WO2009108032A1 - Plant and method for the simultaneous treatment of wastewater and generated sludge - Google Patents

Plant and method for the simultaneous treatment of wastewater and generated sludge Download PDF

Info

Publication number
WO2009108032A1
WO2009108032A1 PCT/MX2008/000029 MX2008000029W WO2009108032A1 WO 2009108032 A1 WO2009108032 A1 WO 2009108032A1 MX 2008000029 W MX2008000029 W MX 2008000029W WO 2009108032 A1 WO2009108032 A1 WO 2009108032A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
sludge
plant
tank
compartment
Prior art date
Application number
PCT/MX2008/000029
Other languages
Spanish (es)
French (fr)
Inventor
Heriberto Laguna Garcia
Original Assignee
Heriberto Laguna Garcia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heriberto Laguna Garcia filed Critical Heriberto Laguna Garcia
Priority to PCT/MX2008/000029 priority Critical patent/WO2009108032A1/en
Publication of WO2009108032A1 publication Critical patent/WO2009108032A1/en
Priority to MX2010009549A priority patent/MX2010009549A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to the technical field of wastewater treatment, since it provides a plant and a method for the simultaneous treatment of wastewater and the sludge they generate.
  • the activated sludge process is not applicable when there is no staff available that can attend to it in a constant and competent way, due to the mechanical equipment that must be done function and conserve, as well as the chemical, physical and biological nature of the process. Nitrification and denitrification is not carried out, causing the consequences of negative environmental impact.
  • the volume of sludge produced is greater than that obtained in any other process, except perhaps in chemical treatment, and the sludge is difficult to treat.
  • Municipal or black wastewater treatment plants based on activated sludge, currently known, comprise basic minimum components, such as screening, sanding, fat and oil extraction, sedimentation, and non-stabilized sludge extractors.
  • patent application JP 2001087761 describes a method for treating wastewater with organic waste, by means of aeration, recirculation and separation of sludge; 1
  • this method does not contemplate a stage to eliminate fats and oils, it does not treat, at the same time, the sludge generated from the waters being treated. Therefore, to counteract the aforementioned drawbacks, a plant and a method were developed to treat, at the same time, the wastewater and its generated sludge, which are described below.
  • Figure 1 is a top view of the plant already integrated, to simultaneously treat wastewater and generated sludge, of the present invention.
  • Figure 2 is a top view of a sieve and a sand trap of the plant of this invention.
  • Figure 3 is cross section AA 'of the sieve and the dewatering machine, of the plant of this invention, illustrated in Figure 2.
  • Figure 4 is a top view of a homogenizing tank of the plant in question, where its distribution box.
  • Figure 5 is a longitudinal section B-B 'of the homogenizing tank, of the plant of the present invention.
  • Figure 6 is a cross-section C-C of the homogenizing tank, of the plant of the present invention.
  • Figure 7 is a top view of the biological reactor of the plant of this invention.
  • Figure 8 is a cross section DD 'of the biological reactor of the plant in question.
  • Figure 9 is a longitudinal section EE 'of the biological reactor of the plant in question.
  • Figure 10 is a top view of the sedimentation and pouring section of the plant for treating sewage and sludge, of this invention.
  • Figure 11 is a longitudinal section FF 'of the sedimentation and pouring section of the plant for treating sewage and sludge, of this invention.
  • Figure 12 is a cross-section GG 'of the sedimentation section and the deflector, of the plant for treating sewage and sludge, of this invention.
  • Figure 13 is a top plan view of the disinfection area that constitutes the plant in question.
  • Figure 14 is a longitudinal section I-I 'of the disinfection area.
  • Figure 15 is a cross section H-H 'of the disinfection area.
  • Figure 16 is a top plan view of the sludge digester, which makes up this plant.
  • Figure 17 is a section JJ 'of the digester of Figure 16.
  • Figure 18 is a section KK' of the digester illustrated in Figure 16.
  • Figure 19 is a conventional perspective view of the landfill, where its container and part of its screen.
  • Figure 20 is a longitudinal section L-L 'of the complete plant for treating wastewater and sludge generated from said invention.
  • Figure 21 is a top plan view of the plant in question, where several of its components can be seen.
  • Figure 22 is a front view of a section of the aeration system, where the arrangement of a diffuser is appreciated.
  • the plant to simultaneously treat wastewater and its generated sludge consists of at least: A conventional sieve 1, to eliminate the floating matter, consisting of garbage, wood, plastics, or other similar materials, which are dragged by the water to be treated and that could interfere with the treatment procedure.
  • An aeration system consisting of: at least one blower 5, to capture atmospheric air and distribute it, in the areas of the plant where, at least, a distribution tube 8 is needed, which is generally in position horizontal; which has, at least, a downpipe 8 'to lower the air, which in turn, at its lower end carries perpendicularly an air diffuser 6, which is being a closed cylindrical hollow tube but with two rows of perforations 20 , located diametrically opposed to each other, that cover the entire length of said tube. The distance and the number of perforations is variable in each diffuser 6, which depends on the amount of air required.
  • Said aeration system comprises, at least, an air control valve 37 located at the junction of the distribution tube 8 and the downpipe 8 'to control the air flow.
  • a sand trap 2 to eliminate sedimentable solids, to protect the equipment that constitutes the plant, in question.
  • Said sand trap is a container divided into two compartments, by means of a dividing wall 41.
  • the first compartment 44 concentrates the sands and the second 45 serves to extract them from the plant.
  • the sands concentrator compartment 44 has a bottom with a slope 46 that declines towards the dividing wall 41, to concentrate the sands at that point; and in the upper part a crockery 47 is fixed that is fixed in the dividing wall 41 to support, apart from the screens 1, a vertical screen 18 that retains the floating matter that manages to pass through the screens 1.
  • the dividing wall has a lower perforation (not illustrated) where a conduit 15 is connected which conducts the water to a homogenizing tank 3 and an upper perforation 43 to return, to the first compartment 44, the water that rises beyond the tube 15.
  • the crockery 47 must allow Ia inlet of one or more downpipes 8 'with their respective diffusers 6, for the introduction of compressed air coming from the aeration system, to wash the sands; as well as the introduction, at the point where the sands are concentrated, of a pneumatic extraction tube 42 and a first pneumatic pump 21, which transfer the sands to the second compartment 45, where the pneumatic extraction tube 42 is actuated by the aeration system.
  • the sands fall to the bottom of the second compartment 45, to be extracted from the plant with the help of an electric pump 17 and a sand lift tube 48.
  • the homogenizer tank 3 has a perforation at the same height as the lower perforation of the dividing wall 41, where the duct 15 is connected to receive the water that comes from the sand trap 2, it being recommended that the duct be located at a minimum height of 1.5 m, from the base of the homogenizer tank 3, to obtain a minimum level of water that allows the operation of the plant (NOP, level of operation) and also prevents the backflow of the water towards the sand trap 2.
  • NOP level of operation
  • Said tank 3 it is fed with compressed air that comes from the aeration system already described; Therefore, in this tank there is at least one air diffuser 6 at the bottom to mix the newly arrived water with the sludge and the fats and oils, which may already exist in the tank 3.
  • a submersible pump 7 to raise the water by means of the lifting pipes 9, to a distribution box 4, located in the upper part of the tank, either inside or outside; where said box 4 has inside it a tube passed, and longitudinally grooved 10 located transversely towards the end of the discharge of the flow of said box 4, the tube being subject to the side walls of the box 4, but without being fixed, due to which it is necessary for the tube 10 to have a rotating movement on its own axis to calibrate it according to the level of the water contained in the box 4.
  • the homogenizing tank can be rectangular or square prismatic, although this shape may vary depending on the terrain where said plant is built; and it may be closed or open in its upper part, which depends on the climatic conditions of the region. Because the fats and oils are located in the upper part, these are collected by entering the slot 11 of said tube 10 and are returned to the homogenizing tank 3 through the ends of the last tube 10, so that the length of said tube 10 is slightly larger than the width of the box 4, so that only the layer of grease and oils is returned to the homogenizing tank 3 by gravity and the lower layers flow into a biological reactor 13, through a rectangular pourer 14 of discharge located at least 60 cm from the base of the discharge end of the distribution box 4.
  • the biological reactor 13 comprises at least one compartment that basically consists of a rectangular container, preferably; where at least, in one of its longitudinal lower edges there is a longitudinal chamfer 16.
  • the compressed air required in this reactor 13 is supplied by the aeration system already mentioned, it being important to indicate what, in this case, the distribution pipes 8 and the introduction tubes 8 'are placed on the side where the chamfer 16 is located, such that the air bubbles leaving the holes 20 on the side of the diffuser 6 towards the chamfer 16 collide with it, causing them to fragment and causing micro bubbles, so that oxygen is easily dissolved with water; while, the air bubbles that come out on the other side of the diffuser 6 do not fragment, so they are larger and cause a circular movement of the water body in a transverse direction, with respect to the width of the reactor compartment 13 , preventing the micro bubbles from dissipating rapidly outside the water, thereby achieving longer retention time, for a better dissolution of oxygen.
  • the reactor 13 has an opening 29 at a height of at least 80 cm, which is where the water is discharged into a sedimentation section 23.
  • the sedimentation section 23 is a container with an inverted pyramidal bottom, which comprises a deflector 24 placed perpendicularly, in front of the outlet 29 of the reactor 13, so that the flow of water coming from said reactor collides with the deflector 24, causing a decrease in the flow velocity and a separation of the phases thereof, that is, the heavy solids move towards the bottom of the deflector, rushing to the bottom of the settler and the light matter rises through said deflector so that an undesirable floating matter separation occurs.
  • a second pneumatic pump 25 is placed to extract the precipitated sludge by means of a lifting pipe 26 and transport them to: the first compartment (if there is more than one) of the biological reactor 13, homogenizer 3 and the sieve 1, in a proportion of 85, 10 and 5%, respectively, with the aid of a sludge return duct 19 provided with valves 12 for the control of the quantity and direction of said sludge.
  • the pneumatic pump is injected with compressed air that comes from the aeration system already referenced, in such a way that a vacuum is caused by the Venturi effect and the mud rises through the lifting pipe 26.
  • a spout is placed, which can be attached to the walls of the construction of this section or even by some other means of attachment.
  • the pourer consists of a rectangular container 27 open at its top, whose upper side edges are cut into vertical cuts in "V" shapes 30 to a depth of one third, with respect to the height of said container, but leaving a separation between each cut
  • a perimeter screen 28 surrounds the container 27, at a 40% separation of the width of the pourer, so that the floating matter that managed to pass the first deflector 24, is stopped, and as the heavy matter continues to precipitate, then through the lower part of The perimeter screen 28 passes the more clarified water into the interior of the pourer 27 through the cuts in "V" shapes 30.
  • the pourer must be submerged until the vertex of the "V" cut is at the water level (NOP) , so that all the water that rises from the vertex, enters said container.
  • NOP water level
  • a disinfection area 32 conventional, where the water is disinfected with a disinfectant product, to eliminate those pathogenic micro-organisms that survived the treatment process.
  • compressed air from the aeration system described is introduced, to mix the disinfectant with the clarified water and eliminate the residual surplus in those disinfectants that produce waste, for this it requires some baffles or screen 39 placed in the form of zigzag ( Figure 13 and 14).
  • the treated water exits through an outlet duct 40 to be stored in a cistern (not shown), or sent to a direct disposal of the water obtained.
  • the plant includes a digester tank 34 of the inert mineralized sludge, which is located near the sedimentation section 23 and is similar in construction to a biological reactor 13, but of smaller dimensions; Therefore, it has been a small biological reactor that will reduce, by up to 99%, the fraction of "young" biological sludge that was not reduced in the main biological reactor 13.
  • Said digester 34 has, internally and inferiorly, at least one pneumatic pump 33 to extract the inert sludge and conduct them by means of a sludge lift tube 35 to a drying area 36, where the sludge dries and is ready to be used as an improver. of crop soils, among other uses.
  • the drying area 36 the sludge is dried, with a drying system, such as centrifuge ?, or optionally dried outdoors, for which a drying bed is added.
  • the wastewater treatment plant in question works as follows: the wastewater from the drainage reaches the screener 1, where all floating matter is removed, and then passed to the sand trap 2, where the sands are concentrated by gravity at the bottom of the first compartment 44 of the sand trap, which are washed by the compressed air thrown by the diffuser 6, and then transferred to the second compartment 45, with the help of the first pneumatic pump 21 and the pneumatic sand extraction tube 42 and finally they are extracted from the plant.
  • the raw water passes to the homogenizer tank, through the duct 15, to be aerated with the compressed air provided by the diffuser 6, in order to mix all the flows that in the homogenizer concentrate, starting here the process of oxidation of the matter and obtain a liquor of all this mixture.
  • the liquor is lifted by the submersible electric pump 7 and the lifting pipe 9, to the distribution box 4, so that the separation of fats and oils is carried out, with the help of the collecting tube 10, thanks to its longitudinal groove 11 , so that said tube must be submerged, approximately 0.5 cm; in such a way that a 0.5 cm thick layer is captured by the slot 11 of the collecting tube 10 and returned to the homogenizing tank by the outlets of said tube 10, so that the length of the tube 10 must be slightly greater than the width of the box 4 and this must be perforated where the collecting tube is placed, so that it allows the exit and fall, of the fats and oils to the homogenizing tank 3 to continue with the removal of said fats and oils, activity that is repeated until that the fats be completely removed, forming simpler substances.
  • the layers of water below the grooved longitudinal tube 10 are those that pass to the biological reactor 13 through its rectangular discharge dump 14, so that the reduction of the contaminating organic matter is continued, through oxidation, caused by the oxygen contained in the air tablet that is received, the water must remain in the reactor 13 for a period of 20 to 30 hours, depending on the degree of water contamination, the water temperature and the altitude above sea level of the plant; It is important that the atmospheric air flow is applied at a pressure of 0.42 to 0.56 kg per cm 2 , with a speed of 3.5 meters per second.
  • the water passes to the sedimentation section 23 through the opening of the biological reactor, because the flow has a certain speed, this impacts on the vertical deflector 24, which causes, apart from the decrease in speed, a separation of the phases thereof, that is to say that the heavy solids precipitate towards the bottom of the settler and the light matter rises through said deflector 24.
  • the Ia Natural formation of floccules that is, without the addition of any flocculating chemical, as conventional processes use, they precipitate rapidly, it is here that the separation of clean water and sludge is carried out.
  • the clean or clarified water continues on its way to the dump, where the cleanest water is the one that is collected in the container 27, by means of the "V" shaped cuts 30, this being the one that passes under the screen perimeter 28; thus ensuring that the collected water has the lowest degree of floating impurities, since this clarified water is transported to the disinfection area 32 to be treated with a chlorinated disinfectant, to eliminate living micro organisms.
  • This water is then treated with atmospheric air from the aeration system already described to Mix the disinfectant with the water and at the same time remove the excess of residual chlorine and finally the water is stored in a cistern or direct disposal.
  • the sludges that fall to the bottom of the sedimentation section 23 are extracted by means of the pneumatic pump 25 and the pneumatic extraction tube 26, and are distributed by the conduit 19 towards the first compartment (if there is more than one) of the reactor Biological 13, homogenizer 3, and the screening 1, in a proportion of 85, 10 and 5% respectively, this cycle can last at least 180 days.
  • the sedimentation tank 23 reaches 30% of its volume of accumulated sludge, it is time to extract 70% of the accumulated sludge, to channel it to the digester 34 to complete its reduction and avoid the decrease in the dissolution of oxygen in the reactor Biological 13 by excess inert solids. It is important to leave 30% of the accumulated sludge as a remaining strain of micro organisms that serves as inoculum so that the population of micro organisms proliferates faster and the process does not destabilize.
  • NE not specified
  • SST total suspended solids
  • BOD Biochemical Demand of O 2
  • NTU Turbidity unit.
  • the sludge generated in our process is non-hazardous waste that is managed for its use or final disposal.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Activated Sludge Processes (AREA)

Abstract

The invention relates to a plant and method for the simultaneous treatment of wastewater and the associated generated sludge. The plant includes at least: a screen (1) for eliminating floating material carried by the wastewater; a ventilation system formed by at least a blower (5) and a pipe network (8 and 8') for distributing and introducing air into the plant; a grit chamber (2); a homogenisation tank (3); a biological reactor (13); a water/sludge separating section (23); a disinfection area (32); and a cistern for storing the water obtained and making same directly available. The method for the simultaneous treatment of wastewater and the associated generated sludge comprises the application of compressed atmospheric air in order to oxidise the organic material and recirculate the sludge generated in the plant until said sludge is mineralised.

Description

PLANTA Y MÉTODO PARA TRATAR SIMULTÁNEAMENTE, AGUAS RESIDUALES Y LODOS GENERADOS PLANT AND METHOD TO TREAT SIMULTANEOUSLY, WASTEWATER AND MUDS GENERATED
CAMPO TÉCNICO DE LA INVENCIÓNTECHNICAL FIELD OF THE INVENTION
La presente invención se refiere al campo técnico del tratamiento de aguas residuales, ya que proporciona una planta y un método para el tratamiento simultáneo de aguas residuales y los lodos que éstas generan.The present invention relates to the technical field of wastewater treatment, since it provides a plant and a method for the simultaneous treatment of wastewater and the sludge they generate.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
El problema de las aguas residuales municipales o negras, es ampliamente conocido, para Io cual se han generado una gran cantidad de plantas y métodos para tratarlas, por citar algunas: Los procesos de tratamiento en general pueden dividirse en dos grandes grupos; fisicoquímicos y biológicos: entre los fisicoquímicos tenemos el primario avanzado y Ia clari-floculación, sus eficiencias máxima de remoción de contaminantes son del 60%, generando lodos no estabilizados.The problem of municipal or black wastewater is widely known, for which a large number of plants and methods have been generated to treat them, to name a few: Treatment processes in general can be divided into two large groups; Physicochemical and biological: among physicochemicals we have the advanced primary and clari-flocculation, its maximum pollutant removal efficiencies are 60%, generating non-stabilized sludge.
Dentro de los tratamientos biológicos están, los sistemas anaerobios que presentan una eficiencia un poco mayor a los fisicoquímicos pero siempre limitados a valores entre 70 y 75 % de eficiencia, con el gran problema de' que los lodos generados no están estabilizados.Among the biological treatments are, anaerobic systems that have a slightly higher efficiency than physicochemicals but always limited to values between 70 and 75% efficiency, with the big problem that ' the sludge generated is not stabilized.
Por Io que respecta, a los tratamientos biológicos como son, las zanjas y lagunas de oxidación, estos demandan grandes extensiones de terreno, ya que necesitan tiempos de retención considerables para dar las eficiencias del 75%, sus lodos quedan sumergidos dentro de las áreas de tratamiento produciéndose azolves, además que presentan una gran variación en Ia calidad del efluente debido a las variaciones en el clima por Ia temperatura y época del año, presentándose además problemas de malos olores y molestias sanitarias. El proceso convencional de lodos activados, tiene Ia desventaja de generar grandes cantidades de lodos sin estabilizar, los cuales requieren de una digestión previa a su disposición; además, requieren de grandes extensiones para Ia deshidratación y secado de los lodos generados, produciendo malos olores, así mismo, no tiene versatilidad para soportar variaciones de flujo y calidad de entrada. Dado que requiere de un número mayor de unidades de tratamiento, respecto a otras plantas, el proceso de lodos activados no es aplicable cuando no se disponga de personal que pueda atenderlo de un modo constante y con competencia, debido al equipo mecánico que hay que hacer funcionar y conservar, así como Ia naturaleza química, física y biológica del proceso. La nitrificación y desnitrificación no se lleva a cabo, ocasionando las consecuencias de impacto ambiental negativo. El volumen de lodo producido es mayor que el que se obtiene en cualquier otro proceso, salvo quizá en el tratamiento químico, y el lodo es difícil de tratar. Entre los inconvenientes del proceso, pueden citarse, Ia incertidumbre respecto a los resultados que pueden esperarse bajo diversas condiciones; Ia sensibilidad a los cambios en Ia calidad del liquido inicial, el alto costo de funcionamiento bajo algunas condiciones, Ia necesidad de una atención constante y competente; además de las dificultades que ofrece Ia desecación.As regards biological treatments such as oxidation ditches and lagoons, these require large areas of land, since they need considerable retention times to give 75% efficiencies, their sludges are submerged within the areas of treatment producing dusts, in addition to presenting a great variation in the quality of the effluent due to variations in the climate due to the temperature and time of the year, also presenting problems of bad odors and sanitary discomfort. The conventional activated sludge process has the disadvantage of generating large amounts of unstabilized sludge, which require prior digestion available ; In addition, they require large extensions for the dehydration and drying of the generated sludge, producing bad odors, likewise, it does not have versatility to withstand flux variations and input quality. Since it requires a larger number of treatment units, compared to other plants, the activated sludge process is not applicable when there is no staff available that can attend to it in a constant and competent way, due to the mechanical equipment that must be done function and conserve, as well as the chemical, physical and biological nature of the process. Nitrification and denitrification is not carried out, causing the consequences of negative environmental impact. The volume of sludge produced is greater than that obtained in any other process, except perhaps in chemical treatment, and the sludge is difficult to treat. Among the inconveniences of the process, we can mention the uncertainty regarding the results that can be expected under various conditions; The sensitivity to changes in the quality of the initial liquid, the high cost of operation under some conditions, the need for constant and competent attention; In addition to the difficulties offered by drying.
Las plantas tratadoras de aguas residuales municipales o negras, basadas en lodos activados, actualmente conocidas, comprenden componentes mínimos básicos, tales como áreas de cribado, desarenado, extracción de grasas y aceites, sedimentadores, y extractores de lodos no estabilizados.Municipal or black wastewater treatment plants, based on activated sludge, currently known, comprise basic minimum components, such as screening, sanding, fat and oil extraction, sedimentation, and non-stabilized sludge extractors.
Para solucionar los problemas arriba citados, Ia solicitud de patente JP 2001087761, describe un método para tratar el agua residual con desechos orgánicos, mediante Ia aireación, recirculación y separación de lodos;1 sin embargo, debido a que este método no contempla una etapa para eliminar grasas y aceites, tampoco trata, al mismo tiempo, los lodos generados de las aguas que se están tratando. Por Io tanto, para contrarrestar los inconvenientes antes mencionados, se desarrolló una planta y un método para tratar, al mismo tiempo, las aguas residuales y sus lodos generados, los cuales se describen a continuación.To solve the aforementioned problems, patent application JP 2001087761 describes a method for treating wastewater with organic waste, by means of aeration, recirculation and separation of sludge; 1 However, because this method does not contemplate a stage to eliminate fats and oils, it does not treat, at the same time, the sludge generated from the waters being treated. Therefore, to counteract the aforementioned drawbacks, a plant and a method were developed to treat, at the same time, the wastewater and its generated sludge, which are described below.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
Los detalles característicos de Ia planta y método para tratar simultáneamente las aguas residuales municipales o negras y sus lodos generados, comprendidos en Ia presente invención, se muestran claramente en Ia siguiente descripción y en las figuras que se acompañan, las cuales se mencionan a manera de ejemplo y no deben de ser consideradas como una limitativa a Ia presente invención.The characteristic details of the plant and method for simultaneously treating municipal or black wastewater and its generated sludge, included in the present invention, are clearly shown in the following description and in the accompanying figures, which are mentioned as a example and should not be considered as a limitation to the present invention.
Breve descripción de las figuras:Brief description of the figures:
La figura 1 es una vista superior de Ia planta ya integrada, para tratar simultáneamente aguas residuales y lodos generados, de Ia presente invención.Figure 1 is a top view of the plant already integrated, to simultaneously treat wastewater and generated sludge, of the present invention.
La figura 2 es una vista superior de una criba y un desarenador, de Ia planta de esta invención.Figure 2 is a top view of a sieve and a sand trap of the plant of this invention.
La figura 3 es corte transversal A-A' de Ia criba y el desarenador, de Ia planta de esta invención, ilustrado en Ia figura 2. La figura 4 es una vista superior de un tanque homogenizador de Ia planta en cuestión, donde se aprecia también su caja de distribución. La figura 5 es un corte longitudinal B-B' del tanque homogenizador, de Ia planta de Ia presente invención. La figura 6 es un corte transversal C-C del tanque homogenizador, de Ia planta de Ia presente invención.Figure 3 is cross section AA 'of the sieve and the dewatering machine, of the plant of this invention, illustrated in Figure 2. Figure 4 is a top view of a homogenizing tank of the plant in question, where its distribution box. Figure 5 is a longitudinal section B-B 'of the homogenizing tank, of the plant of the present invention. Figure 6 is a cross-section C-C of the homogenizing tank, of the plant of the present invention.
La figura 7 es una vista superior del reactor biológico, de Ia planta de esta invención.Figure 7 is a top view of the biological reactor of the plant of this invention.
La figura 8 es un corte transversal D-D' del reactor biológico de Ia planta en cuestión. La figura 9 es un corte longitudinal E-E' del reactor biológico de Ia planta en cuestión. La figura 10 es una vista superior de Ia sección sedimentadora y del vertedor, de Ia planta para tratar aguas residuales y lodos, de esta invención. La figura 11 es un corte longitudinal F-F' de Ia sección sedimentadora y del vertedor, de Ia planta para tratar aguas residuales y lodos, de esta invención. La figura 12 es un corte transversal G-G' de Ia sección sedimentadora y del deflector, de Ia planta para tratar aguas residuales y lodos, de esta invención.Figure 8 is a cross section DD 'of the biological reactor of the plant in question. Figure 9 is a longitudinal section EE 'of the biological reactor of the plant in question. Figure 10 is a top view of the sedimentation and pouring section of the plant for treating sewage and sludge, of this invention. Figure 11 is a longitudinal section FF 'of the sedimentation and pouring section of the plant for treating sewage and sludge, of this invention. Figure 12 is a cross-section GG 'of the sedimentation section and the deflector, of the plant for treating sewage and sludge, of this invention.
La figura 13 es una vista en planta superior del área de desinfección que constituye a Ia planta en cuestión.Figure 13 is a top plan view of the disinfection area that constitutes the plant in question.
La figura 14 es un corte longitudinal I-I' del área de desinfección. La figura 15 es un corte transversal H-H' del área de desinfección. La figura 16 es una vista en planta superior del digestor de lodos, que conforma a esta planta.Figure 14 is a longitudinal section I-I 'of the disinfection area. Figure 15 is a cross section H-H 'of the disinfection area. Figure 16 is a top plan view of the sludge digester, which makes up this plant.
La figura 17 es un corte J-J' del digestor de Ia figura 16. La figura 18 es un corte K-K' del digestor ¡lustrado en Ia figura 16. La figura 19 es una vista en perspectiva convencional del vertedor, donde se aprecia su recipiente y parte de su mampara.Figure 17 is a section JJ 'of the digester of Figure 16. Figure 18 is a section KK' of the digester illustrated in Figure 16. Figure 19 is a conventional perspective view of the landfill, where its container and part of its screen.
La figura 20 es un corte longitudinal L-L' de Ia planta completa para tratar aguas residuales y lodos generados de dicha invención. La figura 21 es una vista en planta superior, de Ia planta en cuestión, donde se aprecia varios de sus componentes. La figura 22 es una vista frontal de una sección del sistema de aireación, donde se aprecia el arreglo de un difusor.Figure 20 is a longitudinal section L-L 'of the complete plant for treating wastewater and sludge generated from said invention. Figure 21 is a top plan view of the plant in question, where several of its components can be seen. Figure 22 is a front view of a section of the aeration system, where the arrangement of a diffuser is appreciated.
Con referencia las figuras ya citadas, Ia planta para tratar simultáneamente aguas residuales y sus lodos generados, en cuestión, se constituye de, al menos: Una cribadora 1 convencional, para eliminar Ia materia flotante, consistente en basura, madera, plásticos, u otros materiales similares, que son arrastrados por el agua a tratar y que pudieran interferir en el procedimiento del tratado.With reference to the aforementioned figures, the plant to simultaneously treat wastewater and its generated sludge, in question, consists of at least: A conventional sieve 1, to eliminate the floating matter, consisting of garbage, wood, plastics, or other similar materials, which are dragged by the water to be treated and that could interfere with the treatment procedure.
Un sistema de aireación conformado de: al menos, un soplador 5, para captar aire atmosférico y distribuirlo, en las áreas de Ia planta donde se necesita, por medio de, al menos, un tubo de distribución 8 que por Io general va en posición horizontal; el cual tiene, al menos, un tubo bajante 8' para descender el aire, el cual a su vez, en su extremo inferior lleva perpendicularmente un difusor 6 de aire, que viene siendo un tubo hueco cilindrico cerrado pero con dos hileras de perforaciones 20, ubicadas diametralmente opuestas entre sí, que recorren toda Ia longitud de dicho tubo. La distancia y el número de perforaciones es variable en cada difusor 6, Io cual depende de Ia cantidad de aire requerida. Dicho sistema de aireación comprende, al menos, una válvula de control de aire 37 ubicada en Ia unión del tubo de distribución 8 y el tubo bajante 8' para controlar el flujo de aire.An aeration system consisting of: at least one blower 5, to capture atmospheric air and distribute it, in the areas of the plant where, at least, a distribution tube 8 is needed, which is generally in position horizontal; which has, at least, a downpipe 8 'to lower the air, which in turn, at its lower end carries perpendicularly an air diffuser 6, which is being a closed cylindrical hollow tube but with two rows of perforations 20 , located diametrically opposed to each other, that cover the entire length of said tube. The distance and the number of perforations is variable in each diffuser 6, which depends on the amount of air required. Said aeration system comprises, at least, an air control valve 37 located at the junction of the distribution tube 8 and the downpipe 8 'to control the air flow.
Un desarenador 2 para eliminar los sólidos sedimentables, para proteger los equipos que constituyen a Ia planta, en cuestión. Dicho desarenador es un recipiente dividido en dos compartimientos, por medio de una pared divisoria 41. El primer compartimiento 44 concentra las arenas y el segundo 45 sirve para extraerlas de Ia planta. El compartimiento concentrador 44 de arenas tiene un fondo con una pendiente 46 que declina hacia Ia pared divisoria 41, para concentrar las arenas en ese punto; y en Ia parte superior se coloca una loza 47 que se fija en Ia pared divisoria 41 para sostener, aparte de las cribas 1, una mampara vertical 18 que retiene a Ia materia flotante que logra pasar por las cribas 1. La pared divisoria posee una perforación inferior (no ilustrada) donde se conecta un conducto 15 que conduce el agua hacia un tanque homogenizador 3 y una perforación superior 43 para retornar, al primer compartimiento 44, el agua que sube más allá del tubo 15. La loza 47 debe permitir Ia entrada de uno o más tubos bajantes 8' con sú(s) respectivos difusores 6, para Ia introducción de aire comprimido que viene del sistema de aireación, para lavar las arenas; así como también Ia introducción, en el punto donde se concentran Ia arenas, de un tubo de extracción neumática 42 y una primer bomba neumática 21, que transfieren las arenas al segundo compartimiento 45, donde el tubo de extracción neumática 42 es accionado por el sistema de aireación. Las arenas caen al fondo del segundo compartimiento 45, para ser extraídas de Ia planta con una Ia ayuda de una bomba eléctrica 17 y un tubo de elevación de arenas 48.A sand trap 2 to eliminate sedimentable solids, to protect the equipment that constitutes the plant, in question. Said sand trap is a container divided into two compartments, by means of a dividing wall 41. The first compartment 44 concentrates the sands and the second 45 serves to extract them from the plant. The sands concentrator compartment 44 has a bottom with a slope 46 that declines towards the dividing wall 41, to concentrate the sands at that point; and in the upper part a crockery 47 is fixed that is fixed in the dividing wall 41 to support, apart from the screens 1, a vertical screen 18 that retains the floating matter that manages to pass through the screens 1. The dividing wall has a lower perforation (not illustrated) where a conduit 15 is connected which conducts the water to a homogenizing tank 3 and an upper perforation 43 to return, to the first compartment 44, the water that rises beyond the tube 15. The crockery 47 must allow Ia inlet of one or more downpipes 8 'with their respective diffusers 6, for the introduction of compressed air coming from the aeration system, to wash the sands; as well as the introduction, at the point where the sands are concentrated, of a pneumatic extraction tube 42 and a first pneumatic pump 21, which transfer the sands to the second compartment 45, where the pneumatic extraction tube 42 is actuated by the aeration system. The sands fall to the bottom of the second compartment 45, to be extracted from the plant with the help of an electric pump 17 and a sand lift tube 48.
El tanque homogenizador 3 tiene una perforación a Ia misma altura de Ia perforación inferior de Ia pared divisoria 41, donde se conecta el conducto 15 para recibir el agua que proviene del desarenador 2, siendo recomendable que el conducto quede ubicado a una altura mínima de 1.5 m, a partir de Ia base del tanque homogenizador 3, para obtener un nivel de agua mínimo que permita Ia operación de Ia planta (NOP, nivel de operación) y además se evita el reflujo de las aguas hacia el desarenador 2. Dicho tanque 3 es alimentado de aire comprimido que proviene del sistema de aireación ya descrito; por Io qué en este tanque se encuentra en el fondo, al menos, un difusor de aire 6 para mezclar el agua recién llegada con los lodos y las grasas y aceites, que pudieran ya existir en el tanque 3. En el fondo y hacia el extremo opuesto del conducto 15 del tanque se coloca, al menos, una bomba 7 sumergible, para subir el agua por medio de las tuberías de elevación 9, a una caja de distribución 4, situada en Ia parte superior del tanque, ya sea adentro o afuera; donde dicha caja 4 tiene en su interior un tubo pasado, y ranurado longitudinalmente 10 ubicado transversalmente hacia el extremo de Ia descarga del flujo de dicha caja 4, quedando el tubo sujeto a las paredes laterales de Ia caja 4, pero sin quedar fijo, debido a que es necesario que el tubo 10 tenga un movimiento giratorio sobre su propio eje para calibrarlo de acuerdo al nivel del agua contenida en Ia caja 4.The homogenizer tank 3 has a perforation at the same height as the lower perforation of the dividing wall 41, where the duct 15 is connected to receive the water that comes from the sand trap 2, it being recommended that the duct be located at a minimum height of 1.5 m, from the base of the homogenizer tank 3, to obtain a minimum level of water that allows the operation of the plant (NOP, level of operation) and also prevents the backflow of the water towards the sand trap 2. Said tank 3 it is fed with compressed air that comes from the aeration system already described; Therefore, in this tank there is at least one air diffuser 6 at the bottom to mix the newly arrived water with the sludge and the fats and oils, which may already exist in the tank 3. At the bottom and towards the opposite end of the duct 15 of the tank is placed, at least, a submersible pump 7, to raise the water by means of the lifting pipes 9, to a distribution box 4, located in the upper part of the tank, either inside or outside; where said box 4 has inside it a tube passed, and longitudinally grooved 10 located transversely towards the end of the discharge of the flow of said box 4, the tube being subject to the side walls of the box 4, but without being fixed, due to which it is necessary for the tube 10 to have a rotating movement on its own axis to calibrate it according to the level of the water contained in the box 4.
El tanque homogenizador puede ser prismático rectangular o cuadrado, aunque esta forma puede variar según el terreno donde se construya dicha planta; y puede estar cerrado o abierto en su parte superior, Io cual depende de las condiciones climáticas de Ia región. Debido a que las grasas y aceites se ubican en Ia parte superior, éstas son colectadas entrando por Ia ranura 11 de dicho tubo 10 y son retornadas al tanque homogenizador 3 a través de los extremos del tubo 10 pasado, por Io que Ia longitud de dicho tubo 10 es ligeramente mayor que el ancho de Ia caja 4, de tal manera que únicamente Ia capa de grasa y aceites sea retornada al tanque homogenizador 3 por gravedad y las capas inferiores fluyan hacia un reactor biológico 13, a través de un vertedor rectangular 14 de descarga localizado, al menos, a unos 60 cm a partir de Ia base del extremo de descarga de Ia caja de distribución 4.The homogenizing tank can be rectangular or square prismatic, although this shape may vary depending on the terrain where said plant is built; and it may be closed or open in its upper part, which depends on the climatic conditions of the region. Because the fats and oils are located in the upper part, these are collected by entering the slot 11 of said tube 10 and are returned to the homogenizing tank 3 through the ends of the last tube 10, so that the length of said tube 10 is slightly larger than the width of the box 4, so that only the layer of grease and oils is returned to the homogenizing tank 3 by gravity and the lower layers flow into a biological reactor 13, through a rectangular pourer 14 of discharge located at least 60 cm from the base of the discharge end of the distribution box 4.
El reactor biológico 13 comprende, al menos, un compartimiento que consiste básicamente en un contenedor rectangular, preferentemente; donde al menos, en una de sus aristas inferiores longitudinales hay un chaflán longitudinal 16. El aire comprimido requerido en este reactor 13 es aportado por el sistema de aireación ya mencionado, siendo importante señalar qué, en este caso, las tuberías de distribución 8 y los tubos de introducción 8' se colocan en el lado donde se encuentra el chaflán 16, de tal manera que las burbujas de aire que salen de los orificios 20 del costado del difusor 6 hacia el chaflán 16 chocan con él mismo, provocándoles una fragmentación y originando micro burbujas, para que el oxígeno sea fácilmente disuelto con el agua; mientras qué, las burbujas de aire que salen en el otro lado del difusor 6 no se fragmentan, por Io que son más grandes y provocan un movimiento circular de Ia masa de agua en dirección transversal, con respecto a Ia anchura del compartimiento del reactor 13, evitando que las micro burbujas se disipen rápidamente al exterior del agua, logrando con esto mayor tiempo de retención, para una mejor disolución del oxígeno. Con todo esto se logra Ia oxidación de Ia materia orgánica, descomponiéndola hasta sus elementos más simples, para ser consumida por los microorganismos ahí presentes. Finalmente el reactor 13 tiene una apertura 29 a una altura, de al menos, 80 cm, que es por donde se descarga el agua hacia una sección sedimentadora 23.The biological reactor 13 comprises at least one compartment that basically consists of a rectangular container, preferably; where at least, in one of its longitudinal lower edges there is a longitudinal chamfer 16. The compressed air required in this reactor 13 is supplied by the aeration system already mentioned, it being important to indicate what, in this case, the distribution pipes 8 and the introduction tubes 8 'are placed on the side where the chamfer 16 is located, such that the air bubbles leaving the holes 20 on the side of the diffuser 6 towards the chamfer 16 collide with it, causing them to fragment and causing micro bubbles, so that oxygen is easily dissolved with water; while, the air bubbles that come out on the other side of the diffuser 6 do not fragment, so they are larger and cause a circular movement of the water body in a transverse direction, with respect to the width of the reactor compartment 13 , preventing the micro bubbles from dissipating rapidly outside the water, thereby achieving longer retention time, for a better dissolution of oxygen. With all this the oxidation of the organic matter is achieved, decomposing it to its simplest elements, to be consumed by the microorganisms present there. Finally, the reactor 13 has an opening 29 at a height of at least 80 cm, which is where the water is discharged into a sedimentation section 23.
La sección sedimentadora 23 es un contenedor con fondo piramidal invertido, el cual comprende un deflector 24 colocado perpendicular, frente a Ia salida 29 del reactor 13, para que el flujo de agua que viene de dicho reactor choque con el deflector 24, provocando una disminución de Ia velocidad del flujo y una separación de las fases del mismo, o sea que los sólidos pesados se desplazan hacia el inferior del deflector, precipitándose al fondo del sedimentador y Ia materia ligera sube por dicho deflector para que se dé una separación de materia flotante indeseable. En el fondo del sedimentador 23 se coloca una segunda bomba neumática 25 para extraer los lodos precipitados por medio de una tubería de elevación 26 y transportarlos hacia: el primer compartimiento (en caso de que haya más de uno) del reactor biológico 13, homogenizador 3 y a Ia cribadora 1, en una proporción de 85, 10 y 5%, respectivamente, con Ia ayuda de un conducto de retorno de lodos 19 provisto de válvulas 12 para el control de Ia cantidad y Ia dirección de dichos lodos. Para Ia extracción de los lodos, a Ia bomba neumática se Ie inyecta aire comprimido que viene del sistema de aireación ya referenciado, de tal manera que se provoca un vacío por efecto Venturi y el lodo sube por Ia tubería de elevación 26. En esta sección se coloca un vertedor, el cual puede estar sujeto en las paredes de Ia construcción de esta sección o incluso por algún otro medio de sujeción.The sedimentation section 23 is a container with an inverted pyramidal bottom, which comprises a deflector 24 placed perpendicularly, in front of the outlet 29 of the reactor 13, so that the flow of water coming from said reactor collides with the deflector 24, causing a decrease in the flow velocity and a separation of the phases thereof, that is, the heavy solids move towards the bottom of the deflector, rushing to the bottom of the settler and the light matter rises through said deflector so that an undesirable floating matter separation occurs. At the bottom of the settler 23 a second pneumatic pump 25 is placed to extract the precipitated sludge by means of a lifting pipe 26 and transport them to: the first compartment (if there is more than one) of the biological reactor 13, homogenizer 3 and the sieve 1, in a proportion of 85, 10 and 5%, respectively, with the aid of a sludge return duct 19 provided with valves 12 for the control of the quantity and direction of said sludge. For the extraction of the sludge, the pneumatic pump is injected with compressed air that comes from the aeration system already referenced, in such a way that a vacuum is caused by the Venturi effect and the mud rises through the lifting pipe 26. In this section a spout is placed, which can be attached to the walls of the construction of this section or even by some other means of attachment.
El vertedor se compone de, un recipiente rectangular 27 abierto en su parte superior, cuyos bordes laterales superiores son recortados en cortes verticales en formas de "V" 30 hasta una profundidad de una tercera parte, con respecto a Ia altura de dicho recipiente, pero dejando una separación entre cada corteThe pourer consists of a rectangular container 27 open at its top, whose upper side edges are cut into vertical cuts in "V" shapes 30 to a depth of one third, with respect to the height of said container, but leaving a separation between each cut
30 (Figura 19); una mampara perimetral 28 rodea al recipiente 27, a una separación del 40 % del ancho del vertedor, para que Ia materia flotante que logró pasar el primer deflector 24, sea detenida, y como Ia materia pesada continúa precipitándose, entonces por Ia parte inferior de Ia mampara perimetral 28 pasa el agua más clarificada hacia el interior del vertedor 27 a través de los cortes en formas de "V" 30. El vertedor debe quedar sumergido hasta que el vértice del corte "V" quede al nivel del agua (NOP), de tal manera que toda el agua que suba del vértice, entre a dicho recipiente. En uno de sus extremos del recipiente 27 tiene una perforación donde se conecta un conducto30 (Figure 19); a perimeter screen 28 surrounds the container 27, at a 40% separation of the width of the pourer, so that the floating matter that managed to pass the first deflector 24, is stopped, and as the heavy matter continues to precipitate, then through the lower part of The perimeter screen 28 passes the more clarified water into the interior of the pourer 27 through the cuts in "V" shapes 30. The pourer must be submerged until the vertex of the "V" cut is at the water level (NOP) , so that all the water that rises from the vertex, enters said container. At one of its ends of the container 27 it has a perforation where a conduit is connected
31 por donde el agua viaja hacia un área de desinfección 32, convencional, donde el agua es desinfectada con un producto desinfectante, para eliminar aquellos micro-organismos patógenos que sobrevivieron al proceso de tratamiento. Opcionalmente en esta área se introduce aire comprimido proveniente del sistema de aireación descrito, para mezclar el desinfectante con el agua clarificada y eliminar el excedente residual en aquellos desinfectantes que producen residuos, para ello se requiere de unos deflectores o mampara 39 colocadas en forma de zigzag (Figura 13 y 14).31 where water travels to a disinfection area 32, conventional, where the water is disinfected with a disinfectant product, to eliminate those pathogenic micro-organisms that survived the treatment process. Optionally in this area compressed air from the aeration system described is introduced, to mix the disinfectant with the clarified water and eliminate the residual surplus in those disinfectants that produce waste, for this it requires some baffles or screen 39 placed in the form of zigzag (Figure 13 and 14).
Finalmente, el agua tratada sale por un conducto de salida 40 para almacenarse en una cisterna (no ilustrada), o enviarla a una disposición directa del agua obtenida.Finally, the treated water exits through an outlet duct 40 to be stored in a cistern (not shown), or sent to a direct disposal of the water obtained.
Adicionalmente, Ia planta incluye un tanque digestor 34 de los lodos mineralizados inertes, el cual se ubica cerca de Ia sección sedimentadora 23 y es de construcción similar a un reactor biológico 13, pero de dimensiones más reducidas; por Io que viene siendo un pequeño reactor biológico que va a reducir, hasta en un 99 %, Ia fracción de lodo biológico "joven" que no fue reducido en el reactor biológico 13 principal. Dicho digestor 34 tiene interna e inferiormente, al menos, una bomba neumática 33 para extraer los lodos inertes y conducirlos mediante un tubo de elevación de lodos 35 a un área de secado 36, donde el lodo se seca y queda listo para ser utilizado como mejorador de suelos de cultivos, entre otros usos. En el área de secado 36, el lodo es secado, con un sistema de secado, tales como centrífuga?, u opcionalmente secado a Ia intemperie, para Io cual se adiciona un lecho de secado.Additionally, the plant includes a digester tank 34 of the inert mineralized sludge, which is located near the sedimentation section 23 and is similar in construction to a biological reactor 13, but of smaller dimensions; Therefore, it has been a small biological reactor that will reduce, by up to 99%, the fraction of "young" biological sludge that was not reduced in the main biological reactor 13. Said digester 34 has, internally and inferiorly, at least one pneumatic pump 33 to extract the inert sludge and conduct them by means of a sludge lift tube 35 to a drying area 36, where the sludge dries and is ready to be used as an improver. of crop soils, among other uses. In the drying area 36, the sludge is dried, with a drying system, such as centrifuge ?, or optionally dried outdoors, for which a drying bed is added.
Cuando el reactor biológico 13 requiere de varios compartimentos, estos deben de tener comunicación entre sí, para Io cual, en uno de sus extremos se hace una perforación 22 en Ia parte inferior del muro divisorio, para que el agua pase a un segundo reactor biológico 13. Por ende, es obvio para un experto en Ia materia que se deben de colocarse las tuberías de distribución 8 y de introducción de aire 8' a los reactores subsecuentes, tal como se aprecia en Ia Figura 21. Todos los componentes de Ia planta pueden ser construidos al nivel del sueloWhen the biological reactor 13 requires several compartments, these must have communication with each other, for which, at one of its ends a perforation 22 is made in the lower part of the partition wall, so that the water passes to a second biological reactor 13. Therefore, it is obvious to one skilled in the art that distribution pipes 8 and air introduction 8 'must be placed to subsequent reactors, as shown in Figure 21. All components of the plant can be built at ground level
49; sin embargo, esto no es indispensable, ya que depende de las condiciones geográficas del terreno49; however, this is not indispensable, since it depends on the geographical conditions of the land
La planta tratadora de aguas residuales en cuestión, funciona de Ia manera siguiente: el agua residual proveniente del drenaje llega a Ia cribadora 1, donde se Ie elimina toda Ia materia flotante, para después pasar al desarenador 2, donde las arenas son concentradas por gravedad en el fondo del primer compartimento 44 del desarenador, las cuales son lavadas por el aire comprimido que arroja el difusor 6, para después ser transferidas al segundo compartimento 45, con Ia ayuda del Ia primer bomba neumática 21 y el tubo de extracción neumática de arena 42 y finalmente son extraídas de Ia planta.The wastewater treatment plant in question works as follows: the wastewater from the drainage reaches the screener 1, where all floating matter is removed, and then passed to the sand trap 2, where the sands are concentrated by gravity at the bottom of the first compartment 44 of the sand trap, which are washed by the compressed air thrown by the diffuser 6, and then transferred to the second compartment 45, with the help of the first pneumatic pump 21 and the pneumatic sand extraction tube 42 and finally they are extracted from the plant.
Por su parte el agua cruda pasa al tanque homogenizador, por medio del conducto 15, para ser aireada con el aire comprimido aportado por el difusor 6, con el fin de mezclar todo los flujos que en el homogenizador se concentren, iniciándose aquí el proceso de oxidación de Ia materia y obtener un licor de toda esta mezcla. El licor es elevado por Ia bomba eléctrica sumergible 7 y Ia tubería de elevación 9, a Ia caja de distribución 4, para que se lleve acabo Ia separación de grasas y aceites, con Ia ayuda del tubo colector 10, gracias a su ranura longitudinal 11, por Io que dicho tubo debe estar sumergido, aproximadamente 0.5 cm; de tal manera que una capa de 0.5 cm de grosor sea captada por Ia ranura 11 del tubo colector 10 y sea retornada al tanque homogenizador por las salidas de dicho tubo 10, por Io que Ia longitud del tubo 10 debe ser ligeramente mayor a Ia anchura de Ia caja 4 y ésta debe estar perforada en donde se coloca el tubo colector, para que permita Ia salida y caída, de las grasas y aceites al tanque homogenizador 3 para continuar con Ia remoción de dichas grasas y aceites, actividad que se repite hasta que las grasas sean completamente removidas, formando sustancia más simples. Las capas de agua inferiores al tubo longitudinal ranurado 10 son las que pasan al reactor biológico 13 a través de su vertedor rectangular de descarga 14, para que ahí se continúe con Ia reducción de Ia materia orgánica contaminante, por medio de Ia oxidación, provocada por el oxígeno contenido en el aire comprimido que se recibe, el agua debe permanecer en el reactor 13 un periodo de 20 a 30 horas, según el grado de contaminación del agua, Ia temperatura del agua y Ia altitud sobre el nivel del mar de Ia planta; siendo importante que el flujo de aire atmosférico se aplique a una presión 0.42 a 0.56 Kg por cm2 , con una velocidad de 3.5 metros por segundo. Cabe aclarar que el gasto de aire será variable, Io que dependerá de Ia temperatura, presión y el grado de contaminación del agua a tratar, por ello, antes se hace un monitoreo al agua para saber dichos parámetros y así establecer el gasto de aire atmosférico a utilizar 1.42 Kg de oxígeno por cada Kg de Demanda Bioquímica de Oxígeno (DBO); así mismo también, requiere de 4.6 Kg de O2 para que se lleve acabo Ia nitrificación. En esta etapa del proceso, se logra una reducción de hasta el 98 % de Ia materia orgánica, ya que el restante es materia inorgánica o lodos mineralizados inertes.On the other hand, the raw water passes to the homogenizer tank, through the duct 15, to be aerated with the compressed air provided by the diffuser 6, in order to mix all the flows that in the homogenizer concentrate, starting here the process of oxidation of the matter and obtain a liquor of all this mixture. The liquor is lifted by the submersible electric pump 7 and the lifting pipe 9, to the distribution box 4, so that the separation of fats and oils is carried out, with the help of the collecting tube 10, thanks to its longitudinal groove 11 , so that said tube must be submerged, approximately 0.5 cm; in such a way that a 0.5 cm thick layer is captured by the slot 11 of the collecting tube 10 and returned to the homogenizing tank by the outlets of said tube 10, so that the length of the tube 10 must be slightly greater than the width of the box 4 and this must be perforated where the collecting tube is placed, so that it allows the exit and fall, of the fats and oils to the homogenizing tank 3 to continue with the removal of said fats and oils, activity that is repeated until that the fats be completely removed, forming simpler substances. The layers of water below the grooved longitudinal tube 10 are those that pass to the biological reactor 13 through its rectangular discharge dump 14, so that the reduction of the contaminating organic matter is continued, through oxidation, caused by the oxygen contained in the air tablet that is received, the water must remain in the reactor 13 for a period of 20 to 30 hours, depending on the degree of water contamination, the water temperature and the altitude above sea level of the plant; It is important that the atmospheric air flow is applied at a pressure of 0.42 to 0.56 kg per cm 2 , with a speed of 3.5 meters per second. It should be clarified that the air consumption will be variable, which will depend on the temperature, pressure and the degree of contamination of the water to be treated, therefore, before water monitoring is done to know these parameters and thus establish the atmospheric air expenditure to use 1.42 Kg of oxygen for each Kg of Biochemical Oxygen Demand (BOD); Likewise, it also requires 4.6 kg of O 2 to carry out the nitrification. At this stage of the process, a reduction of up to 98% of the organic matter is achieved, since the remaining is inorganic matter or inert mineralized sludge.
Posteriormente el agua pasa a Ia sección sedimentadora 23 a través de Ia apertura del reactor biológico, debido a que el flujo lleva cierta velocidad, este se impacta en el deflector vertical 24, Io que provoca, a parte de Ia disminución de Ia velocidad, una separación de las fases del mismo, o sea que los sólidos pesados se precipitan hacia el inferior del sedimentador y Ia materia ligera sube por dicho deflector 24. Como en esta sección no hay aireación, y como Ia materia proveniente está oxidada, se lleva acabo Ia formación natural de flóculos, o sea sin Ia adición de ningún químico floculante, como Io utilizan los procesos convencionales, estos precipitan rápidamente, es aquí donde se lleva acabo Ia separación de las aguas limpias y los lodos.Subsequently, the water passes to the sedimentation section 23 through the opening of the biological reactor, because the flow has a certain speed, this impacts on the vertical deflector 24, which causes, apart from the decrease in speed, a separation of the phases thereof, that is to say that the heavy solids precipitate towards the bottom of the settler and the light matter rises through said deflector 24. As in this section there is no aeration, and since the material coming from it is oxidized, the Ia Natural formation of floccules, that is, without the addition of any flocculating chemical, as conventional processes use, they precipitate rapidly, it is here that the separation of clean water and sludge is carried out.
El agua limpia o clarificada continua su camino hacia el vertedor, donde el agua más limpia es Ia que se recolecta en el recipiente 27, por medio de los cortes en forma de "V" 30, siendo ésta Ia que pasa por debajo de Ia mampara perimetral 28; garantizándose de esta forma, que el agua colectada tenga el menor grado de impurezas flotantes, ya que esta agua clarificada es transportada al área de desinfección 32 para ser tratada con un desinfectante clorado, para eliminar micro organismos vivos. Después esta agua es tratada con aire atmosférico proveniente del sistema de aireación ya descrito para mezclar el desinfectante con el agua y a Ia vez eliminar el excedente del cloro residual y finalmente el agua es almacenada en una cisterna o disposición directa.The clean or clarified water continues on its way to the dump, where the cleanest water is the one that is collected in the container 27, by means of the "V" shaped cuts 30, this being the one that passes under the screen perimeter 28; thus ensuring that the collected water has the lowest degree of floating impurities, since this clarified water is transported to the disinfection area 32 to be treated with a chlorinated disinfectant, to eliminate living micro organisms. This water is then treated with atmospheric air from the aeration system already described to Mix the disinfectant with the water and at the same time remove the excess of residual chlorine and finally the water is stored in a cistern or direct disposal.
Los lodos que caen al fondo de Ia sección sedimentadora 23 son extraídos por medio de Ia bomba neumática 25 y el tubo neumático de extracción 26, y son distribuidos por el conducto 19 hacia el primer compartimiento (si es que hay más de uno) del reactor biológico 13, homogenizador 3, y a Ia cribadora 1, en una proporción de 85, 10 y 5% respectivamente, este ciclo puede durar, al menos, 180 días. Cuando el tanque sedimentador 23 alcanza un 30% de su volumen de lodos acumulados, es el momento de extraer el 70% de los lodos acumulados, para canalizarlo al digestor 34 para completar su reducción y evitar Ia disminución de Ia disolución del oxígeno en el reactor biológico 13 por el exceso sólidos inertes. Es importante dejar el 30% de los lodos acumulados como cepa remanente de micro organismos que sirve de inoculo para que Ia población de micro organismos prolifere más rápidamente y el proceso no se desestabilice.The sludges that fall to the bottom of the sedimentation section 23 are extracted by means of the pneumatic pump 25 and the pneumatic extraction tube 26, and are distributed by the conduit 19 towards the first compartment (if there is more than one) of the reactor Biological 13, homogenizer 3, and the screening 1, in a proportion of 85, 10 and 5% respectively, this cycle can last at least 180 days. When the sedimentation tank 23 reaches 30% of its volume of accumulated sludge, it is time to extract 70% of the accumulated sludge, to channel it to the digester 34 to complete its reduction and avoid the decrease in the dissolution of oxygen in the reactor Biological 13 by excess inert solids. It is important to leave 30% of the accumulated sludge as a remaining strain of micro organisms that serves as inoculum so that the population of micro organisms proliferates faster and the process does not destabilize.
De esta manera obtenemos aguas residuales tratadas que podrán ser re- usadas entre otros, en los servicios al público de manera confiable, ya que los compuestos removidos mediante el proceso antes descrito supera favorablemente Io correspondiente a Ia Norma Oficial Mexicana, NOM-003- SEMARNAT-1997.In this way we obtain treated wastewater that can be reused among others, in the services to the public in a reliable way, since the compounds removed by the process described above exceeds favorably what corresponds to the Official Mexican Standard, NOM-003- SEMARNAT -1997.
En Io que corresponde a esta Norma Oficial Mexicana se consideran los siguientes re-usos: llenado de lagos y canales artificiales, recreativos con paseos en lancha, remo, canotaje y esquí; fuentes de ornato, lavado de vehículos, riego de parques y jardines. En el Cuadro 1 se hace un comparativo de los parámetros que exige Ia NOM-003-SEMARNAT-1997, con respecto a los parámetros obtenidos con el agua tratada lograda con Ia planta y método de Ia presente invención. Cuadro 1. Comparativo de los limites máximos permisibles de contaminantes por Ia NOM-003-SEMARNAT-1997 y los obtenido con el agua lograda en Ia presente invención.In what corresponds to this Official Mexican Standard, the following re-uses are considered: filling of lakes and artificial, recreational canals with boat rides, rowing, boating and skiing; ornaments, vehicle washing, irrigation of parks and gardens. In Table 1 a comparison is made of the parameters required by NOM-003-SEMARNAT-1997, with respect to the parameters obtained with the treated water achieved with the plant and method of the present invention. Table 1. Comparison of the maximum permissible limits of contaminants by NOM-003-SEMARNAT-1997 and those obtained with the water achieved in the present invention.
Figure imgf000015_0001
Figure imgf000015_0001
*Serv¡c¡o al público con contacto directo; NE=no especificado; SST=sólidos suspendidos totales; DBO=Demanda Bioquímica de O2; NTU = Unidad de turbidez.* Serve the public with direct contact; NE = not specified; SST = total suspended solids; BOD = Biochemical Demand of O 2 ; NTU = Turbidity unit.
Respecto a los lodos generados en nuestra planta por las características adquiridas, después del proceso de estabilización el cual se da dentro de Ia misma planta cumple plenamente y mejorando favorablemente los limites máximos permisibles de contaminantes establecidos por Ia Norma Oficial Mexicana, NOM-004-SEMARNAT-2002.Regarding the sludge generated in our plant by the acquired characteristics, after the stabilization process which occurs within the same plant, it fully complies and favorably improving the maximum permissible limits of contaminants established by the Official Mexican Standard, NOM-004-SEMARNAT -2002.
Dentro de Ia clasificación que enuncia Ia Norma Oficial Mexicana, los lodos generados en nuestro proceso son residuos no peligrosos que son manejados para su aprovechamiento o disposición final. Los cuales corresponden .a Ia clasificación de excelentes en función de su contenido de metales pesados, y a Ia Clase "A", en función de su contenido de patógenos y parásitos.Within the classification stated in the Official Mexican Standard, the sludge generated in our process is non-hazardous waste that is managed for its use or final disposal. Which correspond to the classification of excellent according to its heavy metal content, and to Class "A", depending on its content of pathogens and parasites.
Desde el inicio de las operaciones en nuestra planta no se generan malos olores, debido al 5 % de los lodos se recirculan desde las cribas 1 , que es donde el agua es apestosa y debido a Ia presencia de dichos lodos que por Io general llevan una alta población de microorganismos, estos devoran rápidamente Ia materia orgánica que traen las aguas residuales crudas, eliminando así los malos olores. Por Io que estas plantas pueden estar ubicadas dentro de lugares poblados sin molestias para los habitantes, estas plantas pueden estar al ras del terreno natural o totalmente visibles. En cuanto a Io lodos, se logra recircularlos en un 100%. Estos son retirados al-completar su ciclo cuando estos ya han sido reducidos a lodos minerales inertes. From the beginning of the operations in our plant no bad odors are generated, due to the 5% of the sludge they are recirculated from the screens 1, which is where the water is stinky and due to the presence of said sludges that usually carry a High population of microorganisms, these quickly devour the organic matter that raw sewage brings, thus eliminating bad odors. Because these plants can be located within populated places without inconvenience to the inhabitants, these plants can be flush with the natural terrain or fully visible. In terms of sludge, 100% recirculation is achieved. These are removed upon completion of their cycle when they have already been reduced to inert mineral sludge.

Claims

REIVINDICACIONESHabiendo una vez descrito detalladamente mi invención, Ia cual considero nueva, inventiva y de aplicación industrial, es mi deseo reclamar como de mi exclusiva propiedad, Ia materia contenida en las siguientes cláusulas: CLAIMS Having once described in detail my invention, which I consider new, inventive and industrial application, it is my desire to claim as my exclusive property, the matter contained in the following clauses:
1. Una planta para tratar simultáneamente aguas residuales y sus lodos generados, que se constituye de, al menos, una cribadora, para eliminar Ia materia flotante que es arrastrada por el agua residual; un sistema de aireación conformado por, al menos un soplador y una red de tubería para Ia distribución e introducción del aire a Ia planta; un desarenador; un tanque homogenizador; un reactor biológico; una sección separadora del agua y los lodos; un área de desinfección; y una cisterna para el almacenamiento del agua obtenida o disposición directa. Dicha planta se caracteriza porque:1. A plant to simultaneously treat wastewater and its generated sludge, which is constituted of at least one sieve, to eliminate the floating matter that is carried away by the wastewater; an aeration system consisting of at least one blower and a pipe network for the distribution and introduction of air into the plant; a desarenador; a homogenizing tank; a biological reactor; a water and sludge separator section; a disinfection area; and a cistern for the storage of the water obtained or direct disposal. This plant is characterized by:
i) el difusor 6 de aire, del sistema de aireación es un tubo hueco cilindrico cerrado con dos hileras de perforaciones 20, ubicadas diametralmente opuestas entre sí, que recorren toda Ia longitud de dicho tubo; donde Ia distancia y el número de perforaciones es variable en cada difusor 6, Io cual depende de Ia cantidad de aire requerida; ii) el desarenador 2 para eliminar los sólidos sedimentables, es un recipiente dividido en dos compartimientos, por medio de una pared divisoria 41. El primer compartimiento 44 concentra las arenas y el segundo 45 sirve para extraerlas de Ia planta. El compartimiento concentrador 44 de arenas tiene un fondo con una pendiente 46 que declina hacia Ia pared divisoria 41, para concentrar las arenas en ese punto; y en Ia parte superior se coloca una loza 47 que se fija en Ia pared divisoria 41 para sostener, aparte de las cribas 1, una mampara vertical 18 que retiene a Ia materia flotante que logra pasar por las cribas 1. La pared divisoria posee una perforación inferior donde se conecta un conducto 15 que conduce el agua hacia el tanque homogenizador 3 y una perforación superior 43 para retornar, al primer compartimiento 44, el agua que sube más allá del tubo 15. La loza 47 debe permitir Ia entrada de uno o más tubos bajantes 8' con su(s) respectivos difusores 6, para Ia introducción de aire comprimido que viene del sistema de aireación, para lavar las arenas; así como también Ia introducción, en el punto donde se concentran Ia arenas, de un tubo de extracción neumática 42 y una primer bomba neumática 21, que transfieren las arenas al segundo compartimiento 45, donde el tubo de extracción neumática 42 es accionado por el sistema de aireación. Las arenas caen al fondo del segundo compartimiento 45, para ser extraídas de Ia planta con una Ia ayuda de una bomba eléctrica 17 y un tubo de elevación de arenas 48; el tanque homogenizador 3 tiene una perforación a Ia misma altura de Ia perforación inferior de Ia pared divisoria 41, donde se conecta el conducto 15 para recibir el agua que proviene del desarenador 2, siendo recomendable que el conducto quede ubicado a una altura mínima de 1.5 m, a partir de Ia base del tanque homogenizador 3, para obtener un nivel de agua mínimo que permita Ia operación de Ia planta (NOP). Dicho tanque 3 es alimentado de aire comprimido que proviene del sistema de aireación; por Io que en este tanque se encuentra en el fondo, al menos, un difusor de aire 6 para mezclar el agua recién llegada con los lodos y las grasas y aceites, que pudieran ya existir en el tanque 3. En el fondo y hacia el extremo opuesto del conducto 15 del tanque se coloca, al menos, una bomba 7 sumergible, para subir el agua por medio de las tubería,s de elevación 9, a una caja de distribución 4, situada en Ia parte superior del tanque, ya sea adentro o afuera; donde dicha caja 4 tiene en su interior un tubo pasado 10 y ranurado longitudinalmente 11, para recolectar y retornar las grasas y aceites al homogenizador; el tubo pasado 10 es ubicado transversalmente hacia el extremo de Ia descarga del flujo de dicha caja 4, quedando éste sostenido a las paredes laterales de Ia caja 4, pero sin quedar fijo, debido a que es necesario que dicho tubo 10 tenga un movimiento giratorio sobre su propio eje para calibrarlo de acuerdo al nivel del agua contenida en Ia caja 4. La longitud de dicho tubo 10 es ligeramente mayor que el ancho de Ia caja 4, Ia cual tiene un vertedor rectangular 14 de descarga localizado, al menos, a unos 60 cm a partir de su base, del extremo de descarga de Ia caja de distribución 4; ¡v) el reactor biológico 13 comprende, al menos, un compartimiento que consiste básicamente en un contenedor rectangular, preferentemente; donde al menos, en una de sus aristas inferiores longitudinales hay un chaflán longitudinal 16; donde las tuberías de distribución 8 y los tubos de introducción 8' se colocan en el lado donde se encuentra el chaflán 16, de tal manera que las burbujas de aire que salen de los orificios 20 del costado del difusor 6 hacia el chaflán 16 chocan con él mismo, provocándoles una fragmentación y originando micro burbujas, para que el oxígeno sea fácilmente disuelto con el agua; mientras qué, las burbujas de aire que salen en el otro lado del difusor 6 no se fragmentan, por Io que son más grandes y provocan un movimiento circular de Ia masa de agua en dirección transversal, con respecto a Ia anchura del compartimiento. Finalmente el reactor 13 tiene una apertura 29 a una altura de, al menos, 80 cm, que es por donde se descarga el agua hacia Ia sección sedimentadora 23; v) Ia sección sedimentadora 23 es un contenedor con fondo piramidal invertido, el cual comprende un deflector 24 colocado perpendicular, frente a Ia salida 29 del reactor 13, para que el flujo de agua que viene de dicho reactor choque con el deflector 24, provocando una disminución de Ia velocidad del flujo y una separación de las fases del mismo, o sea que los sólidos pesados se desplazan hacia el inferior del deflector, precipitándose al fondo del sedimentador y Ia materia ligera sube por dicho deflector. En el fondo del sedimentador 23 se coloca una segunda bomba neumática 25 para extraer los lodos precipitados por medio de una tubería de elevación 26 y transportarlos hacia: el primer compartimentoi) the air diffuser 6, of the aeration system is a closed cylindrical hollow tube with two rows of perforations 20, located diametrically opposed to each other, which cover the entire length of said tube; where the distance and the number of perforations is variable in each diffuser 6, which depends on the amount of air required; ii) the sand trap 2 to eliminate the settling solids, is a container divided into two compartments, by means of a dividing wall 41. The first compartment 44 concentrates the sands and the second 45 serves to extract them from the plant. The sands concentrator compartment 44 has a bottom with a slope 46 that declines towards the dividing wall 41, to concentrate the sands at that point; and in the upper part a crockery 47 is fixed that is fixed in the dividing wall 41 to support, apart from the screens 1, a vertical screen 18 that retains the floating matter that manages to pass through the screens 1. The dividing wall has a lower perforation where a conduit 15 is connected that conducts the water to the homogenizing tank 3 and an upper perforation 43 to return, to the first compartment 44, the water that rises beyond the tube 15. The crockery 47 must allow the entry of one or more downpipes 8 'with its (s) respective diffusers 6, for the introduction of compressed air that comes from the aeration system, for washing the sands; as well as the introduction, at the point where the sands are concentrated, of a pneumatic extraction tube 42 and a first pneumatic pump 21, which transfer the sands to the second compartment 45, where the pneumatic extraction tube 42 is actuated by the system of aeration The sands fall to the bottom of the second compartment 45, to be extracted from the plant with the help of an electric pump 17 and a sand lift tube 48; The homogenizer tank 3 has a perforation at the same height as the lower perforation of the dividing wall 41, where the conduit 15 is connected to receive the water that comes from the sand trap 2, it being recommended that the conduit be located at a minimum height of 1.5 m, from the base of the homogenizer tank 3, to obtain a minimum water level that allows the operation of the plant (NOP). Said tank 3 is supplied with compressed air that comes from the aeration system; Therefore, in this tank there is at least one air diffuser 6 at the bottom to mix the newly arrived water with the sludge and the fats and oils, which may already exist in the tank 3. At the bottom and towards the opposite end of the duct 15 of the tank is placed, at least, a submersible pump 7, to raise the water through the pipes, elevation s 9, to a distribution box 4, located in the upper part of the tank, either in or out; where said box 4 has inside it a past tube 10 and longitudinally grooved 11, to collect and return the fats and oils to the homogenizer; the past tube 10 is located transversely towards the end of the discharge of the flow of said box 4, this being held to the side walls of the box 4, but not being fixed, because it is necessary that said tube 10 has a rotating movement on its own axis to calibrate it according to the level of the water contained in the box 4. The length of said tube 10 is slightly greater than the width of the box 4, which has a rectangular discharge spout 14 located at least at about 60 cm from its base, the discharge end of the distribution box 4; V) the biological reactor 13 comprises at least one compartment consisting basically of a rectangular container, preferably; where at least, in one of its longitudinal lower edges there is a longitudinal chamfer 16; where the distribution pipes 8 and the introduction tubes 8 'are placed on the side where the chamfer 16 is located, such that air bubbles leaving the holes 20 on the side of the diffuser 6 towards the chamfer 16 collide with himself, causing them to fragment and causing micro bubbles, so that oxygen is easily dissolved with water; while, the air bubbles that come out on the other side of the diffuser 6 do not fragment, so they are larger and cause a circular movement of the water body in a transverse direction, with respect to the width of the compartment. Finally, the reactor 13 has an opening 29 at a height of at least 80 cm, which is where the water is discharged into the sedimentation section 23; v) the sedimentation section 23 is a container with an inverted pyramidal bottom, which comprises a deflector 24 placed perpendicularly, in front of the outlet 29 of the reactor 13, so that the flow of water coming from said reactor collides with the deflector 24, causing a decrease in the speed of the flow and a separation of the phases thereof, that is, the heavy solids move towards the bottom of the deflector, precipitating at the bottom of the settler and the light matter rises through said deflector. At the bottom of the settler 23 a second pneumatic pump 25 is placed to extract the precipitated sludge by means of a lifting pipe 26 and transport them to: the first compartment
(en caso de que haya más de uno) del reactor biológico 13, homogenizador 3 y a Ia cribadora 1, en una proporción de 85, 10 y 5%, respectivamente, con Ia ayuda de un conducto de retorno de lodos 19 provisto de válvulas 12 para el control de Ia cantidad y Ia dirección de dichos lodos. Para Ia extracción de los lodos, a Ia bomba neumática se Ie inyecta aire comprimido que viene del sistema de aireación ya referenciado, de tal manera que se provoca un vacío por efecto Vent,uri y el lodo sube por Ia tubería de elevación 26. En esta sección se coloca un vertedor, el cual puede estar sujeto en las paredes de Ia construcción de esta sección o por algún otro medio de sujeción. vi) el vertedor se compone de, un recipiente rectangular 27 abierto en su parte superior, cuyos bordes laterales superiores son recortados en cortes verticales en formas de "V" 30 hasta una profundidad de una tercera parte, con respecto a Ia altura de dicho recipiente 27, pero dejando una separación entre cada corte 30; una mampara perimetral 28 rodea al recipiente 27, a una separación del 40 % del ancho del vertedor, para que Ia materia flotante que logró pasar el primer deflector 24, sea detenida, y como Ia materia pesada continúa precipitándose, entonces por Ia parte inferior de Ia mampara perimetral 28 pasa el agua más clarificada hacia el interior del vertedor 27 a través de los cortes en formas de "V" 30. El vertedor debe quedar sumergido hasta que el vértice del corte "V" quede al nivel del agua (nivel de operación), de tal manera que toda el agua que suba del vértice, entre a dicho recipiente. En uno de sus extremos del recipiente 27 tiene una perforación donde se conecta un conducto 31 por donde el agua viaja hacia el área de desinfección 32, convencional, para finalmente, el agua tratada sale por el conducto de salida 40 para almacenarse en una cisterna o enviarla a una disposición directa del agua obtenida.(in case there is more than one) of the biological reactor 13, homogenizer 3 and the sieve 1, in a proportion of 85, 10 and 5%, respectively, with the aid of a sludge return duct 19 provided with valves 12 for the control of the quantity and direction of said sludge. For the extraction of the sludge, the pneumatic pump is injected with compressed air that comes from the aeration system already referenced, in such a way that a vacuum is caused by the Vent, uri effect and the sludge rises through the lifting pipe 26. this section is placed a pourer, which may be attached to the walls of the construction of this section or by some other means of attachment. vi) the spout is composed of a rectangular container 27 open at its top, whose upper lateral edges are cut into vertical cuts in "V" shapes 30 to a depth of one third, with respect to the height of said container 27, but leaving a gap between each cut 30; a perimeter screen 28 surrounds the container 27, at a 40% separation of the width of the pourer, so that the floating matter that managed to pass the first deflector 24, is stopped, and as the heavy matter continues to precipitate, then through the lower part of The perimeter screen 28 passes the most clarified water into the interior of the pourer 27 through the cuts in "V" shapes 30. The pourer must be submerged until the vertex of the "V" section is at the water level (level of operation), in such a way that all the water that rises from the vertex, enters said container. At one of its ends of the container 27 it has a perforation where a conduit 31 is connected where the water travels to the disinfection area 32, conventionally, finally, the treated water exits through the outlet conduit 40 to be stored in a cistern or send it to a direct disposal of the water obtained.
2. Una planta para tratar simultáneamente aguas residuales y sus lodos generados, tal como se reclama en Ia reivindicación 1, caracterizada porque Ia planta incluye un tanque digestor 34 de los lodos mineralizados inertes, que reduce hasta en un 99 %, Ia fracción de lodo biológico "joven" que no fue reducido en el reactor biológico; dicho tanque digestor se ubica cerca de Ia sección sedimentadora 23 y es de construcción similar a un reactor biológico 13, pero de dimensiones más reducidas; y tiene interna e inferiormente, al menos, una bomba neumática 33 para extraer los lodos inertes y conducirlos mediante un tubo de elevación de lodos 35 a un área de secado 36, que puede ser una centrífugas, un lecho de secado,, entre otros. 2. A plant to simultaneously treat wastewater and its generated sludge, as claimed in claim 1, characterized in that the plant includes a digester tank 34 of inert mineralized sludge, which reduces up to 99%, the sludge fraction "young" biological that was not reduced in the biological reactor; said digester tank is located near the sedimentation section 23 and is similar in construction to a biological reactor 13, but of smaller dimensions; and it has internally and inferiorly, at least, a pneumatic pump 33 to extract the inert sludge and lead them by means of a sludge lift tube 35 to a drying area 36, which can be a centrifuge, a drying bed, among others.
3. Una planta para tratar simultáneamente aguas residuales y sus lodos generados, tal como se reclama en las reivindicaciones 1 y 2, caracterizada porque el tanque homogenizador puede ser prismático rectangular o cuadrado, aunque esta forma puede variar según el terreno donde se construya dicha planta; y puede estar cerrado o abierto en su parte superior, Io cual depende de las condiciones climáticas de Ia región.3. A plant for simultaneously treating wastewater and its generated sludge, as claimed in claims 1 and 2, characterized in that the homogenizing tank can be rectangular or square prismatic, although this shape may vary depending on the terrain where said plant is constructed. ; and it may be closed or open in its upper part, which depends on the climatic conditions of the region.
4. Una planta para tratar simultáneamente aguas residuales y sus lodos generados, tal como se reclama en las reivindicaciones anteriores, caracterizada porque cuando el reactor biológico 13 requiere de varios compartimentos, estos deben de tener comunicación entre sí, para Io cual, en uno de sus extremos se hace una perforación 22 en Ia parte inferior del muro divisorio, para que el agua pase a los demás compartimentos.4. A plant to simultaneously treat wastewater and its generated sludge, as claimed in the preceding claims, characterized in that when the biological reactor 13 requires several compartments, they must have communication with each other, for which, in one of its ends are perforated 22 in the lower part of the partition wall, so that the water passes to the other compartments.
5. Una planta para tratar simultáneamente aguas residuales y sus lodos generados, tal como se reclama en las reivindicaciones anteriores, caracterizada porque, al área de desinfección se Ie introduce aire comprimido proveniente del sistema de aireación, para mezclar el desinfectante con el agua clarificada y eliminar el excedente en aquellos desinfectantes que producen residuos, para ello se requiere de unos deflectores o mampara 39 colocadas en forma de zigzag.5. A plant for simultaneously treating wastewater and its generated sludge, as claimed in the preceding claims, characterized in that, compressed air from the aeration system is introduced into the disinfection area, to mix the disinfectant with the clarified water and Eliminate the surplus in those disinfectants that produce waste, for this it requires some baffles or screen 39 placed in the form of a zigzag.
6. Un método para tratar simultáneamente aguas residuales y sus lodos generados, basado en Ia aplicación de aire atmosférico comprimido, que consiste de cribar Ia materia flotante que es arrastrada por el agua residual; eliminar Ia arena; homogenizar el agua residual; oxidar biológicamente Ia materia contenida en el agua residual; separar el agua y los lodos; recircular lodos; desinfectar el agua separada; y almacenar del agua obtenida o disponerla directamente. El método se caracteriza porque: .6. A method to simultaneously treat wastewater and its generated sludge, based on the application of compressed atmospheric air, which consists of screening the floating matter that is carried by the wastewater; remove the sand; homogenize wastewater; oxidize biologically the matter contained in the wastewater; separate water and sludge; recirculate sludge; disinfect the separated water; and store the water obtained or dispose of it directly. The method is characterized because:.
i) Ia eliminación de las arenas se lleva acabo con el desarenador 2, de Ia planta descrita en las reivindicaciones 1 a 6, donde las arenas se concentran en el fondo del primer compartimiento 44 con Ia ayuda de Ia pendiente 46, en ese punto las arenas son lavadas por el aire comprimido que viene del sistema de aireación de Ia planta ya descrita; para después ser transferidas al segundo compartimento 45 con el tubo de extracción neumática 42 y Ia bomba neumática 21, donde caen al fondo del segundo compartimiento 45 y son extraídas de Ia planta con Ia ayuda de Ia bomba eléctrica 17 y el tubo de elevación de arenas 48; ii) homogenizar el agua proveniente del desarenador y los lodos reciclados que vienen de Ia sección sedimentadora, en el tanque homogenizador 3, de Ia planta descrita en las reivindicaciones anteriores. La homogenización se hace con el aire comprimido que proviene del sistema de aireación; por Io que en este tanque se encuentra en el fondo, al menos, un difusor de aire 6 para mezclar con el movimiento provocado por al aire, el agua recién llegada con los lodos y las grasas y aceites,, que pudieran ya existir en el tanque, formándose aquí una especie de licor; ¡ii) degradar las grasas y aceites, para Io cual el licor es elevado a Ia caja de distribución 4, donde el licor hace un recorrido para pasar al reactor biológico 3, ocasionando una separación de las grasas y aceites con el agua, donde Ia capa de grasas y aceites (0.5 cm, superior) es captada por Ia ranura 11 del tubo pasado 10 y es retornada al tanque homogenizador, para que continúe degradándose. Las capas de agua (inferiores a 0.5 cm) son las que pasan al reactor biológico 13, por medio del vertedor 14; ¡v) oxidar Ia materia orgánica contenida el agua que proviene de Ia caja distribuidora, Io cual se lleva acabo en el reactor biológico 13 de Ia planta en cuestión, donde el agua es mezclada con el oxígeno del aire comprimido que viene del sistema de aireación, gracias a que las burbujas de aire que salen de los orificios 20 del costado del difusor 6 hacia el chaflán 16 chocan con él mismo, se lleva acabo su fragmentación y originando micro burbujas, para que el oxígeno sea disuelto con el agua; mientras que las burbujas de aire que salen en el otro lado del difusor 6 no se fragmentan, por Io que son más grandes y provocan un movimiento circular de Ia masa de agua en dirección transversal, con respecto a Ia anchura del compartimiento; esto se lleva acabo durante un periodo de 20 a 30 horas; después se procede a; v) separar el agua de los flóculos originados por Ia oxidación, para Io cual se requiere del sedimentador 23 ya descrito en las cláusulas anteriores, donde el choque del flujo de agua con el deflector 24 hace que los flóculos precipiten al fondo del sedimentador 24 por ser. más pesados y como no hay aire, los flóculos se sedimentan rápidamente, Io que da origen a lodos sedimentados; vi) recircular los lodos sedimentados con Ia segunda bomba neumática 25 localizada en el fondo del sedimentador y por medio de Ia tubería de elevación 26, el conducto de retorno de lodos 19 y sus válvulas 12 de control, dicho lodos son enviados hacia: el primer compartimento (en caso de que haya más de uno) del reactor biológico 13, homogenizador 3 y a Ia cribadora 1, en una proporción de 85, 10 y 5%, respectivamente. vii) colectar el agua más clarificada con Ia ayuda del recipiente 27 del vertedor de Ia planta de las reivindicaciones 1-6, para Io cual, dicho recipiente debe quedar sumergido hasta que los vértice de los corte "V" quede al nivel del agua (nivel de operación), de tal manera que el agua que se ubica entre Ia mampara 28 y el recipiente es Ia más clarificada y ésta entra al recipiente por medio de los cortes "V" cuando el nivel de operación sube; el agua es enviada hacia el área de desinfección 32, convencional; y viii) desinfectar el agua clarificada con un producto clorado, de manera convencional. i) The removal of the sands is carried out with the sand trap 2, of the plant described in claims 1 to 6, where the sands are concentrated at the bottom of the first compartment 44 with the help of Ia slope 46, at that point the sands are washed by the compressed air that comes from the aeration system of the plant already described; to then be transferred to the second compartment 45 with the pneumatic extraction tube 42 and the pneumatic pump 21, where they fall to the bottom of the second compartment 45 and are extracted from the plant with the help of the electric pump 17 and the sand lift tube 48; ii) homogenize the water coming from the sand trap and the recycled sludge that comes from the sedimentation section, in the homogenizer tank 3, of the plant described in the previous claims. The homogenization is done with the compressed air that comes from the aeration system; Therefore, in this tank there is at least one air diffuser 6 at the bottom to mix with the movement caused by the air, fresh water with sludge and grease and oil , which may already exist in the tank, forming here a kind of liquor; Ii) to degrade the fats and oils, for which the liquor is elevated to the distribution box 4, where the liquor makes a route to pass to the biological reactor 3, causing a separation of the fats and oils with the water, where Ia layer of fats and oils (0.5 cm, upper) is captured by the slot 11 of the past tube 10 and is returned to the homogenizing tank, so that it continues to degrade. The water layers (less than 0.5 cm) are those that pass to the biological reactor 13, by means of the spout 14; V) oxidize the organic matter contained in the water that comes from the distribution box, which is carried out in the biological reactor 13 of the plant in question, where the water is mixed with the oxygen from the compressed air that comes from the aeration system , thanks to the fact that the air bubbles leaving the holes 20 on the side of the diffuser 6 towards the chamfer 16 collide with it, fragmentation takes place and causing micro bubbles, so that the oxygen is dissolved with the water; while the air bubbles that come out on the other side of the diffuser 6 do not fragment, so they are larger and cause a circular movement of the water body in a transverse direction, with respect to the width of the compartment; This takes place over a period of 20 to 30 hours; then proceed to; v) separating the water from the flocs caused by the oxidation, for which the settler 23 already described in the previous clauses is required, where the collision of the water flow with the deflector 24 causes the flocs to fall to the bottom of the settler 24 by be. heavier and as there is no air, the flocs settle quickly, which gives rise to sedimentary sludge; vi) recirculating the settled sludge with the second pneumatic pump 25 located at the bottom of the settler and by means of the lifting pipe 26, the sludge return duct 19 and its control valves 12, said sludges are sent to: the first compartment (in case there is more than one) of the biological reactor 13, homogenizer 3 and the sieve 1, in a proportion of 85, 10 and 5%, respectively. vii) collecting the most clarified water with the help of the container 27 of the landfill of the plant of claims 1-6, for which, said container must be submerged until the vertexes of the cuts "V" are at the water level ( operation level), in such a way that the water that is located between the screen 28 and the container is the most clarified and it enters the container by means of the "V" cuts when the operation level rises; the water is sent to the disinfection area 32, conventional; and viii) disinfect the clarified water with a chlorinated product, in a conventional manner.
PCT/MX2008/000029 2008-02-25 2008-02-25 Plant and method for the simultaneous treatment of wastewater and generated sludge WO2009108032A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/MX2008/000029 WO2009108032A1 (en) 2008-02-25 2008-02-25 Plant and method for the simultaneous treatment of wastewater and generated sludge
MX2010009549A MX2010009549A (en) 2008-02-25 2010-08-12 Plant and method for the simultaneous treatment of wastewater and generated sludge.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2008/000029 WO2009108032A1 (en) 2008-02-25 2008-02-25 Plant and method for the simultaneous treatment of wastewater and generated sludge

Publications (1)

Publication Number Publication Date
WO2009108032A1 true WO2009108032A1 (en) 2009-09-03

Family

ID=41016297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2008/000029 WO2009108032A1 (en) 2008-02-25 2008-02-25 Plant and method for the simultaneous treatment of wastewater and generated sludge

Country Status (1)

Country Link
WO (1) WO2009108032A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102603110A (en) * 2011-01-20 2012-07-25 苏州科技学院 Method for recovering heavily polluted water body in city by utilizing aeration-to-sediments
CN103332771A (en) * 2013-06-30 2013-10-02 温州中环正源水务有限公司 Scum treatment device of aerated grit chamber
WO2014005540A1 (en) * 2012-07-06 2014-01-09 Jinmin Li Apparatus and method for biological sewage treatment
CN107758830A (en) * 2017-11-22 2018-03-06 江苏省环境科学研究院 The reactor of dismountable wet oxidation processing waste water
CN107902715A (en) * 2017-11-15 2018-04-13 安徽金联地矿科技有限公司 A kind of device and method using micro-nano bubble treated sewage
CN108726820A (en) * 2017-04-21 2018-11-02 中国二十冶集团有限公司 The innoxious in-situ treatment method of riverway sludge
CN109231553A (en) * 2018-10-09 2019-01-18 徐州工程学院 A kind of small watershed heavy metal pollution of water body emergency treatment device
CN109354369A (en) * 2018-10-22 2019-02-19 长沙理工大学 A kind of control method of mud disposal system
CN110425169A (en) * 2019-08-16 2019-11-08 宁波希澈机械科技有限公司 A kind of intelligent pipeline blower
CN113087351A (en) * 2021-03-18 2021-07-09 杭州国泰环保科技股份有限公司 Sludge low-pressure dehydration device and treatment process
CN113428956A (en) * 2021-06-30 2021-09-24 刘佰慧 Flushable medium accelerated high-density sedimentation tank water treatment system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB478977A (en) * 1936-02-03 1938-01-28 American Centrifugal Corp Improvements in or relating to treatment of sewage
US4159944A (en) * 1978-02-13 1979-07-03 Erickson Lennart G Wastewater energy recycling method
EP0311887A2 (en) * 1987-10-13 1989-04-19 Politechnika Wroclawska Mechanical-biological sewage treatment plant
US5647986A (en) * 1994-12-02 1997-07-15 Nawathe; Dilip Apparatus and process for distributed treatment of wastewater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB478977A (en) * 1936-02-03 1938-01-28 American Centrifugal Corp Improvements in or relating to treatment of sewage
US4159944A (en) * 1978-02-13 1979-07-03 Erickson Lennart G Wastewater energy recycling method
EP0311887A2 (en) * 1987-10-13 1989-04-19 Politechnika Wroclawska Mechanical-biological sewage treatment plant
US5647986A (en) * 1994-12-02 1997-07-15 Nawathe; Dilip Apparatus and process for distributed treatment of wastewater

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102603110A (en) * 2011-01-20 2012-07-25 苏州科技学院 Method for recovering heavily polluted water body in city by utilizing aeration-to-sediments
WO2014005540A1 (en) * 2012-07-06 2014-01-09 Jinmin Li Apparatus and method for biological sewage treatment
US9771286B2 (en) 2012-07-06 2017-09-26 Jinmin Li Apparatus for biological sewage treatment
EA028145B1 (en) * 2012-07-06 2017-10-31 Цзиньминь Ли Apparatus and method for biological sewage treatment
CN103332771A (en) * 2013-06-30 2013-10-02 温州中环正源水务有限公司 Scum treatment device of aerated grit chamber
CN103332771B (en) * 2013-06-30 2014-06-18 温州中环正源水务有限公司 Scum treatment device of aerated grit chamber
CN108726820A (en) * 2017-04-21 2018-11-02 中国二十冶集团有限公司 The innoxious in-situ treatment method of riverway sludge
CN108726820B (en) * 2017-04-21 2021-03-26 中国二十冶集团有限公司 River sludge harmless in-situ treatment method
CN107902715A (en) * 2017-11-15 2018-04-13 安徽金联地矿科技有限公司 A kind of device and method using micro-nano bubble treated sewage
CN107758830A (en) * 2017-11-22 2018-03-06 江苏省环境科学研究院 The reactor of dismountable wet oxidation processing waste water
CN107758830B (en) * 2017-11-22 2023-09-05 江苏省环境科学研究院 Detachable wet oxidation wastewater treatment reactor
CN109231553A (en) * 2018-10-09 2019-01-18 徐州工程学院 A kind of small watershed heavy metal pollution of water body emergency treatment device
CN109354369A (en) * 2018-10-22 2019-02-19 长沙理工大学 A kind of control method of mud disposal system
CN109354369B (en) * 2018-10-22 2023-12-05 长沙理工大学 Control method of slurry treatment system
CN110425169A (en) * 2019-08-16 2019-11-08 宁波希澈机械科技有限公司 A kind of intelligent pipeline blower
CN110425169B (en) * 2019-08-16 2020-04-10 浙江省东阳市华东暖通设备有限公司 Intelligent pipeline fan
CN113087351A (en) * 2021-03-18 2021-07-09 杭州国泰环保科技股份有限公司 Sludge low-pressure dehydration device and treatment process
CN113087351B (en) * 2021-03-18 2022-11-11 杭州国泰环保科技股份有限公司 Sludge low-pressure dehydration device and treatment process
CN113428956A (en) * 2021-06-30 2021-09-24 刘佰慧 Flushable medium accelerated high-density sedimentation tank water treatment system and method

Similar Documents

Publication Publication Date Title
WO2009108032A1 (en) Plant and method for the simultaneous treatment of wastewater and generated sludge
US7481935B2 (en) Waste water treatment process
CA2703455C (en) Water remediation and biosolids collection system and associated methods
ES2750549T3 (en) Cyclic, non-biological, portable wastewater treatment plant
WO2015034338A1 (en) System and multi-functional method for treating wastewater
CN103238554A (en) Ecotype enclosed method for culturing fish through circulation water
JP4482717B1 (en) Domestic wastewater advanced purification treatment circulation system and domestic wastewater advanced purification treatment circulation method using the same
TW298588B (en)
US10597316B2 (en) System for implementation or de-pollution and revitalization of artificial or natural lakes
JP3049384B2 (en) Water purification method and water purification device used for the method
US20160289109A1 (en) Enhanced treatment shaft
HUE030155T2 (en) Small installation for biological wastewater treatment with improved efficiency
KR101547856B1 (en) System for purifying water which uses floating type
KR20000020516A (en) Method for purifying fresh water
US2907463A (en) Septic and antiseptic sewage disposal unit
WO2018025189A2 (en) Anaerobic bioreactor
JP3796720B2 (en) Human waste purification device
CN207483566U (en) A kind of sanitary sewage Simple treatment device
JP6666176B2 (en) Water treatment apparatus and method capable of removing vaporizable substances out of the system
CN205328819U (en) Low energy consumption MBR integration sewage treatment device
LV15092B (en) Fish-rearing complex and method for regenerating water therein
KR100830207B1 (en) Aeration tank having propeller
ES2402449T3 (en) Unit, plant and procedure for the treatment of contaminated water
ES2251286B1 (en) CLEANING OF CONTINENTAL WATERS THROUGH CULTURES OF FILAMENT GREEN MACROALGAS THAT ABSORB AND RECYCLE NUTRIENTS AND / OR SET HEAVY METALS GENERATING VEGETABLE BIOMASS.
EP2209747B1 (en) A plant for waste water treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08723811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/009549

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08723811

Country of ref document: EP

Kind code of ref document: A1