WO2009113308A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2009113308A1
WO2009113308A1 PCT/JP2009/001108 JP2009001108W WO2009113308A1 WO 2009113308 A1 WO2009113308 A1 WO 2009113308A1 JP 2009001108 W JP2009001108 W JP 2009001108W WO 2009113308 A1 WO2009113308 A1 WO 2009113308A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
food
infrared sensor
refrigerator
cooling
Prior art date
Application number
PCT/JP2009/001108
Other languages
French (fr)
Japanese (ja)
Inventor
堀尾好正
田中正昭
足立正
井下美桃子
豆本壽章
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008157758A external-priority patent/JP2009300053A/en
Priority claimed from JP2008234697A external-priority patent/JP2010038524A/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP09718682.9A priority Critical patent/EP2267388B1/en
Priority to CN2009801089058A priority patent/CN101970961B/en
Publication of WO2009113308A1 publication Critical patent/WO2009113308A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/30Quick freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/16Sensors measuring the temperature of products

Definitions

  • the present invention relates to a refrigerator using a non-contact sensor.
  • the air temperature in the refrigerator is measured with a thermistor or the like.
  • the thermistors installed in the refrigerator are used to measure this temperature.
  • the amount of cooling was adjusted by measuring the temperature of the air in the cabinet heated by the influence of hot food.
  • the food is cooled to the target temperature while cooling the surroundings, so that it may take time for the food itself to cool to the target temperature.
  • a non-contact infrared sensor is installed in the cabinet, or a load sensor that is installed under the case where food is placed and directly measures the food temperature is used to detect the actual food temperature and perform cooling operation.
  • a load sensor that is installed under the case where food is placed and directly measures the food temperature is used to detect the actual food temperature and perform cooling operation.
  • FIG. 12 is a side longitudinal sectional view of the refrigerator described in Patent Document 1
  • FIG. 13 is a partially enlarged side sectional view.
  • the interior of the refrigerator main body 1 formed of a heat insulating box is the storage space.
  • the refrigerator compartment 2 is arranged in the upper part
  • the vegetable compartment 6 is arranged in the lower part
  • the freezer compartment 8 is arranged in the lowermost part.
  • the switching room 9 is illustrated between the refrigerator compartment 2 and the vegetable compartment 6 through a heat insulating partition wall.
  • the ice making chambers are juxtaposed to the left and right, and a dedicated door is provided at the front opening of each storage chamber so as to be freely opened and closed.
  • a freezing cooler 14 such as a freezing room 8, a switching room 9, an ice making room, and a cooling blower fan 16 that circulates the cold air generated by the freezing cooler 14 into the storage room are arranged, Further, a refrigeration cooler 15 for cooling the refrigerator compartment 2 and the vegetable compartment 6 and a fan (not shown) are provided at a position in front of the freezer cooler 14.
  • the compressor 17 installed at the lower part of the main body and the refrigerant are shown.
  • the refrigerant is supplied to the refrigeration and refrigeration coolers 14 and 15 alternately or simultaneously by switching control of the flow path switching valve, and the cooled cold air is cooled by the cooling air blower fan 16 on the refrigeration temperature zone side and the refrigeration temperature zone side. Air is sent to the storage room, and each is cooled to a predetermined temperature.
  • the low-temperature cold air discharged from the refrigeration cooler 14 is diverted to the freezing room 8, the ice making room, and the switching room 9 by the cooling blower fan 16, and is blown and cooled through dedicated ducts.
  • cold air is blown out into the room from the cold air outlet 20, and the temperature of the food 21, which is a load cooled by this cold air, is detected by the infrared sensor 28 attached to the ceiling surface and set in advance.
  • the amount of cold air introduced into the room is adjusted by controlling the operation of the refrigeration cycle so as to reach a temperature, and opening / closing control of a cold air damper 32 installed in the vicinity of the cold air outlet 20, so that the food 21 that is a food has a predetermined set temperature. It is controlled as follows.
  • FIG. 14 is a perspective view showing the storage room of the refrigerator described in Patent Document 2
  • FIG. 15 is a front view showing the freezer room of the refrigerator described in Patent Document 2.
  • control is performed to avoid unnecessary quick freezing operation by determining the quick freezing time according to the magnitude of the load of the input food.
  • the temperature of the target food is detected by the load temperature sensor 39 provided in the lower part of the case 41 of the food placement unit, and the control for automatically starting or ending the quick freezing is performed.
  • efficient cooling operation control is performed by performing a cooling operation of only a necessary amount when necessary.
  • the temperature detected by the infrared sensor 28 installed on the ceiling portion of the switching chamber 9 detects the temperature of the food 21 when the door is closed, and detects the detected food 21.
  • the cold air generated by the refrigeration cooler 14 is controlled to be opened and closed by the cold air damper 32 according to the temperature of the air to adjust the amount of cold air introduced into the room.
  • the food 21 is controlled to have a predetermined set temperature.
  • the infrared sensor 28 detects the heat insulating partition on the projection plane that is out of the food 21.
  • the infrared sensor 28 Since this heat insulating partition is affected by temperature due to heat conduction from the lower vegetable compartment 6 and has a temperature different from that of the switching chamber 9, the infrared sensor 28 is a food cooled to the temperature equivalent to the switching chamber 9 Detect different temperatures. That is, the portion detected by the infrared sensor 28 undergoes a rapid temperature change when the door is opened. Specifically, when the conventional switching chamber 9 is installed at a freezing temperature and the door is opened only to check the food 21 stored in the switching chamber 9, the infrared sensor 28 detects the food 21 In order to erroneously detect the input temperature and start cooling, there is a problem that the switching chamber 9 is excessively cooled to require useless energy.
  • the infrared sensor 28 detects water droplets without detecting the food 21 when water droplets adhere to the tip portion due to condensation or the like, for example, the detection of the sensor tip is detected by the inflow of warm air from the outside when the door is opened or closed.
  • a shutter mechanism in the sensor part of the infrared sensor 28 in order to prevent dew condensation on the part
  • malfunction factors increase.
  • a complicated mechanical structure is likely to cause problems such as a decrease in the reliability of the mechanical structure due to a decrease in the lubricity of the lubricating oil or a failure. It will be prominent in the room.
  • Patent Document 2 Although the other conventional configuration in Patent Document 2 has a certain effect, it is insufficient for the needs for energy saving and the demand for improving the freshness of the refrigerator, which are the market interest in the recent global environment. It was.
  • the amount of cold air introduced into the freezer compartment 8 is increased by continuously operating the compressor and the cold air blowing fan, so that quick freezing is performed. Since the electric input of the refrigerator is greatly increased, the refrigeration speed is faster than normal cooling, but more energy is required, and it is difficult to perform quick freezing control with energy saving. It was.
  • the load temperature sensor 39 detects the temperature of the case 41 in contact with the food, and it is difficult to quickly detect the temperature of the food itself. For example, heat conduction from the food to the case 41 is performed, so that the food and the case itself can be detected. Since the temperature of the food is detected for the first time when the temperatures are almost the same, there is a problem that the detection time is delayed.
  • the present invention has been made to solve the above-described problems, and can eliminate erroneous detection of a non-contact sensor by a simpler method without using a complicated method, and is more accurate in a refrigerator storage chamber.
  • a non-contact sensor that detects a high temperature
  • a refrigerator capable of energy-saving and efficient cooling operation is provided.
  • the quick cooling of food that has been put into the warehouse is quickly and automatically started, and the rapid cooling that realizes further energy saving is performed, so that not only the energy saving is further improved, but also an easy-to-use refrigerator is provided.
  • JP 2007-212053 A Japanese Patent No. 3454522
  • the refrigerator of the present invention includes a heat insulation box constituted of a plurality of temperature zones by a plurality of heat insulation compartments, a storage room provided with a non-contact sensor that is insulated by the heat insulation boxes and detects the surface temperature of food, and storage
  • the storage room and the adjacent storage room are located in the same temperature zone or the storage room where the non-contact sensor is installed.
  • the adjacent storage room was assumed to have a lower temperature zone.
  • the non-contact sensor detects high temperature food near the same temperature as the storage room or lower temperature than the storage room. It is possible to suppress erroneous detection such as being inserted.
  • the refrigerator of the present invention can suppress false detection of the non-contact sensor even when there are no inclusions between the non-contact sensor and the partition wall of the adjacent storage room, the accuracy is higher and the higher A refrigerator provided with a non-contact sensor capable of detecting temperature of quality can be provided.
  • the refrigerator of the present invention has a storage room provided with a non-contact sensor that detects the surface temperature of the food placed on the food placement unit, cooling means for cooling the storage room, and cooling of the storage room is enhanced.
  • a quick freezing control means that performs cooling with a cooling capacity, and the food placement unit has a heat storage function, and if the temperature detected by the non-contact sensor is higher than a preset start temperature, a rapid cooling is performed with a high cooling capacity.
  • the quick freezing control is automatically started by the freezing control means and the quick freezing control by the quick freezing control means is stopped when the preset end temperature is reached.
  • the food temperature is detected by a sensor that detects non-contact, and quick freezing control is started automatically.When the end temperature is reached, the normal cooling operation is started immediately. Quickly and automatically start rapid cooling, and the food placement part has a heat storage function, so that the food placement part having a heat storage function cooled in the freezing temperature zone in advance is in contact with food. Because heat can be directly taken away by conduction and cooled quickly, the continuous operation time of the compressor and cold air blower fan can be greatly shortened even in the case of quick freezing control, which has realized further energy saving. Cooling can be performed.
  • the food placing portion when performing quick freezing control has a heat storage function, so that it has heat transfer by introducing cold air for quick freezing control and a heat storage function. Because it is possible to cool quickly using both the heat conduction from the food mounting part, the passage time through the maximum ice crystal formation zone of 0 ° C to -5 ° C, which greatly affects the freshness, especially in frozen storage Since it can be shortened and it passes through the maximum ice crystal formation zone in a short time, the amount of drip from the food can be suppressed when thawing, so it can be stored without sacrificing the freshness and taste of the food. It becomes possible to improve preservation quality.
  • the refrigerator of the present invention can eliminate erroneous detection of the non-contact sensor by a simpler method without using a complicated method, and can efficiently perform the cooling operation of the refrigerator.
  • FIG. 1 is a front view of a refrigerator according to the first embodiment, the fourth embodiment, and the seventh embodiment of the present invention.
  • FIG. 2 is a side cross-sectional view of the refrigerator according to the first embodiment, the fourth embodiment, and the seventh embodiment of the present invention.
  • FIG. 3 is a partially enlarged side sectional view of the upper freezer compartment in the first embodiment of the present invention.
  • FIG. 4 is a partially enlarged side sectional view of the upper freezer compartment in the second embodiment of the present invention.
  • FIG. 5 is a partially enlarged side sectional view of the upper freezer compartment in the third embodiment of the present invention.
  • FIG. 6 is a partially enlarged side cross-sectional view of the upper freezer compartment in the fourth embodiment of the present invention.
  • FIG. 1 is a front view of a refrigerator according to the first embodiment, the fourth embodiment, and the seventh embodiment of the present invention.
  • FIG. 2 is a side cross-sectional view of the refrigerator according to the first embodiment, the fourth embodiment, and the seventh embodiment of the present invention.
  • FIG. 7 is a partially enlarged side sectional view of the upper freezer compartment in the fifth embodiment of the present invention.
  • FIG. 8 is a partially enlarged side sectional view of the upper freezer compartment in the sixth embodiment of the present invention.
  • FIG. 9 is a partially enlarged side sectional view of the upper freezer compartment of the refrigerator according to the seventh embodiment of the present invention.
  • FIG. 10 is a partially enlarged side sectional view of a refrigerator according to the eighth embodiment of the present invention.
  • FIG. 11 is a side sectional view of a refrigerator according to the ninth embodiment of the present invention.
  • FIG. 12 is a side longitudinal sectional view for explaining a conventional refrigerator.
  • FIG. 13 is a partially enlarged side sectional view for explaining a refrigerator according to the prior art.
  • FIG. 14 is a perspective view showing a storage room of a refrigerator according to another prior art.
  • FIG. 15 is a front view which shows the freezer compartment of the refrigerator by another prior art.
  • the refrigerator of the present invention includes a heat insulation box constituted of a plurality of temperature zones by a plurality of heat insulation compartments, a storage room provided with a non-contact sensor that is insulated by the heat insulation boxes and detects the surface temperature of food, and storage A storage room adjacent to the projection line in the direction detected by the non-contact sensor, and the storage room where the non-contact sensor is installed and the adjacent storage room have the same temperature range or non-contact sensor
  • the adjacent storage room has a lower temperature zone than the installed storage room.
  • the non-contact sensor detects a temperature near the temperature of the storage room or lower than the temperature of the storage room, so that erroneous detection can be suppressed when the door is opened and closed.
  • the refrigerator of the present invention is such that the non-contact sensor is an infrared sensor, and the infrared sensor is installed in a relatively high temperature part in the storage room.
  • the temperature difference between the infrared sensor and the detected food can be made large, the amount of heat transferred by radiation increases, the amount of infrared detected by the infrared sensor increases, and noise from the infrared sensor and subtle temperature fluctuations, for example, Since the difference from noise due to temperature fluctuations during cooling by the circulation fan increases, it is easy to detect and the surface temperature of food can be detected with high accuracy.
  • the refrigerator of the present invention has an infrared sensor provided with a storage room having a temperature range higher than the temperature range of the adjacent storage room, and is installed in the vicinity of the storage room.
  • the refrigerator of the present invention is an infrared sensor that is installed in a heat-insulating partition section that insulates the storage room and the storage room.
  • the infrared sensor easily affected by the heat from the storage room, and it is possible to suppress condensation and frost formation and to suppress deterioration of accuracy. Furthermore, since the degree of exposure of the detection unit of the infrared sensor to the storage chamber can be suppressed, it is difficult to be affected by temperature fluctuations due to the cold air flowing in the warehouse, and the deviation of the detection temperature can be suppressed.
  • the refrigerator of the present invention has an infrared sensor whose tip is installed on the surface of the heat insulating partition or on the inner side of the surface.
  • the tip of the infrared sensor does not protrude, so foreign substances do not adhere to the detection part of the infrared sensor even when a large amount of food is put in the storage room or during cleaning, so detection malfunction does not occur. Moreover, since it does not protrude into the storage, the storage capacity can be secured.
  • the refrigerator of the present invention uses the temperature zone of the storage room in which the infrared sensor is installed as the freezing temperature zone, so that the temperature of the food to be detected and the reference temperature (thermistor temperature) of the infrared sensor As the temperature difference increases, the temperature can be detected with higher accuracy.
  • the refrigerator of the present invention has a viewing angle detected by the infrared sensor of 55 ° or less, and narrows the viewing angle of the infrared sensor to improve detection accuracy and prevent insufficient cooling. .
  • the temperature detection surface that detects the temperature with the infrared sensor also becomes larger, and the possibility of detecting a temperature other than the food installation surface or the presence of food other than the food to be detected on the temperature detection surface increases. . Thereby, the temperature other than the target food becomes noise and the accuracy may be reduced.
  • the viewing angle is narrowed to 55 ° or less, the accuracy reduction is suppressed.
  • the refrigerator of the present invention is provided with a mark smaller than the visual field range in the visual field range of the surface detected by the infrared sensor, and stores food in a range that can be reliably detected by the infrared sensor. can do.
  • the refrigerator of the present invention has a storage room provided with a non-contact sensor that detects the surface temperature of the food placed on the food placement unit, cooling means for cooling the storage room, and cooling of the storage room is enhanced.
  • a quick freezing control means that performs cooling with a cooling capacity, and the food placement unit has a heat storage function, and if the temperature detected by the non-contact sensor is higher than a preset start temperature, a rapid cooling is performed with a high cooling capacity.
  • the quick freezing control is automatically started by the freezing control means, and the quick freezing control by the quick freezing control means is stopped when the preset end temperature is reached.
  • the food temperature is detected by a sensor that detects non-contact, and quick freezing control is started automatically.When the end temperature is reached, the normal cooling operation is started immediately. Quickly and automatically start rapid cooling, and the food placement part has a heat storage function, so that the food placement part having a heat storage function cooled in the freezing temperature zone in advance is in contact with food. Since heat can be directly taken away by conduction and cooled quickly, the continuous operation time of the compressor and cold air blower fan can be greatly shortened even in the case of quick freezing control, which has realized further energy saving. Cooling can be performed.
  • the food placing portion when performing quick freezing control has a heat storage function, so that it has heat transfer by introducing cold air for quick freezing control and a heat storage function. Because it is possible to cool quickly using both the heat conduction from the food mounting part, the passage time through the maximum ice crystal formation zone of 0 ° C to -5 ° C, which greatly affects the freshness, especially in frozen storage Since it can be shortened and it passes through the maximum ice crystal formation zone in a short time, the amount of drip from the food can be suppressed when thawing, so it can be stored without sacrificing the freshness and taste of the food. It becomes possible to improve preservation quality.
  • the refrigerator can be cooled by a cooling operation as required.
  • the cooling in a short time with a high cooling capacity for example, the operation time in the 24 hours of operation of the refrigerator can be shortened, so the power consumption is reduced and the current global environment deterioration factor It is possible to reduce greenhouse gas emissions.
  • the temperature inside the cabinet rises due to the influence of the door opening.
  • the quick freezing control since the quick freezing control is not automatically entered in the past, the food is cooled over time with a low cooling capacity, but in the present invention, if the temperature is high, the temperature is automatically detected by the non-contact sensor.
  • the quick freezing control will be started, so it can be cooled quickly without taking time with high cooling capacity.
  • the cooling time for cooling can be shortened, and since the cooling is performed in a short time, the temperature rise of the food itself is suppressed, so that deterioration of the freshness can be suppressed.
  • the quick freezing control is automatically canceled when the food is frozen, it is possible to eliminate wasteful energy consumption due to unnecessary cooling operation after freezing as in the past.
  • some products detect the transition from latent heat change of food to sensible heat change and determine the completion of freezing, but the latent heat change and sensible heat change show the same amount of change depending on the size of the food. In some cases, it was difficult to judge.
  • freezing since the temperature of the food itself is detected, freezing can be reliably determined, and a complicated differential calculation control specification for calculating the change rate of the food as in the past is not constructed.
  • the non-contact sensor is an infrared sensor, and is provided on the wall surface of the storage chamber facing the food placement portion, and the storage chamber is only in the freezing temperature zone.
  • a freezer that can be set.
  • the detection accuracy of the infrared sensor generally has the characteristic that the detection accuracy deteriorates as it moves away from the temperature range where the highest accuracy is to be set. It can be set in advance so that the area near the belt is the highest, and since it is not set to any other temperature band, it is possible to detect the temperature of the food with high accuracy at all times, and quicker and more accurate quick freezing control It is possible to perform the start and end of the quick freezing control, and it is possible to perform the quick freezing control that realizes further energy saving.
  • the temperature range where the quick freezing control is automatically started by the quick freezing control means is a detected temperature of 0 ° C. to ⁇ 5 ° C. among the temperatures detected by the infrared sensor. Is included.
  • FIG. 1 is a front view of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a side sectional view of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 3 is a partially enlarged side sectional view of the upper freezer compartment in the first embodiment of the present invention.
  • the refrigerator main body 101 includes a metal (for example, iron plate) outer box 124, a hard resin (for example, ABS) inner box 125, and an outer box 124 and an inner box 125.
  • a heat insulating box 126 made of urethane heat insulating material 126 filled with foam between the refrigerator compartment 102 provided at the top of the main body, the upper freezer compartment 103 provided below the refrigerator compartment, and the bottom of the refrigerator compartment 102
  • the ice making chamber 104 provided in parallel to the upper freezing chamber 103, the vegetable chamber 106 provided in the lower part of the main body, and the upper freezing chamber 103 installed in parallel and the ice making chamber 104 and the vegetable chamber 106 were provided.
  • the lower freezer compartment 105 is configured.
  • the front portions of the upper freezing chamber 103, the ice making chamber 104, the lower freezing chamber 105, and the vegetable chamber 106 are closed freely by opening and closing doors 103a, 104a, 105a, and 106a, respectively, and the front surface of the refrigerator compartment 102 is opened with a double door. It is closed freely by a door 102a (not shown).
  • the refrigerator compartment 102 is usually set in a refrigeration temperature range of 1 to 5 ° C. with the lower limit being the temperature at which it does not freeze for refrigerated storage.
  • the vegetable room 106 is often set to 2 ° C. to 7 ° C., which is the same or slightly higher temperature as the refrigerator room 102. If the temperature is lowered, the freshness of leafy vegetables can be maintained for a long time.
  • the upper freezer compartment 103 is usually set in the freezing temperature range of -22 to -18 ° C for freezing storage, but depending on the user's preferred freezing storage state, it can save time for cooking such as thawing around -7 ° C It is also possible to set the soft freezing temperature range of -30 ° C to -25 ° C, which is lower than the normal freezing temperature range of -22 to -18 ° C. It may be set in the freezing temperature range.
  • the lower freezer compartment 105 is usually set at ⁇ 22 to ⁇ 18 ° C. for frozen storage, but is lower than the normal freezing temperature range of ⁇ 22 to ⁇ 18 ° C. to improve the frozen storage state. For example, it may be set in a low temperature freezing temperature range of ⁇ 30 to ⁇ 25 ° C.
  • the refrigerator compartment 102 and the vegetable compartment 106 are set at a plus temperature in the cabinet, they are called refrigerated temperature zones.
  • the upper freezer compartment 103, the lower freezer compartment 105, and the ice making room 104 are called freezing temperature zones because the interior is set at a minus temperature.
  • the top surface portion of the refrigerator main body 101 is provided with a machine room 119 provided with a dent in a step shape toward the back surface of the refrigerator main body 101, and is composed of a first top surface portion and a second top surface portion.
  • a flammable refrigerant is often used as a refrigerant for environmental protection.
  • these functional components can be arranged in the machine room.
  • the refrigerator compartment 102, the ice making compartment 104, and the upper freezer compartment 103 are partitioned by a first heat insulating partition 110.
  • ice making chamber 104 and the upper freezing chamber 103 are partitioned by a second heat insulating partition 111.
  • the ice making chamber 104, the upper freezing chamber 103, and the lower freezing chamber 105 are partitioned by a third heat insulating partition 112.
  • the second heat insulating partition part 111 and the third heat insulating partition part 112 are parts assembled after foaming of the refrigerator main body 101, expanded polystyrene is usually used as a heat insulating material, but in order to improve heat insulating performance and rigidity. Rigid foamed urethane may be used, and furthermore, a highly heat insulating vacuum heat insulating material may be inserted to further reduce the thickness of the partition structure.
  • the lower freezer compartment 105 and the vegetable compartment 106 are partitioned by a fourth partition 113.
  • a cooling chamber 123 is provided on the back surface of the refrigerator main body 101, and in the cooling chamber 123, a cooler 107 that generates fin-and-tube type cool air as a representative one is a heat insulating partition wall.
  • the rear part of the lower freezer compartment 105 including the rear area of the partition parts 111 and 112 is vertically arranged in the vertical direction.
  • the material of the cooler 107 is aluminum or copper.
  • the cold air generated by the cooler 107 is stored in each storage room of the refrigerator compartment 102, the ice making room 104, the upper freezer room 103, the lower freezer room 105, and the vegetable room 106 by a forced convection method.
  • a cool air blowing fan 116 for blowing air is disposed, and a radiant heater 134 made of glass tube is provided in a lower space of the cooler 107 as a defrosting device for defrosting the frost adhering to the cooler 107 and the cold air blowing fan 116 during cooling. It has been.
  • the defrosting device is not particularly specified, and a pipe heater in close contact with the cooler 107 may be used in addition to the radiant heater 134.
  • the cool air blowing fan 116 may be directly disposed in the inner box 125, it is disposed in the second partition portion 111 assembled after foaming, and the manufacturing cost is reduced by performing block processing of the parts. You can also.
  • the first heat insulating partition 110 that is the ceiling surface of the upper freezer compartment 103 has an adjacent storage chamber on the projection surface of the surface detected by the infrared sensor 128 that detects the temperature of the food 121. It is installed in the direction (downward in this embodiment).
  • a discharge port (not shown) through which the cool air generated by the cooler 107 is discharged at the upper back of the upper freezer compartment 103, and a return for returning the cool air circulating in the upper freezer compartment 103 to the cooler chamber 123 again.
  • a mouth (not shown) is provided.
  • the detection accuracy can be improved because the infrared sensor 128 is less susceptible to the influence of cold air discharged from the discharge port. Furthermore, when the tip of the infrared sensor 128 is inside or on the same surface as the surface of the heat-insulating partition, foreign matter adheres to the detection part of the infrared sensor 128 even when a large amount of food 121 is placed in the storage chamber or during cleaning. This will not cause malfunction of detection. Furthermore, since there is no catching at the time of cleaning due to protrusion into the chamber, it is possible to prevent parts from being lost due to excessive force load, displacement in the detection direction, and the like. Moreover, since it does not protrude into the storage, the storage capacity does not decrease and the capacity can be secured.
  • the case 127 in the storage room detected by the infrared sensor 128 is provided with a mark 133 indicating that it is within the visual field range that the infrared sensor 128 can detect, so that the customer can easily understand where the food 121 is placed.
  • the mark 133 is provided in a range smaller than the visual field range detected by the infrared sensor 128 so that the temperature can be reliably detected when the food 121 is stored.
  • the infrared sensor 128 since the infrared sensor 128 has the strongest infrared detection intensity at the center of the detection range and becomes weaker as it goes to the end of the detection range, it is preferable to mark the mark 133 with the center as a reference in order to improve detection accuracy.
  • the mark is in a state where the drawer type door 103a is opened. Since it is difficult to know where the user should place the food when throwing in the food, the user can place the food more accurately with the mark 133, and the detection accuracy of the infrared sensor 128 can be improved. It is.
  • the infrared sensor 128 detects a thermopile (not shown) at the tip of the infrared ray emitted from the range of the surface to be detected and converts it into an electrical signal.
  • a thermopile Around the thermopile, there is a probe (not shown) which is a light collecting member for narrowing the detection range of the infrared sensor 128, and further compared with the voltage of a thermistor (not shown) which is a reference temperature arranged on the substrate portion.
  • the temperature is detected by calculating the temperature of the detected object.
  • the infrared sensor 128 has the highest infrared detection intensity in the center of the detection range circle, and the detection intensity decreases toward the end.
  • the viewing angle of the thermopile is set to 55 ° or less (50 ° is illustrated in FIG. 3).
  • the infrared sensor 128 used in the present embodiment a thermopile composed of a large number of thermocouples formed on a silicon substrate was used. Furthermore, the material of the probe part is a molded product using alumina powder having excellent thermal conductivity, but if the material has excellent thermal conductivity, for example, molding in which ceramic powder such as magnesia powder or aluminum nitride powder is dispersed. Goods are also acceptable.
  • a resin type probe is used in the detection response of the infrared sensor 128, the response is delayed, but the specific gravity can be reduced, which is effective in reducing the weight. By reducing the thickness of the resin type probe, it is possible to improve the responsiveness slightly, and the volume can be reduced, so that environmental load can be reduced with less material. Thinning is the same for metal materials having excellent thermal conductivity.
  • the viewing angle becomes narrower, but the detection accuracy can be improved thereby.
  • the detection surface of the infrared sensor 128 is formed with a cold storage function, the temperature fluctuation of the detection surface itself is reduced, so that it is possible to detect more accurately when warm food is introduced. is there.
  • the refrigerator compartment 102 rises in temperature due to heat intrusion from outside air and door opening / closing, and the refrigerator compartment sensor (not shown) reaches or exceeds the startup temperature of the compressor 117, the compressor 117 is started. Cooling in the storage is started. While the high-temperature and high-pressure refrigerant discharged from the compressor 117 finally reaches a dryer (not shown) disposed in the machine room 119, heat is dissipated particularly in a condenser (not shown) or the outer box 124. A pipe (not shown) is cooled and liquefied by heat exchange with the air outside the outer box 124 and the urethane heat insulating material 126 in the warehouse.
  • the liquefied refrigerant is depressurized by the capillary tube 118, flows into the cooler 107, and exchanges heat with the internal air around the cooler 107.
  • the cold air subjected to heat exchange is blown into the cabinet by a nearby cool air blower fan 116 to cool the inside of the cabinet.
  • the refrigerant is heated and gasified to return to the compressor 117.
  • the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor (not shown) becomes equal to or lower than the stop temperature, the operation of the compressor 117 is stopped.
  • Refrigerator performs cooling operation by repeating the above operation cycle.
  • the infrared sensor 128 detects the temperature of the case 127 or the temperature of the food 121 in the upper freezer compartment from the thermopile 129 attached to the top surface of the upper freezer compartment 103. Detected.
  • the infrared sensor 128 detects the case 127.
  • a third heat insulating partition 112 which is a partition wall that separates the storage chamber on the projection line in the direction detected by the infrared sensor 128 from the detection surface of the surface or the target food 121 and the storage chamber provided with the infrared sensor 128. Will be detected.
  • the adjacent storage chamber on the projection surface of the surface detected by the infrared sensor 128, that is, on the projection line in the direction detected by the infrared sensor 128, has a refrigeration temperature zone that is 20 ° C.
  • the temperature zone of the storage chamber sandwiching the third heat insulating partition 112 is set to the same temperature zone or a temperature zone lower than the storage chamber, so that the amount of change in the detected temperature is reduced and detected. It is possible to prevent unnecessary energy consumption such as increasing the number of rotations of the compressor 117 and increasing the number of rotations of the cool air blower fan 116 because unnecessary cooling capacity is required.
  • the non-contact sensor when the door is opened, the non-contact sensor includes the third heat insulating partition 112 that is the wall on the projection plane side. Because it detects the temperature near the same temperature as the storage room or lower than the storage room, the adjacent storage room will not be at a high temperature when the door is opened and closed, and the non-contact sensor will falsely detect that warm food has been introduced. It can be suppressed.
  • a door switch is attached and interlocked with the switch to grasp the situation at the time of opening and closing the door, and when the door switch is activated, the infrared sensor 128 is set to a specification that cannot be detected to prevent erroneous detection.
  • a door switch is provided and linked to control, resulting in a more complicated configuration.
  • this door switch and wiring for linking with the switch, etc. It is assumed that the addition of the control mechanism included will cause the cost to increase due to the cost increase due to the global rise in parts due to the shortage of raw materials.
  • the temperature of the food higher than the surrounding temperature is detected, and when the door is open, the temperature is lower than that of the storage room provided with the infrared sensor. Because it detects the temperature range or the freezing temperature that is the same temperature range, for example, even when the temperature rises temporarily with the opening of the door, if no warm food is actually put in, Since a rapid temperature drop can be detected, it is also possible to determine that automatic quick freezing is started only when the temperature gradient within a certain period of time is calculated and a threshold value is set and the threshold value is exceeded.
  • the infrared sensor 128 is disposed on the refrigerating chamber side in order to obtain the effect of preventing condensation by disposing the infrared sensor 128 in the heat insulating partition that partitions the storage chamber higher than the temperature of the adjacent storage chamber.
  • a shutter mechanism can be mounted as a countermeasure for preventing condensation as in the conventional example, but a complicated mechanism is required because it needs to be interlocked with the opening and closing of the door.
  • the infrared sensor 128 is installed in the storage room where the temperature is higher on average than the ambient temperature, so that it becomes difficult to attach moisture that causes aging deterioration, thereby extending the product life. Is effective.
  • the purpose is to detect the temperature of the food 121 by the infrared sensor 128.
  • the infrared sensor 128 detects the temperature of the food 121 and at the same time the temperature of the one within the visual field range of the infrared sensor 128. Therefore, the amount of infrared rays emitted from the wall surface of the storage room or the food 121 stored in the storage room is detected. Therefore, when the temperature of the detection surface of the infrared sensor 128 rises due to the inflow of warm air accompanying the opening and closing of the door, the detection accuracy of the infrared sensor 128 for detecting the temperature of the food 121 decreases, so the temperature of the detection surface of the infrared sensor 128 decreases.
  • the detection surface has a cold storage function.
  • the inner wall surface in the detection range can maintain a more constant temperature, which is a temperature increase due to a so-called disturbance other than the addition of the food 121. It is possible to prevent wasteful energy consumption due to excessive cooling of the storage chamber by erroneously detecting that food has been introduced due to inflow of warm air or the like, and automatically starting rapid cooling based on the erroneous detection.
  • a disturbance detection means that reliably detects the presence or absence of food input
  • a detection time for determining the input of food is provided, and a warm temperature is detected
  • the presence or absence of food can be determined.
  • the infrared sensor 128 when the infrared sensor 128 is installed in the storage chamber, in this embodiment, consideration is given to the surface of the sensor probe being disposed below the surface of the heat insulating partition. This prevents cold air from the cold air outlet on the back from excessively cooling the tip of the probe and reduces temperature fluctuations in detection. At the time of adhesion and cleaning, the tip of the infrared sensor 128 is caught on a finger or a towel that is a cleaning object, etc., so that there is a function of suppressing component omission and detachment due to excessive force action.
  • the infrared sensor 128 erroneously detects that the thermistor 131 that detects its own temperature causes excessive temperature fluctuations, it is desirable that the infrared sensor 128 be separated from the part where the thermal fluctuations are not affected by the temperature.
  • a pipe mainly composed of a metal material such as copper or iron is provided for heat dissipation and surface condensation prevention, and therefore, the distance from the pipe is 15 mm or more in this embodiment.
  • isobutane which is a flammable refrigerant with a low global warming potential
  • isobutane which is a hydrocarbon
  • This isobutane has a specific gravity approximately twice that at normal temperature and atmospheric pressure compared with air (at 2.04 and 300K). If isobutane, which is a combustible refrigerant, leaks from the refrigeration system when the compressor 117 is stopped, it leaks downward because it is heavier than air.
  • the amount of leakage may increase, but the upper freezer compartment 103 in which the infrared sensor 128 is disposed is installed above the cooler 107. Therefore, even if it leaks, it does not leak into the upper freezer compartment 103. Even if the refrigerant leaks into the upper freezer compartment 103, the refrigerant is heavier than air and stays in the lower part of the storage compartment. Therefore, since the infrared sensor 128 is installed on the top of the storage room, it is extremely low that the vicinity of the infrared sensor 128 becomes a flammable concentration.
  • FIG. 4 is a partially enlarged side sectional view of the refrigerator according to Embodiment 2 of the present invention.
  • the surface detected by the infrared sensor 228 provided in the upper freezer compartment 203 is only the container 227, and is positioned below the container 227.
  • the third heat-insulating partition portion that has been removed is eliminated.
  • the mark 133 is provided at a location where the infrared sensor 228 on the food placement surface can detect the temperature with the highest accuracy.
  • the upper freezer compartment 203 and the lower freezer compartment 205 are in substantially the same temperature range, even when the temperature of the lower freezer compartment 205 is detected when the door is opened, it is detected because it is in the same temperature range as the upper freezer compartment 203. There is an effect that the temperature fluctuation of the temperature can be further suppressed.
  • the food placing surface on which the food in the upper freezer compartment 203 is placed can be cooled from the lower side with the cold air that cools the lower freezer compartment 205, the food placing surface can be cooled by cold air from both the upper and lower sides. Since it is cooled, the temperature difference between the space above and below the food placing surface is further reduced, and in addition to the effect that the temperature fluctuation of the temperature detected by the infrared sensor can be further suppressed. In addition to the case where there is a third heat insulating partition, the cooling speed can be remarkably improved. In addition, it is known that the food 221 passes through the maximum ice crystal formation zone of 0 ° C. to ⁇ 5 ° C. for a short time when frozen, so that there is little destruction of cells, so the third heat insulating partition is eliminated and the food 221 is moved up and down. Cooling from is very effective for food preservation.
  • FIG. 5 is a partially enlarged side cross-sectional view of the refrigerator according to Embodiment 3 of the present invention.
  • an infrared sensor 328 is attached to a door portion that pulls out the upper freezer compartment 303, and when the door is opened and closed, the detected temperature and the like are transmitted to the control portion of the refrigerator main body 301 by radio.
  • a wireless data transmission method is described for the drawer door.
  • the wireless circuit can be reduced by arranging a transmission wiring in the door opening / closing operation portion. .
  • FIG. 1 described above is also a front view of the refrigerator in the fourth embodiment of the present invention.
  • FIG. 2 is a side sectional view of the refrigerator according to the fourth embodiment of the present invention.
  • FIG. 6 is a partially enlarged side sectional view of the upper freezer compartment in the fourth embodiment of the present invention.
  • the refrigerator main body 101 includes a metal (for example, iron plate) outer box 124, a hard resin (for example, ABS) inner box 125, and an outer box 124.
  • a heat insulating box body made of urethane heat insulating material 126 filled with foam between inner boxes 125, a refrigerating chamber 102 provided at the upper portion of the main body, an upper freezing chamber 103 provided under the refrigerating chamber, and a refrigerating chamber
  • An ice making chamber 104 provided in parallel with the upper freezer compartment 103 under the 102, a vegetable compartment 106 provided in the lower part of the main body, and between the upper freezer 103 and the ice making chamber 104 and the vegetable compartment 106 installed in parallel.
  • the lower freezer room 105 is provided. Front portions of the upper freezing chamber 103, the ice making chamber 104, the lower freezing chamber 105, and the vegetable chamber 106 are freely opened and closed by a drawer-type door (not shown), and the front side of the refrigerator compartment 102 is, for example, a double door type door not shown. Is closed freely.
  • the refrigerator compartment 102 is normally set at 1 to 5 ° C. with a lower limit of the temperature at which it does not freeze for refrigerated storage.
  • the vegetable room 106 is often set to 2 ° C. to 7 ° C., which is the same or slightly higher temperature as the refrigerator room 102. If the temperature is lowered, the freshness of leafy vegetables can be maintained for a long time.
  • the upper freezer compartment 103 is usually set in the freezing temperature range of -22 to -18 ° C for freezing storage, but depending on the user's preferred freezing storage state, it can save time for cooking such as thawing around -7 ° C It is also possible to set the soft freezing temperature range of -30 ° C to -25 ° C, which is lower than the normal freezing temperature range of -22 to -18 ° C. It may be set in the freezing temperature range.
  • the lower freezer compartment 105 is usually set in a freezing temperature range of ⁇ 22 to ⁇ 18 ° C. for frozen storage, but in order to improve the frozen storage state, for example, in a low temperature freezing temperature range of ⁇ 30 to ⁇ 25 ° C. Sometimes set.
  • the refrigerator compartment 102 and the vegetable compartment 106 are set at a positive temperature in the cabinet, they are generally called the refrigerator temperature zone, and the upper freezer compartment 103, the lower freezer compartment 105, and the ice making chamber 104 are set at a negative temperature. Therefore, it is called a freezing temperature zone as a general term.
  • the top surface portion of the refrigerator main body 101 is provided with a machine room 119 provided with a dent in a step shape toward the back surface of the refrigerator main body 101, and is composed of a first top surface portion and a second top surface portion.
  • a flammable refrigerant is often used as a refrigerant for environmental protection.
  • these functional components can be arranged in the machine room.
  • the refrigerator compartment 102, the ice making compartment 104, and the upper freezer compartment 103 are partitioned by a first heat insulating partition 110.
  • ice making chamber 104 and the upper freezing chamber 103 are partitioned by a second heat insulating partition 111.
  • the ice making chamber 104, the upper freezing chamber 103, and the lower freezing chamber 105 are partitioned by a third heat insulating partition 112.
  • the second heat insulating partition part 111 and the third heat insulating partition part 112 are parts assembled after foaming of the refrigerator main body 101, expanded polystyrene is usually used as a heat insulating material, but in order to improve heat insulating performance and rigidity. Rigid foamed urethane may be used, and furthermore, a highly heat insulating vacuum heat insulating material may be inserted to further reduce the thickness of the partition structure.
  • the center part of the 2nd heat insulation partition part 111 and the 3rd heat insulation partition part 112 is hollowed, and it leads to reduction of material by making it an air path.
  • the lower freezer compartment 105 and the vegetable compartment 106 are partitioned by a fourth partition 113.
  • a cooling chamber 123 covered with a cooling chamber cover 122 is provided on the back of the refrigerator main body 101, and specifically, provided on the back of the upper freezing chamber 103 or the lower freezing chamber 105.
  • a cooler 107 that generates fin-and-tube type cool air is representatively included in the lower freezing chamber including the rear regions of the second and third partition portions 111 and 112, which are heat insulating partition walls.
  • the material of the cooler 107 is aluminum or copper.
  • the cold air generated by the cooler 107 is stored in each storage room of the refrigerator compartment 102, the ice making room 104, the upper freezer room 103, the lower freezer room 105, and the vegetable room 106 by a forced convection method.
  • a cool air blowing fan 116 for blowing air is disposed, and a radiant heater 134 made of glass tube is provided in a lower space of the cooler 107 as a defrosting device for defrosting the frost adhering to the cooler 107 and the cold air blowing fan 116 during cooling. It has been.
  • the defrosting device is not particularly specified, and a pipe heater in close contact with the cooler 107 may be used in addition to the radiant heater 134.
  • the cooling chamber cover 122 is provided with ducts for blowing cold air from the cold air blowing fans 116 into the respective storage chambers, and the cooler 107 is cooled through the same discharge duct 434 to the upper freezing chamber 103 and the lower freezing chamber 105. It is blowing directly.
  • discharge duct 434 is located closest to the cooler 107 in the air path for sending the cold air to each storage room.
  • the front surface of the cooling chamber cover 122 is provided with a first discharge port 432 and a second discharge port 433 for discharging cold air to the upper freezing chamber 103 and the lower freezing chamber 105, respectively.
  • the flow rate of the second discharge port 433 is distributed according to the load ratio of the two rooms.
  • the discharge area of the upper freezer compartment 103 is about 3000 mm 2
  • the discharge area of the lower freezer room 105 is about 6000 mm 2
  • the flow rate ratio between the upper freezer room 103 and the lower freezer room 105 is about
  • the same temperature zone is configured by setting the ratio to 1: 2.
  • the distance between the outlet of the cool air blowing fan 116 that blows the cool air generated by the cooler 107 and the first discharge port 432 of the upper freezer compartment 103 and the second discharge port 433 of the lower freezer chamber 105 is set through the same duct. Equivalent. In this embodiment, the thickness is set to 100 mm, and each discharge cold air is set to the same temperature.
  • first discharge port 432 and the second discharge port 433 are the discharge port with the shortest distance from the cooler 107 and the second closest discharge port, the heat loss that has just come out of the cooler 107 is small. Since the cold air having the lowest temperature is discharged from the first discharge port 432 and the second discharge port 433, the cooling efficiency is higher, and the first discharge port 432 and the second discharge port 433 have substantially the same temperature. The cool air is discharged.
  • the cool air blowing fan 116 may be directly disposed in the inner box 125, it is disposed in the second partition portion 111 assembled after foaming, and the manufacturing cost is reduced by performing block processing of the parts. You can also.
  • the infrared sensor 128 is installed in the heat insulating partition, it is difficult to be affected by the cold air discharged from the first discharge port 432, so that the detection accuracy can be improved. Furthermore, when the tip of the infrared sensor 128 is inside or on the same surface as the surface of the heat-insulating partition, foreign matter adheres to the detection part of the infrared sensor 128 even when a large amount of food 121 is placed in the storage chamber or during cleaning. This will not cause malfunction of detection. Furthermore, since there is no catching at the time of cleaning due to protrusion into the chamber, it is possible to prevent parts from being lost due to excessive force load, displacement in the detection direction, and the like. Moreover, since it does not protrude into the storage, there is an advantage that the storage capacity does not decrease and the capacity can be secured.
  • the mark 137 may be attached with the center as a reference in order to increase detection accuracy.
  • the infrared sensor 128 detects the amount of infrared rays emitted from the range of the surface to be detected with a thermopile at the tip and converts it into an electrical signal. There is a probe around the thermopile, and temperature detection is performed by calculating the temperature of the detected object by comparing with the voltage of the thermistor which is the reference temperature arranged on the substrate portion.
  • the infrared sensor 128 has the highest infrared detection intensity at the center of the circle within the detection range, and the detection intensity becomes weaker toward the end.
  • the viewing angle of the thermopile is set to 50 ° due to the influence of the temperature of the section, which is a cause of erroneous detection.
  • the infrared sensor 128 used in the present embodiment a thermopile composed of a large number of thermocouples formed on a silicon substrate was used. Furthermore, the material of the probe part is a molded product using alumina powder having excellent thermal conductivity, but if the material has excellent thermal conductivity, for example, molding in which ceramic powder such as magnesia powder or aluminum nitride powder is dispersed. Goods are also acceptable.
  • a resin type probe is used in the detection response of the infrared sensor 128, the response is delayed, but the specific gravity can be reduced, which is effective in reducing the weight. By reducing the thickness of the resin type probe, it is possible to improve the responsiveness slightly, and the volume can be reduced, so that environmental load can be reduced with less material. Thinning is the same for metal materials having excellent thermal conductivity.
  • the refrigerator compartment 102 rises in temperature due to heat intrusion from outside air and door opening / closing, and the refrigerator compartment sensor (not shown) reaches or exceeds the startup temperature of the compressor 117, the compressor 117 is started. Cooling in the storage is started. While the high-temperature and high-pressure refrigerant discharged from the compressor 117 finally reaches a dryer (not shown) disposed in the machine room 119, heat is dissipated particularly in a condenser (not shown) or the outer box 124. A pipe (not shown) is cooled and liquefied by heat exchange with the air outside the outer box 124 and the urethane heat insulating material 126 in the warehouse.
  • the liquefied refrigerant is depressurized by the capillary tube 118, flows into the cooler 107, and exchanges heat with the internal air around the cooler 107.
  • the cold air subjected to heat exchange is blown into the cabinet by a nearby cool air blower fan 116 to cool the inside of the cabinet.
  • the refrigerant is heated and gasified to return to the compressor 117.
  • the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor (not shown) becomes equal to or lower than the stop temperature, the operation of the compressor 117 is stopped.
  • Refrigerator performs cooling operation by repeating the above operation cycle.
  • the infrared sensor 128 detects the temperature of the case 127 or the food 121 in the upper freezer compartment from the thermopile of the infrared sensor 128 attached to the top surface of the upper freezer compartment 103. is doing.
  • the infrared sensor 128 detects the surface of the case 127. In other words, the temperature of the third heat insulating partition 112 that separates the storage room provided with the infrared sensor 128 and the adjacent storage room from the detection surface of the target food 121 is detected.
  • the detected temperature is abrupt because the surface of the third heat insulating partition 112 has a temperature difference due to heat conduction. It will change to higher.
  • the upper freezing chamber 103 and the lower freezing chamber 105 are cooled by the discharge cold air having the same temperature discharged through the same discharge duct 434, and the flow rate of the discharge cold air is the load amount of the upper freezing chamber 103 and the lower freezing chamber 105. Since the distribution is performed according to the ratio, the temperatures of the upper freezer compartment 103 and the lower freezer compartment 105 are in the same temperature range.
  • the third heat insulating partition 112 serving as the detection unit of the infrared sensor 128 has the same temperature as that detected when the door is closed. Misdetection of presence or absence is suppressed.
  • the predetermined temperature is maintained at least by the average temperature of the upper limit temperature and the lower limit temperature.
  • the upper limit temperature and the lower limit temperature of the upper freezer compartment 103 are less likely to differ from those of the lower freezer compartment 105.
  • the upper limit temperature and the lower limit temperature associated with temperature adjustment are substantially the same in the upper freezer compartment 103 and the lower freezer compartment 105, and erroneous detection of the infrared sensor 128 can be further suppressed, so that the infrared sensor 128 can be opened even when the door is opened.
  • the amount of change in the temperature detected by the compressor becomes small and the detection is shifted, and an unnecessary cooling capacity is required, so that the rotation speed of the compressor 117 is increased or the rotation speed of the cool air blower fan 116 is increased. Will not cause false positives.
  • the first outlet 432 of the upper freezer compartment 103 is installed so as to face in the front direction so that the cold air flows along the surface detected by the infrared sensor, and below the first outlet 432. Also has a downward discharge port 435 adjusted so that the cold air flows downward. Thereby, since the temperature difference between the detection part of the infrared sensor 128 and the thermistor (not shown) part can be reduced, it becomes difficult to be influenced by the ambient temperature other than the food 121 within the detection range, so that the food temperature can be detected with high accuracy.
  • the temperature detected by the infrared sensor 128 detects not only the food 121 but also the temperature of the portion other than the food 121 when there is a temperature difference with the thermistor in order to detect the amount of infrared rays in the detection surface and convert it to the temperature. Become. In this embodiment, since the temperature difference between the temperature of the detection surface other than the food 121 and the thermistor can be reduced, the infrared amount of the food 121 can be detected with high accuracy, and the temperature of the food 121 can also be detected with high accuracy.
  • the discharge cold air flows on the surface of the cooling chamber cover 122, in addition to improving the detection accuracy of the infrared sensor 128, the surface of the cooling chamber cover 122 due to the inflow of high humidity outside air by opening and closing the door.
  • the sublimation can be promoted by the low-humidity cold air generated and dehumidified by the cooler 107.
  • the temperature of the food higher than the surrounding temperature is detected, and when the door is open, the temperature is lower than that of the storage room provided with the infrared sensor. Because it detects the temperature range or the freezing temperature that is the same temperature range, for example, even when the temperature rises temporarily with the opening of the door, if no warm food is actually put in, Since a rapid temperature drop can be detected, it is also possible to determine that automatic quick freezing is started only when the temperature gradient within a certain period of time is calculated and a threshold value is set and the threshold value is exceeded.
  • thermopile detects the temperature of the condensed water. Further, when the door is closed and the cooling operation in the cabinet is started, the condensed water freezes, so that it becomes difficult for the thermopile to detect the temperature of the food until the frozen water droplets sublimate. Therefore, when designing the arrangement of the infrared sensor 128, it is possible to obtain the effect of preventing dew condensation by giving consideration to the arrangement in the heat-insulating partition part that separates the storage room higher than the temperature of the adjacent storage room. .
  • the refrigerator compartment side it is preferable to install on the refrigerator compartment side. Furthermore, it is better to arrange it near the door side which is the highest temperature part in the temperature distribution of the heat insulating partition.
  • a shutter mechanism can be installed as a countermeasure to prevent condensation as in the conventional example, but since it needs to be interlocked with the opening and closing of the door, a complicated mechanism is required, so the possibility of failure increases and it is installed in an actual refrigerator Difficult to do.
  • the infrared sensor 128 is installed in the storage room where the temperature is higher than the ambient temperature on average, thereby making it difficult for moisture to cause aging deterioration, thereby extending the product life. It is effective.
  • the infrared sensor 128 when the infrared sensor 128 is installed in the storage chamber, in this embodiment, consideration is given to the surface of the sensor probe being disposed below the surface of the heat insulating partition. As a result, the cold air from the first discharge port 432 on the back surface does not excessively cool the tip of the probe to reduce the temperature fluctuation of the detection, and in addition, when the food is stored in excess of the food storage amount The front end of the infrared sensor 128 is caught by a finger or a towel as a cleaning object at the time of catching, adhering foreign matter, or cleaning, so that there is a function of suppressing component omission and detachment due to excessive force action.
  • the infrared sensor 128 erroneously detects that the thermistor 131 that detects its own temperature causes excessive temperature fluctuations, it is desirable that the infrared sensor 128 be separated from the part where the thermal fluctuations are not affected by the temperature.
  • a pipe mainly composed of a metal material such as copper or iron is provided for heat dissipation and surface condensation prevention, and therefore, the distance from the pipe is 15 mm or more in this embodiment.
  • isobutane which is a flammable refrigerant with a low global warming potential
  • isobutane which is a hydrocarbon
  • This isobutane has a specific gravity approximately twice that at normal temperature and atmospheric pressure compared with air (at 2.04 and 300K). If isobutane, which is a combustible refrigerant, leaks from the refrigeration system when the compressor 117 is stopped, it leaks downward because it is heavier than air. In particular, when leaking from the cooler 107 having a large amount of refrigerant, the amount of leakage may increase, and it is particularly likely to leak into the storage chamber communicating with the front side of the cooler 107.
  • the upper freezer compartment 103 in which the sensor 128 is disposed is installed above the cooler 107, it does not leak into the upper freezer compartment 103 even if it leaks. Even if the refrigerant leaks into the upper freezer compartment 103, the refrigerant is heavier than air and stays in the lower part of the storage compartment. Therefore, since the infrared sensor 128 is installed on the top surface of the storage room, the possibility that the vicinity of the infrared sensor 128 becomes a flammable concentration is extremely low, so that the arrangement configuration is sufficiently safe.
  • the area of the food 121 is detected after the food is added, and the detection viewing angle of the infrared sensor 128 is adjusted according to the area of the food 121, thereby improving the accuracy. Can be achieved.
  • the viewing angle can be adjusted with a portion having a temperature difference from the surroundings as a detection target after the food 121 is introduced, the detection accuracy with higher cost performance than the detection of the food area can be improved.
  • the first outlet 432 of the upper freezer compartment 103 is installed so as to face in the front direction so that the cool air flows along the surface detected by the infrared sensor, and the first outlet
  • the downward discharge port 435 adjusted so that the cold air flows downward is also opened on the lower side of the outlet 432, but the first discharge port 432 installed to face the front direction is more forward. It may be arranged so that it extends and cools around the front side of the upper freezer compartment 103, and the downward discharge port 435 cools around the rear side. It becomes possible to cool uniformly. Further, in the case where the first discharge port 432 and the downward discharge port 435 are not provided at two locations, the first discharge port 432 is arranged slightly downward from the front. By doing so, it becomes easier for cold air to flow to the food placement surface and the temperature within the detection range of the infrared sensor 128 can be lowered, so that the detection accuracy when new food is introduced can be further increased. It becomes possible.
  • FIG. 7 is a partially enlarged side sectional view of the refrigerator according to the fifth embodiment of the present invention.
  • the temperature of the lower freezer compartment 105 is detected when the door is opened, thereby further suppressing temperature fluctuation of the detected temperature.
  • the lower freezing room 105 is a room, and the upper freezing room 103 and the lower freezing room 105 share the same discharge duct 434 as the same temperature zone and supply cold air in the same temperature zone. Therefore, the cool air from the discharge duct 434 is supplied to the upper freezer compartment 103 through the first discharge port 432, and the cool air from the discharge duct 434 is supplied to the lower freezer chamber 105 through the second discharge port 433.
  • first discharge port 432 and the second discharge port 433 are the discharge port with the shortest distance from the cooler 107 and the second closest discharge port, the heat loss that has just come out of the cooler 107 is small. Since the cold air having the lowest temperature is discharged from the first discharge port 432 and the second discharge port 433, the cooling efficiency is higher, and the first discharge port 432 and the second discharge port 433 have substantially the same temperature. The cool air is discharged.
  • first discharge port 432 and the second discharge port 433 are supplied with cold air at the same timing.
  • the upper freezer compartment 103 which is a storage room in which the infrared sensor 128 is installed
  • the lower freezer room 105 which is an adjacent storage room
  • the heat insulation partition part used as the detection part of a non-contact sensor becomes the same temperature as the part detected when the door is closed, the erroneous detection of the presence or absence of the food supply accompanying door opening / closing is suppressed.
  • the predetermined temperature in the storage chamber and the adjacent storage chamber is performed by controlling the discharge amount of the cool air to be discharged
  • the predetermined temperature is maintained at least by the average temperature of the upper limit temperature and the lower limit temperature.
  • the difference between the upper limit temperature and the lower limit temperature of the storage room and that of the adjacent storage room is less likely to occur.
  • the upper limit temperature and the lower limit temperature that accompany temperature control are also substantially the same in the storage room and the adjacent storage room, and erroneous detection of the non-contact sensor can be further suppressed.
  • the food 121 in the upper freezing chamber 103 can be cooled from the upper side by the cool air that cools the lower freezing chamber 105, it can be cooled from the lower side. It becomes possible to improve the cooling speed. Since the food 221 is known to undergo less cell destruction when passing through the maximum ice crystal formation zone of 0 ° C. to ⁇ 5 ° C. in a short time when frozen, it is insulated between the upper freezing chamber 103 and the lower freezing chamber 105. Cooling the food 121 from above and below by having the same temperature zone without having a partition portion can be said to be a very effective configuration for food preservation in an actual refrigerator because the freshness during freezing is greatly improved. .
  • FIG. 8 is a partially enlarged side sectional view of the refrigerator according to the sixth embodiment of the present invention.
  • a part having a larger cross-sectional area than the other part is provided in a part of the discharge duct 434, and warm air at the time of defrosting is retained to suppress inflow into the warehouse.
  • a portion having a large cross-sectional area in the discharge duct 434 is disposed above the cooler 307 and disposed above the discharge port 332 of the upper freezer compartment 303 so that warm air flows into the chamber. Was further reduced.
  • the defrosting efficiency in the cooling chamber 323 is increased, so that the defrosting time can be shortened and the power consumption can be reduced.
  • the cooling stop time in the warehouse can be shortened, the temperature rise of the food 321 can be suppressed.
  • FIG. 1 described above is also a front view of the refrigerator in the seventh embodiment of the present invention.
  • FIG. 2 described above is also a side sectional view of the refrigerator according to the seventh embodiment of the present invention.
  • FIG. 9 is a partially enlarged side sectional view of the upper freezer compartment of the refrigerator in the seventh embodiment of the present invention.
  • the refrigerator body 101 includes a metal (for example, iron plate) outer box 124, a hard resin (for example, ABS) inner box 125, an outer box 124, and a front opening.
  • a heat insulating box body made of urethane heat insulating material 126 filled with foam between inner boxes 125, a refrigerating chamber 102 provided at the upper portion of the main body, an upper freezing chamber 103 provided under the refrigerating chamber, and a refrigerating chamber
  • An ice making chamber 104 provided in parallel with the upper freezer compartment 103 under the 102, a vegetable compartment 106 provided in the lower part of the main body, and between the upper freezer 103 and the ice making chamber 104 and the vegetable compartment 106 installed in parallel.
  • the lower freezer room 105 is provided. Front portions of the upper freezing chamber 103, the ice making chamber 104, the lower freezing chamber 105, and the vegetable chamber 106 are freely opened and closed by a drawer-type door (not shown), and the front side of the refrigerator compartment 102 is, for example, a double door type door not shown. Is closed freely.
  • the refrigerator compartment 102 is normally set at 1 to 5 ° C. with a lower limit of the temperature at which it does not freeze for refrigerated storage.
  • the vegetable room 106 is often set to 2 ° C. to 7 ° C., which is the same or slightly higher temperature as the refrigerator room 102. If the temperature is lowered, the freshness of leafy vegetables can be maintained for a long time.
  • the upper freezer compartment 103 and the lower freezer compartment 105 are normally set at ⁇ 22 to ⁇ 18 ° C. for frozen storage, but are set at a low temperature of ⁇ 30 to ⁇ 25 ° C., for example, to improve the frozen storage state. Sometimes.
  • the refrigerator compartment 102 and the vegetable compartment 106 are set at a plus temperature in the cabinet, they are called refrigerated temperature zones.
  • the upper freezer compartment 103, the lower freezer compartment 105, and the ice making room 104 are called freezing temperature zones because the interior is set at a minus temperature.
  • the top surface portion of the refrigerator main body 101 is provided with a machine room 119 provided with a dent in a step shape toward the back surface of the refrigerator main body 101, and is composed of a first top surface portion and a second top surface portion.
  • a flammable refrigerant is often used as a refrigerant for environmental protection.
  • these functional components can be arranged in the machine room.
  • the refrigerator compartment 102, the ice making compartment 104, and the upper freezer compartment 103 are partitioned by a first heat insulating partition 110.
  • ice making chamber 104 and the upper freezing chamber 103 are partitioned by a second heat insulating partition 111.
  • the ice making chamber 104, the upper freezing chamber 103, and the lower freezing chamber 105 are partitioned by a third heat insulating partition 112.
  • the second heat insulating partition part 111 and the third heat insulating partition part 112 are parts assembled after foaming of the refrigerator main body 101, expanded polystyrene is usually used as a heat insulating material, but in order to improve heat insulating performance and rigidity. Rigid foamed urethane may be used, and furthermore, a highly heat insulating vacuum heat insulating material may be inserted to further reduce the thickness of the partition structure.
  • the center part of the 2nd heat insulation partition part 111 and the 3rd heat insulation partition part 112 is hollowed, and it leads to reduction of material by making it an air path.
  • the lower freezer compartment 105 and the vegetable compartment 106 are partitioned by a fourth partition 113.
  • a cooling chamber 123 covered with a cooling chamber cover 122 is provided on the rear surface of the refrigerator main body 101.
  • a cooler 107 that generates fin-and-tube type cool air is a heat insulating partition wall.
  • the second and third partition portions 111 and 112 are disposed on the back surface of the lower freezer compartment 105 in the vertical direction in the vertical direction.
  • the material of the cooler 107 is aluminum or copper.
  • the cold air generated by the cooler 107 is stored in each storage room of the refrigerator compartment 102, the ice making room 104, the upper freezer room 103, the lower freezer room 105, and the vegetable room 106 by a forced convection method.
  • a cool air blowing fan 116 for blowing air is disposed, and a radiant heater 134 made of glass tube is provided in a lower space of the cooler 107 as a defrosting device for defrosting the frost adhering to the cooler 107 and the cold air blowing fan 116 during cooling. It has been.
  • the defrosting device is not particularly specified, and a pipe heater in close contact with the cooler 107 may be used in addition to the radiant heater 134.
  • the cooling chamber cover 122 is provided with ducts for blowing the cold air from the cold air blowing fans 116 into the respective storage chambers, and the cooling air from the cooler 107 is directly blown to the upper freezing chamber 103 and the lower freezing chamber 105 through the ducts. Yes.
  • the cool air blowing fan 116 may be directly disposed in the inner box 125, it is disposed in the second partition portion 111 assembled after foaming, and the manufacturing cost is reduced by performing block processing of the parts. You can also.
  • the first heat insulating partition 110 that is the ceiling surface of the upper freezer compartment 103 has a food load on which the infrared sensor 128 that is a non-contact sensor that detects the temperature of the food 121 detects.
  • the adjacent storage chamber on the projection surface of the placement unit is installed in a direction (downward in this embodiment).
  • the infrared sensor 128 is provided on the wall surface of the storage chamber on the side facing the food placement unit, and the food placement unit includes the cold storage agent 142 having a heat storage function.
  • the part has a heat storage function.
  • a return port (not shown) is provided.
  • the infrared sensor 128 is installed in the heat insulating partition part, it is difficult to be affected by the cold air discharged from the first discharge port 132, so that the detection accuracy can be improved. Furthermore, by setting the tip of the infrared sensor 128 to the inside of the surface of the heat insulating partition, foreign matter may adhere to the detection part of the infrared sensor 128 even when a large amount of food 121 is placed in the storage chamber or during cleaning. There is no malfunction in detection.
  • the place where the food 121 is placed is easy for the customer to understand.
  • temperature detection can be reliably performed when the food 121 is stored.
  • the mark 137 may be attached with the center as a reference in order to increase detection accuracy.
  • the mark 137 is attached to the upper surface side of the cold storage agent 142.
  • the infrared sensor 128 detects the amount of infrared rays emitted from the range of the surface to be detected with a thermopile at the tip and converts it into an electrical signal. There is a probe around the thermopile, and temperature detection is performed by calculating the temperature of the detected object by comparing it with the voltage of a thermistor (not shown) which is a reference temperature arranged on the substrate part. Yes.
  • the infrared sensor 128 has the highest infrared detection intensity at the center of the circle within the detection range, and the detection intensity becomes weaker toward the end.
  • the viewing angle of the thermopile is set to 50 ° due to erroneous detection due to the influence of the part temperature. Therefore, the detection accuracy can be further improved by placing the above-mentioned mark 137 mainly in the center of the circle within the range detected by the infrared sensor.
  • the infrared sensor 128 used in the present embodiment a thermopile composed of a large number of thermocouples formed on a silicon substrate was used. Furthermore, the material of the probe part is a molded product using alumina powder having excellent thermal conductivity, but if the material has excellent thermal conductivity, for example, molding in which ceramic powder such as magnesia powder or aluminum nitride powder is dispersed. Goods are also acceptable.
  • a resin type probe is used in the detection response of the infrared sensor 128, the response is delayed, but the specific gravity can be reduced, which is effective in reducing the weight. By reducing the thickness of the resin type probe, it is possible to improve the responsiveness slightly, and the volume can be reduced, so that environmental load can be reduced with less material. Thinning is the same for metal materials having excellent thermal conductivity.
  • the refrigerator compartment 102 rises in temperature due to heat intrusion from outside air and door opening / closing, and the refrigerator compartment sensor (not shown) reaches or exceeds the startup temperature of the compressor 117, the compressor 117 is started. Cooling in the storage is started. While the high-temperature and high-pressure refrigerant discharged from the compressor 117 finally reaches a dryer (not shown) disposed in the machine room 119, heat is dissipated particularly in a condenser (not shown) or the outer box 124. A pipe (not shown) is cooled and liquefied by heat exchange with the air outside the outer box 124 and the urethane heat insulating material 126 in the warehouse.
  • the liquefied refrigerant is depressurized by the capillary tube 118, flows into the cooler 107, and exchanges heat with the internal air around the cooler 107.
  • the cold air subjected to heat exchange is blown into the cabinet by a nearby cool air blower fan 116 to cool the inside of the cabinet.
  • the refrigerant is heated and gasified to return to the compressor 117.
  • the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor (not shown) becomes equal to or lower than the stop temperature, the operation of the compressor 117 is stopped.
  • the infrared sensor 128 detects the temperature of the case 127 or the temperature of the food 121 in the upper freezer compartment from the thermopile attached to the top surface of the upper freezer compartment 103. Yes.
  • the refrigerator performs a cooling operation by repeating the operation cycle as described above.
  • the food 121 when fresh food such as meat or fish is purchased at a supermarket or the like, or when food 121 such as hamburg is made and stored frozen at home, the food 121 is put into the upper freezer 103 and subjected to quick freezing. Conventionally, the food 121 has been rapidly frozen by manually entering the quick freezing control. However, performing the operation of manually entering the quick freezing control after the food 121 is put in is disadvantageous in that the work burden on the user increases.
  • some of them can determine the time until the quick freezing control is finished depending on the set temperature of the food 121.
  • the speed of freezing differs depending on the size and thickness of the food 121.
  • the food 121 is not frozen and may not pass through the maximum ice crystal formation zone.
  • the set temperature is low, the food 121 is frozen, but the cooling operation is not completed and the compressor 117 during rapid freezing is used at a high rotation speed. There is. Further, the temperature of the food 121 is cooled by the influence of the ambient temperature while the temperature of the quick freezing control for the input food 121 is being set. Since it has entered the crystal formation zone, the suppression of cell destruction may be delayed, which may adversely affect the freshness.
  • some of the conventional technologies detect the change from the latent heat change of the food 121 to the sensible heat change to complete the freezing and complete the quick freezing control.
  • the change rate of the sensible heat change Depending on the size and thickness of the food 121, the ratio of latent heat change and sensible heat change may be equivalent.
  • the rate of change due to sensible heat change is small, and when the thickness of the food 121 is thin, the rate of change due to sensible heat change is large. That is, the rate of change of the sensible heat of the food 121 is not constant, and in order to determine the completion of freezing based on the rate of change, the rate of change of the size of the food 121 must be set to the larger one.
  • the cooling operation is performed even if it is frozen, and extra cooling energy is used. Further, even if the cooling load state of the refrigerator varies depending on the operating state of the cold air blowing fan 116 and the opening / closing of a damper (not shown), there may be no difference in the change rate of the latent heat change and the sensible heat change. For example, in the case of this conventional example, the load amount for cooling the refrigerator compartment 102 and the vegetable compartment 106 is different from the load amount for cooling the freezer compartment 108, the ice making compartment 104, and the switching chamber 109.
  • the amount of infrared rays emitted from a load such as food is detected in the case 127 in the upper freezer compartment detected by the infrared sensor 128, and the temperature calculated from the amount of infrared rays is equal to or higher than a certain temperature (upper limit set temperature: T0). ),
  • the quick freezing control is automatically entered, and the quick freezing control is terminated when the temperature detected by the infrared sensor 128 after the setting of the quick freezing control is equal to or lower than a certain temperature (lower limit set temperature: T1). It is what I did.
  • the refrigerator increases the amount of refrigerant circulating by increasing the rotation speed of the compressor 117, and cooling The temperature of the vessel 107 is lowered. Further, by increasing the number of rotations of the cool air blower fan 116, the food 121 is quickly cooled by increasing the amount of cooling that circulates the cool air generated by the cooler 107 in the cabinet. After that, while continuously detecting the temperature of the food 121, after confirming the passage of the maximum ice crystal formation zone of 0 ° C to -5 ° C, when it reaches the lower limit set temperature T1, which is the end temperature, the quick freezing control is automatically ended.
  • the maximum ice crystal formation zone which affects the freshness of food preservation, can be passed quickly by normal cooling operation, and after passing through the maximum ice crystal formation zone, even if it is normally cooled, it has little effect on the deterioration of freshness. There is no such thing as normal operation.
  • T0 which is the start temperature of rapid freezing control, that is, the upper limit temperature
  • T1 which is the end temperature of rapid freezing control, that is, the lower limit temperature
  • the quick freezing control is automatically entered and the cooling capacity is automatically improved, so that the refrigerator can be cooled by a cooling operation as required.
  • the refrigerator With respect to the rise in the internal temperature due to the loading of the load and the cooling to the load that is to be quickly frozen, it has a higher capacity than the conventional operation of the compressor 117 with medium rotation and the cooling of the load slowly. Shorter cooling can save energy because the actual power consumption of the refrigerator can shorten the operation time.
  • the rotation speed of the compressor 117 is temporarily set to 80 Hz, and the rotation speed of the cool air blowing fan 116 is also set to about 3000 rotations / minute, so that the first and second discharge ports
  • the cold air of 132, 133 is rapidly frozen by reducing it to close to -40 ° C.
  • the time has been shortened by more than 30 minutes. An energy saving effect of 23% can be obtained.
  • the regenerator 142 in the case of the upper freezer compartment 103, in addition to the freezing effect in the heat transfer by the cold air of about ⁇ 40 ° C. generated by the cooler 107, the freezing agent is frozen. Since the freezing effect by the direct heat transfer from the cold storage agent 142, that is, heat conduction is also added, the time for passing through the maximum ice crystal formation zone is further shortened and the amount of drip from the food 121 when the food is thawed can be further reduced. The food preservation can be improved.
  • the food 321 is cooled by cooling from the cool storage agent 142 and the inside of the case 127 is kept at a lower temperature than the case where there is no cool storage agent 142, so that the food 121 can be cooled in a short time, so the cooling operation time of the refrigerator Reduction and energy saving can be achieved, and the freshness of the food 321 can be improved.
  • the cool storage agent 142 absorbs the heat load of the outside air inflow even when the food 121 is not charged or when the outside air flows in when the door is opened or closed. Temperature rise can be suppressed.
  • the effect of this embodiment is as follows from the viewpoint of energy saving and food preservation.
  • the food temperature is detected by a sensor that detects non-contact, and quick freezing control is started automatically, and when the end temperature is reached, normal cooling operation is started immediately.
  • the food placement unit has a heat storage function, so that the food placement unit having a heat storage function that has been cooled to a freezing temperature zone in advance is in contact with the food.
  • the continuous operation time of the compressor and cold air blower fan can be greatly shortened. It becomes possible to perform rapid cooling that realizes energy saving.
  • the food placing portion when performing quick freezing control has a heat storage function, so that it has heat transfer by introducing cold air for quick freezing control and a heat storage function. Because it is possible to cool quickly using both the heat conduction from the food mounting part, the passage time through the maximum ice crystal formation zone of 0 ° C to -5 ° C, which greatly affects the freshness, especially in frozen storage Since it can be shortened and it passes through the maximum ice crystal formation zone in a short time, the amount of drip from the food can be suppressed when thawing, so it can be stored without sacrificing the freshness and taste of the food. It becomes possible to improve preservation quality.
  • the quick freezing control is automatically entered, and when the food is frozen, the quick freezing control is automatically released.
  • waste of unnecessary energy due to unnecessary cooling operation after freezing can be eliminated, and further, further energy saving can be realized by forming the food placing portion with the cold storage agent 142. .
  • the quick freezing control is not automatically entered in the conventional case, the food 121 is cooled over time with a low cooling capacity.
  • the temperature is high, it is automatically set according to the temperature detected by the infrared sensor 128.
  • the quick freezing control will be started, so it can be cooled quickly without taking time with high cooling capacity.
  • the cooling time for cooling can be shortened, and since the cooling is performed in a short time, the temperature rise of the food itself is suppressed, so that deterioration of the freshness can be suppressed.
  • the compressor 117 is operated at a high speed, or the cooling capacity is increased by increasing the rotational speed or voltage of the cool air blower fan 116 in order to increase the amount of air sent to the inside of the cool air generated by the cooler 107.
  • the noise level has increased for a certain period of time, but in this embodiment, the quick freezing control is performed around 0 ° C to -5 ° C, which is the maximum ice crystal formation zone. The time can be shortened by 30 minutes or more with respect to the conventional quick freezing control time.
  • the upper limit and the lower limit temperature are set as the set temperatures for the quick freezing control.
  • a preliminary detection period of a certain time for example, 3 minutes
  • parts such as door switches that detect opening and closing of doors and parts such as harnesses are expensive due to rising global material costs and mineral shortages in recent years, and there is a concern that the addition of door switches will complicate control.
  • quick freezing control for example, the convenience of automatic quick freezing control can be clearly indicated by turning on a lamp during quick freezing control that is displayed to the user on the front door.
  • the rotation speed of the compressor 117 is temporarily increased mainly in the temperature detection period of the maximum ice crystal formation zone, but the upper limit of the rotation speed of the compressor 117 is determined by the outside air temperature.
  • pressure protection on the low pressure side of the compressor 117 can be performed.
  • the maximum rotation speed of the compressor 117 is 69 Hz.
  • the rotation speed of the conventional compressor 117 is 80 Hz. Has also been reduced.
  • isobutane which is a flammable refrigerant with a small global warming potential, is used as a refrigerant in recent refrigeration cycles from the viewpoint of global environmental conservation.
  • This isobutane which is a hydrocarbon, has a specific gravity approximately twice that at normal temperature and atmospheric pressure compared with air (at 2.04 and 300K). If isobutane, which is a combustible refrigerant, leaks from the refrigeration system when the compressor 117 is stopped, it leaks downward because it is heavier than air.
  • the amount of leakage may increase, but the upper freezer compartment 103 in which the infrared sensor 128 is disposed is installed above the cooler 107. Therefore, even if it leaks, it does not leak into the upper freezer compartment 103. Even if the refrigerant leaks into the upper freezer compartment 103, the refrigerant is heavier than air and stays in the lower part of the storage compartment. Therefore, since the infrared sensor 128 is installed on the top of the storage room, it is extremely low that the vicinity of the infrared sensor 128 becomes a flammable concentration.
  • the area of the food 121 is detected after the food is added, and the detection viewing angle of the infrared sensor 128 is adjusted according to the area of the food 121, thereby improving the accuracy. Can be achieved.
  • the viewing angle can be adjusted with a portion having a temperature difference from the surroundings as a detection target after the food 121 is introduced, the detection accuracy with higher cost performance than the detection of the food area can be improved.
  • FIG. 10 is a partially enlarged side sectional view of the refrigerator according to the eighth embodiment of the present invention.
  • the food placement portion that is, the cold storage agent 242 can be cooled from both the upper side and the lower side. it can.
  • the food 221 introduced into the upper freezer compartment 203 can be cooled from the lower stage with the cool air that cools the lower freezer compartment 205, so that the cooling speed is significantly increased in addition to the case where the third heat insulating partition 212 is provided. It becomes possible to improve. Since it is known that the food 221 passes through the maximum ice crystal formation zone of 0 ° C. to ⁇ 5 ° C. in a short time when frozen, there is little destruction of the cells. Cooling is very effective for food preservation.
  • the regenerator 242 in the case of the upper freezer compartment 203, in addition to the freezing effect in the heat transfer by the cold air of about ⁇ 40 ° C. generated in the cooler 207, the freezing Since the freezing effect by direct heat transfer from the cool storage agent 242, that is, heat conduction is also added, the time for passing through the maximum ice crystal formation zone is further shortened and the amount of drip from the food 221 at the time of thawing the food can be further reduced. The food preservation can be improved.
  • the food 221 is cooled by the cooling from the cold storage agent 242, and the inside of the container 227 is kept at a lower temperature than the case where there is no cold storage agent 242, so that the food 221 can be cooled in a short time, so that the refrigerator is cooled.
  • the operation time can be reduced to save energy, and the freshness of the food 221 can be improved.
  • the cool storage agent 242 since the cool storage agent 242 is arranged, the cool storage agent 242 absorbs the heat load of the outside air inflow even when the food 221 is not inserted or when the outside air flows in when the door is opened or closed. Temperature rise can be suppressed.
  • FIG. 11 is a side sectional view of a refrigerator according to the ninth embodiment of the present invention.
  • a freezing temperature zone including the upper freezing chamber 403 and the lower freezing chamber 405, and a freezing temperature zone including the refrigerating room 402 and the vegetable room 406, a freezing cooler 414 and a refrigerating cooler 415 having different evaporation temperatures. It was cooled with.
  • the food 421 introduced into the case 427 in which the regenerator 426 of the upper freezer compartment 403 having the infrared sensor 425 on the top surface is stored on the bottom surface is a cooling load for the freezing capacity of the freezing cooler 414 in the freezing temperature zone.
  • the temperature generated by the refrigeration cooler 414 can be lowered, and the temperature of the discharged cold air from the first and second outlets 432 and 433 can also be lowered, so that the food 421 can be frozen. Can be raised. As a result, the freezing time of the food 421 can be shortened, so that the amount of power consumption can be reduced.
  • the refrigerator according to the present invention sets the temperature zone of the surface to be detected when detecting the food temperature using the infrared sensor and the temperature zone on the extension line to the same temperature. Can be reduced.
  • the infrared sensor detects the temperature of the food put into the storage room where the infrared sensor is installed and automatically enters quick freezing control, automatically improving the cooling capacity mainly in the time zone of the maximum ice crystal formation zone, automatically Since the quick freezing control is canceled at, the cooling operation according to the load amount of the refrigerator can be performed, so that eco-friendly and highly efficient cooling is possible, and it can be applied to all refrigeration equipment for detecting food temperature.

Abstract

Provided is a refrigerator including: a storage chamber having an infrared sensor which detects a surface temperature of food; and an adjacent storage chamber starting from the infrared sensor as a start point and adjacent to a projection plane of the detection plane of the infrared sensor. The storage chamber and the adjacent storage chamber are maintained in the same temperature band so as to improve the accuracy of a temperature detected upon door open and close. Moreover, by suppressing condensation and temperature fluctuations of a thermistor itself which may cause an erroneous detection, it is possible to stably detect the food temperature.

Description

冷蔵庫refrigerator
 本発明は、非接触センサーを利用した冷蔵庫に関するものである。 The present invention relates to a refrigerator using a non-contact sensor.
 近年、冷蔵庫の大容量化の需要が高まるにつれて、無効空間縮小による容積効率の向上を図った冷蔵庫や、使い勝手の観点からさまざまなレイアウトの冷蔵庫が発売されている。 In recent years, as the demand for larger refrigerators has increased, refrigerators designed to improve volumetric efficiency by reducing the ineffective space and refrigerators with various layouts from the viewpoint of usability have been released.
 その中で、冷蔵庫では従来から庫内の温度を検知するために庫内の空気温度をサーミスタ等で測定し、例えば熱い食品が入れられた時等では、庫内に多数設置したサーミスタによって、この熱い食品の影響で温められた庫内空気の温度を測定することで冷却量を調整していた。しかしながら、このような冷蔵庫では食品の実際の温度を測定しているわけではないので、実際に食品を冷却できたかどうかが分からない。よって食品を冷却するには周囲を冷却しながら食品を目的の温度まで冷却するため、食品自身が目的の温度まで冷却されるには時間がかかるということがあった。そのため、庫内に例えば非接触の赤外線センサーを設けたり、食品を配置するケースの下に取り付けて食品温度を直接測温する負荷センサーを用いることで、実際の食品の温度を検知し冷却運転を行うようにしていた(例えば、特許文献1、特許文献2参照)。 Among them, in the refrigerator, in order to detect the temperature in the refrigerator, the air temperature in the refrigerator is measured with a thermistor or the like. For example, when hot food is put, the thermistors installed in the refrigerator are used to measure this temperature. The amount of cooling was adjusted by measuring the temperature of the air in the cabinet heated by the influence of hot food. However, since such a refrigerator does not measure the actual temperature of the food, it is not known whether the food could actually be cooled. Therefore, in order to cool the food, the food is cooled to the target temperature while cooling the surroundings, so that it may take time for the food itself to cool to the target temperature. For this reason, for example, a non-contact infrared sensor is installed in the cabinet, or a load sensor that is installed under the case where food is placed and directly measures the food temperature is used to detect the actual food temperature and perform cooling operation. (See, for example, Patent Document 1 and Patent Document 2).
 以下、図面を参照しながら上記特許文献1、特許文献2における従来の冷蔵庫を説明する。 Hereinafter, conventional refrigerators in Patent Document 1 and Patent Document 2 will be described with reference to the drawings.
 図12は、特許文献1に記載されている冷蔵庫の側面縦断面図であり、図13は一部拡大側面断面図であり、断熱箱体で形成された冷蔵庫本体1の内部を貯蔵空間として最上部に冷蔵室2、下方に野菜室6、最下部には冷凍室8をそれぞれ独立して配置し、冷蔵室2と野菜室6との間には断熱仕切り壁を介して切替室9と図示しない製氷室とを左右に併置しており、各貯蔵室の前面開口には各々専用の扉を設けて開閉自在に閉塞している。 FIG. 12 is a side longitudinal sectional view of the refrigerator described in Patent Document 1, and FIG. 13 is a partially enlarged side sectional view. The interior of the refrigerator main body 1 formed of a heat insulating box is the storage space. The refrigerator compartment 2 is arranged in the upper part, the vegetable compartment 6 is arranged in the lower part, and the freezer compartment 8 is arranged in the lowermost part. The switching room 9 is illustrated between the refrigerator compartment 2 and the vegetable compartment 6 through a heat insulating partition wall. The ice making chambers are juxtaposed to the left and right, and a dedicated door is provided at the front opening of each storage chamber so as to be freely opened and closed.
 野菜室6の後部には、冷凍室8や切替室9、製氷室など冷凍用冷却器14およびこの冷凍用冷却器14で生成された冷気を貯蔵室内に循環する冷却送風ファン16を配置し、さらに冷凍用冷却器14の前方位置に、冷蔵室2と野菜室6とを冷却する冷蔵用冷却器15と図示しないファンを設けており、本体下部に設置した圧縮機17の駆動および冷媒の図示しない流路切替弁の切替え制御によって上記冷凍および冷蔵用冷却器14、15に交互、あるいは双方同時に冷媒を流し、冷却された冷気を冷却送風ファン16により冷凍温度帯側および冷蔵温度帯側の各貯蔵室に送風して、それぞれを所定温度に冷却制御している。 In the rear part of the vegetable room 6, a freezing cooler 14 such as a freezing room 8, a switching room 9, an ice making room, and a cooling blower fan 16 that circulates the cold air generated by the freezing cooler 14 into the storage room are arranged, Further, a refrigeration cooler 15 for cooling the refrigerator compartment 2 and the vegetable compartment 6 and a fan (not shown) are provided at a position in front of the freezer cooler 14. The compressor 17 installed at the lower part of the main body and the refrigerant are shown. The refrigerant is supplied to the refrigeration and refrigeration coolers 14 and 15 alternately or simultaneously by switching control of the flow path switching valve, and the cooled cold air is cooled by the cooling air blower fan 16 on the refrigeration temperature zone side and the refrigeration temperature zone side. Air is sent to the storage room, and each is cooled to a predetermined temperature.
 冷凍用の冷却器14から吐出された低温の冷気は冷却送風ファン16によって、冷凍室8、製氷室、および切替室9に分流され、それぞれ専用ダクトを介して送風され冷却される。 The low-temperature cold air discharged from the refrigeration cooler 14 is diverted to the freezing room 8, the ice making room, and the switching room 9 by the cooling blower fan 16, and is blown and cooled through dedicated ducts.
 切替室9については、冷気吹出口20から室内に冷気を吹き出し、この冷気で冷却される負荷である食品21の温度を、天井面に取り付けられた赤外線センサー28で検出するとともに、予め設定された温度になるように冷凍サイクルの運転、および冷気吹出口20近傍に設置した冷気ダンパー32を開閉制御することによって室内への冷気導入量を調整し、食材である食品21を所定の設定温度になるよう制御している。 As for the switching chamber 9, cold air is blown out into the room from the cold air outlet 20, and the temperature of the food 21, which is a load cooled by this cold air, is detected by the infrared sensor 28 attached to the ceiling surface and set in advance. The amount of cold air introduced into the room is adjusted by controlling the operation of the refrigeration cycle so as to reach a temperature, and opening / closing control of a cold air damper 32 installed in the vicinity of the cold air outlet 20, so that the food 21 that is a food has a predetermined set temperature. It is controlled as follows.
 このようにして、赤外線センサー28で対象となる食品21の表面温度を検知し、必要な時に必要な量だけの冷却運転を行うことで効率的な冷却運転制御を行っている。 In this way, efficient cooling operation control is performed by detecting the surface temperature of the target food 21 with the infrared sensor 28 and performing the cooling operation of only the necessary amount when necessary.
 次に、別の従来の冷蔵庫を説明する。 Next, another conventional refrigerator will be described.
 図14は、特許文献2に記載の冷蔵庫の貯蔵室内を示す斜視図であり、図15は特許文献2に記載の冷蔵庫の冷凍室内を示す正面図である。 FIG. 14 is a perspective view showing the storage room of the refrigerator described in Patent Document 2, and FIG. 15 is a front view showing the freezer room of the refrigerator described in Patent Document 2.
 図に示すように、別の従来の冷蔵庫では冷凍室8の底部に配置した負荷温度センサー39の温度変化に基づいて食品、すなわち負荷投入の可否を判断することで、負荷があると判断した場合には、食品の温度と負荷の大きさを負荷温度センサー39で検出した温度および温度変化によって負荷があると判断した場合には、冷凍室8へ流入する冷気によって急速冷凍を開始するものである。 As shown in the figure, in another conventional refrigerator, when it is determined that there is a load by determining whether or not the food, that is, whether or not the load can be input, based on the temperature change of the load temperature sensor 39 disposed at the bottom of the freezer compartment 8 In this case, when it is determined that there is a load based on the temperature and temperature change detected by the load temperature sensor 39 for the temperature of the food and the magnitude of the load, quick freezing is started by the cold air flowing into the freezer compartment 8. .
 このような構成によって、投入された食品の負荷の大きさに応じて急凍時間を決定することで不必要な急凍運転を避けることができる制御を行っている。 With such a configuration, control is performed to avoid unnecessary quick freezing operation by determining the quick freezing time according to the magnitude of the load of the input food.
 このようにして、従来の技術においては食品載置部のケース41の下方部に備えられた負荷温度センサー39で対象となる食品の温度を検知し、自動で急凍を開始もしくは終了する制御とすることで、必要な時に必要な量だけの冷却運転を行うことで効率的な冷却運転制御を行っている。 Thus, in the prior art, the temperature of the target food is detected by the load temperature sensor 39 provided in the lower part of the case 41 of the food placement unit, and the control for automatically starting or ending the quick freezing is performed. Thus, efficient cooling operation control is performed by performing a cooling operation of only a necessary amount when necessary.
 しかしながら、上記特許文献1における従来の構成では、切替室9の天井部に設置された赤外線センサー28が検知する温度は、扉が閉まっている時は食品21の温度を検知し、検知した食品21の温度によって冷凍用冷却器14で生成された冷気を冷気ダンパー32で開閉制御し、室内への冷気導入量を調整する。これにより、食品21を所定の設定温度になるように制御している。しかし、扉を開けた場合に赤外線センサー28の検知は食品21から外れ投影面上の断熱仕切り部を検知することになる。この断熱仕切り部は下部の野菜室6からの熱伝導による温度影響を受けて切替室9とは異なる温度となっていることから、赤外線センサー28は切替室9温度相当まで冷却された食品とは異なる温度を検知する。つまり、赤外線センサー28が検出している部分が扉の開放時に急激な温度変化を受けることになる。具体的には、従来の切替室9が冷凍温度に設置されており、切替室9に保存されている食品21を確認するだけのために扉を開けた場合に、赤外線センサー28は食品21が投入された温度と誤検知し冷却を開始するため切替室9を過度に冷却しすぎて無駄なエネルギーを必要とするという課題を有していた。 However, in the conventional configuration in Patent Document 1, the temperature detected by the infrared sensor 28 installed on the ceiling portion of the switching chamber 9 detects the temperature of the food 21 when the door is closed, and detects the detected food 21. The cold air generated by the refrigeration cooler 14 is controlled to be opened and closed by the cold air damper 32 according to the temperature of the air to adjust the amount of cold air introduced into the room. Thereby, the food 21 is controlled to have a predetermined set temperature. However, when the door is opened, the infrared sensor 28 detects the heat insulating partition on the projection plane that is out of the food 21. Since this heat insulating partition is affected by temperature due to heat conduction from the lower vegetable compartment 6 and has a temperature different from that of the switching chamber 9, the infrared sensor 28 is a food cooled to the temperature equivalent to the switching chamber 9 Detect different temperatures. That is, the portion detected by the infrared sensor 28 undergoes a rapid temperature change when the door is opened. Specifically, when the conventional switching chamber 9 is installed at a freezing temperature and the door is opened only to check the food 21 stored in the switching chamber 9, the infrared sensor 28 detects the food 21 In order to erroneously detect the input temperature and start cooling, there is a problem that the switching chamber 9 is excessively cooled to require useless energy.
 また、これを解決するために扉の開閉を検知するためのスイッチ機能を設ける方法もあるが、扉の開閉中は赤外線センサー28での検知とスイッチ制御との連動制御を行う必要があり、制御の複雑化を招き、誤作動要因が増加する可能性がある。 In order to solve this problem, there is a method of providing a switch function for detecting the opening / closing of the door. However, it is necessary to perform an interlock control between the detection by the infrared sensor 28 and the switch control while the door is opened / closed. This may increase the complexity and cause the malfunction.
 また、赤外線センサー28は先端部に結露等で水滴が付着した場合には食品21を検知することなく水滴を検知することとなるため、例えば扉開閉時の外部からの暖気流入によってセンサー先端の検知部分の結露防止のために、赤外線センサー28のセンサー部にシャッター機構を設ける方法もあるが、複雑なメカ構造となるため、誤作動要因が増加する可能性がある。特に低温度となる冷蔵庫の貯蔵室内においてはこういった複雑なメカ構造では例えば潤滑油の潤滑性の低下によるメカ構造の信頼性低下や故障といった問題がおこりやすく、これらはとりわけ冷凍温度帯に設定された部屋においては顕著となる。さらに結露が凍った場合や霜等によって可動動作の障害が生じるといった可能性も懸念されるといった課題があった。 In addition, since the infrared sensor 28 detects water droplets without detecting the food 21 when water droplets adhere to the tip portion due to condensation or the like, for example, the detection of the sensor tip is detected by the inflow of warm air from the outside when the door is opened or closed. Although there is a method of providing a shutter mechanism in the sensor part of the infrared sensor 28 in order to prevent dew condensation on the part, since it has a complicated mechanical structure, there is a possibility that malfunction factors increase. Especially in the refrigerator storage room where the temperature is low, such a complicated mechanical structure is likely to cause problems such as a decrease in the reliability of the mechanical structure due to a decrease in the lubricity of the lubricating oil or a failure. It will be prominent in the room. Furthermore, there has been a problem that there is a concern that the movable operation may be hindered due to freezing of condensation or frost.
 また、上記特許文献2における別の従来の構成では、一定の効果はあるものの、近年の地球環境に対する市場の関心である省エネに対するニーズや冷蔵庫の保鮮性向上の需要に対しては不十分であった。 In addition, although the other conventional configuration in Patent Document 2 has a certain effect, it is insufficient for the needs for energy saving and the demand for improving the freshness of the refrigerator, which are the market interest in the recent global environment. It was.
 というのも、食品の保鮮性を維持したまま長期保存を行うには、食品冷却時に最大氷結晶生成帯と呼ばれる0℃~-5℃の温度帯を早く通過し、細胞破壊を如何に抑制できるかが重要であるが、そのための手段として冷気による間接的な冷却で急凍制御を行っているため、0℃~-5℃の最大氷結晶生成帯を通過する速度をより速めることに限界があった。 This is because, in order to preserve food for a long period of time while maintaining its freshness, it can quickly pass through a temperature range of 0 ° C to -5 ° C, called the maximum ice crystal formation zone, during cooling of the food, and how to suppress cell destruction. However, since rapid freezing control is performed by indirect cooling with cold air as a means for that, there is a limit to further increasing the speed of passing through the maximum ice crystal formation zone of 0 ° C to -5 ° C. there were.
 さらに、この急凍制御を行う際に、圧縮機や冷気送風ファンを連続運転することで冷凍室8内のへの冷気の導入量を多くして急速冷凍を行っているので、冷蔵庫の冷凍能力を一定時間の間で高めるので冷蔵庫の電気入力は大幅に増加してしまい、冷凍速度は通常の冷却よりも速まるもののより多くのエネルギーの使用が必要となり、省エネルギーで急凍制御を行うことが難しかった。 Furthermore, when performing this quick freezing control, the amount of cold air introduced into the freezer compartment 8 is increased by continuously operating the compressor and the cold air blowing fan, so that quick freezing is performed. Since the electric input of the refrigerator is greatly increased, the refrigeration speed is faster than normal cooling, but more energy is required, and it is difficult to perform quick freezing control with energy saving. It was.
 また、特許文献2に記載の別の従来例のように食品を配置する容器であるケース41の底部に負荷温度センサー39を配置することで、直接食品の温度を検知する方法では、急凍時に負荷温度センサー39は食品が接しているケース41の温度を検知することとなり食品自身の温度を速やかに検知することが難しく、例えば食品からケース41への熱伝導が行われて食品とケース自身の温度がほぼ同一となった場合に初めて食品の温度を検知することとなるので、検知時間が遅くなってしまうといった問題があった。 Moreover, in the method of directly detecting the temperature of food by disposing the load temperature sensor 39 at the bottom of the case 41 that is a container for arranging food as in another conventional example described in Patent Document 2, in the case of quick freezing, The load temperature sensor 39 detects the temperature of the case 41 in contact with the food, and it is difficult to quickly detect the temperature of the food itself. For example, heat conduction from the food to the case 41 is performed, so that the food and the case itself can be detected. Since the temperature of the food is detected for the first time when the temperatures are almost the same, there is a problem that the detection time is delayed.
 また、食品に加えて冷却を行いたい食品以外のケース41の中に収納された食品の負荷量もあわせた冷却時間が必要となるので、急凍時間としては実際の食品21のみの場合に対して継続した運転を行うので冷却エネルギーの無駄が発生してしまうこととなる。 In addition to the food, a cooling time including the load amount of the food stored in the case 41 other than the food to be cooled is required. Therefore, the quick freezing time is compared with the case of the actual food 21 alone. As a result, the cooling energy is wasted.
 本発明は、上記の課題を解決するためになされたものであり、複雑な方法を使用せずにより簡単な方法で非接触センサーの誤検知を解消することができ、冷蔵庫の貯蔵室内においてより精度の高い温度検知を行う非接触センサーを備えることで、省エネルギーで効率的な冷却運転が可能な冷蔵庫を提供する。また、庫内に投入された食品を速やかに自動で急速冷却の開始を行うとともに、より省エネルギーを実現した急速冷却を行うため、省エネルギーをさらに向上させるのみならず、使い勝手のよい冷蔵庫を提供する。
特開2007-212053号公報 特許第3454522号公報
The present invention has been made to solve the above-described problems, and can eliminate erroneous detection of a non-contact sensor by a simpler method without using a complicated method, and is more accurate in a refrigerator storage chamber. By providing a non-contact sensor that detects a high temperature, a refrigerator capable of energy-saving and efficient cooling operation is provided. In addition, the quick cooling of food that has been put into the warehouse is quickly and automatically started, and the rapid cooling that realizes further energy saving is performed, so that not only the energy saving is further improved, but also an easy-to-use refrigerator is provided.
JP 2007-212053 A Japanese Patent No. 3454522
 本発明の冷蔵庫は、複数の断熱区画により複数の温度帯で構成された断熱箱体と、断熱箱体で断熱区画され食品の表面温度を検知する非接触センサーが設置された貯蔵室と、貯蔵室の非接触センサーを始点として非接触センサーの検知する方向の投影線上に隣接する隣接貯蔵室とを備え、貯蔵室と隣接貯蔵室は同温度帯もしくは非接触センサーが設置された貯蔵室よりも隣接貯蔵室の方が低温度帯であるものとした。 The refrigerator of the present invention includes a heat insulation box constituted of a plurality of temperature zones by a plurality of heat insulation compartments, a storage room provided with a non-contact sensor that is insulated by the heat insulation boxes and detects the surface temperature of food, and storage The storage room and the adjacent storage room are located in the same temperature zone or the storage room where the non-contact sensor is installed. The adjacent storage room was assumed to have a lower temperature zone.
 これによって、非接触センサーの検知方向側に隣接する貯蔵室が高い温度であることによる高温の熱影響による非接触センサーの誤検知を防止することができ、非接触センサーと隣接貯蔵室の仕切り壁との間に食品や食品収納容器のような介在物が存在しない場合であっても、貯蔵室と同温度付近もしくは貯蔵室よりも低温度を検知するので、非接触センサーが高い温度の食品が投入されたといった誤検知を行うことを抑えることができる。 This prevents erroneous detection of the non-contact sensor due to the high temperature heat effect due to the high temperature of the storage chamber adjacent to the detection direction side of the non-contact sensor, and the partition wall between the non-contact sensor and the adjacent storage chamber Even when there is no inclusion such as food or food storage container between them, the non-contact sensor detects high temperature food near the same temperature as the storage room or lower temperature than the storage room. It is possible to suppress erroneous detection such as being inserted.
 本発明の冷蔵庫は、非接触センサーと隣接貯蔵室の仕切り壁との間に介在物が存在しない場合であっても、非接触センサーの誤検知を抑えることができるので、より精度が高く、高品質の温度検知が可能な非接触センサーを備えた冷蔵庫を提供することができる。 Since the refrigerator of the present invention can suppress false detection of the non-contact sensor even when there are no inclusions between the non-contact sensor and the partition wall of the adjacent storage room, the accuracy is higher and the higher A refrigerator provided with a non-contact sensor capable of detecting temperature of quality can be provided.
 また、本発明の冷蔵庫は、食品載置部に載置された食品の表面温度を検知する非接触センサーが設置された貯蔵室と、貯蔵室を冷却する冷却手段と、貯蔵室の冷却を高冷却能力で行う急凍制御手段とを有し、食品載置部は蓄熱機能を有するとともに、非接触センサーが検知した温度が予め設定した開始温度よりも高ければ、高冷却能力で冷却を行う急凍制御手段によって急凍制御が自動的に開始され、予め設定した終了温度に到達した時点で急凍制御手段による急凍制御を停止する冷蔵庫である。 In addition, the refrigerator of the present invention has a storage room provided with a non-contact sensor that detects the surface temperature of the food placed on the food placement unit, cooling means for cooling the storage room, and cooling of the storage room is enhanced. A quick freezing control means that performs cooling with a cooling capacity, and the food placement unit has a heat storage function, and if the temperature detected by the non-contact sensor is higher than a preset start temperature, a rapid cooling is performed with a high cooling capacity. In the refrigerator, the quick freezing control is automatically started by the freezing control means and the quick freezing control by the quick freezing control means is stopped when the preset end temperature is reached.
 これによって、非接触に検知するセンサーによって食品温度を検知し自動で急凍制御を開始し、終了温度に到達した時点で速やかに通常の冷却動作に移行するため、庫内に投入された食品を速やかに自動で急速冷却の開始を行うとともに、食品載置部は蓄熱機能を有することによって、予め冷凍温度帯に冷却された蓄熱機能を有する食品載置部が食品に接していることで、熱伝導によって直接的に熱を奪い速やかに冷却を行うことができるので、急凍制御を行う場合でも圧縮機や冷気送風ファンの連続運転時間を大幅に短縮することができ、さらなる省エネルギーを実現した急速冷却を行うことが可能となる。 As a result, the food temperature is detected by a sensor that detects non-contact, and quick freezing control is started automatically.When the end temperature is reached, the normal cooling operation is started immediately. Quickly and automatically start rapid cooling, and the food placement part has a heat storage function, so that the food placement part having a heat storage function cooled in the freezing temperature zone in advance is in contact with food. Because heat can be directly taken away by conduction and cooled quickly, the continuous operation time of the compressor and cold air blower fan can be greatly shortened even in the case of quick freezing control, which has realized further energy saving. Cooling can be performed.
 また、食品保存の観点からしても、本発明では急凍制御を行う際の食品載置部が蓄熱機能を有することで、急凍制御を行う冷気の導入による熱伝達と、蓄熱機能を有した食品載置部からの熱伝導の両方を用いて速やかに冷却を行うことができるので、特に冷凍保存では鮮度に大きく影響する0℃~-5℃の最大氷結晶生成帯の通過時間をより短くすることができ、最大氷結晶生成帯を短時間で通過することで、解凍時に食品からのドリップ量が抑制できるため、食品の鮮度や味を落とすことなく保存することができるので、食品の保存品質を高めることが可能となる。 Also, from the viewpoint of food preservation, in the present invention, the food placing portion when performing quick freezing control has a heat storage function, so that it has heat transfer by introducing cold air for quick freezing control and a heat storage function. Because it is possible to cool quickly using both the heat conduction from the food mounting part, the passage time through the maximum ice crystal formation zone of 0 ° C to -5 ° C, which greatly affects the freshness, especially in frozen storage Since it can be shortened and it passes through the maximum ice crystal formation zone in a short time, the amount of drip from the food can be suppressed when thawing, so it can be stored without sacrificing the freshness and taste of the food. It becomes possible to improve preservation quality.
 このように、本発明の冷蔵庫は、複雑な方法を使用せずにより簡単な方法で非接触センサーの誤検知を解消することが可能になって、冷蔵庫の効率的な冷却運転ができるようになるのみならず、省エネルギーを実現した急速冷却を行うことが可能となり、また冷凍された食品の保存品質を高めることが可能となるので、より省エネルギーで保存品質の高い冷蔵庫を提供することが可能となる。 As described above, the refrigerator of the present invention can eliminate erroneous detection of the non-contact sensor by a simpler method without using a complicated method, and can efficiently perform the cooling operation of the refrigerator. In addition, it is possible to perform rapid cooling that achieves energy savings, and it is possible to improve the storage quality of frozen foods, so it is possible to provide a refrigerator that is more energy saving and has higher storage quality. .
図1は、本発明の実施の形態1、実施の形態4、実施の形態7における冷蔵庫の正面図である。FIG. 1 is a front view of a refrigerator according to the first embodiment, the fourth embodiment, and the seventh embodiment of the present invention. 図2は、本発明の実施の形態1、実施の形態4、実施の形態7における冷蔵庫の側面断面図である。FIG. 2 is a side cross-sectional view of the refrigerator according to the first embodiment, the fourth embodiment, and the seventh embodiment of the present invention. 図3は、本発明の実施の形態1における上段冷凍室の一部拡大側面断面図である。FIG. 3 is a partially enlarged side sectional view of the upper freezer compartment in the first embodiment of the present invention. 図4は、本発明の実施の形態2における上段冷凍室の一部拡大側面断面図である。FIG. 4 is a partially enlarged side sectional view of the upper freezer compartment in the second embodiment of the present invention. 図5は、本発明の実施の形態3における上段冷凍室の一部拡大側面断面図である。FIG. 5 is a partially enlarged side sectional view of the upper freezer compartment in the third embodiment of the present invention. 図6は、本発明の実施の形態4における上段冷凍室の一部拡大側面断面図である。FIG. 6 is a partially enlarged side cross-sectional view of the upper freezer compartment in the fourth embodiment of the present invention. 図7は、本発明の実施の形態5における上段冷凍室の一部拡大側面断面図である。FIG. 7 is a partially enlarged side sectional view of the upper freezer compartment in the fifth embodiment of the present invention. 図8は、本発明の実施の形態6における上段冷凍室の一部拡大側面断面図である。FIG. 8 is a partially enlarged side sectional view of the upper freezer compartment in the sixth embodiment of the present invention. 図9は、本発明の実施の形態7による冷蔵庫の上段冷凍室の一部拡大側面断面図である。FIG. 9 is a partially enlarged side sectional view of the upper freezer compartment of the refrigerator according to the seventh embodiment of the present invention. 図10は、本発明の実施の形態8による冷蔵庫の一部拡大側面断面図である。FIG. 10 is a partially enlarged side sectional view of a refrigerator according to the eighth embodiment of the present invention. 図11は、本発明の実施の形態9による冷蔵庫の側面断面図である。FIG. 11 is a side sectional view of a refrigerator according to the ninth embodiment of the present invention. 図12は、従来技術による冷蔵庫を説明する側面縦断面図である。FIG. 12 is a side longitudinal sectional view for explaining a conventional refrigerator. 図13は、従来技術による冷蔵庫を説明する一部拡大側面断面図である。FIG. 13 is a partially enlarged side sectional view for explaining a refrigerator according to the prior art. 図14は、別の従来技術による冷蔵庫の貯蔵室内を示す斜視図である。FIG. 14 is a perspective view showing a storage room of a refrigerator according to another prior art. 図15は、別の従来技術による冷蔵庫の冷凍室内を示す正面図である。FIG. 15: is a front view which shows the freezer compartment of the refrigerator by another prior art.
符号の説明Explanation of symbols
 102  冷蔵室(保存室)
 103,203,303  上段冷凍室(貯蔵室)
 105,205,305  下段冷凍室(貯蔵室)
 107  冷却器
 110  第一の断熱仕切り部(断熱仕切り部)
 121,221,421  食品
 127,227,427  ケース(上段冷凍室)
 128,228,328,425  赤外線センサー(非接触センサー)
 133,233  目印
 142,242,426  蓄冷剤(食品載置部)
 432  第一の吐出口
 433  第二の吐出口
 434  吐出ダクト
 435  下向吐出口
102 Cold room (storage room)
103, 203, 303 Upper freezer room (storage room)
105,205,305 Lower freezer compartment (storage room)
107 cooler 110 first heat insulation partition (heat insulation partition)
121,221,421 Food 127,227,427 Case (upper freezer compartment)
128,228,328,425 Infrared sensor (non-contact sensor)
133,233 Mark 142,242,426 Cold storage agent (food placement part)
432 First outlet 433 Second outlet 434 Discharge duct 435 Downward outlet
 本発明の冷蔵庫は、複数の断熱区画により複数の温度帯で構成された断熱箱体と、断熱箱体で断熱区画され食品の表面温度を検知する非接触センサーが設置された貯蔵室と、貯蔵室の非接触センサーを始点として非接触センサーの検知する方向の投影線上に隣接する隣接貯蔵室とを備え、非接触センサーが設置された貯蔵室と隣接貯蔵室は同温度帯もしくは非接触センサーが設置された貯蔵室よりも隣接貯蔵室の方が低温度帯であるものである。 The refrigerator of the present invention includes a heat insulation box constituted of a plurality of temperature zones by a plurality of heat insulation compartments, a storage room provided with a non-contact sensor that is insulated by the heat insulation boxes and detects the surface temperature of food, and storage A storage room adjacent to the projection line in the direction detected by the non-contact sensor, and the storage room where the non-contact sensor is installed and the adjacent storage room have the same temperature range or non-contact sensor The adjacent storage room has a lower temperature zone than the installed storage room.
 これによって、非接触センサーの検知方向側に隣接する貯蔵室が高い温度であることによる高温の熱影響による非接触センサーの誤検知を防止することができ、非接触センサーと隣接貯蔵室の仕切り壁との間に食品や食品収納容器のような介在物が存在しない場合に隣接貯蔵室との仕切り壁の温度を検知した場合であっても、貯蔵室と同温度付近もしくは貯蔵室よりも低温度を検知するので、非接触センサーが高い温度の食品が投入されたといった誤検知を行うことを抑えることができる。 This prevents erroneous detection of the non-contact sensor due to the high temperature heat effect due to the high temperature of the storage chamber adjacent to the detection direction side of the non-contact sensor, and the partition wall between the non-contact sensor and the adjacent storage chamber Even if the temperature of the partition wall with the adjacent storage room is detected when there is no inclusion such as food or food storage container between them, the temperature is the same as or lower than the temperature of the storage room. Therefore, it is possible to prevent the non-contact sensor from performing a false detection such as a food with a high temperature being introduced.
 また、特に引き出し式の貯蔵室の場合には、扉を開けた場合には必ず非接触センサーと隣接貯蔵室の仕切り壁との間に食品や食品収納容器のような介在物が存在しない構成となるが、その場合であっても非接触センサーは貯蔵室と同温度付近もしくは貯蔵室よりも低温度を検知するので、扉開閉時に誤検知を抑えることができる。 In particular, in the case of a drawer-type storage room, when the door is opened, there is always no structure such as food or a food container between the non-contact sensor and the partition wall of the adjacent storage room. However, even in that case, the non-contact sensor detects a temperature near the temperature of the storage room or lower than the temperature of the storage room, so that erroneous detection can be suppressed when the door is opened and closed.
 また、本発明の冷蔵庫は、上記の発明に加えて、非接触センサーは赤外線センサーとしたものであり、赤外線センサーを貯蔵室内の比較的に温度の高い部分に設置されたものである。 In addition to the above invention, the refrigerator of the present invention is such that the non-contact sensor is an infrared sensor, and the infrared sensor is installed in a relatively high temperature part in the storage room.
 これによって、扉開閉や霜取り時における暖気や、負荷から発生する暖気に含まれる湿分や水分が赤外線センサーに結露や着霜し難くなる。つまり、赤外線センサー周辺部と暖気との温度差が小さくなるので絶対湿度が同じでも相対湿度の相違が小さくなり結露や着霜として付着し難くなる。これにより、結露や着霜、また、結露後や着霜後の冷却運転等における氷結などにより、食品温度以外の赤外線センサーに付着した水、霜、氷を検知し、精度が低下することを抑制できるので、より誤検知の抑制が可能である。さらに、検知食品との赤外線センサー部分の温度差を大きく取れるため、輻射による伝熱量が大きくなり、赤外線センサーで検出する赤外線量が大きくなり、赤外線センサーのノイズや微妙な温度変動、例えば、庫内の循環ファンによる冷却時の温度変動によるノイズとの差が大きくなるので検知しやすく、食品の表面温度を精度良く検出できる。 This makes it difficult for moisture and moisture contained in the warm air at the time of opening and closing the door and defrosting and the warm air generated from the load to condense and frost on the infrared sensor. That is, since the temperature difference between the peripheral portion of the infrared sensor and the warm air is small, even if the absolute humidity is the same, the difference in relative humidity is small and it is difficult to adhere as condensation or frost formation. This prevents water, frost, and ice from adhering to infrared sensors other than food temperature due to condensation, frost formation, and icing in the cooling operation after condensation or frost formation, etc. As a result, it is possible to further suppress false detection. Furthermore, since the temperature difference between the infrared sensor and the detected food can be made large, the amount of heat transferred by radiation increases, the amount of infrared detected by the infrared sensor increases, and noise from the infrared sensor and subtle temperature fluctuations, for example, Since the difference from noise due to temperature fluctuations during cooling by the circulation fan increases, it is easy to detect and the surface temperature of food can be detected with high accuracy.
 また、本発明の冷蔵庫は、上記の発明に加えて、赤外線センサーは、隣接貯蔵室の温度帯よりも高い温度帯である保存室を備え、保存室の近傍に設置されたものである。 In addition to the above-described invention, the refrigerator of the present invention has an infrared sensor provided with a storage room having a temperature range higher than the temperature range of the adjacent storage room, and is installed in the vicinity of the storage room.
 これによって、少なからずとも温度の高い保存室からの熱影響を受け赤外線センサー部の温度が他の部分より高くなり、結露や着霜を抑制できる。これにより、結露や着霜、また、結露後や着霜後の冷却運転等における氷結などにより、食品温度以外の赤外線センサーに付着した水、霜、氷を検知し、精度が低下することを抑制できるので、より誤検知の抑制が可能である。さらに、常に結露がしにくい状態を維持しておくことで、さらにセンサーの検知部分の結露を抑制して、食品温度以外の水滴温度を検知する誤検知を防止することができるとともに、寿命劣化原因となる水滴の付着がしにくい状態を維持することで製品寿命を延ばすことができる。さらに検知食品との温度差を大きく取れるため、センサー検知精度の向上を図ることができる。 This allows the temperature of the infrared sensor part to be higher than the other parts due to the heat effect from the storage room where the temperature is high, thereby suppressing condensation and frost formation. This prevents water, frost, and ice from adhering to infrared sensors other than food temperature due to condensation, frost formation, and icing in the cooling operation after condensation or frost formation, etc. As a result, it is possible to further suppress false detection. In addition, by maintaining a state where condensation is unlikely to occur at all times, it is possible to further suppress condensation at the detection part of the sensor to prevent false detection of water droplet temperatures other than food temperature, The product life can be extended by maintaining a state in which the water droplets are difficult to adhere. Furthermore, since the temperature difference from the detected food can be made large, the sensor detection accuracy can be improved.
 また、本発明の冷蔵庫は、上記の発明に加えて、赤外線センサーは、貯蔵室と保存室とを断熱区画する断熱仕切り部に設置されたものである。 Moreover, in addition to the above-described invention, the refrigerator of the present invention is an infrared sensor that is installed in a heat-insulating partition section that insulates the storage room and the storage room.
 これによって赤外線センサーは保存室からの熱影響を受けやすく、より結露や着霜を抑制でき精度の低下を抑制できる。さらに、赤外線センサーの検知部の貯蔵室内への露出度が抑制できるため、庫内を流れる冷気による温度変動の影響を受けにくく、検知温度のズレを抑制することができる。 This makes the infrared sensor easily affected by the heat from the storage room, and it is possible to suppress condensation and frost formation and to suppress deterioration of accuracy. Furthermore, since the degree of exposure of the detection unit of the infrared sensor to the storage chamber can be suppressed, it is difficult to be affected by temperature fluctuations due to the cold air flowing in the warehouse, and the deviation of the detection temperature can be suppressed.
 また、本発明の冷蔵庫は、上記の発明に加えて、赤外線センサーは先端が断熱仕切り部の表面または表面より内側に設置されたものである。 In addition to the above-described invention, the refrigerator of the present invention has an infrared sensor whose tip is installed on the surface of the heat insulating partition or on the inner side of the surface.
 これによって、赤外線センサー先端部が突出していないので、貯蔵室内に食品を大量に入れられた場合や、清掃時でも赤外線センサーの検知部に異物が付着することがないため検知の誤動作を招かない。また庫内に突出していないので庫内容量を確保することができる。 Because of this, the tip of the infrared sensor does not protrude, so foreign substances do not adhere to the detection part of the infrared sensor even when a large amount of food is put in the storage room or during cleaning, so detection malfunction does not occur. Moreover, since it does not protrude into the storage, the storage capacity can be secured.
 また、本発明の冷蔵庫は、上記の発明に加えて、赤外線センサーを設置した貯蔵室の温度帯を冷凍温度帯とすることで、検知する食品の温度と赤外線センサーの基準温度(サーミスタ温度)との温度差が大きくなることで一層精度良く温度検知を行うことができる。 In addition to the above-mentioned invention, the refrigerator of the present invention uses the temperature zone of the storage room in which the infrared sensor is installed as the freezing temperature zone, so that the temperature of the food to be detected and the reference temperature (thermistor temperature) of the infrared sensor As the temperature difference increases, the temperature can be detected with higher accuracy.
 また、本発明の冷蔵庫は、上記の発明に加えて、赤外線センサーの検知する視野角度を55°以下としたものであり、赤外線センサーの視野角度を狭めることで検知精度を高め冷却不足防止を図る。例えば、角度が広くなると赤外線センサーで温度検知している温度検知面も大きくなり、食品設置面以外の温度を検知したり、検知したい食品以外の食品が温度検知面に存在する可能性が増加する。これにより、対象食品以外の温度がノイズとなり精度の低下の可能性があるが、本発明では視野角を55°以下に狭めているので、精度の低下が抑制される。 In addition to the above invention, the refrigerator of the present invention has a viewing angle detected by the infrared sensor of 55 ° or less, and narrows the viewing angle of the infrared sensor to improve detection accuracy and prevent insufficient cooling. . For example, if the angle becomes wider, the temperature detection surface that detects the temperature with the infrared sensor also becomes larger, and the possibility of detecting a temperature other than the food installation surface or the presence of food other than the food to be detected on the temperature detection surface increases. . Thereby, the temperature other than the target food becomes noise and the accuracy may be reduced. However, in the present invention, since the viewing angle is narrowed to 55 ° or less, the accuracy reduction is suppressed.
 また、本発明の冷蔵庫は、上記の発明に加えて、赤外線センサーが検知する面の視野範囲に視野範囲よりも小さい目印を設けたものであり、赤外線センサーが確実に検知できる範囲に食品を収納することができる。 In addition to the above invention, the refrigerator of the present invention is provided with a mark smaller than the visual field range in the visual field range of the surface detected by the infrared sensor, and stores food in a range that can be reliably detected by the infrared sensor. can do.
 また、本発明の冷蔵庫は、食品載置部に載置された食品の表面温度を検知する非接触センサーが設置された貯蔵室と、貯蔵室を冷却する冷却手段と、貯蔵室の冷却を高冷却能力で行う急凍制御手段とを有し、食品載置部は蓄熱機能を有するとともに、非接触センサーが検知した温度が予め設定した開始温度よりも高ければ、高冷却能力で冷却を行う急凍制御手段によって急凍制御が自動的に開始され、予め設定した終了温度に到達した時点で急凍制御手段による急凍制御を停止するものである。 In addition, the refrigerator of the present invention has a storage room provided with a non-contact sensor that detects the surface temperature of the food placed on the food placement unit, cooling means for cooling the storage room, and cooling of the storage room is enhanced. A quick freezing control means that performs cooling with a cooling capacity, and the food placement unit has a heat storage function, and if the temperature detected by the non-contact sensor is higher than a preset start temperature, a rapid cooling is performed with a high cooling capacity. The quick freezing control is automatically started by the freezing control means, and the quick freezing control by the quick freezing control means is stopped when the preset end temperature is reached.
 これによって、非接触に検知するセンサーによって食品温度を検知し自動で急凍制御を開始し、終了温度に到達した時点で速やかに通常の冷却動作に移行するため、庫内に投入された食品を速やかに自動で急速冷却の開始を行うとともに、食品載置部は蓄熱機能を有することによって、予め冷凍温度帯に冷却された蓄熱機能を有する食品載置部が食品に接していることで、熱伝導によって直接的に熱を奪い速やかに冷却を行うことができるので、急凍制御を行う場合でも圧縮機や冷気送風ファンの連続運転時間を大幅に短縮することができ、より省エネルギーを実現した急速冷却を行うことが可能となる。 As a result, the food temperature is detected by a sensor that detects non-contact, and quick freezing control is started automatically.When the end temperature is reached, the normal cooling operation is started immediately. Quickly and automatically start rapid cooling, and the food placement part has a heat storage function, so that the food placement part having a heat storage function cooled in the freezing temperature zone in advance is in contact with food. Since heat can be directly taken away by conduction and cooled quickly, the continuous operation time of the compressor and cold air blower fan can be greatly shortened even in the case of quick freezing control, which has realized further energy saving. Cooling can be performed.
 また、食品保存の観点からしても、本発明では急凍制御を行う際の食品載置部が蓄熱機能を有することで、急凍制御を行う冷気の導入による熱伝達と、蓄熱機能を有した食品載置部からの熱伝導の両方を用いて速やかに冷却を行うことができるので、特に冷凍保存では鮮度に大きく影響する0℃~-5℃の最大氷結晶生成帯の通過時間をより短くすることができ、最大氷結晶生成帯を短時間で通過することで、解凍時に食品からのドリップ量が抑制できるため、食品の鮮度や味を落とすことなく保存することができるので、食品の保存品質を高めることが可能となる。 Also, from the viewpoint of food preservation, in the present invention, the food placing portion when performing quick freezing control has a heat storage function, so that it has heat transfer by introducing cold air for quick freezing control and a heat storage function. Because it is possible to cool quickly using both the heat conduction from the food mounting part, the passage time through the maximum ice crystal formation zone of 0 ° C to -5 ° C, which greatly affects the freshness, especially in frozen storage Since it can be shortened and it passes through the maximum ice crystal formation zone in a short time, the amount of drip from the food can be suppressed when thawing, so it can be stored without sacrificing the freshness and taste of the food. It becomes possible to improve preservation quality.
 上記のように、冷却能力の向上が自動で行われるので、冷蔵庫の冷却を必要に応じた冷却運転で行うことができる。特に、負荷投入の影響による庫内温度の上昇や、急速に凍結させたい負荷への冷却に対して、従来のように圧縮機を40Hz程度の中回転で運転し負荷をゆっくり冷却するよりも、高冷却能力による短時間での冷却とすることで、例えば冷蔵庫の運転する24時間中の中での運転時間を短縮することができるので、消費電力量の低減となり、現在の地球環境悪化の要因とされている温室効果ガスの排出量を低減することができる。 As described above, since the cooling capacity is automatically improved, the refrigerator can be cooled by a cooling operation as required. In particular, for the rise in the internal temperature due to the effect of loading and cooling to the load that you want to freeze quickly, rather than operating the compressor at a medium rotation of about 40 Hz as in the past and slowly cooling the load, By making the cooling in a short time with a high cooling capacity, for example, the operation time in the 24 hours of operation of the refrigerator can be shortened, so the power consumption is reduced and the current global environment deterioration factor It is possible to reduce greenhouse gas emissions.
 また、従来のように早く凍結したい食品に対して手動で急凍制御に入れていた動作を自動で行うこととなるので、食品投入後に急凍制御に入れるという煩わしい動作が不要となる。近年の冷蔵庫では、急凍制御を動作させるために、急凍制御を選択し、決定動作を行う必要のあるものもあり、急凍動作を行うこと自体が煩わしいと感じられていたが、自動で急凍制御に入り高能力な冷却運転で食品の冷却動作を行うため、急凍制御に入れ忘れることはない。 In addition, since the operation that has been manually put into the quick freezing control for the food that is to be frozen quickly as in the past is automatically performed, the troublesome operation of putting into the quick freezing control after the food is added becomes unnecessary. In recent refrigerators, in order to operate the quick freezing control, it is necessary to select the quick freezing control and perform the determining operation, and it has been felt that the quick freezing operation itself is troublesome. Since the food is cooled by a high-performance cooling operation after entering the quick freezing control, you will never forget to enter the quick freezing control.
 また、ユーザーが買い物から帰宅して肉などの生鮮食品を冷凍保存するために食品を冷蔵庫に収納しているときには、ドア開放の影響で庫内温度は上昇してしまう。その場合、従来では自動で急凍制御に入らないため、低冷却能力で時間をかけて食品を冷却することとなるが、本発明では非接触のセンサーで検知した温度によって、温度が高ければ自動で急凍制御に入ることとなるので高冷却能力で時間をかけずに速やかに冷却できる。この結果、冷却するための冷却時間を短縮することができることと、短時間での冷却であるので食品自身の温度上昇を抑えるので保鮮劣化を抑制できる。 Also, when the user returns home from shopping and stores the food in the refrigerator to store fresh food such as meat in a refrigerator, the temperature inside the cabinet rises due to the influence of the door opening. In that case, since the quick freezing control is not automatically entered in the past, the food is cooled over time with a low cooling capacity, but in the present invention, if the temperature is high, the temperature is automatically detected by the non-contact sensor. The quick freezing control will be started, so it can be cooled quickly without taking time with high cooling capacity. As a result, the cooling time for cooling can be shortened, and since the cooling is performed in a short time, the temperature rise of the food itself is suppressed, so that deterioration of the freshness can be suppressed.
 また、食品凍結時には自動で急凍制御を解除するので、従来のように凍結後の不要な冷却運転による無駄なエネルギーの浪費をなくすことができる。また、従来では食品の潜熱変化から顕熱変化への移行を検知し凍結完了の判断を行っているものもあるが、食品の大きさによって潜熱変化と顕熱変化が同等の変化量を示すものには判断しにくい場合もあった。しかし、本発明では食品の温度自体の温度を検知するため、確実に凍結を判断できるとともに従来のように食品の変化率を算出するための複雑な微分計算制御仕様を構築することもない。 In addition, since the quick freezing control is automatically canceled when the food is frozen, it is possible to eliminate wasteful energy consumption due to unnecessary cooling operation after freezing as in the past. In addition, some products detect the transition from latent heat change of food to sensible heat change and determine the completion of freezing, but the latent heat change and sensible heat change show the same amount of change depending on the size of the food. In some cases, it was difficult to judge. However, in the present invention, since the temperature of the food itself is detected, freezing can be reliably determined, and a complicated differential calculation control specification for calculating the change rate of the food as in the past is not constructed.
 また、本発明の冷蔵庫は、上記の発明に加えて、非接触センサーは赤外線センサーであり、食品載置部と対向する側の貯蔵室壁面に備えられているとともに貯蔵室は冷凍温度帯にのみ設定可能な冷凍室である。 In addition to the above invention, in the refrigerator of the present invention, the non-contact sensor is an infrared sensor, and is provided on the wall surface of the storage chamber facing the food placement portion, and the storage chamber is only in the freezing temperature zone. A freezer that can be set.
 これによって、一般的に赤外線センサーの検知精度は最も精度を高く設定したい温度帯から離れるとともに検知精度が悪化する特性があるが、赤外線センサーを設置する貯蔵室が冷凍室であることで、冷凍温度帯付近が最も高くなるように予め設定することができ、他の温度帯に設定されることがないので、常に精度よく食品の温度を検知することが可能となり、より速やかで正確な急凍制御開始と急凍制御終了を行うことが可能となり、より省エネルギーを実現した急凍制御を行うことが可能となる。 As a result, the detection accuracy of the infrared sensor generally has the characteristic that the detection accuracy deteriorates as it moves away from the temperature range where the highest accuracy is to be set. It can be set in advance so that the area near the belt is the highest, and since it is not set to any other temperature band, it is possible to detect the temperature of the food with high accuracy at all times, and quicker and more accurate quick freezing control It is possible to perform the start and end of the quick freezing control, and it is possible to perform the quick freezing control that realizes further energy saving.
 さらに、食品温度を直接に検知することで急速凍結させたい食品の温度をリアルタイムに検出できより速やかで正確な急凍制御開始と急凍制御終了を行うことが可能となり、より省エネルギーを実現した急凍制御を行うことが可能となる。 In addition, by directly detecting the food temperature, it is possible to detect the temperature of the food that you want to freeze quickly in real time, enabling quicker and more accurate quick freezing control start and quick freezing control end, and quicker energy saving. Freezing control can be performed.
 また、本発明の冷蔵庫は上記の発明に加えて、急凍制御手段によって急凍制御が自動的に開始される温度帯は、赤外線センサーが検知する温度の内0℃~-5℃の検知温度を含むものである。 In the refrigerator of the present invention, in addition to the above-described invention, the temperature range where the quick freezing control is automatically started by the quick freezing control means is a detected temperature of 0 ° C. to −5 ° C. among the temperatures detected by the infrared sensor. Is included.
 これによって、食品の冷凍保存にとって非常に影響度の大きい、0℃~-5℃の最大氷結晶生成帯を短時間で通過させることに着目した温度制御を行うことができ、食品の味の劣化や組織破壊の抑制によって品質劣化を抑えることができる。この結果、解凍時に食品からのドリップ量が抑制できるため、食品の鮮度や味を落とすことなく保存することが可能となる。 This makes it possible to perform temperature control focusing on passing the maximum ice crystal formation zone of 0 ° C to -5 ° C in a short time, which has a great influence on the freezing storage of food, and deteriorates the taste of food. In addition, quality degradation can be suppressed by suppressing tissue destruction. As a result, since the amount of drip from the food can be suppressed at the time of thawing, the food can be preserved without deteriorating the freshness and taste.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.
 (実施の形態1)
 図1は本発明の実施の形態1における冷蔵庫の正面図である。図2は本発明の実施の形態1における冷蔵庫の側面断面図である。図3は本発明の実施の形態1における上段冷凍室の一部拡大側面断面図である。
(Embodiment 1)
FIG. 1 is a front view of the refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a side sectional view of the refrigerator according to Embodiment 1 of the present invention. FIG. 3 is a partially enlarged side sectional view of the upper freezer compartment in the first embodiment of the present invention.
 図1から図3に示すように、冷蔵庫本体101は、前方に開口する金属製(例えば鉄板)の外箱124と硬質樹脂製(例えばABS)の内箱125と、外箱124と内箱125の間に発泡充填されたウレタン断熱材126からなる断熱箱体で、この本体の上部に設けられた冷蔵室102と、冷蔵室の下に設けられた上段冷凍室103と、冷蔵室102の下で上段冷凍室103に並列に設けられた製氷室104と、本体下部に設けられた野菜室106と、並列に設置された上段冷凍室103および製氷室104と野菜室106の間に設けられた下段冷凍室105で構成されている。上段冷凍室103と製氷室104と下段冷凍室105と野菜室106の前面部はそれぞれ引き出し式の扉103a、104a、105a、106aにより開閉自由に閉塞されるとともに、冷蔵室102の前面は、観音開き式の図示しない扉102aにより開閉自由に閉塞される。 As shown in FIGS. 1 to 3, the refrigerator main body 101 includes a metal (for example, iron plate) outer box 124, a hard resin (for example, ABS) inner box 125, and an outer box 124 and an inner box 125. A heat insulating box 126 made of urethane heat insulating material 126 filled with foam between the refrigerator compartment 102 provided at the top of the main body, the upper freezer compartment 103 provided below the refrigerator compartment, and the bottom of the refrigerator compartment 102 The ice making chamber 104 provided in parallel to the upper freezing chamber 103, the vegetable chamber 106 provided in the lower part of the main body, and the upper freezing chamber 103 installed in parallel and the ice making chamber 104 and the vegetable chamber 106 were provided. The lower freezer compartment 105 is configured. The front portions of the upper freezing chamber 103, the ice making chamber 104, the lower freezing chamber 105, and the vegetable chamber 106 are closed freely by opening and closing doors 103a, 104a, 105a, and 106a, respectively, and the front surface of the refrigerator compartment 102 is opened with a double door. It is closed freely by a door 102a (not shown).
 冷蔵室102は冷蔵保存のために凍らない温度を下限に通常1~5℃の冷蔵温度帯で設定されている。野菜室106は冷蔵室102と同等もしくは若干高い温度設定の2℃~7℃とすることが多い。低温にすれば葉野菜の鮮度を長期間維持することが可能である。上段冷凍室103は冷凍保存のために通常-22から-18℃の冷凍温度帯で設定されているが、使用者の好む冷凍保存状態によっては、解凍等の調理の手間が省ける-7℃前後のソフト冷凍温度帯に設定することも可能であり、さらに冷凍保存状態の向上のために、通常の冷凍温度帯である-22から-18℃よりもさらに低い例えば-30から-25℃の低温冷凍温度帯で設定されることもある。下段冷凍室105は冷凍保存のために通常-22から-18℃で設定されているが、冷凍保存状態の向上のために、通常の冷凍温度帯である-22から-18℃よりもさらに低い例えば-30から-25℃の低温冷凍温度帯で設定されることもある。 The refrigerator compartment 102 is usually set in a refrigeration temperature range of 1 to 5 ° C. with the lower limit being the temperature at which it does not freeze for refrigerated storage. The vegetable room 106 is often set to 2 ° C. to 7 ° C., which is the same or slightly higher temperature as the refrigerator room 102. If the temperature is lowered, the freshness of leafy vegetables can be maintained for a long time. The upper freezer compartment 103 is usually set in the freezing temperature range of -22 to -18 ° C for freezing storage, but depending on the user's preferred freezing storage state, it can save time for cooking such as thawing around -7 ° C It is also possible to set the soft freezing temperature range of -30 ° C to -25 ° C, which is lower than the normal freezing temperature range of -22 to -18 ° C. It may be set in the freezing temperature range. The lower freezer compartment 105 is usually set at −22 to −18 ° C. for frozen storage, but is lower than the normal freezing temperature range of −22 to −18 ° C. to improve the frozen storage state. For example, it may be set in a low temperature freezing temperature range of −30 to −25 ° C.
 冷蔵室102や野菜室106は庫内をプラス温度で設定されるので、冷蔵温度帯を呼ばれる。また、上段冷凍室103や下段冷凍室105や製氷室104は庫内をマイナス温度で設定されるので、冷凍温度帯と呼ばれる。 Since the refrigerator compartment 102 and the vegetable compartment 106 are set at a plus temperature in the cabinet, they are called refrigerated temperature zones. The upper freezer compartment 103, the lower freezer compartment 105, and the ice making room 104 are called freezing temperature zones because the interior is set at a minus temperature.
 冷蔵庫本体101の天面部は、冷蔵庫本体101の背面方向に向かって階段状に凹みを設けて機械室119があり、第一の天面部と第二の天面部で構成されている。この階段状の凹部に配置された圧縮機117と、水分除去を行うドライヤ(図示せず)と、コンデンサー(図示せず)と、放熱用の放熱パイプ(図示せず)と、キャピラリーチューブ118と、冷却器107とを順次環状に接続してなる冷凍サイクルに冷媒を封入し、冷却運転を行う。冷媒には近年、環境保護のために可燃性冷媒を用いることが多い。なお、三方弁や切替弁を用いる冷凍サイクルの場合は、それらの機能部品を機械室内に配設することもできる。 The top surface portion of the refrigerator main body 101 is provided with a machine room 119 provided with a dent in a step shape toward the back surface of the refrigerator main body 101, and is composed of a first top surface portion and a second top surface portion. A compressor 117 disposed in the stepped recess, a dryer (not shown) for removing moisture, a condenser (not shown), a heat radiating pipe (not shown), a capillary tube 118, Then, the refrigerant is sealed in a refrigeration cycle in which the cooler 107 is sequentially connected in an annular manner, and a cooling operation is performed. In recent years, a flammable refrigerant is often used as a refrigerant for environmental protection. In the case of a refrigeration cycle using a three-way valve or a switching valve, these functional components can be arranged in the machine room.
 また、冷蔵室102と製氷室104および上段冷凍室103とは第一の断熱仕切り部110で区画されている。 Further, the refrigerator compartment 102, the ice making compartment 104, and the upper freezer compartment 103 are partitioned by a first heat insulating partition 110.
 また、製氷室104と上段冷凍室103とは第二の断熱仕切り部111で区画されている。 Further, the ice making chamber 104 and the upper freezing chamber 103 are partitioned by a second heat insulating partition 111.
 また、製氷室104および上段冷凍室103と、下段冷凍室105とは第三の断熱仕切り部112で区画されている。 Also, the ice making chamber 104, the upper freezing chamber 103, and the lower freezing chamber 105 are partitioned by a third heat insulating partition 112.
 第二の断熱仕切り部111および第三の断熱仕切り部112は、冷蔵庫本体101の発泡後組み立てられる部品であるため、通常断熱材として発泡ポリスチレンが使われるが、断熱性能や剛性を向上させるために硬質発泡ウレタンを用いてもよく、さらには高断熱性の真空断熱材を挿入して、仕切り構造のさらなる薄型化を図ってもよい。 Since the second heat insulating partition part 111 and the third heat insulating partition part 112 are parts assembled after foaming of the refrigerator main body 101, expanded polystyrene is usually used as a heat insulating material, but in order to improve heat insulating performance and rigidity. Rigid foamed urethane may be used, and furthermore, a highly heat insulating vacuum heat insulating material may be inserted to further reduce the thickness of the partition structure.
 また、扉フレームの稼動部を確保して第二の断熱仕切り部111および第三の断熱仕切り部112の形状の薄型化や廃止を行うことで、冷却風路を確保でき冷却能力の向上を図ることもできる。また、第二の断熱仕切り部111および第三の断熱仕切り部112の中央部をくりぬき、風路とすることで材料の低減につながる。 In addition, by securing the operating part of the door frame and thinning or eliminating the shapes of the second heat insulating partition part 111 and the third heat insulating partition part 112, a cooling air passage can be secured and the cooling capacity is improved. You can also Moreover, the center part of the 2nd heat insulation partition part 111 and the 3rd heat insulation partition part 112 is hollowed, and it leads to reduction of material by making it an air path.
 また、下段冷凍室105と野菜室106とは第四の仕切り部113で区画されている。 Further, the lower freezer compartment 105 and the vegetable compartment 106 are partitioned by a fourth partition 113.
 冷蔵庫本体101の背面には冷却室123が設けられ、冷却室123内には、代表的なものとしてフィンアンドチューブ式の冷気を生成する冷却器107が断熱仕切り壁である第二および第三の仕切り部111、112の後方領域を含めて下段冷凍室105の背面に上下方向に縦長に配設されている。また、冷却器107の材質は、アルミや銅が用いられる。 A cooling chamber 123 is provided on the back surface of the refrigerator main body 101, and in the cooling chamber 123, a cooler 107 that generates fin-and-tube type cool air as a representative one is a heat insulating partition wall. The rear part of the lower freezer compartment 105 including the rear area of the partition parts 111 and 112 is vertically arranged in the vertical direction. The material of the cooler 107 is aluminum or copper.
 冷却器107の近傍(例えば上部空間)には強制対流方式により冷蔵室102、製氷室104、上段冷凍室103、下段冷凍室105、野菜室106の各貯蔵室に冷却器107で生成した冷気を送風する冷気送風ファン116が配置され、冷却器107の下部空間には冷却時に冷却器107や冷気送風ファン116に付着する霜を除霜する除霜装置としてのガラス管製のラジアントヒータ134が設けられている。除霜装置は特に指定するものではなく、ラジアントヒータ134の他に、冷却器107に密着したパイプヒータを用いても良い。 In the vicinity of the cooler 107 (for example, the upper space), the cold air generated by the cooler 107 is stored in each storage room of the refrigerator compartment 102, the ice making room 104, the upper freezer room 103, the lower freezer room 105, and the vegetable room 106 by a forced convection method. A cool air blowing fan 116 for blowing air is disposed, and a radiant heater 134 made of glass tube is provided in a lower space of the cooler 107 as a defrosting device for defrosting the frost adhering to the cooler 107 and the cold air blowing fan 116 during cooling. It has been. The defrosting device is not particularly specified, and a pipe heater in close contact with the cooler 107 may be used in addition to the radiant heater 134.
 冷気送風ファン116は、内箱125に直接配設されることもあるが、発泡後に組み立てられる第二の仕切り部111に配設し、部品のブロック加工を行うことで製造コストの低減を図ることもできる。 Although the cool air blowing fan 116 may be directly disposed in the inner box 125, it is disposed in the second partition portion 111 assembled after foaming, and the manufacturing cost is reduced by performing block processing of the parts. You can also.
 次に非接触センサーである赤外線センサー128を取り付けている上段冷凍室103の構成について説明する。 Next, the configuration of the upper freezer compartment 103 to which the infrared sensor 128 that is a non-contact sensor is attached will be described.
 図3に示すように、上段冷凍室103の天井面である第一の断熱仕切り部110には、食品121の温度を検知する赤外線センサー128が検知する面の投影面上の隣接貯蔵室がある方向(本実施例の場合は下方向)に向かって設置してある。上段冷凍室103の背面上部には冷却器107で生成された冷気が吐出される吐出口(図示せず)と、上段冷凍室103内を循環した冷気が、再び冷却室123に戻るための戻り口(図示せず)が設けてある。本実施例のように、赤外線センサー128を断熱仕切り部内に設置することで、吐出口から吐出される冷気の風の影響を受けにくくできるため、検知精度の向上を図ることができる。さらに、赤外線センサー128先端部を断熱仕切り部の表面よりも内側もしくは同一面とすることで貯蔵室内に食品121を大量に入れられた場合や、清掃時でも赤外線センサー128の検知部に異物が付着することがないため検知の誤動作を招かない。さらに庫内への突出による清掃時の引っかかりがないため過剰な力の加重による部品の欠落や検知方向のズレ等を防止することができる。また庫内に突出していないので庫内容量が減少せず、容量の確保をすることができる。 As shown in FIG. 3, the first heat insulating partition 110 that is the ceiling surface of the upper freezer compartment 103 has an adjacent storage chamber on the projection surface of the surface detected by the infrared sensor 128 that detects the temperature of the food 121. It is installed in the direction (downward in this embodiment). A discharge port (not shown) through which the cool air generated by the cooler 107 is discharged at the upper back of the upper freezer compartment 103, and a return for returning the cool air circulating in the upper freezer compartment 103 to the cooler chamber 123 again. A mouth (not shown) is provided. By installing the infrared sensor 128 in the heat insulating partition as in the present embodiment, the detection accuracy can be improved because the infrared sensor 128 is less susceptible to the influence of cold air discharged from the discharge port. Furthermore, when the tip of the infrared sensor 128 is inside or on the same surface as the surface of the heat-insulating partition, foreign matter adheres to the detection part of the infrared sensor 128 even when a large amount of food 121 is placed in the storage chamber or during cleaning. This will not cause malfunction of detection. Furthermore, since there is no catching at the time of cleaning due to protrusion into the chamber, it is possible to prevent parts from being lost due to excessive force load, displacement in the detection direction, and the like. Moreover, since it does not protrude into the storage, the storage capacity does not decrease and the capacity can be secured.
 また、赤外線センサー128が検知する貯蔵室内のケース127には、赤外線センサー128が検知できる範囲である視野範囲内であることを示す目印133が設けられており、お客様にとって食品121の置き場がわかりやすい配慮がされている。また、目印133は赤外線センサー128が検知する視野範囲よりも小さい範囲で設けることで、食品121の収納時には確実に温度検知が行えるように配慮されている。特に赤外線センサー128は検知する範囲の中心部が最も赤外線の検知強度が強く検知範囲の端に行くほど弱くなるので、検知精度を高めるためにも中心を基準として目印133をつけると良い。 In addition, the case 127 in the storage room detected by the infrared sensor 128 is provided with a mark 133 indicating that it is within the visual field range that the infrared sensor 128 can detect, so that the customer can easily understand where the food 121 is placed. Has been. In addition, the mark 133 is provided in a range smaller than the visual field range detected by the infrared sensor 128 so that the temperature can be reliably detected when the food 121 is stored. In particular, since the infrared sensor 128 has the strongest infrared detection intensity at the center of the detection range and becomes weaker as it goes to the end of the detection range, it is preferable to mark the mark 133 with the center as a reference in order to improve detection accuracy.
 この目印は本実施の形態のように引き出し式の扉を備えた貯蔵室である上段冷凍室103の天面側に赤外線センサー128が備えられる場合には、引き出し式の扉103aを開けた状態で食品を投入する際に使用者がどの位置に食品を置けばいいのかわかりにくいため、目印が133あることでより使用者の食品載置が的確となり、赤外線センサー128の検知精度を高めることが可能である。 In the case where the infrared sensor 128 is provided on the top side of the upper freezing room 103 which is a storage room having a drawer type door as in the present embodiment, the mark is in a state where the drawer type door 103a is opened. Since it is difficult to know where the user should place the food when throwing in the food, the user can place the food more accurately with the mark 133, and the detection accuracy of the infrared sensor 128 can be improved. It is.
 次に、本実施の形態で使用した赤外線センサー128について説明する。赤外線センサー128は、検知する面の範囲から発せられる赤外線量を先端のサーモパイル(図示せず)検出し、電気信号に変換している。サーモパイルの周囲には赤外線センサー128の検知範囲を絞る集光部材であるプローブ(図示せず)があり、さらに基板部分に配置されている基準温度であるサーミスタ(図示せず)の電圧と比較することによって検知した対象物の温度を算出することで温度検知を行っている。この赤外線センサー128は検知範囲の円内部において、中心が最も赤外線検知強度が強く、端に行くほど検知強度が弱くなる。そのためサーモパイルの視野角度をより絞ることで検知物の赤外線量の強度を上げることができ、対象物温度を確実に検出することができるが、視野角度の一部がプローブの先端部に重なるため先端部温度の影響を受け誤検知の要因となることにより、本実施の形態ではサーモパイルの視野角を55°以下としている(図3には50°を例示)。 Next, the infrared sensor 128 used in the present embodiment will be described. The infrared sensor 128 detects a thermopile (not shown) at the tip of the infrared ray emitted from the range of the surface to be detected and converts it into an electrical signal. Around the thermopile, there is a probe (not shown) which is a light collecting member for narrowing the detection range of the infrared sensor 128, and further compared with the voltage of a thermistor (not shown) which is a reference temperature arranged on the substrate portion. The temperature is detected by calculating the temperature of the detected object. The infrared sensor 128 has the highest infrared detection intensity in the center of the detection range circle, and the detection intensity decreases toward the end. Therefore, it is possible to increase the intensity of the infrared ray of the detected object by narrowing the viewing angle of the thermopile and detect the temperature of the object reliably, but the tip of the viewing angle overlaps with the tip of the probe. In this embodiment, the viewing angle of the thermopile is set to 55 ° or less (50 ° is illustrated in FIG. 3).
 本実施の形態に用いた赤外線センサー128は、シリコン基板上に形成された多数の熱電対で構成されたサーモパイルを用いた。さらにプローブ部分の材質は熱伝導性に優れたアルミナ粉末を用いた成型物であるが、熱伝導性に優れた材質であれば、例えばマグネシア粉末や窒化アルミニウム粉末などのセラミック粉末を分散させた成型物でも良い。また、赤外線センサー128の検知応答性において樹脂タイプのプローブを用いると応答性に遅れが生じるものの、比重が低減できるため重量低減に効果がある。樹脂タイプのプローブにおいて厚みを薄くすることで若干の応答性向上を図ることができ、体積低減も行えるため省材料で環境負荷の低減も行うことができる。薄肉化は、熱伝導性に優れた金属製の材質でも同様である。 As the infrared sensor 128 used in the present embodiment, a thermopile composed of a large number of thermocouples formed on a silicon substrate was used. Furthermore, the material of the probe part is a molded product using alumina powder having excellent thermal conductivity, but if the material has excellent thermal conductivity, for example, molding in which ceramic powder such as magnesia powder or aluminum nitride powder is dispersed. Goods are also acceptable. In addition, when a resin type probe is used in the detection response of the infrared sensor 128, the response is delayed, but the specific gravity can be reduced, which is effective in reducing the weight. By reducing the thickness of the resin type probe, it is possible to improve the responsiveness slightly, and the volume can be reduced, so that environmental load can be reduced with less material. Thinning is the same for metal materials having excellent thermal conductivity.
 このように、赤外線センサー128の検知精度を高めるために検知する範囲をより絞る赤外線集光部材であるプローブを備えるとより視野角度が狭くなるが、それによって検知精度を向上させることができる。 As described above, when the probe that is an infrared condensing member that narrows the detection range in order to increase the detection accuracy of the infrared sensor 128 is provided, the viewing angle becomes narrower, but the detection accuracy can be improved thereby.
 また、赤外線センサー128の検知面は蓄冷機能を有するもので形成するので、検知面そのものの温度変動が少なくなるため、温かい食品が投入された場合にはより正確に検知することが可能な構成である。 In addition, since the detection surface of the infrared sensor 128 is formed with a cold storage function, the temperature fluctuation of the detection surface itself is reduced, so that it is possible to detect more accurately when warm food is introduced. is there.
 以上のように構成された冷蔵庫について、以下その動作、作用について説明する。 About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
 例えば冷蔵室102が外気からの熱侵入および扉開閉などにより、庫内温度が上昇して冷蔵室センサー(図示せず)が圧縮機117の起動温度以上になった場合に、圧縮機117が起動し庫内の冷却が開始される。圧縮機117から吐出された高温高圧の冷媒は、最終的に機械室119に配置されたドライヤ(図示せず)まで到達する間、特にコンデンサー(図示せず)や外箱124に設置される放熱パイプ(図示せず)において、外箱124の外側の空気や庫内のウレタン断熱材126との熱交換により、冷却されて液化する。 For example, when the refrigerator compartment 102 rises in temperature due to heat intrusion from outside air and door opening / closing, and the refrigerator compartment sensor (not shown) reaches or exceeds the startup temperature of the compressor 117, the compressor 117 is started. Cooling in the storage is started. While the high-temperature and high-pressure refrigerant discharged from the compressor 117 finally reaches a dryer (not shown) disposed in the machine room 119, heat is dissipated particularly in a condenser (not shown) or the outer box 124. A pipe (not shown) is cooled and liquefied by heat exchange with the air outside the outer box 124 and the urethane heat insulating material 126 in the warehouse.
 次に液化した冷媒はキャピラリーチューブ118で減圧されて、冷却器107に流入し冷却器107周辺の庫内空気と熱交換する。熱交換された冷気は、近傍の冷気送風ファン116により庫内に冷気が送風され庫内を冷却する。この後、冷媒は加熱されガス化して圧縮機117に戻る。庫内が冷却されて冷凍室センサー(図示せず)の温度が停止温度以下になった場合に圧縮機117の運転が停止する。 Next, the liquefied refrigerant is depressurized by the capillary tube 118, flows into the cooler 107, and exchanges heat with the internal air around the cooler 107. The cold air subjected to heat exchange is blown into the cabinet by a nearby cool air blower fan 116 to cool the inside of the cabinet. Thereafter, the refrigerant is heated and gasified to return to the compressor 117. When the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor (not shown) becomes equal to or lower than the stop temperature, the operation of the compressor 117 is stopped.
 上記のような運転サイクルを繰り返すことで冷蔵庫は冷却運転を行っている。このとき赤外線センサー128の検知は引き出し式の扉103aが閉塞しているときには、上段冷凍室103の天面に取り付けられているサーモパイル129から上段冷凍室内にあるケース127の温度もしくは食品121の温度を検知している。 Refrigerator performs cooling operation by repeating the above operation cycle. At this time, when the pull-out door 103a is closed, the infrared sensor 128 detects the temperature of the case 127 or the temperature of the food 121 in the upper freezer compartment from the thermopile 129 attached to the top surface of the upper freezer compartment 103. Detected.
 しかしながら食品121の投入もしくは検知している食品121以外のものを取り出すときなどや、貯蔵している食品121を確認する際などで、扉を開放した場合には、赤外線センサー128の検知はケース127表面や目的の食品121の検知面から外れ、赤外線センサー128の検知する方向の投影線上にある貯蔵室と赤外線センサー128が備えられた貯蔵室とを仕切る仕切り壁である第三の断熱仕切り部112の温度を検知することとなる。従来のように赤外線センサー128が検知する面の投影面上すなわち赤外線センサー128の検知する方向の投影線上にある隣接する貯蔵室が冷凍温度帯よりも20℃以上高い温度帯である冷蔵温度帯の場合、第三の断熱仕切り部112の表面は熱伝導により温度差ができるため赤外線センサー128の検知温度は急激に高めに変化することとなり、温かい食品が入れられたといった誤検知を行うことになる。 However, when the door is opened, such as when the food 121 is loaded or the food other than the detected food 121 is taken out, or when the stored food 121 is confirmed, the infrared sensor 128 detects the case 127. A third heat insulating partition 112, which is a partition wall that separates the storage chamber on the projection line in the direction detected by the infrared sensor 128 from the detection surface of the surface or the target food 121 and the storage chamber provided with the infrared sensor 128. Will be detected. As in the prior art, the adjacent storage chamber on the projection surface of the surface detected by the infrared sensor 128, that is, on the projection line in the direction detected by the infrared sensor 128, has a refrigeration temperature zone that is 20 ° C. higher than the freezing temperature zone. In this case, since the temperature of the surface of the third heat insulating partition 112 can change due to heat conduction, the detection temperature of the infrared sensor 128 changes rapidly, and a false detection that warm food is put in is performed. .
 しかしながら、本実施の形態では第三の断熱仕切り部112を挟んだ貯蔵室の温度帯を同温度帯もしくは貯蔵室よりも低い温度帯としているので、検知している温度の変化量が小さくなり検知がずれて不要な冷却能力が必要となり圧縮機117の回転数を上昇させたり、冷気送風ファン116の回転数を上昇させたりといった無駄なエネルギーを消費することを防ぐことが可能となる。 However, in the present embodiment, the temperature zone of the storage chamber sandwiching the third heat insulating partition 112 is set to the same temperature zone or a temperature zone lower than the storage chamber, so that the amount of change in the detected temperature is reduced and detected. It is possible to prevent unnecessary energy consumption such as increasing the number of rotations of the compressor 117 and increasing the number of rotations of the cool air blower fan 116 because unnecessary cooling capacity is required.
 特に、本実施の形態のように非接触センサーが引き出し式の貯蔵室であった場合には、扉を開けた場合に非接触センサーは投影面側の壁面である第三の断熱仕切り部112を検知するので、貯蔵室と同温度付近もしくは貯蔵室よりも低温度を検知するので、扉開閉時に隣接貯蔵室が高い温度となることはなく、温かい食品が投入されたと非接触センサーが誤検知を行うことを抑制することができる。 In particular, when the non-contact sensor is a drawer-type storage chamber as in the present embodiment, when the door is opened, the non-contact sensor includes the third heat insulating partition 112 that is the wall on the projection plane side. Because it detects the temperature near the same temperature as the storage room or lower than the storage room, the adjacent storage room will not be at a high temperature when the door is opened and closed, and the non-contact sensor will falsely detect that warm food has been introduced. It can be suppressed.
 また従来では扉スイッチを取り付けてスイッチとの連動を行うことで扉の開閉時の状況を把握し、扉スイッチが起動した場合には赤外線センサー128は検知できない仕様とすることで誤検知防止を行うこともあったが、扉スイッチを設けて制御と連動させることによってより複雑な構成となるので、故障や動作不良の可能性が増えることに加え、この扉スイッチおよびそれと連動させるための配線等を含めた制御機構の追加によって世界的な原材料の不足による部品高騰の中でコストUPの要因となることから実売への価格UPを引き起こすことも想定される。 Conventionally, a door switch is attached and interlocked with the switch to grasp the situation at the time of opening and closing the door, and when the door switch is activated, the infrared sensor 128 is set to a specification that cannot be detected to prevent erroneous detection. In some cases, however, a door switch is provided and linked to control, resulting in a more complicated configuration. In addition to increasing the possibility of failure and malfunction, this door switch and wiring for linking with the switch, etc. It is assumed that the addition of the control mechanism included will cause the cost to increase due to the cost increase due to the global rise in parts due to the shortage of raw materials.
 しかしながら本実施では例えば扉が閉まっており食品121が入っているときには周囲の温度よりも高い食品の温度を検知するとともに、扉が開いている状態では赤外線センサーが備えられている貯蔵室よりも低温度帯もしくは同温度帯である冷凍温度を検知するので、例えば扉の開放に伴って一時的に温度が上昇した場合であっても、実際に温かい食品が投入されていない場合には、その後に急激な温度低下を検知できるため、一定時間内の温度勾配を算出し、閾値を設けることで閾値以上であった場合のみ自動での急速冷凍を開始すると判断することも可能である。これによると、扉スイッチをつけることがなく簡単な構造で制御仕様の設定のみでの外乱による温度上昇であるかどうかの検知が可能である。これにより、上述のように、より高い信頼性でかつ材料の省資源化や部品の組み立て時の取り付けミス等を防止できる効果がある。 However, in this embodiment, for example, when the door is closed and the food 121 is contained, the temperature of the food higher than the surrounding temperature is detected, and when the door is open, the temperature is lower than that of the storage room provided with the infrared sensor. Because it detects the temperature range or the freezing temperature that is the same temperature range, for example, even when the temperature rises temporarily with the opening of the door, if no warm food is actually put in, Since a rapid temperature drop can be detected, it is also possible to determine that automatic quick freezing is started only when the temperature gradient within a certain period of time is calculated and a threshold value is set and the threshold value is exceeded. According to this, it is possible to detect whether the temperature rises due to a disturbance only by setting the control specifications with a simple structure without attaching a door switch. As a result, as described above, there is an effect that it is possible to prevent a mistake in mounting at the time of assembling parts with higher reliability and resource saving of materials.
 また、日本独特の多湿気候条件では、扉を開けた場合に外気の暖湿気が庫内へ流入するが、赤外線センサー128の表面に結露するとサーモパイル129は結露水の温度を検知することとなる。さらに扉が閉されて庫内の冷却運転が開始されると結露した水は氷結するため、氷結した水滴が昇華するまでサーモパイル129は食品の温度を検知しにくくなる。そのため本実施の形態では赤外線センサー128の配置を、隣接する貯蔵室の温度よりも高い方の保存室と仕切る断熱仕切り部に配置することで結露防止の効果を得るため冷蔵室側に設置するとともに、さらに断熱仕切り部の温度分布の中で、最も温度の高い部分である扉側寄りに配置している。従来例のように結露防止の対応としてシャッター機構を搭載することもできるが、扉開閉と連動する必要があるため複雑な機構が必要となってしまう。 Also, under the humid climate conditions peculiar to Japan, when the door is opened, the warm air of the outside air flows into the cabinet. However, when dew condensation occurs on the surface of the infrared sensor 128, the thermopile 129 detects the temperature of the condensed water. Further, when the door is closed and the cooling operation in the cabinet is started, the condensed water freezes, so that it becomes difficult for the thermopile 129 to detect the temperature of the food until the frozen water droplets sublimate. Therefore, in the present embodiment, the infrared sensor 128 is disposed on the refrigerating chamber side in order to obtain the effect of preventing condensation by disposing the infrared sensor 128 in the heat insulating partition that partitions the storage chamber higher than the temperature of the adjacent storage chamber. Furthermore, it arrange | positions near the door side which is the highest temperature part in the temperature distribution of a heat insulation partition part. A shutter mechanism can be mounted as a countermeasure for preventing condensation as in the conventional example, but a complicated mechanism is required because it needs to be interlocked with the opening and closing of the door.
 また、貯蔵室内に対して周囲の温度よりも平均して温度が高い部分に赤外線センサー128を設置することで、経年劣化の原因となる水分の付着がしにくい設計となるので製品寿命を延ばすことに効果がある。 In addition, the infrared sensor 128 is installed in the storage room where the temperature is higher on average than the ambient temperature, so that it becomes difficult to attach moisture that causes aging deterioration, thereby extending the product life. Is effective.
 また、本実施の形態においては、赤外線センサー128によって食品121の温度を検知することを目的としているが、赤外線センサー128は食品121の温度を検知すると同時に赤外線センサー128の視野範囲内にあるものの温度をすべて検知するので、貯蔵室の壁面や貯蔵室内に収納される食品121から放射される赤外線量を検出している。よって、扉の開閉に伴う暖気の流入によって、赤外線センサー128の検知面の温度が上昇すると、赤外線センサー128の食品121の温度検知に対する検知精度は低下するので、赤外線センサー128の検知面の温度が一定であることが望ましく、本実施の形態では蓄冷機能を有するものとした。このように、検知面が蓄冷機能を有していると、検知範囲内における庫内壁面等はより一定温度を維持することができるので、食品121の投入以外の、いわゆる外乱による温度上昇である暖気の流入等によって食品が投入されたと誤検知し、その誤検知によって自動で急速冷却を開始することで貯蔵室を過度に冷却しすぎて無駄なエネルギーを消費することを防止することができる。 Further, in this embodiment, the purpose is to detect the temperature of the food 121 by the infrared sensor 128. However, the infrared sensor 128 detects the temperature of the food 121 and at the same time the temperature of the one within the visual field range of the infrared sensor 128. Therefore, the amount of infrared rays emitted from the wall surface of the storage room or the food 121 stored in the storage room is detected. Therefore, when the temperature of the detection surface of the infrared sensor 128 rises due to the inflow of warm air accompanying the opening and closing of the door, the detection accuracy of the infrared sensor 128 for detecting the temperature of the food 121 decreases, so the temperature of the detection surface of the infrared sensor 128 decreases. It is desirable that it be constant, and in this embodiment, it has a cold storage function. In this way, if the detection surface has a cold storage function, the inner wall surface in the detection range can maintain a more constant temperature, which is a temperature increase due to a so-called disturbance other than the addition of the food 121. It is possible to prevent wasteful energy consumption due to excessive cooling of the storage chamber by erroneously detecting that food has been introduced due to inflow of warm air or the like, and automatically starting rapid cooling based on the erroneous detection.
 また、このように自動で急速冷却を開始する際には食品の投入による温度変動と、それ以外の外乱による温度変動を区別することができないため、外乱による温度変動を食品が投入されたと誤検知する可能性があるので、この外乱による検知を防止するようために、食品投入の有無は確実に検知する外乱検知手段として、食品の投入を判別するための判別時間を設け、温かい温度を検知した場合にはそれ以降一定の判別時間の温度変動を監視することによって確実な判別を行い、判別時間中に常に高い温度を検知した場合にのみ自動で急速冷却を開始するものとすることでより確実に食品投入の有無を判別できる。また、この判別時間を温かい温度が検知された時から一定時間後から開始することも可能であり、特に暖気の流入のみによる温度上昇の場合には速やかに温度が低下するので、一定時間後に再度温度検知を行い、そこで高い温度を検知した場合にのみ自動で急速冷却を開始するものとすることでより確実に食品投入の有無を判別できる。 In addition, when starting rapid cooling in this way, it is not possible to distinguish between temperature fluctuations caused by food input and temperature fluctuations caused by other disturbances. In order to prevent detection due to this disturbance, as a disturbance detection means that reliably detects the presence or absence of food input, a detection time for determining the input of food is provided, and a warm temperature is detected In this case, it is possible to make a reliable determination by monitoring temperature fluctuations for a certain determination time thereafter, and to start rapid cooling automatically only when a high temperature is always detected during the determination time. The presence or absence of food can be determined. It is also possible to start this determination time after a certain time from when a warm temperature is detected.In particular, in the case of a temperature rise due only to the inflow of warm air, the temperature quickly decreases. By detecting the temperature and starting the rapid cooling automatically only when a high temperature is detected there, it is possible to more reliably determine whether or not food has been added.
 このような外乱検知手段を設けることで誤検知によって自動で急速冷却を開始することで貯蔵室を過度に冷却しすぎて無駄なエネルギーを消費することを防止することができる。 By providing such a disturbance detection means, it is possible to prevent unnecessary energy from being consumed by excessively cooling the storage chamber by automatically starting rapid cooling due to erroneous detection.
 また、貯蔵室内に赤外線センサー128を設置する際、本実施の形態では断熱仕切り部の表面以下にセンサープローブの表面が配置するように配慮してある。これにより、背面の冷気吐出口からの冷気がプローブ先端部を過度に冷却しないようにして検知の温度変動を低減するのに加えて、食品収納量以上に収納された場合の食品の引っかかりや異物の付着、清掃時に赤外線センサー128の先端が指や清掃物であるタオル等に引っかかったりして過度な力作用での部品欠落や外れを抑える働きがある。 Also, when the infrared sensor 128 is installed in the storage chamber, in this embodiment, consideration is given to the surface of the sensor probe being disposed below the surface of the heat insulating partition. This prevents cold air from the cold air outlet on the back from excessively cooling the tip of the probe and reduces temperature fluctuations in detection. At the time of adhesion and cleaning, the tip of the infrared sensor 128 is caught on a finger or a towel that is a cleaning object, etc., so that there is a function of suppressing component omission and detachment due to excessive force action.
 また、赤外線センサー128は自身の温度を検知するサーミスタ131が過度な温度変動を起こすと誤検知するため、熱変動のある部分から温度影響を受けない程度に離すことが望ましい。冷蔵庫では放熱用および表面結露防止用に銅もしくは鉄等の金属材料を主体としたパイプを配設しているためパイプからの距離を本実施の形態では15mm以上離している。 Further, since the infrared sensor 128 erroneously detects that the thermistor 131 that detects its own temperature causes excessive temperature fluctuations, it is desirable that the infrared sensor 128 be separated from the part where the thermal fluctuations are not affected by the temperature. In the refrigerator, a pipe mainly composed of a metal material such as copper or iron is provided for heat dissipation and surface condensation prevention, and therefore, the distance from the pipe is 15 mm or more in this embodiment.
 赤外線センサー128先端部の結露および氷結防止の対応として、ヒータ熱を利用する方法がある。この場合、基板上にチップ抵抗をつける方法で行うと低コストでの対応が可能である。チップ抵抗の容量としては、本実施の形態の赤外線センサー128であれば0.25W程度の容量を5Vの電圧で約20分/日の通電率であれば十分にプローブ先端の温度上昇を確保できる。さらに長期で使用される冷蔵庫において1日毎でなくても1ヶ月に1回等の頻度で確実に結露や氷結を除去し定期的にリフレッシュする方法も製品寿命を延ばす上で効果的である。 There is a method of using heater heat as a countermeasure for preventing condensation and freezing at the tip of the infrared sensor 128. In this case, if a method of attaching a chip resistor on the substrate is used, it is possible to cope with it at a low cost. As for the capacity of the chip resistor, if the infrared sensor 128 of the present embodiment has a capacity of about 0.25 W and an energization rate of about 20 minutes / day at a voltage of 5 V, a sufficient temperature rise at the probe tip can be secured. . Furthermore, in a refrigerator that is used for a long period of time, a method of reliably removing condensation and icing at a frequency of once a month even if not every day is effective for extending the product life.
 近年の冷凍サイクルの冷媒としては、地球環境保全の観点から地球温暖化係数が小さい可燃性冷媒であるイソブタンが使用されている。この、炭化水素であるイソブタンは空気と比較して常温、大気圧下で約2倍の比重である(2.04、300Kにおいて)。仮に、圧縮機117の停止時に冷凍システムから可燃性冷媒であるイソブタンが漏洩した場合には、空気よりも重いので、下方に漏洩することになる。特に、冷媒の滞留量が多い冷却器107から漏洩する場合には、漏洩量が多くなる可能性があるが、赤外線センサー128を配置した上段冷凍室103は、冷却器107より上方に設置されているため、漏洩しても上段冷凍室103には漏洩することがない。また、仮に上段冷凍室103に漏洩したとしても、冷媒は空気より重いため貯蔵室下部に滞留する。よって、赤外線センサー128が貯蔵室天面に設置されているため、赤外線センサー128付近が可燃濃度になることは極めて低い。 As a refrigerant for a recent refrigeration cycle, isobutane, which is a flammable refrigerant with a low global warming potential, is used from the viewpoint of global environmental conservation. This isobutane, which is a hydrocarbon, has a specific gravity approximately twice that at normal temperature and atmospheric pressure compared with air (at 2.04 and 300K). If isobutane, which is a combustible refrigerant, leaks from the refrigeration system when the compressor 117 is stopped, it leaks downward because it is heavier than air. In particular, when the refrigerant leaks from the cooler 107 with a large amount of refrigerant, the amount of leakage may increase, but the upper freezer compartment 103 in which the infrared sensor 128 is disposed is installed above the cooler 107. Therefore, even if it leaks, it does not leak into the upper freezer compartment 103. Even if the refrigerant leaks into the upper freezer compartment 103, the refrigerant is heavier than air and stays in the lower part of the storage compartment. Therefore, since the infrared sensor 128 is installed on the top of the storage room, it is extremely low that the vicinity of the infrared sensor 128 becomes a flammable concentration.
 (実施の形態2)
 本実施の形態においては、実施の形態1で説明した構成および技術思想と同一の部分については詳細な説明を省略する。実施の形態1で記載した内容と同様の技術思想が適用できる構成については実施の形態1で記載した技術内容および構成と組合せた構成を実現することが可能である。
(Embodiment 2)
In the present embodiment, detailed description of the same parts as those in the configuration and technical idea described in the first embodiment will be omitted. For a configuration to which the same technical idea as the content described in the first embodiment can be applied, a configuration combined with the technical content and the configuration described in the first embodiment can be realized.
 図4は、本発明の実施の形態2における冷蔵庫の一部拡大側面断面図である。 FIG. 4 is a partially enlarged side sectional view of the refrigerator according to Embodiment 2 of the present invention.
 本実施の形態は、上記実施の形態1の構成において、図4に示すように、上段冷凍室203に備えられた赤外線センサー228が検知する面が容器227のみであって、その下方側に位置していた第三の断熱仕切り部をなくしたものである。本実施の形態においても食品載置面の赤外線センサー228が最も精度よく温度検知可能な箇所に目印133を設けている。 In the present embodiment, in the configuration of the first embodiment, as shown in FIG. 4, the surface detected by the infrared sensor 228 provided in the upper freezer compartment 203 is only the container 227, and is positioned below the container 227. The third heat-insulating partition portion that has been removed is eliminated. Also in this embodiment, the mark 133 is provided at a location where the infrared sensor 228 on the food placement surface can detect the temperature with the highest accuracy.
 すなわち、上段冷凍室203と下段冷凍室205とがほぼ同じ温度帯となることで、扉開時には下段冷凍室205の温度を検知した場合でも、上段冷凍室203とほぼ同じ温度帯であるため検知温度の温度変動をさらに抑制することができるといった効果がある。 That is, since the upper freezer compartment 203 and the lower freezer compartment 205 are in substantially the same temperature range, even when the temperature of the lower freezer compartment 205 is detected when the door is opened, it is detected because it is in the same temperature range as the upper freezer compartment 203. There is an effect that the temperature fluctuation of the temperature can be further suppressed.
 加えて、上段冷凍室203の食品が載置された食品載置面を下段冷凍室205を冷却する冷気で下側からも冷却することができるため、食品載置面は上下両方から低温冷気によって冷却されるので、より食品載置面の上方側と下方側の空間での温度差が低減されるので、赤外線センサーによる検知温度の温度変動をさらに抑制することができるといった効果があることに加え、第三の断熱仕切り部がある場合に加えて格段に冷却スピードを向上することが可能となる。また、食品221は凍結時に0℃~-5℃の最大氷結晶生成帯を短時間で通過すると細胞の破壊が少ないことが知られているため、第三の断熱仕切り部をなくし食品221を上下から冷却することは食品保存にとって非常に効果的である。 In addition, since the food placing surface on which the food in the upper freezer compartment 203 is placed can be cooled from the lower side with the cold air that cools the lower freezer compartment 205, the food placing surface can be cooled by cold air from both the upper and lower sides. Since it is cooled, the temperature difference between the space above and below the food placing surface is further reduced, and in addition to the effect that the temperature fluctuation of the temperature detected by the infrared sensor can be further suppressed. In addition to the case where there is a third heat insulating partition, the cooling speed can be remarkably improved. In addition, it is known that the food 221 passes through the maximum ice crystal formation zone of 0 ° C. to −5 ° C. for a short time when frozen, so that there is little destruction of cells, so the third heat insulating partition is eliminated and the food 221 is moved up and down. Cooling from is very effective for food preservation.
 (実施の形態3)
 本実施の形態においては、実施の形態1または2で説明した技術と同一構成もしくは同一の技術思想が適用できる部分については説明を省略する。実施の形態1または2で記載した内容と同様の技術思想が適用できる構成については実施の形態1または2で記載した技術内容および構成と組合せた構成を実現することが可能である。
(Embodiment 3)
In the present embodiment, the description of the portions to which the same configuration or the same technical idea as the technology described in the first or second embodiment can be applied is omitted. For a configuration to which the same technical idea as the content described in the first or second embodiment can be applied, a configuration combined with the technical content and the configuration described in the first or second embodiment can be realized.
 図5は、本発明の実施の形態3における冷蔵庫の一部拡大側面断面図である。図5において、赤外線センサー328を上段冷凍室303を引き出す扉部分に取り付けたものであり、扉開閉時には無線によって検知温度等を冷蔵庫本体301の制御部分に送信させたものである。 FIG. 5 is a partially enlarged side cross-sectional view of the refrigerator according to Embodiment 3 of the present invention. In FIG. 5, an infrared sensor 328 is attached to a door portion that pulls out the upper freezer compartment 303, and when the door is opened and closed, the detected temperature and the like are transmitted to the control portion of the refrigerator main body 301 by radio.
 これによって、食品321取り出しの際などで扉を開けた場合でも、ケース327内の食品321の温度を確実に検知できるため、食品321の冷却速さや凍結状態を確認するのに有効である。なお、本実施の形態では引き出し扉のため無線によるデータ送信方法を記載したが、開き扉の場合は扉開閉の作用部分に送信用配線を配設することで無線回路の削減を図ることができる。 Thus, even when the door is opened when the food 321 is taken out, the temperature of the food 321 in the case 327 can be reliably detected, which is effective in confirming the cooling speed and freezing state of the food 321. In this embodiment, a wireless data transmission method is described for the drawer door. However, in the case of an open door, the wireless circuit can be reduced by arranging a transmission wiring in the door opening / closing operation portion. .
 (実施の形態4)
 本実施の形態においては、実施の形態1から3で説明した技術と同一構成もしくは同一の技術思想が適用できる部分については説明を省略する。実施の形態1から3で記載した内容と同様の技術思想が適用できる構成については、実施の形態1から3で記載した技術内容および構成と組合せた構成を実現することが可能である。
(Embodiment 4)
In the present embodiment, the description of the portions to which the same configuration or the same technical idea as the technology described in the first to third embodiments can be applied is omitted. For a configuration to which the same technical idea as the content described in the first to third embodiments can be applied, a configuration combined with the technical content and the configuration described in the first to third embodiments can be realized.
 前出の図1は本発明の実施の形態4における冷蔵庫の正面図でもある。同じく前出の図2は本発明の実施の形態4における冷蔵庫の側面断面図でもある。図6は本発明の実施の形態4における上段冷凍室の一部拡大側面断面図である。 FIG. 1 described above is also a front view of the refrigerator in the fourth embodiment of the present invention. Similarly, FIG. 2 is a side sectional view of the refrigerator according to the fourth embodiment of the present invention. FIG. 6 is a partially enlarged side sectional view of the upper freezer compartment in the fourth embodiment of the present invention.
 図1、図2および図6に示すように、冷蔵庫本体101は、前方に開口する金属製(例えば鉄板)の外箱124と硬質樹脂製(例えばABS)の内箱125と、外箱124と内箱125の間に発泡充填されたウレタン断熱材126からなる断熱箱体で、この本体の上部に設けられた冷蔵室102と、冷蔵室の下に設けられた上段冷凍室103と、冷蔵室102の下で上段冷凍室103に並列に設けられた製氷室104と、本体下部に設けられた野菜室106と、並列に設置された上段冷凍室103および製氷室104と野菜室106の間に設けられた下段冷凍室105で構成されている。上段冷凍室103と製氷室104と下段冷凍室105と野菜室106の前面部は引き出し式の図示しない扉により開閉自由に閉塞されるとともに、冷蔵室102の前面は、例えば観音開き式の図示しない扉により開閉自由に閉塞される。 As shown in FIGS. 1, 2, and 6, the refrigerator main body 101 includes a metal (for example, iron plate) outer box 124, a hard resin (for example, ABS) inner box 125, and an outer box 124. A heat insulating box body made of urethane heat insulating material 126 filled with foam between inner boxes 125, a refrigerating chamber 102 provided at the upper portion of the main body, an upper freezing chamber 103 provided under the refrigerating chamber, and a refrigerating chamber An ice making chamber 104 provided in parallel with the upper freezer compartment 103 under the 102, a vegetable compartment 106 provided in the lower part of the main body, and between the upper freezer 103 and the ice making chamber 104 and the vegetable compartment 106 installed in parallel. The lower freezer room 105 is provided. Front portions of the upper freezing chamber 103, the ice making chamber 104, the lower freezing chamber 105, and the vegetable chamber 106 are freely opened and closed by a drawer-type door (not shown), and the front side of the refrigerator compartment 102 is, for example, a double door type door not shown. Is closed freely.
 冷蔵室102は冷蔵保存のために凍らない温度を下限に通常1~5℃で設定されている。野菜室106は冷蔵室102と同等もしくは若干高い温度設定の2℃~7℃とすることが多い。低温にすれば葉野菜の鮮度を長期間維持することが可能である。上段冷凍室103は冷凍保存のために通常-22から-18℃の冷凍温度帯で設定されているが、使用者の好む冷凍保存状態によっては、解凍等の調理の手間が省ける-7℃前後のソフト冷凍温度帯に設定することも可能であり、さらに冷凍保存状態の向上のために、通常の冷凍温度帯である-22から-18℃よりもさらに低い例えば-30から-25℃の低温冷凍温度帯で設定されることもある。下段冷凍室105は冷凍保存のために通常-22から-18℃の冷凍温度帯で設定されているが、冷凍保存状態の向上のために、例えば-30から-25℃の低温冷凍温度帯で設定されることもある。 The refrigerator compartment 102 is normally set at 1 to 5 ° C. with a lower limit of the temperature at which it does not freeze for refrigerated storage. The vegetable room 106 is often set to 2 ° C. to 7 ° C., which is the same or slightly higher temperature as the refrigerator room 102. If the temperature is lowered, the freshness of leafy vegetables can be maintained for a long time. The upper freezer compartment 103 is usually set in the freezing temperature range of -22 to -18 ° C for freezing storage, but depending on the user's preferred freezing storage state, it can save time for cooking such as thawing around -7 ° C It is also possible to set the soft freezing temperature range of -30 ° C to -25 ° C, which is lower than the normal freezing temperature range of -22 to -18 ° C. It may be set in the freezing temperature range. The lower freezer compartment 105 is usually set in a freezing temperature range of −22 to −18 ° C. for frozen storage, but in order to improve the frozen storage state, for example, in a low temperature freezing temperature range of −30 to −25 ° C. Sometimes set.
 冷蔵室102や野菜室106は庫内をプラス温度で設定されるので、総称として冷蔵温度帯を呼ばれ、上段冷凍室103や下段冷凍室105や製氷室104は庫内をマイナス温度で設定されるので総称として冷凍温度帯と呼ばれる。 Since the refrigerator compartment 102 and the vegetable compartment 106 are set at a positive temperature in the cabinet, they are generally called the refrigerator temperature zone, and the upper freezer compartment 103, the lower freezer compartment 105, and the ice making chamber 104 are set at a negative temperature. Therefore, it is called a freezing temperature zone as a general term.
 冷蔵庫本体101の天面部は、冷蔵庫本体101の背面方向に向かって階段状に凹みを設けて機械室119があり、第一の天面部と第二の天面部で構成されている。この階段状の凹部に配置された圧縮機117と、水分除去を行うドライヤ(図示せず)と、コンデンサー(図示せず)と、放熱用の放熱パイプ(図示せず)と、キャピラリーチューブ118と、冷却器107とを順次環状に接続してなる冷凍サイクルに冷媒を封入し、冷却運転を行う。冷媒には近年、環境保護のために可燃性冷媒を用いることが多い。なお、三方弁や切替弁を用いる冷凍サイクルの場合は、それらの機能部品を機械室内に配設することもできる。 The top surface portion of the refrigerator main body 101 is provided with a machine room 119 provided with a dent in a step shape toward the back surface of the refrigerator main body 101, and is composed of a first top surface portion and a second top surface portion. A compressor 117 disposed in the stepped recess, a dryer (not shown) for removing moisture, a condenser (not shown), a heat radiating pipe (not shown), a capillary tube 118, Then, the refrigerant is sealed in a refrigeration cycle in which the cooler 107 is sequentially connected in an annular manner, and a cooling operation is performed. In recent years, a flammable refrigerant is often used as a refrigerant for environmental protection. In the case of a refrigeration cycle using a three-way valve or a switching valve, these functional components can be arranged in the machine room.
 また、冷蔵室102と製氷室104および上段冷凍室103とは第一の断熱仕切り部110で区画されている。 Further, the refrigerator compartment 102, the ice making compartment 104, and the upper freezer compartment 103 are partitioned by a first heat insulating partition 110.
 また、製氷室104と上段冷凍室103とは第二の断熱仕切り部111で区画されている。 Further, the ice making chamber 104 and the upper freezing chamber 103 are partitioned by a second heat insulating partition 111.
 また、製氷室104および上段冷凍室103と、下段冷凍室105とは第三の断熱仕切り部112で区画されている。 Also, the ice making chamber 104, the upper freezing chamber 103, and the lower freezing chamber 105 are partitioned by a third heat insulating partition 112.
 第二の断熱仕切り部111および第三の断熱仕切り部112は、冷蔵庫本体101の発泡後組み立てられる部品であるため、通常断熱材として発泡ポリスチレンが使われるが、断熱性能や剛性を向上させるために硬質発泡ウレタンを用いてもよく、さらには高断熱性の真空断熱材を挿入して、仕切り構造のさらなる薄型化を図ってもよい。 Since the second heat insulating partition part 111 and the third heat insulating partition part 112 are parts assembled after foaming of the refrigerator main body 101, expanded polystyrene is usually used as a heat insulating material, but in order to improve heat insulating performance and rigidity. Rigid foamed urethane may be used, and furthermore, a highly heat insulating vacuum heat insulating material may be inserted to further reduce the thickness of the partition structure.
 また、扉のフレームの稼動部を確保して第二の断熱仕切り部111および第三の断熱仕切り部112の形状の薄型化や廃止を行うことで、冷却風路を確保でき冷却能力の向上を図ることもできる。また、第二の断熱仕切り部111および第三の断熱仕切り部112の中央部をくりぬき、風路とすることで材料の低減につながる。 In addition, by securing the operating part of the door frame and thinning or eliminating the shape of the second heat insulating partition part 111 and the third heat insulating partition part 112, a cooling air passage can be secured and the cooling capacity can be improved. You can also plan. Moreover, the center part of the 2nd heat insulation partition part 111 and the 3rd heat insulation partition part 112 is hollowed, and it leads to reduction of material by making it an air path.
 また、下段冷凍室105と野菜室106とは第四の仕切り部113で区画されている。 Further, the lower freezer compartment 105 and the vegetable compartment 106 are partitioned by a fourth partition 113.
 冷蔵庫本体101の背面には冷却室カバー122で覆われた冷却室123が設けられ、具体的には上段冷凍室103もしくは下段冷凍室105の背面に設けられている。冷却室123内には、代表的なものとしてフィンアンドチューブ式の冷気を生成する冷却器107が断熱仕切り壁である第二および第三の仕切り部111、112の後方領域を含めて下段冷凍室105の背面に上下方向に縦長に配設されている。また、冷却器107の材質は、アルミや銅が用いられる。 A cooling chamber 123 covered with a cooling chamber cover 122 is provided on the back of the refrigerator main body 101, and specifically, provided on the back of the upper freezing chamber 103 or the lower freezing chamber 105. In the cooling chamber 123, a cooler 107 that generates fin-and-tube type cool air is representatively included in the lower freezing chamber including the rear regions of the second and third partition portions 111 and 112, which are heat insulating partition walls. On the back surface of 105, it is arranged vertically in the vertical direction. The material of the cooler 107 is aluminum or copper.
 冷却器107の近傍(例えば上部空間)には強制対流方式により冷蔵室102、製氷室104、上段冷凍室103、下段冷凍室105、野菜室106の各貯蔵室に冷却器107で生成した冷気を送風する冷気送風ファン116が配置され、冷却器107の下部空間には冷却時に冷却器107や冷気送風ファン116に付着する霜を除霜する除霜装置としてのガラス管製のラジアントヒータ134が設けられている。除霜装置は特に指定するものではなく、ラジアントヒータ134の他に、冷却器107に密着したパイプヒータを用いても良い。 In the vicinity of the cooler 107 (for example, the upper space), the cold air generated by the cooler 107 is stored in each storage room of the refrigerator compartment 102, the ice making room 104, the upper freezer room 103, the lower freezer room 105, and the vegetable room 106 by a forced convection method. A cool air blowing fan 116 for blowing air is disposed, and a radiant heater 134 made of glass tube is provided in a lower space of the cooler 107 as a defrosting device for defrosting the frost adhering to the cooler 107 and the cold air blowing fan 116 during cooling. It has been. The defrosting device is not particularly specified, and a pipe heater in close contact with the cooler 107 may be used in addition to the radiant heater 134.
 冷却室カバー122内には、冷気送風ファン116からの冷気を各貯蔵室内へ送風するダクトを備えており、上段冷凍室103と下段冷凍室105へ同一の吐出ダクト434を通じて冷却器107の冷気を直接送風している。 The cooling chamber cover 122 is provided with ducts for blowing cold air from the cold air blowing fans 116 into the respective storage chambers, and the cooler 107 is cooled through the same discharge duct 434 to the upper freezing chamber 103 and the lower freezing chamber 105. It is blowing directly.
 また、この吐出ダクト434は各貯蔵室へ冷気を送る風路の中でも、冷却器107と最も近くに位置している。 In addition, the discharge duct 434 is located closest to the cooler 107 in the air path for sending the cold air to each storage room.
 冷却室カバー122の前面には、上段冷凍室103と下段冷凍室105へ各々冷気を吐出する第一の吐出口432と第二の吐出口433を備えており、第一の吐出口432と第二の吐出口433の流量は二部屋の負荷量比率によって分配している。本実施の形態では、上段冷凍室103の吐出面積は約3000mmであり、下段冷凍室105の吐出面積は約6000mmであるため上段冷凍室103の流量と下段冷凍室105の流量比率は約1:2とすることで同温度帯を構成している。さらに冷却器107で生成された冷気を送風する冷気送風ファン116の出口と、上段冷凍室103の第一の吐出口432と下段冷凍室105の第二の吐出口433との距離を同一ダクトを通じて同等としている。本実施の形態では100mmとしており、各々の吐出冷気を同温度とすることを行っている。 The front surface of the cooling chamber cover 122 is provided with a first discharge port 432 and a second discharge port 433 for discharging cold air to the upper freezing chamber 103 and the lower freezing chamber 105, respectively. The flow rate of the second discharge port 433 is distributed according to the load ratio of the two rooms. In the present embodiment, the discharge area of the upper freezer compartment 103 is about 3000 mm 2 , and the discharge area of the lower freezer room 105 is about 6000 mm 2 , so the flow rate ratio between the upper freezer room 103 and the lower freezer room 105 is about The same temperature zone is configured by setting the ratio to 1: 2. Further, the distance between the outlet of the cool air blowing fan 116 that blows the cool air generated by the cooler 107 and the first discharge port 432 of the upper freezer compartment 103 and the second discharge port 433 of the lower freezer chamber 105 is set through the same duct. Equivalent. In this embodiment, the thickness is set to 100 mm, and each discharge cold air is set to the same temperature.
 また、第一の吐出口432と第二の吐出口433が冷却器107からも距離が最も短い吐出口と2番目に近い吐出口であるので、冷却器107から出たばかりの熱損失が少ない故に最も低温となる冷気が第一の吐出口432と第二の吐出口433から吐出されるので、より冷却効率が高く、また第一の吐出口432と第二の吐出口433とでほぼ同一温度の冷気が吐出されるものである。 In addition, since the first discharge port 432 and the second discharge port 433 are the discharge port with the shortest distance from the cooler 107 and the second closest discharge port, the heat loss that has just come out of the cooler 107 is small. Since the cold air having the lowest temperature is discharged from the first discharge port 432 and the second discharge port 433, the cooling efficiency is higher, and the first discharge port 432 and the second discharge port 433 have substantially the same temperature. The cool air is discharged.
 冷気送風ファン116は、内箱125に直接配設されることもあるが、発泡後に組み立てられる第二の仕切り部111に配設し、部品のブロック加工を行うことで製造コストの低減を図ることもできる。 Although the cool air blowing fan 116 may be directly disposed in the inner box 125, it is disposed in the second partition portion 111 assembled after foaming, and the manufacturing cost is reduced by performing block processing of the parts. You can also.
 次に赤外線センサー128を取り付けている上段冷凍室103の構成について説明する。 Next, the configuration of the upper freezer compartment 103 to which the infrared sensor 128 is attached will be described.
 図6に示すように、上段冷凍室103の天井面である第一の断熱仕切り部110には、食品121の温度を検知する非接触センサーである赤外線センサー128が、検知する面の投影面上の隣接貯蔵室がある方向(本実施例の場合は下方向)に向かって設置してある。上段冷凍室103の背面上部には冷却室カバー122から庫内へ冷気を吐出する第一の吐出口432と、上段冷凍室103内を循環した冷気が、再び冷却室123に戻るための戻り口(図示せず)が設けてある。なお、赤外線センサー128を断熱仕切り部内に設置することで、第一の吐出口432から吐出される冷気の風の影響を受けにくくできるため、検知精度の向上を図ることができる。さらに、赤外線センサー128先端部を断熱仕切り部の表面よりも内側もしくは同一面とすることで貯蔵室内に食品121を大量に入れられた場合や、清掃時でも赤外線センサー128の検知部に異物が付着することがないため検知の誤動作を招かない。さらに庫内への突出による清掃時の引っかかりがないため過剰な力の加重による部品の欠落や検知方向のズレ等を防止することができる。また庫内に突出していないので庫内容量が減少せず、容量の確保をすることができる利点がある。 As shown in FIG. 6, an infrared sensor 128, which is a non-contact sensor that detects the temperature of the food 121, is provided on the projection surface of the surface to be detected in the first heat insulating partition 110 that is the ceiling surface of the upper freezer compartment 103. Are installed in a direction (downward in the case of this embodiment). A first discharge port 432 that discharges cool air from the cooling chamber cover 122 into the refrigerator at the upper back of the upper freezer chamber 103 and a return port through which the cool air circulated in the upper freezer chamber 103 returns to the cooler chamber 123 again. (Not shown) is provided. In addition, since the infrared sensor 128 is installed in the heat insulating partition, it is difficult to be affected by the cold air discharged from the first discharge port 432, so that the detection accuracy can be improved. Furthermore, when the tip of the infrared sensor 128 is inside or on the same surface as the surface of the heat-insulating partition, foreign matter adheres to the detection part of the infrared sensor 128 even when a large amount of food 121 is placed in the storage chamber or during cleaning. This will not cause malfunction of detection. Furthermore, since there is no catching at the time of cleaning due to protrusion into the chamber, it is possible to prevent parts from being lost due to excessive force load, displacement in the detection direction, and the like. Moreover, since it does not protrude into the storage, there is an advantage that the storage capacity does not decrease and the capacity can be secured.
 なお、赤外線センサー128が検知する貯蔵室内のケース127の検知精度が良い箇所を中心に、その視野範囲内であることを示す目印137を設けておくと、お客様にとって食品121の置き場がわかりやすく、加えて目印137を赤外線センサー128が検知する視野範囲よりも小さい範囲で設けることで、食品121の収納時には確実に温度検知が行える。特に赤外線センサー128は検知する範囲の中心部が最も赤外線の検知強度が強く検知範囲の端に行くほど弱くなるので、検知精度を高めるためにも中心を基準として目印137をつけると良い。 In addition, if a mark 137 indicating that it is within the visual field range is provided around the location where the detection accuracy of the case 127 in the storage chamber detected by the infrared sensor 128 is good, it is easy for the customer to know where the food 121 is placed, In addition, by providing the mark 137 in a range smaller than the visual field range detected by the infrared sensor 128, the temperature can be reliably detected when the food 121 is stored. In particular, since the infrared sensor 128 has the strongest infrared detection intensity at the center of the detection range and becomes weaker toward the end of the detection range, the mark 137 may be attached with the center as a reference in order to increase detection accuracy.
 次に、本実施の形態で使用した赤外線センサー128について説明する。 Next, the infrared sensor 128 used in the present embodiment will be described.
 赤外線センサー128は、検知する面の範囲から発せられる赤外線量を先端のサーモパイルで検出し、電気信号に変換している。サーモパイルの周囲にはプローブがあり、さらに基板部分に配置されている基準温度であるサーミスタの電圧と比較することによって検知した対象物の温度を算出することで温度検知を行っている。この赤外線センサー128は検知する範囲の円内部において、中心が最も赤外線検知強度が強く、端に行くほど検知強度が弱くなる。そのためサーモパイルの視野角度をより絞ることで検知物の赤外線量の強度を上げることができ、対象物温度を確実に検出することができるが、視野角度の一部がプローブの先端部に重なるため先端部温度の影響を受け誤検知の要因となることにより、本実施の形態ではサーモパイルの視野角を50°としているが、55°以下であることが望ましい。 The infrared sensor 128 detects the amount of infrared rays emitted from the range of the surface to be detected with a thermopile at the tip and converts it into an electrical signal. There is a probe around the thermopile, and temperature detection is performed by calculating the temperature of the detected object by comparing with the voltage of the thermistor which is the reference temperature arranged on the substrate portion. The infrared sensor 128 has the highest infrared detection intensity at the center of the circle within the detection range, and the detection intensity becomes weaker toward the end. Therefore, it is possible to increase the intensity of the infrared ray of the detected object by narrowing the viewing angle of the thermopile and detect the temperature of the object reliably, but the tip of the viewing angle overlaps with the tip of the probe. In the present embodiment, the viewing angle of the thermopile is set to 50 ° due to the influence of the temperature of the section, which is a cause of erroneous detection.
 本実施の形態に用いた赤外線センサー128は、シリコン基板上に形成された多数の熱電対で構成されたサーモパイルを用いた。さらにプローブ部分の材質は熱伝導性に優れたアルミナ粉末を用いた成型物であるが、熱伝導性に優れた材質であれば、例えばマグネシア粉末や窒化アルミニウム粉末などのセラミック粉末を分散させた成型物でも良い。また、赤外線センサー128の検知応答性において樹脂タイプのプローブを用いると応答性に遅れが生じるものの、比重が低減できるため重量低減に効果がある。樹脂タイプのプローブにおいて厚みを薄くすることで若干の応答性向上を図ることができ、体積低減も行えるため省材料で環境負荷の低減も行うことができる。薄肉化は、熱伝導性に優れた金属製の材質でも同様である。 As the infrared sensor 128 used in the present embodiment, a thermopile composed of a large number of thermocouples formed on a silicon substrate was used. Furthermore, the material of the probe part is a molded product using alumina powder having excellent thermal conductivity, but if the material has excellent thermal conductivity, for example, molding in which ceramic powder such as magnesia powder or aluminum nitride powder is dispersed. Goods are also acceptable. In addition, when a resin type probe is used in the detection response of the infrared sensor 128, the response is delayed, but the specific gravity can be reduced, which is effective in reducing the weight. By reducing the thickness of the resin type probe, it is possible to improve the responsiveness slightly, and the volume can be reduced, so that environmental load can be reduced with less material. Thinning is the same for metal materials having excellent thermal conductivity.
 以上のように構成された冷蔵庫について、以下その動作、作用について説明する。 About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
 例えば冷蔵室102が外気からの熱侵入および扉開閉などにより、庫内温度が上昇して冷蔵室センサー(図示せず)が圧縮機117の起動温度以上になった場合に、圧縮機117が起動し庫内の冷却が開始される。圧縮機117から吐出された高温高圧の冷媒は、最終的に機械室119に配置されたドライヤ(図示せず)まで到達する間、特にコンデンサー(図示せず)や外箱124に設置される放熱パイプ(図示せず)において、外箱124の外側の空気や庫内のウレタン断熱材126との熱交換により、冷却されて液化する。 For example, when the refrigerator compartment 102 rises in temperature due to heat intrusion from outside air and door opening / closing, and the refrigerator compartment sensor (not shown) reaches or exceeds the startup temperature of the compressor 117, the compressor 117 is started. Cooling in the storage is started. While the high-temperature and high-pressure refrigerant discharged from the compressor 117 finally reaches a dryer (not shown) disposed in the machine room 119, heat is dissipated particularly in a condenser (not shown) or the outer box 124. A pipe (not shown) is cooled and liquefied by heat exchange with the air outside the outer box 124 and the urethane heat insulating material 126 in the warehouse.
 次に液化した冷媒はキャピラリーチューブ118で減圧されて、冷却器107に流入し冷却器107周辺の庫内空気と熱交換する。熱交換された冷気は、近傍の冷気送風ファン116により庫内に冷気が送風され庫内を冷却する。この後、冷媒は加熱されガス化して圧縮機117に戻る。庫内が冷却されて冷凍室センサー(図示せず)の温度が停止温度以下になった場合に圧縮機117の運転が停止する。 Next, the liquefied refrigerant is depressurized by the capillary tube 118, flows into the cooler 107, and exchanges heat with the internal air around the cooler 107. The cold air subjected to heat exchange is blown into the cabinet by a nearby cool air blower fan 116 to cool the inside of the cabinet. Thereafter, the refrigerant is heated and gasified to return to the compressor 117. When the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor (not shown) becomes equal to or lower than the stop temperature, the operation of the compressor 117 is stopped.
 上記のような運転サイクルを繰り返すことで冷蔵庫は冷却運転を行っている。このとき赤外線センサー128の検知は扉が閉しているときには、上段冷凍室103の天面に取り付けられている赤外線センサー128のサーモパイルから上段冷凍室内にあるケース127の温度もしくは食品121の温度を検知している。しかしながら食品121の投入もしくは検知している食品121以外のものを取り出すときなどや、貯蔵している食品121を確認するときなどで扉を開けた場合には、赤外線センサー128の検知はケース127表面や目的の食品121の検知面から外れ、赤外線センサー128が備えられた貯蔵室とその隣接貯蔵室を仕切る第三の断熱仕切り部112の温度を検知することとなる。従来のように赤外線センサー128が検知する面の投影面上にある隣接する貯蔵室が冷蔵温度帯の場合、第三の断熱仕切り部112の表面は熱伝導により温度差ができるため検知温度は急激に高めに変化することとなる。本実施の形態では上段冷凍室103と下段冷凍室105は同一の吐出ダクト434を通じて吐出される同一温度の吐出冷気で冷却し、吐出冷気の流量は上段冷凍室103と下段冷凍室105の負荷量比率によって分配しているため、上段冷凍室103と下段冷凍室105の温度は同温度帯となる。これによって、扉を開けた場合に赤外線センサー128の検知部となる第三の断熱仕切り部112は扉を閉めているときに検知している部分と同等温度となり、扉開閉に伴う食品121投入の有無の誤検知が抑制される。例えば、上段冷凍室103と下段冷凍室105の所定温度の温調は吐出する冷気の吐出量を制御して行う場合、少なからずとも上限温度と下限温度との平均温度で所定温度を維持するので、本発明のように同一温度の吐出冷気で上段冷凍室103と下段冷凍室105ともに温調する場合は、上段冷凍室103の上限温度と下限温度が下段冷凍室105のそれと差が出にくくなる。これにより、上段冷凍室103と下段冷凍室105とで温調に伴う上限温度および下限温度もほぼ同一温度となり、より赤外線センサー128の誤検知を抑制できるので、扉を開けた場合でも赤外線センサー128が検知している温度の変化量が小さくなり検知がずれて不要な冷却能力が必要となり圧縮機117の回転数を上昇させたり、冷気送風ファン116の回転数を上昇させたりして庫内温度の誤検知を引き起こすことはない。 Refrigerator performs cooling operation by repeating the above operation cycle. At this time, when the door is closed, the infrared sensor 128 detects the temperature of the case 127 or the food 121 in the upper freezer compartment from the thermopile of the infrared sensor 128 attached to the top surface of the upper freezer compartment 103. is doing. However, when the door is opened, for example, when the food 121 is loaded or the food other than the detected food 121 is taken out or when the stored food 121 is checked, the infrared sensor 128 detects the surface of the case 127. In other words, the temperature of the third heat insulating partition 112 that separates the storage room provided with the infrared sensor 128 and the adjacent storage room from the detection surface of the target food 121 is detected. When the adjacent storage chamber on the projection surface of the surface detected by the infrared sensor 128 is in a refrigeration temperature zone as in the prior art, the detected temperature is abrupt because the surface of the third heat insulating partition 112 has a temperature difference due to heat conduction. It will change to higher. In the present embodiment, the upper freezing chamber 103 and the lower freezing chamber 105 are cooled by the discharge cold air having the same temperature discharged through the same discharge duct 434, and the flow rate of the discharge cold air is the load amount of the upper freezing chamber 103 and the lower freezing chamber 105. Since the distribution is performed according to the ratio, the temperatures of the upper freezer compartment 103 and the lower freezer compartment 105 are in the same temperature range. As a result, when the door is opened, the third heat insulating partition 112 serving as the detection unit of the infrared sensor 128 has the same temperature as that detected when the door is closed. Misdetection of presence or absence is suppressed. For example, when the temperature control of the predetermined temperature of the upper freezer chamber 103 and the lower freezer chamber 105 is performed by controlling the discharge amount of the cool air to be discharged, the predetermined temperature is maintained at least by the average temperature of the upper limit temperature and the lower limit temperature. When the temperature of both the upper freezer compartment 103 and the lower freezer compartment 105 is controlled with the same temperature of discharged cold air as in the present invention, the upper limit temperature and the lower limit temperature of the upper freezer compartment 103 are less likely to differ from those of the lower freezer compartment 105. . As a result, the upper limit temperature and the lower limit temperature associated with temperature adjustment are substantially the same in the upper freezer compartment 103 and the lower freezer compartment 105, and erroneous detection of the infrared sensor 128 can be further suppressed, so that the infrared sensor 128 can be opened even when the door is opened. The amount of change in the temperature detected by the compressor becomes small and the detection is shifted, and an unnecessary cooling capacity is required, so that the rotation speed of the compressor 117 is increased or the rotation speed of the cool air blower fan 116 is increased. Will not cause false positives.
 また、上段冷凍室103の第一の吐出口432は赤外線センサーが検知する面に沿って庫内を冷気が流れるように正面方向に向かうように設置し、第一の吐出口432の下方側には冷気が下方向きに流れるように調節した下向吐出口435も開口している。これにより、赤外線センサー128の検知部分とサーミスタ(図示せず)部分の温度差を低減できるため検知範囲内にある食品121以外の周囲温度の影響を受けにくくなるので精度良く食品温度を検知できる。赤外線センサー128が検知する温度は、食品121のみならず、検知面内の赤外線量を検知して温度に換算するためサーミスタとの温度差があると食品121以外の部分の温度も検知することとなる。本実施の形態では食品121以外の検知面の温度とサーミスタとの温度差が軽減できるため、食品121の赤外線量を精度良く検知し、食品121の温度も精度良く検知できる。またさらに本実施の形態では、冷却室カバー122の表面を吐出冷気が流れるようにしたため、赤外線センサー128の検知精度向上のほかに、扉開閉による高湿な外気の流入で冷却室カバー122の表面に付着した霜を、冷却器107で生成と除湿された湿度の低い冷気で昇華促進も行うことができる。 Further, the first outlet 432 of the upper freezer compartment 103 is installed so as to face in the front direction so that the cold air flows along the surface detected by the infrared sensor, and below the first outlet 432. Also has a downward discharge port 435 adjusted so that the cold air flows downward. Thereby, since the temperature difference between the detection part of the infrared sensor 128 and the thermistor (not shown) part can be reduced, it becomes difficult to be influenced by the ambient temperature other than the food 121 within the detection range, so that the food temperature can be detected with high accuracy. The temperature detected by the infrared sensor 128 detects not only the food 121 but also the temperature of the portion other than the food 121 when there is a temperature difference with the thermistor in order to detect the amount of infrared rays in the detection surface and convert it to the temperature. Become. In this embodiment, since the temperature difference between the temperature of the detection surface other than the food 121 and the thermistor can be reduced, the infrared amount of the food 121 can be detected with high accuracy, and the temperature of the food 121 can also be detected with high accuracy. Furthermore, in the present embodiment, since the discharge cold air flows on the surface of the cooling chamber cover 122, in addition to improving the detection accuracy of the infrared sensor 128, the surface of the cooling chamber cover 122 due to the inflow of high humidity outside air by opening and closing the door. The sublimation can be promoted by the low-humidity cold air generated and dehumidified by the cooler 107.
 また、従来では扉スイッチを取り付けてスイッチとの連動を行うことで扉の開閉時の状況を把握し、扉スイッチが起動した場合には赤外線センサー128は検知しない仕様とすることで誤検知防止を行うこともあったが、この構成では扉スイッチやそれに伴う制御機構が追加で必要となるため、より故障の可能性を高めるとともに世界的な原材料の不足による部品高騰の中でコストUPの要因となることから実売への価格UPを引き起こすこともある。 Also, in the past, a door switch was attached and interlocked with the switch to grasp the situation when the door was opened and closed, and when the door switch was activated, the infrared sensor 128 was not detected to prevent false detection. However, this configuration requires additional door switches and associated control mechanisms, which increases the possibility of failure and increases costs due to a global rise in parts due to a shortage of raw materials. Therefore, it may cause a price increase to actual sales.
 しかしながら本実施では例えば扉が閉まっており食品121が入っているときには周囲の温度よりも高い食品の温度を検知するとともに、扉が開いている状態では赤外線センサーが備えられている貯蔵室よりも低温度帯もしくは同温度帯である冷凍温度を検知するので、例えば扉の開放に伴って一時的に温度が上昇した場合であっても、実際に温かい食品が投入されていない場合には、その後に急激な温度低下を検知できるため、一定時間内の温度勾配を算出し、閾値を設けることで閾値以上であった場合のみ自動での急速冷凍を開始すると判断することも可能である。これによると、扉スイッチをつけることがなく簡単な構造で制御仕様の設定のみでの外乱による温度上昇であるかどうかの検知が可能である。これにより、上述のように、より高い信頼性でかつ材料の省資源化や部品の組み立て時の取り付けミス等を防止できる効果がある。 However, in this embodiment, for example, when the door is closed and the food 121 is contained, the temperature of the food higher than the surrounding temperature is detected, and when the door is open, the temperature is lower than that of the storage room provided with the infrared sensor. Because it detects the temperature range or the freezing temperature that is the same temperature range, for example, even when the temperature rises temporarily with the opening of the door, if no warm food is actually put in, Since a rapid temperature drop can be detected, it is also possible to determine that automatic quick freezing is started only when the temperature gradient within a certain period of time is calculated and a threshold value is set and the threshold value is exceeded. According to this, it is possible to detect whether the temperature rises due to a disturbance only by setting the control specifications with a simple structure without attaching a door switch. As a result, as described above, there is an effect that it is possible to prevent a mistake in mounting at the time of assembling parts with higher reliability and resource saving of materials.
 なお、日本独特の多湿気候条件では、扉を開けた場合に外気の暖湿気が庫内へ流入することに伴い赤外線センサー128の表面に湿気が結露する場合があるが、このように結露水が赤外線センサー128の表面に付着するとサーモパイルは結露水の温度を検知することとなる。さらに扉が閉塞されて庫内の冷却運転が開始されると結露した水は氷結するため、氷結した水滴が昇華するまでサーモパイルは食品の温度を検知しにくくなる。そのため赤外線センサー128の配置を設計する場合には、隣接する貯蔵室の温度よりも高い方の保存室と仕切る断熱仕切り部に配置する配慮を施しておくことで結露防止の効果を得ることができる。本実施の構成では冷蔵室側に設置すると良い。さらに断熱仕切り部の温度分布の中で、最も温度の高い部分である扉側寄りに配置するとなお良い。従来例のように結露防止の対応としてシャッター機構を搭載することもできるが、扉開閉と連動する必要があるため複雑な機構が必要となってしまうので故障の可能性も高まり実際の冷蔵庫に搭載するのは難しい。 Note that, under the humid climate conditions unique to Japan, when the door is opened, moisture may condense on the surface of the infrared sensor 128 as the warm air from the outside air flows into the cabinet. When attached to the surface of the infrared sensor 128, the thermopile detects the temperature of the condensed water. Further, when the door is closed and the cooling operation in the cabinet is started, the condensed water freezes, so that it becomes difficult for the thermopile to detect the temperature of the food until the frozen water droplets sublimate. Therefore, when designing the arrangement of the infrared sensor 128, it is possible to obtain the effect of preventing dew condensation by giving consideration to the arrangement in the heat-insulating partition part that separates the storage room higher than the temperature of the adjacent storage room. . In this embodiment, it is preferable to install on the refrigerator compartment side. Furthermore, it is better to arrange it near the door side which is the highest temperature part in the temperature distribution of the heat insulating partition. A shutter mechanism can be installed as a countermeasure to prevent condensation as in the conventional example, but since it needs to be interlocked with the opening and closing of the door, a complicated mechanism is required, so the possibility of failure increases and it is installed in an actual refrigerator Difficult to do.
 加えて、貯蔵室内に対して周囲の温度よりも平均して温度が高い部分に赤外線センサー128を設置することで、経年劣化の原因となる水分の付着がしにくい設計となるので製品寿命を延ばすことに効果がある。 In addition, the infrared sensor 128 is installed in the storage room where the temperature is higher than the ambient temperature on average, thereby making it difficult for moisture to cause aging deterioration, thereby extending the product life. It is effective.
 また、貯蔵室内に赤外線センサー128を設置する際、本実施の形態では断熱仕切り部の表面以下にセンサープローブの表面が配置するように配慮してある。これにより、背面の第一の吐出口432からの冷気がプローブ先端部を過度に冷却しないようにして検知の温度変動を低減するのに加えて、食品収納量以上に収納された場合の食品の引っかかりや異物の付着、清掃時に赤外線センサー128の先端が指や清掃物であるタオル等に引っかかったりして過度な力作用での部品欠落や外れを抑える働きがある。 Also, when the infrared sensor 128 is installed in the storage chamber, in this embodiment, consideration is given to the surface of the sensor probe being disposed below the surface of the heat insulating partition. As a result, the cold air from the first discharge port 432 on the back surface does not excessively cool the tip of the probe to reduce the temperature fluctuation of the detection, and in addition, when the food is stored in excess of the food storage amount The front end of the infrared sensor 128 is caught by a finger or a towel as a cleaning object at the time of catching, adhering foreign matter, or cleaning, so that there is a function of suppressing component omission and detachment due to excessive force action.
 この赤外線センサー128の貯蔵室側にはできるだけ検知範囲内に延出しないようなカバー部材を備えるとよい。この場合にはカバー部材内に暖気が滞留しなくかつ使用者の指が赤外線センサー128の表面に触れないようにするのが望ましい。 It is advisable to provide a cover member on the storage chamber side of the infrared sensor 128 so as not to extend as far as possible within the detection range. In this case, it is desirable that warm air does not stay in the cover member and that the user's finger does not touch the surface of the infrared sensor 128.
 また、赤外線センサー128は自身の温度を検知するサーミスタ131が過度な温度変動を起こすと誤検知するため、熱変動のある部分から温度影響を受けない程度に離すことが望ましい。冷蔵庫では放熱用および表面結露防止用に銅もしくは鉄等の金属材料を主体としたパイプを配設しているためパイプからの距離を本実施の形態では15mm以上離している。 Further, since the infrared sensor 128 erroneously detects that the thermistor 131 that detects its own temperature causes excessive temperature fluctuations, it is desirable that the infrared sensor 128 be separated from the part where the thermal fluctuations are not affected by the temperature. In the refrigerator, a pipe mainly composed of a metal material such as copper or iron is provided for heat dissipation and surface condensation prevention, and therefore, the distance from the pipe is 15 mm or more in this embodiment.
 赤外線センサー128先端部の結露および氷結防止の対応として、ヒータ熱を利用する方法がある。この場合、基板上にチップ抵抗をつける方法で行うと低コストでの対応が可能である。チップ抵抗の容量としては、本実施の形態の赤外線センサー128であれば0.25W程度の容量を5Vの電圧で約20分/日の通電率であれば十分にプローブ先端の温度上昇を確保できる。さらに長期で使用される冷蔵庫において1日毎でなくても1ヶ月に1回等の頻度で確実に結露や氷結を除去し定期的にリフレッシュする方法も製品寿命を延ばす上で効果的である。 There is a method of using heater heat as a countermeasure for preventing condensation and freezing at the tip of the infrared sensor 128. In this case, if a method of attaching a chip resistor on the substrate is used, it is possible to cope with it at a low cost. As for the capacity of the chip resistor, if the infrared sensor 128 of the present embodiment has a capacity of about 0.25 W and an energization rate of about 20 minutes / day at a voltage of 5 V, a sufficient temperature rise at the probe tip can be secured. . Furthermore, in a refrigerator that is used for a long period of time, a method of reliably removing condensation and icing at a frequency of once a month even if not every day is effective for extending the product life.
 近年の冷凍サイクルの冷媒としては、地球環境保全の観点から地球温暖化係数が小さい可燃性冷媒であるイソブタンが使用されている。この、炭化水素であるイソブタンは空気と比較して常温、大気圧下で約2倍の比重である(2.04、300Kにおいて)。仮に、圧縮機117の停止時に冷凍システムから可燃性冷媒であるイソブタンが漏洩した場合には、空気よりも重いので、下方に漏洩することになる。特に、冷媒の滞留量が多い冷却器107から漏洩する場合には、漏洩量が多くなる可能性があり、冷却器107の前方側で連通している貯蔵室には特に漏洩しやすいが、赤外線センサー128を配置した上段冷凍室103は、冷却器107より上方に設置されているため、漏洩しても上段冷凍室103には漏洩することがない。また、仮に上段冷凍室103に漏洩したとしても、冷媒は空気より重いため貯蔵室下部に滞留する。よって、赤外線センサー128が貯蔵室天面に設置されているため、赤外線センサー128付近が可燃濃度になる可能性は極めて低いので、十分に安全な配置構成である。 As a refrigerant for a recent refrigeration cycle, isobutane, which is a flammable refrigerant with a low global warming potential, is used from the viewpoint of global environmental conservation. This isobutane, which is a hydrocarbon, has a specific gravity approximately twice that at normal temperature and atmospheric pressure compared with air (at 2.04 and 300K). If isobutane, which is a combustible refrigerant, leaks from the refrigeration system when the compressor 117 is stopped, it leaks downward because it is heavier than air. In particular, when leaking from the cooler 107 having a large amount of refrigerant, the amount of leakage may increase, and it is particularly likely to leak into the storage chamber communicating with the front side of the cooler 107. Since the upper freezer compartment 103 in which the sensor 128 is disposed is installed above the cooler 107, it does not leak into the upper freezer compartment 103 even if it leaks. Even if the refrigerant leaks into the upper freezer compartment 103, the refrigerant is heavier than air and stays in the lower part of the storage compartment. Therefore, since the infrared sensor 128 is installed on the top surface of the storage room, the possibility that the vicinity of the infrared sensor 128 becomes a flammable concentration is extremely low, so that the arrangement configuration is sufficiently safe.
 また、食品121の温度をさらに精度良く検知するために、食品投入された後に食品121の面積を検知し、食品121の面積に応じて赤外線センサー128の検知視野角度を調整することで精度の向上を図ることができる。特に食品121の投入後に、周囲と温度差が異なる部分を検知対象として視野角度の調整を行うことができれば、食品面積を検知するよりもコストパフォーマンスが高い検知精度の向上を行うことができる。 Further, in order to detect the temperature of the food 121 with higher accuracy, the area of the food 121 is detected after the food is added, and the detection viewing angle of the infrared sensor 128 is adjusted according to the area of the food 121, thereby improving the accuracy. Can be achieved. In particular, if the viewing angle can be adjusted with a portion having a temperature difference from the surroundings as a detection target after the food 121 is introduced, the detection accuracy with higher cost performance than the detection of the food area can be improved.
 なお、本実施の形態では、上段冷凍室103の第一の吐出口432は赤外線センサーが検知する面に沿って庫内を冷気が流れるように正面方向に向かうように設置し、第一の吐出口432の下方側には冷気が下方向きに流れるように調節した下向吐出口435も開口しているものとしたが、正面方向に向かうように設置した第一の吐出口432はより前方へ延出して上段冷凍室103の前方側を中心に冷却を行い、下向吐出口435が後方側を中心に冷却を行うように配置してもよく、その場合には上段冷凍室103内がより均一に冷却することが可能となる。また、第一の吐出口432と下向吐出口435との2箇所の吐出口を設けずに一箇所とする場合には、第一の吐出口432を正面よりもやや下方側に向けて配置することで冷気がより食品載置面に流れやすくなり、赤外線センサー128の検知範囲内の温度をより低温化することができるので、新たな食品が投入された場合の検知精度をより高めることが可能となる。 In the present embodiment, the first outlet 432 of the upper freezer compartment 103 is installed so as to face in the front direction so that the cool air flows along the surface detected by the infrared sensor, and the first outlet The downward discharge port 435 adjusted so that the cold air flows downward is also opened on the lower side of the outlet 432, but the first discharge port 432 installed to face the front direction is more forward. It may be arranged so that it extends and cools around the front side of the upper freezer compartment 103, and the downward discharge port 435 cools around the rear side. It becomes possible to cool uniformly. Further, in the case where the first discharge port 432 and the downward discharge port 435 are not provided at two locations, the first discharge port 432 is arranged slightly downward from the front. By doing so, it becomes easier for cold air to flow to the food placement surface and the temperature within the detection range of the infrared sensor 128 can be lowered, so that the detection accuracy when new food is introduced can be further increased. It becomes possible.
 (実施の形態5)
 本実施の形態においては、実施の形態1から4と同一構成および同一の技術思想が適用できる部分については詳細な説明を省略する。実施の形態1から4で記載した内容と同様の技術思想が適用できる構成については実施の形態1から4で記載した技術内容および構成と組合せた構成を実現することが可能である。
(Embodiment 5)
In the present embodiment, detailed description of the same configuration and the same technical idea as those of the first to fourth embodiments will be omitted. With respect to a configuration to which the same technical idea as the content described in the first to fourth embodiments can be applied, a configuration combined with the technical content and the configuration described in the first to fourth embodiments can be realized.
 図7は、本発明の実施の形態5における冷蔵庫の一部拡大側面断面図である。図7において、非接触センサーである赤外線センサー128が検知する面221の下方側に断熱仕切り部をなくすことで、扉開時には下段冷凍室105の温度を検知するため検知温度の温度変動をさらに抑制することができる効果がある。すなわち、赤外線センサー128が設置された貯蔵室である上段冷凍室103と、上段冷凍室103の非接触センサーである赤外線センサー128を始点として赤外線センサー128の検知する方向の投影線上に隣接する隣接貯蔵室である下段冷凍室105とを備え、上段冷凍室103と下段冷凍室105は同温度帯として、同じ吐出ダクト434を共有して同一温度帯の冷気を供給している。よって、上段冷凍室103には第一の吐出口432を通して吐出ダクト434の冷気が供給され、下段冷凍室105には第二の吐出口433を通して吐出ダクト434の冷気が供給される。 FIG. 7 is a partially enlarged side sectional view of the refrigerator according to the fifth embodiment of the present invention. In FIG. 7, by eliminating the heat insulating partition on the lower side of the surface 221 detected by the infrared sensor 128 that is a non-contact sensor, the temperature of the lower freezer compartment 105 is detected when the door is opened, thereby further suppressing temperature fluctuation of the detected temperature. There is an effect that can be done. That is, an adjacent storage adjacent to a projection line in a direction detected by the infrared sensor 128, starting from the upper freezer chamber 103 which is a storage chamber in which the infrared sensor 128 is installed and the infrared sensor 128 which is a non-contact sensor of the upper freezer chamber 103. The lower freezing room 105 is a room, and the upper freezing room 103 and the lower freezing room 105 share the same discharge duct 434 as the same temperature zone and supply cold air in the same temperature zone. Therefore, the cool air from the discharge duct 434 is supplied to the upper freezer compartment 103 through the first discharge port 432, and the cool air from the discharge duct 434 is supplied to the lower freezer chamber 105 through the second discharge port 433.
 また、第一の吐出口432と第二の吐出口433が冷却器107からも距離が最も短い吐出口と2番目に近い吐出口であるので、冷却器107から出たばかりの熱損失が少ない故に最も低温となる冷気が第一の吐出口432と第二の吐出口433から吐出されるので、より冷却効率が高く、また第一の吐出口432と第二の吐出口433とでほぼ同一温度の冷気が吐出されるものである。 In addition, since the first discharge port 432 and the second discharge port 433 are the discharge port with the shortest distance from the cooler 107 and the second closest discharge port, the heat loss that has just come out of the cooler 107 is small. Since the cold air having the lowest temperature is discharged from the first discharge port 432 and the second discharge port 433, the cooling efficiency is higher, and the first discharge port 432 and the second discharge port 433 have substantially the same temperature. The cool air is discharged.
 さらに、この第一の吐出口432と第二の吐出口433とは同じタイミングで冷気の供給が行われている。 Further, the first discharge port 432 and the second discharge port 433 are supplied with cold air at the same timing.
 こういった構成によって、赤外線センサー128が設置された貯蔵室である上段冷凍室103と隣接貯蔵室である下段冷凍室105とはほぼ同一温度となるため、扉を開けた場合であっても、非接触センサーの検知部となる断熱仕切り部は扉を閉めているときに検知している部分と同等温度となるので、扉開閉に伴う食品投入の有無の誤検知が抑制される。 With such a configuration, the upper freezer compartment 103, which is a storage room in which the infrared sensor 128 is installed, and the lower freezer room 105, which is an adjacent storage room, have substantially the same temperature, so even when the door is opened, Since the heat insulation partition part used as the detection part of a non-contact sensor becomes the same temperature as the part detected when the door is closed, the erroneous detection of the presence or absence of the food supply accompanying door opening / closing is suppressed.
 例えば、貯蔵室と隣接貯蔵室の所定温度の温調は吐出する冷気の吐出量を制御して行う場合、少なからずとも上限温度と下限温度との平均温度で所定温度を維持するので、本発明のように同一温度の吐出冷気で貯蔵室と隣接貯蔵室ともに温調する場合は、貯蔵室の上限温度と下限温度が隣接貯蔵室のそれと差が出にくくなる。これにより、貯蔵室と隣接貯蔵室とで温調に伴う上限温度および下限温度もほぼ同一温度となり、より非接触センサーの誤検知を抑制できる。 For example, when the temperature control of the predetermined temperature in the storage chamber and the adjacent storage chamber is performed by controlling the discharge amount of the cool air to be discharged, the predetermined temperature is maintained at least by the average temperature of the upper limit temperature and the lower limit temperature. Thus, when the temperature of both the storage room and the adjacent storage room is controlled by the discharge cold air having the same temperature, the difference between the upper limit temperature and the lower limit temperature of the storage room and that of the adjacent storage room is less likely to occur. Thereby, the upper limit temperature and the lower limit temperature that accompany temperature control are also substantially the same in the storage room and the adjacent storage room, and erroneous detection of the non-contact sensor can be further suppressed.
 また、上段冷凍室103の食品121を下段冷凍室105を冷却する冷気で上方向からに加えて下方向からも冷却することができるため第三の断熱仕切り部212がある場合に加えて格段に冷却スピードを向上することが可能となる。食品221は凍結時に0℃~-5℃の最大氷結晶生成帯を短時間で通過すると細胞の破壊が少ないことが知られているため、上段冷凍室103と下段冷凍室105との間に断熱仕切り部を有さずに同じ温度帯することによって食品121を上下から冷却することは冷凍時の保鮮性が大幅に向上するので実際の冷蔵庫における食品保存にとって非常に効果的な構成であると言える。 In addition, since the food 121 in the upper freezing chamber 103 can be cooled from the upper side by the cool air that cools the lower freezing chamber 105, it can be cooled from the lower side. It becomes possible to improve the cooling speed. Since the food 221 is known to undergo less cell destruction when passing through the maximum ice crystal formation zone of 0 ° C. to −5 ° C. in a short time when frozen, it is insulated between the upper freezing chamber 103 and the lower freezing chamber 105. Cooling the food 121 from above and below by having the same temperature zone without having a partition portion can be said to be a very effective configuration for food preservation in an actual refrigerator because the freshness during freezing is greatly improved. .
 (実施の形態6)
 本実施の形態においては、実施の形態1から5で説明した構成および技術思想と同一の部分については詳細な説明を省略する。実施の形態1から5で記載した内容と同様の技術思想が適用できる構成については実施の形態1から5で記載した技術内容および構成と組合せた構成を実現することが可能である。
(Embodiment 6)
In the present embodiment, detailed description of the same parts as the configurations and technical ideas described in the first to fifth embodiments will be omitted. With respect to a configuration to which the same technical idea as the content described in the first to fifth embodiments can be applied, a configuration combined with the technical content and the configuration described in the first to fifth embodiments can be realized.
 図8は、本発明の実施の形態6における冷蔵庫の一部拡大側面断面図である。図8において、吐出ダクト434内の一部に他の部分よりも断面積が大きい箇所を設けたものであり、除霜時の暖気を滞留させて庫内への流入を抑制したものである。 FIG. 8 is a partially enlarged side sectional view of the refrigerator according to the sixth embodiment of the present invention. In FIG. 8, a part having a larger cross-sectional area than the other part is provided in a part of the discharge duct 434, and warm air at the time of defrosting is retained to suppress inflow into the warehouse.
 これによって、赤外線センサー328の検知部の結露および着霜による検知ズレを防止できるとともに、庫内温度の上昇を抑制することで食品321の保存状態を保つことができる。なお、本実施の形態では吐出ダクト434内の断面積の大きい箇所を冷却器307の上方に配置し、かつ、上段冷凍室303の吐出口332よりも上方に配置することで暖気の庫内流入をさらに低減した。庫内流入を抑制すると、冷却室323内での除霜効率が上昇するため、除霜時間の短縮を図ることができ、消費電力量の低減も図ることができる。さらに、庫内の冷却停止時間も短縮できるため食品321の温度上昇も抑制できる効果がある。 Thereby, it is possible to prevent the detection deviation due to dew condensation and frost formation in the detection part of the infrared sensor 328 and to keep the food 321 in a preserved state by suppressing an increase in the internal temperature. In the present embodiment, a portion having a large cross-sectional area in the discharge duct 434 is disposed above the cooler 307 and disposed above the discharge port 332 of the upper freezer compartment 303 so that warm air flows into the chamber. Was further reduced. When the inflow in the cabinet is suppressed, the defrosting efficiency in the cooling chamber 323 is increased, so that the defrosting time can be shortened and the power consumption can be reduced. Furthermore, since the cooling stop time in the warehouse can be shortened, the temperature rise of the food 321 can be suppressed.
 (実施の形態7)
 本実施の形態においては、実施の形態1から6で説明した構成および技術思想と同一の部分については詳細な説明を省略する。実施の形態1から6で記載した内容と同様の技術思想が適用できる構成については実施の形態1から6で記載した技術内容および構成と組合せた構成を実現することが可能である。
(Embodiment 7)
In the present embodiment, detailed description of the same parts as the configurations and technical ideas described in the first to sixth embodiments will be omitted. With respect to a configuration to which the same technical idea as the content described in the first to sixth embodiments can be applied, a configuration combined with the technical content and the configuration described in the first to sixth embodiments can be realized.
 前出の図1は本発明の実施の形態7における冷蔵庫の正面図でもある。また、前出の図2は本発明の実施の形態7における冷蔵庫の側面断面図でもある。図9は本発明の実施の形態7における冷蔵庫の上段冷凍室の一部拡大側面断面図である。 FIG. 1 described above is also a front view of the refrigerator in the seventh embodiment of the present invention. FIG. 2 described above is also a side sectional view of the refrigerator according to the seventh embodiment of the present invention. FIG. 9 is a partially enlarged side sectional view of the upper freezer compartment of the refrigerator in the seventh embodiment of the present invention.
 図1、図2および図9に示すように、冷蔵庫本体101は、前方に開口する金属製(例えば鉄板)の外箱124と硬質樹脂製(例えばABS)の内箱125と、外箱124と内箱125の間に発泡充填されたウレタン断熱材126からなる断熱箱体で、この本体の上部に設けられた冷蔵室102と、冷蔵室の下に設けられた上段冷凍室103と、冷蔵室102の下で上段冷凍室103に並列に設けられた製氷室104と、本体下部に設けられた野菜室106と、並列に設置された上段冷凍室103および製氷室104と野菜室106の間に設けられた下段冷凍室105で構成されている。上段冷凍室103と製氷室104と下段冷凍室105と野菜室106の前面部は引き出し式の図示しない扉により開閉自由に閉塞されるとともに、冷蔵室102の前面は、例えば観音開き式の図示しない扉により開閉自由に閉塞される。 As shown in FIGS. 1, 2, and 9, the refrigerator body 101 includes a metal (for example, iron plate) outer box 124, a hard resin (for example, ABS) inner box 125, an outer box 124, and a front opening. A heat insulating box body made of urethane heat insulating material 126 filled with foam between inner boxes 125, a refrigerating chamber 102 provided at the upper portion of the main body, an upper freezing chamber 103 provided under the refrigerating chamber, and a refrigerating chamber An ice making chamber 104 provided in parallel with the upper freezer compartment 103 under the 102, a vegetable compartment 106 provided in the lower part of the main body, and between the upper freezer 103 and the ice making chamber 104 and the vegetable compartment 106 installed in parallel. The lower freezer room 105 is provided. Front portions of the upper freezing chamber 103, the ice making chamber 104, the lower freezing chamber 105, and the vegetable chamber 106 are freely opened and closed by a drawer-type door (not shown), and the front side of the refrigerator compartment 102 is, for example, a double door type door not shown. Is closed freely.
 冷蔵室102は冷蔵保存のために凍らない温度を下限に通常1~5℃で設定されている。野菜室106は冷蔵室102と同等もしくは若干高い温度設定の2℃~7℃とすることが多い。低温にすれば葉野菜の鮮度を長期間維持することが可能である。上段冷凍室103と下段冷凍室105は冷凍保存のために通常-22から-18℃で設定されているが、冷凍保存状態の向上のために、例えば-30から-25℃の低温で設定されることもある。 The refrigerator compartment 102 is normally set at 1 to 5 ° C. with a lower limit of the temperature at which it does not freeze for refrigerated storage. The vegetable room 106 is often set to 2 ° C. to 7 ° C., which is the same or slightly higher temperature as the refrigerator room 102. If the temperature is lowered, the freshness of leafy vegetables can be maintained for a long time. The upper freezer compartment 103 and the lower freezer compartment 105 are normally set at −22 to −18 ° C. for frozen storage, but are set at a low temperature of −30 to −25 ° C., for example, to improve the frozen storage state. Sometimes.
 冷蔵室102や野菜室106は庫内をプラス温度で設定されるので、冷蔵温度帯を呼ばれる。また、上段冷凍室103や下段冷凍室105や製氷室104は庫内をマイナス温度で設定されるので、冷凍温度帯を呼ばれる。 Since the refrigerator compartment 102 and the vegetable compartment 106 are set at a plus temperature in the cabinet, they are called refrigerated temperature zones. The upper freezer compartment 103, the lower freezer compartment 105, and the ice making room 104 are called freezing temperature zones because the interior is set at a minus temperature.
 冷蔵庫本体101の天面部は、冷蔵庫本体101の背面方向に向かって階段状に凹みを設けて機械室119があり、第一の天面部と第二の天面部で構成されている。この階段状の凹部に配置された圧縮機117と、水分除去を行うドライヤ(図示せず)と、コンデンサー(図示せず)と、放熱用の放熱パイプ(図示せず)と、キャピラリーチューブ118と、冷却器107とを順次環状に接続してなる冷凍サイクルに冷媒を封入し、冷却運転を行う。冷媒には近年、環境保護のために可燃性冷媒を用いることが多い。なお、三方弁や切替弁を用いる冷凍サイクルの場合は、それらの機能部品を機械室内に配設することもできる。 The top surface portion of the refrigerator main body 101 is provided with a machine room 119 provided with a dent in a step shape toward the back surface of the refrigerator main body 101, and is composed of a first top surface portion and a second top surface portion. A compressor 117 disposed in the stepped recess, a dryer (not shown) for removing moisture, a condenser (not shown), a heat radiating pipe (not shown), a capillary tube 118, Then, the refrigerant is sealed in a refrigeration cycle in which the cooler 107 is sequentially connected in an annular manner, and a cooling operation is performed. In recent years, a flammable refrigerant is often used as a refrigerant for environmental protection. In the case of a refrigeration cycle using a three-way valve or a switching valve, these functional components can be arranged in the machine room.
 また、冷蔵室102と製氷室104および上段冷凍室103とは第一の断熱仕切り部110で区画されている。 Further, the refrigerator compartment 102, the ice making compartment 104, and the upper freezer compartment 103 are partitioned by a first heat insulating partition 110.
 また、製氷室104と上段冷凍室103とは第二の断熱仕切り部111で区画されている。 Further, the ice making chamber 104 and the upper freezing chamber 103 are partitioned by a second heat insulating partition 111.
 また、製氷室104および上段冷凍室103と、下段冷凍室105とは第三の断熱仕切り部112で区画されている。 Also, the ice making chamber 104, the upper freezing chamber 103, and the lower freezing chamber 105 are partitioned by a third heat insulating partition 112.
 第二の断熱仕切り部111および第三の断熱仕切り部112は、冷蔵庫本体101の発泡後組み立てられる部品であるため、通常断熱材として発泡ポリスチレンが使われるが、断熱性能や剛性を向上させるために硬質発泡ウレタンを用いてもよく、さらには高断熱性の真空断熱材を挿入して、仕切り構造のさらなる薄型化を図ってもよい。 Since the second heat insulating partition part 111 and the third heat insulating partition part 112 are parts assembled after foaming of the refrigerator main body 101, expanded polystyrene is usually used as a heat insulating material, but in order to improve heat insulating performance and rigidity. Rigid foamed urethane may be used, and furthermore, a highly heat insulating vacuum heat insulating material may be inserted to further reduce the thickness of the partition structure.
 また、ドアフレームの稼動部を確保して第二の断熱仕切り部111および第三の断熱仕切り部112の形状の薄型化や廃止を行うことで、冷却風路を確保でき冷却能力の向上を図ることもできる。また、第二の断熱仕切り部111および第三の断熱仕切り部112の中央部をくりぬき、風路とすることで材料の低減につながる。 In addition, by securing the operating part of the door frame and thinning or eliminating the shapes of the second heat insulating partition part 111 and the third heat insulating partition part 112, a cooling air passage can be secured and the cooling capacity can be improved. You can also. Moreover, the center part of the 2nd heat insulation partition part 111 and the 3rd heat insulation partition part 112 is hollowed, and it leads to reduction of material by making it an air path.
 また、下段冷凍室105と野菜室106とは第四の仕切り部113で区画されている。 Further, the lower freezer compartment 105 and the vegetable compartment 106 are partitioned by a fourth partition 113.
 冷蔵庫本体101の背面には冷却室カバー122で覆われた冷却室123が設けられ、冷却室123内には、代表的なものとしてフィンアンドチューブ式の冷気を生成する冷却器107が断熱仕切り壁である第二および第三の仕切り部111、112の後方領域を含めて下段冷凍室105の背面に上下方向に縦長に配設されている。また、冷却器107の材質は、アルミや銅が用いられる。 A cooling chamber 123 covered with a cooling chamber cover 122 is provided on the rear surface of the refrigerator main body 101. In the cooling chamber 123, a cooler 107 that generates fin-and-tube type cool air is a heat insulating partition wall. The second and third partition portions 111 and 112 are disposed on the back surface of the lower freezer compartment 105 in the vertical direction in the vertical direction. The material of the cooler 107 is aluminum or copper.
 冷却器107の近傍(例えば上部空間)には強制対流方式により冷蔵室102、製氷室104、上段冷凍室103、下段冷凍室105、野菜室106の各貯蔵室に冷却器107で生成した冷気を送風する冷気送風ファン116が配置され、冷却器107の下部空間には冷却時に冷却器107や冷気送風ファン116に付着する霜を除霜する除霜装置としてのガラス管製のラジアントヒータ134が設けられている。除霜装置は特に指定するものではなく、ラジアントヒータ134の他に、冷却器107に密着したパイプヒータを用いても良い。 In the vicinity of the cooler 107 (for example, the upper space), the cold air generated by the cooler 107 is stored in each storage room of the refrigerator compartment 102, the ice making room 104, the upper freezer room 103, the lower freezer room 105, and the vegetable room 106 by a forced convection method. A cool air blowing fan 116 for blowing air is disposed, and a radiant heater 134 made of glass tube is provided in a lower space of the cooler 107 as a defrosting device for defrosting the frost adhering to the cooler 107 and the cold air blowing fan 116 during cooling. It has been. The defrosting device is not particularly specified, and a pipe heater in close contact with the cooler 107 may be used in addition to the radiant heater 134.
 冷却室カバー122内には、冷気送風ファン116からの冷気を各貯蔵室内へ送風するダクトを備えており、上段冷凍室103と下段冷凍室105へダクトを通じて冷却器107の冷気を直接送風している。 The cooling chamber cover 122 is provided with ducts for blowing the cold air from the cold air blowing fans 116 into the respective storage chambers, and the cooling air from the cooler 107 is directly blown to the upper freezing chamber 103 and the lower freezing chamber 105 through the ducts. Yes.
 冷気送風ファン116は、内箱125に直接配設されることもあるが、発泡後に組み立てられる第二の仕切り部111に配設し、部品のブロック加工を行うことで製造コストの低減を図ることもできる。 Although the cool air blowing fan 116 may be directly disposed in the inner box 125, it is disposed in the second partition portion 111 assembled after foaming, and the manufacturing cost is reduced by performing block processing of the parts. You can also.
 次に赤外線センサー128を取り付けている上段冷凍室103の構成について説明する。 Next, the configuration of the upper freezer compartment 103 to which the infrared sensor 128 is attached will be described.
 図9に示すように、上段冷凍室103の天井面である第一の断熱仕切り部110には、食品121の温度を検知する非接触センサーである赤外線センサー128が、検知する面である食品載置部の投影面上の隣接貯蔵室がある方向(本実施の形態の場合は下方向)に向かって設置してある。このように赤外線センサー128は、食品載置部と対向する側の貯蔵室壁面に備えられており、この食品載置部は蓄熱機能を有する蓄冷剤142が備えられていることで、食品載置部が蓄熱機能を有しているものである。また、上段冷凍室103の背面上部には冷却室カバー122から庫内へ冷気を吐出する第一の吐出口132と、上段冷凍室103内を循環した冷気が、再び冷却室123に戻るための戻り口(図示せず)が設けてある。なお、赤外線センサー128を断熱仕切り部内に設置することで、第一の吐出口132から吐出される冷気の風の影響を受けにくくできるため、検知精度の向上を図ることができる。さらに、赤外線センサー128先端部を断熱仕切り部の表面よりも内側とすることで貯蔵室内に食品121を大量に入れられた場合や、清掃時でも赤外線センサー128の検知部に異物が付着することがないため検知の誤動作を招かない。さらに庫内への突出による清掃時の引っかかりがないため過剰な力の加重による部品の欠落や検知方向のズレ等を防止することができる。また庫内に突出していないので庫内容量が減少せず、容量の確保をすることができる利点がある。 As shown in FIG. 9, the first heat insulating partition 110 that is the ceiling surface of the upper freezer compartment 103 has a food load on which the infrared sensor 128 that is a non-contact sensor that detects the temperature of the food 121 detects. The adjacent storage chamber on the projection surface of the placement unit is installed in a direction (downward in this embodiment). As described above, the infrared sensor 128 is provided on the wall surface of the storage chamber on the side facing the food placement unit, and the food placement unit includes the cold storage agent 142 having a heat storage function. The part has a heat storage function. Further, a first discharge port 132 for discharging cool air from the cooling chamber cover 122 to the interior of the upper freezer compartment 103 and the cool air circulated in the upper freezer chamber 103 return to the cooler chamber 123 again. A return port (not shown) is provided. In addition, since the infrared sensor 128 is installed in the heat insulating partition part, it is difficult to be affected by the cold air discharged from the first discharge port 132, so that the detection accuracy can be improved. Furthermore, by setting the tip of the infrared sensor 128 to the inside of the surface of the heat insulating partition, foreign matter may adhere to the detection part of the infrared sensor 128 even when a large amount of food 121 is placed in the storage chamber or during cleaning. There is no malfunction in detection. Furthermore, since there is no catching at the time of cleaning due to protrusion into the chamber, it is possible to prevent parts from being lost due to excessive force load, displacement in the detection direction, and the like. Moreover, since it does not protrude into the storage, there is an advantage that the storage capacity does not decrease and the capacity can be secured.
 なお、赤外線センサー128が検知する貯蔵室内のケース127の食品載置部に、その視野範囲内であることを示す目印137を設けておくと、お客様にとって食品121の置き場がわかりやすく、加えて目印137を赤外線センサー128が検知する視野範囲よりも小さい範囲で設けることで、食品121の収納時には確実に温度検知が行える。特に赤外線センサー128は検知する範囲の中心部が最も赤外線の検知強度が強く検知範囲の端に行くほど弱くなるので、検知精度を高めるためにも中心を基準として目印137をつけると良い。本実施の形態においては、食品載置部が蓄冷剤142で形成しているため、目印137は蓄冷剤142の上面側につけている。 In addition, if a mark 137 indicating that the food is within the field of view is provided on the food placement portion of the case 127 in the storage room detected by the infrared sensor 128, the place where the food 121 is placed is easy for the customer to understand. By providing 137 in a range smaller than the visual field range detected by the infrared sensor 128, temperature detection can be reliably performed when the food 121 is stored. In particular, since the infrared sensor 128 has the strongest infrared detection intensity at the center of the detection range and becomes weaker toward the end of the detection range, the mark 137 may be attached with the center as a reference in order to increase detection accuracy. In the present embodiment, since the food placing portion is formed of the cold storage agent 142, the mark 137 is attached to the upper surface side of the cold storage agent 142.
 次に、本実施の形態で使用した赤外線センサー128について説明する。 Next, the infrared sensor 128 used in the present embodiment will be described.
 赤外線センサー128は、検知する面の範囲から発せられる赤外線量を先端のサーモパイルで検出し、電気信号に変換している。サーモパイルの周囲にはプローブがあり、さらに基板部分に配置されている基準温度であるサーミスタ(図示せず)の電圧と比較することによって検知した対象物の温度を算出することで温度検知を行っている。この赤外線センサー128は検知する範囲の円内部において、中心が最も赤外線検知強度が強く、端に行くほど検知強度が弱くなる。そのためサーモパイルの視野角度をより絞ることで検知物の赤外線量の強度を上げることができ、対象物温度を確実に検出することができるが、視野角度の一部がプローブの先端部に重なるため先端部温度の影響を受け誤検知の要因となることにより、本実施の形態ではサーモパイルの視野角を50°としている。よって、前述の目印137はこの赤外線センサーが検知する範囲の円内部の中心に主につけておくとより検知精度を向上させることができる。 The infrared sensor 128 detects the amount of infrared rays emitted from the range of the surface to be detected with a thermopile at the tip and converts it into an electrical signal. There is a probe around the thermopile, and temperature detection is performed by calculating the temperature of the detected object by comparing it with the voltage of a thermistor (not shown) which is a reference temperature arranged on the substrate part. Yes. The infrared sensor 128 has the highest infrared detection intensity at the center of the circle within the detection range, and the detection intensity becomes weaker toward the end. Therefore, it is possible to increase the intensity of the infrared ray of the detected object by narrowing the viewing angle of the thermopile and detect the temperature of the object reliably, but the tip of the viewing angle overlaps with the tip of the probe. In the present embodiment, the viewing angle of the thermopile is set to 50 ° due to erroneous detection due to the influence of the part temperature. Therefore, the detection accuracy can be further improved by placing the above-mentioned mark 137 mainly in the center of the circle within the range detected by the infrared sensor.
 本実施の形態に用いた赤外線センサー128は、シリコン基板上に形成された多数の熱電対で構成されたサーモパイルを用いた。さらにプローブ部分の材質は熱伝導性に優れたアルミナ粉末を用いた成型物であるが、熱伝導性に優れた材質であれば、例えばマグネシア粉末や窒化アルミニウム粉末などのセラミック粉末を分散させた成型物でも良い。また、赤外線センサー128の検知応答性において樹脂タイプのプローブを用いると応答性に遅れが生じるものの、比重が低減できるため重量低減に効果がある。樹脂タイプのプローブにおいて厚みを薄くすることで若干の応答性向上を図ることができ、体積低減も行えるため省材料で環境負荷の低減も行うことができる。薄肉化は、熱伝導性に優れた金属製の材質でも同様である。 As the infrared sensor 128 used in the present embodiment, a thermopile composed of a large number of thermocouples formed on a silicon substrate was used. Furthermore, the material of the probe part is a molded product using alumina powder having excellent thermal conductivity, but if the material has excellent thermal conductivity, for example, molding in which ceramic powder such as magnesia powder or aluminum nitride powder is dispersed. Goods are also acceptable. In addition, when a resin type probe is used in the detection response of the infrared sensor 128, the response is delayed, but the specific gravity can be reduced, which is effective in reducing the weight. By reducing the thickness of the resin type probe, it is possible to improve the responsiveness slightly, and the volume can be reduced, so that environmental load can be reduced with less material. Thinning is the same for metal materials having excellent thermal conductivity.
 以上のように構成された冷蔵庫について、以下その動作、作用について説明する。 About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
 例えば冷蔵室102が外気からの熱侵入およびドア開閉などにより、庫内温度が上昇して冷蔵室センサー(図示せず)が圧縮機117の起動温度以上になった場合に、圧縮機117が起動し庫内の冷却が開始される。圧縮機117から吐出された高温高圧の冷媒は、最終的に機械室119に配置されたドライヤ(図示せず)まで到達する間、特にコンデンサー(図示せず)や外箱124に設置される放熱パイプ(図示せず)において、外箱124の外側の空気や庫内のウレタン断熱材126との熱交換により、冷却されて液化する。 For example, when the refrigerator compartment 102 rises in temperature due to heat intrusion from outside air and door opening / closing, and the refrigerator compartment sensor (not shown) reaches or exceeds the startup temperature of the compressor 117, the compressor 117 is started. Cooling in the storage is started. While the high-temperature and high-pressure refrigerant discharged from the compressor 117 finally reaches a dryer (not shown) disposed in the machine room 119, heat is dissipated particularly in a condenser (not shown) or the outer box 124. A pipe (not shown) is cooled and liquefied by heat exchange with the air outside the outer box 124 and the urethane heat insulating material 126 in the warehouse.
 次に液化した冷媒はキャピラリーチューブ118で減圧されて、冷却器107に流入し冷却器107周辺の庫内空気と熱交換する。熱交換された冷気は、近傍の冷気送風ファン116により庫内に冷気が送風され庫内を冷却する。この後、冷媒は加熱されガス化して圧縮機117に戻る。庫内が冷却されて冷凍室センサー(図示せず)の温度が停止温度以下になった場合に圧縮機117の運転が停止する。 Next, the liquefied refrigerant is depressurized by the capillary tube 118, flows into the cooler 107, and exchanges heat with the internal air around the cooler 107. The cold air subjected to heat exchange is blown into the cabinet by a nearby cool air blower fan 116 to cool the inside of the cabinet. Thereafter, the refrigerant is heated and gasified to return to the compressor 117. When the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor (not shown) becomes equal to or lower than the stop temperature, the operation of the compressor 117 is stopped.
 また、このときはドアが閉しているので赤外線センサー128の検知は上段冷凍室103の天面に取り付けられているサーモパイルから上段冷凍室内にあるケース127の温度もしくは食品121の温度を検知している。上述のような運転サイクルを繰り返すことで冷蔵庫は冷却運転を行っている。 At this time, since the door is closed, the infrared sensor 128 detects the temperature of the case 127 or the temperature of the food 121 in the upper freezer compartment from the thermopile attached to the top surface of the upper freezer compartment 103. Yes. The refrigerator performs a cooling operation by repeating the operation cycle as described above.
 次に、食品等の負荷を入れた場合について説明する。 Next, the case where a load such as food is added will be described.
 例えば、スーパーマーケット等で肉や魚などの生鮮食品を購入した場合や、家庭でハンバーグなどの食品121を作って冷凍保存する場合などに、上段冷凍室103に食品121を投入し急凍を行う場合には、従来では手動で急凍制御に入れることで、食品121の急凍を行っていた。しかしながら、食品121投入後に手動で急凍制御に入れる動作を行うことは、ユーザーの作業負担が増えてしまうという使い勝手が悪い点が挙げられる。 For example, when fresh food such as meat or fish is purchased at a supermarket or the like, or when food 121 such as hamburg is made and stored frozen at home, the food 121 is put into the upper freezer 103 and subjected to quick freezing. Conventionally, the food 121 has been rapidly frozen by manually entering the quick freezing control. However, performing the operation of manually entering the quick freezing control after the food 121 is put in is disadvantageous in that the work burden on the user increases.
 また、中には急凍制御を終了するまでの時間を食品121の設定温度によって決めることができるものもあるが、任意で決定するため例えば食品121の大きさや厚みによって凍結する早さが違うので設定温度を検知していても食品121が凍結しておらず、特に最大氷結晶生成帯を通過できていない可能性がある。また、設定した設定温度が低い場合には食品121が凍結しているのに冷却運転が終了せずに急凍時の圧縮機117が高回転で運転するという無駄なエネルギーを使用してしまうことがある。さらに、投入した食品121に対する急凍制御終了の温度設定をしている間も食品121の温度は周囲温度の影響によって冷却されており、厚みの薄い食品等では急凍制御を入れるころに最大氷結晶生成帯に突入していることもあり、細胞破壊の抑制が遅れて保鮮性に悪影響を起こす可能性があった。 In addition, some of them can determine the time until the quick freezing control is finished depending on the set temperature of the food 121. However, since it is arbitrarily determined, for example, the speed of freezing differs depending on the size and thickness of the food 121. Even if the set temperature is detected, the food 121 is not frozen and may not pass through the maximum ice crystal formation zone. In addition, when the set temperature is low, the food 121 is frozen, but the cooling operation is not completed and the compressor 117 during rapid freezing is used at a high rotation speed. There is. Further, the temperature of the food 121 is cooled by the influence of the ambient temperature while the temperature of the quick freezing control for the input food 121 is being set. Since it has entered the crystal formation zone, the suppression of cell destruction may be delayed, which may adversely affect the freshness.
 また、従来技術の中には食品121の潜熱変化から顕熱変化への変化を検知することで凍結が完了して急凍制御を終了するものもあるが、例えば顕熱変化の変化率において、食品121の大きさや厚みによって潜熱変化と顕熱変化の割合が同等の場合がある。食品121の大きさが大きい場合には、顕熱変化での変化率は小さくなり、また、食品121の厚みが薄い場合には顕熱変化での変化率は大きくなる。すなわち食品121の顕熱変化の変化率は一定ではなく変化率によって凍結完了の判断するためには、食品121の大きさを大きい方に合わせた変化率とせざるを得ない。よって、食品121の大きさが小さい場合には凍結していても冷却運転をすることとなり、余分な冷却エネルギーを使用してしまうこととなる。また冷気送風ファン116の運転状態や、ダンパー(図示せず)の開閉によって冷蔵庫の冷却負荷状態が異なる場合でも潜熱変化と顕熱変化の変化率に差がない場合がある。例えば、本従来例の場合では、冷蔵室102および野菜室106を冷却する場合の負荷量と、冷凍室108および製氷室104と切替室109を冷却する場合の負荷量では異なる。冷蔵室102側の負荷量を冷却する場合では切替室109に投入された食品121の温度変化率は小さくなるし、冷凍室108側の負荷量を冷却する場合では逆に変化率が大きくなる。さらに両室側を冷却する場合には変化率がさらに小さくなるので各々に合わせた変化率を導き出すには膨大なデータ量の抽出と複雑な制御仕様が必要となってしまい現実的ではない。 In addition, some of the conventional technologies detect the change from the latent heat change of the food 121 to the sensible heat change to complete the freezing and complete the quick freezing control. For example, in the change rate of the sensible heat change, Depending on the size and thickness of the food 121, the ratio of latent heat change and sensible heat change may be equivalent. When the size of the food 121 is large, the rate of change due to sensible heat change is small, and when the thickness of the food 121 is thin, the rate of change due to sensible heat change is large. That is, the rate of change of the sensible heat of the food 121 is not constant, and in order to determine the completion of freezing based on the rate of change, the rate of change of the size of the food 121 must be set to the larger one. Therefore, when the size of the food 121 is small, the cooling operation is performed even if it is frozen, and extra cooling energy is used. Further, even if the cooling load state of the refrigerator varies depending on the operating state of the cold air blowing fan 116 and the opening / closing of a damper (not shown), there may be no difference in the change rate of the latent heat change and the sensible heat change. For example, in the case of this conventional example, the load amount for cooling the refrigerator compartment 102 and the vegetable compartment 106 is different from the load amount for cooling the freezer compartment 108, the ice making compartment 104, and the switching chamber 109. When the load amount on the refrigerator compartment 102 side is cooled, the temperature change rate of the food 121 put into the switching chamber 109 decreases, and when the load amount on the freezer compartment 108 side is cooled, the change rate increases conversely. Furthermore, since the rate of change is further reduced when both chambers are cooled, it is not realistic to extract an enormous amount of data and complicated control specifications to derive the rate of change tailored to each.
 そこで本発明では、赤外線センサー128の検知する上段冷凍室内のケース127内に食品等の負荷から発せられる赤外線量を検知し、赤外線量から算出される温度が一定の温度以上(上限設定温度:T0)である場合に、自動で急凍制御に入り、また、急凍制御設定後に赤外線センサー128が検知する温度が一定の温度以下(下限設定温度:T1)である場合に急凍制御を終了するようにしたものである。 Therefore, in the present invention, the amount of infrared rays emitted from a load such as food is detected in the case 127 in the upper freezer compartment detected by the infrared sensor 128, and the temperature calculated from the amount of infrared rays is equal to or higher than a certain temperature (upper limit set temperature: T0). ), The quick freezing control is automatically entered, and the quick freezing control is terminated when the temperature detected by the infrared sensor 128 after the setting of the quick freezing control is equal to or lower than a certain temperature (lower limit set temperature: T1). It is what I did.
 急凍制御の動作としては、食品121が入り赤外線センサー128の検知温度が開始温度であるT0以上を検知すると、冷蔵庫は圧縮機117の回転数を上昇させることで循環する冷媒量を上げ、冷却器107の温度を下げる。さらに、冷気送風ファン116の回転数を上昇させることにより、冷却器107で生成された冷気を庫内に循環させる冷却量を増やすことで食品121を早く冷却させる。その後、食品121の温度を継続検知する中で、最大氷結晶生成帯である0℃~-5℃の通過を確認後、終了温度である下限設定温度T1となると急凍制御を自動で終了し、通常の冷却運転とさせることで食品保存として鮮度に影響する最大氷結晶生成帯を早く通過させ、最大氷結晶生成帯を通過後には通常に冷却していても保鮮性の劣化にはほとんど影響はないので、通常運転としている。本実施の形態では、急凍制御の開始温度すなわち上限温度であるT0は-2.5℃とし、急凍制御の終了温度すなわち下限温度であるT1は-15℃としている。これは、食品の収納形態や食品自身の形態によって状態が異なるためである。 As an operation of the quick freezing control, when the food 121 enters and the detection temperature of the infrared sensor 128 detects T0 or more which is the start temperature, the refrigerator increases the amount of refrigerant circulating by increasing the rotation speed of the compressor 117, and cooling The temperature of the vessel 107 is lowered. Further, by increasing the number of rotations of the cool air blower fan 116, the food 121 is quickly cooled by increasing the amount of cooling that circulates the cool air generated by the cooler 107 in the cabinet. After that, while continuously detecting the temperature of the food 121, after confirming the passage of the maximum ice crystal formation zone of 0 ° C to -5 ° C, when it reaches the lower limit set temperature T1, which is the end temperature, the quick freezing control is automatically ended. The maximum ice crystal formation zone, which affects the freshness of food preservation, can be passed quickly by normal cooling operation, and after passing through the maximum ice crystal formation zone, even if it is normally cooled, it has little effect on the deterioration of freshness. There is no such thing as normal operation. In the present embodiment, T0, which is the start temperature of rapid freezing control, that is, the upper limit temperature, is −2.5 ° C., and T1, which is the end temperature of rapid freezing control, that is, the lower limit temperature, is −15 ° C. This is because the state varies depending on the food storage form and the form of the food itself.
 本実施の形態によって、自動で急凍制御に入り冷却能力の向上が自動で行われるので、冷蔵庫の冷却を必要に応じた冷却運転で行うことができる。特に、負荷投入によっての庫内温度の上昇や、急速に凍結させたい負荷への冷却に対して、従来のように圧縮機117を中回転で運転し負荷をゆっくり冷却するよりも、高能力で短時間の冷却とするほうが、実際の冷蔵庫の消費電力量としては運転時間を短縮することができるので、省エネとなる。本実施の形態では、急凍制御中は圧縮機117の回転数を一時的に80Hzとし、冷気送風ファン116の回転数も3000回転/分程度とすることで、第一および第二の吐出口132、133の冷気は-40℃近くまで低下させることで急速凍結させているが、従来の急凍制御に対し、30分以上もの時間短縮を行っており、省エネ効果としては、1回当たり△23%の省エネ効果を得ることができる。 According to the present embodiment, the quick freezing control is automatically entered and the cooling capacity is automatically improved, so that the refrigerator can be cooled by a cooling operation as required. In particular, with respect to the rise in the internal temperature due to the loading of the load and the cooling to the load that is to be quickly frozen, it has a higher capacity than the conventional operation of the compressor 117 with medium rotation and the cooling of the load slowly. Shorter cooling can save energy because the actual power consumption of the refrigerator can shorten the operation time. In the present embodiment, during the quick freezing control, the rotation speed of the compressor 117 is temporarily set to 80 Hz, and the rotation speed of the cool air blowing fan 116 is also set to about 3000 rotations / minute, so that the first and second discharge ports The cold air of 132, 133 is rapidly frozen by reducing it to close to -40 ° C. However, compared with the conventional quick freezing control, the time has been shortened by more than 30 minutes. An energy saving effect of 23% can be obtained.
 さらに、本実施の形態では、上段冷凍室103のケース内に蓄冷剤142を取り付けたことによって、冷却器107で生成された約-40℃の冷気による熱伝達での冷凍効果に加え、凍結している蓄冷剤142からの直接の伝熱すなわち熱伝導による冷凍効果も加わるため、最大氷結晶生成帯を通過する時間がさらに早くなるとともに食品解凍時における食品121からのドリップ量が減らせられるのでさらに食品保存の向上を図ることができる。 Furthermore, in the present embodiment, by installing the regenerator 142 in the case of the upper freezer compartment 103, in addition to the freezing effect in the heat transfer by the cold air of about −40 ° C. generated by the cooler 107, the freezing agent is frozen. Since the freezing effect by the direct heat transfer from the cold storage agent 142, that is, heat conduction is also added, the time for passing through the maximum ice crystal formation zone is further shortened and the amount of drip from the food 121 when the food is thawed can be further reduced. The food preservation can be improved.
 特に蓄冷剤142からの冷却によって食品321が冷却されるとともに、ケース127内が蓄冷剤142がない場合よりも低温に保たれるため、食品121を短時間に冷却できるので冷蔵庫の冷却運転時間の低減を図れて省エネになるとともに食品321の保鮮性向上を図ることができる。 In particular, the food 321 is cooled by cooling from the cool storage agent 142 and the inside of the case 127 is kept at a lower temperature than the case where there is no cool storage agent 142, so that the food 121 can be cooled in a short time, so the cooling operation time of the refrigerator Reduction and energy saving can be achieved, and the freshness of the food 321 can be improved.
 また、蓄冷剤142を配置していることで、食品121が投入されていないときでもドア開閉時における外気の流入があった場合でも、外気流入の熱負荷を蓄冷剤142が吸熱するため庫内の温度上昇を抑えることができる。 Further, since the cool storage agent 142 is arranged, the cool storage agent 142 absorbs the heat load of the outside air inflow even when the food 121 is not charged or when the outside air flows in when the door is opened or closed. Temperature rise can be suppressed.
 すなわち、本実施の形態の効果を省エネルギーの観点と食品保存の観点とから見ると下記のようになる。 That is, the effect of this embodiment is as follows from the viewpoint of energy saving and food preservation.
 まず省エネルギーの観点から見ると、非接触に検知するセンサーによって食品温度を検知し自動で急凍制御を開始し、終了温度に到達した時点で速やかに通常の冷却動作に移行するため、庫内に投入された食品を速やかに自動で急速冷却の開始を行うとともに、食品載置部は蓄熱機能を有することによって、予め冷凍温度帯に冷却された蓄熱機能を有する食品載置部が食品に接していることで、熱伝導によって直接的に熱を奪い速やかに冷却を行うことができるので、急凍制御を行う場合でも圧縮機や冷気送風ファンの連続運転時間を大幅に短縮することができ、より省エネルギーを実現した急速冷却を行うことが可能となる。 First, from the viewpoint of energy saving, the food temperature is detected by a sensor that detects non-contact, and quick freezing control is started automatically, and when the end temperature is reached, normal cooling operation is started immediately. In addition to quickly and quickly starting the cooling of the input food, the food placement unit has a heat storage function, so that the food placement unit having a heat storage function that has been cooled to a freezing temperature zone in advance is in contact with the food. As a result, it is possible to take heat directly by heat conduction and quickly cool it, so even when performing quick freezing control, the continuous operation time of the compressor and cold air blower fan can be greatly shortened. It becomes possible to perform rapid cooling that realizes energy saving.
 また、食品保存の観点からしても、本発明では急凍制御を行う際の食品載置部が蓄熱機能を有することで、急凍制御を行う冷気の導入による熱伝達と、蓄熱機能を有した食品載置部からの熱伝導の両方を用いて速やかに冷却を行うことができるので、特に冷凍保存では鮮度に大きく影響する0℃~-5℃の最大氷結晶生成帯の通過時間をより短くすることができ、最大氷結晶生成帯を短時間で通過することで、解凍時に食品からのドリップ量が抑制できるため、食品の鮮度や味を落とすことなく保存することができるので、食品の保存品質を高めることが可能となる。 Also, from the viewpoint of food preservation, in the present invention, the food placing portion when performing quick freezing control has a heat storage function, so that it has heat transfer by introducing cold air for quick freezing control and a heat storage function. Because it is possible to cool quickly using both the heat conduction from the food mounting part, the passage time through the maximum ice crystal formation zone of 0 ° C to -5 ° C, which greatly affects the freshness, especially in frozen storage Since it can be shortened and it passes through the maximum ice crystal formation zone in a short time, the amount of drip from the food can be suppressed when thawing, so it can be stored without sacrificing the freshness and taste of the food. It becomes possible to improve preservation quality.
 上記のように、本実施の形態では自動で急凍制御に入り、食品凍結時には自動で急凍制御を解除するので、従来のように早く凍結したい食品121に対して手動で行うという煩わしい動作が不要となるとともに、凍結後の不要な冷却運転による無駄なエネルギーの浪費をなくすことができ、さらに食品載置部を蓄冷剤142で形成していることでさらなる省エネルギーを実現することが可能となる。 As described above, in this embodiment, the quick freezing control is automatically entered, and when the food is frozen, the quick freezing control is automatically released. In addition to being unnecessary, waste of unnecessary energy due to unnecessary cooling operation after freezing can be eliminated, and further, further energy saving can be realized by forming the food placing portion with the cold storage agent 142. .
 また、ユーザーが買い物から帰宅して肉などの生鮮食品を冷凍保存するために食品121を冷蔵庫に収納しているときには、長時間のドア開放の影響で庫内温度は上昇してしまう。その場合、従来では自動で急凍制御に入らないため、低冷却能力で時間をかけて食品121を冷却することとなるが、本発明では赤外線センサー128で検知した温度によって、温度が高ければ自動で急凍制御に入ることとなるので高冷却能力で時間をかけずに速やかに冷却できる。この結果、冷却するための冷却時間を短縮することができることと、短時間での冷却であるので食品自身の温度上昇を抑えるので保鮮劣化を抑制できる。 In addition, when the user returns home from shopping and stores the food 121 in the refrigerator in order to store fresh food such as meat in a refrigerator, the internal temperature rises due to the long door opening. In that case, since the quick freezing control is not automatically entered in the conventional case, the food 121 is cooled over time with a low cooling capacity. However, in the present invention, if the temperature is high, it is automatically set according to the temperature detected by the infrared sensor 128. The quick freezing control will be started, so it can be cooled quickly without taking time with high cooling capacity. As a result, the cooling time for cooling can be shortened, and since the cooling is performed in a short time, the temperature rise of the food itself is suppressed, so that deterioration of the freshness can be suppressed.
 また、急凍制御中は圧縮機117を高回転で運転したり、冷却器107で生成した冷気を庫内へ送る風量を増加するため冷気送風ファン116の回転数もしくは電圧を上げることで冷却能力を上げているので、従来では一定時間は騒音レベルが上昇していることとなるが、本実施の形態では最大氷結晶生成帯である0℃~-5℃を中心に急凍制御とするので、従来の急凍制御時間に対して30分以上も時間短縮を可能としている。 Further, during the quick freezing control, the compressor 117 is operated at a high speed, or the cooling capacity is increased by increasing the rotational speed or voltage of the cool air blower fan 116 in order to increase the amount of air sent to the inside of the cool air generated by the cooler 107. Conventionally, the noise level has increased for a certain period of time, but in this embodiment, the quick freezing control is performed around 0 ° C to -5 ° C, which is the maximum ice crystal formation zone. The time can be shortened by 30 minutes or more with respect to the conventional quick freezing control time.
 なお、本実施の形態では、急凍制御の設定温度として上限および下限温度を設定しているが、設定温度経過後に一定時間(例えば3分間)の予備検知期間を設けて、食品121投入後の温度挙動を検知することで食品投入とドア開閉のみとの切り分けを行うことが可能である。特に、近年の世界的な材料費高騰や鉱物不足によりドアスイッチ等のドア開閉を検出する部品やハーネス等の部品は高価となっており、また、ドアスイッチの追加により制御の複雑化も懸念される。そのため予備検知期間を設けることで、ドアスイッチ機構を用いる必要がないので省資源化にもつながる。 In this embodiment, the upper limit and the lower limit temperature are set as the set temperatures for the quick freezing control. However, after the set temperature has elapsed, a preliminary detection period of a certain time (for example, 3 minutes) is provided, By detecting the temperature behavior, it is possible to distinguish between food input and door opening / closing only. In particular, parts such as door switches that detect opening and closing of doors and parts such as harnesses are expensive due to rising global material costs and mineral shortages in recent years, and there is a concern that the addition of door switches will complicate control. The Therefore, by providing a preliminary detection period, it is not necessary to use a door switch mechanism, which leads to resource saving.
 なお、急凍制御中は、例えば前面のドア部分にユーザーに表示する急凍制御中のランプ等を点灯させることで、自動急凍制御による簡便性を明示することができる。 It should be noted that during quick freezing control, for example, the convenience of automatic quick freezing control can be clearly indicated by turning on a lamp during quick freezing control that is displayed to the user on the front door.
 なお、急凍制御中は、最大氷結晶生成帯の温度検知期間を中心に一時的に圧縮機117の回転数を上昇させているが、外気温によって圧縮機117の回転数の上限を決定しておくことで圧縮機117の低圧側の圧力保護を行うことができる。本実施の形態では、例えば外気温が15℃の場合は圧縮機117の最高回転数は69Hzとするように中外気温や低外気温の場合では、従来の圧縮機117の回転数である80Hzよりも低減させている。 During the quick freezing control, the rotation speed of the compressor 117 is temporarily increased mainly in the temperature detection period of the maximum ice crystal formation zone, but the upper limit of the rotation speed of the compressor 117 is determined by the outside air temperature. Thus, pressure protection on the low pressure side of the compressor 117 can be performed. In the present embodiment, for example, when the outside air temperature is 15 ° C., the maximum rotation speed of the compressor 117 is 69 Hz. When the outside air temperature is medium or low outside air temperature, the rotation speed of the conventional compressor 117 is 80 Hz. Has also been reduced.
 また、近年の冷凍サイクルの冷媒としては、地球環境保全の観点から地球温暖化係数が小さい可燃性冷媒であるイソブタンが使用されている。この、炭化水素であるイソブタンは空気と比較して常温、大気圧下で約2倍の比重である(2.04、300Kにおいて)。仮に、圧縮機117の停止時に冷凍システムから可燃性冷媒であるイソブタンが漏洩した場合には、空気よりも重いので、下方に漏洩することになる。特に、冷媒の滞留量が多い冷却器107から漏洩する場合には、漏洩量が多くなる可能性があるが、赤外線センサー128を配置した上段冷凍室103は、冷却器107より上方に設置されているため、漏洩しても上段冷凍室103には漏洩することがない。また、仮に上段冷凍室103に漏洩したとしても、冷媒は空気より重いため貯蔵室下部に滞留する。よって、赤外線センサー128が貯蔵室天面に設置されているため、赤外線センサー128付近が可燃濃度になることは極めて低い。 In addition, isobutane, which is a flammable refrigerant with a small global warming potential, is used as a refrigerant in recent refrigeration cycles from the viewpoint of global environmental conservation. This isobutane, which is a hydrocarbon, has a specific gravity approximately twice that at normal temperature and atmospheric pressure compared with air (at 2.04 and 300K). If isobutane, which is a combustible refrigerant, leaks from the refrigeration system when the compressor 117 is stopped, it leaks downward because it is heavier than air. In particular, when the refrigerant leaks from the cooler 107 with a large amount of refrigerant, the amount of leakage may increase, but the upper freezer compartment 103 in which the infrared sensor 128 is disposed is installed above the cooler 107. Therefore, even if it leaks, it does not leak into the upper freezer compartment 103. Even if the refrigerant leaks into the upper freezer compartment 103, the refrigerant is heavier than air and stays in the lower part of the storage compartment. Therefore, since the infrared sensor 128 is installed on the top of the storage room, it is extremely low that the vicinity of the infrared sensor 128 becomes a flammable concentration.
 また、食品121の温度をさらに精度良く検知するために、食品投入された後に食品121の面積を検知し、食品121の面積に応じて赤外線センサー128の検知視野角度を調整することで精度の向上を図ることができる。特に食品121の投入後に、周囲と温度差が異なる部分を検知対象として視野角度の調整を行うことができれば、食品面積を検知するよりもコストパフォーマンスが高い検知精度の向上を行うことができる。 Further, in order to detect the temperature of the food 121 with higher accuracy, the area of the food 121 is detected after the food is added, and the detection viewing angle of the infrared sensor 128 is adjusted according to the area of the food 121, thereby improving the accuracy. Can be achieved. In particular, if the viewing angle can be adjusted with a portion having a temperature difference from the surroundings as a detection target after the food 121 is introduced, the detection accuracy with higher cost performance than the detection of the food area can be improved.
 (実施の形態8)
 本実施の形態においては、実施の形態1から7で説明した構成および技術思想と同一の部分については詳細な説明を省略する。実施の形態1から7で記載した内容と同様の技術思想が適用できる構成については実施の形態1から7で記載した技術内容および構成と組合せた構成を実現することが可能である。
(Embodiment 8)
In the present embodiment, detailed description of the same parts as the configurations and technical ideas described in the first to seventh embodiments will be omitted. With respect to a configuration to which the same technical idea as the content described in the first to seventh embodiments can be applied, a configuration combined with the technical content and the configuration described in the first to seventh embodiments can be realized.
 図10は、本発明の実施の形態8における冷蔵庫の一部拡大側面断面図である。図10において、赤外線センサー228が検知する面すなわち食品載置部の第三の断熱仕切り部212をなくすことで、食品載置部すなわち蓄冷剤242を上側と下側の両側から冷却を行うことができる。これによって、上段冷凍室203に投入した食品221を、下段冷凍室205を冷却する冷気で下段からも冷却することができるため第三の断熱仕切り部212がある場合に加えて格段に冷却スピードを向上することが可能となる。食品221は凍結時に0℃~-5℃の最大氷結晶生成帯を短時間で通過すると細胞の破壊が少ないことが知られているため、第三の断熱仕切り部212をなくし食品221を上下から冷却することは食品保存にとって非常に効果的である。 FIG. 10 is a partially enlarged side sectional view of the refrigerator according to the eighth embodiment of the present invention. In FIG. 10, by removing the surface detected by the infrared sensor 228, that is, the third heat-insulating partition portion 212 of the food placement portion, the food placement portion, that is, the cold storage agent 242 can be cooled from both the upper side and the lower side. it can. As a result, the food 221 introduced into the upper freezer compartment 203 can be cooled from the lower stage with the cool air that cools the lower freezer compartment 205, so that the cooling speed is significantly increased in addition to the case where the third heat insulating partition 212 is provided. It becomes possible to improve. Since it is known that the food 221 passes through the maximum ice crystal formation zone of 0 ° C. to −5 ° C. in a short time when frozen, there is little destruction of the cells. Cooling is very effective for food preservation.
 さらに、本実施の形態では、上段冷凍室203のケース内に蓄冷剤242を取り付けたことによって、冷却器207で生成された約-40℃の冷気による熱伝達での冷凍効果に加え、凍結している蓄冷剤242からの直接の伝熱すなわち熱伝導による冷凍効果も加わるため、最大氷結晶生成帯を通過する時間がさらに早くなるとともに食品解凍時における食品221からのドリップ量が減らせられるのでさらに食品保存の向上を図ることができる。 Furthermore, in this embodiment, by attaching the regenerator 242 in the case of the upper freezer compartment 203, in addition to the freezing effect in the heat transfer by the cold air of about −40 ° C. generated in the cooler 207, the freezing Since the freezing effect by direct heat transfer from the cool storage agent 242, that is, heat conduction is also added, the time for passing through the maximum ice crystal formation zone is further shortened and the amount of drip from the food 221 at the time of thawing the food can be further reduced. The food preservation can be improved.
 特に蓄冷剤242からの冷却によって食品221が冷却されるとともに、ケースである容器227内が蓄冷剤242がない場合よりも低温に保たれるため、食品221を短時間に冷却できるので冷蔵庫の冷却運転時間の低減を図れて省エネになるとともに食品221の保鮮性向上を図ることができる。 In particular, the food 221 is cooled by the cooling from the cold storage agent 242, and the inside of the container 227 is kept at a lower temperature than the case where there is no cold storage agent 242, so that the food 221 can be cooled in a short time, so that the refrigerator is cooled. The operation time can be reduced to save energy, and the freshness of the food 221 can be improved.
 また、蓄冷剤242を配置していることで、食品221が投入されていないときでもドア開閉時における外気の流入があった場合でも、外気流入の熱負荷を蓄冷剤242が吸熱するため庫内の温度上昇を抑えることができる。 In addition, since the cool storage agent 242 is arranged, the cool storage agent 242 absorbs the heat load of the outside air inflow even when the food 221 is not inserted or when the outside air flows in when the door is opened or closed. Temperature rise can be suppressed.
 (実施の形態9)
 本実施の形態においては、実施の形態1から8で説明した構成および技術思想と同一の部分については詳細な説明を省略する。実施の形態1から8で記載した内容と同様の技術思想が適用できる構成については、実施の形態1から8で記載した技術内容および構成と組合せた構成を実現することが可能である。
(Embodiment 9)
In the present embodiment, detailed description of the same parts as the configurations and technical ideas described in the first to eighth embodiments will be omitted. For a configuration to which the same technical idea as the content described in the first to eighth embodiments can be applied, a configuration combined with the technical content and the configuration described in the first to eighth embodiments can be realized.
 図11は、本発明の実施の形態9による冷蔵庫の側面断面図である。図11において、上段冷凍室403と下段冷凍室405を含む冷凍温度帯と、冷蔵室402と野菜室406を含む冷蔵温度帯を各々の蒸発温度の異なる冷凍用冷却器414と冷蔵用冷却器415で冷却したものである。これによって天面に赤外線センサー425を備えた上段冷凍室403の蓄冷剤426を底面に収めたケース427内に投入された食品421は、冷凍温度帯の冷凍用冷却器414の冷凍能力に対する冷却負荷量が低減できるため、冷凍用冷却器414発温度を低下させることができ、第一および第二の吐出口432、433からの吐出冷気の温度も低下させることができるので食品421を凍結させる能力を上げることができる。これによって食品421の凍結時間も短縮できるので、消費電力量の低減を図ることができる。 FIG. 11 is a side sectional view of a refrigerator according to the ninth embodiment of the present invention. In FIG. 11, a freezing temperature zone including the upper freezing chamber 403 and the lower freezing chamber 405, and a freezing temperature zone including the refrigerating room 402 and the vegetable room 406, a freezing cooler 414 and a refrigerating cooler 415 having different evaporation temperatures. It was cooled with. As a result, the food 421 introduced into the case 427 in which the regenerator 426 of the upper freezer compartment 403 having the infrared sensor 425 on the top surface is stored on the bottom surface is a cooling load for the freezing capacity of the freezing cooler 414 in the freezing temperature zone. Since the amount can be reduced, the temperature generated by the refrigeration cooler 414 can be lowered, and the temperature of the discharged cold air from the first and second outlets 432 and 433 can also be lowered, so that the food 421 can be frozen. Can be raised. As a result, the freezing time of the food 421 can be shortened, so that the amount of power consumption can be reduced.
 以上のように、本発明にかかる冷蔵庫は、赤外線センサーを用いて食品温度を検知する際に検知する面の温度帯と延長線上の温度帯を同温度としたので、これによって扉開閉時に検知誤差を低減できることになる。 As described above, the refrigerator according to the present invention sets the temperature zone of the surface to be detected when detecting the food temperature using the infrared sensor and the temperature zone on the extension line to the same temperature. Can be reduced.
 さらに、赤外線センサーが設置された貯蔵室に投入される食品の温度を検知して自動で急凍制御に入り、最大氷結晶生成帯の時間帯を中心に冷却能力の向上を自動で行い、自動で急凍制御の解除を行うので、冷蔵庫の負荷量に応じた冷却運転で行うことができるためエコロジーで高効率な冷却が可能となり、食品温度を検知する冷凍機器全般にも適用できる。 In addition, it detects the temperature of the food put into the storage room where the infrared sensor is installed and automatically enters quick freezing control, automatically improving the cooling capacity mainly in the time zone of the maximum ice crystal formation zone, automatically Since the quick freezing control is canceled at, the cooling operation according to the load amount of the refrigerator can be performed, so that eco-friendly and highly efficient cooling is possible, and it can be applied to all refrigeration equipment for detecting food temperature.

Claims (11)

  1. 複数の断熱区画により複数の温度帯で構成された断熱箱体と、
    前記断熱箱体で断熱区画され食品の温度を検知する非接触センサーが設置された貯蔵室と、
    前記貯蔵室の前記非接触センサーを始点として前記非接触センサーの検知する方向の投影線上に隣接する隣接貯蔵室とを備え、
    前記非接触センサーが設置された貯蔵室と前記隣接貯蔵室は同温度帯もしくは前記非接触センサーが設置された貯蔵室よりも前記隣接貯蔵室の方が低温度帯であることを特徴とする冷蔵庫。
    A heat insulation box constituted of a plurality of temperature zones by a plurality of heat insulation compartments;
    A storage room in which a non-contact sensor for detecting the temperature of food that is insulated by the heat insulation box is installed, and
    An adjacent storage chamber adjacent to the projection line in the direction detected by the non-contact sensor, starting from the non-contact sensor of the storage chamber,
    The refrigerator in which the non-contact sensor is installed and the adjacent storage chamber are in the same temperature range or the adjacent storage chamber is in a lower temperature zone than the storage chamber in which the non-contact sensor is installed. .
  2. 前記非接触センサーは赤外線センサーであり、前記貯蔵室内の比較的温度の高い部分に設置されたことを特徴とする請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the non-contact sensor is an infrared sensor, and is installed in a relatively high temperature portion in the storage chamber.
  3. 前記隣接貯蔵室の温度帯よりも高い温度帯である保存室を備え、前記赤外線センサーは前記保存室の近傍に設置されたことを特徴とする請求項2に記載の冷蔵庫。 The refrigerator according to claim 2, further comprising a storage room having a temperature range higher than a temperature range of the adjacent storage room, wherein the infrared sensor is installed in the vicinity of the storage room.
  4. 前記赤外線センサーは、前記貯蔵室と保存室とを断熱区画する断熱仕切り部に設置されたことを特徴とする請求項2または請求項3に記載の冷蔵庫。 4. The refrigerator according to claim 2, wherein the infrared sensor is installed in a heat insulating partition that heat-insects the storage room and the storage room. 5.
  5. 前記赤外線センサーは先端が前記断熱仕切り部の表面または表面より内側に設置されことを特徴とする請求項4に記載の冷蔵庫。 The refrigerator according to claim 4, wherein a tip of the infrared sensor is installed on a surface of the heat insulating partition or on an inner side of the surface.
  6. 前記赤外線センサーを設置した前記貯蔵室の温度帯が冷凍温度帯であることを特徴とする請求項2または請求項3に記載の冷蔵庫。 The refrigerator according to claim 2 or 3, wherein a temperature zone of the storage room in which the infrared sensor is installed is a freezing temperature zone.
  7. 前記赤外線センサーの検知する視野角度が55°以下であることを特徴とする請求項2または請求項3に記載の冷蔵庫。 The refrigerator according to claim 2 or 3, wherein a viewing angle detected by the infrared sensor is 55 ° or less.
  8. 前記赤外線センサーの検知する面の視野範囲に視野範囲よりも小さい目印を設けたことを特徴とする請求項2または請求項3に記載の冷蔵庫。 The refrigerator according to claim 2 or 3, wherein a mark smaller than the visual field range is provided in the visual field range of the surface detected by the infrared sensor.
  9. 食品載置部に載置された食品の表面温度を検知する非接触センサーが設置された貯蔵室と、
    前記貯蔵室を冷却する冷却手段と、
    前記貯蔵室の冷却を高冷却能力で行う急凍制御手段とを有し、
    前記食品載置部は蓄熱機能を有するとともに、前記非接触センサーが検知した温度が予め設定した開始温度よりも高ければ、高冷却能力で冷却を行う急凍制御手段によって急凍制御が自動的に開始され、予め設定した終了温度に到達した時点で前記急凍制御手段による急凍制御を停止することを特徴とする冷蔵庫。
    A storage room in which a non-contact sensor that detects the surface temperature of the food placed on the food placement unit is installed;
    Cooling means for cooling the storage chamber;
    And quick freezing control means for cooling the storage room with a high cooling capacity,
    The food placing portion has a heat storage function, and if the temperature detected by the non-contact sensor is higher than a preset start temperature, the quick freezing control is automatically performed by the quick freezing control means for cooling with a high cooling capacity. The refrigerator is characterized in that the quick freezing control by the quick freezing control means is stopped when the temperature reaches a preset end temperature.
  10. 非接触センサーは赤外線センサーであり、食品載置部と対向する側の貯蔵室壁面に備えられているとともに前記貯蔵室は冷凍温度帯にのみ設定可能な冷凍室であることを特徴とする請求項9に記載の冷蔵庫。 The non-contact sensor is an infrared sensor, and is provided on a wall surface of a storage room facing the food placement unit, and the storage room is a freezing room that can be set only in a freezing temperature zone. 9. The refrigerator according to 9.
  11. 急凍制御手段によって急凍制御が自動的に開始される温度帯は、赤外線センサーが検知する温度の内0℃~-5℃の検知温度を含むことを特徴とする請求項10に記載の冷蔵庫。 11. The refrigerator according to claim 10, wherein the temperature range where the quick freeze control is automatically started by the quick freeze control means includes a detected temperature of 0 ° C. to −5 ° C. among the temperatures detected by the infrared sensor. .
PCT/JP2009/001108 2008-03-14 2009-03-12 Refrigerator WO2009113308A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09718682.9A EP2267388B1 (en) 2008-03-14 2009-03-12 Refrigerator
CN2009801089058A CN101970961B (en) 2008-03-14 2009-03-12 Refrigerator

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008-065412 2008-03-14
JP2008065412 2008-03-14
JP2008157758A JP2009300053A (en) 2008-06-17 2008-06-17 Refrigerator
JP2008-157758 2008-06-17
JP2008179851 2008-07-10
JP2008-179851 2008-07-10
JP2008-234697 2008-09-12
JP2008234697A JP2010038524A (en) 2008-03-14 2008-09-12 Refrigerator

Publications (1)

Publication Number Publication Date
WO2009113308A1 true WO2009113308A1 (en) 2009-09-17

Family

ID=43234245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001108 WO2009113308A1 (en) 2008-03-14 2009-03-12 Refrigerator

Country Status (3)

Country Link
EP (1) EP2267388B1 (en)
CN (1) CN101970961B (en)
WO (1) WO2009113308A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113608597A (en) * 2021-08-10 2021-11-05 南京信息工程大学 Computer equipment based on humiture automatically regulated
CN114111199A (en) * 2020-08-31 2022-03-01 青岛海尔电冰箱有限公司 Control method of refrigerator
CN114111162A (en) * 2020-08-31 2022-03-01 青岛海尔电冰箱有限公司 Refrigerator and control method thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471308A (en) * 2013-09-23 2013-12-25 马晓璐 Quick cooling cabinet
CN103803498B (en) * 2014-03-07 2016-08-24 青岛盛腾节能科技有限公司 Monolayer bag windshield ozone generating-device
CN104006606B (en) * 2014-06-16 2017-07-28 合肥晶弘电器有限公司 A kind of refrigerator and control method with wink freezing function
CN104075519A (en) * 2014-07-22 2014-10-01 合肥晶弘电器有限公司 Refrigerator with warm-keeping chamber and temperature controlling method of warm-keeping chamber
CN104879985B (en) * 2015-05-21 2017-12-08 青岛海尔股份有限公司 Refrigerator
CN104879983B (en) * 2015-05-21 2018-03-23 青岛海尔股份有限公司 Refrigerator
CN106813454A (en) * 2015-11-30 2017-06-09 青岛海尔智能技术研发有限公司 Article refrigerates monitoring method and refrigeration plant
CN105652917B (en) * 2016-01-06 2018-11-27 罗诚 A kind of cold store temperature control method based on unmanned plane infrared measurement of temperature
CN105487577A (en) * 2016-01-06 2016-04-13 陈星宏 Unmanned aerial vehicle infrared temperature measurement-based refrigerated warehouse temperature control system
CN105807821A (en) * 2016-03-16 2016-07-27 益阳胜希机械设备制造有限公司 Brick tea drying room control device and method
CN105759878A (en) * 2016-03-16 2016-07-13 益阳胜希机械设备制造有限公司 Brick tea drying room control device and method
TWI704323B (en) * 2016-04-19 2020-09-11 日商日立環球生活方案股份有限公司 refrigerator
CN106094926A (en) * 2016-06-16 2016-11-09 苏州浙远自动化工程技术有限公司 A kind of extraction of traditional Chinese medicine temperature precise control device and method
CN106200729A (en) * 2016-08-31 2016-12-07 四川中测量仪科技有限公司 A kind of Full-automatic black tea fermentation control model
CN107036370B (en) * 2017-03-28 2020-12-15 青岛海尔特种电冰柜有限公司 Refrigeration device
CN110044115A (en) * 2018-01-16 2019-07-23 众智光电科技股份有限公司 Refrigerator
CN112525254B (en) * 2020-11-06 2022-02-22 浙江海洋大学 Monitoring device for tuna transportation in ultralow temperature environment
CN112460901B (en) * 2020-11-18 2021-11-16 珠海格力电器股份有限公司 Refrigerator dehumidification control method and device and air-cooled refrigerator
CN112984947B (en) * 2021-03-08 2021-11-02 上海绿联智能科技股份有限公司 Temperature control method and device for refrigerator and intelligent control storage medium
JP2023034788A (en) * 2021-08-31 2023-03-13 アクア株式会社 refrigerator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185847A (en) * 1992-12-18 1994-07-08 Matsushita Refrig Co Ltd Refrigerator
JP2002228353A (en) * 2001-01-29 2002-08-14 Toshiba Corp Cooling cooking chamber
JP2002235976A (en) * 2001-02-09 2002-08-23 Toshiba Corp Refrigerator
JP3454522B2 (en) 1992-03-27 2003-10-06 三洋電機株式会社 Refrigerator quick cooling control device
JP2005308294A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Freezer/refrigerator
JP2006308504A (en) * 2005-05-02 2006-11-09 Ishizuka Electronics Corp Infrared ray detector
JP2007212053A (en) 2006-02-09 2007-08-23 Toshiba Corp Refrigerator
JP2008107069A (en) * 2006-09-27 2008-05-08 Sanyo Electric Co Ltd Cooling storage

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800900B2 (en) * 1999-09-09 2006-07-26 三菱電機株式会社 Refrigerating refrigerator, operation method of freezing refrigerator
JP2003075050A (en) * 2001-09-05 2003-03-12 Toshiba Corp Refrigerator
CN100343602C (en) * 2003-08-25 2007-10-17 乐金电子(天津)电器有限公司 Two door refrigerator having temperature changing chamber
JP2005201533A (en) * 2004-01-15 2005-07-28 Matsushita Electric Ind Co Ltd Storage

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3454522B2 (en) 1992-03-27 2003-10-06 三洋電機株式会社 Refrigerator quick cooling control device
JPH06185847A (en) * 1992-12-18 1994-07-08 Matsushita Refrig Co Ltd Refrigerator
JP2002228353A (en) * 2001-01-29 2002-08-14 Toshiba Corp Cooling cooking chamber
JP2002235976A (en) * 2001-02-09 2002-08-23 Toshiba Corp Refrigerator
JP2005308294A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Freezer/refrigerator
JP2006308504A (en) * 2005-05-02 2006-11-09 Ishizuka Electronics Corp Infrared ray detector
JP2007212053A (en) 2006-02-09 2007-08-23 Toshiba Corp Refrigerator
JP2008107069A (en) * 2006-09-27 2008-05-08 Sanyo Electric Co Ltd Cooling storage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111199A (en) * 2020-08-31 2022-03-01 青岛海尔电冰箱有限公司 Control method of refrigerator
CN114111162A (en) * 2020-08-31 2022-03-01 青岛海尔电冰箱有限公司 Refrigerator and control method thereof
CN113608597A (en) * 2021-08-10 2021-11-05 南京信息工程大学 Computer equipment based on humiture automatically regulated
CN113608597B (en) * 2021-08-10 2023-05-12 南京信息工程大学 Computer equipment based on humiture automatic regulating

Also Published As

Publication number Publication date
EP2267388A1 (en) 2010-12-29
EP2267388B1 (en) 2019-09-11
EP2267388A4 (en) 2012-05-23
CN101970961A (en) 2011-02-09
CN101970961B (en) 2013-03-06

Similar Documents

Publication Publication Date Title
WO2009113308A1 (en) Refrigerator
JP5402779B2 (en) refrigerator
JP4367569B1 (en) refrigerator
JP5391250B2 (en) Refrigerator and freezer
JP5017340B2 (en) refrigerator
US20140216706A1 (en) Humidity control sensor for a refrigerator
US20100326096A1 (en) Control sytem for bottom freezer refrigerator with ice maker in upper door
US10281187B2 (en) Ice making method and system for refrigerator appliance
EP2267387A1 (en) Refrigerator
JP2008249292A (en) Refrigerator
WO2013084460A1 (en) Refrigerator
JP2012127514A (en) Refrigerator-freezer
JP2005172303A (en) Refrigerator
JP2008057919A (en) Refrigerator
JP4367571B1 (en) refrigerator
JP4367564B2 (en) refrigerator
US11549740B2 (en) Refrigerator and controlling method for the same
WO2018020653A1 (en) Freezer-refrigerator
JP2009300053A (en) Refrigerator
US10429863B2 (en) Systems and methods for refrigerator control
JP5376796B2 (en) refrigerator
US20230266047A1 (en) Method for operating a domestic refrigerator, and domestic refrigerator
WO2023030185A1 (en) Refrigerator
JP2018004121A (en) Refrigerator
JP6862094B2 (en) refrigerator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108905.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718682

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009718682

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE