and unavoidable impurity gas components.
  • the gas b consisting of hydrogen and nitrogen and unavoidable impurity gas components can be used as fuel gas in the ironworks as it is, but it is also possible to use hydrogen and hydrogen as a fuel gas. It is possible to separate the gas consisting of unavoidable impurity gas components; i, that is, high concentration hydrogen.
  • Gas k consisting of nitrogen, carbon monoxide and unavoidable impurity gas components, separated from gas b consisting of hydrogen and nitrogen and unavoidable impurity gas components, is recovered by C 0 2 — PSA source gas holder 1 Or, it can be recovered in the source gas holder 3 of the CO-PSA device, but if the carbon monoxide concentration is low and recovery increases the separation power, mix it with air using a catalyst or the like.
  • the 7_R elementary stand 5 may be a PSA device that strongly adsorbs gas components other than hydrogen (ie, nitrogen), and as a P adsorbent, C 0 2 — C 0 2 at the top of the PSA adsorption tower 2 It may be filled separately from the adsorbent for use. Alternatively, the hydrogen content may be as large as the size of the molecule.
  • the gas c consisting of nitrogen and carbon monoxide and inevitable impurity gas components is sent to the raw material gas holder 3 of the subsequent CO-PSA device, and the gas consisting of nitrogen, carbon monoxide and carbon dioxide and inevitable impurity gas components As described above, d is sent to the raw gas holder 1 of the C 0 2 — PSA apparatus and mixed with the blast furnace gas. Separated carbon dioxide and inevitable impurity gas components Gas e consisting are ⁇ of C0 2 purity of 99% or more, it can also be used as inert gas or dry ice. .
  • the gas c composed of nitrogen, carbon monoxide, and inevitable impurity gas components separated in the C0 2 -PS A adsorption tower 2 is sent to the raw material gas holder 3 of the subsequent CO—PSA apparatus, and the raw material gas holder 3 , After being mixed with nitrogen and carbon monoxide and a gas h consisting of inevitable impurity gas components returning from a CO—PSA adsorption tower 4 described later, CO—PSA adsorption as a gas f from the raw material gas holder 3 Introduced into Tower 4.
  • Any adsorbent packed in the CO-PS A adsorption tower 4 can be used as long as it is a material from which carbon monoxide can be separated and separated, and is not particularly specified.
  • a type of zeolite having a single copper supported or exchanged is preferred because of its excellent ability to adsorb carbon monoxide.
  • the adsorption pressure is preferably 100 to 500 kPa, and the desorption pressure is preferably 5 to 100 kPa.
  • the gas f introduced into the CO—PSA adsorption tower 4 is composed of nitrogen and inevitable impurity gas components g, nitrogen and carbon monoxide, and inevitable impurity gas as shown in FIG. It is separated into gas h consisting of components, gas i consisting of carbon monoxide and inevitable impurity gas components.
  • Gas g consisting of nitrogen and inevitable impurity gas components is high-purity N 2 with a purity of 99, and can be used as an inert gas in converters.
  • the gas h composed of nitrogen and carbon monoxide and inevitable impurity gas components is sent to the raw material gas holder 3 as described above.
  • Gas i which consists of carbon monoxide and inevitable impurity gas components, is high-purity CO with a purity of 99% or more, and can be used as a fuel gas with a calorific value of 300 000 Calm Nm 3 or more, and also useful as a chemical raw material It is.
  • the hydrogen content 5 is a PSA device that strongly adsorbs gas components other than hydrogen as described above.
  • a PSA device that strongly adsorbs gas components other than 7 elements when the P and the adsorbent are destroyed by components other than hydrogen, degassing operation by decompression or washing with hydrogen It is preferable to perform ⁇ operation or reverse »operation. It is possible to minimize the loss of carbon monoxide and nitrogen by performing a degassing operation by 3 ⁇ 43 ⁇ 4E, or a cleaning operation by 7 elements or a reverse cleaning operation.
  • FIG. 5 shows a case where the hydrogen separator 5 is a membrane separator in the first embodiment. It consists of carbon monoxide and nitrogen and inevitable impurity gas components separated and discharged simultaneously with the separation of gas j (high purity hydrogen gas) consisting of 7 elements and inevitable impurity gas components by hydrogen content 1
  • gas j high purity hydrogen gas
  • the gas k is introduced into the raw material gas holder 1 when the concentration of hydrogen contained in this separated exhaust gas is high 3 ⁇ 4 ⁇ , and the concentration of hydrogen contained in this separated exhaust gas is low! / ⁇ : ⁇ Is introduced into the source gas holder.
  • FIG. 6 shows # ⁇ in which the 7_R element ⁇ device 5 is an adsorption device in the first embodiment.
  • a gas b consisting of hydrogen and nitrogen and inevitable impurity gas components is introduced into a hydrogen component
  • 3 ⁇ 4 device 5 is an adsorption device, but after the separation of gas j consisting of 7_k element and unavoidable impurity gas components, the deaeration operation of this adsorption device is performed.
  • 3 ⁇ 4 ⁇ Fig. 7 shows a schematic diagram of the # ⁇ fractionation operation in which the adsorption device is cleaned with ⁇ silicon.
  • Fig. 8 shows a schematic diagram of the difficulty in performing the reverse cleaning operation of the adsorption device with hydrogen.
  • Figure 9 shows the figure.
  • the »operation by 7k means a forward cleaning operation, which means that the cleaning hydrogen gas is introduced in the same direction as the gas introduced during the adsorption.
  • the reverse cleaning operation with hydrogen gas means a reverse cleaning operation, which means that cleaning hydrogen gas is introduced in a direction opposite to the direction in which gas is introduced during adsorption.
  • R element «Device 5 is the adsorption device!
  • the degassing operation of this adsorption device is performed.
  • the CO and N 2 remaining in the 7R elementary separation device 5 are discharged by an exhaust device 6 such as a vacuum pump.
  • the separated exhaust gas 1 mainly composed of CO and N 2 is contained in this separated exhaust gas.
  • the hydrogen concentration is high, it is introduced into the raw material gas holder 1, and when the concentration of hydrogen contained in this separated gas is low, it is introduced into the raw material gas holder 3.
  • the gas when the gas is composed of hydrogen and unavoidable impurity gas components; i is separated after the separation of hydrogen, it consists of separated hydrogen and unavoidable impurity gas components as shown in Fig. 8.
  • the gas j is introduced into the hydrogen separation device 5 by a blower 7 such as a blower, and the gas composed of CO and N 2 and inevitable impurity gas components remaining in the hydrogen device 5 is discharged.
  • the discharged gas m consisting of CO, N 2 and 3 ⁇ 4 and unavoidable impurity gas components is introduced into the raw material gas holder 1 for high concentration of hydrogen contained in this separated exhaust gas, and this separated exhaust If the concentration of hydrogen contained in the gas is low, it is introduced into the raw material gas holder 3.
  • the separated gas j consisting of hydrogen and unavoidable impurity gas components is supplied to the hydrogen component Sl3 ⁇ 45 by the blower 7. Introduce and discharge the gas consisting of CO and N 2 remaining in the hydrogen unit 5 and inevitable impurity gas components.
  • the gas II consisting of CO, N 2 and inevitable impurity gas components discharged has a high concentration of hydrogen contained in this separated exhaust gas! / ⁇ ⁇ m is introduced into the raw material gas holder 1. When the concentration of hydrogen contained in the separated exhaust gas is low, it is introduced into the raw material gas holder 3.
  • the method for separating blast furnace gas according to the present invention that is, the first gas separation step is a carbon dioxide separation step, and the second gas separation step is a carbon monoxide separation step.
  • the first gas separation step is a carbon monoxide separation step
  • the second gas separation step is a carbon dioxide separation step (referred to as “Comparative Example j”).
  • Table 1 shows the differences in input power required for gas separation. As shown in Table 1, it can be seen that if the first gas separation step is a carbon dioxide separation step, the input can be made smaller than otherwise. That is, in the blast furnace gas separation method according to the present invention, the blast furnace gas is separated with a small input energy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

高炉ガスの分離方法は、高炉炉頂から排出される高炉ガスを二段のガス分離精製装置を用いて各成分を主体とするガスに分離するに際し、一段目のガス分離精製装置(S1)によって、高炉ガスを、二酸化炭素及び不可避的不純物ガス成分からなるガスと、窒素及び一酸化炭素並びに不可避的不純物ガス成分からなるガスと、に分離し、二段目のガス分離精製装置(S2)によって、前記一段目のガス分離精製装置により分離された、窒素及び一酸化炭素並びに不可避的不純物ガス成分からなるガスを、窒素及び不可避的不純物ガス成分からなるガスと、一酸化炭素及び不可避的不純物ガス成分からなるガスとに分離する。

Description

明細書 高炉ガスの分 法 技術分野
本発明は、 高炉炉頂から排出される高炉ガスを、 それぞ ガス成分を主成分とするガス に分離する方法に関するものである。 背景技術
製鉄所においては、 コークス炉、 高炉、 転炉などの設備から副生ガスと呼ばれるガスが発 生し、 このガスには、 水素、 一酸化炭素、 メタンといった燃料として利用可能な成分のほか に、 窒素、 二酸化炭素;^含有されている。 これらの副生ガスは、 その大部分が発電所や加熱 炉などで燃焼によって発生する熱を利用する用途に使用されているが、 前述のように、 これ らの副生ガス中には窒素や二酸化炭素といった不活性成分が含まれるために、 あたりの 熱量は 7 0 0 ~ 4 5 0 O kcal/Nm3であり、 一般的な燃料ガスであるプロパンガスや天然ガ スに比べて低いのが !敷である。 特に、 高炉ガスは 7 0 O kcal/Nm3程度であり、 最も熱量 が低い。
これは、 水素、 一酸化炭素、 メタンなどの燃料成分力 S少ない上に、 これらの燃料成分の燃 焼で発生する熱量が燃料成分以外の成分である窒素や二酸化炭素の加熱に消費されることに よるものである。 因みに高炉ガスには、 窒素が 5 0〜 5 5体 %程度、 二酸化炭素が 2 0〜
2 3体積0 /0¾¾含まれて ヽる。
..そのために、 これらの副生ガスから不活性成分を除去する方法に関して、 特に、 最近の二 酸化炭素排出削減の要請から、 高炉ガスから二酸化炭素を分離回収する方法に関して、 幾つ かの提案がなされている。
例えば特許文献 1には、 高炉ガスなどの窒素、 一酸化炭素、 二酸化炭素を含むガスから 一酸化炭素を分離した後のガスを燃焼触媒の «下で燃焼させることにより、 残存する微量 の可燃ガス及ぴ酸素を除去し、 窒素及び二酸化炭素を 分とする不活性ガスを製造する方 法が驗されている。 また、 前記不活性ガスから二酸化炭素を分離し、 髙純度の窒素を得る ことも提案してレ、る。
また、 特許文献 2には、 カロ圧下において吸着剤に翻 させて吸着分離を行い、 次いで減 圧下においてこれを脱着させる圧力変動式吸着分離方式によって高炉ガス中の二酸化炭素及 ぴ窒素を、 アルミナ系吸着剤及ぴ多孔性ポリスチレンを使用して夫々選択的に吸着分離させ て、 一酸化炭素及び水素のリッチガスを製造する方法が提案されている。
また更に、 特許文献 3には、 製鉄所で発生する副生ガスから化学吸収法により二酸化炭 素を分離回収するにあたり、 当該ガスから化学吸収液で二酸化炭素を吸収後、 化学吸収液を 力!]熱し二酸化炭素を分離させるプロセスにて、 製鉄所で発生する 5 0 0°C以下の低品位排熱 を利用または活用すること力提案されている。
特許文献 1 :特開昭 6 1 - 2 8 4 4 6号公報
特許文献 2:特開昭 6 2— 1 9 3 6 2 2号公報
特許文献 3:特開 2 0 0 4— 2 9 2 2 9 8号公報
上記の特許文献 1〜 3に提案されるように、 製鉄所で発生する副生ガスに含まれる各成分 を分離する技術は、 従来から提案されているが、 何れも実用化には至っておらず、 解決すベ き を有している。
例えば、 特許文献 1では、 高炉ガス中の一酸化炭素を吸収法によって分離しているが、 当 該方法では、 一酸化炭素を吸収した後のガス中に約 1体積0 /o¾gの一酸化炭素が残留し、 ま た水素は吸収されず、 そのまま残留する (特許文献 1の 2頁左上欄参照) 。 これらは分離器 の後段に設けられた燃 βにて完^焼されている。 この残留する一酸化炭素及び水素によ り発生する熱量は、 高炉ガスの有する熱量の実に 5 %に¾1 "るほどの莫大なものとなるにも 拘わらず、 多量の窒素及ぴ二酸化炭素によって «されたガスであるために、 この燃焼器で 発生する熱量の有効利用は非常に困難であり、 従って、 特許文献 1では、 高炉ガスの有する 熱量の 5 %相当分を無駄にしていると言わざるを得な 、。
特許文献 2では、 高炉ガス中の二酸化炭素を吸着するためのアルミナ系吸着剤と、 窒素 を吸着するための多孔性ポリスチレンとを一基の吸着塔内に充填して、 この吸着塔に高炉ガ ス中の二酸化炭素及び窒素を吸着させて、 相対的に一酸化炭素濃度及び水素濃度の増大した ガスを得ているが、 一酸化炭素及び水素の回収率は 8 0 %を超えておらず、 残る 2 0 %もの 一酸化炭素と水素は、 二酸化炭素及ぴ窒素と混合した低熱量ガスとして排気されてしまうこ とになる。
また、 特許文献 3では、 高炉ガス中の二酸化炭素を化学吸収法にて分離回収している力 S、 高炉ガス中の二酸化炭素濃度は 2 0 %程度であり、 二酸化炭素のみの分離でも熱量増加の効 果は得られるが、 その改善効果は 2 5 %¾gと限定されたものであり、 熱量の高いガスを得 ることはできない。
また、 何れの分 »法にも共通した として投入動力の問題があり、 特許文献 1では P及収液再生のために 1 0 0〜 1 5 0°Cの加熱或いは減圧、 特許文献 2では吸着時の 2 ataへ のカロ圧と脱着時の 0. 1 ataへの ¾ff、 特許文献 3では吸収液再生のために 1 2 0での カロ熱が必要であり、 これらに対する熱源或いは動力の手当ては、廃熱利用であったとして も必要である。
このように、 製鉄所副生ガス中の不活性成分を除去して熱量を増加させることは、 二酸 化炭素排出削減や省エネルギーの観点から重要であるが、 その実用化には、 燃料成分である 一酸化炭素及び水素の回収率向上、 分離操作に費やすエネルギー或いはコストの肖 lj減が課題 であ ことを示している。 発明の開示
本発明の目的は、 高炉ガスから二酸化炭素及び窒素を分離 -除去することにより熱量の 髙 、改質高炉ガスを製造するなどのために、 高炉ガスを、 それぞれの成分を 分とするガ スに分離するにあたり、 それぞれのガスを高回収率で効率良く回収することのできる高炉ガ スの分離方法を ¾ ^することである。
本発明者等は、 高炉ガスの分離における回収率向上、 並びにエネルギー或いはコスト削 減を様々な視点から検討した結果、 高炉ガスからの各成分の分離にあたり、 特に分離の順序 と分離手法とを適切に糸且^:ることによつて実現可能であるとの知見を得た。
本発明は上記知見に基づいてなされたものであり、 第 1の発明に係る高炉ガスの分離方 法は、 高炉炉頂から排出される高炉ガスを二段のガス分離精製装置を用いて各成分を主体と するガスに分離するに際し、 一段目のガス分離精製装置によって、 高炉ガスを、 二酸化炭素 及ぴ不 的不純物ガス成分からなるガスと、 窒素及び一酸化炭素並びに不可避的不純物ガ ス成分からなるガスと、 に分離し、 二段目のガス分離精 ¾置によって、 t&ia—段目のガス 分離精難置により分離された、 窒素及び一酸化炭素並びに不可避的不純物ガス成分からな るガスを、 窒素及ぴ不可避的不純物ガス成分からなるガスと、 一酸化炭素及ぴ不可避的不純 物ガス成分からなるガスと、 に分離することを 1敷とするものである。
第 2の発明に係る高炉ガスの分離方法は、 第 1の発明において、 前記一段目のガス分離 精難置が、 二酸化炭素を吸着によつて分 »る吸着分離置であ'り、 tiriB二段目のガス分 離精 M¾置が、 一酸化炭素を吸着によって分離する吸着分 «置であることを特 ί敷とするも のである。
第 3の発明に係る高炉ガスの分離方法は、 第 1の発明にお 、て、 ΙίίΙΒ—段目のガス分離 精製装置が、 二酸化炭素を吸収によって分離する化学的吸収装置であり、 前記二段目のガス 分離精製装置が、 一酸化炭素を吸着によつて分離する吸着分 «置であることを «とする ものである。
第 4の発明に係る高炉ガスの分離方法は、 第 1の発明において、 前記一段目のガス分離 精製装置が、 二酸化炭素を吸着によつて分離する吸着分 H¾置であり、 前記二段目のガス分 離精製装置が、 一酸化炭素を吸収によって分離する化学的吸収装置であることを特徴とする ものである。
第 5の発明に係る高炉ガスの分 11^法は、 第 2ないし第 4の発明の何れかにおいて、 前 記吸着分難置の出口側に、 三段目のガス分離精製装置として、 7素 β膜或いは水素以外 の成分を吸着する吸着剤を配置し、 前記吸着分 β置から分離される水素及び窒素並びに不 可避的不純物ガス成分からなるガスから水素及ぴ不可避的不純物ガス成分からなるガスを分 離することを特徴とするものである。
第 6の発明に係る高炉ガスの分離方法は、 第 5の発明において、 tiflB三段目のガス分離 精製装置として水素以外の成分を吸着する吸着剤を配置し、 該吸着剤によって水素及ぴ不可 避的不純物ガス成分からなるガスを分離する ¾ ^に、 前記吸着剤に吸着した成分を によ る脱気操作または水素による洗净操作若しくは逆洗净操作で除去することを «とするもの である。
本発明によれば、 7素、 窒素、 一酸化炭素及ぴ二酸化炭素を主たる成分とする高炉ガスを、 それぞれのガス成分に分離するにあたり、 最も分離しゃす 、二酸化炭素を最初に分離するの で、 少ない動力で高炉ガスの分離を行うことができ、 また、 二段のガス分離精製装置を用い て分離するので、 高い分離率でそれぞれのガスを分離することができる。 更に、 三段目のガ ス分離精製装置を用いて水素を分離した場合には、 高濃度の水素をも高炉ガスから高回収率 で回収することができ、 その結果、 高濃度の水素及び高濃度の一酸化炭素を含有する、 熱量 増加のより高 Vヽ改質高炉ガスが得られ、 その効果によつて分離に費やされる投入エネルギー 及ぴコストを することが可能となる。
図面の簡単な説明
図 1は、 本発明の第一の実施形態例を示す工程図である。
図 2は、 本発明の第二の実施形態例を示す工程図である。
図 3は、本発明の第三の実施形態例を示す工程図である。
図 4は、本発明の第一の実施形態例において、 一段目及ぴニ段目のガス分離工程に圧カス ィング吸着装置を用 、たときの分 «作を模式的に表わした図である。
図 5は、 図 4に示す本発明の第一の実施形態例において、 水素分 β置が膜分離装置であ る の分 «作の模式図である。
図 6は、 図 4に示す本発明の第一の実施形態例において、 7_Κ素分離装置が吸着分 «置で ある ¾ ^の分»作の模式図である。
図 7は、 図 4に示す本発明の第一の実施形態例において、 水素分難置を脱気操作する場 合の分«作の模式図である。
図 8は、 図 4に示す本発明の第一の実施形態例にぉレ、て、 7素分離装置を水素により洗浄 操作する^の分 «作の模式図である。 図 9は、 図 4に示す本発明の第一の実施形態例にぉレヽて、 水素分難置を水素により逆洗 净操作する の分 «作の模式図である。
図中の符号は以下の通りである。
1 原料ガスホノレダ—
2 C02-PSAB^*¾
3 原料ガスホルダー
4 CO— PS A吸着塔
5 水素分離置
6 排気装置
7 送離置
S 1 —段目のガス分離工程
52 二段目のガス分離工程 '、
S 3 三段目のガス分離工程
発明を実施するための开態
以下、 本発明を具体的に説明する。
高炉ガスの は、 一酸化炭素: 2 1 . 1 - 2 6 . 2 #¾%、 二酸化炭素: 1 9 . 3 ~ 2 3 . 2 #¾%、 水素: 2 . 9〜5 . 3 #¾%、 窒素: 5 2. 5〜5 9 . 2 ¾%である。 (第 4版 岡便覧 (CD-ROM) No. 1第 2卷製銑 · ΜΙΡ3、 2002年 7月 30日発行、 表 42-5 - 7(20 00)を参照) この高炉ガスから熱量のより高い改質高炉ガスを製造するなどの目的のために、 高炉ガスを、 それぞれのガス成分に分離する際に、 本発明〖こおいては、 二段のガス分離精製 装置を用い、 一段目のガス分離精製装置によって、 高炉ガスを、 二酸化炭素及び不可避的不 純物ガス成分からなるガスと、 窒素及び一酸化炭素並びに不可避的不純物ガス成分からなる ガスと、 に分離し、 二段目のガス分離精製装置によって、 前記一段目のガス分離精 Μ¾置に より分離された、 窒素及ぴ一酸化炭素並びに不可避的不純物ガス成分からなるガスを、 窒素 及び不可避的不純物ガス成分からなるガスと、 一酸化炭素及ぴ不可避的不純物ガス成分から なるガスとに分離する。
ここで、 不 避的不純物ガス成分とは、 高炉ガス中に含まれる微¾¾分の他に、 上記 4 成分 (一酸化炭素、 二酸化炭素、 7_Κ素、 窒素) の中で分離すべき目的の成分以外に分離の効 率上付随的に混入するガス成分であり、 最大 2 0体積0 /0を含む。 尚、 窒素及び一酸化炭素並 びに不可避的不純物ガス成分からなるガスにおいてほ、 不可避的不純物ガス成分として水素 を含む ¾ ^もある。 即ち、 吸着分 β置から排出されるガスのうち、 「水素及ぴ窒素並びに 不可避的不純物ガス成分からなるガス」 を分離する ¾ ^もあり、 「窒素及び一酸化炭素並ぴ に不可避的不純物ガス成分からなるガス」 とは、 「7k素及び窒素並びに不可避的不純物ガス 成分からなるガス」 を分離する齡と分離しな 、 の両者を含む概念である。
このように、 本発明によれば、 一段目のガス分離工程において、 高炉ガスから二酸化炭 素を分離するので、 二段目のガス分離工程である、 一酸化炭素の分離工程における負荷を低 減することができ、 効率的な分離が可能となる。
. —段目のガス分離精 β置としては、 二酸化炭素 (以下 「co2」 とも記す) を吸着によ つて分離する吸着分離装置、 或いは、 二酸化炭素を吸収によって分離する化学的吸収装置を 使用することができる。 また、 二段目のガス分離精 置としては、 一段目のガス分離精製 装置と同様に、 一酸化炭素 (以下 「co」 とも記す) を吸着によって分離する吸着分難置、 或いは、 一酸化炭素を吸収によって分離する化学的吸収装置を使用することができる。
一段目及び二段目のガス分離精難置として使用する吸着分離方法としては、 圧カスィ ング吸着装置 (P S A法) 、 Sitスイング吸着法 (T S A法) などを使用することができ、 一段目及び二段目のガス分離精 «置として使用する化学的吸収装置としては、 二酸化炭素 の齢には、 アミン法、 チルド'アンモニア法など、 一酸化炭素の齢には、 塩化銅 'へキ サメチルリン酸トリアミドゃ塩化アルミニウム · トルエンなどを吸収液とした方法を使用す ることができる。
尚、 一段目と二段目'の分難置の組^:としては、 吸着法 +吸着法 (第一の実施形態例) 或いは吸収法 +吸着法 (第二の実施形態例) 、 更には吸着法 +吸収法 (第三の実施形態例) がありうるが、 一段目及び二段目ともに吸収法の には水素が分離できず口スとなるため 好ましくない。
また、 吸着分難置 (一段目でも二段目でもどちらでも構わない) の出口側に、 三段目 のガス分離精 «置として、 水 *Μ膜或いは水素以外の成分を吸着する吸着剤を備えた水 素分離装置を配置することによって、 高純度の水素を分離することも可能である。 以下、 図面を参照して本発明を具体的に説明する。
図 1は、 本発明の第一の実施形態例を示す工程図であり、 一段目のガス分離工程 (s 1 ) として C O2P及着分離置を配置し、 この co2吸着分 Sfg置によって 炉ガスを、 水素
(以下 「 」 とも記す) 及び窒素 (以下 「N2」 とも記す) 並びに不可避的不純物ガス成分か らなるガス (排出時の初期に分 置から排出される) と、 窒素及び一酸化炭素並びに不可 避的不純物ガス成分からなるガス (排出時の中期に排出される) と、 二酸化炭素及ぴ不可避 的不純物ガス成分からなるガス (最も後に排出される) とに分離し、 また、 二段目のガス分 離工程 (S 2 ) として C O吸着分離置を配置し、 この C O吸着分難置によって、 一段目 のガス分離工程 (S 1 ) により分離された、 窒素及び一酸化炭素並びに不可避的不純物ガス 成分からなるガスを、 窒素及ぴ不可避的不純物ガス成分からなるガス (排出時の初期に分離 装置から排出される) と、 一酸化炭素及ぴ不 ¾r避的不純物ガス成分からなるガス (最も後に 排出される) とに分離する。
尚、 ここで、 「排出」 と表現したものは、 圧力 (¾) スイング吸着法の各工程 (吸着、 »、 洗浄、 脱気など) において吸着塔より排気される工程を総称したものであり、 「初 期」 、 「中期」 及ぴ 「最も後」 とは、 各工程をまとめた一サイクル内での時間的な前後関係 を示したものである。
ここで一段目のガス分離工程で、 二酸化炭素を分離する理由は以下のとおりである。 即 ち、 吸着分離置で分離する 、 吸着剤への各成分の吸着力は、 概ね「水素くく窒素く一 酸化炭素くく二酸化炭素」 の順に強くなつており、 窒素と一酸化炭素との吸着力の差は、 こ れらと他成分の吸着力の差に比べて小さいのが一般的である。 このことは、 水素、 窒素、一 酸化炭素、 二酸化炭素を含有する混合ガスから各成分を吸着分 β置で分離する には、 二酸化炭素がより低い圧力或いは高温で吸着するため、 最も分離しやすいこと、 つまり、 分 離に費やす動力を最も少なくできることを示している。 また、 吸着法による分離では投入動 力は分離しない成分にも必要となるため、 «度の成分の分離には、 分離対象でない他の成 分が多量に存在すること力ら、 大きな動力がより必要になる。
また更に、 三段目のガス分離工程 ( S 3 ) として水素分離装置を配置し、 この水素分離 装置によって、 一段目のガス分離工程 ( S 1 ) により分離された、 7素及ぴ窒素並びに不可 避的不純物ガス成分からなるガスから水素及ぴ不可避的不純物ガス成分からなるガスを分離 する。 尚、 前述したように、 本発明においては、 三段目のガス分離工程 (S 3 ) は必須では なく、 高炉ガスに比較して あたりの熱量が 3倍以上の改質高炉ガスを得ようとする: ½ には、 一段目のガス分離工程 ( S 1 ) により分離された、 7_k素及び窒素並びに不 的不純 物ガス成分からなるガスと、 二段目のガス分離工程 (S 2 ) により分離された、 一酸化炭素 及び不可避的不純物ガス成分からなるガスとを混合することで、 十分に目的を満足すること ができる。 図 2は、 本発明の第二の実施形態例を示す工程図であり、 一段目のガス分離工程 ( S
1 ) として co2吸収分難置を配置し、 この co2吸収分誰置によって高炉ガスを、 窒素 及び一酸化炭素及び水素並びに不可避的不純物ガス成分からなるガス (吸収塔から排出され る) と、 二酸化炭素及び不可避的不純物ガス成分からなるガス (再生塔より排出される) と に分離し、 また、 二段目のガス分離工程 (S 2 ) として C O吸着分离際置を配置し、 この C ΟΡ及着分 β置によって、 一段目のガス分離工程 (S 1 ) により分離された、 窒素及び一酸 化炭素及び水素並びに不可避的不純物ガス成分からなるガスを、 水素及び窒素並びに不可避 的不純物ガス成分からなるガス (排出時の初期に分 ¾置から排出される) と、 窒素及び不 可避的不純物ガス成分からなるガス (排出時の中期に排出される) と、 一酸化炭素及び不可 避的不純物ガス成分からなるガス (最も後に排出される) とに分離する。
第二の実施形態例にぉ 、て先に二酸化炭素を分離する理由は、 第一の難形態例にお V、 て記述した理由と同様で、 二段目のガス吸着分離工程の負荷を«するためである。
また更に、 三段目のガス分離工程 ( S 3 ) として水素分 β置を配置し、 この水素分離 装置によって、 二段目のガス分離工程 (S 2) により分离笛された、 7R素及ぴ窒素並びに不可 避的不純物ガス成分からなるガスから、 水素及び不可避的不純物ガス成分からなるガスを分 離する。 ここで、 三段目のガス分離工程(S 3 ) が必須でないことは、 第一の実施形態例と 同様である。 図 3は、 本発明の第三の実施形態例を示す工程図であり、 一段目のガス分離工程 ( S
1 ) として co2吸着分瞧置を配置し、 この co2吸着分赚置によって高炉ガスを、 ? 及ぴ窒素並びに不可避的不純物ガス成分からなるガス (排出時の初期に分離装置から排出さ れる) と、 窒素及び一酸化炭素並びに不可避的不純物ガス成分からなるガス (排出時の中期 に排出される) と、 二酸化炭素及び不可避的不純物ガス成分からなるガス (最も後に排出さ れる) とに分離し、 また、 二段目のガス分離工程 ( S 2 ) として C O吸収分離装置を配置し、 この C O吸収分離装置によって、 一段目のガス分離: Εί程 (S 1 ) により分離された、 窒素及 ぴ一酸化炭素並びに不可避的不純物ガス成分からなるガスを、 窒素及ぴ不可避的不純物ガス 成分からなるガス (吸収塔から排出される) と、 一酸化炭素及び不可避的不純物ガス成分か らなるガス (再生塔より排出される) とに分離する。 また更に、 三段目のガス分離工程 (S3) として水素分 «置を配置し、 この水素分離 装置によって、 一段目のガス分離工程 (S 1) により分離された、 7_K素及ぴ窒素並びに不可 避的不純物ガス成分からなるガスから、 水素及ぴ不可避的不純物ガス成分からなるガスを分 離する。 ここで、 三段目のガス分離工程 (S3) が必須でないことは、 第一の実施形態例と 同様である。 上記の本発明の第一の実施形態例につ!/、て、 実例を挙げて更に詳細に説明する。
図 4は、 本発明の第一の実施形態例において、一段目のガス分離工程 (S 1) の C02吸 着分離装置、 及び、 二段目のガス分離工程 (S 2) の CO吸着分離装置として、 ともに圧力 スイング吸着装置 (PSA) を用いたときの分 »作を模式的に表わしたものであり、 図 4 中の符号 1は、 C02吸着用圧力スイング吸着装置 (以下、 「C02— PSA装置」 と記す) の原料ガスホルダー、 符号 2は、 〇02—?3 装置の吸着塔 (以下、 「C02— PSA吸着 塔」 と記す) 、符号 3は、 CO吸着用圧力スイング吸着装置 (以下、 「CO— PSA装置」 と記す) の原料ガスホルダー、 符号 4は、 CO— PS A装置の吸着塔 (以下、 「CO— PS A吸着塔」 と記す) 、 符号 5は、 前述した水素分 «置である。 尚、 C02—PSA吸着塔 2 及ぴ C O— P S A吸着塔 4の内部における各ガス成分の分布状態は説明のための模式的表現 であり、 実際の塔内のガス分布が図のようになっているわけではない。
高炉から排出された高炉ガスは、 C02— P S A装置の原料ガスホルダー 1に導入され、 原料ガスホルダー 1において、 後述する C 02— P S A吸着塔 2から戻ってくる、 窒素及び一 酸化炭素及び二酸化炭素並びに不可避的不純物ガス成分からなるガス dと混合された後、 原 料ガスホルダー 1から C02— P S A吸着塔 2に導入される。 この^、 高垆ガス中のダスト (固体粒子) 、 ミスト (液体微粒子) 、 水分及び硫黄分を、 高炉ガスを原料ガスホルダー 1 に導入する前に予め除去しておくことが好ましい。 何故なら、 ダストは、 C 02— P S A吸着 塔 2に設置される吸着剤の細孔の閉塞による能力低下を引き起こし、 ミスト及ぴ水分は、 二 酸化炭素よりも前記吸着剤との吸着力が高いために、 相対的に二酸化炭素吸着能力の低下を もたらすほ力 \ 吸着剤の劣ィ匕を促進させ、 硫黄分は、 前記吸着剤の吸着点の被毒による能力 低下を引き起こすからである。 C 02— P S A吸着塔 2に充填される吸着剤としては、 zR素、 窒素、 一酸化炭素、 二酸 化炭素が或る 分離され得る材料であれば何れも利用可能であり、 特に指定するもので はなく、 市販の活性炭ゃゼオライトが使用可能である。 また、 吸着時の圧力、 脱着時の圧力 ともに特に指定するものではないが、 操作の容易性から、 吸着圧力は 1 0 0〜5 0 0 k P a、 脱着圧力は 5〜: L O O k P aが好ましい。
原料ガスホルダー 1力ら C 02— P S A吸着塔 2に導入されたガス a (高炉ガスと、 循環 する N2、 CO、 C 02及ぴ不可避的不純物ガス成分からなるガ ) は、 図 4に示すように、 7k素及ぴ窒素並びに不可避的不純物ガス成分からなるガス b、 窒素及び一酸化炭素並ぴに不 可避的不純物ガス成分からなるガス c、 窒素及び一酸化炭素及ぴ二酸化炭素並びに不可避的 不純物ガス成分からなるガス d、 二酸化炭素及び不可避的不純物ガス成分からなるガス eに 分離される。
水素及ぴ窒素並びに不可避的不純物ガス成分からなるガス bはそのままでも 鉄所内に ぉレ、て燃料ガスとして利用可能であるが、 更に、 水素分 »¾置 5を設けることによって、 水 素及ぴ不可避的不純物ガス成分からなるガス; i、 つまり高濃度の水素に分離することも可能 である。 水素及ぴ窒素並びに不可避的不純物ガス成分からなるガス bから分離した、 窒素及 ぴ一酸化炭素並びに不可避的不純物ガス成分からなるガス kは、 C 02— P S Aの原料ガスホ ルダー 1に回収する力、 または、 CO— P S A装置の原料ガスホルダー 3に回収することも できるが、 一酸化炭素濃度が低くて回収した場合に分離動力を増大させてしまう場合は、 触 媒などで空気と混合して燃焼させた後に大気に職される。 7_R素分難置 5は、 水素以外の ガス成分 (即ち、 窒素) を強く吸着する P S A装置であってもよいし、 P及着剤として C 02— P S A吸着塔 2の上部に C 02用の吸着剤とは別に充填させていてもよい。 或いは、 分子の大 きさを禾 U用した水素分麵莫であつてもよい。
窒素及び一酸化炭素並びに不可避的不純物ガス成分からなるガス cは、 後段の C O— P S A装置の原料ガスホルダー 3に送られ、 窒素及び一酸化炭素及ぴ二酸化炭素並びに不可避 的不純物ガス成分からなるガス dは、 先述したように C 02— P S A装置の原料ガスホルダー 1に送られて高炉ガスと混合される。 分離された、 二酸化炭素及び不可避的不純物ガス成分 からなるガス eは、 純度 99%以上の髙純度 C02であり、 不活性ガス或いはドライアイス用 としても利用可能である。 .
C 02— P S A装置では、原料ガスホルダー 1からの C 02_ P S A吸彰荅 2へのガス導入 及ぴ C 02— P S A吸着塔 2からのガス排出の操作を繰り返し実施する。
C02-PS A吸着塔 2で分離された、 窒素及び一酸化炭素並びに不可避的不純物ガス 成分からなるガス cは、 後段の CO— P S A装置の原料ガスホルダー 3に送られ、 原料ガ スホルダー 3において、 後述する CO— P S A吸着塔 4から戻ってくる、 窒素及び一酸化炭 素並びに不可避的不純物ガス成分からなるガス hと混合された後、 原料ガスホルダー 3から ガス f として CO— PS A吸着塔 4に導入される。
CO-PS A吸着塔 4に充填される吸着剤は、 一酸化炭素が或る離分離され得る材料 であれば何れも利用可能であり、 特に指定するものではないが、 Y型ゼオライト、 または Y 型ゼォライトに一俩の銅を担持或レ、はィオン交換したものは、 一酸化炭素吸着能力に優れる ので好ましい。 また、 吸着時の圧力、 脱着時の圧力は、 ともに特に指定するものではないが、 操作の容易性から、 吸着圧力は 100〜500kPa、 脱着圧力は 5〜100kP aが好ま しい。
原料ガスホルダー 3カら CO— PS A吸着塔 4に導入されたガス f は、 図 4のように窒 素及ぴ不可避的不純物ガス成分からなるガス g、 窒素及び一酸化炭素並びに不可避的不純物 ガス成分からなるガス h、 一酸化炭素及ぴ不可避的不純物ガス成分からなるガス iに分離さ れる。 窒素及ぴ不可避的不純物ガス成分からなるガス gは、 純度 99 の高純度 N2であ り、 不活性ガスとして転炉などに利用可能である。 窒素及び一酸化炭素並びに不可避的不純 物ガス成分からなるガス hは、 先述のように原料ガスホルダー 3に送られる。 一酸化炭素及 ぴ不可避的不純物ガス成分からなるガス iは、 純度 99%以上の高純度 COであり、 熱量 3 00 Okcalン Nm3以上の燃料ガスとして利用可能である他、 化学原料としても有用である。
CO— P S A装置では、 原料ガスホルダー 3からの CO— P SA吸着塔 4へのガス導入 及び C O— P S AP及着塔 4からのガス排出の操作を繰り返し実施する。
このようにして、 高炉ガスから高純度の H2、 C02、 N2、 COが高効率でしかも高い分 離率で分離される。 尚、 水素分難置 5を設置する ¾ ^に、 水素分難置 5としては、 前述したように、 水 素以外のガス成分を強く吸着する P S A装置であっても、 また、 7素分離膜であってもよい が、 7素以外のガス成分を強く吸着する P S A装置を用いる には、 P及着剤が水素以外の 成分によって***した時点で、 減圧による脱気操作、 または、 水素による洗净操作若しくは 逆 »操作を行うことが好ましい。 ¾¾Eによる脱気操作、 または、 7素による洗净操作若し くは逆洗浄操作を行うことにより、 一酸化炭素及び窒素の損失を最小限に抑制することが可 能となる。
図 5に、 第一の実施形態例において、 水素分離装置 5が膜分離装置である場合を示す。 水素分 1¾置 5により、 7素及び不可避的不純物ガス成分からなるガス j (高純度水素ガ ス) の分離と同時に分離され、 排出される一酸化炭素及ぴ窒素並びに不可避的不純物ガス成 分からなるガス kは、 この分離排出ガス中に含有される水素の濃度が高い ¾ ^には原料ガス ホルダー 1へ導入し、 この分離排出ガス中に含有される水素の濃度が低!/ヽ: ^には原料ガス ホルダ一 3へ導入する。
また、 図 6に、 第一の実施形態例において、 7_R素分 β置 5が吸着装置である # ^を示 す。 水素及ぴ窒素並びに不可避的不純物ガス成分からなるガス bを水素分 ||¾置 5に導入し て、 水素及ぴ不可避的不純物ガス成分からなるガス j (高純度水素ガス) を分離する。
水素分 ||¾置 5が吸着装置である に、 7_k素及び不可避的不純物ガス成分からなるガ ス jの分離後に、 こよる吸着装置の脱気操作を行う ¾ ^の分 作の模式図を図 7に示 し、 また、 τΚ素による吸着装置の洗浄操作を行う # ^の分觸作の模式図を図 8に示し、 水 素による吸着装置の逆洗浄操作を行う の分難作の模式図を図 9に示す。 ここで、 7k による »操作とは、 順方向の洗浄操作を意味し、 吸着時のガスを導入する方向と同じ方向 に洗浄用水素ガスを導入するという意味である。 同様に、 水素ガスによる逆洗浄操作とは、 逆方向の洗净操作を意味し、 吸着時のガスを導入する方向とは反対方向に洗浄用水素ガスを 導入するという意味である。
R素分 «置 5が吸着装置の:!^に、 この吸着装置の脱気操作を行う ^^には、 図 7に 示すように、 7R素分離装置 5に残った C O及ぴ N2などを真空ポンプなどの排気装置 6で排出 する。 排出された C O及び N2を主成分とする分離排出ガス 1は、 この分離排出ガス中に含有 される水素の濃度が高レヽ¾ ^には原料ガスホルダー 1へ導入し、 この分 ϋ 出ガス中に含有 きれる水素の濃度が低 、場合には原料ガスホルダー 3へ導入する。
また、 水素及ぴ不可避的不純物ガス成分からなるガス; iの分離後に水素による吸着装置 の洗浄操作を行う場合には、 図 8に示すように、 分離した、 水素及び不可避的不純物ガス成 分からなるガス jをブロアなどの送風装置 7で水素分离 |¾置 5に導入し、 水素分 «置 5に 残つた C O及び N2並びに不可避的不純物ガス成分からなるガスを排出する。 排出された C O 及ぴ N2及び ¾並びに不可避的不純物ガス成分からなるガス mは、 この分離排出ガス中に含 有される水素の濃度が高い には原料ガスホルダー 1へ導入し、 この分離排出ガス中に含 有される水素の濃度が低い には原料ガスホルダー 3へ導入する。
同様に、 水素による吸着装置の逆洗浄操作を行う には、 図 9に示すように、 分離し た、 水素及ぴ不可避的不純物ガス成分からなるガス jを送風装置 7で水素分 Sl¾置 5に導入 し、 水素分 置 5に残った C O及ぴ N2並びに不可避的不純物ガス成分からなるガスを排出 する。 排出された C O及び N2及び 並びに不可避的不純物ガス成分からなるガス IIは、'こ の分離排出ガス中に含有される水素の濃度が高!/ヽ^ mこは原料ガスホルダー 1へ導入し、 こ の分離排出ガス中に含有される水素の濃度が低!/ヽ¾ ^には原料ガスホルダー 3へ導入する。
この^に、 余分な配管などを設置する必要がな ヽこと力ゝら、 水素による逆洗浄操作の 方がより望ましい。 尚、 図 5〜 9において、 上記以外の構成は図 4と同一構成となっており、 同一の部分は同一符号により示し、 その説明は省略する。
次に、 本発明に係る高炉ガスの分離方法、 つまり、 一段目のガス分離工程が二酸化炭素 の分離工程で、 二段目のガス分離工程が一酸化炭素の分離工程である ( 「本発明例」 と 称す) と、 これとは逆に、 一段目のガス分離工程が一酸化炭素の分離工程で、 二段目のガス 分離工程が二酸化炭素の分離工程である ( 「比較例 j と称す) とで、 ガス分離に必要な 投入電力の違いを表 1に示す。
Figure imgf000018_0001
表 1に示すように、 一段目のガス分離工程を二酸化炭素の分離工程とした方が、 そうで ない に比べて投入 が小さくできることが分かる。 つまり、 本発明に係る高炉ガスの 分 ϋ ^法では、 少ない投入エネルギーで高炉ガスの分離が行われる。

Claims

請求の範囲
1 . 高炉 から排出される高炉ガスを、 一段目のガス分離精製装置によって、 二酸化炭素 及ぴ不可避的不純物ガス成分からなるガスと、 窒素及び一酸化炭素並びに不可避的不純物ガ ス成分からなるガスと、 に分離し、
前記一段目のガス分離精製装置により分離された、 窒素及び一酸化炭素並びに不可避的 不純物ガス成分からなるガスを、 二段目のガス分離精製装置によって、 窒素及ぴ不可避的不 純物ガス成分からなるガスと、 一酸化炭素及び不可避的不純物ガス成分からなるガスと、 に 分離する、
髙垆ガスの分離方法。
2. 前記一段目のガス分離精製装置が、 二酸化炭素を吸着によつて分離する吸着分離装 置であり、 前記二段目のガス分離精製装置が、 一酸化炭素を吸着によつて分離する吸着分離 装置である請求項 1に記載の高炉ガスの分离 法。
3. t&IB—段目のガス分離精製装置が、 二酸化炭素を吸収によって分離する化学的吸収装置 であり、 前記二段目のガス分離精製装置が、 一酸化炭素を吸着によって分離する吸着分離装 置である請求項 1に記載の高炉ガスの分離方法。
4. 前記一段目のガス分離精製装置が、 二酸化炭素を吸着によって分離する吸着分離装置で あり、 前記二段目のガス分離精製装置が、 一酸化炭素を吸収によつて分離する化学的吸収装 置である請求項 1に記載の高炉ガスの分離方法。
5. 前記吸着分難置の出口側に、 三段目のガス分離精製装置として、 水素 »膜或いは水 素以外の成分を吸着する吸着剤を配置し、 t&IB吸着分離装置から分離される水素及び窒素並 ぴに不可避的不純物ガス成分からなるガスから水素及び不^ S的不純物ガス成分からなるガ スを分離する、 請求項 2ないし請求項 4の何れか 1つに記載の高炉ガスの分離方法。
6. 歸己 Ξ¾目のガス分離精製装置として水素以外の成分を吸着する吸着剤を配置し、 該吸 着剤によつて水素及び不可避的不純物ガス成分からなるガスを分離する に、 ΙΐίΙΒ吸着剤 に吸着した成分を減圧による脱気操作または水素による洗净操作若しくは逆洗浄操作で除去 することを特徴とする、請求項 5に記載の高炉ガスの分離方法。
PCT/JP2009/055722 2007-10-31 2009-03-17 高炉ガスの分離方法 WO2009116674A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020107020239A KR101244129B1 (ko) 2008-03-18 2009-03-17 고로가스의 분리방법
CN200980110068.2A CN101978234B (zh) 2007-10-31 2009-03-17 高炉煤气的分离方法
BRPI0909767-8A BRPI0909767B1 (pt) 2008-03-18 2009-03-17 Método para a separação de gás de alto-forno
EP09723526.1A EP2258996B1 (en) 2008-03-18 2009-03-17 Method for separating blast furnace gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-069217 2008-03-18
JP2008069217A JP5325435B2 (ja) 2007-10-31 2008-03-18 高炉ガスの分離方法

Publications (1)

Publication Number Publication Date
WO2009116674A1 true WO2009116674A1 (ja) 2009-09-24

Family

ID=41091769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055722 WO2009116674A1 (ja) 2007-10-31 2009-03-17 高炉ガスの分離方法

Country Status (5)

Country Link
EP (1) EP2258996B1 (ja)
KR (1) KR101244129B1 (ja)
BR (1) BRPI0909767B1 (ja)
TW (1) TWI405605B (ja)
WO (1) WO2009116674A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012028471A1 (en) 2010-09-02 2012-03-08 Novacem Limited Process for producing cement binder compositions containing magnesium

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9084999B2 (en) 2010-08-26 2015-07-21 Baoshan Iron & Steel Co., Ltd. Processing method and system for high-temperature solid steel slag
KR101245326B1 (ko) * 2011-07-18 2013-03-19 주식회사 포스코 환원가스의 알칼리 염화물 저감 시스템 및 저감 방법
KR101759101B1 (ko) * 2015-12-22 2017-07-19 한국화학연구원 제철 부생가스로부터 이산화탄소 포집, 수소 회수 방법 및 장치
US10960344B2 (en) 2016-03-28 2021-03-30 Sekisui Chemical Co., Ltd. Method and apparatus for separating gas by pressure swing adsorption
KR102350033B1 (ko) * 2019-12-16 2022-01-11 주식회사 포스코 Finex 부생가스로부터 수소를 회수하는 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022919A (ja) * 1983-07-18 1985-02-05 Nippon Steel Corp 3塔式圧力スイング法における吸着塔の昇圧方法
JP2004309067A (ja) * 2003-04-09 2004-11-04 Nippon Steel Corp 高炉ガスの利用方法
JP2007182350A (ja) * 2006-01-06 2007-07-19 Japan Pionics Co Ltd 一酸化炭素の精製装置
JP2007261824A (ja) * 2006-03-27 2007-10-11 Jfe Steel Kk 原料ガス中の一酸化炭素分離回収方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246911A (ja) * 1985-08-21 1987-02-28 Mitsubishi Heavy Ind Ltd Coガスの濃縮方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022919A (ja) * 1983-07-18 1985-02-05 Nippon Steel Corp 3塔式圧力スイング法における吸着塔の昇圧方法
JP2004309067A (ja) * 2003-04-09 2004-11-04 Nippon Steel Corp 高炉ガスの利用方法
JP2007182350A (ja) * 2006-01-06 2007-07-19 Japan Pionics Co Ltd 一酸化炭素の精製装置
JP2007261824A (ja) * 2006-03-27 2007-10-11 Jfe Steel Kk 原料ガス中の一酸化炭素分離回収方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2258996A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012028471A1 (en) 2010-09-02 2012-03-08 Novacem Limited Process for producing cement binder compositions containing magnesium

Also Published As

Publication number Publication date
BRPI0909767B1 (pt) 2020-03-24
BRPI0909767A2 (pt) 2015-10-06
EP2258996A4 (en) 2014-03-12
KR101244129B1 (ko) 2013-03-14
TWI405605B (zh) 2013-08-21
TW200948458A (en) 2009-12-01
EP2258996A1 (en) 2010-12-08
KR20100105908A (ko) 2010-09-30
EP2258996B1 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5567185B2 (ja) 高炉ガスの分離方法
CA2726383C (en) Carbon dioxide recovery
US8591627B2 (en) Carbon dioxide recovery
KR101388266B1 (ko) 고로가스의 분리방법 및 장치
JP5392745B2 (ja) キセノンの濃縮方法、キセノン濃縮装置、及び空気液化分離装置
JP5498661B2 (ja) 高炉ガスの分離方法
WO2009116674A1 (ja) 高炉ガスの分離方法
JP6659717B2 (ja) 水素回収法
KR102035870B1 (ko) 아르곤 가스의 정제 방법 및 정제 장치
JP5248478B2 (ja) キセノンの濃縮方法および濃縮装置
JP4031238B2 (ja) ヘリウム精製装置
JP2007015910A (ja) 高純度水素製造方法
JP6055920B2 (ja) 水素回収方法
KR101909291B1 (ko) 아르곤 가스의 정제 방법 및 정제 장치
JP2011195434A (ja) アルゴンガスの精製方法および精製装置
JPS63107720A (ja) 空気中の水分および炭酸ガスの分離除去方法
JP2012254421A (ja) シロキサン除去方法およびメタン回収方法
JP2012082080A (ja) アルゴン精製方法、およびアルゴン精製装置
JP7319830B2 (ja) 窒素製造方法及び装置
JP5802125B2 (ja) ガス分離回収方法
JP2010094654A (ja) 同位体選択性吸着剤及び同位体の分離濃縮方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980110068.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09723526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107020239

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009723526

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3724/KOLNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: PI0909767

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100917