WO2009113568A1 - Image forming method and hardened material formed using the same - Google Patents

Image forming method and hardened material formed using the same Download PDF

Info

Publication number
WO2009113568A1
WO2009113568A1 PCT/JP2009/054627 JP2009054627W WO2009113568A1 WO 2009113568 A1 WO2009113568 A1 WO 2009113568A1 JP 2009054627 W JP2009054627 W JP 2009054627W WO 2009113568 A1 WO2009113568 A1 WO 2009113568A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
image forming
forming method
composition
acrylate
Prior art date
Application number
PCT/JP2009/054627
Other languages
French (fr)
Japanese (ja)
Inventor
守正 佐藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2009113568A1 publication Critical patent/WO2009113568A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/001Phase modulating patterns, e.g. refractive index patterns

Definitions

  • the present invention relates to an image forming method and a cured product formed using the image forming method.
  • the present invention relates to an image forming method using a curable composition for optical nanoimprint lithography, which is used for forming a member for a liquid crystal display device.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-61539
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-3854
  • Patent Document 3 Japanese Patent Laid-Open No. 2006-119327
  • Patent Document 4 Japanese Patent Laid-Open No. 2006-178038
  • a spacer that forms a gap between two glass substrates of an LCD panel and a rib that controls liquid crystal alignment are formed simultaneously, or a color filter and a rib that are formed in advance are overlapped to form a spacer.
  • a cost reduction method is disclosed in which spacers and ribs that have been conventionally formed in two steps are formed in one step.
  • the spacer and the rib have many problems with respect to mechanical properties, pattern accuracy, adhesion, solvent resistance, liquid crystal contamination, and the like.
  • the mechanical characteristics of the spacer portion are not sufficient when overlapped with the color filter.
  • the rib structure is not constant in the method of adjusting the exposure amount and simultaneously forming the spacer and the rib with the same material.
  • the well-known embossing technology is developed for optical disc production, and the original mold (generally called mold, stamper, template) with uneven patterns is pressed on the resist and mechanically deformed.
  • a technology for precisely transferring a fine pattern is being developed.
  • the nanoimprint method is economical because it can be easily repetitively molded with fine structures such as nanostructures once a mold is fabricated, and it is a nanofabrication technology with less harmful waste and emissions. Application to the field is expected.
  • Non-patent Document 1 (S. Chou et al .: Appl. Phys. Lett. Vol. 67, 3114 (1995))
  • Non-Patent Document 2 (M. Colbunet et al .: Proc. SPIE, Vol. 3676, 379 (1999))
  • thermal nanoimprint the mold is pressed onto a polymer resin heated to a temperature higher than the glass transition temperature, and the mold is released after cooling to transfer the microstructure to the resin on the substrate.
  • Patent Document 5 US Pat. No. 5,772,905
  • Patent Document 6 US Pat. No. 5,956,216
  • a method of nanoimprinting is disclosed.
  • the optical nanoimprint method in which light is irradiated through a transparent mold and the curable composition for optical nanoimprint lithography is photocured enables imprinting at room temperature.
  • new developments such as a nanocasting method combining the advantages of both and a reversal imprint method for producing a three-dimensional laminated structure have been reported.
  • the following applications are considered.
  • the first is when the molded shape itself has a function and can be applied as various nanotechnology element parts or structural members.
  • the second is to build a laminated structure by simultaneous molding of the microstructure and nanostructure, or simple interlayer alignment, and apply it to the production of ⁇ -TAS and biochips.
  • the third is to apply high-precision alignment and high integration to the production of a high-density semiconductor integrated circuit in place of the conventional lithography, the production of a liquid crystal display in a transistor, and the like.
  • Patent Document 5 US Pat. No. 5,772,905
  • Patent Document 7 US Pat. No. 5,259,926).
  • Patent Publication discloses a nanoimprint technique in which a silicon wafer is used as a stamper and a fine structure of 25 nanometers or less is formed by transfer.
  • Patent Document 8 Japanese Patent Publication No. 2005-527110 discloses a composite composition using nanoimprints that is applied to the field of semiconductor microlithography.
  • studies to apply nanoimprint lithography to semiconductor integrated circuit fabrication such as micro mold fabrication technology, mold durability, mold fabrication cost, mold releasability from mold, imprint uniformity and alignment accuracy, inspection technology, etc. It started to become active. This is mainly a development for nano-scale patterning, and no efforts related to BM pattern formation have been disclosed so far.
  • JP 2004-61539 A Japanese Patent Laying-Open No. 2005-3854 JP 2006-119327 A JP 2006-178038 A US Pat. No. 5,772,905 US Pat. No. 5,956,216 US Pat. No. 5,259,926 JP 2005-527110 Gazette
  • the present invention provides an image forming method capable of forming two or more molds at the same time and capable of forming an image excellent in pattern accuracy, peelability, hardness, defect, solvent resistance, and the like. For the purpose.
  • a step of providing a photosensitive resin layer comprising the composition on a substrate (2) A step of removing the solvent by subjecting the photosensitive resin layer to a heat treatment at 50 to 150 ° C., if necessary (3) At least 2 A step of pressure-bonding the uneven surface of a mold having uneven surfaces of different shapes and the photosensitive resin layer (4) a step of irradiating the photosensitive resin layer (5) a mold having the uneven surface Step (6) for peeling from photosensitive resin layer (6) Step for heat-treating photosensitive resin layer peeled from mold having concave and convex surface at 160 to 250 ° C., if necessary (2) Irregular surface having different two types of shapes
  • the mold is a mold for a liquid crystal display panel spacer and a liquid crystal display panel liquid crystal alignment controller.
  • At least one of Y in the general formula (1) is a vinyl ether group, an allyl ether group, a cyclohexenyl group, a cyclopentenyl group, a dicyclopentenyl group, a styryl group, a methacryloyloxy group, a methacryloylamide group, or an acrylamide group.
  • the image forming method according to (4) selected from the group consisting of a vinylsilane group, an N-vinyl heterocyclic group and a maleimide group.
  • the present invention two or more images and cured products in which conventional photolithographic methods are not used, and problems of conventional problems (for example, pattern shape, adhesion, mechanical properties, liquid crystal contamination, etc.) are reduced or eliminated. It became possible to form at the same time.
  • the LCD panel spacer and the LCD panel liquid crystal alignment controller (rib body), which are permanent films, can be formed simultaneously. Further, the LCD panel using these members may not cause display unevenness.
  • the image forming method of the present invention can have an advantage that the pattern shape can be freely designed according to the shape of the mold to be used.
  • (meth) acrylate represents acrylate and methacrylate
  • (meth) acryl represents acryl and methacryl
  • (meth) acryloyl represents acryloyl and methacryloyl.
  • a monomer and a monomer in this specification are synonymous.
  • the monomer in the present specification is a compound having a mass average molecular weight of 1,000 or less, distinguished from oligomers and polymers.
  • the functional group refers to a group involved in polymerization.
  • the nanoimprint referred to in the present invention refers to pattern transfer having a size of about several tens of ⁇ m to several tens of nm, and is not necessarily limited to nano order.
  • the image forming method of the present invention comprises (A) two or more kinds of curable functional groups having different reactivity in the same molecule in a state substantially free of solvent after drying, and the curable functional group.
  • a step of providing a photosensitive resin layer comprising the composition on a substrate (2) A step of removing the solvent by subjecting the photosensitive resin layer to a heat treatment at 50 to 150 ° C., if necessary (3) At least 2 A step of pressure-bonding the uneven surface of a mold having uneven surfaces of different shapes and the photosensitive resin layer (4) a step of irradiating the photosensitive resin layer (5) a mold having the uneven surface Step of peeling from the photosensitive resin layer (6) Step of heat-treating the photosensitive resin layer peeled off from the mold having an uneven surface as necessary at 160 to 250 ° C.
  • substrate the composition of this invention is apply
  • a method for providing the resin layer generally well-known coating methods such as dip coating, air knife coating, curtain coating, wire bar coating, gravure coating, extrusion coating, spin coating Method, slit scan method and the like.
  • the film thickness of the photosensitive resin layer varies depending on the application to be used, but is usually 0.05 ⁇ m to 30 ⁇ m. When used as a spacer for an LCD panel, the dry film thickness is preferably 2.0 to 8.0 ⁇ m. When used for a rib body, the dry film thickness is preferably 0.5 to 2.0 ⁇ m.
  • composition of the present invention may be applied multiple times. When two or more structures are formed at the same time, it is preferable to adjust the dry film thickness to the thicker one. In the case where the LCD panel spacer and the LCD panel rib are formed at the same time, the spacer is applied to the thickness as the LCD panel spacer.
  • a known substrate can be adopted, for example, quartz, glass, optical film, ceramic material, vapor deposition film, magnetic film, reflection film, Ni, Cu, Cr, Fe, etc.
  • a semiconductor manufacturing substrate such as silicone, silicon nitride, polysilicon, silicone oxide, and amorphous silicone can be used.
  • the shape of the substrate may be a plate shape or a roll shape.
  • a step of removing the solvent by subjecting the photosensitive resin layer to a heat treatment at 50 to 150 ° C. if necessary the photosensitive resin layer is subjected to a temperature of 50 to 150 ° C. if necessary.
  • Heat treatment may be performed to remove the solvent. By adopting such means, the liquid viscosity can be lowered during coating, and defects during coating can be prevented.
  • the heat treatment is preferably performed at 80 to 130 ° C. for 1 minute to 1 hour. Moreover, you may process under a vacuum.
  • the image forming method of the present invention can be applied satisfactorily even if the concavo-convex portion of the mold having the concavo-convex surface has a detailed structure of 1000 ⁇ m or less.
  • a mold having an uneven surface that can be used in the present invention a mold having a pattern to be transferred is used.
  • an LDC panel spacer mold, an LCD panel rib body (orientation control body) mold, or a mold having two or more types of uneven surfaces can be used.
  • the number of the molds having a concavo-convex surface is not particularly limited as long as it is 2 or more, but usually 2 to 4 are preferable.
  • a light transmissive material for at least one of the molding material and / or the substrate.
  • a light-transmitting mold is pressed and light is irradiated from the back surface of the mold to cure the photosensitive resin layer, or the composition of the present invention is applied onto a light-transmitting substrate and the mold is pressed. Then, light is irradiated from the back surface of the mold to cure the photosensitive resin layer.
  • the light-transmitting mold material used in the present invention is not particularly limited as long as it has predetermined strength and durability.
  • a light transparent resin such as glass, quartz, PMMA, and polycarbonate resin
  • a transparent metal vapor-deposited film a transparent metal vapor-deposited film
  • a flexible film such as polydimethylsiloxane
  • a photocured film a metal film
  • the material of the transparent substrate used in the present invention is not particularly limited, but preferably has a predetermined strength.
  • Specific examples include ceramic materials, deposited films, magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe, and substrates such as SiC, silicone, silicone nitride, polysilicon, silicone oxide, and amorphous silicone. Is done.
  • the shape may be either a plate mold or a roll mold. The roll mold is applied particularly when continuous transfer productivity is required.
  • the mold having a concavo-convex surface used in the present invention may be a mold subjected to a release treatment in order to improve the peelability between the composition and the mold having a concavo-convex surface.
  • a silane coupling agent such as a silicone type or a fluorine type
  • commercially available mold release agents such as those manufactured by Daikin Industries, Optool DSX, Sumitomo 3M, and Novec-EGC-1720 can also be suitably used.
  • Crimping is usually preferably performed at a pressure applied to a mold having an uneven surface of 10 kN or less.
  • the pressure applied to the mold is preferably selected in a region where the uniformity of the transfer of the mold pattern can be ensured within a range where the residual film of the composition of the convex portion of the mold is reduced.
  • the process of irradiating the photosensitive resin layer with light The photosensitive resin layer is irradiated with light after transferring a mold pattern having a concavo-convex surface.
  • the light irradiation may be performed in a state where a mold having an uneven surface is attached, or may be performed after the mold having an uneven surface is peeled off. It is preferable to carry out. By adopting such means, a pattern profile (image) with higher accuracy can be obtained.
  • the light for curing the composition of the present invention is not particularly limited, and examples thereof include high energy ionizing radiation, light or radiation having a wavelength in the region of near ultraviolet, far ultraviolet, visible, infrared or the like.
  • the high-energy ionizing radiation source for example, an electron beam accelerated by an accelerator such as a cockcroft accelerator, a handagraaf accelerator, a linear accelerator, a betatron, or a cyclotron is industrially most conveniently and economically used.
  • an accelerator such as a cockcroft accelerator, a handagraaf accelerator, a linear accelerator, a betatron, or a cyclotron
  • radiation such as ⁇ rays, X rays, ⁇ rays, neutron rays, proton rays emitted from radioisotopes or nuclear reactors can also be used.
  • the ultraviolet light source include an ultraviolet fluorescent lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a carbon arc lamp, and a solar lamp.
  • the radiation includes, for example, microwaves and EUV.
  • laser light used in semiconductor microfabrication such as LED, semiconductor laser light, or 248 nm KrF excimer laser light or 193 nm ArF excimer laser can be suitably used in the present invention.
  • These lights may be monochromatic light, or may be light having a plurality of different wavelengths (mixed light).
  • Light irradiation may be performed only once or may be performed a plurality of times. Preferably, it is performed a plurality of times.
  • During exposure is preferably in the range of exposure intensity of 1mW / cm 2 ⁇ 50mW / cm 2.
  • the exposure dose is preferably in the range of 5 mJ / cm 2 to 1000 mJ / cm 2 . If it is less than 5 mJ / cm 2 , the exposure margin becomes narrow, photocuring becomes insufficient, and problems such as adhesion of unreacted substances to the mold tend to occur.
  • an inert gas such as nitrogen or argon may be flowed to control the oxygen concentration to less than 100 mg / L.
  • the substrate temperature during light irradiation is usually room temperature, but light irradiation may be performed while heating in order to increase reactivity.
  • a pre-stage of light irradiation if it is in a vacuum state, it is effective in preventing bubble mixing, suppressing reactivity decrease due to oxygen mixing, and improving the adhesion between the mold and the curable composition for optical nanoimprint lithography.
  • Light irradiation may be performed.
  • a preferable degree of vacuum is in the range of 10 ⁇ 1 Pa to normal pressure.
  • the heat for curing the composition of the present invention is preferably 150 to 280 ° C, more preferably 200 to 250 ° C.
  • the time for applying heat is preferably 5 to 60 minutes, more preferably 15 to 45 minutes.
  • the pattern image method of the present invention lamination and multiple patterning can be performed, and the pattern image method can be used in combination with normal thermal imprinting.
  • the resin layer (image) may be heat treated to obtain a cured product. By adopting such means, the physical strength of the pattern can be improved.
  • the heat treatment is preferably performed at 180 to 240 ° C. for 20 minutes to 2 hours.
  • the composition used in the image forming method of the present invention has (A) two or more kinds of curable functional groups having different reactivity in the same molecule in a state substantially free of solvent after drying, and It includes a monomer in which at least one of the curable functional groups is an ⁇ , ⁇ -unsaturated ester group, and (B) a surfactant, and has a viscosity in the range of 3 to 50 mPa ⁇ s.
  • the composition of the present invention preferably has the following characteristics.
  • Excellent solution fluidity at room temperature the composition can easily flow into the cavity of the mold recess, and it is difficult for the air to be taken in, causing no bubble defects and photocuring in both the mold protrusion and recess.
  • the cured film after curing has excellent mechanical properties, excellent adhesion between the coating film and the substrate, and excellent peeling properties between the coating film and the mold.
  • a composition suitable for the field of coating / microfabrication on a large substrate because of excellent coating uniformity.
  • a composition that can be suitably used as a black matrix because it has high mechanical properties such as residual film properties and scratch resistance, and high solvent resistance.
  • the composition of the present invention is preferably the following composition.
  • the viscosity of the composition of the present invention is 3 to 50 mPa ⁇ S.
  • the viscosity in the present invention refers to a viscosity at 25 ° C. unless otherwise specified.
  • the composition of the present invention has a viscosity at 25 ° C. of preferably 3 to 18 mPa ⁇ s, more preferably 5 to 15 mPa ⁇ s, and further preferably 7 to 12 mPa ⁇ s.
  • the viscosity of the composition of the present invention is preferably used so that the film thickness after drying is 10 ⁇ m or less. Particularly preferably, it is 6 ⁇ m or less. If it exceeds 10 ⁇ m, the pattern may be partially destroyed during mold peeling.
  • “in a state substantially free of solvent after drying” means, for example, a state in which the amount of residual solvent is 0.1% by weight or less and is a state in which no solvent is contained. Is most preferred.
  • the composition of the present invention may contain a known organic solvent in advance. When the solvent is substantially contained in the state before drying, the amount of the solvent is selected so that the solid content concentration is 10 to 99% by mass.
  • the organic solvent that can be preferably used in the composition of the present invention is a solvent that is generally used in a curable composition for optical nanoimprint lithography and a photoresist, and dissolves and uniformly disperses the compound used in the present invention. Any material can be used as long as it does not react with these components.
  • organic solvent examples include alcohols such as methanol and ethanol; ethers such as tetrahydrofuran; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol methyl ethyl ether, and ethylene glycol monoethyl ether; methyl cellosolve Ethylene glycol alkyl ether acetates such as acetate and ethyl cellosolve acetate; diethylene glycols such as diethylene glycol monomethyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether, and diethylene glycol monobutyl ether; propylene glycol Propylene glycol alkyl ether acetates such as rumethyl ether acetate and propylene glycol ethyl ether acetate; aromatic hydrocarbons such as toluene
  • a high boiling point solvent can also be added.
  • These solvents may be used alone or in combination of two or more.
  • methoxypropylene glycol acetate, ethyl 2-hydroxypropionate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl lactate, cyclohexanone, methyl isobutyl ketone and 2-heptanone are particularly preferable.
  • the monomer as a group will be described (hereinafter sometimes referred to as “monomer in the present invention”).
  • the monomer in this invention may be only one type, and may be two or more types.
  • the composition of the present invention preferably contains the monomer of the present invention in the range of 10 to 99% by mass, more preferably 20 to 80% by mass of the composition.
  • the monomer in the present invention is preferably a monomer represented by the general formula (1).
  • R 1 represents a hydrogen atom, or a hydroxymethyl group
  • .Y X is .m represents an organic group represents an integer of 1 to 3
  • n is an integer of 1-4 Is represented by a curable functional group having a carbon-carbon unsaturated bond, a curable functional group having a carbon-nitrogen unsaturated bond, a curable functional group having a cyclic group containing an oxygen atom, or the following general formula (2): Represents a group.
  • R 2 represents an alkyl group or an aryl group, respectively.
  • the organic group represented by X preferably represents a divalent to 7-valent organic group, and may be aliphatic or aromatic, and the total number of carbon atoms is preferably 2 to 20. Further, the organic group may be blocked with an oxygen atom, a sulfur atom, an ester group, or a urethane group. Specific examples include a propanetriol skeleton, a pentaerythritol skeleton, and an aliphatic cyclic skeleton.
  • the curable functional group having a carbon-carbon unsaturated bond represented by Y may be either a double bond or a triple bond, and may have a substituent on the unsaturated bond, either a chain or a ring. It may be. The total carbon number is preferably 2-18.
  • vinyl ether group, allyl ether group, cyclohexenyl group, cyclopentenyl group, dicyclopenenyl group, styryl group, methacryloyloxy group, methacryloylamide group, acrylamide group, vinylsilane group, N-vinyl heterocyclic group and A maleimide group may be mentioned.
  • the curable functional group having a carbon-nitrogen unsaturated bond represented by Y include an isocyanate group and a nitrile group.
  • the curable functional group containing a cyclic group containing an oxygen atom represented by Y include an oxirane ring, an oxetane ring, and an ethylene carbonate group.
  • the alkyl group represented by R 2 is preferably an alkyl group having 1 to 8 carbon atoms. Examples of such an alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a benzyl group.
  • the aryl group is preferably an aryl group having 6 to 12 carbon atoms. Examples of such an aryl group include a phenyl group, a p-tolyl group, and a p-chlorophenyl group.
  • m is preferably 1 or 2
  • n is preferably 1 to 3. When m is 2 or more, the plurality of R 1 may be the same or different from each other. When n is 2 or more, the plurality of Y may be the same or different.
  • the composition of the present invention contains (B) a surfactant.
  • the surfactant used in the present invention contains, for example, 0.001 to 5% by mass in the total composition, preferably 0.002 to 4% by mass, and more preferably 0.005 to 3% by mass. It is. When using 2 or more types of surfactant, the total amount becomes the said range. If the surfactant is less than 0.001 in the composition, the effect of coating uniformity is insufficient. On the other hand, if it exceeds 5% by mass, the mold transfer characteristics are deteriorated, which is not preferable.
  • the surfactant preferably contains at least one of a fluorine-based surfactant, a silicone-based surfactant, and a fluorine / silicone-based surfactant.
  • a fluorine-based surfactant preferably contains at least one of a fluorine-based surfactant, a silicone-based surfactant, and a fluorine / silicone-based surfactant.
  • Both the fluorine-based surfactant and the silicone-based surfactant or fluorine -More preferably, a silicone-based surfactant is included, and most preferably, a fluorine-silicone-based surfactant is included.
  • the fluorine / silicone surfactant refers to one having both requirements of a fluorine surfactant and a silicone surfactant.
  • a silicon wafer for manufacturing a semiconductor element a glass square substrate for manufacturing a liquid crystal element, a chromium film, a molybdenum film, a molybdenum alloy film, a tantalum film, a tantalum alloy film, a silicon nitride film, Various types of films such as amorphous silicone film, tin oxide-doped indium oxide (ITO) film and tin oxide film are formed, and striations and scale-like patterns (uneven resist film drying) occur on the substrate. Can solve the problem of poor coating.
  • ITO indium oxide
  • the fluidity of the composition into the cavity of the uneven portion of the mold can be improved, the peelability between the mold and the resist can be improved, and the adhesion between the resist and the substrate can be improved. Furthermore, the viscosity of the composition can be lowered.
  • the coating uniformity can be greatly improved by adding the above-mentioned surfactant, and in coating using a spin coater or slit scan coater, good coating suitability can be obtained regardless of the substrate size. can get.
  • the pattern surface is ink repellent and convenient.
  • nonionic fluorosurfactant used in the present invention examples include trade names Florard FC-430 and FC-431 (manufactured by Sumitomo 3M), trade names Surflon “S-382” (manufactured by Asahi Glass Co., Ltd.), EFTOP “ EF-122A, 122B, 122C, EF-121, EF-126, EF-127, MF-100 (manufactured by Tochem Products), trade names PF-636, PF-6320, PF-656, PF-6520 ( All are OMNOVA), product names Aftergent FT250, FT251, DFX18 (all manufactured by Neos Co., Ltd.), product names Unidyne DS-401, DS-403, DS-451 (all manufactured by Daikin Industries, Ltd.) ), Trade name Megafuk 171, 172, 173, 178K, 178A (all manufactured by Dainippon Ink & Chemicals, Inc.).
  • nonionic silicon-based surfactants examples include trade name SI-10 series (manufactured by Takemoto Yushi Co., Ltd.), MegaFac Paintad 31 (manufactured by Dainippon Ink & Chemicals), KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.) ).
  • fluorine / silicone surfactants used in the present invention include trade names X-70-090, X-70-091, X-70-092, X-70-093 (all Shin-Etsu Chemical Co., Ltd.).
  • Product names, Megafuk R-08 and XRB-4 both manufactured by Dainippon Ink & Chemicals, Inc.).
  • composition of the present invention may further contain other polymerizable monomers for the purpose of improving the composition viscosity, film hardness, flexibility and the like.
  • the polymerizable monomer is preferably a polymerizable monomer having a bifunctional or higher polymerizable functional group.
  • it is preferable that 50% by weight or more of the other polymerizable monomer contained in the composition of the present invention is a polymerizable monomer having a bifunctional or higher functional group.
  • other polymerizable monomers used in the present invention will be described in detail.
  • Another polymerizable monomer of the present invention includes a polymerizable unsaturated monomer having one ethylenically unsaturated bond-containing group (monofunctional polymerizable unsaturated monomer).
  • a polymerizable unsaturated monomer having one ethylenically unsaturated bond-containing group monofunctional polymerizable unsaturated monomer.
  • a polyfunctional polymerizable unsaturated monomer having two or more ethylenically unsaturated bond-containing groups examples include diethylene glycol monoethyl ether (meth) acrylate, dimethylol dicyclopentane di (meta ) Acrylate, di (meth) acrylated isocyanurate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, EO-modified 1,6-hexanediol di (meth) acrylate, ECH-modified 1,6-hexanediol di (meth) acrylate, allyloxypolyethylene glycol acrylate, 1,9-nonanediol di (meth)
  • neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl hydroxypivalate Glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and the like are preferably used in the present invention.
  • Examples of the polyfunctional polymerizable unsaturated monomer having 3 or more ethylenically unsaturated bond-containing groups include ECH-modified glycerol tri (meth) acrylate, EO-modified glycerol tri (meth) acrylate, PO-modified glycerol tri (meta) ) Acrylate, pentaerythritol triacrylate, EO modified phosphoric acid triacrylate, trimethylolpropane tri (meth) acrylate, caprolactone modified trimethylolpropane tri (meth) acrylate, EO modified trimethylolpropane tri (meth) acrylate, PO modified trimethylol Propane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, dipentaerythritol hexa (meth) acrylate, caprolactone modified dipentaerythritol hexa (meth) Acrylate, dipent
  • EO-modified glycerol tri (meth) acrylate PO-modified glycerol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and the like are preferably used in the present invention.
  • a polyfunctional oligomer or polymer having a higher molecular weight than that of the other polyfunctional polymerizable monomer is blended within the range of achieving the object of the present invention.
  • the polyfunctional oligomer having photo-radical polymerizability include various acrylate oligomers such as polyester acrylate, polyurethane acrylate, polyether acrylate, and polyepoxy acrylate.
  • a compound having an oxirane ring can also be employed.
  • the compound having an oxirane ring include polyglycidyl esters of polybasic acids, polyglycidyl ethers of polyhydric alcohols, polyglycidyl ethers of polyoxyalkylene glycols, polyglycidyl ethers of aromatic polyols, and aromatics. Mention may be made, for example, of hydrogenated compounds of polyglycidyl ethers of polyols, urethane polyepoxy compounds and epoxidized polybutadienes. These compounds can be used alone or in combination of two or more thereof.
  • epoxy compound examples include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, and brominated bisphenol S.
  • Diglycidyl ether hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin tri Glycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol Diglycidyl ethers; polyglycidyl ethers of polyether polyols obtained by adding one or more alkylene oxides to aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin; aliphatic long-chain dibases Diglycidyl esters of acids; monoglycidyl ethers of aliphatic higher alcohols; monoglycidyl ethers of polyether alcohols obtained by adding phenol
  • bisphenol A diglycidyl ether bisphenol F diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol Diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, neopentyl glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and polypropylene glycol diglycidyl ether are preferred.
  • Examples of commercially available products that can be suitably used as the glycidyl group-containing compound include UVR-6216 (manufactured by Union Carbide), glycidol, AOEX24, cyclomer A200, (manufactured by Daicel Chemical Industries, Ltd.), Epicoat 828, Epicoat 812, Epicoat 1031, Epicoat 872, Epicoat CT508 (above, manufactured by Yuka Shell Co., Ltd.), KRM-2400, KRM-2410, KRM-2408, KRM-2490, KRM-2720, KRM-2750 (above, Asahi Denka Kogyo ( Product)). These can be used alone or in combination of two or more.
  • a vinyl ether compound may be used in combination.
  • the vinyl ether compound may be appropriately selected.
  • vinyl ether compounds are, for example, the method described in Stephen C. Lapin, Polymers Paint Paint, Journal 179 (4237), 321 (1988), that is, the reaction of a polyhydric alcohol or polyhydric phenol with acetylene, or They can be synthesized by the reaction of a polyhydric alcohol or polyhydric phenol and a halogenated alkyl vinyl ether, and these can be used singly or in combination of two or more.
  • styrene derivatives can be employed as other polymerizable monomers used in the present invention.
  • examples of the styrene derivative include p-methoxystyrene, p-methoxy- ⁇ -methylstyrene, p-hydroxystyrene, and the like.
  • trifluoroethyl (meth) acrylate pentafluoroethyl (meth) acrylate, (perfluorobutyl) ethyl (meth) acrylate, perfluorobutyl-hydroxypropyl
  • fluorine atoms such as (meth) acrylate, (perfluorohexyl) ethyl (meth) acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, etc.
  • fluorine atoms such as (meth) acrylate, (perfluorohexyl) ethyl (meth) acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, tetrafluoro
  • propenyl ether and butenyl ether can be blended.
  • the other polymerizable monomer is preferably contained in the composition in the range of 10 to 90% by mass, and more preferably in the range of 20 to 80% by mass.
  • the polymerizable monomer having a bifunctional or higher polymerizable functional group preferably accounts for 50% by weight or more of the other polymerizable monomer.
  • the composition of the present invention has two or more kinds of curable functional groups having different reactivity in the same molecule, and at least one of the curable functional groups is an ⁇ , ⁇ -unsaturated ester group. It is preferable that the body is an essential component and contains other polymerizable monomers. Monofunctional polymerizable monomers are usually used as reactive diluents and are effective in reducing the viscosity of the composition of the present invention.
  • the amount used is adjusted in consideration of the balance between the composition viscosity and the mechanical strength of the cured film.
  • the use ratio of the monofunctional polymerizable monomer is preferably 15% by mass or more of the total polymerizable unsaturated monomer in order to suppress the viscosity reduction of the composition.
  • the content is preferably 30% by mass or less based on the total polymerizable unsaturated monomer.
  • the monomer having two unsaturated bond-containing groups is preferably 90% by mass or less, more preferably 80% by mass or less, and particularly preferably 80% by mass or less of the total polymerizable unsaturated monomer. Preferably, it is added in a range of 70% by mass or less.
  • the ratio of the monofunctional and bifunctional polymerizable unsaturated monomer is preferably 1 to 95% by mass, more preferably 3 to 95% by mass, and particularly preferably 5 to 90% by mass of the total polymerizable unsaturated monomer. It is added in the range of mass%.
  • the ratio of the polyfunctional polymerizable unsaturated monomer having 3 or more unsaturated bond-containing groups is preferably 80% by mass or less, more preferably 70% by mass or less, and particularly preferably the total polymerizable unsaturated monomer. Is added in a range of 60% by mass or less. Since the viscosity of a composition can be lowered
  • the composition of the present invention preferably contains a photopolymerization initiator.
  • the photopolymerization initiator used in the present invention contains, for example, 0.1 to 15% by mass in the total composition, preferably 0.2 to 12% by mass, and more preferably 0.3 to 10% by mass. %.
  • the total amount becomes the said range.
  • the ratio of the photopolymerization initiator is 0.1% by mass or more because sensitivity (fast curability), resolution, line edge roughness, and coating film strength tend to be improved.
  • the ratio of the photopolymerization initiator is 15% by mass or less, the light transmittance, the colorability, the handleability and the like tend to be improved, which is preferable.
  • a photopolymerization initiator that is active with respect to the wavelength of the light source to be used is mixed to generate an appropriate active species.
  • radical photopolymerization initiator used in the present invention for example, a commercially available initiator can be used. As these examples, for example, those described in paragraph No. 0091 of JP-A No. 2008-105414 can be preferably used.
  • a photosensitizer may be added to the composition of the present invention to adjust the wavelength in the UV region.
  • Typical sensitizers that can be used in the present invention include those disclosed in Crivello [JVCrivello, Adv. In Polymers Sci, 62, 1 (1984)], specifically pyrene. Perylene, acridine orange, thioxanthone, 2-chlorothioxanthone, benzoflavine, N-vinylcarbazole, 9,10-dibutoxyanthracene, anthraquinone, coumarin, ketocoumarin, phenanthrene, camphorquinone, phenothiazine derivatives and the like.
  • the composition of the present invention preferably has a surface tension in the range of 18 to 30 mN / m, and more preferably in the range of 20 to 28 mN / m. By setting it as such a range, the effect of improving surface smoothness is acquired.
  • the water content at the time of preparation of the composition of the present invention is preferably 2.0% by mass or less, more preferably 1.5% by mass, and still more preferably 1.0% by mass or less. By making the water content at the time of preparation 2.0% by mass or less, the storage stability of the composition of the present invention can be made more stable.
  • the composition of the present invention may contain a known antioxidant. By adding an antioxidant, it may be possible to reduce the decrease in the thickness of the photosensitive resin layer.
  • the antioxidant used in the present invention contains, for example, 0.01 to 10% by mass, preferably 0.2 to 5% by mass in the total composition. When using 2 or more types of antioxidant, the total amount becomes the said range. Antioxidants have the advantage of being able to reduce film thickness reduction due to decomposition.
  • antioxidants include hydrazides, hindered amine antioxidants, nitrogen-containing heterocyclic mercapto compounds, thioether antioxidants, hindered phenol antioxidants, ascorbic acids, zinc sulfate, thiocyanates, Examples include thiourea derivatives, sugars, nitrites, sulfites, thiosulfates, hydroxylamine derivatives, and the like.
  • hindered phenol antioxidants and thioether antioxidants are particularly preferable from the viewpoint of coloring the cured film and reducing the film thickness.
  • Irganox 1010, 1035, 1076, 1222 manufactured by Ciba Geigy Co., Ltd.
  • Antigene P, 3C, FR Sumilyzer S, Sumilyzer GA80 (manufactured by Sumitomo Chemical Co., Ltd.)
  • ADK STAB AO70, AO80, AO503 made by ADEKA Co., Ltd.
  • the composition of the present invention may contain a colorant.
  • a colorant organic pigments, inorganic pigments, dyes and the like can be suitably used.
  • Preferable examples include pigments described in paragraph Nos. 0068 to 0072 of JP-A No. 2005-105, and colorants described in paragraph Nos. 0080 to 0088 of JP-A No. 2005-17521.
  • a mixture of pigments such as red, blue, and green can be used.
  • inorganic pigments are metal compounds such as metal oxides and metal complex salts. Specifically, metal oxides such as iron, cobalt, aluminum, cadmium, lead, copper, titanium, magnesium, chromium, zinc, and antimony And metal complex oxides.
  • Organic pigments include CIPigment Yellow 11, 24, 31, 53, 83, 99, 108, 109, 110, 138, 139,151, 154, 167, CIPigment Orange 36, 38, 43, CIPigment Red 105, 122, 149, 150 , 155, 171, 175, 176, 177, 209, CIPigment Violet 19, 23, 32, 39, CIPigment Blue 1, 2, 15, 16, 22, 60, 66, CIPigment Green 7, 36, 37, CIPigment Brown 25 28, CIPigment Black 1, 7.
  • Known colorants can be used.
  • the ratio of the colorant in the solid content is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and further preferably 40 to 70% by mass from the viewpoint of light shielding properties. .
  • the pigment is desirably used as a dispersion. This dispersion can be prepared by adding and dispersing a composition obtained by previously mixing the pigment and the pigment dispersant in an organic solvent (or vehicle) described later.
  • the vehicle refers to a portion of a medium in which the pigment is dispersed when the paint is in a liquid state.
  • the portion is a liquid that binds to the pigment and hardens the coating film (binder), and a component that dissolves and dilutes the portion. (Organic solvent).
  • the disperser used for dispersing the pigment is not particularly limited.
  • the kneader described in Kazuzo Asakura, “Encyclopedia of Pigments”, first edition, Asakura Shoten, 2000, 438, Known dispersing machines such as a roll mill, an atrider, a super mill, a dissolver, a homomixer, and a sand mill can be used.
  • the material may be finely pulverized using frictional force by mechanical grinding described in Item 310 of the document.
  • the colorant (pigment) used in the present invention preferably has a number average particle size of 0.001 to 0.1 ⁇ m, more preferably 0.01 to 0.08 ⁇ m, from the viewpoint of dispersion stability. On the other hand, when the pigment number average particle size exceeds 0.1 ⁇ m, the light shielding property is lowered, which is not preferable.
  • the “particle size” as used herein refers to the diameter when the electron micrograph image of the particle is a circle of the same area, and the “number average particle size” refers to the above particle size for a number of particles, This 100 average value is said.
  • Binder The composition of the present invention may contain a binder.
  • Various known polymers can be used as the binder.
  • the binder used from the viewpoint of developability needs to be alkali-soluble such as an acid group, but the binder used in the present invention is not limited thereto.
  • organic polymer materials described in JP-A-5-72724 are preferable, polyolefins such as polyethylene and polypropylene, ethylene copolymers such as ethylene and vinyl acetate or saponified products thereof, and ethylene and acrylic.
  • Acid ester or saponified product thereof polyvinyl chloride, vinyl chloride copolymer such as vinyl chloride and vinyl acetate and saponified product thereof, polyvinylidene chloride, vinylidene chloride copolymer, polystyrene, styrene and (meth) acrylic acid ester or Styrene copolymer such as saponified product, polyvinyltoluene, vinyltoluene and (meth) acrylic ester or vinyltoluene copolymer such as saponified product, poly (meth) acrylic ester, butyl (meth) acrylate And (meth) acrylic acid esters such as vinyl acetate Polymers, vinyl copolymers nylon acetate, copolymer nylon, N- alkoxymethyl nylon, organic polymeric polyamide resins such as N- dimethylamino nylon and the like.
  • the binder used has a weight average molecular weight of 1,000 to 100,000, and if it is 1,000 or less, the effect as a binder cannot be obtained, and if it exceeds 100,000, the viscosity of the composition of the present invention becomes too high.
  • the amount of the binder added is preferably 10% by weight or less, more preferably 5% by weight or less, based on the total solid content. When the amount is more than 10% by weight, the pigment addition amount and the monomer addition amount tend to be relatively reduced, and the strength of the cured product and the optical density may be lowered.
  • the composition of the present invention may include a release agent, a silane coupling agent, a polymerization inhibitor, an ultraviolet absorber, a light stabilizer, an anti-aging agent, a plasticizer, and an adhesion promoter.
  • a release agent e.g., a silicone hydroxide, a silicone hydroxide, a silicone hydroxide, a silicone hydroxide, a silicone hydroxide, a silicone hydroxide, and a silane coupling agent, a silane coupling agent, a polymerization inhibitor, an ultraviolet absorber, a light stabilizer, an anti-aging agent, a plasticizer, and an adhesion promoter.
  • Thermal polymerization initiators, colorants, elastomer particles, photoacid proliferators, photobase generators, basic compounds, flow regulators, antifoaming agents, dispersants and the like may be added.
  • a release agent can be arbitrarily blended in the composition of the present invention. Specifically, it is added for the purpose of enabling the mold pressed against the layer of the composition of the present invention to be peeled cleanly without causing the resin layer to become rough or take off the plate.
  • the release agent include conventionally known release agents such as silicone-based release agents, polyethylene wax, amide wax, Teflon powder (Teflon is a registered trademark), fluorine-based, phosphate ester-based compounds, etc. Can also be used.
  • these mold release agents can be adhered to the mold.
  • Silicone mold release agent has particularly good releasability from the mold when combined with the polymerizable monomer used in the present invention, and the phenomenon that the plate is taken off hardly occurs.
  • Silicone mold release agent is a mold release agent having an organopolysiloxane structure as a basic structure, and includes, for example, unmodified or modified silicone oil, polysiloxane containing trimethylsiloxysilicic acid, silicone acrylic resin, and the like. It is also possible to apply a silicone leveling agent generally used in hard coat compositions.
  • the modified silicone oil is obtained by modifying the side chain and / or terminal of polysiloxane, and is classified into a reactive silicone oil and a non-reactive silicone oil.
  • the reactive silicone oil include amino modification, epoxy modification, carboxyl modification, carbinol modification, methacryl modification, mercapto modification, phenol modification, one-end reactivity, and different functional group modification.
  • the non-reactive silicone oil include polyether modification, methylstyryl modification, alkyl modification, higher fatty ester modification, hydrophilic special modification, higher alkoxy modification, higher fatty acid modification, and fluorine modification. Two or more of the above-described modification methods can be performed on one polysiloxane molecule.
  • the modified silicone oil has appropriate compatibility with the composition components.
  • a reactive silicone oil that is reactive with other coating film forming components blended as necessary in the composition it is chemically bonded in the cured film obtained by curing the composition of the present invention. Therefore, since it is fixed, problems such as adhesion inhibition, contamination, and deterioration of the cured film are unlikely to occur. In particular, it is effective for improving the adhesion with the vapor deposition layer in the vapor deposition step.
  • silicone modified with a photocurable functional group such as (meth) acryloyl-modified silicone or vinyl-modified silicone, it is excellent in characteristics after curing because it is crosslinked with the composition of the present invention.
  • Polysiloxane containing trimethylsiloxysilicic acid is easy to bleed out on the surface and has excellent releasability, excellent adhesion even when bleeded out to the surface, and excellent adhesion to metal deposition and overcoat layer This is preferable.
  • the said mold release agent can be added only in 1 type or in combination of 2 or more types.
  • a release agent When a release agent is added to the composition of the present invention, it is preferably blended in a proportion of 0.001 to 10% by mass in the total amount of the composition, more preferably in a range of 0.01 to 5% by mass. preferable. If the ratio of a mold release agent is less than the said range, the peelable improvement effect of a mold and the curable composition layer for optical nanoimprint lithography will become inadequate.
  • the ratio of the release agent exceeds the above range, the surface of the coating film may be rough due to repelling during coating of the composition, or the substrate itself and the adjacent layer in the product, for example, the adhesion of the vapor deposition layer It is not preferable from the viewpoint of inhibiting the properties and causing film breakage or the like during transfer (film strength becomes too weak).
  • the ratio of the release agent 0.01% by mass or more, peelable curing between the mold and the photosensitive resin layer tends to be more easily exhibited.
  • the ratio of the release agent is 10% by mass or less, the problem of surface roughness of the coating film due to repelling during coating of the composition hardly occurs, and the substrate itself and adjacent layers in the product, for example, vapor deposition It is preferable in that the adhesiveness of the layer is hardly hindered and the film is not easily broken during transfer (film strength becomes too weak).
  • an organic metal coupling agent may be blended in order to improve the heat resistance, strength, or adhesion to the metal vapor deposition layer of the surface structure having a fine concavo-convex pattern.
  • the organometallic coupling agent is effective because it has an effect of promoting the thermosetting reaction.
  • various coupling agents such as a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, and a tin coupling agent can be used.
  • silane coupling agent used in the composition of the present invention examples include vinyl silanes such as vinyltrichlorosilane, vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, and vinyltrimethoxysilane; ⁇ -methacryloxypropyltrimethoxysilane
  • An epoxy silane such as ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane; N- ⁇ - (aminoethyl)- aminosilanes such as ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltrimethoxysilane, N-phenyl- ⁇ -amino
  • titanium coupling agents include isopropyl triisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite) Titanate, tetra (2,2-diallyloxymethyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyldimethacrylisostearoyl Titanate, isopropyl isostearoyl diacryl titanate, iso Ropirutori (
  • zirconium coupling agent examples include tetra-n-propoxyzirconium, tetra-butoxyzirconium, zirconium tetraacetylacetonate, zirconium dibutoxybis (acetylacetonate), zirconium tributoxyethyl acetoacetate, zirconium butoxyacetylacetonate bis. (Ethyl acetoacetate) and the like.
  • aluminum coupling agent examples include aluminum isopropylate, monosec-butoxyaluminum diisopropylate, aluminum sec-butyrate, aluminum ethylate, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkylacetate Acetate aluminum diisopropylate, aluminum monoacetylacetonate bis (ethyl acetoacetate), aluminum tris (acetylacetoacetate) and the like can be mentioned.
  • the above-mentioned organometallic coupling agent can be arbitrarily blended at a ratio of 0.001 to 10% by mass in the total solid content of the curable composition for optical nanoimprint lithography.
  • the ratio of the organometallic coupling agent is 0.001% by mass or more because the stability of the composition and the deficiency in film formability can be suppressed.
  • a polymerization inhibitor may be blended in order to improve storage stability and the like.
  • the polymerization inhibitor for example, phenols such as hydroquinone, tert-butylhydroquinone, catechol and hydroquinone monomethyl ether; quinones such as benzoquinone and diphenylbenzoquinone; phenothiazines; coppers and the like can be used.
  • the polymerization inhibitor is preferably blended arbitrarily in a proportion of 0.001 to 10% by mass with respect to the total amount of the composition of the present invention.
  • UV absorbers include Tinuvin P, 234, 320, 326, 327, 328, 213 (above, manufactured by Ciba Geigy Co., Ltd.), Sumisorb 110, 130, 140, 220, 250, 300, 320, 340, 350. 400 (manufactured by Sumitomo Chemical Co., Ltd.) and the like.
  • the ultraviolet absorber is preferably blended arbitrarily in a proportion of 0.01 to 10% by mass with respect to the total amount of the curable composition for optical nanoimprint lithography.
  • Light stabilizers are Tinuvin® 292, 144, 622LD (above, manufactured by Ciba Geigy Co., Ltd.), Sanol LS-770, 765, 292, 2626, 1114, 744 (above, manufactured by Sankyo Chemical Industry Co., Ltd.) Etc.
  • the light stabilizer is preferably blended at a ratio of 0.01 to 10% by mass with respect to the total amount of the composition.
  • anti-aging agents include Antigene® W, S, P, 3C, 6C, RD-G, FR, AW (above, manufactured by Sumitomo Chemical Co., Ltd.) and the like.
  • the antiaging agent is preferably blended at a ratio of 0.01 to 10% by mass with respect to the total amount of the composition.
  • a plasticizer can be added to the composition of the present invention in order to adjust the adhesion to the substrate, the flexibility of the film, the hardness, and the like.
  • preferred plasticizers include dioctyl phthalate, didodecyl phthalate, triethylene glycol dicaprylate, dimethyl glycol phthalate, tricresyl phosphate, dioctyl adipate, dibutyl sebacate, triacetyl glycerin, dimethyl adipate, diethyl adipate, di There are (n-butyl) adipate, dimethyl suberate, diethyl suberate, di (n-butyl) suberate and the like, and the plasticizer can be optionally added at 30% by mass or less in the composition. Preferably it is 20 mass% or less, More preferably, it is 10 mass% or less. In order to obtain the effect of adding a plasticizer, 0.1% by mass or more is preferable.
  • Adhesion promoters include benzimidazoles and polybenzimidazoles, lower hydroxyalkyl-substituted pyridine derivatives, nitrogen-containing heterocyclic compounds, urea or thiourea, organophosphorus compounds, 8-oxyquinoline, 4-hydroxypteridine, 1,10-phenanthroline 2,2'-bipyridine derivatives, benzotriazoles, organophosphorus compounds and phenylenediamine compounds, 2-amino-1-phenylethanol, N-phenylethanolamine, N-ethyldiethanolamine, N-ethyldiethanolamine, N-ethylethanol Amines and derivatives, benzothiazole derivatives, and the like can be used.
  • the adhesion promoter in the composition is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less.
  • thermal polymerization initiator can be added as necessary.
  • thermal polymerization initiators include peroxides and azo compounds. More specific examples include benzoyl peroxide, tert-butyl-peroxybenzoate, azobisisobutyronitrile and the like.
  • a photobase generator may be added as necessary for the purpose of adjusting the pattern shape, sensitivity, and the like.
  • elastomer particles may be added as an optional component for the purpose of improving mechanical strength, flexibility and the like.
  • the elastomer particles that can be added as an optional component to the composition of the present invention preferably have an average particle size of 10 nm to 700 nm, more preferably 30 to 300 nm.
  • core / shell type particles in which these elastomer particles are coated with a methyl methacrylate polymer, a methyl methacrylate / glycidyl methacrylate copolymer or the like can be used.
  • the elastomer particles may have a crosslinked structure.
  • Examples of commercially available elastomer particles include Resin Bond RKB (manufactured by Resin Chemical Co., Ltd.), Techno MBS-61, MBS-69 (manufactured by Techno Polymer Co., Ltd.), and the like.
  • elastomer particles can be used alone or in combination of two or more.
  • the content of the elastomer component in the composition of the present invention is preferably 1 to 35% by mass, more preferably 2 to 30% by mass, and particularly preferably 3 to 20% by mass.
  • a basic compound may be optionally added to the composition of the present invention for the purpose of suppressing cure shrinkage and improving thermal stability.
  • the basic compound include amines, nitrogen-containing heterocyclic compounds such as quinoline and quinolidine, basic alkali metal compounds, basic alkaline earth metal compounds, and the like.
  • amine is preferable from the viewpoint of compatibility with the photopolymerization monomer, for example, octylamine, naphthylamine, xylenediamine, dibenzylamine, diphenylamine, dibutylamine, dioctylamine, dimethylaniline, quinuclidine, tributylamine, Examples include octylamine, tetramethylethylenediamine, tetramethyl-1,6-hexamethylenediamine, hexamethylenetetramine, and triethanolamine.
  • a chain transfer agent may be added to the composition of the present invention to improve photocurability.
  • the total content of Na and K elements is preferably 100 ppm or less, and more preferably 10 ppm or less.
  • the content of Na and K elements is set to 100 ppm or less, it is possible to more effectively prevent the display operation from being hindered in a permanent film (resist for a structural member) used in an LCD or the like. It is also preferable to avoid mixing other ionic impurities in the resist as much as possible, and the concentration is set to 1000 ppm or less, more preferably 100 ppm or less.
  • a material having a low metal content is selected in advance, or in the step of adjusting the composition, demetallation using a known ion exchange resin, water or The metal may be removed by washing with water containing an organic solvent. Furthermore, it is possible to remove metal by microfiltration or the like.
  • the composition of the present invention is adjusted by mixing each component. Further, after mixing, the composition may be filtered with a filter.
  • the pore size of the filter is preferably 0.05 ⁇ m to 5.0 ⁇ m.
  • Mixing / dissolution of the composition of the present invention is usually performed in the range of 0 ° C to 100 ° C. Filtration may be performed in multiple stages or repeated many times.
  • the filtered liquid can be refiltered.
  • Materials used for filtration can be polyethylene resin, polypropylene resin, fluorine resin, nylon resin, etc., but are not particularly limited.
  • permanent films (resist for structural members) used for LCDs, etc. are bottled in containers such as gallon bottles and coated bottles after manufacture, and are transported and stored.
  • the inside of the container may be replaced with inert nitrogen or argon.
  • the room temperature may be used, but the temperature may be controlled in the range of ⁇ 20 ° C. to 0 ° C. in order to prevent the permanent film from being deteriorated. Of course, it is necessary to shield from light so that the reaction does not proceed.
  • the image forming method of the present invention can be applied as an etching resist for semiconductor integrated circuits, recording materials, flat panel displays, etc. in addition to LCD members.
  • the image forming method of the present invention can be suitably applied to semiconductor integrated circuits and liquid crystal display members (especially spacers and rib bodies) that have been difficult to develop until now, and for other uses such as light shielding for plasma display panels.
  • Films flat screens, microelectromechanical systems (MEMS), sensor elements, optical disks, high-density memory disks, etc., optical components such as diffraction grating relief holograms, nanodevices, optical devices, optical films and polarizing elements, To be widely applicable to the production of organic transistors, color filters, overcoat layers, pillars, microlens arrays, immunoassay chips, DNA separation chips, microreactors, nanobiodevices, optical waveguides, optical filters, photonic liquid crystals, etc. Become.
  • compositions of Examples 1 and 3 were prepared, and compositions of Examples and Comparative Examples were prepared.
  • Each composition was applied onto a glass substrate by a spin coat method so as to have a coating thickness shown in Table 4, respectively.
  • the coating was dried at 100 ° C. for 2 minutes.
  • Tables 1 to 3 indicate “Yes” in the metal removal step.
  • the spin-coated coating base film was set in a nanoimprint apparatus using a high pressure mercury lamp (lamp power: 2000 mW / cm 2 ) manufactured by ORC as a light source, the mold pressure was 0.8 kN, the degree of vacuum during exposure was 10 Torr, and the recess diameter was 20 ⁇ m. And a polydimethylsiloxane (Toray Industries, Inc.) having a pattern in which cylindrical recesses having a recess depth of 3.5 ⁇ m are two-dimensionally arranged at a pitch of 900 ⁇ m, a line width of 20 ⁇ m, a pitch of 300 ⁇ m, a depth of 1 ⁇ m, and a cross-sectionally ridged pattern.
  • ⁇ Viscosity measurement> The viscosity of the composition before curing in a substantially solvent-free state was measured at 25 ⁇ 0.2 ° C. using a RE-80L rotational viscometer manufactured by Toki Sangyo Co., Ltd.
  • the rotational speed during the measurement is 100 rpm for 0.5 mPa ⁇ s to less than 5 mPa ⁇ s, 50 rpm for 5 mPa ⁇ s to less than 10 mPa ⁇ s, 20 rpm for less than 30 mPa ⁇ s for 10 mPa ⁇ s, and 60 mPa ⁇ s for 30 mPa ⁇ s to 60 mPa ⁇ s.
  • Less than 10 rpm, 60 mPa ⁇ s or more and less than 120 mPa ⁇ s was 5 rpm, and 120 mPa ⁇ s or more was 1 rpm or 0.5 rpm, respectively.
  • the film thickness was measured using a contact surface roughness meter P-10 (manufactured by KLA Tencor).
  • the contained Na and K were calculated by an atomic absorption meter (AA6200, manufactured by Shimadzu Corporation).
  • the pattern shape after the transfer was observed with a scanning electron microscope or an optical microscope, and the pattern shape was evaluated as follows.
  • D Clearly different from the original pattern of the mold pattern shape. Or the film thickness of the pattern differs from the original pattern by 20% or more.
  • the base plate with the black matrix obtained in the above examples and comparative examples was observed on the entire surface with an optical microscope (differential interference mode, 200 times), and generation of a chip (a portion where a portion lacking 20% or more of the fine line width was present) was generated. The number was observed.
  • the number of chippings was evaluated according to the following criteria. ⁇ ... less than 20 pieces / m 2 ⁇ ... 20 pieces / m 2 or more and less than 40 pieces / m 2 , ⁇ : 40 pieces / m 2 or more and less than 80 pieces / m 2 , ⁇ ... 80 / m 2 or more and less than 120 / m 2 ⁇ ... 120 / m 2 or more
  • ITO Indium Tin Oxide
  • spacers and rib bodies were formed so that a columnar pattern was formed on BM and a bowl-shaped pattern was formed on each RGB pixel.
  • a glass substrate was prepared as a counter substrate, patterned on the transparent electrode of the color filter substrate and the counter substrate for the PVA mode, and an alignment film made of polyimide was further provided thereon.
  • a UV curable resin sealant is applied by a dispenser method at a position corresponding to the outer periphery of the black matrix provided around the pixel group of the color filter, and a PVA mode liquid crystal is dropped and attached to the counter substrate. After bonding, the bonded substrate was irradiated with UV, and then heat-treated to cure the sealant.
  • Polarizing plates HLC2-2518 manufactured by Sanlitz Co., Ltd. were attached to both surfaces of the liquid crystal cell thus obtained.
  • FR1112H chip type LED manufactured by Stanley Electric Co., Ltd.
  • R red
  • G green
  • B blue
  • a side-light type backlight was constructed using a chip-type LED manufactured by Stanley Electric Co., Ltd. and placed on the back side of the liquid crystal cell provided with the polarizing plate to obtain a liquid crystal display device.
  • ⁇ Display unevenness> For each liquid crystal display device, the gray display when a gray test signal was input was visually observed, and the presence or absence of display unevenness was evaluated according to the following evaluation criteria.
  • R-1 benzyl acrylate (Biscoat # 160: manufactured by Osaka Organic Chemical Co., Ltd.)
  • W-1 Fluorosurfactant (manufactured by Tochem Products: Fluorosurfactant)
  • W-2 Silicone surfactant (manufactured by Dainippon Ink and Chemicals, Inc .: MegaFuck Paint 31)
  • the image forming method of the present invention was excellent in all of pattern accuracy, peelability, hardness, defects, solvent resistance, and display unevenness in a liquid crystal display device.
  • two types of structures can be formed simultaneously by the imprint method.
  • the image forming method of the present invention is used in the production of LCD spacers and rib bodies, it is possible to simultaneously produce products that are comprehensively excellent in mechanical strength, peelability, pattern shape, coatability, and solvent resistance. It became possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

Provided is an image forming method capable of simultaneously forming spacers and ribs, and excelling in pattern precision, hardness, and the like. The image forming method includes processes (1) through (6) described below, and is characterized by using a composition which, in a post-drying state containing substantially no solvents, has a viscosity in the range from 3 to 50 mPa・s and comprises: a monomer (A) having in the same molecule at least two types of curable functional groups that have different reactivity, at least one of which is an α,β-unsaturated ester group; and a surfactant (B). (1) a process for providing a photosensitive resin layer, comprising the abovementioned composition, on a substrate (2) a process for heat-treating the photosensitive resin layer at 50 to 150°C and removing the solvent, as necessary (3) a process for pressure-bonding the photosensitive resin layer and a contoured surface of a stamp having at least two types of contoured surface with different shapes (4) a process for exposing the photosensitive resin layer to light (5) a process for detaching the stamp with the contoured surfaces from the photosensitive resin layer (6) a process for heat-treating the photosensitive resin layer removed from the stamp with the contoured surfaces at 160 to 250°C, as necessary

Description

画像形成方法およびこれを用いて形成した硬化物Image forming method and cured product formed using the same
 本発明は、画像形成方法およびこれを用いて形成した硬化物に関する。特に、光ナノインプリントリソグラフィ用硬化性組成物を用いた画像形成方法であって、液晶表示装置用部材の形成に用いる画像形成方法に関する。 The present invention relates to an image forming method and a cured product formed using the image forming method. In particular, the present invention relates to an image forming method using a curable composition for optical nanoimprint lithography, which is used for forming a member for a liquid crystal display device.
  現在、液晶表示ディスプレイ(以下、「LCD」ということがある)は、その表示品位の向上やさらなるコストダウンのため様々な取り組みがなされている。特に、LCDパネルの構成部材の中でコストの高いカラーフィルター(以下、「CF」ということがある)のコストダウンについて様々な手法が検討されている。例えば、特許文献1(特開2004-61539号公報)、特許文献2(特開2005-3854号公報)、特許文献3(特開2006-119327号公報)、特許文献4(特開2006-178038号公報)などには、LCDパネルの2枚のガラス基板間のギャップを形成するスペーサーと液晶配向を制御するリブを同時に形成したり、予め形成するカラーフィルターとリブを重ねてスペーサーとするような、従来2工程で形成していたスペーサーとリブを1工程で形成するコストダウン方式が開示されている。ここで、スペーサーとリブには、力学特性、パターン精度、密着性、耐溶剤性、対液晶汚染性などについて、多くの課題がある。また、カラーフィルターとリブを重ねてスペーサーとする方式では、スペーサー部の力学特性が、カラーフィルターとの重ね合わせでは不十分である。一方、露光量を調節し、同一材料で同時にスペーサーとリブを形成する方式ではリブ構造が一定にならないといった問題があった。 Currently, various efforts are being made to improve the display quality of liquid crystal display (hereinafter sometimes referred to as “LCD”) and to further reduce costs. In particular, various methods for reducing the cost of color filters (hereinafter sometimes referred to as “CF”) that are expensive among the constituent members of the LCD panel are being studied. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2004-61539), Patent Document 2 (Japanese Patent Laid-Open No. 2005-3854), Patent Document 3 (Japanese Patent Laid-Open No. 2006-119327), Patent Document 4 (Japanese Patent Laid-Open No. 2006-178038). In addition, a spacer that forms a gap between two glass substrates of an LCD panel and a rib that controls liquid crystal alignment are formed simultaneously, or a color filter and a rib that are formed in advance are overlapped to form a spacer. A cost reduction method is disclosed in which spacers and ribs that have been conventionally formed in two steps are formed in one step. Here, the spacer and the rib have many problems with respect to mechanical properties, pattern accuracy, adhesion, solvent resistance, liquid crystal contamination, and the like. Further, in the method in which the color filter and the rib are overlapped to form the spacer, the mechanical characteristics of the spacer portion are not sufficient when overlapped with the color filter. On the other hand, there is a problem that the rib structure is not constant in the method of adjusting the exposure amount and simultaneously forming the spacer and the rib with the same material.
 一方、光ディスク製作では良く知られているエンボス技術を発展させ、凹凸のパターンを形成した金型原器(一般に、モールド、スタンパ、テンプレートと呼ばれる)を、レジストにプレスして力学的に変形させて微細パターンを精密に転写する技術(ナノインプリント法)が開発されつつある。ナノインプリント法は、モールドを一度作製すれば、ナノ構造等の微細構造が簡単に繰り返して成型できるため経済的であるとともに、有害な廃棄・排出物が少ないナノ加工技術であるため、近年、さまざまな分野への応用が期待されている。 On the other hand, the well-known embossing technology is developed for optical disc production, and the original mold (generally called mold, stamper, template) with uneven patterns is pressed on the resist and mechanically deformed. A technology (nanoimprint method) for precisely transferring a fine pattern is being developed. The nanoimprint method is economical because it can be easily repetitively molded with fine structures such as nanostructures once a mold is fabricated, and it is a nanofabrication technology with less harmful waste and emissions. Application to the field is expected.
 ナノインプリント法には、被加工材料として熱可塑性樹脂を用いる場合(非特許文献1(S.Chou et al.:Appl.Phys.Lett.Vol.67,3114(1995)))と、光ナノインプリントリソグラフィ用硬化性組成物を用いる場合(非特許文献2(M.Colbun et al,:Proc.SPIE,Vol. 3676,379 (1999)))の2通りが提案されている。熱式ナノインプリントの場合、ガラス転移温度以上に加熱した高分子樹脂にモールドをプレスし、冷却後にモールドを離型することで微細構造を基板上の樹脂に転写するものである。多様な樹脂材料やガラス材料にも応用可能であるため、様々な方面への応用が期待されている。例えば、特許文献5(米国特許第5,772,905号公報)、特許文献6(米国特許第5,956,216号公報)には、熱可塑性樹脂を用いて、ナノパターンを安価に形成するナノインプリントの方法が開示されている。 In the nanoimprint method, a thermoplastic resin is used as a material to be processed (Non-patent Document 1 (S. Chou et al .: Appl. Phys. Lett. Vol. 67, 3114 (1995))), and for optical nanoimprint lithography. Two cases of using a curable composition (Non-Patent Document 2 (M. Colbunet et al .: Proc. SPIE, Vol. 3676, 379 (1999))) have been proposed. In the case of thermal nanoimprint, the mold is pressed onto a polymer resin heated to a temperature higher than the glass transition temperature, and the mold is released after cooling to transfer the microstructure to the resin on the substrate. Since it can be applied to various resin materials and glass materials, it is expected to be applied in various fields. For example, in Patent Document 5 (US Pat. No. 5,772,905) and Patent Document 6 (US Pat. No. 5,956,216), a nanopattern is formed at low cost using a thermoplastic resin. A method of nanoimprinting is disclosed.
 一方、透明モールドを通して光を照射し、光ナノインプリントリソグラフィ用硬化性組成物を光硬化させる光ナノインプリント方式では、室温でのインプリントが可能になる。最近では、この両者の長所を組み合わせたナノキャスティング法や3次元積層構造を作製するリバーサルインプリント方法などの新しい展開も報告されている。このようなナノインプリント法においては、以下のような応用が考えられている。一つ目は、成型した形状そのものが機能を持ち、様々なナノテクノロジーの要素部品、あるいは構造部材として応用できる場合で、各種のマイクロ・ナノ光学要素や高密度の記録媒体、光学フィルム、フラットパネルディスプレイにおける構造部材などが挙げられる。二つ目は、マイクロ構造とナノ構造の同時一体成型や、簡単な層間位置合わせにより積層構造を構築し、μ-TASやバイオチップの作製に応用しようとするものである。三つ目は、高精度な位置合わせと高集積化により、従来のリソグラフィに代わって高密度半導体集積回路の作製や、液晶ディスプレイのトランジスタへの作成等に適用しようとするものである。近年、これら応用に関するナノインプリント法の実用化への取り組みが活発化しており、例えば、特許文献5(米国特許第5,772,905号公報)、特許文献7(米国特許第5,259,926号公報)にはシリコーンウエハをスタンパとして用い、25ナノメートル以下の微細構造を転写により形成するナノインプリント技術が開示されている。また、特許文献8(特表2005-527110号公報)には、半導体マイクロリソグラフィ分野に適用されるナノインプリントを使ったコンポジット組成物が開示されている。一方、微細モールド作製技術やモールドの耐久性、モールドの作製コスト、モールドの樹脂からの剥離性、インプリント均一性やアライメント精度、検査技術など半導体集積回路作製にナノインプリントリソグラフィを適用するための検討が活発化し始めた。主に、ナノスケールのパターニングへの展開であり、BMパターン形成に関しての取り組みはこれまでに開示されていない。 On the other hand, the optical nanoimprint method in which light is irradiated through a transparent mold and the curable composition for optical nanoimprint lithography is photocured enables imprinting at room temperature. Recently, new developments such as a nanocasting method combining the advantages of both and a reversal imprint method for producing a three-dimensional laminated structure have been reported. In such a nanoimprint method, the following applications are considered. The first is when the molded shape itself has a function and can be applied as various nanotechnology element parts or structural members. Various micro / nano optical elements, high-density recording media, optical films, flat panels Examples include structural members in displays. The second is to build a laminated structure by simultaneous molding of the microstructure and nanostructure, or simple interlayer alignment, and apply it to the production of μ-TAS and biochips. The third is to apply high-precision alignment and high integration to the production of a high-density semiconductor integrated circuit in place of the conventional lithography, the production of a liquid crystal display in a transistor, and the like. In recent years, efforts for practical application of nanoimprint methods relating to these applications have been activated, for example, Patent Document 5 (US Pat. No. 5,772,905), Patent Document 7 (US Pat. No. 5,259,926). (Patent Publication) discloses a nanoimprint technique in which a silicon wafer is used as a stamper and a fine structure of 25 nanometers or less is formed by transfer. Patent Document 8 (Japanese Patent Publication No. 2005-527110) discloses a composite composition using nanoimprints that is applied to the field of semiconductor microlithography. On the other hand, studies to apply nanoimprint lithography to semiconductor integrated circuit fabrication such as micro mold fabrication technology, mold durability, mold fabrication cost, mold releasability from mold, imprint uniformity and alignment accuracy, inspection technology, etc. It started to become active. This is mainly a development for nano-scale patterning, and no efforts related to BM pattern formation have been disclosed so far.
特開2004-61539号公報JP 2004-61539 A 特開2005-3854号公報Japanese Patent Laying-Open No. 2005-3854 特開2006-119327号公報JP 2006-119327 A 特開2006-178038号公報JP 2006-178038 A 米国特許第5,772,905号公報US Pat. No. 5,772,905 米国特許第5,956,216号公報US Pat. No. 5,956,216 米国特許第5,259,926号公報US Pat. No. 5,259,926 特表2005-527110号公報JP 2005-527110 Gazette
 本発明は、同時に2つ以上のモールドを作成可能な画像形成方法であって、パターン精度、剥離性、硬さ、欠陥、耐溶剤性等に総合的に優れた画像を形成できる方法を提供することを目的とする。 The present invention provides an image forming method capable of forming two or more molds at the same time and capable of forming an image excellent in pattern accuracy, peelability, hardness, defect, solvent resistance, and the like. For the purpose.
 鋭意検討した結果、下記手段により上記課題を解決しうることを見出した。
(1)乾燥後の実質的に溶剤を含まない状態において、(A)反応性の異なる2種類以上の硬化性官能基を同一分子内に有し、かつ、該硬化性官能基の少なくとも1つがα,β-不飽和エステル基である単量体と、(B)界面活性剤とを含み、かつ、粘度が3~50mPa・sの範囲である組成物を用いることを特徴とし、さらに、下記(1)~(6)の工程を含む画像形成方法。
(1)基板上に前記組成物からなる感光性樹脂層を設ける工程
(2)必要に応じ、感光性樹脂層に、50~150℃の熱処理を実施し溶剤を除去する工程
(3)少なくとも2種類の形状の異なる凹凸表面を有する型の凹凸表面と、前記感光性樹脂層とを接するように圧着させる工程
(4)感光性樹脂層を光照射する工程
(5)前記凹凸表面を有する型を感光性樹脂層から剥離する工程
(6)必要に応じ、凹凸表面を有する型から剥離した感光性樹脂層を、160~250℃で熱処理する工程
(2)前記2種類の形状の異なる凹凸表面を有する型は、液晶表示パネル用スペーサーおよび液晶表示パネル用液晶配向制御体の型である、(1)に記載の画像形成方法。
(3)前記組成物中のNaおよびK元素の含有量の総和が100ppm以下である、(1)または(2)に記載の画像形成方法。
(4)前記(A)単量体が下記一般式(1)で表される、(1)~(3)のいずれか1項に記載の画像形成方法。
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、Rは水素原子、または、ヒドロキシメチル基を表し、Xは有機基を表す。mは1~3の整数を表し、nは1~4の整数を表す。Yは、炭素-炭素不飽和結合を有する硬化性官能基、炭素-窒素不飽和結合を有する硬化性官能基、酸素原子を含む環状基を有する硬化性官能基または下記一般式(2)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000004
(Rはそれぞれアルキル基またはアリール基を表す。)
(5)一般式(1)中のYの少なくとも1つが、ビニルエーテル基、アリルエーテル基、シクロヘキセニル基、シクロペンテニル基、ジシクロペニテニル基、スチリル基、メタクリロイルオキシ基、メタクリロイルアミド基、アクリルアミド基、ビニルシラン基、N-ビニル複素環基およびマレイミド基からなる群より選ばれる、(4)に記載の画像形成方法。
(6)一般式(1)中のYの少なくとも1つが、イソシアネート基またはニトリル基である、(4)に記載の画像形成方法。
(7)一般式(1)中のYの少なくとも1つが、オキセタン環、オキシラン環および炭酸エチレン基からなる群より選ばれる、(4)に記載の画像形成方法。
(8)前記組成物が、さらにその他の重合性単量体および光重合開始剤を含む、(1)~(7)のいずれか1項に記載の画像形成方法。
(9)他の重合性単量体が、(メタ)アクリレートである、(8)に記載の画像形成方法。
(10)前記他の重合性単量体として、2官能以上の重合性官能基を有する重合性単量体を含む(8)または(9)に記載の画像形成方法。
(11)前記組成物の表面張力が18~30mN/mの範囲にある、(1)~(10)のいずれか1項に記載の画像形成方法。
(12)(1)~(11)のいずれか1項に記載の画像形成方法を用いて形成した硬化物。
(13)(12)に記載の硬化物を用いた液晶表示装置用部材。
(14)(1)~(11)のいずれか1項に記載の画像形成方法を用いて形成した液晶表示パネル用スペーサー。
(15)(1)~(11)のいずれか1項に記載の画像形成方法を用いて形成した液晶表示パネル用液晶配向制御体。
As a result of intensive studies, it has been found that the above problems can be solved by the following means.
(1) In the state which does not contain a solvent substantially after drying, (A) it has two or more types of curable functional groups having different reactivity in the same molecule, and at least one of the curable functional groups is A composition containing a monomer that is an α, β-unsaturated ester group and (B) a surfactant and having a viscosity in the range of 3 to 50 mPa · s is used. An image forming method including the steps (1) to (6).
(1) A step of providing a photosensitive resin layer comprising the composition on a substrate (2) A step of removing the solvent by subjecting the photosensitive resin layer to a heat treatment at 50 to 150 ° C., if necessary (3) At least 2 A step of pressure-bonding the uneven surface of a mold having uneven surfaces of different shapes and the photosensitive resin layer (4) a step of irradiating the photosensitive resin layer (5) a mold having the uneven surface Step (6) for peeling from photosensitive resin layer (6) Step for heat-treating photosensitive resin layer peeled from mold having concave and convex surface at 160 to 250 ° C., if necessary (2) Irregular surface having different two types of shapes The image forming method according to (1), wherein the mold is a mold for a liquid crystal display panel spacer and a liquid crystal display panel liquid crystal alignment controller.
(3) The image forming method according to (1) or (2), wherein the total content of Na and K elements in the composition is 100 ppm or less.
(4) The image forming method according to any one of (1) to (3), wherein the monomer (A) is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
(In the general formula (1), R 1 represents a hydrogen atom or a hydroxymethyl group, X represents an organic group, m represents an integer of 1 to 3, and n represents an integer of 1 to 4. Y Is represented by a curable functional group having a carbon-carbon unsaturated bond, a curable functional group having a carbon-nitrogen unsaturated bond, a curable functional group having a cyclic group containing an oxygen atom, or the following general formula (2): Represents a group.
Figure JPOXMLDOC01-appb-C000004
(R 2 represents an alkyl group or an aryl group, respectively.)
(5) At least one of Y in the general formula (1) is a vinyl ether group, an allyl ether group, a cyclohexenyl group, a cyclopentenyl group, a dicyclopentenyl group, a styryl group, a methacryloyloxy group, a methacryloylamide group, or an acrylamide group. The image forming method according to (4), selected from the group consisting of a vinylsilane group, an N-vinyl heterocyclic group and a maleimide group.
(6) The image forming method according to (4), wherein at least one of Y in the general formula (1) is an isocyanate group or a nitrile group.
(7) The image forming method according to (4), wherein at least one of Y in the general formula (1) is selected from the group consisting of an oxetane ring, an oxirane ring and an ethylene carbonate group.
(8) The image forming method according to any one of (1) to (7), wherein the composition further comprises another polymerizable monomer and a photopolymerization initiator.
(9) The image forming method according to (8), wherein the other polymerizable monomer is (meth) acrylate.
(10) The image forming method according to (8) or (9), wherein the other polymerizable monomer includes a polymerizable monomer having a bifunctional or higher polymerizable functional group.
(11) The image forming method according to any one of (1) to (10), wherein the composition has a surface tension in the range of 18 to 30 mN / m.
(12) A cured product formed by using the image forming method described in any one of (1) to (11).
(13) A liquid crystal display member using the cured product according to (12).
(14) A spacer for a liquid crystal display panel formed by using the image forming method described in any one of (1) to (11).
(15) A liquid crystal alignment controller for a liquid crystal display panel formed by using the image forming method according to any one of (1) to (11).
 本発明により、従来のフォトリソ方式を用いず、さらに従来の問題点(例えば、パターン形状、密着性、力学特性、液晶汚染性等)の問題が軽減または解消された画像や硬化物を2つ以上同時に形成することが可能になった。特に、永久膜であるLCDパネル用スペーサーとLCDパネル用液晶配向制御体(リブ体)とを同時に形成することができる。さらに、これらの部材を用いたLCDパネルについては、表示ムラ等が発生しないものとすることができる。加えて、本発明の画像形成方法では、使用するモールドの形状でパターン形状が自由に設計できるメリットを有するものとすることができる。 According to the present invention, two or more images and cured products in which conventional photolithographic methods are not used, and problems of conventional problems (for example, pattern shape, adhesion, mechanical properties, liquid crystal contamination, etc.) are reduced or eliminated. It became possible to form at the same time. In particular, the LCD panel spacer and the LCD panel liquid crystal alignment controller (rib body), which are permanent films, can be formed simultaneously. Further, the LCD panel using these members may not cause display unevenness. In addition, the image forming method of the present invention can have an advantage that the pattern shape can be freely designed according to the shape of the mold to be used.
 以下において、本発明の内容について詳細に説明する。尚、本願明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 また、本明細書中において、(メタ)アクリレートは、アクリレートおよびメタクリレートを表し、(メタ)アクリルは、アクリルおよびメタクリルを表し、(メタ)アクリロイルは、アクリロイルおよびメタクリロイルを表す。さらに、本明細書中における単量体とモノマーは同義である。本明細書における単量体は、オリゴマー、ポリマーと区別し、質量平均分子量が1,000以下の化合物をいう。本明細書中において、官能基は重合に関与する基をいう。
 さらに、本発明で言うナノインプリントとは、およそ数十μmから数十nmのサイズのパターン転写をいい、必ずしも、ナノオーダーのものに限られない。
Hereinafter, the contents of the present invention will be described in detail. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
In the present specification, (meth) acrylate represents acrylate and methacrylate, (meth) acryl represents acryl and methacryl, and (meth) acryloyl represents acryloyl and methacryloyl. Furthermore, a monomer and a monomer in this specification are synonymous. The monomer in the present specification is a compound having a mass average molecular weight of 1,000 or less, distinguished from oligomers and polymers. In the present specification, the functional group refers to a group involved in polymerization.
Furthermore, the nanoimprint referred to in the present invention refers to pattern transfer having a size of about several tens of μm to several tens of nm, and is not necessarily limited to nano order.
 本発明の画像形成方法は、乾燥後の実質的に溶剤を含まない状態において、(A)反応性の異なる2種類以上の硬化性官能基を同一分子内に有し、かつ、該硬化性官能基の少なくとも1つがα,β-不飽和エステル基である単量体と、(B)界面活性剤とを含み、かつ、粘度が3~50mPa・sの範囲である組成物(以下、「本発明の組成物」ということがある)を用い、さらに、下記(1)~(6)の工程を含む。
(1)基板上に前記組成物からなる感光性樹脂層を設ける工程
(2)必要に応じ、感光性樹脂層に、50~150℃の熱処理を実施し溶剤を除去する工程
(3)少なくとも2種類の形状の異なる凹凸表面を有する型の凹凸表面と、前記感光性樹脂層とを接するように圧着させる工程
(4)感光性樹脂層を光照射する工程
(5)前記凹凸表面を有する型を感光性樹脂層から剥離する工程
(6)必要に応じ、凹凸表面を有する型から剥離した感光性樹脂層を、160~250℃で熱処理する工程
The image forming method of the present invention comprises (A) two or more kinds of curable functional groups having different reactivity in the same molecule in a state substantially free of solvent after drying, and the curable functional group. A composition having at least one group that is an α, β-unsaturated ester group and (B) a surfactant and having a viscosity in the range of 3 to 50 mPa · s (hereinafter, “present And the following steps (1) to (6).
(1) A step of providing a photosensitive resin layer comprising the composition on a substrate (2) A step of removing the solvent by subjecting the photosensitive resin layer to a heat treatment at 50 to 150 ° C., if necessary (3) At least 2 A step of pressure-bonding the uneven surface of a mold having uneven surfaces of different shapes and the photosensitive resin layer (4) a step of irradiating the photosensitive resin layer (5) a mold having the uneven surface Step of peeling from the photosensitive resin layer (6) Step of heat-treating the photosensitive resin layer peeled off from the mold having an uneven surface as necessary at 160 to 250 ° C.
(1)基板上に前記組成物からなる感光性樹脂層を設ける工程
 本発明では、本発明の組成物を基板上に塗布して感光性樹脂層を設ける。ここで、樹脂層を設ける方法としては、一般によく知られた塗布方法、例えば、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スピンコート方法、スリットスキャン法などが挙げられる。感光性樹脂層の膜厚は、使用する用途によって異なるが、通常、0.05μm~30μmであり、LCDパネル用スペーサーに用いる場合、乾燥膜厚が2.0~8.0μmが好ましく、LCDパネル用リブ体に用いる場合、乾燥膜厚は0.5~2.0μmが好ましい。本発明の組成物は、多重塗布してもよい。2つ以上の構造体を同時に形成する場合は、膜厚の厚い方に乾燥膜厚をあわせることが好ましい。LCDパネル用スペーサーとLCDパネル用リブ体を同時に形成する場合はLCDパネル用スペーサーとしての厚みに塗布する。
(1) The process of providing the photosensitive resin layer which consists of said composition on a board | substrate In this invention, the composition of this invention is apply | coated on a board | substrate and a photosensitive resin layer is provided. Here, as a method for providing the resin layer, generally well-known coating methods such as dip coating, air knife coating, curtain coating, wire bar coating, gravure coating, extrusion coating, spin coating Method, slit scan method and the like. The film thickness of the photosensitive resin layer varies depending on the application to be used, but is usually 0.05 μm to 30 μm. When used as a spacer for an LCD panel, the dry film thickness is preferably 2.0 to 8.0 μm. When used for a rib body, the dry film thickness is preferably 0.5 to 2.0 μm. The composition of the present invention may be applied multiple times. When two or more structures are formed at the same time, it is preferable to adjust the dry film thickness to the thicker one. In the case where the LCD panel spacer and the LCD panel rib are formed at the same time, the spacer is applied to the thickness as the LCD panel spacer.
 本発明の組成物を塗布するための基板は、公知のものを採用でき、例えば、石英、ガラス、光学フィルム、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Feなどの金属基板、紙、SOG、ポリエステルフイルム、ポリカーボネートフィルム、ポリイミドフィルム等のポリマー基板、TFTアレイ基板、PDPの電極板、ガラスや透明プラスチック基板、ITOや金属などの導電性基材、絶縁性基材、シリコーン、窒化シリコーン、ポリシリコーン、酸化シリコーン、アモルファスシリコーンなどの半導体作製基板などを用いることができる。基板の形状は、板状でも良いし、ロール状でもよい。 As the substrate on which the composition of the present invention is applied, a known substrate can be adopted, for example, quartz, glass, optical film, ceramic material, vapor deposition film, magnetic film, reflection film, Ni, Cu, Cr, Fe, etc. Metal substrate, paper, SOG, polyester film, polymer film such as polycarbonate film, polyimide film, TFT array substrate, PDP electrode plate, glass or transparent plastic substrate, conductive substrate such as ITO or metal, insulating substrate, A semiconductor manufacturing substrate such as silicone, silicon nitride, polysilicon, silicone oxide, and amorphous silicone can be used. The shape of the substrate may be a plate shape or a roll shape.
(2)必要に応じ、感光性樹脂層に、50~150℃の熱処理を実施し溶剤を除去する工程
 本発明の画像形成方法では、必要に応じ、感光性樹脂層に、50~150℃の熱処理を実施して、溶剤を除去してもよい。このような手段を採用することにより、塗布時に液粘度を低くすることができ、塗布時の欠陥などを防止することができる。熱処理は、好ましくは80~130℃で、1分 ~1時間間行う。
 また、真空下で処理してもよい。
(2) A step of removing the solvent by subjecting the photosensitive resin layer to a heat treatment at 50 to 150 ° C. if necessary In the image forming method of the present invention, the photosensitive resin layer is subjected to a temperature of 50 to 150 ° C. if necessary. Heat treatment may be performed to remove the solvent. By adopting such means, the liquid viscosity can be lowered during coating, and defects during coating can be prevented. The heat treatment is preferably performed at 80 to 130 ° C. for 1 minute to 1 hour.
Moreover, you may process under a vacuum.
(3)少なくとも2種類の形状の異なる凹凸表面を有する型の凹凸表面と、前記感光性樹脂層とを接するように圧着させる工程
 次に、上記で作成した感光性樹脂層(パターン形成層)の表面に凹凸表面を有する型(以下、「モールド」ということがある)を接するように圧着させる。この工程によって、凹凸表面を有する型の凹凸表面(モールドパターン)を感光性樹脂層に転写させることができる。
 また、本発明では、少なくとも2種類の形状の異なる凹凸表面を有する型を用いる。このように2種類の型を採用することにより、微細な構造を有する2種類以上の部材を同時に作成することができ、工程を簡略化でき、歩留まりが向上する。本発明の画像形成方法では、凹凸表面の有する型の凹凸部に、1000μm以下の細部構造を有するものであっても、良好に適用することができる。
 本発明で用いることのできる凹凸表面を有する型は、転写されるべきパターンを有する型が用いられる。好ましくは、LDCパネル用スペーサーの型、LCDパネル用リブ体(配向制御体)の型、2種類以上の凹凸表面を有する型を用いることができる。本発明では特にLDCパネル用スペーサーの型およびLCDパネル用リブ体の型を用いることが好ましい。凹凸表面を有する型は、2種類以上であれば、その数は特に定めるものではないが、通常は、2~4種類とすることが好ましい。
(3) A step of pressure-bonding the uneven surface of the mold having uneven surfaces of at least two different shapes and the photosensitive resin layer Next, the photosensitive resin layer (pattern forming layer) created above A die having an uneven surface on the surface (hereinafter sometimes referred to as a “mold”) is pressure-bonded. By this step, the uneven surface (mold pattern) of the mold having the uneven surface can be transferred to the photosensitive resin layer.
Moreover, in this invention, the type | mold which has an uneven | corrugated surface from which at least 2 types of shapes differ is used. By adopting two types of molds in this way, two or more types of members having a fine structure can be formed simultaneously, the process can be simplified, and the yield is improved. The image forming method of the present invention can be applied satisfactorily even if the concavo-convex portion of the mold having the concavo-convex surface has a detailed structure of 1000 μm or less.
As the mold having an uneven surface that can be used in the present invention, a mold having a pattern to be transferred is used. Preferably, an LDC panel spacer mold, an LCD panel rib body (orientation control body) mold, or a mold having two or more types of uneven surfaces can be used. In the present invention, it is particularly preferable to use an LDC panel spacer mold and an LCD panel rib mold. The number of the molds having a concavo-convex surface is not particularly limited as long as it is 2 or more, but usually 2 to 4 are preferable.
 本発明の画像形成方法では、モールド材および/または上記基板の少なくとも一方は、光透過性の材料を選択する必要がある。本発明では、光透過性モールドを押し当て、モールドの裏面から光を照射し、感光性樹脂層を硬化させるか、光透過性基板上に、本発明の組成物を塗布し、モールドを押し当て、モールドの裏面から光を照射し、感光性樹脂層を硬化させる。 In the image forming method of the present invention, it is necessary to select a light transmissive material for at least one of the molding material and / or the substrate. In the present invention, a light-transmitting mold is pressed and light is irradiated from the back surface of the mold to cure the photosensitive resin layer, or the composition of the present invention is applied onto a light-transmitting substrate and the mold is pressed. Then, light is irradiated from the back surface of the mold to cure the photosensitive resin layer.
 本発明において用いられる光透過性モールド材は、特に限定されないが、所定の強度、耐久性を有するものであれば良い。具体的には、ガラス、石英、PMMA、ポリカーボネート樹脂などの光透明性樹脂、透明金属蒸着膜、ポリジメチルシロキサンなどの柔軟膜、光硬化膜、金属膜等が例示される。 The light-transmitting mold material used in the present invention is not particularly limited as long as it has predetermined strength and durability. Specifically, a light transparent resin such as glass, quartz, PMMA, and polycarbonate resin, a transparent metal vapor-deposited film, a flexible film such as polydimethylsiloxane, a photocured film, and a metal film are exemplified.
 本発明において用いられる透明基板の材質は、特に限定されないが、所定の強度を有するものであることが好ましい。具体的には、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Feなどの金属基板、SiC、シリコーン、窒化シリコーン、ポリシリコーン、酸化シリコーン、アモルファスシリコーンなどの基板などが例示される。形状は板状モールド、ロール状モールドのどちらでもよい。ロール状モールドは、特に転写の連続生産性が必要な場合に適用される。 The material of the transparent substrate used in the present invention is not particularly limited, but preferably has a predetermined strength. Specific examples include ceramic materials, deposited films, magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe, and substrates such as SiC, silicone, silicone nitride, polysilicon, silicone oxide, and amorphous silicone. Is done. The shape may be either a plate mold or a roll mold. The roll mold is applied particularly when continuous transfer productivity is required.
 本発明で用いる凹凸表面を有する型は、組成物と凹凸表面を有する型との剥離性を向上するために離型処理を行ったものを用いてもよい。シリコーン系やフッソ系などのシランカップリング剤による処理を行ったもの、例えば、ダイキン工業製、オプツールDSXや住友スリーエム製、Novec EGC-1720等の市販の離型剤も好適に用いることができる。 The mold having a concavo-convex surface used in the present invention may be a mold subjected to a release treatment in order to improve the peelability between the composition and the mold having a concavo-convex surface. Those having been treated with a silane coupling agent such as a silicone type or a fluorine type, for example, commercially available mold release agents such as those manufactured by Daikin Industries, Optool DSX, Sumitomo 3M, and Novec-EGC-1720 can also be suitably used.
 圧着は、通常、凹凸表面を有する型にかかる圧力が10kN以下で行うのが好ましい。凹凸表面を有する型の圧力を10kN以下とすることにより、凹凸表面を有する型や基板が変形しにくくパターン精度が向上する傾向にあり、また、加圧が低いため装置を縮小できる傾向にあり好ましい。型にかかる圧力は、型の凸部の組成物の残膜が少なくなる範囲で、モールドパターンの転写の均一性が確保できる領域を選択することが好ましい。 Crimping is usually preferably performed at a pressure applied to a mold having an uneven surface of 10 kN or less. By setting the pressure of the mold having the uneven surface to 10 kN or less, the mold having the uneven surface and the substrate are less likely to be deformed, and the pattern accuracy tends to be improved. . The pressure applied to the mold is preferably selected in a region where the uniformity of the transfer of the mold pattern can be ensured within a range where the residual film of the composition of the convex portion of the mold is reduced.
(4)感光性樹脂層を光照射する工程
 感光性樹脂層は、凹凸表面を有する型のモールドパターンを転写した後、光照射する。光照射は、凹凸表面を有する型を付着させた状態で行ってもよいし、凹凸表面を有する型を剥離した後に行ってもよいが、本発明では、凹凸表面を有する型を密着させた状態で行うのが好ましい。このような手段を採用することにより、より精度が高いパターンプロファイル(画像)が得られる。
 本発明の組成物を硬化させる光としては特に限定されないが、高エネルギー電離放射線、近紫外、遠紫外、可視、赤外等の領域の波長の光または放射線が挙げられる。高エネルギー電離放射線源としては、例えば、コッククロフト型加速器、ハンデグラーフ型加速器、リニヤーアクセレーター、ベータトロン、サイクロトロン等の加速器によって加速された電子線が工業的に最も便利且つ経済的に使用されるが、その他に放射性同位元素や原子炉等から放射されるγ線、X線、α線、中性子線、陽子線等の放射線も使用できる。紫外線源としては、例えば、紫外線螢光灯、低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、炭素アーク灯、太陽灯等が挙げられる。放射線には、例えばマイクロ波、EUVが含まれる。また、LED、半導体レーザー光、あるいは248nmのKrFエキシマレーザー光や193nmArFエキシマレーザーなどの半導体の微細加工で用いられているレーザー光も本発明に好適に用いることができる。これらの光は、モノクロ光を用いても良いし、複数の波長の異なる光(ミックス光)でも良い。光照射は1回のみ行ってもよいし、複数回に渡って行ってもよい。好ましくは、複数回に渡って行う。
(4) The process of irradiating the photosensitive resin layer with light The photosensitive resin layer is irradiated with light after transferring a mold pattern having a concavo-convex surface. The light irradiation may be performed in a state where a mold having an uneven surface is attached, or may be performed after the mold having an uneven surface is peeled off. It is preferable to carry out. By adopting such means, a pattern profile (image) with higher accuracy can be obtained.
The light for curing the composition of the present invention is not particularly limited, and examples thereof include high energy ionizing radiation, light or radiation having a wavelength in the region of near ultraviolet, far ultraviolet, visible, infrared or the like. As the high-energy ionizing radiation source, for example, an electron beam accelerated by an accelerator such as a cockcroft accelerator, a handagraaf accelerator, a linear accelerator, a betatron, or a cyclotron is industrially most conveniently and economically used. However, radiation such as γ rays, X rays, α rays, neutron rays, proton rays emitted from radioisotopes or nuclear reactors can also be used. Examples of the ultraviolet light source include an ultraviolet fluorescent lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a carbon arc lamp, and a solar lamp. The radiation includes, for example, microwaves and EUV. Also, laser light used in semiconductor microfabrication such as LED, semiconductor laser light, or 248 nm KrF excimer laser light or 193 nm ArF excimer laser can be suitably used in the present invention. These lights may be monochromatic light, or may be light having a plurality of different wavelengths (mixed light). Light irradiation may be performed only once or may be performed a plurality of times. Preferably, it is performed a plurality of times.
 露光に際しては、露光照度を1mW/cm~50mW/cmの範囲にすることが好ましい。1mW/cm以上とすることにより、露光時間を短縮することができるため生産性が向上し、50mW/cm以下とすることにより、副反応が生じることによる永久膜の特性の劣化を抑止できる傾向にあり好ましい。露光量は5mJ/cm~1000mJ/cmの範囲にすることが好ましい。5mJ/cm未満では、露光マージンが狭くなり、光硬化が不十分となりモールドへの未反応物の付着などの問題が発生しやすくなる。一方、1000mJ/cmを超えると組成物の分解による永久膜の劣化の恐れが生じる。
 さらに、露光に際しては、酸素によるラジカル重合の阻害を防ぐため、チッソやアルゴンなどの不活性ガスを流して、酸素濃度を100mg/L未満に制御しても良い。
During exposure is preferably in the range of exposure intensity of 1mW / cm 2 ~ 50mW / cm 2. By setting it to 1 mW / cm 2 or more, the exposure time can be shortened, so that productivity is improved. By setting it to 50 mW / cm 2 or less, deterioration of the properties of the permanent film due to side reactions can be suppressed. It tends to be preferable. The exposure dose is preferably in the range of 5 mJ / cm 2 to 1000 mJ / cm 2 . If it is less than 5 mJ / cm 2 , the exposure margin becomes narrow, photocuring becomes insufficient, and problems such as adhesion of unreacted substances to the mold tend to occur. On the other hand, when it exceeds 1000 mJ / cm 2 , there is a risk of deterioration of the permanent film due to decomposition of the composition.
Further, during exposure, in order to prevent radical polymerization from being inhibited by oxygen, an inert gas such as nitrogen or argon may be flowed to control the oxygen concentration to less than 100 mg / L.
 また、光照射の際の基板温度は、通常、室温で行われるが、反応性を高めるために加熱をしながら光照射してもよい。光照射の前段階として、真空状態にしておくと、気泡混入防止、酸素混入による反応性低下の抑制、モールドと光ナノインプリントリソグラフィ用硬化性組成物の密着性向上に効果があるため、真空状態で光照射しても良い。本発明において、好ましい真空度は、10-1Paから常圧の範囲で行われる。
 本発明の組成物を硬化させる熱としては、150~280℃が好ましく、200~250℃がより好ましい。また、熱を付与する時間としては、5~60分が好ましく、15~45分がより好ましい。
 本発明のパターン画像方法では、積層化や多重パターニングもでき、通常の熱インプリントと組み合わせて用いることもできる。
In addition, the substrate temperature during light irradiation is usually room temperature, but light irradiation may be performed while heating in order to increase reactivity. As a pre-stage of light irradiation, if it is in a vacuum state, it is effective in preventing bubble mixing, suppressing reactivity decrease due to oxygen mixing, and improving the adhesion between the mold and the curable composition for optical nanoimprint lithography. Light irradiation may be performed. In the present invention, a preferable degree of vacuum is in the range of 10 −1 Pa to normal pressure.
The heat for curing the composition of the present invention is preferably 150 to 280 ° C, more preferably 200 to 250 ° C. The time for applying heat is preferably 5 to 60 minutes, more preferably 15 to 45 minutes.
In the pattern image method of the present invention, lamination and multiple patterning can be performed, and the pattern image method can be used in combination with normal thermal imprinting.
(5)前記凹凸表面を有する型を感光性樹脂層から剥離する工程
 感光性樹脂層を、凹凸表面を有する型から剥離する。剥離の方法は公知の方法を採用できる。
(5) The process which peels the type | mold which has the said uneven surface from the photosensitive resin layer The photosensitive resin layer is peeled from the type | mold which has an uneven surface. A known method can be adopted as the peeling method.
(6)必要に応じ、凹凸表面を有する型から剥離した感光性樹脂層(画像)を、160~250℃で熱処理する工程
 さらに、本発明では、凹凸表面を有する型から剥離した後の感光性樹脂層(画像)を、熱処理して硬化物としてもよい。このような手段を採用することにより、パターンの物理的強度を向上することができる。熱処理は、好ましくは180~240℃で、20分~2時間行う。
(6) A step of heat-treating the photosensitive resin layer (image) peeled from the mold having an uneven surface as necessary at 160 to 250 ° C. Further, in the present invention, the photosensitive property after peeling from the mold having an uneven surface The resin layer (image) may be heat treated to obtain a cured product. By adopting such means, the physical strength of the pattern can be improved. The heat treatment is preferably performed at 180 to 240 ° C. for 20 minutes to 2 hours.
 次に、本発明で用いる組成物について説明する。本発明の画像形成方法に用いる組成物は、乾燥後の実質的に溶剤を含まない状態において、(A)反応性の異なる2種類以上の硬化性官能基を同一分子内に有し、かつ、該硬化性官能基の少なくとも1つがα,β-不飽和エステル基である単量体と、(B)界面活性剤とを含み、かつ、粘度が3~50mPa・sの範囲であることを特徴とする。 Next, the composition used in the present invention will be described. The composition used in the image forming method of the present invention has (A) two or more kinds of curable functional groups having different reactivity in the same molecule in a state substantially free of solvent after drying, and It includes a monomer in which at least one of the curable functional groups is an α, β-unsaturated ester group, and (B) a surfactant, and has a viscosity in the range of 3 to 50 mPa · s. And
 本発明の組成物は、以下のような特徴を有するものであることが好ましい。
(1)室温での溶液流動性に優れ、モールド凹部のキャビティ内に該組成物が流れ込みやすく、大気が取り込まれにくいためバブル欠陥を引き起こすことがなく、モールド凸部、凹部のいずれにおいても光硬化後に残渣が残りにくい組成物。
(2)硬化後の硬化膜は機械的性質に優れ、塗膜と基板の密着性に優れ、塗膜とモールドの剥離性に優れるため、モールドを引き剥がす際にパターン崩れや塗膜表面に糸引きが生じて表面荒れを引き起こすことがないため良好なパターンを形成できる組成物。
(3)塗布均一性に優れるため、大型基板への塗布・微細加工分野などに適する組成物。
(4)残膜性、耐擦傷性などの機械特性、耐溶剤性が高いので、ブラックマトリックスとしてとして好適に用いることができる、等の特徴を有するものとすることができる組成物。
 上記要件を満たすようにするため、本発明の組成物は下記の組成物であることが好ましい。
The composition of the present invention preferably has the following characteristics.
(1) Excellent solution fluidity at room temperature, the composition can easily flow into the cavity of the mold recess, and it is difficult for the air to be taken in, causing no bubble defects and photocuring in both the mold protrusion and recess. A composition in which a residue is difficult to remain afterwards.
(2) The cured film after curing has excellent mechanical properties, excellent adhesion between the coating film and the substrate, and excellent peeling properties between the coating film and the mold. A composition that can form a good pattern because it does not cause surface roughness due to pulling.
(3) A composition suitable for the field of coating / microfabrication on a large substrate because of excellent coating uniformity.
(4) A composition that can be suitably used as a black matrix because it has high mechanical properties such as residual film properties and scratch resistance, and high solvent resistance.
In order to satisfy the above requirements, the composition of the present invention is preferably the following composition.
 本発明の組成物の粘度は、3~50mPa・Sである。ここで、本発明における粘度は特に述べない限り、25℃における粘度をいう。本発明の組成物は、25℃における粘度が、好ましくは3~18mPa・sであり、より好ましくは5~15mPa・sであり、さらに好ましくは7~12mPa・sである。本発明の組成物の粘度を3mPa・s以上とすることにより、基板塗布適性の問題や膜の機械的強度の低下が生じにくい傾向にある。一方、本発明の組成物の粘度を50mPa・s以下とすることにより、微細な凹凸パターンを有する型を組成物に密着させた場合でも、モールドの凹部のキャビティ内にも組成物が流れ込み、大気が取り込まれにくくなるため、バブル欠陥を引き起こしにくくなり、モールド凸部において光硬化後に残渣が残りにくくなり好ましい。
 本発明の組成物は、乾燥後の膜厚が10μm以下となるように用いることが好ましい。特に好ましくは6μm以下である。10μmを超えると、モールド剥離時にパターンが一部破壊されることがある。
The viscosity of the composition of the present invention is 3 to 50 mPa · S. Here, the viscosity in the present invention refers to a viscosity at 25 ° C. unless otherwise specified. The composition of the present invention has a viscosity at 25 ° C. of preferably 3 to 18 mPa · s, more preferably 5 to 15 mPa · s, and further preferably 7 to 12 mPa · s. By setting the viscosity of the composition of the present invention to 3 mPa · s or more, there is a tendency that problems of substrate coating suitability and a decrease in mechanical strength of the film hardly occur. On the other hand, by setting the viscosity of the composition of the present invention to 50 mPa · s or less, even when a mold having a fine concavo-convex pattern is brought into close contact with the composition, the composition flows into the cavity of the concave portion of the mold, and the atmosphere Is less likely to be taken in, so that it is difficult to cause bubble defects, and it is difficult for residues to remain after photocuring in the mold convex portion.
The composition of the present invention is preferably used so that the film thickness after drying is 10 μm or less. Particularly preferably, it is 6 μm or less. If it exceeds 10 μm, the pattern may be partially destroyed during mold peeling.
 本発明の組成物における、「乾燥後の実質的に溶剤を含まない状態において」とは、例えば、残留溶剤量が0.1重量%以下の状態をいい、溶剤を全く含まない状態であることが最も好ましい。
 また、本発明の組成物は、予め公知の有機溶剤を含んでいてもよい。乾燥前の状態で、実質的に溶剤を含む場合は、固形分濃度で10~99質量%となるように溶剤量を選択する。本発明の組成物に好ましく使用できる有機溶剤の種類としては、光ナノインプリントリソグラフィ用硬化性組成物やフォトレジストで一般的に用いられている溶剤であり、本発明で用いる化合物を溶解および均一分散させるものであれば良く、かつこれらの成分と反応しないものであれば特に限定されない。
In the composition of the present invention, “in a state substantially free of solvent after drying” means, for example, a state in which the amount of residual solvent is 0.1% by weight or less and is a state in which no solvent is contained. Is most preferred.
The composition of the present invention may contain a known organic solvent in advance. When the solvent is substantially contained in the state before drying, the amount of the solvent is selected so that the solid content concentration is 10 to 99% by mass. The organic solvent that can be preferably used in the composition of the present invention is a solvent that is generally used in a curable composition for optical nanoimprint lithography and a photoresist, and dissolves and uniformly disperses the compound used in the present invention. Any material can be used as long as it does not react with these components.
 前記有機溶剤としては、例えば、メタノール、エタノール等のアルコール類;テトラヒドロフラン等のエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールメチルエチルエーテル、エチレングリコールモノエチルエーテル等のグリコールエーテル類;メチルセロソルブアセテート、エチルセロソルブアセテート等のエチレングリコールアルキルエーテルアセテート類;ジエチレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等のジエチレングリコール類;プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート等のプロピレングリコールアルキルエーテルアセテート類;トルエン、キシレン等の芳香族炭化水素類;アセトン、メチルエチルケトン、メチルイソフチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-2-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル等の乳酸エステル類等のエステル類などが挙げられる。
  さらに、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-メチルホルムアニリド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシド、ベンジルエチルエーテル、ジヘキシルエーテル、アセトニルアセトン、イソホロン、カプロン酸、カプリル酸、1-オクタノール、1-ノナノール、ベンジルアルコール、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、γ-ブチロラクトン、炭酸エチレン、炭酸プロピレン、フェニルセロソルブアセテート等の高沸点溶剤を添加することもできる。
 これらの溶媒は、1種の単独使用でも、2種類以上の併用でも構わない。
 これらの溶媒の中でも、メトキシプロピレングリコールアセテート、2-ヒドロキシプロピン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、乳酸エチル、シクロヘキサノン、メチルイソブチルケトン、2-ヘプタノンが特に好ましい。
Examples of the organic solvent include alcohols such as methanol and ethanol; ethers such as tetrahydrofuran; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol methyl ethyl ether, and ethylene glycol monoethyl ether; methyl cellosolve Ethylene glycol alkyl ether acetates such as acetate and ethyl cellosolve acetate; diethylene glycols such as diethylene glycol monomethyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether, and diethylene glycol monobutyl ether; propylene glycol Propylene glycol alkyl ether acetates such as rumethyl ether acetate and propylene glycol ethyl ether acetate; aromatic hydrocarbons such as toluene and xylene; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2 Ketones such as pentanone and 2-heptanone; ethyl 2-hydroxypropionate, methyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, 2- Methyl hydroxy-2-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl acetate, acetic acid Chill, methyl lactate, and the like esters such as lactic acid esters such as ethyl lactate.
Further, N-methylformamide, N, N-dimethylformamide, N-methylformanilide, N-methylacetamide, N, N-dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, benzylethyl ether, dihexyl ether, acetonylacetone , Isophorone, caproic acid, caprylic acid, 1-octanol, 1-nonanol, benzyl alcohol, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, γ-butyrolactone, ethylene carbonate, propylene carbonate, phenyl cellosolve acetate, etc. A high boiling point solvent can also be added.
These solvents may be used alone or in combination of two or more.
Among these solvents, methoxypropylene glycol acetate, ethyl 2-hydroxypropionate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl lactate, cyclohexanone, methyl isobutyl ketone and 2-heptanone are particularly preferable.
(A)単量体
 次に、(A)反応性の異なる2種類以上の硬化性官能基を同一分子内に有し、かつ、該硬化性官能基の少なくとも1つがα,β-不飽和エステル基である単量体について説明(以下、「本発明における単量体」ということがある)する。
 ここで、本発明における単量体は、1種類のみであってもよいし、2種類以上であってもよい。本発明の組成物は、本発明における単量体を、好ましくは、組成物の10~99質量%、より好ましくは、20~80質量%の範囲で含む。
(A) Monomer Next, (A) Two or more kinds of curable functional groups having different reactivity are present in the same molecule, and at least one of the curable functional groups is an α, β-unsaturated ester. The monomer as a group will be described (hereinafter sometimes referred to as “monomer in the present invention”).
Here, the monomer in this invention may be only one type, and may be two or more types. The composition of the present invention preferably contains the monomer of the present invention in the range of 10 to 99% by mass, more preferably 20 to 80% by mass of the composition.
 本発明における単量体は、好ましくは、一般式(1)で表される単量体である。
Figure JPOXMLDOC01-appb-C000005
(一般式(1)中、Rは水素原子、または、ヒドロキシメチル基を表し、Xは有機基を表す。mは1~3の整数を表し、nは1~4の整数を表す。Yは、炭素-炭素不飽和結合を有する硬化性官能基、炭素-窒素不飽和結合を有する硬化性官能基、酸素原子を含む環状基を有する硬化性官能基または下記一般式(2)で表される基を表す。)
Figure JPOXMLDOC01-appb-C000006
(Rはそれぞれアルキル基またはアリール基を表す。)
The monomer in the present invention is preferably a monomer represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000005
(In the general formula (1), R 1 represents a hydrogen atom, or a hydroxymethyl group, .Y X is .m represents an organic group represents an integer of 1 to 3, n is an integer of 1-4 Is represented by a curable functional group having a carbon-carbon unsaturated bond, a curable functional group having a carbon-nitrogen unsaturated bond, a curable functional group having a cyclic group containing an oxygen atom, or the following general formula (2): Represents a group.
Figure JPOXMLDOC01-appb-C000006
(R 2 represents an alkyl group or an aryl group, respectively.)
 Xで表される有機基は、好ましくは2~7価の有機基を表し、脂肪族、芳香族のどちらでも良く、その総炭素数は2~20が好ましい。さらにその有機基は、酸素原子、硫黄原子、エステル基、ウレタン基で遮断されていても良い。具体的には、プロパントリオール骨格、ペンタエリスリトール骨格、脂肪族環状骨格が挙げられる。
 Yで表される炭素-炭素不飽和結合を有する硬化性官能基は、2重結合および3重結合のどちらでも良く、不飽和結合に置換基を有しても良く、鎖状、環状の何れであっても良い。その総炭素数は2~18が好ましい。具体的には、ビニルエーテル基、アリルエーテル基、シクロヘキセニル基、シクロペンテニル基、ジシクロペニテニル基、スチリル基、メタクリロイルオキシ基、メタクリロイルアミド基、アクリルアミド基、ビニルシラン基、N-ビニル複素環基およびマレイミド基が挙げられる。
 Yで表される炭素-窒素不飽和結合を有する硬化性官能基は、例えば、イソシアネート基、ニトリル基が挙げられる。
 Yで表される酸素原子を含む環状基を含む硬化性官能基としては、オキシラン環、オキセタン環、炭酸エチレン基が挙げられる。さらに好ましくはオキシラン環、オキセタン環が挙げられる。
 Rで表されるアルキル基としては炭素数1~8のアルキル基が好ましい。その様なアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ベンジル基が挙げられる。 アリール基としては炭素数6~12のアリール基が好ましい。その様なアリール基としては、フェニル基、p-トリル基、p-クロロフェニル基が挙げられる。
 mは、好ましくは、1または2であり、nは、好ましくは、1~3である。mが2以上のとき、複数のRは同一であってもよいし、それぞれ異なっていても良い。また、nが2以上のとき、複数のYは同一であってもよいし、それぞれ異なっていても良い。
The organic group represented by X preferably represents a divalent to 7-valent organic group, and may be aliphatic or aromatic, and the total number of carbon atoms is preferably 2 to 20. Further, the organic group may be blocked with an oxygen atom, a sulfur atom, an ester group, or a urethane group. Specific examples include a propanetriol skeleton, a pentaerythritol skeleton, and an aliphatic cyclic skeleton.
The curable functional group having a carbon-carbon unsaturated bond represented by Y may be either a double bond or a triple bond, and may have a substituent on the unsaturated bond, either a chain or a ring. It may be. The total carbon number is preferably 2-18. Specifically, vinyl ether group, allyl ether group, cyclohexenyl group, cyclopentenyl group, dicyclopenenyl group, styryl group, methacryloyloxy group, methacryloylamide group, acrylamide group, vinylsilane group, N-vinyl heterocyclic group and A maleimide group may be mentioned.
Examples of the curable functional group having a carbon-nitrogen unsaturated bond represented by Y include an isocyanate group and a nitrile group.
Examples of the curable functional group containing a cyclic group containing an oxygen atom represented by Y include an oxirane ring, an oxetane ring, and an ethylene carbonate group. More preferred are an oxirane ring and an oxetane ring.
The alkyl group represented by R 2 is preferably an alkyl group having 1 to 8 carbon atoms. Examples of such an alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a benzyl group. The aryl group is preferably an aryl group having 6 to 12 carbon atoms. Examples of such an aryl group include a phenyl group, a p-tolyl group, and a p-chlorophenyl group.
m is preferably 1 or 2, and n is preferably 1 to 3. When m is 2 or more, the plurality of R 1 may be the same or different from each other. When n is 2 or more, the plurality of Y may be the same or different.
 ここで、本発明における単量体の好ましい例を示すが、本発明がこれらに限定されるものではないことは言うまでも無い。
Figure JPOXMLDOC01-appb-C000007
Here, although the preferable example of the monomer in this invention is shown, it cannot be overemphasized that this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(B)界面活性剤
 本発明の組成物には、(B)界面活性剤を含む。本発明に用いられる界面活性剤は、全組成物中、例えば、0.001~5質量%含有し、好ましくは0.002~4質量%であり、さらに好ましくは、0.005~3質量%である。2種類以上の界面活性剤を用いる場合は、その合計量が前記範囲となる。界面活性剤が組成物中0.001未満では、塗布の均一性の効果が不十分であり、一方、5質量%を越えると、モールド転写特性を悪化させるため、好ましくない。
 界面活性剤は、フッ素系界面活性剤、シリコーン系界面活性剤およびフッ素・シリコーン系界面活性剤の少なくとも1種を含むことが好ましく、フッ素系界面活性剤とシリコーン系界面活性剤の両方または、フッ素・シリコーン系界面活性剤を含むことがより好ましく、フッ素・シリコーン系界面活性剤を含むことが最も好ましい。
 ここで、フッ素・シリコーン系界面活性剤とは、フッ素系界面活性剤およびシリコーン系界面活性剤の両方の要件を併せ持つものをいう。
 このような界面活性剤を用いることにより、半導体素子製造用のシリコーンウエハや、液晶素子製造用のガラス角基板、クロム膜、モリブデン膜、モリブデン合金膜、タンタル膜、タンタル合金膜、窒化珪素膜、アモルファスシリコーン膜、酸化錫をドープした酸化インジウム(ITO)膜や酸化錫膜などの、各種の膜が形成されるなど基板上の塗布時に起こるストリエーションや鱗状の模様(レジスト膜の乾燥むら)などの塗布不良の問題を解決することができる。また、型の凹凸部のキャビティ内への組成物の流動性を良くし、モールドとレジスト間の剥離性を良くし、レジストと基板間の密着性を良くすることができる。さらに、組成物の粘度を下げることも可能になる。特に、本発明の組成物において、上記界面活性剤を添加することにより、塗布均一性を大幅に改良でき、スピンコーターやスリットスキャンコーターを用いた塗布において、基板サイズに依らず良好な塗布適性が得られる。さらにインクジェット用ブラックマトリックスに応用した場合、パターン表面が撥インク性となり好都合である。
(B) Surfactant The composition of the present invention contains (B) a surfactant. The surfactant used in the present invention contains, for example, 0.001 to 5% by mass in the total composition, preferably 0.002 to 4% by mass, and more preferably 0.005 to 3% by mass. It is. When using 2 or more types of surfactant, the total amount becomes the said range. If the surfactant is less than 0.001 in the composition, the effect of coating uniformity is insufficient. On the other hand, if it exceeds 5% by mass, the mold transfer characteristics are deteriorated, which is not preferable.
The surfactant preferably contains at least one of a fluorine-based surfactant, a silicone-based surfactant, and a fluorine / silicone-based surfactant. Both the fluorine-based surfactant and the silicone-based surfactant or fluorine -More preferably, a silicone-based surfactant is included, and most preferably, a fluorine-silicone-based surfactant is included.
Here, the fluorine / silicone surfactant refers to one having both requirements of a fluorine surfactant and a silicone surfactant.
By using such a surfactant, a silicon wafer for manufacturing a semiconductor element, a glass square substrate for manufacturing a liquid crystal element, a chromium film, a molybdenum film, a molybdenum alloy film, a tantalum film, a tantalum alloy film, a silicon nitride film, Various types of films such as amorphous silicone film, tin oxide-doped indium oxide (ITO) film and tin oxide film are formed, and striations and scale-like patterns (uneven resist film drying) occur on the substrate. Can solve the problem of poor coating. In addition, the fluidity of the composition into the cavity of the uneven portion of the mold can be improved, the peelability between the mold and the resist can be improved, and the adhesion between the resist and the substrate can be improved. Furthermore, the viscosity of the composition can be lowered. In particular, in the composition of the present invention, the coating uniformity can be greatly improved by adding the above-mentioned surfactant, and in coating using a spin coater or slit scan coater, good coating suitability can be obtained regardless of the substrate size. can get. Furthermore, when applied to an inkjet black matrix, the pattern surface is ink repellent and convenient.
 本発明で用いる非イオン性フッ素系界面活性剤の例としては、商品名フロラードFC-430、FC-431(住友スリーエム社製)、商品名サーフロン「S-382」(旭硝子社製)、EFTOP「EF-122A、122B、122C、EF-121、EF-126、EF-127、MF-100」(トーケムプロダクツ社製)、商品名PF-636、PF-6320、PF-656、PF-6520(いずれもOMNOVA社)、商品名フタージェントFT250、FT251、DFX18(いずれも(株)ネオス社製)、商品名ユニダインDS-401、DS-403、DS-451(いずれもダイキン工業(株)社製)、商品名メガフアック171、172、173、178K、178A、(いずれも大日本インキ化学工業社製)が挙げられ、非イオン性ケイ素系界面活性剤の例としては、商品名SI-10シリーズ(竹本油脂社製)、メガファックペインタッド31(大日本インキ化学工業社製)、KP-341(信越化学工業社製)が挙げられる。
 本発明で用いる、フッ素・シリコーン系界面活性剤の例としては、商品名X-70-090、X-70-091、X-70-092、X-70-093、(いずれも信越化学工業社製)、商品名メガフアックR-08、XRB-4(いずれも大日本インキ化学工業社製)が挙げられる。
Examples of the nonionic fluorosurfactant used in the present invention include trade names Florard FC-430 and FC-431 (manufactured by Sumitomo 3M), trade names Surflon “S-382” (manufactured by Asahi Glass Co., Ltd.), EFTOP “ EF-122A, 122B, 122C, EF-121, EF-126, EF-127, MF-100 (manufactured by Tochem Products), trade names PF-636, PF-6320, PF-656, PF-6520 ( All are OMNOVA), product names Aftergent FT250, FT251, DFX18 (all manufactured by Neos Co., Ltd.), product names Unidyne DS-401, DS-403, DS-451 (all manufactured by Daikin Industries, Ltd.) ), Trade name Megafuk 171, 172, 173, 178K, 178A (all manufactured by Dainippon Ink & Chemicals, Inc.). Examples of nonionic silicon-based surfactants include trade name SI-10 series (manufactured by Takemoto Yushi Co., Ltd.), MegaFac Paintad 31 (manufactured by Dainippon Ink & Chemicals), KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.) ).
Examples of fluorine / silicone surfactants used in the present invention include trade names X-70-090, X-70-091, X-70-092, X-70-093 (all Shin-Etsu Chemical Co., Ltd.). Product names, Megafuk R-08 and XRB-4 (both manufactured by Dainippon Ink & Chemicals, Inc.).
他の重合性単量体
 本発明の組成物は、さらに、組成物粘度、膜硬度、可とう性等の改良を目的に、他の重合性単量体を含んでいてもよく、該他の重合性単量体は、2官能以上の重合性官能基を有する重合性単量体であることが好ましい。特に、本発明の組成物に含まれる他の重合性単量体の50重量%以上が、2官能以上の重合性官能基を有する重合性単量体であることが好ましい。以下、本発明で用いる他の重合性単量体について詳細に説明する。
 本発明の他の重合性単量体として、エチレン性不飽和結合含有基を1個有する重合性不飽和単量体(1官能の重合性不飽和単量体)を挙げることができる。具体的には、2-アクリロイロキシエチルフタレート、2-アクリロイロキシ2-ヒドロキシエチルフタレート、2-アクリロイロキシエチルヘキサヒドロフタレート、2-アクリロイロキシプロピルフタレート、2-エチル-2-ブチルプロパンジオールアクリレート、2-エチルヘキシル(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、アクリル酸ダイマー、ベンジル(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート、エチレンオキシド変性(以下「EO」という。)クレゾール(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、エトキシ化フェニル(メタ)アクリレート、エチル(メタ)アクリレート、イソアミル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロヘンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ラウリル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メチル(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、オクチル(メタ)アクリレート、パラクミルフェノキシエチレングリコール(メタ)アクリレート、エピクロロヒドリン(以下「ECH」という)変性フェノキシアクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール-ポリプロピレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ステアリル(メタ)アクリレート、EO変性コハク酸(メタ)アクリレート、tert-ブチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、EO変性トリブロモフェニル(メタ)アクリレート、トリドデシル(メタ)アクリレート、p-イソプロペニルフェノール、スチレン、α-メチルスチレン、アクリロニトリル、ビニルカルバゾールが例示される。
Other polymerizable monomers The composition of the present invention may further contain other polymerizable monomers for the purpose of improving the composition viscosity, film hardness, flexibility and the like. The polymerizable monomer is preferably a polymerizable monomer having a bifunctional or higher polymerizable functional group. In particular, it is preferable that 50% by weight or more of the other polymerizable monomer contained in the composition of the present invention is a polymerizable monomer having a bifunctional or higher functional group. Hereinafter, other polymerizable monomers used in the present invention will be described in detail.
Another polymerizable monomer of the present invention includes a polymerizable unsaturated monomer having one ethylenically unsaturated bond-containing group (monofunctional polymerizable unsaturated monomer). Specifically, 2-acryloyloxyethyl phthalate, 2-acryloyloxy 2-hydroxyethyl phthalate, 2-acryloyloxyethyl hexahydrophthalate, 2-acryloyloxypropyl phthalate, 2-ethyl-2-butylpropanediol acrylate 2-ethylhexyl (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-methoxyethyl (Meth) acrylate, 3-methoxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, acrylic acid dimer, benzyl (meth) acrylate, butanediol mono (meth) acrylate Rate, butoxyethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, ethylene oxide modified (hereinafter referred to as “EO”) cresol (meth) acrylate, dipropylene glycol (meth) acrylate, ethoxylated phenyl (meth) ) Acrylate, ethyl (meth) acrylate, isoamyl (meth) acrylate, isobutyl (meth) acrylate, isooctyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclohentanyl (meth) acrylate, dicyclo Pentanyloxyethyl (meth) acrylate, isomyristyl (meth) acrylate, lauryl (meth) acrylate, methoxydipropylene glycol (meth) acrylate Methoxytripropylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methyl (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, Nonylphenoxy polypropylene glycol (meth) acrylate, octyl (meth) acrylate, paracumylphenoxyethylene glycol (meth) acrylate, epichlorohydrin (hereinafter referred to as “ECH”) modified phenoxy acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol ( (Meth) acrylate, phenoxyhexaethylene glycol (meth) acrylate, phenoxytetraethylene Glycol (meth) acrylate, polyethylene glycol (meth) acrylate, polyethylene glycol-polypropylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, stearyl (meth) acrylate, EO-modified succinic acid (meth) acrylate, tert-butyl (meta ) Acrylate, tribromophenyl (meth) acrylate, EO-modified tribromophenyl (meth) acrylate, tridodecyl (meth) acrylate, p-isopropenylphenol, styrene, α-methylstyrene, acrylonitrile and vinylcarbazole.
 さらに他の重合性単量体として、エチレン性不飽和結合含有基を2個以上有する多官能重合性不飽和単量体を用いることがより好ましい。
 本発明で好ましく用いることのできるエチレン性不飽和結合含有基を2個有する2官能重合性不飽和単量体の例としては、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、ジ(メタ)アクリル化イソシアヌレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、EO変性1,6-ヘキサンジオールジ(メタ)アクリレート、ECH変性1,6-ヘキサンジオールジ(メタ)アクリレート、アリロキシポリエチレングリコールアクリレート、1,9-ノナンジオールジ(メタ)アクリレート、EO変性ビスフェノールAジ(メタ)アクリレート、PO変性ビスフェノールAジ(メタ)アクリレート、変性ビスフェノールAジ(メタ)アクリレート、EO変性ビスフェノールFジ(メタ)アクリレート、ECH変性ヘキサヒドロフタル酸ジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、EO変性ネオペンチルグリコールジアクリレート、プロピレンオキシド(以後「PO」という。)変性ネオペンチルグリコールジアクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコール、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート、ECH変性フタル酸ジ(メタ)アクリレート、ポリ(エチレングリコール-テトラメチレングリコール)ジ(メタ)アクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)ジ(メタ)アクリレート、ポリエステル(ジ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ECH変性プロピレングリコールジ(メタ)アクリレート、シリコーンジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリシクロデカンジメタノール(ジ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、EO変性トリプロピレングリコールジ(メタ)アクリレート、トリグリセロールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ジビニルエチレン尿素、ジビニルプロピレン尿素が例示される。
It is more preferable to use a polyfunctional polymerizable unsaturated monomer having two or more ethylenically unsaturated bond-containing groups as another polymerizable monomer.
Examples of the bifunctional polymerizable unsaturated monomer having two ethylenically unsaturated bond-containing groups that can be preferably used in the present invention include diethylene glycol monoethyl ether (meth) acrylate, dimethylol dicyclopentane di (meta ) Acrylate, di (meth) acrylated isocyanurate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, EO-modified 1,6-hexanediol di (meth) acrylate, ECH-modified 1,6-hexanediol di (meth) acrylate, allyloxypolyethylene glycol acrylate, 1,9-nonanediol di (meth) acrylate, EO-modified bisphenol A di (meth) acrylate, PO-modified bisphenol A di (meth) Acrylate, modified screw Enol A di (meth) acrylate, EO modified bisphenol F di (meth) acrylate, ECH modified hexahydrophthalic acid diacrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, EO modified Neopentyl glycol diacrylate, propylene oxide (hereinafter referred to as “PO”) modified neopentyl glycol diacrylate, caprolactone modified hydroxypivalate ester neopentyl glycol, stearic acid modified pentaerythritol di (meth) acrylate, ECH modified phthalic acid di ( (Meth) acrylate, poly (ethylene glycol-tetramethylene glycol) di (meth) acrylate, poly (propylene glycol-tetramethylene glycol) Di) (di) (meth) acrylate, polyester (di) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ECH modified propylene glycol di (meth) acrylate, silicone di (meth) acrylate, triethylene Glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, tricyclodecane dimethanol (di) acrylate, neopentyl glycol modified trimethylolpropane di (meth) acrylate, tripropylene glycol di (meth) acrylate, EO modified Tripropylene glycol di (meth) acrylate, triglycerol di (meth) acrylate, dipropylene glycol di (meth) acrylate, divinylethyleneurine Examples thereof include silicon and divinylpropylene urea.
 これらの中で特に、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等が本発明に好適に用いられる。 Among these, neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, neopentyl hydroxypivalate Glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and the like are preferably used in the present invention.
 エチレン性不飽和結合含有基を3個以上有する多官能重合性不飽和単量体の例としては、ECH変性グリセロールトリ(メタ)アクリレート、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、EO変性リン酸トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。 Examples of the polyfunctional polymerizable unsaturated monomer having 3 or more ethylenically unsaturated bond-containing groups include ECH-modified glycerol tri (meth) acrylate, EO-modified glycerol tri (meth) acrylate, PO-modified glycerol tri (meta) ) Acrylate, pentaerythritol triacrylate, EO modified phosphoric acid triacrylate, trimethylolpropane tri (meth) acrylate, caprolactone modified trimethylolpropane tri (meth) acrylate, EO modified trimethylolpropane tri (meth) acrylate, PO modified trimethylol Propane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, dipentaerythritol hexa (meth) acrylate, caprolactone modified dipentaerythritol hexa (meth) Acrylate, dipentaerythritol hydroxypenta (meth) acrylate, alkyl-modified dipentaerythritol penta (meth) acrylate, dipentaerythritol poly (meth) acrylate, alkyl-modified dipentaerythritol tri (meth) acrylate, ditrimethylolpropane tetra (meth) Examples include acrylate, pentaerythritol ethoxytetra (meth) acrylate, and pentaerythritol tetra (meth) acrylate.
 これらの中で特に、EO変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が本発明に好適に用いられる。 Among these, EO-modified glycerol tri (meth) acrylate, PO-modified glycerol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and the like are preferably used in the present invention.
 本発明の組成物では、架橋密度をさらに高める目的で、上記多官能の他の重合性単量体よりもさらに分子量の大きい多官能オリゴマーやポリマーを本発明の目的を達成する範囲で配合することができる。光ラジカル重合性を有する多官能オリゴマーとしてはポリエステルアクリレート、ポリウレタンアクリレート、ポリエーテルアクリレート、ポリエポキシアクリレート等の各種アクリレートオリゴマーが挙げられる。 In the composition of the present invention, for the purpose of further increasing the crosslinking density, a polyfunctional oligomer or polymer having a higher molecular weight than that of the other polyfunctional polymerizable monomer is blended within the range of achieving the object of the present invention. Can do. Examples of the polyfunctional oligomer having photo-radical polymerizability include various acrylate oligomers such as polyester acrylate, polyurethane acrylate, polyether acrylate, and polyepoxy acrylate.
 本発明で用いる他の重合性単量体として、オキシラン環を有する化合物も採用できる。オキシラン環を有する化合物としては、例えば、多塩基酸のポリグリシジルエステル類、多価アルコールのポリグリシジルエーテル類、ポリオキシアルキレングリコールのポリグリシジルエーテル類、芳香族ポリオールのポリグリシジルエテーテル類、芳香族ポリオールのポリグリシジルエーテル類の水素添加化合物類、ウレタンポリエポキシ化合物およびエポキシ化ポリブタジエン類等を挙げることができる。これらの化合物は、その一種を単独で使用することもできるし、また、その二種以上を混合して使用することもできる。 As another polymerizable monomer used in the present invention, a compound having an oxirane ring can also be employed. Examples of the compound having an oxirane ring include polyglycidyl esters of polybasic acids, polyglycidyl ethers of polyhydric alcohols, polyglycidyl ethers of polyoxyalkylene glycols, polyglycidyl ethers of aromatic polyols, and aromatics. Mention may be made, for example, of hydrogenated compounds of polyglycidyl ethers of polyols, urethane polyepoxy compounds and epoxidized polybutadienes. These compounds can be used alone or in combination of two or more thereof.
 好ましく使用することのできるエポキシ化合物としては、例えばビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、臭素化ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールSジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールSジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル類;エチレングリコール、プロピレングリコール、グリセリンなどの脂肪族多価アルコールに1種または2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル類;脂肪族長鎖二塩基酸のジグリシジルエステル類;脂肪族高級アルコールのモノグリシジルエーテル類;フェノール、クレゾール、ブチルフェノールまたはこれらにアルキレンオキサイドを付加して得られるポリエーテルアルコールのモノグリシジルエーテル類;高級脂肪酸のグリシジルエステル類などを例示することができる。 Examples of the epoxy compound that can be preferably used include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, brominated bisphenol A diglycidyl ether, brominated bisphenol F diglycidyl ether, and brominated bisphenol S. Diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, hydrogenated bisphenol S diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin tri Glycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol Diglycidyl ethers; polyglycidyl ethers of polyether polyols obtained by adding one or more alkylene oxides to aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin; aliphatic long-chain dibases Diglycidyl esters of acids; monoglycidyl ethers of aliphatic higher alcohols; monoglycidyl ethers of polyether alcohols obtained by adding phenol, cresol, butylphenol or alkylene oxide to these; glycidyl esters of higher fatty acids, etc. It can be illustrated.
 これらの成分の中、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテルが好ましい。 Among these components, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol Diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, neopentyl glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and polypropylene glycol diglycidyl ether are preferred.
 グリシジル基含有化合物として好適に使用できる市販品としては、UVR-6216(ユニオンカーバイド社製)、グリシドール、AOEX24、サイクロマーA200、(以上、ダイセル化学工業(株)製)、エピコート828、エピコート812、エピコート1031、エピコート872、エピコートCT508(以上、油化シェル(株)製)、KRM-2400、KRM-2410、KRM-2408、KRM-2490、KRM-2720、KRM-2750(以上、旭電化工業(株)製)などを挙げることができる。これらは、1種単独で、または2種以上組み合わせて用いることができる。 Examples of commercially available products that can be suitably used as the glycidyl group-containing compound include UVR-6216 (manufactured by Union Carbide), glycidol, AOEX24, cyclomer A200, (manufactured by Daicel Chemical Industries, Ltd.), Epicoat 828, Epicoat 812, Epicoat 1031, Epicoat 872, Epicoat CT508 (above, manufactured by Yuka Shell Co., Ltd.), KRM-2400, KRM-2410, KRM-2408, KRM-2490, KRM-2720, KRM-2750 (above, Asahi Denka Kogyo ( Product)). These can be used alone or in combination of two or more.
 また、これらのオキシラン環を有する化合物はその製法は問わないが、例えば、丸善KK出版、第四版実験化学講座20有機合成II、213~、平成4年、Ed.by Alfred Hasfner,The chemistry of heterocyclic compounds-Small Ring Heterocycles part3 Oxiranes,John & Wiley and Sons,An Interscience Publication,New York,1985、吉村、接着、29巻12号、32、1985、吉村、接着、30巻5号、42、1986、吉村、接着、30巻7号、42、1986、特開平11-100378号公報、特許第2906245号公報、特許第2926262号公報などの文献を参考にして合成できる。 The production method of these compounds having an oxirane ring is not limited. For example, Maruzen KK Publishing, 4th edition Experimental Chemistry Course 20 Organic Synthesis II, 213-, 1992, Ed. By Alfred Hasfner, The Chemistry of the cyclic compounds-Small Ring Heterocycles part3 Oxiranes, John & Wiley and Sons, An Interscience Publication, New York, 1985, Yoshimura, Adhesion, Vol. 29, No. 12, 32, 1985, Yoshimura, Adhesion, Vol. 30, No. 5, 42, 1986, Yoshimura, Adhesion, Vol. 30, No. 7, 42, 1986, Japanese Patent Laid-Open No. 11-1000037, Japanese Patent No. 2906245, Japanese Patent No. 2926262 and the like can be synthesized.
 本発明で用いる他の重合性単量体として、ビニルエーテル化合物を併用してもよい。
 ビニルエーテル化合物は、適宜選択すれば良く、例えば、2-エチルヘキシルビニルエーテル、ブタンジオール-1,4-ジビニルエーテル、ジエチレングリコールモノビニルエーテル、ジエチレングリコールモノビニルエーテル、エチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、1,2-プロパンジオールジビニルエーテル、1,3-プロパンジオールジビニルエーテル、1,3-ブタンジオールジビニルエーテル、1,4-ブタンジオールジビニルエーテル、テトラメチレングリコールジビニルエーテル、ネオペンチルグリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル、トリメチロールエタントリビニルエーテル、ヘキサンジオールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ペンタエリスリトールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ソルビトールテトラビニルエーテル、ソルビトールペンタビニルエーテル、エチレングリコールジエチレンビニルエーテル、トリエチレングリコールジエチレンビニルエーテル、エチレングリコールジプロピレンビニルエーテル、トリエチレングリコールジエチレンビニルエーテル、トリメチロールプロパントリエチレンビニルエーテル、トリメチロールプロパンジエチレンビニルエーテル、ペンタエリスリトールジエチレンビニルエーテル、ペンタエリスリトールトリエチレンビニルエーテル、ペンタエリスリトールテトラエチレンビニルエーテル、1,1,1-トリス〔4-(2-ビニロキシエトキシ)フェニル〕エタン、ビスフェノールAジビニロキシエチルエーテル等が挙げられる。
As other polymerizable monomer used in the present invention, a vinyl ether compound may be used in combination.
The vinyl ether compound may be appropriately selected. For example, 2-ethylhexyl vinyl ether, butanediol-1,4-divinyl ether, diethylene glycol monovinyl ether, diethylene glycol monovinyl ether, ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,2- Propanediol divinyl ether, 1,3-propanediol divinyl ether, 1,3-butanediol divinyl ether, 1,4-butanediol divinyl ether, tetramethylene glycol divinyl ether, neopentyl glycol divinyl ether, trimethylolpropane trivinyl ether, Trimethylolethane trivinyl ether, hexanediol divinyl ether, tetraethyleneglycol Rudivinyl ether, pentaerythritol divinyl ether, pentaerythritol trivinyl ether, pentaerythritol tetravinyl ether, sorbitol tetravinyl ether, sorbitol pentavinyl ether, ethylene glycol diethylene vinyl ether, triethylene glycol diethylene vinyl ether, ethylene glycol dipropylene vinyl ether, triethylene glycol diethylene vinyl ether, triethylene glycol Methylolpropane triethylene vinyl ether, trimethylolpropane diethylene vinyl ether, pentaerythritol diethylene vinyl ether, pentaerythritol triethylene vinyl ether, pentaerythritol tetraethylene vinyl ether, 1,1,1-tris [4- (2 Vinyloxy ethoxy) phenyl] ethane, bisphenol A divinyloxyethyl carboxyethyl ether.
 これらのビニルエーテル化合物は、例えば、Stephen.C.Lapin,Polymers Paint Colour Journal.179(4237)、321(1988)に記載されている方法、即ち多価アルコールもしくは多価フェノールとアセチレンとの反応、または多価アルコールもしくは多価フェノールとハロゲン化アルキルビニルエーテルとの反応により合成することができ、これらは1種単独あるいは2種以上を組み合わせて用いることができる。 These vinyl ether compounds are, for example, the method described in Stephen C. Lapin, Polymers Paint Paint, Journal 179 (4237), 321 (1988), that is, the reaction of a polyhydric alcohol or polyhydric phenol with acetylene, or They can be synthesized by the reaction of a polyhydric alcohol or polyhydric phenol and a halogenated alkyl vinyl ether, and these can be used singly or in combination of two or more.
 また、本発明で用いる他の重合性単量体として、スチレン誘導体も採用できる。スチレン誘導体としては、例えば、p-メトキシスチレン、p-メトキシ-β-メチルスチレン、p-ヒドロキシスチレン、等を挙げることができる。 Also, styrene derivatives can be employed as other polymerizable monomers used in the present invention. Examples of the styrene derivative include p-methoxystyrene, p-methoxy-β-methylstyrene, p-hydroxystyrene, and the like.
 その他、本発明の1官能重合体と併用できるスチレン誘導体としては、例えば、スチレン、p-メチルスチレン、p-メトキシスチレン、β-メチルスチレン、p-メチル-β-メチルスチレン、α-メチルスチレン、p-メトキシ-β-メチルスチレン、p-ヒドロキシスチレン、等を挙げることができ、ビニルナフタレン誘導体としては、例えば、1-ビニルナフタレン、α-メチル-1-ビニルナフタレン、β-メチル-1-ビニルナフタレン、4-メチル-1-ビニルナフタレン、4-メトキシ-1-ビニルナフタレン等を挙げることができる。 Other styrene derivatives that can be used in combination with the monofunctional polymer of the present invention include, for example, styrene, p-methylstyrene, p-methoxystyrene, β-methylstyrene, p-methyl-β-methylstyrene, α-methylstyrene, Examples include vinyl naphthalene derivatives such as 1-vinylnaphthalene, α-methyl-1-vinylnaphthalene, β-methyl-1-vinyl. Naphthalene, 4-methyl-1-vinylnaphthalene, 4-methoxy-1-vinylnaphthalene and the like can be mentioned.
 また、モールドとの剥離性や塗布性を向上させる目的で、トリフルオロエチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、(パーフルオロブチル)エチル(メタ)アクリレート、パーフルオロブチル-ヒドロキシプロピル(メタ)アクリレート、(パーフルオロヘキシル)エチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート等のフッソ原子を有する化合物も併用することができる。 In addition, for the purpose of improving the mold release and coating properties, trifluoroethyl (meth) acrylate, pentafluoroethyl (meth) acrylate, (perfluorobutyl) ethyl (meth) acrylate, perfluorobutyl-hydroxypropyl ( Use compounds with fluorine atoms such as (meth) acrylate, (perfluorohexyl) ethyl (meth) acrylate, octafluoropentyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, etc. Can do.
 本発明で用いる他の重合性単量体として、プロペニルエーテルおよびブテニルエーテルを配合できる。例えば1-ドデシル-1-プロペニルエーテル、1-ドデシル-1-ブテニルエーテル、1-ブテノキシメチル-2-ノルボルネン、1-4-ジ(1-ブテノキシ)ブタン、1,10-ジ(1-ブテノキシ)デカン、1,4-ジ(1-ブテノキシメチル)シクロヘキサン、ジエチレングリコールジ(1-ブテニル)エーテル、1,2,3-トリ(1-ブテノキシ)プロパン、プロペニルエーテルプロピレンカーボネート等が好適に適用できる。 As other polymerizable monomer used in the present invention, propenyl ether and butenyl ether can be blended. For example, 1-dodecyl-1-propenyl ether, 1-dodecyl-1-butenyl ether, 1-butenoxymethyl-2-norbornene, 1-4-di (1-butenoxy) butane, 1,10-di (1-butenoxy) Decane, 1,4-di (1-butenoxymethyl) cyclohexane, diethylene glycol di (1-butenyl) ether, 1,2,3-tri (1-butenoxy) propane, propenyl ether propylene carbonate, and the like can be suitably applied.
 他の重合性単量体は、組成物中に、10~90質量%の範囲で含むことが好ましく、20~80質量%の範囲で含むことがより好ましい。特に上述したとおり、2官能以上の重合性官能基を有する重合性単量体が、該他の重合性単量体の50重量%以上を占めることが好ましい。 The other polymerizable monomer is preferably contained in the composition in the range of 10 to 90% by mass, and more preferably in the range of 20 to 80% by mass. In particular, as described above, the polymerizable monomer having a bifunctional or higher polymerizable functional group preferably accounts for 50% by weight or more of the other polymerizable monomer.
 次に、本発明における(A)単量体および他の重合性単量体(以下、これらを併せて「重合性不飽和単量体」ということがある)の好ましいブレンド形態について説明する。本発明の組成物は、反応性の異なる2種類以上の硬化性官能基を同一分子内に有し、かつ、該硬化性官能基の少なくとも1つがα,β-不飽和エステル基である単量体を必須成分とし、他の重合性単量体を含んでいることが好ましい。
 1官能の重合性単量体は、通常、反応性希釈剤として用いられ、本発明の組成物の粘度を下げるのに有効である。しかし、硬化膜の機械強度を低下する原因となる為、その使用量は組成物粘度と硬化膜の機械強度のバランスを勘案しながら調節される。1官能の重合性単量体の使用比率は組成物の低粘度化を抑制するためには、全重合性不飽和単量体の15質量%以上とすることが好ましい。一方、硬化膜の機械強度の低下をより小さくするには、全重合性不飽和単量体の30質量%以下とすることが好ましい。
 硬化膜の機械強度を向上させるために、2および3官能の重合性単量体を用いることが好ましく、特に、3官能の重合性単量体を用いることにより、機械強度を向上させることができる。
 不飽和結合含有基を2個有する単量体(2官能重合性不飽和単量体)は、全重合性不飽和単量体の好ましくは90質量%以下、より好ましくは80質量%以下、特に好ましくは、70質量%以下の範囲で添加される。1官能および2官能重合性不飽和単量体の割合は、全重合性不飽和単量体の、好ましくは1~95質量%、より好ましくは3~95質量%、特に好ましくは、5~90質量%の範囲で添加される。不飽和結合含有基を3個以上有する多官能重合性不飽和単量体の割合は、全重合性不飽和単量体の、好ましくは80質量%以下、より好ましくは70質量%以下、特に好ましくは、60質量%以下の範囲で添加される。重合性不飽和結合含有基を3個以上有する重合性不飽和単量体の割合を80質量%以下とすることにより、組成物の粘度を下げられるため好ましい。
Next, a preferred blend form of the monomer (A) and other polymerizable monomer (hereinafter, collectively referred to as “polymerizable unsaturated monomer”) in the present invention will be described. The composition of the present invention has two or more kinds of curable functional groups having different reactivity in the same molecule, and at least one of the curable functional groups is an α, β-unsaturated ester group. It is preferable that the body is an essential component and contains other polymerizable monomers.
Monofunctional polymerizable monomers are usually used as reactive diluents and are effective in reducing the viscosity of the composition of the present invention. However, since it causes a decrease in the mechanical strength of the cured film, the amount used is adjusted in consideration of the balance between the composition viscosity and the mechanical strength of the cured film. The use ratio of the monofunctional polymerizable monomer is preferably 15% by mass or more of the total polymerizable unsaturated monomer in order to suppress the viscosity reduction of the composition. On the other hand, in order to further reduce the decrease in mechanical strength of the cured film, the content is preferably 30% by mass or less based on the total polymerizable unsaturated monomer.
In order to improve the mechanical strength of the cured film, it is preferable to use a bifunctional and trifunctional polymerizable monomer, and in particular, the mechanical strength can be improved by using a trifunctional polymerizable monomer. .
The monomer having two unsaturated bond-containing groups (bifunctional polymerizable unsaturated monomer) is preferably 90% by mass or less, more preferably 80% by mass or less, and particularly preferably 80% by mass or less of the total polymerizable unsaturated monomer. Preferably, it is added in a range of 70% by mass or less. The ratio of the monofunctional and bifunctional polymerizable unsaturated monomer is preferably 1 to 95% by mass, more preferably 3 to 95% by mass, and particularly preferably 5 to 90% by mass of the total polymerizable unsaturated monomer. It is added in the range of mass%. The ratio of the polyfunctional polymerizable unsaturated monomer having 3 or more unsaturated bond-containing groups is preferably 80% by mass or less, more preferably 70% by mass or less, and particularly preferably the total polymerizable unsaturated monomer. Is added in a range of 60% by mass or less. Since the viscosity of a composition can be lowered | hung by making the ratio of the polymerizable unsaturated monomer which has 3 or more of polymerizable unsaturated bond containing groups into 80 mass% or less, it is preferable.
光重合開始剤
 本発明の組成物には、光重合開始剤が含まれることが好ましい。本発明に用いられる光重合開始剤は、全組成物中、例えば、0.1~15質量%含有し、好ましくは0.2~12質量%であり、さらに好ましくは、0.3~10質量%である。2種類以上の光重合開始剤を用いる場合は、その合計量が前記範囲となることが好ましい。
 光重合開始剤の割合を0.1質量%以上とすることにより、感度(速硬化性)、解像性、ラインエッジラフネス性、塗膜強度が向上する傾向にあり好ましい。一方、光重合開始剤の割合を15質量%以下とすることにより、光透過性、着色性、取り扱い性などが向上する傾向にあり、好ましい。
Photopolymerization initiator The composition of the present invention preferably contains a photopolymerization initiator. The photopolymerization initiator used in the present invention contains, for example, 0.1 to 15% by mass in the total composition, preferably 0.2 to 12% by mass, and more preferably 0.3 to 10% by mass. %. When using 2 or more types of photoinitiators, it is preferable that the total amount becomes the said range.
It is preferable that the ratio of the photopolymerization initiator is 0.1% by mass or more because sensitivity (fast curability), resolution, line edge roughness, and coating film strength tend to be improved. On the other hand, when the ratio of the photopolymerization initiator is 15% by mass or less, the light transmittance, the colorability, the handleability and the like tend to be improved, which is preferable.
 本発明で用いる光重合開始剤は、使用する光源の波長に対して活性を有するものが配合され、適切な活性種を発生させるものを用いる。 As the photopolymerization initiator used in the present invention, a photopolymerization initiator that is active with respect to the wavelength of the light source to be used is mixed to generate an appropriate active species.
 本発明で使用されるラジカル光重合開始剤は、例えば、市販されている開始剤を用いることができる。これらの例としては、例えば、特開平2008-105414号公報の段落番号0091に記載のものを好ましく採用することができる。 As the radical photopolymerization initiator used in the present invention, for example, a commercially available initiator can be used. As these examples, for example, those described in paragraph No. 0091 of JP-A No. 2008-105414 can be preferably used.
 さらに本発明の組成物には、光重合開始剤の他に、光増感剤を加えて、UV領域の波長を調整することもできる。本発明において用いることができる典型的な増感剤としては、クリベロ〔J.V.Crivello,Adv.in Polymer Sci,62,1(1984)〕に開示しているものが挙げられ、具体的には、ピレン、ペリレン、アクリジンオレンジ、チオキサントン、2-クロロチオキサントン、ベンゾフラビン、N-ビニルカルバゾール、9,10-ジブトキシアントラセン、アントラキノン、クマリン、ケトクマリン、フェナントレン、カンファキノン、フェノチアジン誘導体などを挙げることができる。 Furthermore, in addition to the photopolymerization initiator, a photosensitizer may be added to the composition of the present invention to adjust the wavelength in the UV region. Typical sensitizers that can be used in the present invention include those disclosed in Crivello [JVCrivello, Adv. In Polymers Sci, 62, 1 (1984)], specifically pyrene. Perylene, acridine orange, thioxanthone, 2-chlorothioxanthone, benzoflavine, N-vinylcarbazole, 9,10-dibutoxyanthracene, anthraquinone, coumarin, ketocoumarin, phenanthrene, camphorquinone, phenothiazine derivatives and the like.
 本発明の組成物は、表面張力が、18~30mN/mの範囲にあることが好ましく、20~28mN/mの範囲にあることがより好ましい。このような範囲とすることにより、表面平滑性を向上させるという効果が得られる。
 なお、本発明の組成物は、調製時における水分量が好ましくは2.0質量%以下、より好ましくは1.5質量%、さらに好ましくは1.0質量%以下である。調製時における水分量を2.0質量%以下とすることにより、本発明の組成物の保存性をより安定にすることができる。
The composition of the present invention preferably has a surface tension in the range of 18 to 30 mN / m, and more preferably in the range of 20 to 28 mN / m. By setting it as such a range, the effect of improving surface smoothness is acquired.
In addition, the water content at the time of preparation of the composition of the present invention is preferably 2.0% by mass or less, more preferably 1.5% by mass, and still more preferably 1.0% by mass or less. By making the water content at the time of preparation 2.0% by mass or less, the storage stability of the composition of the present invention can be made more stable.
酸化防止剤
 さらに、本発明の組成物には、公知の酸化防止剤を含んでもよい。酸化防止剤を添加することにより、感光性樹脂層の膜厚減少を低減することができる場合がある。本発明に用いられる酸化防止剤は、全組成物中、例えば、0.01~10質量%含有し、好ましくは0.2~5質量%である。2種類以上の酸化防止剤を用いる場合は、その合計量が前記範囲となる。
 酸化防止剤は、分解による膜厚減少を低減できるという利点がある。このような酸化防止剤としては、ヒドラジド類、ヒンダードアミン系酸化防止剤、含窒素複素環メルカプト系化合物、チオエーテル系酸化防止剤、ヒンダードフェノール系酸化防止剤、アスコルビン酸類、硫酸亜鉛、チオシアン酸塩類、チオ尿素誘導体、糖類、亜硝酸塩、亜硫酸塩、チオ硫酸塩、ヒドロキシルアミン誘導体などを挙げることができる。この中では、特にヒンダードフェノール系酸化防止剤、チオエーテル系酸化防止剤が硬化膜の着色、膜厚減少の観点で好ましい。
Antioxidant Furthermore, the composition of the present invention may contain a known antioxidant. By adding an antioxidant, it may be possible to reduce the decrease in the thickness of the photosensitive resin layer. The antioxidant used in the present invention contains, for example, 0.01 to 10% by mass, preferably 0.2 to 5% by mass in the total composition. When using 2 or more types of antioxidant, the total amount becomes the said range.
Antioxidants have the advantage of being able to reduce film thickness reduction due to decomposition. Such antioxidants include hydrazides, hindered amine antioxidants, nitrogen-containing heterocyclic mercapto compounds, thioether antioxidants, hindered phenol antioxidants, ascorbic acids, zinc sulfate, thiocyanates, Examples include thiourea derivatives, sugars, nitrites, sulfites, thiosulfates, hydroxylamine derivatives, and the like. Among these, hindered phenol antioxidants and thioether antioxidants are particularly preferable from the viewpoint of coloring the cured film and reducing the film thickness.
 酸化防止剤の市販品としては、Irganox1010、1035、1076、1222(以上、チバガイギー(株)製)、Antigene P、3C、FR、スミライザーS、スミライザーGA80(住友化学工業製)、アデカスタブAO70、AO80、AO503((株)ADEKA製)等が挙げられ、これらは単独で用いてもよいし、混合して用いてもよい。 As commercially available products of antioxidants, Irganox 1010, 1035, 1076, 1222 (manufactured by Ciba Geigy Co., Ltd.), Antigene P, 3C, FR, Sumilyzer S, Sumilyzer GA80 (manufactured by Sumitomo Chemical Co., Ltd.), ADK STAB AO70, AO80, AO503 (made by ADEKA Co., Ltd.) etc. are mentioned, These may be used independently and may be used in mixture.
 着色剤
 本発明の組成物は、着色剤を含んでいてもよい。本発明における着色剤としては、有機顔料、無機顔料、染料等を好適に用いることができ、特開2005-17716号公報の段落番号0038~0054に記載の顔料および染料や、特開2004-361447号公報の段落番号0068~0072に記載の顔料や、特開2005-17521号公報の段落番号0080~0088に記載の着色剤を好ましい例として挙げることができる。また、カーボンブラック、酸化チタン、4酸化鉄等の金属酸化物粉、金属硫化物粉、金属粉といった遮光剤の他に、赤、青、緑色等の顔料の混合物等を用いることができる。無機顔料としては、金属酸化物、金属錯塩等で示される金属化合物であり、具体的には鉄、コバルト、アルミニウム、カドミウム、鉛、銅、チタン、マグネシウム、クロム、亜鉛、アンチモン等の金属酸化物、金属複合酸化物を挙げることができる。有機顔料としては、C.I.Pigment Yellow 11, 24, 31, 53, 83, 99, 108, 109, 110, 138, 139,151, 154, 167、C.I.Pigment Orange 36, 38, 43、C.I.Pigment Red 105, 122, 149, 150, 155, 171, 175, 176, 177, 209、C.I.Pigment Violet 19, 23, 32, 39、C.I.Pigment Blue 1, 2, 15, 16, 22, 60, 66、C.I.Pigment Green 7, 36, 37、C.I.Pigment Brown 25, 28、C.I.Pigment Black 1, 7を例示できる。公知の着色剤(染料、顔料)を使用することができる。固形分中の着色剤の比率は、光遮蔽性観点から、20~80質量%であることが好ましく、30~70質量%であることがより好ましく、40~70質量%であることがさらに好ましい。20質量%以上とすることにより、遮蔽性がより十分となり、80質量%以下とすることにより、パターン硬度が向上する傾向にあり好ましい。
 上記顔料は分散液として使用することが望ましい。この分散液は、前記顔料と顔料分散剤とを予め混合して得られる組成物を、後述する有機溶媒(またはビヒクル)に添加して分散させることによって調製することができる。前記ビビクルとは、塗料が液体状態にある時に顔料を分散させている媒質の部分をいい、液状であって前記顔料と結合して塗膜を固める部分(バインダー)と、これを溶解希釈する成分(有機溶媒)とを含む。前記顔料を分散させる際に使用する分散機としては、特に制限はなく、例えば、朝倉邦造著、「顔料の事典」、第一版、朝倉書店、2000年、438項に記載されているニーダー、ロールミル、アトライダー、スーパーミル、ディゾルバ、ホモミキサー、サンドミル等の公知の分散機が挙げられる。さらに該文献の310項に記載の機械的摩砕により、摩擦力を利用し微粉砕してもよい。有機溶剤を含まない分散体を調製するには予め高揮発性(低沸点)溶剤を含んだ系において分散処理を実施し、その後溶剤を揮発させるあるいは、溶剤揮発と同時に上記単量体を徐々に添加して最終的に溶剤を除去することができる。さらに上記単量体を希釈媒体として利用し分散することもできる。
 本発明で用いる着色剤(顔料)は、分散安定性の観点から、数平均粒子サイズ0.001~0.1μmのものが好ましく、さらに0.01~0.08μmのものが好ましい。また、顔料数平均粒子サイズが0.1μmを超えると、遮光性が低下し、好ましくない。尚、ここで言う「粒子サイズ」とは粒子の電子顕微鏡写真画像を同面積の円とした時の直径を言い、また「数平均粒子サイズ」とは多数の粒子について上記の粒子サイズを求め、この100個平均値をいう。
Colorant The composition of the present invention may contain a colorant. As the colorant in the present invention, organic pigments, inorganic pigments, dyes and the like can be suitably used. The pigments and dyes described in paragraph Nos. 0038 to 0054 of JP-A-2005-17716, JP-A-2004-361447, and the like. Preferable examples include pigments described in paragraph Nos. 0068 to 0072 of JP-A No. 2005-105, and colorants described in paragraph Nos. 0080 to 0088 of JP-A No. 2005-17521. In addition to light-shielding agents such as metal oxide powders such as carbon black, titanium oxide, and iron oxide, metal sulfide powders, and metal powders, a mixture of pigments such as red, blue, and green can be used. Examples of inorganic pigments are metal compounds such as metal oxides and metal complex salts. Specifically, metal oxides such as iron, cobalt, aluminum, cadmium, lead, copper, titanium, magnesium, chromium, zinc, and antimony And metal complex oxides. Organic pigments include CIPigment Yellow 11, 24, 31, 53, 83, 99, 108, 109, 110, 138, 139,151, 154, 167, CIPigment Orange 36, 38, 43, CIPigment Red 105, 122, 149, 150 , 155, 171, 175, 176, 177, 209, CIPigment Violet 19, 23, 32, 39, CIPigment Blue 1, 2, 15, 16, 22, 60, 66, CIPigment Green 7, 36, 37, CIPigment Brown 25 28, CIPigment Black 1, 7. Known colorants (dyes and pigments) can be used. The ratio of the colorant in the solid content is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and further preferably 40 to 70% by mass from the viewpoint of light shielding properties. . When the amount is 20% by mass or more, the shielding property becomes more sufficient, and when the amount is 80% by mass or less, the pattern hardness tends to be improved.
The pigment is desirably used as a dispersion. This dispersion can be prepared by adding and dispersing a composition obtained by previously mixing the pigment and the pigment dispersant in an organic solvent (or vehicle) described later. The vehicle refers to a portion of a medium in which the pigment is dispersed when the paint is in a liquid state. The portion is a liquid that binds to the pigment and hardens the coating film (binder), and a component that dissolves and dilutes the portion. (Organic solvent). The disperser used for dispersing the pigment is not particularly limited. For example, the kneader described in Kazuzo Asakura, “Encyclopedia of Pigments”, first edition, Asakura Shoten, 2000, 438, Known dispersing machines such as a roll mill, an atrider, a super mill, a dissolver, a homomixer, and a sand mill can be used. Further, the material may be finely pulverized using frictional force by mechanical grinding described in Item 310 of the document. In order to prepare a dispersion containing no organic solvent, a dispersion treatment is carried out in advance in a system containing a highly volatile (low boiling point) solvent, and then the solvent is volatilized or the monomer is gradually removed simultaneously with the solvent volatilization. It can be added to finally remove the solvent. Further, the monomer can be used as a diluent medium and dispersed.
The colorant (pigment) used in the present invention preferably has a number average particle size of 0.001 to 0.1 μm, more preferably 0.01 to 0.08 μm, from the viewpoint of dispersion stability. On the other hand, when the pigment number average particle size exceeds 0.1 μm, the light shielding property is lowered, which is not preferable. The “particle size” as used herein refers to the diameter when the electron micrograph image of the particle is a circle of the same area, and the “number average particle size” refers to the above particle size for a number of particles, This 100 average value is said.
バインダー
 本発明の組成物は、バインダーを含んでいてもよい。バインダーとしては、種々の公知のポリマーが使用できる。本発明によれば、従来のフォトリソ用ではその現像性の観点から用いられるバインダーには酸基などアルカリ可溶性が必要であったが、本発明に用いられるバインダーはその制約がない。具体的には、特開平5-72724号公報に記載されている有機高分子物質が好ましく、ポリエチレン、ポリプロピレンなどのポリオレフィン、エチレンと酢酸ビニル或いはそのケン化物の様なエチレン共重合体、エチレンとアクリル酸エステル或いはそのケン化物、ポリ塩化ビニル、塩化ビニルと酢酸ビニルおよびそのケン化物の様な塩化ビニル共重合体、ポリ塩化ビニリデン、塩化ビニリデン共重合体、ポリスチレン、スチレンと(メタ)アクリル酸エステル或いはそのケン化物の様なスチレン共重合体、ポリビニルトルエン、ビニルトルエンと(メタ)アクリル酸エステル或いはそのケン化物の様なビニルトルエン共重合体、ポリ(メタ)アクリル酸エステル、(メタ)アクリル酸ブチルと酢酸ビニル等の(メタ)アクリル酸エステル共重合体、酢酸ビニル共重合体ナイロン、共重合ナイロン、N-アルコキシメチル化ナイロン、N-ジメチルアミノ化ナイロンの様なポリアミド樹脂等の有機高分子などが挙げられる。用いるバインダーの重量平均分子量は1000~100000であり、1000以下では、バインダーとしての効果が得られず、100000を超えると、本発明の組成物の粘度が高くなりすぎる。バインダーの添加量は、好ましくは全固形分に対し10重量%以下であり、より好ましくは5質量%以下である。10重量%より多いと、相対的に顔料添加量の減少および単量体添加量の減少を招く傾向にあり、硬化物強度の低下、光学濃度の低下をきたす場合がある。
Binder The composition of the present invention may contain a binder. Various known polymers can be used as the binder. According to the present invention, in conventional photolitho, the binder used from the viewpoint of developability needs to be alkali-soluble such as an acid group, but the binder used in the present invention is not limited thereto. Specifically, organic polymer materials described in JP-A-5-72724 are preferable, polyolefins such as polyethylene and polypropylene, ethylene copolymers such as ethylene and vinyl acetate or saponified products thereof, and ethylene and acrylic. Acid ester or saponified product thereof, polyvinyl chloride, vinyl chloride copolymer such as vinyl chloride and vinyl acetate and saponified product thereof, polyvinylidene chloride, vinylidene chloride copolymer, polystyrene, styrene and (meth) acrylic acid ester or Styrene copolymer such as saponified product, polyvinyltoluene, vinyltoluene and (meth) acrylic ester or vinyltoluene copolymer such as saponified product, poly (meth) acrylic ester, butyl (meth) acrylate And (meth) acrylic acid esters such as vinyl acetate Polymers, vinyl copolymers nylon acetate, copolymer nylon, N- alkoxymethyl nylon, organic polymeric polyamide resins such as N- dimethylamino nylon and the like. The binder used has a weight average molecular weight of 1,000 to 100,000, and if it is 1,000 or less, the effect as a binder cannot be obtained, and if it exceeds 100,000, the viscosity of the composition of the present invention becomes too high. The amount of the binder added is preferably 10% by weight or less, more preferably 5% by weight or less, based on the total solid content. When the amount is more than 10% by weight, the pigment addition amount and the monomer addition amount tend to be relatively reduced, and the strength of the cured product and the optical density may be lowered.
その他の成分
 本発明の組成物には前記成分の他に必要に応じて離型剤、シランカップリング剤、重合禁止剤、紫外線吸収剤、光安定剤、老化防止剤、可塑剤、密着促進剤、熱重合開始剤、着色剤、エラストマー粒子、光酸増殖剤、光塩基発生剤、塩基性化合物、流動調整剤、消泡剤、分散剤等を添加してもよい。
Other components In addition to the above-described components, the composition of the present invention may include a release agent, a silane coupling agent, a polymerization inhibitor, an ultraviolet absorber, a light stabilizer, an anti-aging agent, a plasticizer, and an adhesion promoter. , Thermal polymerization initiators, colorants, elastomer particles, photoacid proliferators, photobase generators, basic compounds, flow regulators, antifoaming agents, dispersants and the like may be added.
 剥離性をさらに向上する目的で、本発明の組成物には、離型剤を任意に配合することができる。具体的には、本発明の組成物の層に押し付けたモールドを、樹脂層の面荒れや版取られを起こさずにきれいに剥離できるようにする目的で添加される。離型剤としては従来公知の離型剤、例えば、シリコーン系離型剤、ポリエチレンワックス、アミドワックス、テフロンパウダー(テフロンは登録商標)等の固形ワックス、フッ素系、リン酸エステル系化合物等が何れも使用可能である。また、これらの離型剤をモールドに付着させておくこともできる。 For the purpose of further improving releasability, a release agent can be arbitrarily blended in the composition of the present invention. Specifically, it is added for the purpose of enabling the mold pressed against the layer of the composition of the present invention to be peeled cleanly without causing the resin layer to become rough or take off the plate. Examples of the release agent include conventionally known release agents such as silicone-based release agents, polyethylene wax, amide wax, Teflon powder (Teflon is a registered trademark), fluorine-based, phosphate ester-based compounds, etc. Can also be used. Moreover, these mold release agents can be adhered to the mold.
 シリコーン系離型剤は、本発明で用いられる重合性単量体と組み合わせた時にモールドからの剥離性が特に良好であり、版取られ現象が起こり難くなる。シリコーン系離型剤は、オルガノポリシロキサン構造を基本構造とする離型剤であり、例えば、未変性または変性シリコーンオイル、トリメチルシロキシケイ酸を含有するポリシロキサン、シリコーン系アクリル樹脂等が該当し、一般的にハードコート用組成物で用いられているシリコーン系レベリング剤の適用も可能である。 The silicone-based mold release agent has particularly good releasability from the mold when combined with the polymerizable monomer used in the present invention, and the phenomenon that the plate is taken off hardly occurs. Silicone mold release agent is a mold release agent having an organopolysiloxane structure as a basic structure, and includes, for example, unmodified or modified silicone oil, polysiloxane containing trimethylsiloxysilicic acid, silicone acrylic resin, and the like. It is also possible to apply a silicone leveling agent generally used in hard coat compositions.
 変性シリコーンオイルは、ポリシロキサンの側鎖および/または末端を変性したものであり、反応性シリコーンオイルと非反応性シリコーンオイルとに分けられる。反応性シリコーンオイルとしては、アミノ変性、エポキシ変性、カルボキシル変性、カルビノール変性、メタクリル変性、メルカプト変性、フェノール変性、片末端反応性、異種官能基変性等が挙げられる。非反応性シリコーンオイルとしては、ポリエーテル変性、メチルスチリル変性、アルキル変性、高級脂肪エステル変性、親水性特殊変性、高級アルコキシ変性、高級脂肪酸変性、フッ素変性等が挙げられる。
 一つのポリシロキサン分子に上記したような変性方法の2つ以上を行うこともできる。
The modified silicone oil is obtained by modifying the side chain and / or terminal of polysiloxane, and is classified into a reactive silicone oil and a non-reactive silicone oil. Examples of the reactive silicone oil include amino modification, epoxy modification, carboxyl modification, carbinol modification, methacryl modification, mercapto modification, phenol modification, one-end reactivity, and different functional group modification. Examples of the non-reactive silicone oil include polyether modification, methylstyryl modification, alkyl modification, higher fatty ester modification, hydrophilic special modification, higher alkoxy modification, higher fatty acid modification, and fluorine modification.
Two or more of the above-described modification methods can be performed on one polysiloxane molecule.
 変性シリコーンオイルは組成物成分との適度な相溶性があることが好ましい。特に、組成物中に必要に応じて配合される他の塗膜形成成分に対して反応性がある反応性シリコーンオイルを用いる場合には、本発明の組成物を硬化した硬化膜中に化学結合よって固定されるので、当該硬化膜の密着性阻害、汚染、劣化等の問題が起き難い。特に、蒸着工程での蒸着層との密着性向上には有効である。また、(メタ)アクリロイル変性シリコーン、ビニル変性シリコーン等の、光硬化性を有する官能基で変性されたシリコーンの場合は、本発明の組成物と架橋するため、硬化後の特性に優れる。 It is preferable that the modified silicone oil has appropriate compatibility with the composition components. In particular, when using a reactive silicone oil that is reactive with other coating film forming components blended as necessary in the composition, it is chemically bonded in the cured film obtained by curing the composition of the present invention. Therefore, since it is fixed, problems such as adhesion inhibition, contamination, and deterioration of the cured film are unlikely to occur. In particular, it is effective for improving the adhesion with the vapor deposition layer in the vapor deposition step. In addition, in the case of silicone modified with a photocurable functional group such as (meth) acryloyl-modified silicone or vinyl-modified silicone, it is excellent in characteristics after curing because it is crosslinked with the composition of the present invention.
 トリメチルシロキシケイ酸を含有するポリシロキサンは表面にブリードアウトし易く剥離性に優れており、表面にブリードアウトしても密着性に優れ、金属蒸着やオーバーコート層との密着性にも優れている点で好ましい。
 上記離型剤は1種類のみ或いは2種類以上を組み合わせて添加することができる。
Polysiloxane containing trimethylsiloxysilicic acid is easy to bleed out on the surface and has excellent releasability, excellent adhesion even when bleeded out to the surface, and excellent adhesion to metal deposition and overcoat layer This is preferable.
The said mold release agent can be added only in 1 type or in combination of 2 or more types.
 離型剤を本発明の組成物に添加する場合、組成物全量中に0.001~10質量%の割合で配合することが好ましく、0.01~5質量%の範囲で添加することがより好ましい。離型剤の割合が上記範囲未満では、モールドと光ナノインプリントリソグラフィ用硬化性組成物層の剥離性向上効果が不充分となりやすい。一方、離型剤の割合が上記範囲を超えると組成物の塗工時のはじきによる塗膜面の面荒れの問題が生じたり、製品において基材自身および近接する層、例えば、蒸着層の密着性を阻害したり、転写時に皮膜破壊等(膜強度が弱くなりすぎる)を引き起こす等の点で好ましくない。
 離型剤の割合を0.01質量%以上とすることにより、モールドと感光性樹脂層との剥離性硬化がより発揮されやすい傾向にある。一方、離型剤の割合が10質量%以下であると、組成物の塗工時のはじきによる塗膜面の面荒れの問題が生じにくく、製品において基材自身および近接する層、例えば、蒸着層の密着性を阻害しにくく、転写時に皮膜破壊等(膜強度が弱くなりすぎる)を引き起こしにくい等の点で好ましい。
When a release agent is added to the composition of the present invention, it is preferably blended in a proportion of 0.001 to 10% by mass in the total amount of the composition, more preferably in a range of 0.01 to 5% by mass. preferable. If the ratio of a mold release agent is less than the said range, the peelable improvement effect of a mold and the curable composition layer for optical nanoimprint lithography will become inadequate. On the other hand, if the ratio of the release agent exceeds the above range, the surface of the coating film may be rough due to repelling during coating of the composition, or the substrate itself and the adjacent layer in the product, for example, the adhesion of the vapor deposition layer It is not preferable from the viewpoint of inhibiting the properties and causing film breakage or the like during transfer (film strength becomes too weak).
By making the ratio of the release agent 0.01% by mass or more, peelable curing between the mold and the photosensitive resin layer tends to be more easily exhibited. On the other hand, when the ratio of the release agent is 10% by mass or less, the problem of surface roughness of the coating film due to repelling during coating of the composition hardly occurs, and the substrate itself and adjacent layers in the product, for example, vapor deposition It is preferable in that the adhesiveness of the layer is hardly hindered and the film is not easily broken during transfer (film strength becomes too weak).
 本発明の組成物には、微細凹凸パターンを有する表面構造の耐熱性、強度、或いは、金属蒸着層との密着性を高めるために、有機金属カップリング剤を配合してもよい。また、有機金属カップリング剤は、熱硬化反応を促進させる効果も持つため有効である。有機金属カップリング剤としては、例えば、シランカップリング剤、チタンカップリング剤、ジルコニウムカップリング剤、アルミニウムカップリング剤、スズカップリング剤等の各種カップリング剤を使用できる。 In the composition of the present invention, an organic metal coupling agent may be blended in order to improve the heat resistance, strength, or adhesion to the metal vapor deposition layer of the surface structure having a fine concavo-convex pattern. In addition, the organometallic coupling agent is effective because it has an effect of promoting the thermosetting reaction. As the organometallic coupling agent, for example, various coupling agents such as a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent, and a tin coupling agent can be used.
 本発明の組成物に用いるシランカップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニルシラン;γ-メタクリロキシプロピルトリメトキシシラン;β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等のエポキシシラン;N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノシラン;および、その他のシランカップリング剤として、γ-メルカプトプロピルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルメチルジエトキシシラン等が挙げられる。 Examples of the silane coupling agent used in the composition of the present invention include vinyl silanes such as vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, and vinyltrimethoxysilane; γ-methacryloxypropyltrimethoxysilane An epoxy silane such as β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane; N-β- (aminoethyl)- aminosilanes such as γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane; and Other shi Examples of the run coupling agent include γ-mercaptopropyltrimethoxysilane, γ-chloropropylmethyldimethoxysilane, and γ-chloropropylmethyldiethoxysilane.
 チタンカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N-アミノエチル・アミノエチル)チタネート、ジクミルフェニルオキシアセテートチタネート、ジイソステアロイルエチレンチタネート等が挙げられる。 Examples of titanium coupling agents include isopropyl triisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite) Titanate, tetra (2,2-diallyloxymethyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, isopropyldimethacrylisostearoyl Titanate, isopropyl isostearoyl diacryl titanate, iso Ropirutori (dioctyl phosphate) titanate, isopropyl tricumylphenyl titanate, isopropyl tri (N- aminoethyl-aminoethyl) titanate, dicumyl phenyloxy acetate titanate, diisostearoyl ethylene titanate.
 ジルコニウムカップリング剤としては、例えば、テトラ-n-プロポキシジルコニウム、テトラ-ブトキシジルコニウム、ジルコニウムテトラアセチルアセトネート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)等が挙げられる。 Examples of the zirconium coupling agent include tetra-n-propoxyzirconium, tetra-butoxyzirconium, zirconium tetraacetylacetonate, zirconium dibutoxybis (acetylacetonate), zirconium tributoxyethyl acetoacetate, zirconium butoxyacetylacetonate bis. (Ethyl acetoacetate) and the like.
 アルミニウムカップリング剤としては、例えば、アルミニウムイソプロピレート、モノsec-ブトキシアルミニウムジイソプロピレート、アルミニウムsec-ブチレート、アルミニウムエチレート、エチルアセトアセテエートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、アルキルアセトアセテートアルミニウムジイソプロピレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトアセテート)等を挙げることができる。 Examples of the aluminum coupling agent include aluminum isopropylate, monosec-butoxyaluminum diisopropylate, aluminum sec-butyrate, aluminum ethylate, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), alkylacetate Acetate aluminum diisopropylate, aluminum monoacetylacetonate bis (ethyl acetoacetate), aluminum tris (acetylacetoacetate) and the like can be mentioned.
 上記有機金属カップリング剤は、光ナノインプリントリソグラフィ用硬化性組成物の固形分全量中に0.001~10質量%の割合で任意に配合できる。有機金属カップリング剤の割合を0.001質量%以上とすることにより、耐熱性、強度、蒸着層との密着性の付与の向上についてより効果的な傾向にある。一方、有機金属カップリング剤の割合を10質量%以下とすることにより、組成物の安定性、成膜性の欠損を抑止できる傾向にあり好ましい。 The above-mentioned organometallic coupling agent can be arbitrarily blended at a ratio of 0.001 to 10% by mass in the total solid content of the curable composition for optical nanoimprint lithography. By setting the ratio of the organometallic coupling agent to 0.001% by mass or more, there is a tendency to be more effective in improving heat resistance, strength, and adhesion with the vapor deposition layer. On the other hand, it is preferable that the ratio of the organometallic coupling agent is 10% by mass or less because the stability of the composition and the deficiency in film formability can be suppressed.
 本発明の組成物には、貯蔵安定性等を向上させるために、重合禁止剤を配合してもよい。重合禁止剤としては、例えば、ハイドロキノン、tert-ブチルハイドロキノン、カテコール、ハイドロキノンモノメチルエーテル等のフェノール類;ベンゾキノン、ジフェニルベンゾキノン等のキノン類;フェノチアジン類;銅類等を用いることができる。重合禁止剤は、本発明の組成物の全量に対して任意に0.001~10質量%の割合で配合するのが好ましい。 In the composition of the present invention, a polymerization inhibitor may be blended in order to improve storage stability and the like. As the polymerization inhibitor, for example, phenols such as hydroquinone, tert-butylhydroquinone, catechol and hydroquinone monomethyl ether; quinones such as benzoquinone and diphenylbenzoquinone; phenothiazines; coppers and the like can be used. The polymerization inhibitor is preferably blended arbitrarily in a proportion of 0.001 to 10% by mass with respect to the total amount of the composition of the present invention.
 紫外線吸収剤の市販品としては、Tinuvin P、234、320、326、327、328、213(以上、チバガイギー(株)製)、Sumisorb110、130、140、220、250、300、320、340、350、400(以上、住友化学工業(株)製)等が挙げられる。紫外線吸収剤は、光ナノインプリントリソグラフィ用硬化性組成物の全量に対して任意に0.01~10質量%の割合で配合するのが好ましい。 Commercially available UV absorbers include Tinuvin P, 234, 320, 326, 327, 328, 213 (above, manufactured by Ciba Geigy Co., Ltd.), Sumisorb 110, 130, 140, 220, 250, 300, 320, 340, 350. 400 (manufactured by Sumitomo Chemical Co., Ltd.) and the like. The ultraviolet absorber is preferably blended arbitrarily in a proportion of 0.01 to 10% by mass with respect to the total amount of the curable composition for optical nanoimprint lithography.
 光安定剤の市販品としては、Tinuvin 292、144、622LD(以上、チバガイギー(株)製)、サノールLS-770、765、292、2626、1114、744(以上、三共化成工業(株)製)等が挙げられる。光安定剤は組成物の全量に対し、0.01~10質量%の割合で配合するのが好ましい。 Commercially available light stabilizers are Tinuvin® 292, 144, 622LD (above, manufactured by Ciba Geigy Co., Ltd.), Sanol LS-770, 765, 292, 2626, 1114, 744 (above, manufactured by Sankyo Chemical Industry Co., Ltd.) Etc. The light stabilizer is preferably blended at a ratio of 0.01 to 10% by mass with respect to the total amount of the composition.
 老化防止剤の市販品としては、Antigene W、S、P、3C、6C、RD-G、FR、AW(以上、住友化学工業(株)製)等が挙げられる。老化防止剤は組成物の全量に対し、0.01~10質量%の割合で配合するのが好ましい。 Commercially available anti-aging agents include Antigene® W, S, P, 3C, 6C, RD-G, FR, AW (above, manufactured by Sumitomo Chemical Co., Ltd.) and the like. The antiaging agent is preferably blended at a ratio of 0.01 to 10% by mass with respect to the total amount of the composition.
 本発明の組成物には基板との接着性や膜の柔軟性、硬度等を調整するために可塑剤を加えることが可能である。好ましい可塑剤の具体例としては、ジオクチルフタレート、ジドデシルフタレート、トリエチレングリコールジカプリレート、ジメチルグリコールフタレート、トリクレジルホスフェート、ジオクチルアジペート、ジブチルセバケート、トリアセチルグリセリン、ジメチルアジペート、ジエチルアジペート、ジ(n-ブチル)アジペート、ジメチルスベレート、ジエチルスベレート、ジ(n-ブチル)スベレート等があり、可塑剤は組成物中の30質量%以下で任意に添加することができる。好ましくは20質量%以下で、より好ましくは10質量%以下である。可塑剤の添加効果を得るためには、0.1質量%以上が好ましい。 A plasticizer can be added to the composition of the present invention in order to adjust the adhesion to the substrate, the flexibility of the film, the hardness, and the like. Specific examples of preferred plasticizers include dioctyl phthalate, didodecyl phthalate, triethylene glycol dicaprylate, dimethyl glycol phthalate, tricresyl phosphate, dioctyl adipate, dibutyl sebacate, triacetyl glycerin, dimethyl adipate, diethyl adipate, di There are (n-butyl) adipate, dimethyl suberate, diethyl suberate, di (n-butyl) suberate and the like, and the plasticizer can be optionally added at 30% by mass or less in the composition. Preferably it is 20 mass% or less, More preferably, it is 10 mass% or less. In order to obtain the effect of adding a plasticizer, 0.1% by mass or more is preferable.
 本発明の組成物には基板との接着性等を調整するために密着促進剤を添加しても良い。密着促進剤として、ベンズイミダゾール類やポリベンズイミダゾール類、低級ヒドロキシアルキル置換ピリジン誘導体、含窒素複素環化合物、ウレアまたはチオウレア、有機リン化合物、8-オキシキノリン、4-ヒドロキシプテリジン、1,10-フェナントロリン、2,2‘-ビピリジン誘導体、ベンゾトリアゾール類、有機リン化合物とフェニレンジアミン化合物、2-アミノ-1-フェニルエタノール、N-フェニルエタノールアミン、N-エチルジエタノールアミン,N-エチルジエタノールアミン、N-エチルエタノールアミンおよび誘導体、ベンゾチアゾール誘導体などを使用することができる。密着促進剤は、組成物中の好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。密着促進剤の添加は効果を得るためには、0.1質量%以上が好ましい。 An adhesion promoter may be added to the composition of the present invention in order to adjust adhesion to the substrate. Adhesion promoters include benzimidazoles and polybenzimidazoles, lower hydroxyalkyl-substituted pyridine derivatives, nitrogen-containing heterocyclic compounds, urea or thiourea, organophosphorus compounds, 8-oxyquinoline, 4-hydroxypteridine, 1,10-phenanthroline 2,2'-bipyridine derivatives, benzotriazoles, organophosphorus compounds and phenylenediamine compounds, 2-amino-1-phenylethanol, N-phenylethanolamine, N-ethyldiethanolamine, N-ethyldiethanolamine, N-ethylethanol Amines and derivatives, benzothiazole derivatives, and the like can be used. The adhesion promoter in the composition is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less. The addition of the adhesion promoter is preferably 0.1% by mass or more in order to obtain the effect.
 本発明の組成物を硬化させる場合、必要に応じて熱重合開始剤も添加することができる。好ましい熱重合開始剤としては、例えば、過酸化物、アゾ化合物を挙げることができる。より具体例には、ベンゾイルパーオキサイド、tert-ブチル-パーオキシベンゾエート、アゾビスイソブチロニトリル等を挙げることができる。 In the case of curing the composition of the present invention, a thermal polymerization initiator can be added as necessary. Examples of preferable thermal polymerization initiators include peroxides and azo compounds. More specific examples include benzoyl peroxide, tert-butyl-peroxybenzoate, azobisisobutyronitrile and the like.
 本発明の組成物は、パターン形状、感度等を調整する目的で、必要に応じて光塩基発生剤を添加してもよい。例えば、2-ニトロベンジルシクロヘキシルカルバメート、トリフェニルメタノール、O-カルバモイルヒドロキシルアミド、O-カルバモイルオキシム、[[(2,6-ジニトロベンジル)オキシ]カルボニル]シクロヘキシルアミン、ビス[[(2-ニトロベンジル)オキシ]カルボニル]ヘキサン1,6-ジアミン、4-(メチルチオベンゾイル)-1-メチル-1-モルホリノエタン、(4-モルホリノベンゾイル)-1-ベンジル-1-ジメチルアミノプロパン、N-(2-ニトロベンジルオキシカルボニル)ピロリジン、ヘキサアンミンコバルト(III)トリス(トリフェニルメチルボレート)、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン、2,6-ジメチル-3,5-ジアセチル-4-(2’-ニトロフェニル)-1,4-ジヒドロピリジン、2,6-ジメチル-3,5-ジアセチル-4-(2’,4’-ジニトロフェニル)-1,4-ジヒドロピリジン等が好ましいものとして挙げられる。 In the composition of the present invention, a photobase generator may be added as necessary for the purpose of adjusting the pattern shape, sensitivity, and the like. For example, 2-nitrobenzylcyclohexylcarbamate, triphenylmethanol, O-carbamoylhydroxylamide, O-carbamoyloxime, [[(2,6-dinitrobenzyl) oxy] carbonyl] cyclohexylamine, bis [[(2-nitrobenzyl) Oxy] carbonyl] hexane 1,6-diamine, 4- (methylthiobenzoyl) -1-methyl-1-morpholinoethane, (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane, N- (2-nitro Benzyloxycarbonyl) pyrrolidine, hexaamminecobalt (III) tris (triphenylmethylborate), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone, 2,6-dimethyl-3,5- Diacetyl-4 (2′-nitrophenyl) -1,4-dihydropyridine, 2,6-dimethyl-3,5-diacetyl-4- (2 ′, 4′-dinitrophenyl) -1,4-dihydropyridine and the like are preferable. It is done.
 また、本発明の組成物では、機械的強度、柔軟性等を向上するなどの目的で、任意成分としてエラストマー粒子を添加してもよい。本発明の組成物に任意成分として添加できるエラストマー粒子は、平均粒子サイズが好ましくは10nm~700nm、より好ましくは30~300nmである。例えば、ポリブタジエン、ポリイソプレン、ブタジエン/アクリロニトリル共重合体、スチレン/ブタジエン共重合体、スチレン/イソプレン共重合体、エチレン/プロピレン共重合体、エチレン/α-オレフィン系共重合体、エチレン/α-オレフィン/ポリエン共重合体、アクリルゴム、ブタジエン/(メタ)アクリル酸エステル共重合体、スチレン/ブタジエンブロック共重合体、スチレン/イソプレンブロック共重合体などのエラストマーの粒子である。またこれらエラストマー粒子を、メチルメタアクリレートポリマー、メチルメタアクリレート/グリシジルメタアクリレート共重合体などで被覆したコア/シェル型の粒子を用いることができる。エラストマー粒子は架橋構造をとっていてもよい。 In the composition of the present invention, elastomer particles may be added as an optional component for the purpose of improving mechanical strength, flexibility and the like. The elastomer particles that can be added as an optional component to the composition of the present invention preferably have an average particle size of 10 nm to 700 nm, more preferably 30 to 300 nm. For example, polybutadiene, polyisoprene, butadiene / acrylonitrile copolymer, styrene / butadiene copolymer, styrene / isoprene copolymer, ethylene / propylene copolymer, ethylene / α-olefin copolymer, ethylene / α-olefin / Polyene copolymer, acrylic rubber, butadiene / (meth) acrylic acid ester copolymer, styrene / butadiene block copolymer, styrene / isoprene block copolymer and other elastomer particles. Further, core / shell type particles in which these elastomer particles are coated with a methyl methacrylate polymer, a methyl methacrylate / glycidyl methacrylate copolymer or the like can be used. The elastomer particles may have a crosslinked structure.
 エラストマー粒子の市販品としては、例えば、レジナスボンドRKB(レジナス化成(株)製)、テクノMBS-61、MBS-69(以上、テクノポリマー(株)製)等を挙げることができる。 Examples of commercially available elastomer particles include Resin Bond RKB (manufactured by Resin Chemical Co., Ltd.), Techno MBS-61, MBS-69 (manufactured by Techno Polymer Co., Ltd.), and the like.
 これらエラストマー粒子は単独で、または2種以上組み合わせて使用することができる。本発明の組成物におけるエラストマー成分の含有割合は、好ましくは1~35質量%であり、より好ましくは2~30質量%、特に好ましくは3~20質量%である。 These elastomer particles can be used alone or in combination of two or more. The content of the elastomer component in the composition of the present invention is preferably 1 to 35% by mass, more preferably 2 to 30% by mass, and particularly preferably 3 to 20% by mass.
 本発明の組成物には、硬化収縮の抑制、熱安定性を向上するなどの目的で、塩基性化合物を任意に添加してもよい。塩基性化合物としては、アミンならびに、キノリンおよびキノリジンなど含窒素複素環化合物、塩基性アルカリ金属化合物、塩基性アルカリ土類金属化合物などが挙げられる。これらの中でも、光重合成モノマーとの相溶性の面からアミンが好ましく、例えば、オクチルアミン、ナフチルアミン、キシレンジアミン、ジベンジルアミン、ジフェニルアミン、ジブチルアミン、ジオクチルアミン、ジメチルアニリン、キヌクリジン、トリブチルアミン、トリオクチルアミン、テトラメチルエチレンジアミン、テトラメチル-1,6-ヘキサメチレンジアミン、ヘキサメチレンテトラミンおよびトリエタノールアミンなどが挙げられる。 A basic compound may be optionally added to the composition of the present invention for the purpose of suppressing cure shrinkage and improving thermal stability. Examples of the basic compound include amines, nitrogen-containing heterocyclic compounds such as quinoline and quinolidine, basic alkali metal compounds, basic alkaline earth metal compounds, and the like. Among these, amine is preferable from the viewpoint of compatibility with the photopolymerization monomer, for example, octylamine, naphthylamine, xylenediamine, dibenzylamine, diphenylamine, dibutylamine, dioctylamine, dimethylaniline, quinuclidine, tributylamine, Examples include octylamine, tetramethylethylenediamine, tetramethyl-1,6-hexamethylenediamine, hexamethylenetetramine, and triethanolamine.
 本発明の組成物には、光硬化性向上のために、連鎖移動剤を添加しても良い。具体的には、4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチルオキシエチル)1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)を挙げることができる。 A chain transfer agent may be added to the composition of the present invention to improve photocurability. Specifically, 4-bis (3-mercaptobutyryloxy) butane, 1,3,5-tris (3-mercaptobutyloxyethyl) 1,3,5-triazine-2,4,6 (1H, 3H , 5H) -trione, pentaerythritol tetrakis (3-mercaptobutyrate).
 本発明の組成物は、NaおよびK元素の含有量の総和が100ppm以下であることが好ましく、10ppm以下であることがより好ましい。NaおよびK元素の含有量を100ppm以下とすることにより、LCDなどに用いられる永久膜(構造部材用のレジスト)において、ディスプレイの動作の阻害をより効果的に抑止できる。また、レジスト中の他のイオン性不純物の混入を極力避けることも好ましく、その濃度としては、1000ppm以下、より好ましくは100ppm以下にする。
 Na、Kの総和を100ppm以下にする方法は、予め、それら金属含有率の少ない材料を選択するあるいは、組成物を調整する段階において、公知のイオン交換樹脂を用いて脱金属したり、水または有機溶剤を含む水で洗浄し脱金属してもよい。さらに、ミクロろ過などによって脱金属することも可能である。NaおよびK元素の含量を100ppm以下とすることにより、LCDパネルにおいて液晶層に印可された駆動電圧が制御しやすくなり、表示ムラを抑制できる傾向にある。
In the composition of the present invention, the total content of Na and K elements is preferably 100 ppm or less, and more preferably 10 ppm or less. By setting the content of Na and K elements to 100 ppm or less, it is possible to more effectively prevent the display operation from being hindered in a permanent film (resist for a structural member) used in an LCD or the like. It is also preferable to avoid mixing other ionic impurities in the resist as much as possible, and the concentration is set to 1000 ppm or less, more preferably 100 ppm or less.
In the method of reducing the total amount of Na and K to 100 ppm or less, a material having a low metal content is selected in advance, or in the step of adjusting the composition, demetallation using a known ion exchange resin, water or The metal may be removed by washing with water containing an organic solvent. Furthermore, it is possible to remove metal by microfiltration or the like. By setting the content of Na and K elements to 100 ppm or less, the driving voltage applied to the liquid crystal layer in the LCD panel can be easily controlled, and display unevenness tends to be suppressed.
 本発明の組成物の調整は、各成分を混合することによって行う。また、混合した後に、該組成物をフィルターで濾過してもよい。この場合のフィルターの孔径は0.05μm~5.0μmであることが好ましい。本発明の組成物の混合・溶解は、通常、0℃~100℃の範囲で行われる。濾過は、多段階で行ってもよいし、多数回繰り返してもよい。また、濾過した液を再濾過することもできる。濾過に使用する材質は、ポリエチレン樹脂、ポリプロピレン樹脂、フッソ樹脂、ナイロン樹脂などのものが使用できるが特に限定されない。 The composition of the present invention is adjusted by mixing each component. Further, after mixing, the composition may be filtered with a filter. In this case, the pore size of the filter is preferably 0.05 μm to 5.0 μm. Mixing / dissolution of the composition of the present invention is usually performed in the range of 0 ° C to 100 ° C. Filtration may be performed in multiple stages or repeated many times. Moreover, the filtered liquid can be refiltered. Materials used for filtration can be polyethylene resin, polypropylene resin, fluorine resin, nylon resin, etc., but are not particularly limited.
 本発明の硬化物のうち、LCDなどに用いられる永久膜(構造部材用のレジスト)は、製造後にガロン瓶やコート瓶などの容器にボトリングし、輸送、保管されるが、この場合に、劣化を防ぐ目的で、容器内を不活性な窒素またはアルゴンなどで置換しておいてもよい。また、輸送、保管に際しては、常温でも良いが、より永久膜の変質を防ぐため、-20℃から0℃の範囲に温度制御しても良い。もちろん、反応が進行しないレベルで遮光する必要がある。 Among the cured products of the present invention, permanent films (resist for structural members) used for LCDs, etc. are bottled in containers such as gallon bottles and coated bottles after manufacture, and are transported and stored. In order to prevent this, the inside of the container may be replaced with inert nitrogen or argon. Further, at the time of transportation and storage, the room temperature may be used, but the temperature may be controlled in the range of −20 ° C. to 0 ° C. in order to prevent the permanent film from being deteriorated. Of course, it is necessary to shield from light so that the reaction does not proceed.
 本発明の画像形成方法は、LCD用部材のほか、半導体集積回路、記録材料、あるいはフラットパネルディスプレイなどのエッチングレジストとして適用することも可能である。特に、本発明の画像形成方法は、これまで展開が難しかった半導体集積回路や液晶表示装置用部材(特に、スペーサーとリブ体)に好適に適用でき、その他の用途、例えば、プラズマディスプレイパネル用遮光膜、フラットスクリーン、マイクロ電気機械システム(MEMS)、センサ素子、光ディスク、高密度メモリーデイスク等の磁気記録媒体、回折格子ヤレリーフホログラム等の光学部品、ナノデバイス、光学デバイス、光学フィルムや偏光素子、有機トランジスタ、カラーフィルター、オーバーコート層、柱材、マイクロレンズアレイ、免疫分析チップ、DNA分離チップ、マイクロリアクター、ナノバイオデバイス、光導波路、光学フィルター、フォトニック液晶等の作製にも幅広く適用できるようになる。 The image forming method of the present invention can be applied as an etching resist for semiconductor integrated circuits, recording materials, flat panel displays, etc. in addition to LCD members. In particular, the image forming method of the present invention can be suitably applied to semiconductor integrated circuits and liquid crystal display members (especially spacers and rib bodies) that have been difficult to develop until now, and for other uses such as light shielding for plasma display panels. Films, flat screens, microelectromechanical systems (MEMS), sensor elements, optical disks, high-density memory disks, etc., optical components such as diffraction grating relief holograms, nanodevices, optical devices, optical films and polarizing elements, To be widely applicable to the production of organic transistors, color filters, overcoat layers, pillars, microlens arrays, immunoassay chips, DNA separation chips, microreactors, nanobiodevices, optical waveguides, optical filters, photonic liquid crystals, etc. Become.
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。 The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below.
<硬化物の作製>
 表1~3の組成となるように、各種材料を配合して実施例および比較例の組成物を調整した。各組成物を、それぞれ、表4に記載の塗布膜厚となるようにガラス基板上にスピンコート法により塗布した。実施例11では、溶媒を除去するために、塗布後、100℃で2分間乾燥を行った。また、組成物の調整後塗布前に、後述する脱金属工程を行ったものについては、表1~3に脱金属工程を「あり」と示した。スピンコートした塗布基膜をORC社製の高圧水銀灯(ランプパワー2000mW/cm)を光源とするナノインプリント装置にセットし、モールド加圧力0.8kN、露光中の真空度は10Torrで、凹部直径20μm、および凹部深さ3.5μmの円柱状凹部をピッチ900μmで2次元的配置したパターンと、線幅20μm、ピッチ300μにm、深さ1μm、断面形状蒲鉾状のパターンを有するポリジメチルシロキサン(東レ・ダウコーニング社製、SILPOT184を80℃60分で硬化させたもの)を材質とするモールドの表面から240mJ/cmの条件で露光し、露光後、モールドを離し、レジストパターンを得た。得られたレジストパターンをオーブンで230℃、30分間加熱することにより完全に硬化させた。
 下記に示す評価を行った。この結果を表4に示した。
<Production of cured product>
Various materials were blended so that the compositions of Examples 1 and 3 were prepared, and compositions of Examples and Comparative Examples were prepared. Each composition was applied onto a glass substrate by a spin coat method so as to have a coating thickness shown in Table 4, respectively. In Example 11, in order to remove the solvent, the coating was dried at 100 ° C. for 2 minutes. In addition, in the cases where the metal removal step described below was performed before the application after the preparation of the composition, Tables 1 to 3 indicate “Yes” in the metal removal step. The spin-coated coating base film was set in a nanoimprint apparatus using a high pressure mercury lamp (lamp power: 2000 mW / cm 2 ) manufactured by ORC as a light source, the mold pressure was 0.8 kN, the degree of vacuum during exposure was 10 Torr, and the recess diameter was 20 μm. And a polydimethylsiloxane (Toray Industries, Inc.) having a pattern in which cylindrical recesses having a recess depth of 3.5 μm are two-dimensionally arranged at a pitch of 900 μm, a line width of 20 μm, a pitch of 300 μm, a depth of 1 μm, and a cross-sectionally ridged pattern. Exposed under the condition of 240 mJ / cm 2 from the surface of the mold made of Dow Corning, made of SILPOT184 cured at 80 ° C. for 60 minutes, and after exposure, the mold was released to obtain a resist pattern. The obtained resist pattern was completely cured by heating in an oven at 230 ° C. for 30 minutes.
The following evaluation was performed. The results are shown in Table 4.
<粘度測定>
 硬化前の組成物の実質的に溶剤を含まない状態における粘度の測定は、東機産業(株)社製のRE-80L型回転粘度計を用い、25±0.2℃で測定した。
測定時の回転速度は、0.5mPa・s以上5mPa・s未満は100rpm、5mPa・s以上10mPa・s未満は50rpm、10mPa・s以上は30mPa・s未満は20rpm、30mPa・s以上60mPa・s未満は10rpm、60mPa・s以上120mPa・s未満は5rpm、120mPa・s以上は1rpmもしくは0.5rpmで、それぞれ、行った。
<Viscosity measurement>
The viscosity of the composition before curing in a substantially solvent-free state was measured at 25 ± 0.2 ° C. using a RE-80L rotational viscometer manufactured by Toki Sangyo Co., Ltd.
The rotational speed during the measurement is 100 rpm for 0.5 mPa · s to less than 5 mPa · s, 50 rpm for 5 mPa · s to less than 10 mPa · s, 20 rpm for less than 30 mPa · s for 10 mPa · s, and 60 mPa · s for 30 mPa · s to 60 mPa · s. Less than 10 rpm, 60 mPa · s or more and less than 120 mPa · s was 5 rpm, and 120 mPa · s or more was 1 rpm or 0.5 rpm, respectively.
<膜厚測定>
 膜の膜厚を、接触式表面粗さ計P-10(ケーエルエー・テンコール(株)製)を用いて測定した。
<Film thickness measurement>
The film thickness was measured using a contact surface roughness meter P-10 (manufactured by KLA Tencor).
<脱金属工程>
 調整後と塗布前の組成物にオルガノ(株)製、イオン交換樹脂アンバーリスト15DRYを10重量%添加し、25℃で48時間攪拌し、その後、ろ過によりイオン交換樹脂を除去した。含有するNa、Kは原子吸光度計(島津製作所製AA6200)により算出した。
<Metal removal process>
10% by weight of an ion exchange resin Amberlyst 15DRY manufactured by Organo Corp. was added to the composition after adjustment and before coating, and the mixture was stirred at 25 ° C. for 48 hours, and then the ion exchange resin was removed by filtration. The contained Na and K were calculated by an atomic absorption meter (AA6200, manufactured by Shimadzu Corporation).
<パターン精度の観察>
 転写後のパターン形状を走査型電子顕微鏡もしくは光学顕微鏡にて観察し、パターン形状を以下のように評価した。
A:モールドのパターン形状の元となる原版のパターンとほぼ同一である
B:モールドのパターン形状の元となる原版のパターン形状と一部異なる部分(原版のパターンと10%未満の範囲)がある
C:モールドのパターン形状の元となる原版のパターン形状と一部異なる部分(原版のパターンと10%以上20%未満の範囲)がある
D:モールドのパターン形状の元となる原版のパターンとはっきりと異なる、あるいはパターンの膜厚が原版のパターンと20%以上異なる
<Observation of pattern accuracy>
The pattern shape after the transfer was observed with a scanning electron microscope or an optical microscope, and the pattern shape was evaluated as follows.
A: Almost the same as the pattern of the original plate that is the basis of the pattern shape of the mold. B: There is a portion that is partially different from the pattern shape of the original plate that is the basis of the pattern shape of the mold (the range of the original pattern is less than 10%). C: There is a part (a range of 10% or more and less than 20% of the pattern of the original plate) that is partly different from the original pattern shape of the mold pattern shape. D: Clearly different from the original pattern of the mold pattern shape. Or the film thickness of the pattern differs from the original pattern by 20% or more.
<剥離性の評価>
 パターン精度観察に用いた同じサンプルを用いて、パターン形成に使用したモールドに組成物成分が付着しているか否かを走査型電子顕微鏡もしくは光学顕微鏡にて観察し、剥離性を以下のように評価した。
A:モールドに硬化性組成物の付着がまったく認められなかった。
B:モールドにわずかな硬化性組成物の付着が認められた。
C:モールドの硬化性組成物の付着が明らかに認められた。
<Evaluation of peelability>
Using the same sample used for pattern accuracy observation, observe whether the composition component is attached to the mold used for pattern formation with a scanning electron microscope or optical microscope, and evaluate the peelability as follows: did.
A: Adhesion of the curable composition to the mold was not recognized at all.
B: Slight adhesion of the curable composition was observed on the mold.
C: Adhesion of the curable composition of the mold was clearly recognized.
<硬さの評価>
 各組成物を膜厚が3~10μmの範囲となるようにガラス基板上にスピンコートし、モールドを圧着せず、窒素雰囲気下で露光量240mJ/cmで露光し、その後オーブンで230℃、30分間加熱して硬化させた膜を島津社製、微小硬度計試験機によりダイナミック硬さを測定した。測定条件は三角錐圧子、負荷1mN、保持時間1秒とした。
ダイナミック硬さ
A:32以上
B:28以上、32未満
C:25以上、28未満
D:25未満
<Evaluation of hardness>
Each composition was spin-coated on a glass substrate so that the film thickness was in the range of 3 to 10 μm, the mold was not pressure-bonded, and was exposed at an exposure amount of 240 mJ / cm 2 in a nitrogen atmosphere. The film cured by heating for 30 minutes was measured for dynamic hardness using a micro hardness tester manufactured by Shimadzu Corporation. The measurement conditions were a triangular pyramid indenter, a load of 1 mN, and a holding time of 1 second.
Dynamic hardness A: 32 or more B: 28 or more, less than 32 C: 25 or more, less than 28 D: less than 25
<欠け欠陥の評価>
 上記実施例および比較例で得られたブラックマトリクス付き基版を光学顕微鏡(微分干渉モード、200倍)で全面観察し、欠け(細線幅の20%以上が欠損した部分が存在した箇所)の発生数を観察した。欠けの発生数を下記の基準に従って評価した。
◎…20個/m未満
○…20個/m以上40個/m未満、
△…40個/m以上80個/m未満、
×…80個/m以上120個/m未満
××…120個/m以上
<Evaluation of chip defects>
The base plate with the black matrix obtained in the above examples and comparative examples was observed on the entire surface with an optical microscope (differential interference mode, 200 times), and generation of a chip (a portion where a portion lacking 20% or more of the fine line width was present) was generated. The number was observed. The number of chippings was evaluated according to the following criteria.
◎ ... less than 20 pieces / m 2 ○ ... 20 pieces / m 2 or more and less than 40 pieces / m 2 ,
Δ: 40 pieces / m 2 or more and less than 80 pieces / m 2 ,
× ... 80 / m 2 or more and less than 120 / m 2 ×× ... 120 / m 2 or more
<耐溶剤性試験>
 各組成物を膜厚3.0μmとなるようにガラス基板上にスピンコートし、モールドを圧着せず、窒素雰囲気下で露光量240mJ/cmで露光し、その後オーブンで230℃、30分間加熱して硬化させた膜を25℃のN-メチルピロリドン溶媒に30分間浸漬させ、浸漬前後での硬化膜の変化を下記のように評価した。
A:膜厚変化 2%以下
B:膜厚変化 2%を超えて10%以下
C:面状荒れが発生
<Solvent resistance test>
Each composition was spin-coated on a glass substrate so as to have a film thickness of 3.0 μm, and the mold was not pressure-bonded, exposed at an exposure amount of 240 mJ / cm 2 in a nitrogen atmosphere, and then heated in an oven at 230 ° C. for 30 minutes. The cured film was immersed in an N-methylpyrrolidone solvent at 25 ° C. for 30 minutes, and changes in the cured film before and after immersion were evaluated as follows.
A: Film thickness change 2% or less B: Film thickness change 2% to 10% or less C: Surface roughness occurs
<液晶表示装置の作製>
 実施例および比較例の材料を用い、予め作製したカラーフィルター基板のR画素、G画素およびB画素並びにブラックマトリクスの上にさらに、ITO(Indium Tin Oxide)の透明電極をスパッタリングにより形成した。次いで、上記<硬化物の作製>に記載の方法に従って、BM上に円柱状パターンが、RGB各画素上に蒲鉾状パターンが形成されるように、スペーサーおよびリブ体を形成した。
 別途、対向基板としてガラス基板を用意し、カラーフィルター基板の透明電極上および対向基板上にそれぞれPVAモード用にパターニングを施し、その上にさらにポリイミドよりなる配向膜を設けた。
 その後、カラーフィルターの画素群を取り囲むように周囲に設けられたブラックマトリクス外枠に相当する位置に紫外線硬化樹脂のシール剤をディスペンサ方式により塗布し、PVAモード用液晶を滴下し、対向基板と貼り合わせた後、貼り合わされた基板をUV照射した後、熱処理してシール剤を硬化させた。このようにして得た液晶セルの両面に、(株)サンリッツ製の偏光板HLC2-2518を貼り付けた。次いで、赤色(R)LEDとしてFR1112H(スタンレー電気(株)製のチップ型LED)、緑色(G)LEDとしてDG1112H(スタンレー電気(株)製のチップ型LED)、青色(B)LEDとしてDB1112H(スタンレー電気(株)製のチップ型LED)を用いてサイドライト方式のバックライトを構成し、前記偏光板が設けられた液晶セルの背面となる側に配置し、液晶表示装置とした。
<Production of liquid crystal display device>
Using the materials of Examples and Comparative Examples, ITO (Indium Tin Oxide) transparent electrodes were further formed by sputtering on R pixels, G pixels, B pixels, and a black matrix of a color filter substrate prepared in advance. Next, according to the method described in <Preparation of Cured Product>, spacers and rib bodies were formed so that a columnar pattern was formed on BM and a bowl-shaped pattern was formed on each RGB pixel.
Separately, a glass substrate was prepared as a counter substrate, patterned on the transparent electrode of the color filter substrate and the counter substrate for the PVA mode, and an alignment film made of polyimide was further provided thereon.
After that, a UV curable resin sealant is applied by a dispenser method at a position corresponding to the outer periphery of the black matrix provided around the pixel group of the color filter, and a PVA mode liquid crystal is dropped and attached to the counter substrate. After bonding, the bonded substrate was irradiated with UV, and then heat-treated to cure the sealant. Polarizing plates HLC2-2518 manufactured by Sanlitz Co., Ltd. were attached to both surfaces of the liquid crystal cell thus obtained. Next, FR1112H (chip type LED manufactured by Stanley Electric Co., Ltd.) as a red (R) LED, DG1112H (chip type LED manufactured by Stanley Electric Co., Ltd.) as a green (G) LED, and DB1112H (as a blue (B) LED. A side-light type backlight was constructed using a chip-type LED manufactured by Stanley Electric Co., Ltd. and placed on the back side of the liquid crystal cell provided with the polarizing plate to obtain a liquid crystal display device.
<表示ムラ>
 液晶表示装置の各々について、グレイのテスト信号を入力させたときのグレイ表示を目視にて観察し、表示ムラの発生の有無を下記評価基準にしたがって評価した。
<評価基準1>
A:まったくムラがみられない(非常に良い)
B:ガラス基板の縁部分にかすかにムラが見られるが、表示部に問題なし(良い)
C:表示部にかすかにムラが見られるが実用レベル(普通)
D:表示部にムラがある(やや悪い)
E:表示部に強いムラがある(非常に悪い)
<Display unevenness>
For each liquid crystal display device, the gray display when a gray test signal was input was visually observed, and the presence or absence of display unevenness was evaluated according to the following evaluation criteria.
<Evaluation criteria 1>
A: No unevenness at all (very good)
B: Slight unevenness is observed on the edge of the glass substrate, but there is no problem in the display (good)
C: Slight unevenness on the display, but practical level (normal)
D: Display is uneven (somewhat bad)
E: Strong unevenness in display (very bad)
<反応性の異なる2種類以上の硬化性官能基を同一分子内に有し、かつ、該硬化性官能基の少なくとも1つがα、β-不飽和エステル基である単量体>
Q-1:化合物(M-12) ジシクロペンテニルアクリレート(FA-511AS:日立化成社製)
Q-2:化合物(M-13) ジシクロペンテニルオキシエチルアクリレート(FA-512AS:日立化成社製)
Q-3:化合物(M-32) 3-シクロヘキセニルメチルアクリレート
Q-4:化合物(M-22) アクリロイルオキシエチルイソシアネート(カレンズAOI:昭和電工社製)
Q-5:化合物(M-24) (3-エチル-3-オキセタニル)メチルアクリレート(ビスコートOXE10:大阪有機化学工業社製)
Q-6:化合物(M-29) 3-トリメトキシシリルプロピルアクリレート(KBM-5103:信越化学工業社製)
Q-7:化合物(M-30) アリルアクリレート(Aldrich社製試薬)
<Monomer having two or more kinds of curable functional groups having different reactivity in the same molecule, and at least one of the curable functional groups is an α, β-unsaturated ester group>
Q-1: Compound (M-12) Dicyclopentenyl acrylate (FA-511AS: manufactured by Hitachi Chemical Co., Ltd.)
Q-2: Compound (M-13) Dicyclopentenyloxyethyl acrylate (FA-512AS: manufactured by Hitachi Chemical Co., Ltd.)
Q-3: Compound (M-32) 3-Cyclohexenylmethyl acrylate Q-4: Compound (M-22) Acryloyloxyethyl isocyanate (Karenz AOI: Showa Denko)
Q-5: Compound (M-24) (3-Ethyl-3-oxetanyl) methyl acrylate (Biscoat OXE10: manufactured by Osaka Organic Chemical Industry Co., Ltd.)
Q-6: Compound (M-29) 3-trimethoxysilylpropyl acrylate (KBM-5103: manufactured by Shin-Etsu Chemical Co., Ltd.)
Q-7: Compound (M-30) Allyl acrylate (Reagent manufactured by Aldrich)
<その他の1官能単量体>
R-1:ベンジルアクリレート(ビスコート#160:大阪有機化学社製)
<Other monofunctional monomers>
R-1: benzyl acrylate (Biscoat # 160: manufactured by Osaka Organic Chemical Co., Ltd.)
<その他の2官能単量体>
S-01:ネオペンチルグリコールジアクリレート
<その他の3官能以上の単量体>
S-10:トリメチロールプロパントリアクリレート(アロニックスM-309:東亞合成社製)
<Other bifunctional monomers>
S-01: Neopentyl glycol diacrylate <Other tri- or higher functional monomer>
S-10: Trimethylolpropane triacrylate (Aronix M-309: manufactured by Toagosei Co., Ltd.)
<光重合開始剤>
P-1:2,4,6-トリメチルベンゾイル-エトキシフェニル-ホスフィンオキシド(Lucirin TPO-L:BASF社製)
<Photopolymerization initiator>
P-1: 2,4,6-trimethylbenzoyl-ethoxyphenyl-phosphine oxide (Lucirin TPO-L: manufactured by BASF)
<界面活性剤>
W-1:フッ素系界面活性剤(トーケムプロダクツ社製:フッ素系界面活性剤)
W-2:シリコーン系界面活性剤(大日本インキ化学工業社製:メガファックペインタッド31)
<Surfactant>
W-1: Fluorosurfactant (manufactured by Tochem Products: Fluorosurfactant)
W-2: Silicone surfactant (manufactured by Dainippon Ink and Chemicals, Inc .: MegaFuck Paint 31)
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000012
 
 本発明の画像形成方法では、パターン精度、剥離性、硬さ、欠陥、耐溶剤性および液晶表示装置での表示ムラのいずれについても優れていた。 The image forming method of the present invention was excellent in all of pattern accuracy, peelability, hardness, defects, solvent resistance, and display unevenness in a liquid crystal display device.
 本発明により、インプリント方式で2種の構造体同時に形成することが可能になった。本発明の画像形成方法を、LCD用スペーサーおよびリブ体の製造に使用すると、機械的強度、剥離性、パターン形状、塗布性、耐溶剤性について総合的に優れたものを、同時に製造することが可能になった。 According to the present invention, two types of structures can be formed simultaneously by the imprint method. When the image forming method of the present invention is used in the production of LCD spacers and rib bodies, it is possible to simultaneously produce products that are comprehensively excellent in mechanical strength, peelability, pattern shape, coatability, and solvent resistance. It became possible.

Claims (15)

  1. 乾燥後の実質的に溶剤を含まない状態において、(A)反応性の異なる2種類以上の硬化性官能基を同一分子内に有し、かつ、該硬化性官能基の少なくとも1つがα,β-不飽和エステル基である単量体と、(B)界面活性剤とを含み、かつ、粘度が3~50mPa・sの範囲である組成物を用いることを特徴とし、さらに、下記(1)~(6)の工程を含む画像形成方法。
    (1)基板上に前記組成物からなる感光性樹脂層を設ける工程
    (2)必要に応じ、感光性樹脂層に、50~150℃の熱処理を実施し溶剤を除去する工程
    (3)少なくとも2種類の形状の異なる凹凸表面を有する型の凹凸表面と、前記感光性樹脂層とを接するように圧着させる工程
    (4)感光性樹脂層を光照射する工程
    (5)前記凹凸表面を有する型を感光性樹脂層から剥離する工程
    (6)必要に応じ、凹凸表面を有する型から剥離した感光性樹脂層を、160~250℃で熱処理する工程
    In a state substantially free of solvent after drying, (A) two or more kinds of curable functional groups having different reactivity are present in the same molecule, and at least one of the curable functional groups is α, β A composition comprising a monomer that is an unsaturated ester group and (B) a surfactant and having a viscosity in the range of 3 to 50 mPa · s, and further comprising the following (1) An image forming method including the steps (6) to (6).
    (1) A step of providing a photosensitive resin layer comprising the composition on a substrate (2) A step of removing the solvent by subjecting the photosensitive resin layer to a heat treatment at 50 to 150 ° C., if necessary (3) At least 2 A step of pressure-bonding the uneven surface of a mold having uneven surfaces of different shapes and the photosensitive resin layer (4) a step of irradiating the photosensitive resin layer (5) a mold having the uneven surface Step of peeling from the photosensitive resin layer (6) Step of heat-treating the photosensitive resin layer peeled off from the mold having an uneven surface as necessary at 160 to 250 ° C.
  2. 前記2種類の形状の異なる凹凸表面を有する型は、液晶表示パネル用スペーサーおよび液晶表示パネル用液晶配向制御体の型である、請求項1に記載の画像形成方法。 2. The image forming method according to claim 1, wherein the two types of molds having different concavo-convex surfaces are molds of a liquid crystal display panel spacer and a liquid crystal display panel liquid crystal alignment controller.
  3. 前記組成物中のNaおよびK元素の含有量の総和が100ppm以下である、請求項1または2に記載の画像形成方法。 The image forming method according to claim 1, wherein the total content of Na and K elements in the composition is 100 ppm or less.
  4. 前記(A)単量体が下記一般式(1)で表される、請求項1~3のいずれか1項に記載の画像形成方法。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Rは水素原子、または、ヒドロキシメチル基を表し、Xは有機基を表す。mは1~3の整数を表し、nは1~4の整数を表す。Yは、炭素-炭素不飽和結合を有する硬化性官能基、炭素-窒素不飽和結合を有する硬化性官能基、酸素原子を含む環状基を有する硬化性官能基または下記一般式(2)で表される基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (Rはそれぞれアルキル基またはアリール基を表す。)
    The image forming method according to any one of claims 1 to 3, wherein the monomer (A) is represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), R 1 represents a hydrogen atom or a hydroxymethyl group, X represents an organic group, m represents an integer of 1 to 3, and n represents an integer of 1 to 4. Y Is represented by a curable functional group having a carbon-carbon unsaturated bond, a curable functional group having a carbon-nitrogen unsaturated bond, a curable functional group having a cyclic group containing an oxygen atom, or the following general formula (2): Represents a group.
    Figure JPOXMLDOC01-appb-C000002
    (R 2 represents an alkyl group or an aryl group, respectively.)
  5. 一般式(1)中のYの少なくとも1つが、ビニルエーテル基、アリルエーテル基、シクロヘキセニル基、シクロペンテニル基、ジシクロペニテニル基、スチリル基、メタクリロイルオキシ基、メタクリロイルアミド基、アクリルアミド基、ビニルシラン基、N-ビニル複素環基およびマレイミド基からなる群より選ばれる、請求項4に記載の画像形成方法。 At least one of Y in the general formula (1) is a vinyl ether group, an allyl ether group, a cyclohexenyl group, a cyclopentenyl group, a dicyclopentenyl group, a styryl group, a methacryloyloxy group, a methacryloylamide group, an acrylamide group, or a vinylsilane group. 5. The image forming method according to claim 4, wherein the image forming method is selected from the group consisting of N-vinyl heterocyclic group and maleimide group.
  6. 一般式(1)中のYの少なくとも1つが、イソシアネート基またはニトリル基である、請求項4に記載の画像形成方法。 The image forming method according to claim 4, wherein at least one of Y in the general formula (1) is an isocyanate group or a nitrile group.
  7. 一般式(1)中のYの少なくとも1つが、オキセタン環、オキシラン環および炭酸エチレン基からなる群より選ばれる、請求項4に記載の画像形成方法。 The image forming method according to claim 4, wherein at least one of Y in the general formula (1) is selected from the group consisting of an oxetane ring, an oxirane ring, and an ethylene carbonate group.
  8. 前記組成物が、さらにその他の重合性単量体および光重合開始剤を含む、請求項1~7のいずれか1項に記載の画像形成方法。 The image forming method according to any one of claims 1 to 7, wherein the composition further comprises another polymerizable monomer and a photopolymerization initiator.
  9. 他の重合性単量体が、(メタ)アクリレートである、請求項8に記載の画像形成方法。 The image forming method according to claim 8, wherein the other polymerizable monomer is (meth) acrylate.
  10. 前記他の重合性単量体として、2官能以上の重合性官能基を有する重合性単量体を含む請求項8または9に記載の画像形成方法。 The image forming method according to claim 8, wherein the other polymerizable monomer includes a polymerizable monomer having a bifunctional or higher polymerizable functional group.
  11. 前記組成物の表面張力が18~30mN/mの範囲にある、請求項1~10のいずれか1項に記載の画像形成方法。 The image forming method according to any one of claims 1 to 10, wherein the surface tension of the composition is in the range of 18 to 30 mN / m.
  12. 請求項1~11のいずれか1項に記載の画像形成方法を用いて形成した硬化物。 A cured product formed by using the image forming method according to any one of claims 1 to 11.
  13. 請求項12に記載の硬化物を用いた液晶表示装置用部材。 The member for liquid crystal display devices using the hardened | cured material of Claim 12.
  14. 請求項1~11のいずれか1項に記載の画像形成方法を用いて形成した液晶表示パネル用スペーサー。 A spacer for a liquid crystal display panel formed by using the image forming method according to any one of claims 1 to 11.
  15. 請求項1~11のいずれか1項に記載の画像形成方法を用いて形成した液晶表示パネル用液晶配向制御体。 A liquid crystal alignment controller for a liquid crystal display panel formed by using the image forming method according to any one of claims 1 to 11.
PCT/JP2009/054627 2008-03-11 2009-03-11 Image forming method and hardened material formed using the same WO2009113568A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-060592 2008-03-11
JP2008060592A JP2009214419A (en) 2008-03-11 2008-03-11 Image forming method and cured matter made by using the same

Publications (1)

Publication Number Publication Date
WO2009113568A1 true WO2009113568A1 (en) 2009-09-17

Family

ID=41065229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054627 WO2009113568A1 (en) 2008-03-11 2009-03-11 Image forming method and hardened material formed using the same

Country Status (2)

Country Link
JP (1) JP2009214419A (en)
WO (1) WO2009113568A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5671302B2 (en) * 2009-11-10 2015-02-18 富士フイルム株式会社 Curable composition for imprint, pattern forming method and pattern
JP5732724B2 (en) * 2010-02-18 2015-06-10 大日本印刷株式会社 Nanoimprint method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293837A (en) * 2001-03-30 2002-10-09 Dainippon Printing Co Ltd Hardenable resin and its production method
JP2005018012A (en) * 2003-06-03 2005-01-20 Konica Minolta Medical & Graphic Inc Photosensitive composition, photosensitive lithographic printing plate and method for manufacturing lithographic printing plate
WO2006114958A1 (en) * 2005-04-21 2006-11-02 Asahi Glass Company, Limited Photocurable composition, article with fine pattern and method for producing same
JP2006308612A (en) * 2005-04-26 2006-11-09 Jsr Corp Radiation-sensitive resin composition, protrusion and spacer formed of the same, and liquid crystal display element equipped with them
JP2008019292A (en) * 2006-07-10 2008-01-31 Fujifilm Corp Photocurable composition and pattern forming method using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293837A (en) * 2001-03-30 2002-10-09 Dainippon Printing Co Ltd Hardenable resin and its production method
JP2005018012A (en) * 2003-06-03 2005-01-20 Konica Minolta Medical & Graphic Inc Photosensitive composition, photosensitive lithographic printing plate and method for manufacturing lithographic printing plate
WO2006114958A1 (en) * 2005-04-21 2006-11-02 Asahi Glass Company, Limited Photocurable composition, article with fine pattern and method for producing same
JP2006308612A (en) * 2005-04-26 2006-11-09 Jsr Corp Radiation-sensitive resin composition, protrusion and spacer formed of the same, and liquid crystal display element equipped with them
JP2008019292A (en) * 2006-07-10 2008-01-31 Fujifilm Corp Photocurable composition and pattern forming method using it

Also Published As

Publication number Publication date
JP2009214419A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
US8282872B2 (en) (Meth)acrylate compound, curable composition using the same, curable composition for photo-nanoimprints, cured product of curable composition and method for manufacturing cured product
JP5710553B2 (en) Curable composition for imprint, pattern forming method and pattern
JP5448696B2 (en) Curable composition for photoimprint and method for producing cured product using the same
JP5829177B2 (en) Curable composition for imprint, pattern forming method and pattern
JP5511415B2 (en) Curable composition for imprint, pattern forming method and pattern
JP5671377B2 (en) Curable composition for imprint, pattern forming method and pattern
JP2010157706A (en) Curable composition for optical imprint and method of manufacturing hardened material using same
WO2009101913A1 (en) Curable composition for nanoimprint and pattern-forming method
JP2010000612A (en) Nanoimprinting curable composition and pattern forming method
JP2010067621A (en) Curable composition for nanoimprint, cured article, and method for producing same
JP2010114209A (en) Curable composition for optical nanoimprint, curing material and method for manufacturing it
JP2009203287A (en) Curable composition for nanoimprint, cured product using it, method for producing cured product, and member for liquid crystal display
JP2012041521A (en) Photocurable composition and method for manufacturing photocured product using thereof
JP2009222791A (en) Photosensitive resin composition, photosensitive resin hardened film, and method for forming light-shielding image
JP5065209B2 (en) Curable composition for nanoimprint, cured product and method for producing the same
KR20090027169A (en) Curable composition for optical nanoimprint, a cured article and a method for making the same
WO2009110536A1 (en) Curable composition for nanoimprint, cured product using the same, method for producing the cured product, and member for liquid crystal display device
JP2010106185A (en) Curable composition for photo-imprint, and method for pattern formation using the same
JP2010118434A (en) Curable composition for optical nano-imprint, and cured material and manufacturing method for the same
JP2010209250A (en) Photocurable composition, cured product using the same, method for producing the cured product, and member for liquid crystal display
JP2010287793A (en) Pattern forming method
WO2012137672A1 (en) Pattern-forming method and pattern
JP2010087165A (en) Hardening composition for nanoimprinting, hardened material using this and its manufacturing method, and member for liquid crystal display device
JP5567419B2 (en) Curable composition for photoimprint and method for producing cured product using the same
JP2009206196A (en) Curable composition for nanoimprint, cured body using the same and manufacturing method thereof, and member for liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09719859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09719859

Country of ref document: EP

Kind code of ref document: A1