WO2009113833A2 - Wafer scale lens array, molding apparatus thereof and manufacturing method thereof - Google Patents

Wafer scale lens array, molding apparatus thereof and manufacturing method thereof Download PDF

Info

Publication number
WO2009113833A2
WO2009113833A2 PCT/KR2009/001267 KR2009001267W WO2009113833A2 WO 2009113833 A2 WO2009113833 A2 WO 2009113833A2 KR 2009001267 W KR2009001267 W KR 2009001267W WO 2009113833 A2 WO2009113833 A2 WO 2009113833A2
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
mold member
lens
optical
wafer scale
Prior art date
Application number
PCT/KR2009/001267
Other languages
French (fr)
Korean (ko)
Other versions
WO2009113833A3 (en
Inventor
강신일
임지석
최민석
김호관
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2009113833A2 publication Critical patent/WO2009113833A2/en
Publication of WO2009113833A3 publication Critical patent/WO2009113833A3/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • B29D11/00298Producing lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0085Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing wafer level optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between

Definitions

  • the present invention relates to a wafer scale lens array in which a plurality of lenses are integrally molded on a substrate, and more particularly, a wafer scale in which a plurality of lenses are formed in independent shapes on a substrate to improve molding stability and quality.
  • a lens array and a method and apparatus for manufacturing the same are particularly known.
  • 1 to 3 is a process flow chart showing a wafer scale lens array manufacturing process according to the prior art.
  • the lens material 20 is applied to a predetermined thickness on the prepared substrate 10.
  • the mold member 30 having the same shape as that of the lens to be molded is formed on the upper surface of the substrate 10 to which the lens material 20 is applied and covered with the mold member 30. Then, the lens array 40 having the same shape as the lens cavity 31 is formed in the lens material 20 applied on the substrate 20.
  • the substrate 10 is irradiated with ultraviolet rays as a whole to cure the lens array 40 to produce a wafer scale lens array as shown in FIG. 11.
  • the lens array 40 includes a plurality of lens parts 42 arranged at predetermined intervals on the substrate 10 to play an optical role, and a residual layer 44 disposed between the lens parts 42. .
  • the lens material 20 When the lens material 20 is cured by irradiating with ultraviolet rays, the lens material 20 is inevitably contracted, although there is a difference in degree. That is, in the case of most physical phase changes including ultraviolet curing, when the phase of the material changes from the liquid phase to the solid phase, the material is accompanied by shrinkage.
  • the substrate 10 may be caused by shrinkage which is inevitably generated in the process of curing the lens material. Cause stress.
  • shrinkage of the lens parts 42 and the remaining layer 44 may occur as a whole, thereby causing stress on the substrate 10, resulting in warpage of the substrate, or a phenomenon in which the substrate is broken.
  • Another object of the present invention is to provide a molding apparatus capable of manufacturing a wafer scale lens array in which a plurality of lens portions are each independently arranged.
  • Still another object of the present invention is to provide a method of manufacturing a wafer lens array which can prevent bending or breakage of a substrate by minimizing stress applied to the substrate in a wafer scale replication process.
  • Another object of the present invention is to provide a wafer lens array manufacturing method that can minimize the release force of the mold member in the wafer scale replication process to minimize the occurrence of defects.
  • the wafer scale lens array according to the present invention is characterized in that it comprises a substrate and a plurality of lens units which are arranged at regular intervals independently of each other to perform an optical function.
  • the substrate may be formed of a material through which ultraviolet light may pass and support the lens units.
  • the apparatus for forming a wafer scale lens array includes a mold member for forming a plurality of lens portions for performing an optical function by pressing an optical polymer applied to a surface of a substrate, wherein the mold member includes a lens portion region for performing an optical function.
  • a UV blocking film is provided to block ultraviolet light from being irradiated to the remaining areas except for the above.
  • the mold member is characterized in that a plurality of lens cavities are formed on the lower surface thereof, and an ultraviolet blocking film is provided between the lens cavities.
  • the mold member includes a first mold member disposed on the upper surface of the substrate and a second mold member disposed on the lower surface of the substrate, and the UV blocking film is disposed on at least one of the first mold member and the second mold member. It is done.
  • the UV blocking film is formed by attaching a thin metal film to the surface of the mold member or the substrate, or is formed through a metal thin film deposition process.
  • a method of manufacturing a wafer scale lens array includes disposing a mold member having a plurality of lens cavities and applying an optical polymer, which is a lens material, to at least one of the mold member and the substrate. Providing a UV blocking film that blocks the non-optical area, pressing a mold member onto the optical polymer to form a plurality of lens parts, which are optical areas on a substrate surface, and covering the UV blocking film on a remaining layer, which is a non-optical area; And irradiating with ultraviolet rays to cure only the lens parts, and removing the mold layer from the substrate after removing the mold member from the substrate.
  • a method of manufacturing a wafer scale lens array includes preparing a substrate on which a plurality of through holes are formed, arranging a first mold member on an upper side of the substrate, and a second mold member on a lower side of the substrate. And installing an ultraviolet ray blocking film on at least one of the first mold member and the second mold member except for the optical region, and applying an optical polymer, which is a lens material, to the upper surface of the substrate to insert the optical polymer into the through hole. Forming a plurality of lens portions on the surface of the substrate by pressing the first mold member against the optical polymer, curing the lens portions by irradiating ultraviolet rays with the first mold member, and curing the first mold member and the second mold member. Separating from the substrate and washing to remove the uncured residual layer between the lens portions.
  • the wafer scale lens array of the present invention has the advantage that a plurality of lenses are each arranged in a separate form on the substrate.
  • the lens units are independently arranged on the substrate in the wafer scale replication process, it is possible to minimize the stress applied to the substrate when the lens unit is cured to prevent bending or breakage of the substrate. There is this.
  • the wafer scale lens array manufacturing method of the present invention has the advantage that can minimize the release force of the mold member in the wafer scale replication process can be minimized.
  • an uncured region exists between a plurality of lens portions in a wafer scale copying process, and thus the uncured region may perform a material replenishment role to compensate for shrinkage when the lens portion is cured.
  • 1 to 3 is a process flow chart showing a wafer scale lens array manufacturing process according to the prior art.
  • 4 to 8 are process flowcharts illustrating a manufacturing process of a wafer scale lens array according to a first embodiment of the present invention.
  • 9 through 11 are process flowcharts illustrating a manufacturing process of a wafer scale lens array according to a second exemplary embodiment of the present invention.
  • 12 to 16 are process flowcharts illustrating a process of manufacturing a wafer scale lens array according to a third embodiment of the present invention.
  • 17 to 19 are process flowcharts illustrating a manufacturing process of a wafer scale lens array according to a fourth embodiment of the present invention.
  • 4 to 8 are process flowcharts illustrating a manufacturing process of a wafer scale lens array according to an exemplary embodiment of the present invention.
  • the substrate 100 is prepared.
  • the optical polymer 200 which is a lens material, is coated on the substrate 100 with a predetermined thickness.
  • the optical polymer 200 a photocurable polymer that can be cured by ultraviolet rays is used.
  • the mold member 300 having the plurality of lens cavities 310 is formed on the substrate 100.
  • a UV blocking film 400 that blocks ultraviolet rays is installed on the bottom surface of the mold member 300.
  • the UV blocking film 400 is formed between the lens cavities 310. That is, it is formed on the remaining portions except the optically effective surface capable of performing the lens role.
  • the substrate 100 may use any kind of substrate that may serve as a structure for supporting the lenses that perform the optical function.
  • the mold member 300 is preferably formed of a material that can transmit ultraviolet rays.
  • the UV blocking film 400 may be formed by attaching a thin metal blocking film to the lower surface of the mold member 300, and may be formed through a metal thin film deposition process.
  • the mold member 300 having the UV blocking film 400 is pressed on the upper surface of the substrate 100, as shown in FIG. 5, the plurality of lens cavities 310 formed on the mold member 300 and The same lens pattern is transferred to the surface of the optical polymer 200.
  • a plurality of lens parts 210 arranged at predetermined intervals and a residual layer 220 disposed between the lens parts 210 are formed on the surface of the substrate 100.
  • the plurality of lens portions 210 are regions that function optically effective, and the residual layer 220 has no optical function, and the optical polymer between the lens portions 210 when molded into the mold member 300. Is the remaining part.
  • the UV blocking film 400 formed on the bottom surface of the mold member 300 is disposed to cover the residual layer 220 to prevent the ultraviolet ray from being irradiated onto the residual layer 220 when the ultraviolet ray is irradiated in a later process.
  • ultraviolet rays are irradiated through the mold member 300 from the upper side toward the lower direction.
  • the lens parts 210 are cured by ultraviolet rays, and the residual layer 220 disposed between the lens parts 210 is blocked by the UV blocking film 400 to become an uncured area that is not cured.
  • This uncured area can perform a material replenishment function to compensate for shrinkage that occurs during lens array molding. Therefore, the lens parts can minimize the change in shape and numerical value due to shrinkage.
  • the mold member 300 When the curing of the lens unit 210 is completed, as shown in FIG. 7, the mold member 300 is separated from the substrate 100. At this time, since the residual layer 220 is excluded from replication as an uncured uncured region, the release force may be minimized when the mold member 300 is separated from the substrate 100. In this way, the release force of the mold member 300 can be reduced, so that even when the thickness of the substrate is formed thin, the substrate can be prevented from being damaged. When the thickness of the substrate is reduced, the thickness of the optical element can be reduced, thereby miniaturizing the optical element and reducing the cost.
  • the remaining layer 220 which is an uncured region, is washed and removed in the washing process.
  • the wafer scale lens array has a shape in which lens parts 210 are formed on the substrate 100 at independent intervals.
  • 9 to 11 are process flowcharts illustrating a manufacturing process of a wafer scale lens array according to a second exemplary embodiment of the present invention.
  • the lower surface of the substrate 100 is provided with a UV blocking film 110 to block ultraviolet rays.
  • the UV blocking film 110 is formed in a predetermined shape to prevent ultraviolet light from being irradiated to the remaining areas except for an optically effective area that can serve as a lens manufactured on the surface of the substrate 100 in a later process.
  • the UV blocking film 110 may be formed by attaching a thin metal blocking film to a lower surface of the substrate 100, and may be formed through a metal thin film deposition process.
  • the substrate 100 may support lens units that perform an optical function and may use any kind through which ultraviolet rays may pass.
  • the optical polymer 200 which is a lens material, is coated on the upper surface of the substrate 100 with a predetermined thickness.
  • the optical polymer 200 may be a photocurable polymer that can be cured by ultraviolet light.
  • the same lens pattern as the plurality of lens cavities 310 formed on the mold member 300 may be formed of the optical polymer.
  • a plurality of lens parts 210 and a residual layer 220 disposed at a predetermined thickness are formed on the upper surface of the substrate 100.
  • the plurality of lens parts 210 are formed.
  • the lens unit 210 is an area that has an optically effective function, and the residual layer 220 has no optical function, and is an area in which an optical polymer remains between the lens parts when forming the mold member 300.
  • the UV blocking film 110 formed on the substrate 100 blocks the remaining layer 220 region.
  • the mold member 300 is separated from the substrate 100.
  • the release force may be minimized when the mold member 300 is separated from the substrate.
  • the mold member 300 is separated from the substrate 100, and then the connection part, which is an uncured region, is attached and removed in the washing process.
  • the structure in which the UV blocking film 400 is installed on the mold member 300 described in the first embodiment and the structure in which the UV blocking film 110 is installed on the substrate 100 described in the second embodiment are combined.
  • the structure is also applicable. That is, the UV blocking film 400 is installed on the lower surface of the mold member 300, the UV blocking film 110 is installed on the upper surface of the substrate 100, and the ultraviolet rays are simultaneously irradiated in the vertical direction to cure the lens parts 210. And prevent the residual layer 220 from curing.
  • 12 to 16 are process flowcharts illustrating a manufacturing process of a wafer scale lens array according to a third embodiment of the present invention.
  • a substrate 600 having a through hole 610 is prepared at a predetermined interval.
  • the first mold member 700 having the plurality of first lens cavities 710 is formed on the upper side of the substrate 600, and the plurality of second lens cavities 810 are formed on the lower side of the substrate 600.
  • the second mold member 800 is positioned.
  • the substrate 600 may be applied to any kind of substrate that may serve as a structure for supporting the lenses that perform the optical function.
  • the substrate 600 may be formed of a material through which ultraviolet rays can pass.
  • the first mold member 700 is formed of a material through which ultraviolet rays can pass, and a UV blocking film 720 for blocking ultraviolet rays is installed on the bottom surface of the first mold member 700.
  • the ultraviolet blocking film 720 is formed between the first lens cavities 710. That is, it is formed on the remaining portions except the optically effective surface capable of performing the lens role.
  • the second mold member 800 may be formed of a material through which ultraviolet rays may pass, and an ultraviolet blocking film installed on the first mold member 700 may be installed. That is, the UV blocking film 720 may be installed on both the first molding member 700 and the second molding member 800, and may be installed on either of them.
  • the ultraviolet blocking film 720 may be installed on the substrate 600 in addition to the first and second mold members 700 and 800.
  • the substrate 600 is placed on the upper surface of the second mold member 800, and the optical polymer 820, which is a lens material, is formed in each through hole 610 of the substrate 600 in a predetermined thickness. Apply. At this time, since the through hole 610 of the substrate 600 and the second lens cavity 810 of the second mold member 800 are aligned to be aligned, the optical polymer 820 is inserted into the through hole 610 to be formed. The two lens cavity 810 is filled and applied to the upper surface of the substrate 600 in a convex shape at regular intervals.
  • the optical polymer 820 may be a photocurable polymer that can be cured by ultraviolet light.
  • the first mold member 700 having the UV blocking film 720 formed thereon is pressed onto the top surface of the substrate 600, as illustrated in FIG. 14, a plurality of lenses formed on the first mold member 700.
  • the same lens pattern as the cavities 710 is transferred to the top surface of the optical polymer 820.
  • the lens parts 850 having an optically effective function are formed in the through hole 610 of the substrate 600, and the residual layer 860 is formed around the lens parts 850.
  • the residual layer 860 has no optical function and is a portion where the optical polymer remains between the lens parts 850 when molded into the first mold member 700.
  • the UV blocking film 720 is disposed to cover the residual layer 860 so that ultraviolet rays are irradiated onto the residual layer 860 when the ultraviolet rays are irradiated in a later process. Block it.
  • the ultraviolet rays passing through the first mold member 700 harden the lens parts 850, and a residual layer disposed around the lens parts 850. 860 becomes a state of being blocked by the UV blocking film 720 and becomes an uncured region that is not cured.
  • This uncured area can perform a material replenishment function to compensate for shrinkage that occurs during lens array molding. Therefore, the lens parts can minimize the change in shape and numerical value due to shrinkage.
  • the first mold member 700 and the second mold member 800 are separated from the substrate 600.
  • the release force may be minimized when the first mold member 700 is separated from the substrate 600.
  • the remaining layer which is an uncured region, is washed and removed in the cleaning process.
  • the lens units 210 are inserted into the through holes 610 of the substrate 600 and arranged in an independent form.
  • the ultraviolet blocking film can be removed.
  • the optical polymer which is a lens material
  • the ultraviolet blocking film can be removed instead.
  • the mold member and / or the substrate may have an ultraviolet blocking film.
  • 17 to 19 are process flowcharts illustrating a manufacturing process of a wafer scale lens array according to a fourth embodiment of the present invention.
  • a substrate 600 on which a through hole 610 is formed at a predetermined interval is prepared.
  • the first mold member 700 having the plurality of first lens cavities 710 is formed on the upper side of the substrate 600, and the plurality of second lens cavities 810 are formed on the lower side of the substrate 600.
  • the second mold member 800 is positioned.
  • the first molding member 700 is provided with an ultraviolet blocking film 720 that blocks ultraviolet rays.
  • the UV blocking film 720 is provided on the remaining portions except for an optically effective surface capable of serving as a lens.
  • the second mold member 800 may be formed of a material through which ultraviolet rays may pass, and an ultraviolet blocking film installed on the first mold member 700 may be installed. That is, the UV blocking film 720 may be installed on both the first molding member 700 and the second molding member 800, and may be installed on either of them. In addition, the UV blocking film 720 may be installed on the surface of the substrate 600.
  • optical polymer 900 which is a lens material is apply
  • the lens parts 910 that function optically effective are formed in the through hole 610 of the substrate 600, and a residual layer 920 is formed between the lens parts 910.
  • the residual layer 920 has no optical function and is an area where the optical polymer remains between the lens parts 910 when molded into the first mold member 700.
  • the ultraviolet blocking film 720 is disposed to cover the residual layer 920, and the ultraviolet ray is irradiated onto the residual layer 920 when the ultraviolet ray is irradiated in a later process. Block it.
  • the ultraviolet rays passing through the first mold member 700 harden the lens portions 910 and remain between the lens portions 910.
  • the layer 920 is blocked by the UV blocking film 720 and becomes an uncured region that is not cured.
  • the first mold member 700 and the second mold member 800 are separated from the substrate 600.
  • the release force may be minimized when the first mold member 700 is separated from the substrate 600.
  • the through hole 610 of the substrate 600 When the first mold member 700 and the second mold member 800 are separated from the substrate 600, and then the residual layer 920 that is an uncured region is washed and removed in the cleaning process, the through hole 610 of the substrate 600.
  • a lens scale lens array in which lens parts 910 are inserted and arranged in a separate form is manufactured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

The present invention provides a wafer scale lens array which prevents a substrate from getting bent or damaged and minimizes the required force for separating a mold member, and a manufacturing method thereof. The disclosed manufacturing method of the wafer scale lens array comprises the steps of: applying a certain thickness of optical polymer lens material on the surface of a substrate; molding plural lens units which comprise the optical section by pressurizing the optical polymer with a mold member; hardening the lens unit only by applying an ultraviolet ray-blocking layer on a residual layer which comprises the non-optical section and scanning ultraviolet rays thereon through the mold member; making a lens unit array on the substrate whereon plural lens units are independently and evenly arrayed due to separation of the mold member from the substrate and cleaning and removal of the unhardened residual layer.

Description

웨이퍼 스케일 렌즈 어레이, 그 성형장치 및 그 제조방법Wafer scale lens array, molding apparatus thereof and manufacturing method thereof
본 발명은 기판상에 복수의 렌즈가 일체형으로 성형되는 웨이퍼 스케일 렌즈 어레이에 관한 것으로, 보다 상세하게는 기판 상에 복수의 렌즈가 각각 독립된 형태로 성형되어 성형 안정성 및 품질을 향상시킬 수 있는 웨이퍼 스케일 렌즈 어레이 및 그 제조방법 및 장치에 관한 것이다.The present invention relates to a wafer scale lens array in which a plurality of lenses are integrally molded on a substrate, and more particularly, a wafer scale in which a plurality of lenses are formed in independent shapes on a substrate to improve molding stability and quality. A lens array and a method and apparatus for manufacturing the same.
일반적으로 초소형 카메라 디바이스 및 휴대용 광 정보 저장기기와 같은 사이즈가 작은 광학 기기에 대한 수요가 급증하고 있다.In general, the demand for small size optical devices such as miniature camera devices and portable optical information storage devices is increasing rapidly.
현재 소형 광학 모듈의 제작은 직가공에 의한 단품으로 생산하거나 복제에 의한 복수 개의 광학모듈을 한 번에 생산하는 방식이 사용되고 있다. 상기 복제에 의한 생산 방식은 낮은 생산단가와 짧은 제작시간 등으로 장점이 있기 때문에 많은 연구가 진행되고 있다. 이와 같은 단품 복제 방식에서 보다 발전된 방식으로 웨이퍼 스케일 복제기술이 있다.Currently, the production of small optical modules is being produced as a single piece by direct processing or a method of producing a plurality of optical modules at once by copying. Since the production method by the above-mentioned reproduction has advantages such as low production cost and short production time, many studies have been conducted. Wafer scale copying technology is a more advanced method in such a piece copying method.
도 1 내지 도 3는 종래 기술에 따른 웨이퍼 스케일 렌즈 어레이 제작공정을 나타낸 공정 순서도이다. 1 to 3 is a process flow chart showing a wafer scale lens array manufacturing process according to the prior art.
종래 기술에 따른 웨이퍼 스케일 렌즈 어레이 제작공정을 살펴보면, 먼저, 도 1에 도시된 바와 같이, 준비된 기판(10) 위에 일정 두께로 렌즈 재료(20)를 도포한다. Referring to the wafer scale lens array fabrication process according to the prior art, first, as shown in Figure 1, the lens material 20 is applied to a predetermined thickness on the prepared substrate 10.
그리고, 도 5에 도시된 바와 같이, 렌즈 재료(20)가 도포된 기판(10)의 상면에 성형하고자 하는 렌즈와 동일한 형태의 렌즈 캐비티(31)가 형성된 몰드부재(30)를 덮고 가압한다. 그리면, 기판(20) 위에 도포된 렌즈 재료(20)에 렌즈 캐비티(31)와 동일한 형태의 렌즈 어레이(40)가 성형된다. As shown in FIG. 5, the mold member 30 having the same shape as that of the lens to be molded is formed on the upper surface of the substrate 10 to which the lens material 20 is applied and covered with the mold member 30. Then, the lens array 40 having the same shape as the lens cavity 31 is formed in the lens material 20 applied on the substrate 20.
그런 후, 기판(10)에 전체적으로 자외선을 조사하여 렌즈 어레이(40)를 경화시키면 도 11에 도시된 바와 같은 웨이퍼 스케일 렌즈 어레이가 제작된다. Thereafter, the substrate 10 is irradiated with ultraviolet rays as a whole to cure the lens array 40 to produce a wafer scale lens array as shown in FIG. 11.
상기 렌즈 어레이(40)는 기판(10) 위에 일정 간격을 두고 배열되어 광학적인 역할을 하는 복수의 렌즈부(42)와, 이 렌즈부들(42) 사이에 배치되는 잔류층(44)으로 구성된다. The lens array 40 includes a plurality of lens parts 42 arranged at predetermined intervals on the substrate 10 to play an optical role, and a residual layer 44 disposed between the lens parts 42. .
그리고, 렌즈 재료(20)를 자외선을 조사하여 경화시킬 때 렌즈 재료(20)는 정도의 차이는 있지만 필연적으로 수축이 발생된다. 즉, 자외선 경화를 비롯한 대부분의 물리적 상변화의 경우 액상에서 고상으로 물질의 상이 변할 때 물질은 수축을 동반하게 하게 된다. When the lens material 20 is cured by irradiating with ultraviolet rays, the lens material 20 is inevitably contracted, although there is a difference in degree. That is, in the case of most physical phase changes including ultraviolet curing, when the phase of the material changes from the liquid phase to the solid phase, the material is accompanied by shrinkage.
종래 기술에 따른 웨이퍼 스케일 렌즈 어레이는 복수의 렌즈부들(42) 사이에 일정두께의 잔류층(44)이 존재하는 구조이기 때문에 렌즈 재료를 경화시키는 공정에서 필연적으로 발생되는 수축에 의해 기판(10)에 응력을 야기시킨다. Since the wafer scale lens array according to the related art has a structure in which a residual layer 44 having a predetermined thickness exists between the plurality of lens portions 42, the substrate 10 may be caused by shrinkage which is inevitably generated in the process of curing the lens material. Cause stress.
즉, 렌즈부들(42)과 잔류층(44)이 같이 전체적으로 수축이 발생되고 이에 따라 기판(10)에 응력을 야기하여 기판의 휨을 발생시키거나, 기판이 파손되는 현상이 발생되는 문제점이 있다. That is, shrinkage of the lens parts 42 and the remaining layer 44 may occur as a whole, thereby causing stress on the substrate 10, resulting in warpage of the substrate, or a phenomenon in which the substrate is broken.
또한, 렌즈부(42)뿐만 아니라 잔류층(44)까지 경화되므로 몰드부재(30)를 기판에서 분리할 때 큰 이형력이 요구되고, 얇은 기판을 사용할 경우 몰드부재를 기판에서 분리할 때 기판이 파손될 우려가 있는 문제점이 있다. In addition, since not only the lens portion 42 but also the residual layer 44 is cured, a large release force is required when the mold member 30 is separated from the substrate, and when a thin substrate is used, the substrate is removed when the mold member is separated from the substrate. There is a problem that may be broken.
본 발명의 목적은 기판에 복수의 렌즈부가 각각 독립된 형태로 배열되는 웨이퍼 스케일 렌즈 어레이를 제공하는 것이다. It is an object of the present invention to provide a wafer scale lens array in which a plurality of lens portions are arranged in independent forms on a substrate.
본 발명의 다른 목적은 복수의 렌즈부가 각각 독립적으로 배열되는 웨이퍼 스케일 렌즈 어레이를 제조할 수 있는 성형장치를 제공하는 것이다. Another object of the present invention is to provide a molding apparatus capable of manufacturing a wafer scale lens array in which a plurality of lens portions are each independently arranged.
본 발명의 또 다른 목적은 웨이퍼 스케일 복제공정에서 기판에 가해지는 응력을 최소화하여 기판의 휨이나 파손을 방지할 수 있는 웨이퍼 렌즈 어레이 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a method of manufacturing a wafer lens array which can prevent bending or breakage of a substrate by minimizing stress applied to the substrate in a wafer scale replication process.
본 발명의 또 다른 목적은 웨이퍼 스케일 복제공정에서 몰드부재의 이형력을 최소화할 수 있어 불량 발생을 최소화할 수 있는 웨이퍼 렌즈 어레이 제조방법을 제공하는 것이다.Another object of the present invention is to provide a wafer lens array manufacturing method that can minimize the release force of the mold member in the wafer scale replication process to minimize the occurrence of defects.
본 발명의 또 다른 목적은 웨이퍼 스케일 복제공정에서 복수의 렌즈부 사이에 미경화 영역이 존재하여 이 미경화 영역이 렌즈부의 수축 보완을 위한 재료 보충역할을 수행할 수 있도록 하는 웨이퍼 렌즈 어레이 제조방법을 제공하는 것이다. It is still another object of the present invention to provide a method of manufacturing a wafer lens array in which an uncured region exists between a plurality of lens portions in a wafer scale replication process so that the uncured region can perform a material replenishment role to compensate for shrinkage of the lens portion. To provide.
본 발명에 따른 웨이퍼 스케일 렌즈 어레이는 기판과, 기판에 각각 독립적으로 일정 간격을 두고 배열되어 광학 기능을 수행하는 복수의 렌즈부를 포함하는 것을 특징으로 한다.The wafer scale lens array according to the present invention is characterized in that it comprises a substrate and a plurality of lens units which are arranged at regular intervals independently of each other to perform an optical function.
기판은 자외선이 통과할 수 있고 렌즈부들을 지지할 수 있는 재질로 형성되는 것을 특징으로 한다.The substrate may be formed of a material through which ultraviolet light may pass and support the lens units.
본 발명에 따른 웨이퍼 스케일 렌즈 어레이 성형장치는 기판의 표면에 도포된 광학 폴리머를 가압하여 광학기능을 수행하는 복수의 렌즈부를 형성하는 몰드부재를 포함하고, 몰드부재에는 광학 기능을 수행하는 렌즈부 영역을 제외한 나머지 영역에 자외선이 조사되는 것을 차단하는 자외선 차단막이 설치되는 것을 특징으로 한다. The apparatus for forming a wafer scale lens array according to the present invention includes a mold member for forming a plurality of lens portions for performing an optical function by pressing an optical polymer applied to a surface of a substrate, wherein the mold member includes a lens portion region for performing an optical function. A UV blocking film is provided to block ultraviolet light from being irradiated to the remaining areas except for the above.
몰드부재는 그 하면에 복수의 렌즈 캐비티가 형성되고, 렌즈 캐비티들 사이에 자외선 차단막이 설치되는 것을 특징으로 한다.The mold member is characterized in that a plurality of lens cavities are formed on the lower surface thereof, and an ultraviolet blocking film is provided between the lens cavities.
몰드부재는 기판의 상면에 배치되는 제1몰드부재와, 기판의 하면에 배치되는 제2몰드부재로 구성되고, 자외선 차단막은 제1몰드부재와 제2몰드부재 중 적어도 어느 하나에 설치되는 것을 특징으로 한다.The mold member includes a first mold member disposed on the upper surface of the substrate and a second mold member disposed on the lower surface of the substrate, and the UV blocking film is disposed on at least one of the first mold member and the second mold member. It is done.
자외선 차단막은 상기 몰드부재 또는 기판의 표면에 얇은 금속막을 부착하여 형성하거나, 금속 박막 증착공정을 통해 형성하는 것을 특징으로 한다.The UV blocking film is formed by attaching a thin metal film to the surface of the mold member or the substrate, or is formed through a metal thin film deposition process.
본 발명의 일 실시예에 따른 웨이퍼 스케일 렌즈 어레이의 제조방법은 복수의 렌즈 캐비티가 형성된 몰드부재를 배치하고 기판 표면에 렌즈 재료인 광학 폴리머를 도포하는 단계와, 몰드부재와 기판 중 적어도 어느 하나에 비광학 영역을 막아주는 자외선 차단막을 설치하는 단계와, 몰드부재를 광학 폴리머에 가압하여 기판 표면에 광학 영역인 복수의 렌즈부들을 성형하고, 비광학 영역인 잔류층에 상기 자외선 차단막을 덮는 단계와, 자외선을 조사하여 상기 렌즈부들만 경화시키는 단계와, 몰드부재를 기판에서 분리한 후 경화되지 않은 잔류층을 제거하는 단계를 포함한다. According to one or more exemplary embodiments, a method of manufacturing a wafer scale lens array includes disposing a mold member having a plurality of lens cavities and applying an optical polymer, which is a lens material, to at least one of the mold member and the substrate. Providing a UV blocking film that blocks the non-optical area, pressing a mold member onto the optical polymer to form a plurality of lens parts, which are optical areas on a substrate surface, and covering the UV blocking film on a remaining layer, which is a non-optical area; And irradiating with ultraviolet rays to cure only the lens parts, and removing the mold layer from the substrate after removing the mold member from the substrate.
본 발명의 다른 실시예에 따른 웨이퍼 스케일 렌즈 어레이 제조방법은 복수의 관통홀이 형성되는 기판을 준비하는 단계와, 기판의 상측에 제1몰드부재를 배치하고 기판의 하측에 제2몰드부재를 배치하고, 제1몰드부재와 제2몰드부재 중 적어도 어느 하나에 광학 영역을 제외한 나머지 영역에 자외선 차단막을 설치하는 단계와, 기판의 상면에 렌즈 재료인 광학 폴리머를 도포하여 광학 폴리머가 관통홀에 삽입되도록 하는 단계와, 제1몰드부재를 광학 폴리머에 가압하여 기판 표면에 복수의 렌즈부들을 성형하는 단계와, 렌즈부들에 자외선을 조사하여 경화시키는 단계와, 제1몰드부재와 제2몰드부재를 기판에서 분리한 후 세척하여 렌즈부들 사이의 경화되지 않은 잔류층을 제거하는 단계를 포함한다.According to another aspect of the present invention, a method of manufacturing a wafer scale lens array includes preparing a substrate on which a plurality of through holes are formed, arranging a first mold member on an upper side of the substrate, and a second mold member on a lower side of the substrate. And installing an ultraviolet ray blocking film on at least one of the first mold member and the second mold member except for the optical region, and applying an optical polymer, which is a lens material, to the upper surface of the substrate to insert the optical polymer into the through hole. Forming a plurality of lens portions on the surface of the substrate by pressing the first mold member against the optical polymer, curing the lens portions by irradiating ultraviolet rays with the first mold member, and curing the first mold member and the second mold member. Separating from the substrate and washing to remove the uncured residual layer between the lens portions.
상기한 구성에 따르면, 본 발명의 웨이퍼 스케일 렌즈 어레이는 기판에 복수의 렌즈가 각각 독립된 형태로 배열되는 장점이 있다. According to the above configuration, the wafer scale lens array of the present invention has the advantage that a plurality of lenses are each arranged in a separate form on the substrate.
또한, 본 발명의 웨이퍼 스케일 렌즈 어레이 제조방법은 웨이퍼 스케일 복제공정에서 렌즈부가 기판에 각각 독립적으로 배열되므로 렌즈부가 경화될 때 기판에 가해지는 응력을 최소화하여 기판의 휨이나 파손을 방지할 수 있는 장점이 있다. In addition, in the wafer scale lens array manufacturing method of the present invention, since the lens units are independently arranged on the substrate in the wafer scale replication process, it is possible to minimize the stress applied to the substrate when the lens unit is cured to prevent bending or breakage of the substrate. There is this.
또한, 본 발명의 웨이퍼 스케일 렌즈 어레이 제조방법은 웨이퍼 스케일 복제공정에서 몰드부재의 이형력을 최소화할 수 있어 불량 발생을 최소화할 수 있는 장점이 있다.In addition, the wafer scale lens array manufacturing method of the present invention has the advantage that can minimize the release force of the mold member in the wafer scale replication process can be minimized.
또한, 본 발명의 웨이퍼 스케일 렌즈 어레이 제조방법은 웨이퍼 스케일 복제공정에서 복수의 렌즈부 사이에 미경화 영역이 존재하여 이 미경화 영역이 렌즈부가 경화될 때 수축 보완을 위한 재료 보충역할을 수행할 수 있도록 하는 장점이 있다. In addition, in the wafer scale lens array manufacturing method of the present invention, an uncured region exists between a plurality of lens portions in a wafer scale copying process, and thus the uncured region may perform a material replenishment role to compensate for shrinkage when the lens portion is cured. There is an advantage to this.
도 1 내지 도 3는 종래 기술에 따른 웨이퍼 스케일 렌즈 어레이 제조공정을 나타낸 공정 순서도이다. 1 to 3 is a process flow chart showing a wafer scale lens array manufacturing process according to the prior art.
도 4 내지 도 8는 본 발명의 제1실시예에 따른 웨이퍼 스케일 렌즈 어레이 제조공정을 나타낸 공정 순서도이다. 4 to 8 are process flowcharts illustrating a manufacturing process of a wafer scale lens array according to a first embodiment of the present invention.
도 9 내지 도 11는 본 발명의 제2실시예에 따른 웨이퍼 스케일 렌즈 어레이 제조공정을 나타낸 공정 순서도이다. 9 through 11 are process flowcharts illustrating a manufacturing process of a wafer scale lens array according to a second exemplary embodiment of the present invention.
도 12 내지 도 16는 본 발명의 제3실시예에 따른 웨이퍼 스케일 렌즈 어레이 제조공정을 나타낸 공정 순서도이다. 12 to 16 are process flowcharts illustrating a process of manufacturing a wafer scale lens array according to a third embodiment of the present invention.
도 17 내지 도 19는 본 발명의 제4실시예에 따른 웨이퍼 스케일 렌즈 어레이 제조공정을 나타낸 공정 순서도이다. 17 to 19 are process flowcharts illustrating a manufacturing process of a wafer scale lens array according to a fourth embodiment of the present invention.
이하, 첨부 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 4 내지 도 8는 본 발명의 일시예에 따른 웨이퍼 스케일 렌즈 어레이 제조공정을 나타낸 공정 순서도이다. 4 to 8 are process flowcharts illustrating a manufacturing process of a wafer scale lens array according to an exemplary embodiment of the present invention.
먼저, 도 4에 도시된 바와 같이, 기판(100)을 준비한다. 그리고, 기판(100) 위에 렌즈 재료인 광학 폴리머(200)를 일정 두께로 도포한다. 여기에서, 광학 폴리머(200)는 자외선에 의해 경화될 수 있는 광경화성 폴리머가 사용된다. First, as shown in FIG. 4, the substrate 100 is prepared. The optical polymer 200, which is a lens material, is coated on the substrate 100 with a predetermined thickness. Here, as the optical polymer 200, a photocurable polymer that can be cured by ultraviolet rays is used.
그리고, 기판(100)의 상측에 복수의 렌즈 캐비티(310)가 형성되는 몰드부재(300)를 위치시킨다. 여기에서, 몰드부재(300)의 하면에는 자외선을 막아주는 자외선 차단막(400)이 설치된다. 이 자외선 차단막(400)은 렌즈 캐비티들(310) 사이에 형성된다. 즉, 렌즈 역할을 수행할 수 있는 광학적으로 유효한 면을 제외한 나머지 부분에 형성된다. The mold member 300 having the plurality of lens cavities 310 is formed on the substrate 100. Here, a UV blocking film 400 that blocks ultraviolet rays is installed on the bottom surface of the mold member 300. The UV blocking film 400 is formed between the lens cavities 310. That is, it is formed on the remaining portions except the optically effective surface capable of performing the lens role.
기판(100)은 광학 기능을 수행하는 렌즈들 사이를 지지하는 구조물 역할을 할 수 있는 어떠한 종류의 기판도 사용이 가능하다. 그리고, 몰드부재(300)는 자외선이 투과될 수 있는 재질로 형성되는 것이 바람직하다. The substrate 100 may use any kind of substrate that may serve as a structure for supporting the lenses that perform the optical function. And, the mold member 300 is preferably formed of a material that can transmit ultraviolet rays.
자외선 차단막(400)은 몰드부재(300)의 하면에 얇은 금속재질의 차단막을 부착하여 형성할 수 있고, 금속 박막 증착공정을 통해 형성할 수 있다. The UV blocking film 400 may be formed by attaching a thin metal blocking film to the lower surface of the mold member 300, and may be formed through a metal thin film deposition process.
이와 같이, 자외선 차단막(400)이 형성된 몰드부재(300)를 기판(100)의 상면에 가압하면, 도 5에 도시된 바와 같이, 몰드부재(300)에 형성된 복수의 렌즈 캐비티들(310)과 동일한 렌즈 패턴이 광학 폴리머(200)의 표면에 전사된다. As such, when the mold member 300 having the UV blocking film 400 is pressed on the upper surface of the substrate 100, as shown in FIG. 5, the plurality of lens cavities 310 formed on the mold member 300 and The same lens pattern is transferred to the surface of the optical polymer 200.
이때, 기판(100)의 표면에는 일정 간격을 두고 배열되는 복수의 렌즈부들(210)과, 이 렌즈부들(210) 사이에 배치되는 잔류층(220)이 성형된다. 여기에서, 복수의 렌즈부(210)는 광학적으로 유효한 기능을 하는 영역이고, 잔류층(220)은 광학적인 기능이 없고, 몰드부재(300)로 성형할 때 렌즈부들(210) 사이에 광학 폴리머가 남아 있는 부분이다. In this case, a plurality of lens parts 210 arranged at predetermined intervals and a residual layer 220 disposed between the lens parts 210 are formed on the surface of the substrate 100. Here, the plurality of lens portions 210 are regions that function optically effective, and the residual layer 220 has no optical function, and the optical polymer between the lens portions 210 when molded into the mold member 300. Is the remaining part.
그리고, 몰드부재(300)의 하면에 형성된 자외선 차단막(400)이 잔류층(220)을 덮어주도록 배치되어 추후 공정에서 자외선을 조사할 때 잔류층(220)으로 자외선이 조사되는 것을 차단시킨다. In addition, the UV blocking film 400 formed on the bottom surface of the mold member 300 is disposed to cover the residual layer 220 to prevent the ultraviolet ray from being irradiated onto the residual layer 220 when the ultraviolet ray is irradiated in a later process.
이러한 상태에서, 도 6에 도시된 바와 같이, 상측에서 하측방향을 향하여 몰드부재(300)를 통해 자외선을 조사한다. In this state, as shown in FIG. 6, ultraviolet rays are irradiated through the mold member 300 from the upper side toward the lower direction.
그러면 렌즈부들(210)은 자외선에 의해 경화되고, 렌즈부들(210) 사이에 배치되는 잔류층(220)은 자외선 차단막(400)에 의해 막힌 상태로 되어 경화되지 않는 미경화 영역이 된다. 이러한 미경화 영역은 렌즈 어레이 성형시 발생하는 수축을 보완하기 위한 재료 보충 기능을 수행할 수 있게 된다. 따라서, 렌즈부들이 수축에 의한 형상 및 수치 변화를 최소화할 수 있게 된다. Then, the lens parts 210 are cured by ultraviolet rays, and the residual layer 220 disposed between the lens parts 210 is blocked by the UV blocking film 400 to become an uncured area that is not cured. This uncured area can perform a material replenishment function to compensate for shrinkage that occurs during lens array molding. Therefore, the lens parts can minimize the change in shape and numerical value due to shrinkage.
그리고, 기판(100)에서 렌즈부들(210)만 경화되는 영역이므로 렌즈부들(210)이 경화될 때 수축에 의한 기판(100)의 휨이나 손상을 방지할 수 있게 된다. In addition, since only the lens parts 210 of the substrate 100 are cured, it is possible to prevent bending or damage of the substrate 100 due to shrinkage when the lens parts 210 are cured.
렌즈부들(210)의 경화가 완료되면 도 7에 도시된 바와 같이, 몰드부재(300)를 기판(100)에서 분리시킨다. 이때, 잔류층(220)은 경화되지 않은 미경화 영역으로 복제에서 제외되므로 몰드부재(300)를 기판(100)에서 분리할 때 이형력을 최소화할 수 있다. 이와 같이, 몰드부재(300)의 이형력을 줄일 수 있어 기판의 두께를 얇게 형성할 경우에도 기판이 파손되는 것을 방지할 수 있다. 기판의 두께를 얇게 하면 광학소자의 두께를 줄일 수 있어 광학소자의 소형화가 가능하고, 비용을 절감할 수 있게 된다. When the curing of the lens unit 210 is completed, as shown in FIG. 7, the mold member 300 is separated from the substrate 100. At this time, since the residual layer 220 is excluded from replication as an uncured uncured region, the release force may be minimized when the mold member 300 is separated from the substrate 100. In this way, the release force of the mold member 300 can be reduced, so that even when the thickness of the substrate is formed thin, the substrate can be prevented from being damaged. When the thickness of the substrate is reduced, the thickness of the optical element can be reduced, thereby miniaturizing the optical element and reducing the cost.
몰드부재(300)를 기판(100)에서 분리한 후 세착공정에서 미경화 영역인 잔류층(220)을 세척하여 제거한다. After the mold member 300 is separated from the substrate 100, the remaining layer 220, which is an uncured region, is washed and removed in the washing process.
그러면, 도 8에 도시된 바와 같이, 웨이퍼 스케일 렌즈 어레이는 기판(100) 위에 렌즈부들(210)이 각각 독립된 형태로 일정 간격을 두고 형성된 형태를 갖게 된다.Then, as shown in FIG. 8, the wafer scale lens array has a shape in which lens parts 210 are formed on the substrate 100 at independent intervals.
도 9 내지 도 11는 본 발명의 제2실시예에 따른 웨이퍼 스케일 렌즈 어레이의 제조공정을 나타낸 공정 순서도이다. 9 to 11 are process flowcharts illustrating a manufacturing process of a wafer scale lens array according to a second exemplary embodiment of the present invention.
제2실시예에 따른 웨이퍼 스케일 렌즈 어레이의 제조공정을 살펴보면, 먼저 도 9에 도시된 바와 같이, 기판(100)을 준비한다. 이 기판(100)의 하면에는 자외선을 막아주는 자외선 차단막(110)이 설치된다. 이 자외선 차단막(110)은 후공정에서 기판(100)의 표면에 제조되는 렌즈 역할을 수행할 수 있는 광학적으로 유효한 영역을 제외한 나머지 영역에 자외선이 조사되지 않도록 막아줄 수 있는 일정 형태로 형성된다. Looking at the manufacturing process of the wafer scale lens array according to the second embodiment, first, as shown in Figure 9, to prepare a substrate 100. The lower surface of the substrate 100 is provided with a UV blocking film 110 to block ultraviolet rays. The UV blocking film 110 is formed in a predetermined shape to prevent ultraviolet light from being irradiated to the remaining areas except for an optically effective area that can serve as a lens manufactured on the surface of the substrate 100 in a later process.
상기 자외선 차단막(110)은 기판(100)의 하면에 얇은 금속재질의 차단막을 부착하여 형성할 수 있고, 금속 박막 증착공정을 통해 형성할 수 있다. 그리고, 기판(100)은 광학기능을 수행하는 렌즈부들을 지지할 수 있고 자외선이 통과할 수 있는 어떠한 종류도 사용이 가능하다. The UV blocking film 110 may be formed by attaching a thin metal blocking film to a lower surface of the substrate 100, and may be formed through a metal thin film deposition process. In addition, the substrate 100 may support lens units that perform an optical function and may use any kind through which ultraviolet rays may pass.
기판(100)의 상면에 렌즈 재료인 광학 폴리머(200)를 일정 두께로 도포한다. 여기에서, 광학 폴리머(200)는 자외선에 의해 경화될 수 있는 광 경화성 폴리머가 사용될 수 있다. The optical polymer 200, which is a lens material, is coated on the upper surface of the substrate 100 with a predetermined thickness. Here, the optical polymer 200 may be a photocurable polymer that can be cured by ultraviolet light.
그리고, 하면에 복수의 렌즈 캐비티(310)가 형성되는 몰드부재(300)를 기판(1000의 상면에 가압하면 몰드부재(300)에 형성된 복수의 렌즈 캐비티(310)와 동일한 렌즈 패턴이 광학 폴리머의 표면에 전사된다. 이때, 기판(100)의 상면에는 복수의 렌즈부들(210)과, 이 렌즈부들(210) 사이에 일정 두께로 배치되는 잔류층(220)이 성형된다. 여기에서, 복수의 렌즈부(210)는 광학적으로 유효한 기능을 하는 영역이고, 잔류층(220)은 광학적인 기능이 없고, 몰드부재(300)로 성형할 때 렌즈부들 사이에 광학 폴리머가 남아 있는 부분이다. When the mold member 300 having the plurality of lens cavities 310 formed on the lower surface is pressed onto the upper surface of the substrate 1000, the same lens pattern as the plurality of lens cavities 310 formed on the mold member 300 may be formed of the optical polymer. In this case, a plurality of lens parts 210 and a residual layer 220 disposed at a predetermined thickness are formed on the upper surface of the substrate 100. Here, the plurality of lens parts 210 are formed. The lens unit 210 is an area that has an optically effective function, and the residual layer 220 has no optical function, and is an area in which an optical polymer remains between the lens parts when forming the mold member 300.
이때, 기판(100)에 형성된 자외선 차단막(110)이 잔류층(220) 영역을 막아준다. In this case, the UV blocking film 110 formed on the substrate 100 blocks the remaining layer 220 region.
이러한 상태에서, 하측방향에서 기판(100)을 통해 자외선을 조사한다. 그러면 렌즈부들(210)은 자외선에 의해 경화되고, 잔류층(220)은 자외선 차단막(110)에 의해 막힌 상태로 되어 경화되지 않는 미경화 영역이 된다. In this state, ultraviolet rays are irradiated through the substrate 100 in the downward direction. Then, the lens parts 210 are cured by ultraviolet rays, and the residual layer 220 is blocked by the ultraviolet blocking film 110 to become an uncured region that is not cured.
렌즈부들(210)의 경화가 완료되면 도 10에 도시된 바와 같이, 몰드부재(300)를 기판(100)에서 분리시킨다. 이때, 잔류층(220)은 경화되지 않은 미경화 영역으로 복제에서 제외되므로 몰드부재(300)를 기판에서 분리할 때 이형력을 최소화할 수 있다. When the curing of the lens unit 210 is completed, as shown in FIG. 10, the mold member 300 is separated from the substrate 100. At this time, since the residual layer 220 is excluded from replication as an uncured uncured region, the release force may be minimized when the mold member 300 is separated from the substrate.
그리고, 도 11에 도시된 바와 같이, 몰드부재(300)를 기판(100)에서 분리한 후 세착공정에서 미경화 영역인 연결부를 세착하여 제거한다. As shown in FIG. 11, the mold member 300 is separated from the substrate 100, and then the connection part, which is an uncured region, is attached and removed in the washing process.
그리고, 상기 제1실시예에서 설명한 몰드부재(300)에 자외선 차단막(400)이 설치되는 구조와, 상기 제2실시예에서 설명한 기판(100)에 자외선 차단막(110)이 설치되는 구조가 조합된 구조도 적용이 가능하다. 즉, 몰드부재(300)의 하면에 자외선 차단막(400)을 설치하고, 기판(100)의 상면에 자외선 차단막(110)을 설치한 후 자외선을 상하방향으로 동시에 조사하여 렌즈부들(210)을 경화시키고 잔류층(220)이 경화되는 것을 막는 구조를 가질 수 있다. In addition, the structure in which the UV blocking film 400 is installed on the mold member 300 described in the first embodiment and the structure in which the UV blocking film 110 is installed on the substrate 100 described in the second embodiment are combined. The structure is also applicable. That is, the UV blocking film 400 is installed on the lower surface of the mold member 300, the UV blocking film 110 is installed on the upper surface of the substrate 100, and the ultraviolet rays are simultaneously irradiated in the vertical direction to cure the lens parts 210. And prevent the residual layer 220 from curing.
도 12 내지 도 16는 본 발명의 제3실시예에 따른 웨이퍼 스케일 렌즈 어레이의 제조공정을 나타낸 공정 순서도이다. 12 to 16 are process flowcharts illustrating a manufacturing process of a wafer scale lens array according to a third embodiment of the present invention.
먼저, 도 12에 도시된 바와 같이, 일정 간격을 두고 관통홀(610)이 형성된 기판(600)을 준비한다. 그리고, 기판(600)의 상측에 복수의 제1렌즈 캐비티(710)가 형성되는 제1몰드부재(700)를 위치시키고, 기판(600)의 하측에 복수의 제2렌즈 캐비티(810)가 형성되는 제2몰드부재(800)를 위치시킨다. First, as shown in FIG. 12, a substrate 600 having a through hole 610 is prepared at a predetermined interval. The first mold member 700 having the plurality of first lens cavities 710 is formed on the upper side of the substrate 600, and the plurality of second lens cavities 810 are formed on the lower side of the substrate 600. The second mold member 800 is positioned.
여기에서, 기판(600)은 광학 기능을 수행하는 렌즈들 사이를 지지하는 구조물을 역할을 할 수 있는 어떠한 종류의 기판도 적용이 가능하다. 기판(600)은 자외선이 통과할 수 있는 재질로 형성될 수 있다. Here, the substrate 600 may be applied to any kind of substrate that may serve as a structure for supporting the lenses that perform the optical function. The substrate 600 may be formed of a material through which ultraviolet rays can pass.
그리고, 제1몰드부재(700)는 자외선이 통과할 수 있는 재질로 형성되고, 그 하면에는 자외선을 막아주는 자외선 차단막(720)이 설치된다. 이 자외선 차단막(720)은 제1렌즈 캐비티들(710) 사이에 형성된다. 즉, 렌즈 역할을 수행할 수 있는 광학적으로 유효한 면을 제외한 나머지 부분에 형성된다. In addition, the first mold member 700 is formed of a material through which ultraviolet rays can pass, and a UV blocking film 720 for blocking ultraviolet rays is installed on the bottom surface of the first mold member 700. The ultraviolet blocking film 720 is formed between the first lens cavities 710. That is, it is formed on the remaining portions except the optically effective surface capable of performing the lens role.
그리고, 제2몰드부재(800)는 자외선이 통과할 수 있는 재질로 형성될 수 있고, 제1몰드부재(700)에 설치되는 자외선 차단막이 설치될 수 있다. 즉, 자외선 차단막(720)은 제1몰드부재(700)와 제2몰드부재(800) 둘 다에 설치될 수 있고, 둘 중 어느 하나에 설치될 수 있다. In addition, the second mold member 800 may be formed of a material through which ultraviolet rays may pass, and an ultraviolet blocking film installed on the first mold member 700 may be installed. That is, the UV blocking film 720 may be installed on both the first molding member 700 and the second molding member 800, and may be installed on either of them.
상기 자외선 차단막(720)은 제1 및 제2몰드부재(700,800) 이외에 기판(600)에도 설치될 수 있다. The ultraviolet blocking film 720 may be installed on the substrate 600 in addition to the first and second mold members 700 and 800.
도 13에 도시된 바와 같이, 기판(600)을 제2몰드부재(800)의 상면에 올려놓고, 기판(600)의 각 관통홀(610)에 렌즈 재료인 광학 폴리머(820)를 일정 두께로 도포한다. 이때, 기판(600)의 관통홀(610)과 제2몰드부재(800)의 제2렌즈 캐비티(810)가 일치되게 정렬된 상태이므로 광학 폴리머(820)는 관통홀(610)에 삽입되어 제2렌즈 캐비티(810)에 채워지고 기판(600)의 상면에 볼록한 형태로 일정 간격을 두고 도포된다. As shown in FIG. 13, the substrate 600 is placed on the upper surface of the second mold member 800, and the optical polymer 820, which is a lens material, is formed in each through hole 610 of the substrate 600 in a predetermined thickness. Apply. At this time, since the through hole 610 of the substrate 600 and the second lens cavity 810 of the second mold member 800 are aligned to be aligned, the optical polymer 820 is inserted into the through hole 610 to be formed. The two lens cavity 810 is filled and applied to the upper surface of the substrate 600 in a convex shape at regular intervals.
상기 광학 폴리머(820)는 자외선에 의해 경화될 수 있는 광경화성 폴리머가 사용될 수 있다. The optical polymer 820 may be a photocurable polymer that can be cured by ultraviolet light.
그리고, 그 하면에 자외선 차단막(720)이 형성된 제1몰드부재(700)를 기판(600)의 상면에 가압하면, 도 14에 도시된 바와 같이, 제1몰드부재(700)에 형성된 복수의 렌즈 캐비티들(710)과 동일한 렌즈 패턴이 광학 폴리머(820)의 상면에 전사된다. When the first mold member 700 having the UV blocking film 720 formed thereon is pressed onto the top surface of the substrate 600, as illustrated in FIG. 14, a plurality of lenses formed on the first mold member 700. The same lens pattern as the cavities 710 is transferred to the top surface of the optical polymer 820.
이때, 기판(600)의 관통홀(610)에는 광학적으로 유효한 기능을 하는 렌즈부들(850)이 형성되고, 이 렌즈부들(850) 주변에는 잔류층(860)이 형성된다. 여기에서, 잔류층(860)은 광학적인 기능이 없고, 제1몰드부재(700)로 성형할 때 렌즈부들(850) 사이에 광학 폴리머가 남아 있는 부분이다. In this case, the lens parts 850 having an optically effective function are formed in the through hole 610 of the substrate 600, and the residual layer 860 is formed around the lens parts 850. Here, the residual layer 860 has no optical function and is a portion where the optical polymer remains between the lens parts 850 when molded into the first mold member 700.
제1몰드부재(700)를 기판(600)의 상면에 덮으면 자외선 차단막(720)이 잔류층(860)을 덮어주도록 배치되어 추후 공정에서 자외선을 조사할 때 잔류층(860)으로 자외선이 조사되는 것을 차단시킨다. When the first mold member 700 is covered on the upper surface of the substrate 600, the UV blocking film 720 is disposed to cover the residual layer 860 so that ultraviolet rays are irradiated onto the residual layer 860 when the ultraviolet rays are irradiated in a later process. Block it.
이러한 상태에서, 제1몰드부재(700)를 통해 자외선을 조사하면, 제1몰드부재(700)를 통과한 자외선이 렌즈부들(850)을 경화시키고, 렌즈부들(850) 주변에 배치되는 잔류층(860)은 자외선 차단막(720)에 의해 막힌 상태로 되어 경화되지 않는 미경화 영역이 된다. 이러한 미경화 영역은 렌즈 어레이 성형시 발생하는 수축을 보완하기 위한 재료 보충 기능을 수행할 수 있게 된다. 따라서, 렌즈부들이 수축에 의한 형상 및 수치 변화를 최소화할 수 있게 된다. In this state, when ultraviolet rays are irradiated through the first mold member 700, the ultraviolet rays passing through the first mold member 700 harden the lens parts 850, and a residual layer disposed around the lens parts 850. 860 becomes a state of being blocked by the UV blocking film 720 and becomes an uncured region that is not cured. This uncured area can perform a material replenishment function to compensate for shrinkage that occurs during lens array molding. Therefore, the lens parts can minimize the change in shape and numerical value due to shrinkage.
렌즈부들(850)의 경화가 완료되면 도 15에 도시된 바와 같이, 제1몰드부재(700)와 제2몰드부재(800)를 기판(600)에서 분리시킨다. 이때, 잔류층(860)은 경화되지 않은 미경화 영역으로 복제에서 제외되므로 제1몰드부재(700)를 기판(600)에서 분리할 때 이형력을 최소화할 수 있다. When the curing of the lens unit 850 is completed, as shown in FIG. 15, the first mold member 700 and the second mold member 800 are separated from the substrate 600. In this case, since the residual layer 860 is excluded from replication as an uncured uncured region, the release force may be minimized when the first mold member 700 is separated from the substrate 600.
제1몰드부재(700)와 제2몰드부재(800)를 기판(600)에서 분리한 후 세척공정에서 미경화 영역인 잔류층을 세척하여 제거한다. After separating the first mold member 700 and the second mold member 800 from the substrate 600, the remaining layer, which is an uncured region, is washed and removed in the cleaning process.
그러면, 도 16에 도시된 바와 같이, 웨이퍼 스케일 렌즈 어레이는 기판(600) 의 관통홀(610)에 렌즈부들(210)이 각각 삽입되고 독립된 형태로 배열된다. Then, as illustrated in FIG. 16, in the wafer scale lens array, the lens units 210 are inserted into the through holes 610 of the substrate 600 and arranged in an independent form.
전술한 제3실시예에 있어서, 자외선 차단막은 제거될 수 있다. 또한, 제1실시예 및 제2실시예에서도, 렌즈 재료인 광학 폴리머를 기판 표면의 복수의 위치에 독립적으로 도포하고, 대신 자외선 차단막을 제거할 수 있다. 물론, 광학 폴리머의 독립적인 도포에 더하여 몰드부재 및/또는 기판이 자외선 차단막을 가질 수도 있음은 물론이다. In the above-described third embodiment, the ultraviolet blocking film can be removed. Also in the first and second embodiments, the optical polymer, which is a lens material, can be applied independently to a plurality of positions on the substrate surface, and the ultraviolet blocking film can be removed instead. Of course, in addition to the independent application of the optical polymer, the mold member and / or the substrate may have an ultraviolet blocking film.
도 17 내지 도 19는 본 발명의 제4실시예에 따른 웨이퍼 스케일 렌즈 어레이의 제조공정을 나타낸 공정 순서도이다. 17 to 19 are process flowcharts illustrating a manufacturing process of a wafer scale lens array according to a fourth embodiment of the present invention.
먼저, 도 17에 도시된 바와 같이, 일정 간격을 두고 관통홀(610)이 형성된 기판(600)을 준비한다. 그리고, 기판(600)의 상측에 복수의 제1렌즈 캐비티(710)가 형성되는 제1몰드부재(700)를 위치시키고, 기판(600)의 하측에 복수의 제2렌즈 캐비티(810)가 형성되는 제2몰드부재(800)를 위치시킨다. First, as shown in FIG. 17, a substrate 600 on which a through hole 610 is formed at a predetermined interval is prepared. The first mold member 700 having the plurality of first lens cavities 710 is formed on the upper side of the substrate 600, and the plurality of second lens cavities 810 are formed on the lower side of the substrate 600. The second mold member 800 is positioned.
그리고, 제1몰드부재(700)에는 자외선을 막아주는 자외선 차단막(720)이 설치된다. 이 자외선 차단막(720)은 렌즈 역할을 수행할 수 있는 광학적으로 유효한 면을 제외한 나머지 부분에 설치된다. The first molding member 700 is provided with an ultraviolet blocking film 720 that blocks ultraviolet rays. The UV blocking film 720 is provided on the remaining portions except for an optically effective surface capable of serving as a lens.
그리고, 제2몰드부재(800)는 자외선이 통과할 수 있는 재질로 형성될 수 있고, 제1몰드부재(700)에 설치되는 자외선 차단막이 설치될 수 있다. 즉, 자외선 차단막(720)은 제1몰드부재(700)와 제2몰드부재(800) 둘 다에 설치될 수 있고, 둘 중 어느 하나에 설치될 수 있다. 그리고, 자외선 차단막(720)은 기판(600)의 표면에도 설치될 수 있다.In addition, the second mold member 800 may be formed of a material through which ultraviolet rays may pass, and an ultraviolet blocking film installed on the first mold member 700 may be installed. That is, the UV blocking film 720 may be installed on both the first molding member 700 and the second molding member 800, and may be installed on either of them. In addition, the UV blocking film 720 may be installed on the surface of the substrate 600.
그리고, 기판(600)의 표면에 렌즈 재료인 광학 폴리머(900)를 일정 두께로 전체면에 걸쳐 균일하게 도포한다. 그러면, 광학 폴리머(900)는 관통홀(610)에 삽입되어 제2렌즈 캐비티(810)에 채워지고 기판(600)의 상면에 전체적으로 균일하게 도포된다. And the optical polymer 900 which is a lens material is apply | coated uniformly over the whole surface to the surface of the board | substrate 600 with predetermined thickness. Then, the optical polymer 900 is inserted into the through hole 610 to be filled in the second lens cavity 810 and uniformly applied to the entire surface of the substrate 600.
그리고, 자외선 차단막(720)이 형성된 제1몰드부재(700)를 기판(600)의 상면에 가압하면, 도 18에 도시된 바와 같이, 제1몰드부재(700)에 형성된 복수의 렌즈 캐비티들(710)과 동일한 렌즈 패턴이 광학 폴리머(900)의 상면에 전사된다. When the first mold member 700 having the UV blocking film 720 is pressed on the upper surface of the substrate 600, as illustrated in FIG. 18, a plurality of lens cavities (formed in the first mold member 700) The same lens pattern as 710 is transferred to the top surface of the optical polymer 900.
이때, 기판(600)의 관통홀(610)에는 광학적으로 유효한 기능을 하는 렌즈부들(910)이 형성되고, 이 렌즈부들(910) 사이에는 잔류층(920)이 형성된다. 여기에서, 잔류층(920)은 광학적인 기능이 없고, 제1몰드부재(700)로 성형할 때 렌즈부들(910) 사이에 광학 폴리머가 남아 있는 부분이다. In this case, the lens parts 910 that function optically effective are formed in the through hole 610 of the substrate 600, and a residual layer 920 is formed between the lens parts 910. Here, the residual layer 920 has no optical function and is an area where the optical polymer remains between the lens parts 910 when molded into the first mold member 700.
제1몰드부재(700)를 기판(600)의 상면에 덮으면 자외선 차단막(720)이 잔류층(920)을 덮어주도록 배치되어 추후 공정에서 자외선을 조사할 때 잔류층(920)으로 자외선이 조사되는 것을 차단시킨다. When the first mold member 700 is covered on the upper surface of the substrate 600, the ultraviolet blocking film 720 is disposed to cover the residual layer 920, and the ultraviolet ray is irradiated onto the residual layer 920 when the ultraviolet ray is irradiated in a later process. Block it.
이러한 상태에서, 제1몰드부재(700)를 통해 자외선을 조사하면, 제1몰드부재(700)를 통과한 자외선이 렌즈부들(910)을 경화시키고, 렌즈부들(910)들 사이에 배치되는 잔류층(920)은 자외선 차단막(720)에 의해 막힌 상태로 되어 경화되지 않는 미경화 영역이 된다. In this state, when ultraviolet rays are irradiated through the first mold member 700, the ultraviolet rays passing through the first mold member 700 harden the lens portions 910 and remain between the lens portions 910. The layer 920 is blocked by the UV blocking film 720 and becomes an uncured region that is not cured.
렌즈부들(910)의 경화가 완료되면 도 19에 도시된 바와 같이, 제1몰드부재(700)와 제2몰드부재(800)를 기판(600)에서 분리시킨다. 이때, 잔류층(920)은 경화되지 않은 미경화 영역으로 복제에서 제외되므로 제1몰드부재(700)를 기판(600)에서 분리할 때 이형력을 최소화할 수 있다. When the curing of the lens units 910 is completed, as shown in FIG. 19, the first mold member 700 and the second mold member 800 are separated from the substrate 600. In this case, since the residual layer 920 is excluded from replication as an uncured uncured region, the release force may be minimized when the first mold member 700 is separated from the substrate 600.
제1몰드부재(700)와 제2몰드부재(800)를 기판(600)에서 분리한 후 세척공정에서 미경화 영역인 잔류층(920)을 세척하여 제거하면 기판(600)의 관통홀(610)에 렌즈부들(910)이 각각 삽입되고 독립된 형태로 배열되는 웨이퍼 스케일 렌즈 어레이가 제조된다. When the first mold member 700 and the second mold member 800 are separated from the substrate 600, and then the residual layer 920 that is an uncured region is washed and removed in the cleaning process, the through hole 610 of the substrate 600. A lens scale lens array in which lens parts 910 are inserted and arranged in a separate form is manufactured.
이상에서, 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술분야에서 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이다.Although described above with reference to preferred embodiments of the present invention, those skilled in the art or those skilled in the art without departing from the spirit and scope of the invention described in the claims to be described later Various modifications and variations can be made in the present invention without departing from the scope thereof.

Claims (18)

  1. 기판과; A substrate;
    상기 기판에 각각 독립적으로 배열되어 광학 기능을 수행하는 복수의 렌즈부를 포함하는 웨이퍼 스케일 렌즈 어레이. And a plurality of lens units arranged on the substrate to perform optical functions.
  2. 제1항에 있어서, The method of claim 1,
    상기 기판은 자외선이 통과할 수 있고 렌즈부들을 지지할 수 있는 재질로 형성되는 것을 특징으로 하는 웨이퍼 스케일 렌즈 어레이.The substrate is a wafer-scale lens array, characterized in that formed of a material that can pass through the ultraviolet light and support the lens portion.
  3. 제1항에 있어서, The method of claim 1,
    상기 기판에는 렌즈부가 삽입되게 배치되는 복수의 관통홀이 형성되는 것을 특징으로하는 웨이퍼 스케일 렌즈 어레이. A wafer scale lens array, characterized in that the substrate is formed with a plurality of through holes in which the lens portion is inserted.
  4. 제1항에 있어서, The method of claim 1,
    상기 렌즈부들은 기판의 표면에 일정 간격을 두고 각각 배열되는 것을 특징으로 하는 웨이퍼 스케일 렌즈 어레이. And the lens units are arranged at predetermined intervals on the surface of the substrate.
  5. 기판의 표면에 도포된 광학 폴리머를 가압하여 광학기능을 수행하는 복수의 렌즈부를 형성하는 몰드부재를 포함하고, It includes a mold member for forming a plurality of lens portion for performing an optical function by pressing the optical polymer applied to the surface of the substrate,
    상기 몰드부재에는 광학 기능을 수행하는 렌즈부 영역을 제외한 나머지 영역에 자외선이 조사되는 것을 차단하는 자외선 차단막이 설치되는 것을 특징으로 하는 웨이퍼 스케일 렌즈 어레이 성형장치. Wafer scale lens array molding apparatus is characterized in that the mold member is provided with an ultraviolet shielding film to block the ultraviolet light is irradiated to the remaining areas other than the lens area performing the optical function.
  6. 제5항에 있어서, The method of claim 5,
    상기 몰드부재는 그 하면에 복수의 렌즈 캐비티가 형성되고, 상기 렌즈 캐비티들 사이에 자외선 차단막이 설치되는 것을 특징으로 하는 웨이퍼 스케일 렌즈 어레이 성형장치. The mold member has a plurality of lens cavities are formed on the lower surface of the mold member, characterized in that the UV blocking film is provided between the lens cavities.
  7. 제5항에 있어서, The method of claim 5,
    상기 몰드부재는 기판의 상면에 배치되는 제1몰드부재와, 기판의 하면에 배치되는 제2몰드부재로 구성되고, 자외선 차단막은 제1몰드부재와 제2몰드부재 중 적어도 어느 하나에 설치되는 것을 특징으로 하는 웨이퍼 스케일 렌즈 어레이 성형장치. The mold member may include a first mold member disposed on an upper surface of the substrate and a second mold member disposed on a lower surface of the substrate, and the UV blocking layer may be disposed on at least one of the first mold member and the second mold member. Wafer scale lens array molding apparatus.
  8. 제5항에 있어서, The method of claim 5,
    상기 기판의 표면에 렌즈부 영역을 제외한 나머지 영역에 자외선이 조사되는 것을 차단하는 자외선 차단막이 설치되는 것을 특징으로 하는 웨이퍼 스케일 렌즈 어레이 성형장치. Wafer scale lens array molding apparatus, characterized in that the UV blocking film is provided on the surface of the substrate to block the irradiation of ultraviolet light in the remaining region other than the lens region.
  9. 제5항에 있어서, The method of claim 5,
    상기 자외선 차단막은 상기 몰드부재의 표면에 얇은 금속막을 부착하여 형성하거나, 금속 박막 증착공정을 통해 형성하는 것을 특징으로 하는 웨이퍼 스케일 렌즈 어레이 성형장치. The ultraviolet blocking film is formed by attaching a thin metal film on the surface of the mold member, or formed through a metal thin film deposition process, characterized in that the wafer scale lens array molding apparatus.
  10. 몰드부재와 기판 중 적어도 어느 하나에 비광학 영역을 막아주는 자외선 차단막이 구비되고, 상기 몰드부재를 이용하여 기판에 웨이퍼 스케일 렌즈 어레이를 형성하되, At least one of the mold member and the substrate is provided with a UV blocking film to block the non-optical region, by using the mold member to form a wafer scale lens array on the substrate,
    기판 표면에 렌즈 재료인 광학 폴리머를 도포하는 단계와; Applying an optical polymer, which is a lens material, to the substrate surface;
    상기 몰드부재를 광학 폴리머에 가압하여 기판 표면에 광학 영역인 복수의 렌즈부들을 성형하고, 비광학 영역인 잔류층에 상기 자외선 차단막을 덮는 단계와; Pressing the mold member onto an optical polymer to form a plurality of lens portions, which are optical regions, on a surface of a substrate, and covering the ultraviolet blocking film on a remaining layer, which is a non-optical region;
    자외선을 조사하여 상기 렌즈부들만 경화시키는 단계와; Irradiating ultraviolet light to harden only the lens parts;
    경화되지 않은 잔류층을 제거하는 단계를 포함하는 웨이퍼 스케일 렌즈 어레이 제조방법. A method of fabricating a wafer scale lens array comprising removing an uncured residual layer.
  11. 제10항에 있어서, The method of claim 10,
    상기 광학 폴리머는 광투과성이 우수한 광 경화성 폴리머가 사용되는 것을 특징으로 하는 웨이퍼 스케일 렌즈 어레이 제조방법. The optical polymer is a method of manufacturing a wafer scale lens array, characterized in that the light-curable polymer excellent in light transmittance is used.
  12. 제10항에 있어서, The method of claim 10,
    상기 자외선 차단막은 몰드부재의 렌즈 캐비티를 제외한 나머지 영역에 구비되는 것을 특징으로 하는 웨이퍼 스케일 렌즈 어레이 제조방법. The UV blocking film is a wafer scale lens array manufacturing method, characterized in that provided in the remaining area except the lens cavity of the mold member.
  13. 제10항에 있어서, The method of claim 10,
    상기 자외선 차단막은 상기 몰드부재 또는 기판의 표면에 얇은 금속막을 부착하여 형성하거나, 금속 박막 증착공정을 통해 형성하는 것을 특징으로 하는 웨이퍼 스케일 렌즈 어레이 제조방법. The UV blocking film is a wafer scale lens array manufacturing method characterized in that formed by attaching a thin metal film on the surface of the mold member or substrate, or through a metal thin film deposition process.
  14. 제10항에 있어서, The method of claim 10,
    상기 기판은 복수의 관통홀을 구비하고, The substrate has a plurality of through holes,
    상기 몰드부재는 상기 기판의 상측에 배치되는 제1몰드부재와 하측에 배치되는 제2몰드부재를 포함하고, 제1몰드부재와 제2몰드부재 중 적어도 어느 하나에 광학 영역을 제외한 나머지 영역에 자외선 차단막이 구비되고,The mold member may include a first mold member disposed above the substrate and a second mold member disposed below the substrate, and at least one of the first mold member and the second mold member may emit ultraviolet light in the remaining region except for the optical region. A blocking film is provided,
    렌즈 재료인 광학 폴리머는 상기 관통홀에 도포되는 것을 특징으로 하는 웨이퍼 스케일 렌즈 어레이 제조방법. An optical polymer as a lens material is applied to the through hole.
  15. 제14항에 있어서, The method of claim 14,
    상기 광학 폴리머는 기판의 관통홀에 각각 독립적으로 도포되는 것을 특징으로 하는 웨이퍼 스케일 렌즈 어레이 제조방법.The optical polymer is a wafer scale lens array manufacturing method, characterized in that each independently applied to the through-hole of the substrate.
  16. 제14항에 있어서, The method of claim 14,
    상기 광학 폴리머는 기판의 상면에 전체적으로 균일하게 도포되는 것을 특징으로 하는 웨이퍼 스케일 렌즈 어레이 제조방법.And the optical polymer is uniformly applied on the entire surface of the substrate.
  17. 렌즈 재료인 광학 폴리머를 기판 표면의 복수의 위치에 독립적으로 도포하는 단계와; Independently applying an optical polymer, which is a lens material, to a plurality of locations on the substrate surface;
    상기 몰드부재를 광학 폴리머에 가압하여 기판 표면에 광학 영역인 복수의 렌즈부들을 성형하는 단계와; Pressing the mold member onto an optical polymer to form a plurality of lens portions which are optical regions on a surface of a substrate;
    자외선을 조사하여 상기 렌즈부들을 경화시키는 단계를 포함하는 것을 특징으로 하는 웨이퍼 스케일 렌즈 어레이 제조방법. And irradiating ultraviolet light to cure the lens units.
  18. 제17항에 있어서, The method of claim 17,
    상기 기판은 복수의 관통홀을 구비하고, The substrate has a plurality of through holes,
    상기 몰드부재는 상기 기판의 상측에 배치되는 제1몰드부재와 하측에 배치되는 제2몰드부재를 포함하고, The mold member includes a first mold member disposed above the substrate and a second mold member disposed below the mold member.
    렌즈 재료인 광학 폴리머는 상기 관통홀에 도포되는 것을 특징으로 하는 웨이퍼 스케일 렌즈 어레이 제조방법. An optical polymer as a lens material is applied to the through hole.
PCT/KR2009/001267 2008-03-14 2009-03-13 Wafer scale lens array, molding apparatus thereof and manufacturing method thereof WO2009113833A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0023884 2008-03-14
KR1020080023884A KR20090098470A (en) 2008-03-14 2008-03-14 Wafer scale lens array and the manufacturing device and method thereof

Publications (2)

Publication Number Publication Date
WO2009113833A2 true WO2009113833A2 (en) 2009-09-17
WO2009113833A3 WO2009113833A3 (en) 2009-12-10

Family

ID=41065680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/001267 WO2009113833A2 (en) 2008-03-14 2009-03-13 Wafer scale lens array, molding apparatus thereof and manufacturing method thereof

Country Status (2)

Country Link
KR (1) KR20090098470A (en)
WO (1) WO2009113833A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110137649A (en) * 2010-06-17 2011-12-23 엘지이노텍 주식회사 Molding apparatus and method of fabricating polymer mold
US8072685B1 (en) 2011-01-31 2011-12-06 Omnivision Technologies, Inc. Lens assembly and method for forming the same
KR101437532B1 (en) * 2012-10-17 2014-09-04 주식회사 엔엔피 Fabricating method for microlens array
KR102146959B1 (en) * 2018-07-23 2020-08-21 한국광기술원 Apparatus for Manufacturing Lens Array
KR102225983B1 (en) * 2019-03-25 2021-03-09 정명수 Manufacturing method of Fresnel lens for mobile devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039195A (en) * 2003-06-26 2005-02-10 Nippon Sheet Glass Co Ltd Manufacturing method of light emitting element with built-in lens
KR20060078405A (en) * 2004-12-31 2006-07-05 삼성전자주식회사 Micro lens substrate array, display apparatus for 3 dimensional image employing the same and method for manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186105A (en) * 1996-12-19 1998-07-14 Fujitsu Takamizawa Component Kk Lens array

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039195A (en) * 2003-06-26 2005-02-10 Nippon Sheet Glass Co Ltd Manufacturing method of light emitting element with built-in lens
KR20060078405A (en) * 2004-12-31 2006-07-05 삼성전자주식회사 Micro lens substrate array, display apparatus for 3 dimensional image employing the same and method for manufacturing the same

Also Published As

Publication number Publication date
WO2009113833A3 (en) 2009-12-10
KR20090098470A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
WO2009113833A2 (en) Wafer scale lens array, molding apparatus thereof and manufacturing method thereof
WO2009088198A2 (en) Light emitting diode coating method
WO2010027131A1 (en) Method for manufacturing lens having functional nanopattern
WO2010033002A2 (en) Micro-composite pattern lens, and method for manufacturing same
KR101634353B1 (en) Micro lens, method for manufacturing the micro lens, apparatus for manufacturing the micro lens, camera module including the micro lens
WO2019035629A1 (en) Display device having fingerprint recognition sensor coupled thereto
WO2017131497A1 (en) Film mask, method for manufacturing same, and method for forming pattern using film mask
WO2013191341A1 (en) Method of manufacturing stamp for plasmonic nanolithography apparatus and plasmonic nanolithography apparatus
WO2017131499A1 (en) Film mask, method for manufacturing same, and method for forming pattern using film mask and pattern formed thereby
WO2014003331A1 (en) Switching lens for display apparatus and method for manufacturing the same
WO2012074167A1 (en) Light guide plate, and method and apparatus of manufacturing same
WO2020071815A1 (en) Display apparatus and method for manufacturing thereof
WO2011016651A9 (en) Photocurable resin composition for imprint lithography and method for manufacturing an imprint mold using same
EP2241428B1 (en) Process for producing optical part, process for producing mold, apparatus for producing optical part, and apparatus for producing mold
WO2011149175A1 (en) Method for manufacturing a two-dimensional polymer optical waveguide
WO2019039660A1 (en) Micropattern layer based image film
WO2017082467A1 (en) Method for manufacturing microlens array
WO2018212458A1 (en) 3d printer, 3d printing method, and 3d printer control program
WO2014025144A1 (en) Method for manufacturing sample storage device and sample storage device
WO2018009026A1 (en) Nanoimprint replica mold, manufacturing method therefor, and nanoimprint replica mold manufacturing device
WO2017131447A1 (en) Method for producing microlens-based security image film having micronic thickness
WO2015099290A1 (en) Polarized lens film production apparatus and method
WO2018226004A1 (en) Method for manufacturing pellicle
KR102020248B1 (en) Method of manufacturing pellicle
WO2011159120A2 (en) Molding apparatus and method of manufacturing polymer molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719783

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09719783

Country of ref document: EP

Kind code of ref document: A2