WO2009107965A1 - 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서 및 그 제작방법 - Google Patents

다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서 및 그 제작방법 Download PDF

Info

Publication number
WO2009107965A1
WO2009107965A1 PCT/KR2009/000868 KR2009000868W WO2009107965A1 WO 2009107965 A1 WO2009107965 A1 WO 2009107965A1 KR 2009000868 W KR2009000868 W KR 2009000868W WO 2009107965 A1 WO2009107965 A1 WO 2009107965A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
array
size
physical
biochemical sensor
Prior art date
Application number
PCT/KR2009/000868
Other languages
English (en)
French (fr)
Inventor
이재찬
신상훈
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to EP09714045.3A priority Critical patent/EP2251681B1/en
Priority to JP2010503990A priority patent/JP5431301B2/ja
Publication of WO2009107965A1 publication Critical patent/WO2009107965A1/ko
Priority to US12/579,660 priority patent/US8169124B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/014Resonance or resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0255(Bio)chemical reactions, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0427Flexural waves, plate waves, e.g. Lamb waves, tuning fork, cantilever

Definitions

  • the present invention relates to a physical / biochemical sensor using a multi-size piezoelectric microcantilever resonator array and a method of fabricating the same. More specifically, the effect of mass application by adsorption of a sensing target material by measuring a change in resonance frequency obtained in a sensing process
  • the present invention relates to a physical / biochemical sensor using a medium-sized piezoelectric microcantilever resonator array and a method of fabricating the same, which can be used for analysis of a sensing target material in various applications by simultaneously quantitatively analyzing the effects of surface stress changes. .
  • Such research trends include research and development of microscopic precision sensor systems for quick and simple detection of the presence or absence of sensing target substances such as human biomarkers and pathogens for the diagnosis of harmful environmental substances or diseases, or specific biochemical reactions. If the concentrations of biochemicals and hazardous pollutants to be detected in the air, aquatic environment or human body are very sparse, they can be analyzed using conventional analytical methods to extract, concentrate and analyze the samples. Many disadvantages must be overcome, including the time required for pretreatment. In order to analyze a target material in real time without sample pretreatment such as sample extraction and concentration, the sensitivity of the sensor element used in the analysis must be able to detect mass at the molecular level.
  • a microcantilever integrated with a piezoelectric driving element can be self-driven by an alternating electric field, and can quickly read large changes in an alternating current signal caused by the piezoelectric effect at a resonance frequency point as an electrical measurement.
  • Technical data have already been reported by several researchers, including patents and research papers published by the research group.
  • Microcantilever resonator sensors that operate at resonant frequency using piezoelectric or other driving principles are used to change the mass change of the cantilever surface during the detection process in order to detect the substance to be detected.
  • the detection signal is output in the form of, and the result is analyzed.
  • devices in the form of arrays in which a plurality of cantilevers are arranged rather than a single cantilever are preferred.
  • the resonant frequency of the cantilever decreases or increases due to the change of the surface stress, in addition to the increase of the surface mass occurring in the sensing process.
  • the object of the present invention devised in view of the above point is to provide a multi-size piezoelectric microcantilever resonator array capable of simultaneously quantitatively analyzing the effects of surface stress changes in addition to the effect of mass application by adsorption of a sensing target material. It provides a physical / biochemical sensor and a method of manufacturing the same.
  • Physical / biochemical sensor using a multi-size piezoelectric microcantilever resonator array for achieving the object of the present invention is a physical / biochemical sensor using a piezoelectric microcantilever resonator, the piezoelectric microcantilever resonator is a sensing process It is characterized by the structure that a plurality of piezoelectric microcantilever resonators having different sizes are arranged to distinguish and quantitatively analyze the surface stress change caused by the adsorbed sensing material as well as the mass change of the sensor surface. .
  • the piezoelectric microcantilever resonator array may include a plurality of silicon nitride film cantilevers formed on the silicon substrate and arranged to have a reduced length in steps; A silicon oxide film formed on the silicon nitride film cantilever; A lower electrode formed on the silicon oxide film to have a predetermined size; A piezoelectric driving thin film layer formed on the lower electrode for piezoelectric driving; An insulating layer formed on the lower electrode and an upper portion of the piezoelectric driving thin film layer to insulate between the electrodes; An electrode line connected to an upper electrode formed on the insulating layer and the piezoelectric driving thin film layer, and an electric field for driving an element to the upper electrode and the lower electrode; It is characterized by including.
  • Forming a (g) forming an insulating layer for insulating between upper and lower electrodes on a portion of the formed multi-size lower electrode array and the multi-size piezoelectric driving thin film material array; (h) forming a multisized top electrode array and electrode lines and pads for applying a driving voltage on top of the insulation layer and on the multisized piezoelectric drive thin film material array; (i) removing a portion of the lower silicon nitride film cantilever; (j) etching the exposed silicon substrate in step (i); (k) removing a portion of the upper silicon nitride film of the silicon-etched device to form a multi-size piezoelectric microcantilever resonator array sensor; It is characterized in that to be carried out sequentially.
  • the physical / biochemical sensor using the multi-size piezoelectric microcantilever resonator array according to the present invention can analyze not only the mass change of the sensor surface occurring in various sensing processes but also the surface stress change caused by the adsorbed sensing target material.
  • the senor platform of the present invention when the sensor platform of the present invention is applied to the biochemical field, the presence of a sensing target material is determined, as well as the reaction between the sensing material and the sensing material and the sensing material. It is effective to secure a wide detection signal that can be confirmed indirectly.
  • the sensor platform in the present invention is used as a physical sensor to measure the thickness of the thin film deposition process of various materials in place of the existing quartz crystal mass sensor (QCM), obtained from a multi-size piezoelectric microcantilever resonator array
  • QCM quartz crystal mass sensor
  • FIG. 1 is a schematic diagram illustrating a physical / biochemical sensor using a multi-size piezoelectric microcantilever resonator array, which is a preferred embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a physical / biochemical sensor using a multi-size piezoelectric microcantilever resonator array
  • FIG. 3 is a cross-sectional view illustrating a fabrication process of a physical / biochemical sensor using a multi-size piezoelectric microcantilever resonator array
  • FIG. 4 is a plan view illustrating a fabrication process of a physical / biochemical sensor using a multi-size piezoelectric microcantilever resonator array
  • 5 to 9 are graphs illustrating a change in resonant frequency in each piezoelectric microcantilever resonator array
  • FIG. 10 is a graph showing the frequency change obtained in a physical / biochemical sensor using a multi-size piezoelectric microcantilever resonator array as a function of the length of the piezoelectric microcantilever resonators.
  • insulation layer 6 silicon substrate
  • electrode line 8 pad
  • FIG. 1 is a block diagram schematically illustrating a physical / biochemical sensor using a multi-size piezoelectric microcantilever resonator array, which is a preferred embodiment of the present invention
  • FIG. 3 is a cross-sectional view illustrating a fabrication process of a physical / biochemical sensor using a multi-size piezoelectric microcantilever resonator array
  • FIG. 4 is a physics using a multi-size piezoelectric microcantilever resonator array.
  • 5 to 9 are graphs showing the change of resonance frequency in each piezoelectric microcantilever resonator array
  • FIG. 10 is a graph showing a multi-size piezoelectric microcantilever resonator array. Piezoelectric Microcantilever Resonance of Frequency Variation Obtained from Physical and Biochemical Sensors It is a graph plotted as a function of their length.
  • the physical / biochemical sensor using the multi-size piezoelectric microcantilever resonator array according to the present invention has a structure in which a plurality of piezoelectric microcantilever resonators 10 having different sizes are arranged. That is, it has a form that is reduced and arranged in two dimensions step by step.
  • Each piezoelectric microcantilever resonator 10 having a different size constituting the microcantilever resonator array is formed on the silicon substrate 6 and has a support layer 4 which is arranged to be reduced in stages in a stepwise manner, and a support layer.
  • a lower electrode 3 formed in a predetermined size on the upper side, a piezoelectric driving thin film layer 1 formed on the lower electrode 3 for piezoelectric driving, and an upper and piezoelectric driving thin film layer on the lower electrode 2 ( 1) an insulating layer 5 formed for inter-electrode insulation on the upper part of the region, and an upper electrode 3 and an upper electrode and a lower electrode formed on the upper part of the insulating layer 5 and the piezoelectric driving thin film layer 1.
  • the electrode line 7 and the pad 8 are connected to each other so as to apply an electric field for driving the device.
  • the support layer 4 is formed of a silicon nitride film formed on the silicon substrate 6 and a plurality of silicon nitride film cantilevers arranged in a step-down manner.
  • the piezoelectric microcantilever resonator 10 uses a piezoelectric material as a thin film material for piezoelectric driving.
  • a piezoelectric material is a material using the principle that a potential difference (voltage) is generated when pressure is applied to a crystal, and a physical displacement occurs when a potential difference (voltage) is applied to these materials.
  • the piezoelectric material is largely divided into nitride and oxide, and nitride is nitrided.
  • Aluminum (AIN) is typically used, and oxide is typically zinc oxide (ZnO), which is a piezoelectric material without lead, or Pb (Zr, Ti) O 3 (lead titanium-zirconate, hereinafter PZT), which is a link. .
  • the insulating layer 5 is formed by photolithography using a patternable material such as photosensitive polyimide.
  • the change of the fundamental resonant frequency and the resonant frequency of the piezoelectric drive element is represented by the change of the electrical signal such as complex impedance, which is measured by the impedance analyzer built in the sensor module. Therefore, a physical / biochemical sensor using a multi-size piezoelectric microcantilever resonator array including a plurality of piezoelectric microcantilever resonators 10 scaled down two-dimensionally includes an oscillator and a frequency counter implemented on a circuit.
  • the resonant frequency value of the device is measured by frequency searching using the piezoelectric element included in the multi-size piezoelectric microcantilever resonator 10 changed by the reaction between the sensing material layer and the sensing target material after the device is exposed to the measurement environment. All resonance frequencies of the microcantilevers are measured and analyzed to determine the presence of a substance to be detected.
  • the basic resonant frequency value of the piezoelectric microcantilever resonator 10 in the present invention is increased in inverse proportion to the square of the length of the device, and the sensitivity is better when the size of the device is reduced to obtain a high resonant frequency value. Can be obtained.
  • a device capable of detecting a small mass below the femtogram area is required. Therefore, among the silicon nitride cantilevers of various sizes included in the multi-size piezoelectric microcantilever resonator 10, the small silicon nitride exhibiting a more sensitive sensitivity to the surface mass increase that occurs in the sensing process of the sensing object.
  • the membrane cantilever preferably has a length and width of about 30 and 10 microns, respectively.
  • each size is the same.
  • each layer is preferably designed with an upper electrode: 0.1 ⁇ m, a lower electrode: 0.15 ⁇ m, a piezoelectric driving thin film layer: 0.5 ⁇ m, and a support layer (silicon nitride film cantilever + silicon oxide film): (1.2 ⁇ m + 0.35 ⁇ m). .
  • the smallest 30-maclon-long piezoelectric microcantilever resonator 10 has a sufficiently large spring constant, and thus is insensitive to stress changes on the surface of the cantilever generated in the sensing process.
  • the large 240 micron long piezoelectric microcantilever resonator 10 exhibits a sensitive response to both factors such as surface mass increase and surface stress change that occur during the sensing process due to the small spring constant.
  • E * used to define the spring constant (k Theoretical ) in the above equation is the Young's Modulus of the microcantilever resonator 10
  • t is the thickness of the microcantilever resonator
  • w and L are the microcanti, respectively.
  • the thickness of the microcantilever resonators included in the multi-size microcantilever resonator array is kept constant. Therefore, the thickness t shown in the above equation is not considered to describe the spring constant change relation according to the plane size of the microcantilever resonator 10.
  • the spring constant change according to the size change of the microcantilever resonator 10 is determined by the ratio (w / L 3 ) of the cube of the width and the length of the microcantilever resonator 10.
  • the ratio (L / w) of the length to the width of the microcantilever resonator 10 is kept constant and the plane size is reduced in two dimensions, as a result, the spring constant of the microcantilever resonator 10 is reduced. It can be seen that (k Theoretical ) increases in inverse proportion to the square of the length.
  • the largest of the piezoelectric microcantilever resonators 10 presented in the embodiment of the present invention has a length corresponding to eight times the length of the smallest, and consequently, the spring constant of the smallest is about It is 64 times larger.
  • the fabrication steps of the physical / biochemical sensor using the multi-size piezoelectric microcantilever resonator array are as follows.
  • a multi-size piezoelectric microcantilever resonator array which is manufactured by sequentially performing a step of forming a multi-size piezoelectric microcantilever resonator 10 sensor by removing a portion of the upper silicon nitride film. , To produce a physical / biochemical sensor using.
  • step (k) it may further comprise the step (l) of forming a sensing layer for sensing the sensing target material.
  • a gold thin film is deposited on the surface of the microcantilever to form a sensing material layer for sensing a biomaterial, and a self-assembled monolayer is formed by using a gold-thiol reaction.
  • a method of fixing a sensing material suitable for a sensing material or a method of forming a solution containing a polymer material to which a specific sensing material can be bonded by inkjet printing, spin coating, or dip coating on a surface of a device for a chemical sensor application. Either one can be used.
  • FIG. 3 is a gold thin film deposited on the back of the fabricated multi-size piezoelectric microcantilever resonator (10), and after the self-assembled monolayer formed by the gold-alkanethiol reaction and biotin and streptavidin human
  • the resonant frequency change after fixing the antibody is shown for the piezoelectric microcantilever resonator (10) of five sizes. Small ones have very high resonant frequencies and very high sensitivity to applied mass. Therefore, the frequency reduction was apparent by the immobilization of human antibody (IgG). On the other hand, the larger one has a smaller basic resonance frequency value and the smaller sensitivity to mass, resulting in a relatively smaller frequency reduction than the smaller one obtained at the same time.
  • FIG. 4 shows the frequency change obtained in each of the multi-size piezoelectric microcantilever resonators 10, shown in the embodiment of FIG. 3, as a function of the length of the cantilevers.
  • the black squares and lines shown in FIG. 4 are theoretical frequency changes due to the expected increase in surface mass when immobilizing the human antibody (IgG) using a multi-size piezoelectric microcantilever resonator array sensor.
  • the graph shown by the lines is the frequency change seen in the actual experiment.
  • the 30 micron long piezoelectric microcantilever resonator 10 was found to be hardly affected by the surface stress generated during the sensing process. Therefore, in implementing multiple sizes, the frequency change by mass application is preferable as the piezoelectric microcantilever resonator 10 having a dominant characteristic. However, it would be desirable to apply a piezoelectric microcantilever resonator 10 having a smaller size and having a higher spring constant in order to be less affected by surface stresses generated during the sensing process.
  • the piezoelectric microcantilever resonator 10 having a length of 240 microns has been shown to be greatly influenced by the surface stress, and is preferable as the piezoelectric microcantilever resonator 10 having a large specific gravity change due to the surface stress change. Do.
  • the physical / biochemical sensor using the multi-size piezoelectric microcantilever resonator array according to the present invention when used, not only the surface mass adsorption information generated in the sensing process can be analyzed, but also the piezoelectric microcanti having each size can be analyzed. Comparing the expected frequency variation pattern obtained from the mass sensitivity of the lever resonator arrays with the resonance frequency variation pattern obtained in the actual sensing process, it is possible to simultaneously determine the influence of the surface stress generation, that is, the sensing material formed on the surface of the cantilever. More information is available regarding the biochemical reactions between the sensing substances.
  • the physical / biochemical sensor using the multi-size piezoelectric microcantilever resonator array according to the present invention can not only quickly and accurately detect the presence or absence of various kinds of sensing target materials present in extremely small amounts, but also cantilever surface.
  • the sensing material formed in the reaction reacts with various kinds of sensing target materials, the discrimination of the sensing target in the sensing result can be improved by simultaneously analyzing the influence of the surface stress.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Acoustics & Sound (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micromachines (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

본 발명은 질량 인가 효과와 더불어 표면 응력 변화에 의한 효과를 동시에 정량적으로 분석할 수 있는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서 및 그 제작방법을 개시한다. 압전 마이크로 칸티레버 공진자를 이용한 물리/생화학 센서에 있어서, 상기 압전 마이크로 칸티레버 공진자는 감지과정에서 발생되는 센서 표면의 질량 변화 뿐만 아니라 흡착된 감지 대상물질에 의한 표면 응력 변화를 구별하여 정량 분석할 수 있도록 서로 다른 크기를 갖는 다수개의 압전 마이크로 칸티레버 공진자들이 배열되는 구조로 구성됨으로써, 질량 인가 효과와 더불어 표면 응력 변화에 의한 효과를 동시에 정량적으로 분석할 수 있도록 한 것이다.

Description

다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서 및 그 제작방법
본 발명은 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서 및 그 제작방법에 관한 것으로서, 보다 상세하게는 감지 과정에서 얻어지는 공진주파수 변화를 측정하여 감지 대상물질의 흡착에 의한 질량 인가 효과와 더불어 표면 응력 변화에 의한 효과를 동시에 정량적으로 분석함으로써 다양한 응용 분야에서 감지 대상물질의 분석에 이용할 수 있도록 하는 중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서 및 그 제작방법에 관한 것이다.
현대의 과학 기술 개발은 인간 삶의 질적 향상을 궁극의 목적으로 하고 있다. 특히 생명 공학 및 환경 분야에 있어서 질병의 치료에 앞서 질병을 미리 예측 하거나 또는 조기에 진단하고, 인간 수명에 직접적인 영향을 줄 수 있는 각종 문제들을 효율적으로 제어하고자 하는 연구가 활발히 진행되고 있다.
이러한 연구 동향으로 유해 환경 물질 또는 질병 진단을 위한 인체 바이오 마커 및 병원체와 같은 감지 대상물질의 존재 여부나, 특정 생화학 반응 여부를 빠르고 간단하게 검출하기 위한 초소형 정밀 센서 시스템 연구 개발을 예로 들 수 있다. 공기, 수생 환경 또는 인체 내에 존재하는 감지 하고자 하는 생화학 물질 및 유해 공해물질의 농도가 매우 희박할 경우, 이를 기존의 분석법으로 분석하기 위해서는 시료의 추출, 농축 및 분석을 위해 고비용, 대규모 분석 장치 및 샘플 전 처리에 많은 시간이 소요되는 등의 많은 단점을 극복해야만 한다. 시료의 추출 및 농축과 같은 샘플 전 처리 과정 없이 실시간으로 대상 물질을 분석하기 위해서는 분석에 사용되는 센서 소자의 감도가 단 분자 수준의 질량을 감지할 수 있어야 한다.
이러한 센서 중의 하나 인 압전 구동 요소가 집적된 마이크로 칸티레버는 교류 전계에 의해 자가 구동이 가능하며, 공진주파수 지점에서 압전 효과에 의해 나타나는 교류 신호의 큰 변화를 전기적 측정으로 빠르게 읽어 들일 수 있다. 이와 관련한 기술 자료는 본 연구 그룹에서 발표한 특허와 연구 논문을 비롯하여, 여러 연구자들에 의해 이미 보고되어 있다.
압전 방식 또는 다른 구동 원리를 이용하여 공진주파수로 작동하는 마이크로 칸티레버 공진자 센서는, 감지 대상 물질을 감지하는 실제 응용에 있어서, 감지 과정에서 일어나는 칸티레버 표면의 질량 변화를 칸티레버의 공진주파수 변화의 형태로 감지 신호를 출력하며, 이를 분석하여 결과를 얻는다. 보다 폭넓은 적용 및 보다 정확한 분석을 위해 단일 칸티레버보다는 복수개의 칸티레버가 배열된 어레이 형태의 소자가 바람직하다. 한편, 칸티레버의 공진주파수는 감지 과정에서 일어나는 표면 질량 증가 이외에, 표면 응력의 변화에 의해서도 감소하거나 증가하게 된다. 그러나 단일 칸티레버 또는 동일한 크기의 칸티레버가 복수 개로 배열된 어레이 형태의 소자를 이용할 경우, 감지 신호인 공진주파수 변화에 있어서, 감지 과정에서 발생하는 질량 인가 효과 및 표면 응력 변화 효과를 구별하여 분석할 수 없다는 한계를 가지고 있다. 표면 응력 변화를 확인하기 위해서, 광학적인 방법으로 표면 응력 변화에 의한 칸티레버의 기계적 휨 정도를 측정하여 분석할 수 있지만, 공진주파수 변화를 주 감지 신호로 활용하는 경우 질량 인가 효과와 표면 응력 효과가 동시 작용하므로 구별 분석이 어려운 문제점이 있다.
상기와 같음 점을 감안하여 안출한 본 발명의 목적은 감지 대상물질의 흡착에 의한 질량인가 효과가 더불어 표면 응력변화에 의한 효과를 동시에 정량적으로 분석할 수 있는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서 및 그 제작방법를 제공함에 있다.
상기와 같은 본 발명의 목적을 달성하기 위한 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서는 압전 마이크로 칸티레버 공진자를 이용한 물리/생화학 센서에 있어서, 상기 압전 마이크로 칸티레버 공진자는 감지과정에서 발생되는 센서 표면의 질량 변화 뿐만 아니라 흡착된 감지 대상물질에 의한 표면 응력 변화를 구별하여 정량 분석할 수 있도록 서로 다른 크기를 갖는 다수개의 압전 마이크로 칸티레버 공진자들이 배열되는 구조로 이루어지는 특징이 있다.
또한, 상기 압전 마이크로 칸티레버 공진자 어레이는 실리콘 기판 상부에 형성되며 길이가 단계적으로 축소되어 배열되는 다수개의 질화 실리콘막 칸티레버; 상기 질화 실리콘막 칸티레버의 상부에 형성되는 산화 실리콘 막; 상기 실리콘 산화 막 상부에 소정의 크기로 형성되는 하부 전극; 상기 하부 전극 상부에 압전 구동을 위해 형성되는 압전 구동박막층; 상기 하부 전극 상부 및 상기 압전 구동박막층 일부 영역 상부에 전극간 절연을 위해 형성되는 절연층; 상기 절연층의 상부 및 상기 압전 구동박막층의 상부에 형성되는 상부 전극 및 상기 상부 전극 및 하부 전극에 소자의 구동을 위한 전계를 인가할 수 있도록 연결되는 전극라인; 을 포함하는 것을 특징이 있다.
또한 본 발명의 목적을 달성하기 위한 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서의 제작방법에 있어서, (a) 실리콘 기판 상부 및 하부에 각각의 상기 질화 실리콘막 칸티레버를 증착하는 단계; (b) 상부측의 상기 질화 실리콘막 칸티레버 상부에 산하 실리콘 막을 증착하는 단계; (c) 상기 산화 실리콘 막 상부 전면에 접합 층을 포함한 하부 전극을 형성하는 단계; (d) 상기 하부 전극 상부 전면에 압전 구동을 위한 압전 구동박막층을 형성하는 단계; (e) 상기 형성된 압전 구동박막 일부를 식각하여, 다중 크기 압전 마이크로 칸티레버 공진자 어레이 센서에 집적되는 다중 크기 압전 구동박막 재료 어레이를 형성하는 단계; (f) 상기 형성된 다중 크기 압전 구동 재료 어레이 하부에 있는 하부 전극의 일부를 식각하여, 다중 크기 압전 마이크로 칸티레버 공진자 어레이 센서에 집적되는 다중 크기 하부 전극 어레이 및 구동 전압 인가를 위한 전극 라인 및 패드를 형성하는 단계; (g) 상기 형성된 다중 크기 하부 전극 어레이 및 다중 크기 압전 구동박막 재료 어레이 일부 영역 상부에 상하부 전극 간 절연을 위한 절연 층을 형성하는 단계; (h) 상기 절연 층의 상부 및 다중 크기 압전 구동박막 재료 어레이의 상부에 다중 크기 상부 전극 어레이와 구동 전압 인가를 위한 전극 라인 및 패드를 형성하는 단계; (i) 상기 하부 질화 실리콘막 칸티레버의 일부를 제거하는 단계; (j) 상기 (i) 단계로 노출된 실리콘 기판을 식각하는 단계; (k) 상기 실리콘이 식각된 소자의 상부 질화 실리콘 막의 일부를 제거하여 다중 크기 압전 마이크로 칸티레버 공진자 어레이 센서를 형성하는 단계; 를 순차적으로 실시하여 제작되는 것을 특징으로 한다.
이와 같이 본 발명에 의한 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서는 다양한 감지 과정에서 발생하는 센서 표면의 질량 변화 뿐만 아니라 흡착된 감지 대상물질에 의한 표면 응력 변화를 구별하여 분석할 수 있는 장점을 갖는다. 즉, 외부로부터 극소량의 감지 대상 물질의 농도에 신속하게 반응하여 공진주파수의 변화를 통해 즉시 감지가 가능하여 빠른 응답 속도와 높은 감도를 갖는 장점이 있고, 공진 주파수 변화를 분석함으로써, 생화학 반응에 의한 표면 흡착 질량 증가 이외에 감지 과정에 따른 표면 응력 변화의 영향을 알 수 있기 때문에 감지 결과에 있어서 보다 넓은 범위의 정보를 확보할 수 있으며 정확한 감지결과를 얻을 수 있는 효과가 있다.
또한, 본 발명에서의 센서 플랫폼을 생화학 분야에 응용할 경우, 감지 대상 물질의 존재 유무를 판단함은 물론, 감지 물질과 감지 대상물질의 반응, 감지 대상물질 간의 반응 양상을 직. 간접적으로 확인할 수 있는 폭 넓은 감지 신호를 확보할 수 있는 효과가 있다.
한편, 본 발명에서의 센서 플랫폼을 기존의 수정 진동자 질량 센서 (QCM)을 대체하여 다양한 재료의 박막 증착 공정 시 그 두께를 측정하는 물리 센서로 사용하면, 다중 크기 압전 마이크로 칸티레버 공진자 어레이로부터 얻어지는 공진주파수 신호만을 전기적으로 분석하여 표면 응력 효과를 분석함으로써 증착되는 박막 물질의 두께에 대한 보다 정밀한 정보뿐만 아니라, 박막 재료의 기계적 특성을 동시에 분석할 수 있는 효과가 있다.
도 1은 본 발명의 바람직한 일 실시예인 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서를 개략적으로 도시한 구성도,
도 2는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서의 단면도,
도 3은 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서의 제작과정을 단면하여 도시한 상태도,
도 4는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서의 제작과정을 도시한 평면도,
도 5 내지 도 9는 각각의 압전 마이크로 칸티레버 공진자 어레이에서 공진 주파수 변화를 도시한 그래프,
도 10은 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서에서 얻어진 주파수 변화를 압전 마이크로 칸티레버 공진자들의 길이의 함수로 도시한 그래프.
**도면의 주요 부분에 대한 부호의 설명**
1 : 압전구동 박막층 2 : 하부전극
3 : 상부 전극 4 : 지지층
5 : 절연층 6 : 실리콘기판
7 : 전극 라인 8 : 패드
10 : 압전 마이크로 칸티레버 공진자
이하, 본 발명의 바람직한 일 실시예인 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서 및 그 제작방법을 첨부된 도면을 참조하여 보다 상세히 설명하면 다음과 같다.
도 1은 본 발명의 바람직한 일 실시예인 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서를 개략적으로 도시한 구성도이고, 도 2는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서의 단면도이고, 도 3은 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서의 제작과정을 단면하여 도시한 상태도이고, 도 4는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서의 제작과정을 도시한 평면도이고, 도 5내지 도 9는 각각의 압전 마이크로 칸티레버 공진자 어레이에서 공진 주파수 변화를 도시한 그래프이고, 도 10은 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서에서 얻어진 주파수 변화를 압전 마이크로 칸티레버 공진자들의 길이의 함수로 도시한 그래프이다.
도시된 바와 같이 본 발명에 의한 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서는 서로 다른 크기를 갖는 다수개의 압전 마이크로 칸티레버 공진자(10)가 배열되는 구조로 이루어진다. 즉, 2차원적으로 단계적으로 축소되어 배열되는 형태를 갖는다.
마이크로 칸티레버 공진자 어레이를 구성하는 서로 다른 크기를 갖는 각각의 압전 마이크로 칸티레버 공진자(10)는 실리콘 기판(6) 상부에 형성되며 길이가 단계적으로 축소되어 배열되는 지지층(4)과, 지지층(4) 상부에 소정의 크기로 형성되는 하부 전극(3)과, 하부 전극(3) 상부에 압전 구동을 위해 형성되는 압전 구동박막층(1)과, 하부 전극(2) 상부 및 압전 구동박막층(1) 일부 영역 상부에 전극간 절연을 위해 형성되는 절연층(5)과, 절연층(5)의 상부 및 압전 구동박막층(1)의 상부에 형성되는 상부 전극(3) 및 상부 전극 및 하부 전극에 소자의 구동을 위한 전계를 인가할 수 있도록 연결되는 전극라인(7) 및 패드(8)로 이루어진다.
그리고 상기 지지층(4)은 실리콘 기판(6) 상부에 형성되며 길이가 단계적으로 축소되어 배열되는 다수개의 질화 실리콘막 칸티레버와 상기 질화 실리콘막 칸티레버의 상부에 형성되는 산화 실리콘 막으로 이루어진다.
압전 마이크로 칸티레버 공진자(10)는 압전 구동을 위한 박막 재료로 압전물질이 사용된다. 압전 물질은 어떤 결정에 압력을 가했을 때 전위차(전압)가 발생되고 또 이들의 물질에 반대로 전위차(전압)가 인가되면 물리적 변위가 생기는 원리를 이용한 물질을 말하며, 크게 질화물과 산화물로 나뉘며 질화물은 질화 알루미늄(AIN)이 대표적으로 사용되고, 산화물은 비연계(Piezoelectric materials without lead)인 산화 아연(ZnO) 또는 연계인 Pb(Zr,Ti)O3(티탄-지르콘산납, 이하 PZT)가 대표적으로 사용된다.
절연 층(5)은 감광성 폴리이미드(Polyimide)와 같은 패터닝이 가능한 물질을 사용하여 사진 공정(photo lithography)으로 형성한다. 압전 구동소자의 기본 공진주파수 및 공진주파수의 변화는 복소 임피던스 등과 같은 전기적 신호의 변화로 나타나며, 이는 센서 모듈에 내장된 임피던스 분석기(Impedance Analyzer)에 의해 측정된다. 그러므로 2차원적으로 단계적으로 축소된 복수 개의 압전 마이크로 칸티레버 공진자(10)를 포함하는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서는, 회로 상에 구현된 오실레이터 및 주파수 카운터를 이용해 주파수 탐색을 함으로써 소자의 공진주파수 값을 측정하고, 소자를 측정 환경에 노출 후 센서의 감지 물질 층과 감지 대상물질의 반응에 의해 변화된 다중 크기 압전 마이크로 칸티레버 공진자(10)에 포함된 압전 마이크로 칸티레버들의 공진주파수를 모두 측정하고 분석하여 감지 대상 물질의 존재 여부를 판단하게 된다.
본 발명에서의 압전 마이크로 칸티레버 공진자(10)의 기본 공진주파수 값은 소자의 길이의 제곱에 반비례하여 그 크기가 증가하며, 소자의 크기를 줄여 높은 공진주파수 값을 확보할 경우 보다 우수한 감도 특성을 얻을 수 있다. 특히 분자 수준의 질량을 갖는 매우 미세한 감지 대상 물질을 감지하기 위해서는 펨토그램 영역 이하의 작은 질량을 감지할 수 있는 소자가 요구된다. 따라서 다중 크기 압전 마이크로 칸티레버 공진자(10)에 포함되는 여러 크기의 질화 실리콘막 칸티레버들 중, 감지 대상물질의 감지 과정에 있어서, 발생하는 표면 질량 증가에 대해 보다 민감한 감도를 나타내는 작은 질화 실리콘막 칸티레버는 그 길이와 폭이 각각 30 및 10 마이크론 정도를 갖는 것이 바람직하다.
다섯 가지의 크기를 갖는 것으로 일예를 들어 설명하면 다섯 가지 크기의 압전 마이크로 칸티레버 공진자(10)가 집적되는 경우 각각의 크기(길이, 폭 그리고 두께)는
A: 240 μm (길이), 80 μm (폭), 2.3 μm (두께)
B: 180 μm (길이), 60 μm (폭), 2.3 μm (두께)
C: 120 μm (길이), 40 μm (폭), 2.3 μm (두께)
D: 60 μm (길이), 20 μm (폭), 2.3 μm (두께)
E: 30 μm (길이), 10 μm (폭), 2.3 μm (두께)
각 층의 두께는 상부전극:0.1 μm, 하부 전극:0.15 μm, 압전구동 박막층:0.5 μm, 지지층(질화실리콘막 칸티레버+산화 실리콘막):(1.2 μm + 0.35 μm)로 설계하는 것이 바람직하다.
상기와 같이 가장 작은 30 마크론 길이의 압전 마이크로 칸티레버 공진자(10)는 스프링 상수가 충분히 크기 때문에, 감지 과정에서 발생하는 칸티레버 표면의 응력 변화에 대해 둔감한 특성을 지닌다. 반면, 240 마이크론 길이의 큰 압전 마이크로 칸티레버 공진자(10)는 스프링 상수가 작기 때문에 감지 과정에서 발생하는 표면 질량 증가 및 표면 응력 변화 두 요소에 대해 모두 민감한 반응을 나타낸다.
마이크로 칸티레버 공진자(10)의 크기에 따른 스프링 상수k(kTheoretical) 변화는 다음의 관계식으로 설명할 수 있다.
Figure PCTKR2009000868-appb-I000001
위의 식에서 스프링 상수(kTheoretical)를 정의하기 위해 사용된 E*는 마이크로 칸티레버 공진자(10)의 탄성률(Young's Modulus), t는 마이크로 칸티레버 공진자의 두께, 그리고 w와 L은 각각 마이크로 칸티레버 공진자의 폭과 길이이다. 본 발명에서 다중 크기 마이크로 칸티레버 공진자 어레이에 포함된 마이크로 칸티레버 공진자들의 두께는 일정하게 유지된다. 따라서 위의 식에 나타낸 두께 t는 마이크로 칸티레버 공진자(10)의 평면 크기에 따른 스프링 상수 변화관계를 기술하기 위해 고려되지 않는다. 그러므로 마이크로 칸티레버 공진자(10)의 크기 변화에 따른 스프링 상수 변화는 마이크로 칸티레버 공진자(10)의 폭과 길이의 세제곱의 비(w/L3)로 결정된다. 또한 마이크로 칸티레버 공진자(10)의 폭에 대한 길이의 비율(L/w)을 일정하게 유지하며 평면 크기를 2차원적으로 축소할 경우, 결과적으로 마이크로 칸티레버 공진자(10)의 스프링 상수(kTheoretical)는 길이의 제곱에 반비례하여 그 값이 커짐을 알 수 있다.
본 발명의 실시 예에서 제시하는 압전 마이크로 칸티레버 공진자(10) 중에서 가장 큰 것은 가장 작은 것 길이의 8배에 해당하는 길이를 갖고 있으며, 결과적으로 가장 작은 것의 스프링 상수는 가장 큰 것과 비교하여 약 64배 큰 값을 갖는다.
센서 응용 시 표면 인가 질량 효과와 표면 응력 변화 효과의 뚜렷한 분리 분석을 위해 작은 것과 큰 것의 스프링 상수 값에 있어서 10배 이상의 차이를 갖도록, 압전 마이크로 칸티레버(10)의 길이 차이를 3배 이상 되도록 설계하는 것이 바람직하다.
도 3 및 도 4에 도시된 바와 같이 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서의 제작단계는 다음과 같다.
(a) 실리콘 기판 상부 및 하부에 각각의 상기 질화 실리콘막 칸티레버를 증착하는 단계, (b) 상부측의 상기 질화 실리콘막 칸티레버 상부에 산하 실리콘 막을 증착하여 지지층(4)을 형성하는 단계, (c) 상기 산화 실리콘 막 상부 전면에 접합 층을 포함한 하부 전극(2)을 형성하는 단계, (d) 상기 하부 전극(2) 상부 전면에 압전 구동을 위한 압전 구동박막층(1)을 형성하는 단계, (e) 상기 형성된 압전 구동박막(1) 일부를 식각하여, 다중 크기 압전 마이크로 칸티레버 공진자(10) 센서에 집적되는 다중 크기 압전 구동박막 재료 어레이를 형성하는 단계, (f) 상기 형성된 다중 크기 압전 구동 재료 어레이 하부에 있는 하부 전극(2)의 일부를 식각하여, 다중 크기 압전 마이크로 칸티레버 공진자 어레이 센서에 집적되는 다중 크기 하부 전극 어레이 및 구동 전압 인가를 위한 전극 라인(7) 및 패드(8)를 형성하는 단계, (g) 상기 형성된 다중 크기 하부 전극 어레이 및 다중 크기 압전 구동박막 재료 어레이 일부 영역 상부에 상하부 전극 간 절연을 위한 절연 층(5)을 형성하는 단계, (h) 상기 절연 층(5)의 상부 및 다중 크기 압전 구동박막 재료 어레이의 상부에 다중 크기 상부 전극 어레이와 구동 전압 인가를 위한 전극 라인(7) 및 패드(8)를 형성하는 단계, (i) 상기 하부 질화 실리콘막 칸티레버의 일부를 제거하는 단계, (j) 상기 (i) 단계로 노출된 실리콘 기판(6)을 식각하는 단계, (k) 상기 실리콘이 식각된 소자의 상부 질화 실리콘 막의 일부를 제거하여 다중 크기 압전 마이크로 칸티레버 공진자(10) 센서를 형성하는 단계 를 순차적으로 실시하여 제작되는 것을 특징으로 하는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서를 제작한다.
상기 (k)단계 후, 감지 대상물질을 감지하기 위한 감지 층을 형성하는 (l) 단계를 더 포함될 수 있다.
상기 (l) 단계는 생체 물질 감지를 위한 감지 물질 층의 형성을 위해 마이크로 칸티레버 표면에 gold 박막을 증착하고, gold-thiol 반응을 이용하여 자기 배열 단분자 층(self-assembled monolayer)을 형성하고 이후 감지 대상 물질에 적합한 감지 물질을 고정하는 방법이나, 화학 센서 응용을 위해 특정 감지 대상 물질이 결합할 수 있는 고분자 물질을 포함한 용액을 소자 표면에 잉크젯 프린팅, 스핀 코팅 또는 딥 코팅하여 형성하는 방법 중 어느 하나를 사용할 수 있다.
도 3은 제작된 다중 크기 압전 마이크로 칸티레버 공진자(10)의 배면에 금 (gold) 박막을 증착하고, 이후에 gold-alkanethiol reaction에 의한 self-assembled monolayer형성 및 biotin 및 streptavidin 등을 이용하여 human antibody를 고정한 후 나타나는 공진주파수 변화를 다섯 가지 크기의 압전 마이크로 칸티레버 공진자(10)에 대해 나타낸 그림이다. 작은 것은 매우 높은 공진 주파수를 가지고 있으며, 인가 질량에 대한 감도가 매우 높다. 따라서 Human antibody (IgG)의 고정에 의해 주파수 감소가 뚜렷이 나타났다. 한편, 큰 것은 작은 것에 비해 기본 공진주파수 값이 작고, 질량에 대한 감도 또한 작기 때문에, 결과적으로 동시에 얻어진 작은 것의 결과 보다 비교적 작은 주파수 감소를 나타내었다.
도 4는 도 3의 실시 예에서 나타난, 다중 크기 압전 마이크로 칸티레버 공진자(10) 각각에서 얻어진 주파수 변화를 칸티레버들의 길이의 함수로 도시한 것이다. 도 4의 검은 사각형 및 선으로 도시된 그래프는 다중 크기 압전 마이크로 칸티레버 공진자 어레이 센서를 이용하여 human antibody (IgG)를 고정할 때 예상되는 표면 질량 증가에 의한 이론적인 주파수 변화이고, 원이 표시된 선으로 도시된 그래프는 실제 실험에서 나타난 주파수 변화이다.
즉, 30 마이크론 길이의 압전 마이크로 칸티레버 공진자(10)는 감지 과정에서 발생하는 표면 응력의 영향을 거의 받지 않는 것으로 나타났다. 따라서 다중 크기를 구현하는데 있어, 질량 인가에 의한 주파수 변화가 지배적인 특성을 지닌 압전 마이크로 칸티레버 공진자(10)로서 바람직하다. 그러나 감지 과정에서 발생하는 표면 응력의 영향을 보다 덜 받기 위해 이보다 작은 크기를 가지며, 높은 스프링 상수를 갖는 압전 마이크로 칸티레버 공진자(10)를 적용하는 것이 바람직할 것이다. 한편, 240 마이크론 길이의 압전 마이크로 칸티레버 공진자(10)는 표면 응력의 영향을 많이 받는 것으로 나타났으며, 표면 응력 변화에 의한 주파수 변화의 비중이 큰 압전 마이크로 칸티레버 공진자(10)로서 바람직하다.
이와 같이 본 발명에 의한 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서를 이용하면, 감지 과정에서 발생하는 표면 질량 흡착 정보를 분석할 수 있을 뿐 아니라, 각각의 크기를 갖는 압전 마이크로 칸티레버 공진자 어레이들의 질량 감도로부터 얻어지는 예상되는 주파수 변화 패턴과, 실제 감지 과정에서 얻어지는 공진주파수 변화 패턴을 비교하면, 표면 응력 발생에 따른 영향을 동시에 파악할 수 있으며, 즉 칸티레버 표면에 형성된 감지 물질과 감지 대상물질 간의 생화학 반응과 관련된 보다 풍부한 정보를 얻을 수 있다. 그러므로 본 발명에서의 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서는, 극 미량으로 존재하는 다양한 종류의 감지 대상 물질의 존재 유무를 빠르고 정밀하게 감지할 수 있을 뿐만 아니라, 칸티레버 표면에 형성된 감지 물질이 여러 종류의 감지 대상 물질과 반응하는 경우, 표면 응력의 영향을 동시에 구별 분석함으로써 감지 결과에 있어서 감지 대상 물질에 대한 분별력을 향상 시킬 수 있다.
본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위내에 있게 된다.

Claims (11)

  1. 압전 마이크로 칸티레버 공진자를 이용한 물리/생화학 센서에 있어서,
    상기 압전 마이크로 칸티레버 공진자는 감지과정에서 발생되는 센서 표면의 질량 변화 뿐만 아니라 흡착된 감지 대상물질에 의한 표면 응력 변화를 구별하여 정량 분석할 수 있도록 서로 다른 크기를 갖는 다수개의 압전 마이크로 칸티레버 공진자들이 배열되는 구조로 이루어지는 것을 특징으로 하는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서.
  2. 제 1항에 있어서, 상기 압전 마이크로 칸티레버 공진자는
    실리콘 기판 상부에 형성되며 길이가 단계적으로 축소되어 배열되는 다수개의 질화 실리콘막 칸티레버;
    상기 질화 실리콘막 칸티레버의 상부에 형성되는 산화 실리콘 막;
    상기 실리콘 산화 막 상부에 소정의 크기로 형성되는 하부 전극;
    상기 하부 전극 상부에 압전 구동을 위해 형성되는 압전 구동박막층;
    상기 하부 전극 상부 및 상기 압전 구동박막층 일부 영역 상부에 전극간 절연을 위해 형성되는 절연층;
    상기 절연층의 상부 및 상기 압전 구동박막층의 상부에 형성되는 상부 전극 및
    상기 상부 전극 및 하부 전극에 소자의 구동을 위한 전계를 인가할 수 있도록 연결되는 전극라인; 을 포함하는 것을 특징으로 하는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서.
  3. 제 2항에 있어서, 상기 질화 실리콘막 칸티레버는 길이가 축소되는 비율과 마찬가지로 폭도 축소되는 것을 특징으로 하는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서.
  4. 제 3항에 있어서, 상기 질화 실리콘막 칸티레버는 그 두께가 일정하게 유지되는 것을 특징으로 하는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서.
  5. 제 2항에 있어서, 상기 절연층은 폴리이미드인 것을 특징으로 하는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서.
  6. 제 2항에 있어서, 상기 압전 마이크로 칸티레버 공진자는 박막 재료로는 압전물질이 사용되는 것을 특징으로 하는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서.
  7. 제 2항 내지 제 6항 중 어느 한 항에 있어서, 가장 긴 압전 마이크로 칸티레버 공진자와 가장 짧은 압전 마이크로 칸티레버 공진자의 길이는 3배 이상인 것을 특징으로 하는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서.
  8. 제 2항 내지 제 6항 중 어느 한 항에 따른 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서의 제작방법에 있어서,
    (a) 실리콘 기판 상부 및 하부에 각각의 상기 질화 실리콘막 칸티레버를 증착하는 단계;
    (b) 상부측의 상기 질화 실리콘막 칸티레버 상부에 산하 실리콘 막을 증착하는 단계;
    (c) 상기 산화 실리콘 막 상부 전면에 접합 층을 포함한 하부 전극을 형성하는 단계;
    (d) 상기 하부 전극 상부 전면에 압전 구동을 위한 압전 구동박막층을 형성하는 단계;
    (e) 상기 형성된 압전 구동박막 일부를 식각하여, 다중 크기 압전 마이크로 칸티레버 공진자 어레이 센서에 집적되는 다중 크기 압전 구동박막 재료 어레이를 형성하는 단계;
    (f) 상기 형성된 다중 크기 압전 구동 재료 어레이 하부에 있는 하부 전극의 일부를 식각하여, 다중 크기 압전 마이크로 칸티레버 공진자 어레이 센서에 집적되는 다중 크기 하부 전극 어레이 및 구동 전압 인가를 위한 전극 라인 및 패드를 형성하는 단계;
    (g) 상기 형성된 다중 크기 하부 전극 어레이 및 다중 크기 압전 구동박막 재료 어레이 일부 영역 상부에 상하부 전극 간 절연을 위한 절연 층을 형성하는 단계;
    (h) 상기 절연 층의 상부 및 다중 크기 압전 구동박막 재료 어레이의 상부에 다중 크기 상부 전극 어레이와 구동 전압 인가를 위한 전극 라인 및 패드를 형성하는 단계;
    (i) 상기 하부 질화 실리콘막 칸티레버의 일부를 제거하는 단계;
    (j) 상기 (i) 단계로 노출된 실리콘 기판을 식각하는 단계; 및
    (k) 상기 실리콘이 식각된 소자의 상부 질화 실리콘 막의 일부를 제거하여 다중 크기 압전 마이크로 칸티레버 공진자 어레이 센서를 형성하는 단계; 를 순차적으로 실시하여 제작되는 것을 특징으로 하는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서의 제작방법.
  9. 제 8항에 있어서, 상기 (k)단계 후, 감지 대상물질을 감지하기 위한 감지 층을 형성하는 (l) 단계를 더 포함하여 이루어짐을 특징으로 하는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서의 제작방법.
  10. 제 9항에 있어서, 상기 (l) 단계는 생체 물질 감지를 위한 감지 물질 층의 형성을 위해 마이크로 칸티레버 표면에 gold 박막을 증착하고, gold-thiol 반응을 이용하여 자기 배열 단분자 층(self-assembled monolayer)을 형성하고 이후 감지 대상 물질에 적합한 감지 물질을 고정하는 것을 특징으로 하는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서의 제작방법.
  11. 제 9항에 있어서, 상기 (l) 단계는 화학 센서 응용을 위해 특정 감지 대상 물질이 결합할 수 있는 고분자 물질을 포함한 용액을 소자 표면에 잉크젯 프린팅, 스핀 코팅 또는 딥 코팅하여 형성하는 것을 특징으로 하는 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 생화학센서 제작 방법.
PCT/KR2009/000868 2008-02-29 2009-02-24 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서 및 그 제작방법 WO2009107965A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09714045.3A EP2251681B1 (en) 2008-02-29 2009-02-24 Physical/biochemical sensor employing an array of piezoelectric micro-cantilever resonators of several sizes, and a production method therefor
JP2010503990A JP5431301B2 (ja) 2008-02-29 2009-02-24 マルチサイズの圧電マイクロカンチレバー共振子アレイを用いた物理/生化学センサー及びその製作方法
US12/579,660 US8169124B2 (en) 2008-02-29 2009-10-15 Physical/biochemical sensor using piezoelectric microcantilever and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0019031 2008-02-29
KR1020080019031A KR100975010B1 (ko) 2008-02-29 2008-02-29 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리센서 및 그 제작방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/579,660 Continuation-In-Part US8169124B2 (en) 2008-02-29 2009-10-15 Physical/biochemical sensor using piezoelectric microcantilever and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2009107965A1 true WO2009107965A1 (ko) 2009-09-03

Family

ID=41016285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000868 WO2009107965A1 (ko) 2008-02-29 2009-02-24 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서 및 그 제작방법

Country Status (5)

Country Link
US (1) US8169124B2 (ko)
EP (1) EP2251681B1 (ko)
JP (1) JP5431301B2 (ko)
KR (1) KR100975010B1 (ko)
WO (1) WO2009107965A1 (ko)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0809237D0 (en) * 2008-05-21 2008-06-25 Vivacta Ltd A sensor
JP5130422B2 (ja) * 2008-11-07 2013-01-30 独立行政法人産業技術総合研究所 検出センサ
JP5242347B2 (ja) * 2008-11-11 2013-07-24 独立行政法人産業技術総合研究所 検出センサ
JP2010273408A (ja) * 2009-05-19 2010-12-02 Emprie Technology Development LLC 電力装置、電力発生方法、電力装置の製造方法
JP5434648B2 (ja) * 2010-02-12 2014-03-05 セイコーエプソン株式会社 インク吐出量測定装置、インク吐出量測定方法
KR101125604B1 (ko) 2010-03-11 2012-03-27 한국과학기술연구원 패턴화된 캔틸레버 센서 및 그 제조방법
JP5462698B2 (ja) * 2010-04-28 2014-04-02 公立大学法人会津大学 カンチレバーアレイを有する共振センサ装置
CN105149023B (zh) * 2010-06-30 2018-06-12 安派科生物医学科技有限公司 疾病检测仪
US11340214B2 (en) 2010-06-30 2022-05-24 Anpac Bio-Medical Science Co., Ltd. Apparatus for disease detection
FR2965349B1 (fr) * 2010-09-23 2017-01-20 Commissariat Energie Atomique Bolometre a detection frequentielle
WO2012048040A2 (en) * 2010-10-05 2012-04-12 Anpac Bio-Medical Science Co., Ltd. Micro-devices for disease detection
US9651542B2 (en) 2011-03-24 2017-05-16 Anpac Bio-Medical Science Co., Ltd Micro-devices for disease detection
CN103241706B (zh) * 2012-02-06 2016-05-18 中国科学院微电子研究所 应力匹配的双材料微悬臂梁的制造方法
US8945403B2 (en) * 2012-04-27 2015-02-03 Micron Technology, Inc. Material test structure
KR101366347B1 (ko) 2012-06-18 2014-02-24 국립대학법인 울산과학기술대학교 산학협력단 정전 구동형 캔틸레버 센서
US8991234B2 (en) * 2013-01-28 2015-03-31 National Taiwan University Valproic acid biosensor and method for measuring concentration of valproic acid
CN103543081B (zh) * 2013-09-29 2017-04-12 中国科学院半导体研究所 用于肝癌早诊的便携式传感***及其功能化修饰方法
KR101714713B1 (ko) * 2015-09-23 2017-03-09 숭실대학교산학협력단 센서 결합형 액추에이터 햅틱 소자와 그 제작방법
KR20180015482A (ko) 2016-08-03 2018-02-13 삼성전자주식회사 음향 스펙트럼 분석기 및 이에 구비된 공진기들의 배열방법
KR20180053031A (ko) 2016-11-11 2018-05-21 삼성전자주식회사 압전 미소 기계식 공진기
CN106856380B (zh) * 2017-01-12 2018-09-14 合肥工业大学 一种空间多模态阵列式悬臂梁压电能量收集装置
CN107796868B (zh) * 2017-11-28 2023-12-15 吉林大学 一种基于同步共振的流体中微量物质检测装置及方法
CN108225203B (zh) * 2017-11-29 2022-07-22 全球能源互联网研究院有限公司 一种两维物理量并行检测的mems传感器
KR102042706B1 (ko) * 2018-04-10 2019-11-08 국민대학교산학협력단 열팽창 정도 측정 장치 및 열팽창 정도 측정 방법
KR102593635B1 (ko) * 2018-04-11 2023-10-26 한국전자통신연구원 공진기 기반 센서 및 그의 감지 방법
KR20200059379A (ko) * 2018-11-20 2020-05-29 삼성전자주식회사 공진기, 이를 포함하는 공진기 시스템 및 공진기 제조 방법
JP2022511068A (ja) * 2018-12-05 2022-01-28 フェムトドクス 差分センサの測定方法及び装置
CN109696185B (zh) * 2018-12-30 2020-04-21 吉林大学 一种仿生微悬臂梁结构、其制造方法及压阻传感器
CN109827904A (zh) * 2019-03-19 2019-05-31 安徽理工大学 一种基于微悬臂梁传感器的反应池装置
US11896136B2 (en) 2019-09-19 2024-02-13 Apple Inc. Pneumatic haptic device having actuation cells for producing a haptic output over a bed mattress
US11771406B2 (en) 2020-08-12 2023-10-03 Apple Inc. In-bed temperature array for menstrual cycle tracking
CN112234860B (zh) * 2020-09-15 2022-03-04 西安交通大学 一种电磁压电复合式多轴振动和摆动能量俘获装置
CN112710714B (zh) * 2020-11-20 2023-01-31 扬州大学 一种自驱动自传感的微悬臂梁免疫生物传感器及其制备方法
CN113069222A (zh) * 2021-04-08 2021-07-06 太原理工大学 一种骨骼接合手术中骨间压力检测装置及方法
CN113295303A (zh) * 2021-04-29 2021-08-24 北京遥测技术研究所 氮化铝压电mems谐振式压力传感器
US11874189B2 (en) * 2021-07-02 2024-01-16 Applied Materials, Inc. MEMS resonator sensor substrate for plasma, temperature, stress, or deposition sensing
CN113466334B (zh) * 2021-07-22 2023-05-12 中国科学院空天信息创新研究院 悬臂梁结构及制备方法、多组分微纳谐振气体传感器
IT202100027965A1 (it) 2021-11-03 2023-05-03 Milano Politecnico Dispositivo multi-risonatore per uso in sistemi di raccolta energia o in un sistema di azionamento

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209354A (ja) * 1988-02-17 1989-08-23 Fujikura Ltd 化学センサ
JPH04370742A (ja) * 1991-06-19 1992-12-24 Sony Corp 化学センサーとその回路との結線方法
KR20050095964A (ko) * 2004-03-29 2005-10-05 학교법인 성균관대학 마이크로 압전 구동소자를 이용한 미세 화학 센서용감지소자 및 제조방법
KR20050096469A (ko) * 2004-03-30 2005-10-06 전자부품연구원 압전 마이크로 칸티레버를 이용한 화학 센서 및 그 제작방법
KR100583233B1 (ko) * 2004-09-16 2006-05-26 한국과학기술연구원 생체물질 측정 시스템 및 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5856722A (en) * 1996-01-02 1999-01-05 Cornell Research Foundation, Inc. Microelectromechanics-based frequency signature sensor
US6575020B1 (en) * 1999-05-03 2003-06-10 Cantion A/S Transducer for microfluid handling system
JP4398375B2 (ja) * 2002-09-24 2010-01-13 インテル・コーポレーション フィードバック制御式カンチレバー偏向をモニターすることによる分子結合の検出方法
JP4213061B2 (ja) * 2003-03-28 2009-01-21 シチズンホールディングス株式会社 Qcmセンサーおよびqcmセンサー装置
US7759924B2 (en) * 2003-11-25 2010-07-20 Northwestern University Cascaded MOSFET embedded multi-input microcantilever
JP2007043054A (ja) * 2005-03-04 2007-02-15 Sony Corp 圧電素子及びその製造方法
US7904158B2 (en) * 2005-04-28 2011-03-08 Medtronic, Inc. Measurement of coronary sinus parameters to optimize left ventricular performance
JP2007248323A (ja) * 2006-03-17 2007-09-27 National Institute Of Advanced Industrial & Technology 分子検出センサ
WO2007037926A2 (en) * 2005-09-23 2007-04-05 Sharp Laboratories Of America, Inc. Mems pixel sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209354A (ja) * 1988-02-17 1989-08-23 Fujikura Ltd 化学センサ
JPH04370742A (ja) * 1991-06-19 1992-12-24 Sony Corp 化学センサーとその回路との結線方法
KR20050095964A (ko) * 2004-03-29 2005-10-05 학교법인 성균관대학 마이크로 압전 구동소자를 이용한 미세 화학 센서용감지소자 및 제조방법
KR20050096469A (ko) * 2004-03-30 2005-10-06 전자부품연구원 압전 마이크로 칸티레버를 이용한 화학 센서 및 그 제작방법
KR100583233B1 (ko) * 2004-09-16 2006-05-26 한국과학기술연구원 생체물질 측정 시스템 및 방법

Also Published As

Publication number Publication date
JP2010525317A (ja) 2010-07-22
JP5431301B2 (ja) 2014-03-05
KR20090093486A (ko) 2009-09-02
US8169124B2 (en) 2012-05-01
EP2251681A4 (en) 2017-05-03
US20100033058A1 (en) 2010-02-11
EP2251681A1 (en) 2010-11-17
EP2251681B1 (en) 2020-07-29
KR100975010B1 (ko) 2010-08-09

Similar Documents

Publication Publication Date Title
WO2009107965A1 (ko) 다중 크기 압전 마이크로 칸티레버 공진자 어레이를 이용한 물리/생화학 센서 및 그 제작방법
US7168294B2 (en) Embedded piezoelectric microcantilever sensors
US6523392B2 (en) Microcantilever sensor
EP3375892B1 (en) Capacitive sensor
US20050136419A1 (en) Method and apparatus for nanogap device and array
KR100479687B1 (ko) 캔틸레버 센서 및 그 제조 방법
JP4913032B2 (ja) 応力に基づく化学反応の静電測定
US6828800B2 (en) Single-molecule detector
US7726175B2 (en) Embedded piezoelectric microcantilever sensors
US20090191616A1 (en) Biosensor structure and fabricating method thereof
KR100845717B1 (ko) 초소형 마이크로 브리지 질량 센서를 이용한 인체바이오마커 센서 및 모듈
EP1531731B1 (en) Embedded piezoelectric microcantilever sensors
KR100681782B1 (ko) 마이크로 압전 구동소자를 이용한 미세 화학 센서용감지소자 및 제조방법
US7730767B2 (en) Micro-sensor for sensing chemical substance
EP3350598A1 (en) Sensor device for biosensing and other applications
KR100620255B1 (ko) 압전 마이크로 칸티레버를 이용한 화학 센서 및 그 제작방법
KR101053655B1 (ko) 캔틸레버 센서 및 그 제조방법 그리고 이를 이용한 생체물질 감지장치 및 그 제조방법
Seena et al. Development a polymeric microcantilever platform technology for biosensing applications
KR100833389B1 (ko) 바이오 물질을 검출하는 센서 및 그의 제조 방법
Bhura 3D Interdigitated Electrode Array (IDEA) Biosensor For Detection Of Serum Biomarker
BG110556A (bg) Метод и сензор за имунометричен наноанализ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009714045

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010503990

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE