WO2009107657A1 - 電池モジュールおよび電池モジュールの製造方法 - Google Patents

電池モジュールおよび電池モジュールの製造方法 Download PDF

Info

Publication number
WO2009107657A1
WO2009107657A1 PCT/JP2009/053406 JP2009053406W WO2009107657A1 WO 2009107657 A1 WO2009107657 A1 WO 2009107657A1 JP 2009053406 W JP2009053406 W JP 2009053406W WO 2009107657 A1 WO2009107657 A1 WO 2009107657A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
insulating cover
output terminal
battery
module according
Prior art date
Application number
PCT/JP2009/053406
Other languages
English (en)
French (fr)
Inventor
竜一 雨谷
直樹 藍澤
直人 轟木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to KR1020127004467A priority Critical patent/KR101252413B1/ko
Priority to KR1020107019042A priority patent/KR101189430B1/ko
Priority to EP09715124.5A priority patent/EP2262040B1/en
Priority to US12/919,969 priority patent/US8771863B2/en
Priority to CN2009801063560A priority patent/CN101960647A/zh
Publication of WO2009107657A1 publication Critical patent/WO2009107657A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • H01M6/46Grouping of primary cells into batteries of flat cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the present invention relates to a battery module and a battery module manufacturing method.
  • Japanese Patent Application Laid-Open No. 2007-172893 discloses that a plurality of flat batteries having electrode terminals led out from an exterior material are stacked and electrically connected in series and / or in parallel to achieve high output and / or high power.
  • a battery module with a capacity is disclosed.
  • the upper and lower sides of the electrode terminal of the flat battery are sandwiched by an insulating plate having a working window, and the window is used for electrical connection between the electrode terminal and the output terminal or between the electrode terminals. Used for connection.
  • the window portion of the insulating plate located in the outermost layer is opposed to the inner surface of the metal container for storing the flat battery, and is exposed from the window portion.
  • the insulation of the inner surface of the metal container must be increased, resulting in an increase in product cost.
  • the present invention was made to solve the problems associated with the above-described prior art, and a battery module capable of preventing a short circuit between an electrode terminal and a metal container while suppressing an increase in product cost, and a manufacturing method thereof,
  • the purpose is to provide.
  • a uniform phase of the present invention is a battery module containing a laminate in which a plurality of flat batteries are stacked, and includes a flat battery, an output terminal, a metal container, and an insulating plate. And an insulating cover.
  • the flat battery has a power generation element, an exterior material for sealing the power generation element, and an electrode terminal led out from the exterior material.
  • the output terminal is used to connect and output a plurality of flat battery electrode terminals in parallel or in series.
  • the said metal container is used in order to accommodate a laminated body.
  • the insulating plate is disposed so as to insulate the electrode terminals of each flat battery, and has a window portion for exposing the electrode terminals for the connection.
  • the insulating cover is disposed so as to cover the window portion of the insulating plate located in the outermost layer.
  • the manufacturing method includes a laminate forming step, an output terminal forming step, an insulating cover attaching step, and a metal container receiving step.
  • a laminate forming step a plurality of flat batteries having a power generation element, an exterior material for sealing the power generation element, and electrode terminals led out from the exterior material, and the electrode terminals are exposed.
  • an insulating plate that is sandwiched and arranged so as to insulate the electrode terminals of each of the flat batteries to form a laminated body of the flat batteries.
  • the output terminal forming step the electrode terminals exposed through the window are joined to form an output terminal.
  • the insulating cover attaching step the insulating cover is fitted into the insulating plate so as to cover the window portion of the insulating plate located in the outermost layer in the stacking direction.
  • the laminated body in which the insulating cover is fitted is housed in a metal container.
  • FIG. 1 is a perspective view for explaining a battery module according to Embodiment 1.
  • FIG. FIG. 2 is a perspective view for explaining a cell unit inside the case shown in FIG.
  • FIG. 3 is a perspective view for explaining the insulating cover shown in FIG. 2.
  • FIG. 4 is a perspective view for explaining the front side of the laminate shown in FIG.
  • FIG. 5 is an exploded perspective view for explaining the front side of the laminate shown in FIG. 2.
  • FIG. 6 is an exploded perspective view for explaining the back side of the laminate shown in FIG. 2.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. 2 for explaining the flat battery constituting the laminate shown in FIG.
  • FIG. 8 is a cross-sectional view taken along the line VIII-VIII in FIG.
  • FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG. 3 for explaining the extension portion disposed at the tip of the side wall portion shown in FIG.
  • FIG. 10 is a perspective view for explaining the method for manufacturing the battery module according to Embodiment 1, and shows an output terminal formation step.
  • FIG. 11 is a perspective view for explaining an insulating cover attaching step following FIG.
  • FIG. 12 is a cross-sectional view corresponding to FIG. 8 for describing the first modification according to the first embodiment.
  • FIG. 13 is a cross-sectional view corresponding to FIG. 8 for explaining the second modification according to the first embodiment.
  • FIG. 14 is a cross-sectional view corresponding to FIG.
  • FIG. 15 is a cross-sectional view corresponding to FIG. 8 for describing the fourth modification according to the first embodiment.
  • FIG. 16 is a cross-sectional view corresponding to FIG. 8 for explaining the fifth modification example according to the first embodiment.
  • FIG. 17 is a cross-sectional view corresponding to FIG. 8 for describing the sixth modification according to the first embodiment.
  • FIG. 18 is a perspective view for explaining the modified example 7 according to the first embodiment.
  • FIG. 19 is a perspective view for explaining an insulating cover of the battery module according to the second embodiment.
  • 20 is a perspective view for explaining the rear shape of the insulating cover shown in FIG.
  • FIG. 21 is a cross-sectional view for explaining the insulating cover shown in FIG. FIG.
  • FIG. 22 is a rear view for explaining the insulating cover of the battery module according to Embodiment 3.
  • FIG. 23 is a side view for explaining the insulating cover of the battery module according to Embodiment 3.
  • FIG. 24 is a perspective view for explaining the insulating cover of the battery module according to Embodiment 3.
  • FIG. 25 is a perspective view for explaining a bus bar of the battery module according to Embodiment 3.
  • FIG. 26 is a perspective view for explaining the method for manufacturing the battery module according to Embodiment 3, and shows an output terminal forming step.
  • FIG. 27 is a perspective view for explaining an insulating cover attaching step following FIG.
  • FIG. 28 is a side view for explaining the fitting of the insulating cover.
  • FIG. 29 is a rear view for explaining the support structure of the bus bar.
  • FIG. 30 is a perspective view for explaining the support structure of the bus bar.
  • UP shows the upper direction of the flat battery which comprises the cell unit of a battery module
  • FR shows the front of a battery module.
  • the battery module 100 has a case (metal container) 120, and inside the case 120, as shown in FIG. 2, the cell unit 140 and the electrical insulation are provided.
  • An insulating cover 170 is provided.
  • the battery module 100 can be used alone. For example, by forming a plurality of battery modules 100 in series and / or in parallel, an assembled battery corresponding to a desired current, voltage, and capacity is formed. be able to.
  • the insulating cover 170 prevents a short circuit between the cell unit 140 and the case 120. Therefore, it is not necessary to increase the insulation of the inner surface of the case 120, and an increase in product cost is suppressed. Yes.
  • the case 120 is used to accommodate the cell unit 140, and has a lower case 122 having a substantially rectangular box shape and an upper case 124 serving as a lid thereof.
  • the edge of the upper case 124 is wound around the edge of the peripheral wall of the lower case 122 by caulking.
  • the lower case 122 and the upper case 124 are formed from a relatively thin steel plate or aluminum plate, and are given a predetermined shape for securing strength by pressing or holding the cell unit 140.
  • the lower case 122 and the upper case 124 have a through hole 130.
  • the through holes 130 are arranged at four corners of the lower case 122 and the upper case 124, and are used to insert through bolts (not shown) for stacking a plurality of battery modules 100 and holding them as assembled batteries. used.
  • the lower case 122 has openings 132, 133, and 134 formed in the side wall portion of the front surface 123.
  • the cell unit 140 includes a stacked body 142 in which a plurality of flat batteries 144 (144A to 144D) are electrically connected and stacked, and a plurality of spacers having insulating properties (insulating plates). ) 160,161.
  • the flat battery 144 is, for example, a lithium ion secondary battery, and, as shown in FIG. 7, a power generation element 145, an exterior material 146 for sealing the power generation element 145, and a tab led out from the exterior material (Electrode terminals) 147 and 148 are provided.
  • the power generation element 145 is formed by sequentially stacking a positive electrode plate, a negative electrode plate, and a separator.
  • the positive electrode plate has, for example, a positive electrode active material layer made of a lithium-transition metal composite oxide such as LiMn 2 O 4 .
  • the negative electrode plate has, for example, a negative electrode active material layer made of carbon and a lithium-transition metal composite oxide.
  • the separator is formed of, for example, porous PE (polyethylene) having air permeability that can penetrate the electrolyte.
  • the exterior material 146 is a sheet such as a polymer-metal composite laminate film in which a metal (including an alloy) such as aluminum, stainless steel, nickel, or copper is covered with an insulator such as a polypropylene film from the viewpoint of weight reduction and thermal conductivity. It consists of material, and part or all of the outer peripheral part is joined by heat sealing
  • the tabs 147 and 148 are members for drawing current from the power generation element 145, and both extend from the front side of the flat battery 144 to the front.
  • the spacers 160 (160A to 160E) are arranged on the front surface side of the laminate 142, and the plurality of spacers (insulating plates) 160 shown in FIG.
  • Each flat battery 144 is positioned so as to sandwich the tabs 147, 148, and has a window portion 163, a through hole 164, and a voltage detection portion 169.
  • the window portion 163 is used to electrically connect the flat battery 144 and exposes a part of the tab 147 or the tab 148.
  • the through-holes 164 are arranged at two corners, are aligned with the through-holes 130 on the front side of the lower case 122 and the upper case 124, and are used for inserting through bolts.
  • the voltage detection unit 169 is formed from a notch that exposes a part of the periphery of the sandwiched tab 147 or tab 148 and is used to detect the voltage of the flat battery 144. The detection of the voltage is performed for charge / discharge management of the battery module 100.
  • the voltage detection unit 169 is positioned so as to face the opening 134 formed in the side wall portion of the front surface 123 of the lower case 122, and can be exposed to the outside through the opening 134.
  • the voltage detection unit 169 can also be configured with a dedicated terminal.
  • a recess 162 for mounting the insulating cover 170 is provided on the upper surface of the uppermost spacer (one of the outermost layers) 160A and the lower surface of the lowermost (the other outermost layer) spacer 160E.
  • the spacer 160B located immediately below the spacer 160A has an output terminal 167 electrically joined to the tab 147.
  • the spacer 160E has an output terminal 166 electrically connected to the tab 147 via the bus bar 196.
  • the output terminals 166 and 167 are arranged so as to protrude from openings 132 and 133 formed in the side wall portion of the front surface 123 of the lower case 122.
  • Reference numerals 147A and 196A indicate joints between the tab 147 and the bus bar 196.
  • a plurality of spacers (insulating plates) 161 having electrical insulation properties shown in FIG. 2 are arranged on the back side of the laminate 142 as shown in an exploded view in FIG.
  • the flat battery 144 is positioned so as to sandwich the back side extension 149 and has a through hole 165.
  • the through holes 165 are arranged at two corners, are aligned with the through holes 130 on the back side of the lower case 122 and the upper case 124, and are used for inserting through bolts.
  • the insulating cover 170 has a substantially U-shaped cross-sectional shape in a cross section perpendicular to the width direction of the battery module 100, and a main body base 172 located on the front side of the battery module 100 and The main body base 172 has upper and lower side surfaces 190 that extend substantially perpendicularly from both upper and lower edges to the back side of the battery module 100, and the cell unit 140 is sandwiched between the upper and lower side surfaces 190.
  • the main body base 172 is disposed so as to face the front side of the cell unit 140 shown in FIG. 2 and has openings 174 and 175 located on the side and an insertion port 176 located on the center.
  • the openings 174 and 175 are aligned with the output terminals 166 and 167, and the output terminals 166 and 167 are formed to protrude forward.
  • Protrusions 184 and 185 extending outward are provided at the edges of the openings 174 and 175.
  • the projecting portions 184 and 185 can project from the openings 132 and 133 of the front surface 123 of the lower case 122 shown in FIG. 1 and are disposed at the cylindrical wall portion 186 and the distal end of the cylindrical wall portion 186. 188.
  • the cylindrical wall portion 186 has a substantially rectangular cross-sectional shape corresponding to the outer peripheral shape of the output terminals 166 and 167. Therefore, the cylindrical wall portion 186 has a simple structure, but surrounds the periphery of the output terminals 166 and 167 exposed to the outside when the insulating cover 170 is attached to the cell unit 140 and accommodated in the case 120. It functions as a terminal guide for holding the terminals 166 and 167.
  • the cylindrical wall portion 186 is integrated with the insulating cover 170 (main body base portion 172), and the number of parts is reduced, so that the product cost can be reduced.
  • the extended portion 188 extends forward to a position beyond the tips of the output terminals 166 and 167 (connection portions of the output terminals 166 and 167). It is configured to be. Since the extended portion 188 prevents contact between the tips of the output terminals 166 and 167 and the external electric conductor, it is possible to suppress occurrence of a short circuit.
  • the insertion port 176 is an opening into which a connector (voltage detection connector) for detecting the voltage of the flat battery 144 is inserted, and the voltage detection unit 169 of the spacer 160 (160A to 160E) shown in FIG. It is arranged to be exposed.
  • a guide member 177 extending inward is disposed at the edge of the insertion port 176.
  • the guide member 177 is a connector guide for guiding connector insertion / removal. Since the guide member 177 is integrated with the insulating cover 170 (main body base 172) and the number of parts is reduced, the product cost can be reduced.
  • the expansion part 188 of the cylindrical wall part 186 is positioned so as to be opposed to the insertion port 176 located in the center as shown in FIG. Since the voltage detection connector is inserted into the insertion port 176, the connector wiring of the output terminals 166 and 167 is arranged on the side to avoid interference with the voltage detection connector wiring. Therefore, the extended portion 188 of the cylindrical wall portion 186 does not interfere with the connector wiring of the output terminals 166 and 167.
  • the upper and lower side surface portions 190 are respectively disposed in the concave portion 162 on the upper surface of the uppermost spacer 160A and the concave portion 162 on the lower surface of the lowermost spacer 160E, and are configured to cover the window portions 163 of the spacers 160A and 160E. That is, the spacers 160A and 160E and the side surface portion 190 of the insulating cover 170 are interposed between the tabs 147 and 148 exposed from the window portion 163 and the inner surface of the case 120 (the lower case 122 and the upper case 124). The short circuit between the tabs 147 and 148 and the case 120 is suppressed. Therefore, it is not necessary to increase the insulation of the inner surface of the case 120, and an increase in product cost is suppressed.
  • FIG. 10 is a perspective view for explaining an output terminal forming step
  • FIG. 11 is a perspective view for explaining an insulating cover attaching step following FIG.
  • the battery module manufacturing method includes a laminate forming step, an output terminal forming step, an insulating cover attaching step, and a metal container housing step.
  • the flat batteries 144A to 144D shown in FIGS. 5 and 6 and the spacers 160 and 161 are laminated to form the laminated body shown in FIG.
  • the tabs 147 and 148 exposed through the window portion 163 are joined to form the output terminal 166.
  • the ultrasonic bonding apparatus 10 includes an anvil 12 and a horn unit 14.
  • the tab 147 and the joints 147A and 196A of the bus bar 196 are set on the anvil 12 in a state where they are overlapped.
  • the horn unit 14 includes a chip 16 that is detachably attached to a lower end portion, and vibrates ultrasonically.
  • the tab 147 and the bus bar 196 are subjected to ultrasonic vibration while being pressed by the chip 16 on the anvil 12.
  • the ultrasonic vibration diffuses and recrystallizes the metal atoms of the material constituting the tab 147 and the bus bar 196, thereby joining the interface between the tab 147 and the bus bar 196.
  • the joining is not limited to ultrasonic joining, and welding (for example, contact resistance) or adhesion can be applied.
  • the insulating cover 170 is attached so that the laminated body 142 is sandwiched by the side surface portion 190, thereby forming the cell unit 140 shown in FIG. At this time, the insulating cover 170 is fitted so as to cover the window portions 163 of the spacers 160A and 160E located in the outermost layer in the stacking direction.
  • the cell unit 140 is housed in the case 120 (see FIG. 1). At this time, the cell unit 140 is disposed in the lower case 122, the lower case 122 is covered with the upper case 124, and the edge of the upper case 124 is wound around the edge of the peripheral wall of the lower case 122 by caulking. Thereby, the battery module 100 in which the window portion of the insulating plate located in the outermost layer is covered with the insulating cover is manufactured.
  • the cross-sectional shape of the cylindrical wall portion 186 is not limited to the shape corresponding to the outer peripheral shape of the output terminals 166 and 167, but a non-circular shape that can be used as a detent at the time of tightening the bolt is preferable.
  • a non-circular shape that can be used as a detent at the time of tightening the bolt is preferable.
  • an elliptical shape (FIG. 12), a triangular shape (FIG. 13), an octagonal shape (FIG. 14), a cross shape (FIG. 15), and a protrusion is formed on a part of a circle.
  • a shape (FIG. 16) and a shape (FIG. 17) in which a recess is formed in a part of a circle.
  • FIG. 18 is a perspective view for explaining the modified example 7 according to the first embodiment.
  • a cushioning material 192 made of, for example, urethane is located between the inner surface of the case 120 and the insulating cover 170, the cell unit 140 (sandwiched between the side surfaces 190 when an impact (for example, vibration) is applied to the case 120 ( It is possible to reduce the influence on the stacked body 142) and improve the durability of the battery module 100.
  • the cushioning material 192 can be disposed only on one of the side surface portions 190 of the insulating cover 170.
  • the window portions of the spacers positioned at the uppermost and lowermost positions are covered with the insulating cover. That is, an insulating cover is interposed between the tab exposed from the window and the inner surface of the case, and a short circuit between the tab and the case is suppressed. Therefore, it is not necessary to increase the insulation of the inner surface of the case, and an increase in product cost is suppressed. Therefore, it is possible to provide a battery module that can prevent a short circuit between the tab and the case while suppressing an increase in product cost.
  • the manufacturing method according to Embodiment 1 it is possible to manufacture the battery module in which the window portion of the insulating plate located in the outermost layer is covered with an insulating cover. That is, it is possible to provide a battery module manufacturing method capable of preventing a short circuit between the electrode terminal and the metal container while suppressing an increase in product cost.
  • the cylindrical wall portion is preferable because it can hold the output terminal with a simple structure.
  • the cylindrical wall has an extended part that extends beyond the tip of the output terminal and prevents contact between the output terminal and the external electrical conductor, thus further suppressing the occurrence of short circuits. It is.
  • the cross-sectional shape of the cylindrical wall portion is substantially rectangular (non-circular), and when the bolt is tightened, the cylindrical wall portion is used as a detent to relieve stress applied to the output terminal, and the output terminal It is possible to reduce the load on the joints and spacers.
  • the cylindrical wall is integrated with the insulating cover, and the product cost can be reduced by reducing the number of parts.
  • the insulating cover has an insertion port for the voltage detection connector of the flat battery, and a connector guide for guiding insertion / removal of the connector is arranged at the edge of the insertion port. The guide is integrated. Therefore, it is possible to reduce the number of parts and reduce the product cost.
  • the impact on the stack will be reduced when the case is subjected to an impact (for example, vibration), and the durability of the battery module will be improved. It is possible to make it.
  • FIG. 19 is a perspective view for explaining the battery module according to the second embodiment
  • FIG. 20 is a perspective view for explaining the rear shape of the insulating cover shown in FIG. 19,
  • FIG. 21 is shown in FIG. It is a sectional view for explaining an insulating cover.
  • members having the same functions as those of the first embodiment are denoted by similar reference numerals, and the description thereof is omitted to avoid duplication.
  • the second embodiment is generally different from the first embodiment with respect to the configuration of the cylindrical wall portion (terminal guide), and the insulating cover 270 according to the second embodiment has a main body base on which the cylindrical wall portion 286 is disposed. 272.
  • the cylindrical wall portion 286 extends from the main body base portion 272 toward the cell unit (laminated body).
  • the base portion 287 of the cylindrical wall portion 286 is located outside the tip end of the output terminal 266 (267), and the tip end of the output terminal 266 (267) and the base portion 287 of the cylindrical wall portion 286 form a recess 294. .
  • the recess 294 is used for arranging the external bus bar 296.
  • the rotation prevention of the output terminal and the external bus bar can be integrally configured by the cylindrical wall portion 286.
  • Reference numerals 222 and 247 denote a lower case and a tab.
  • FIG. 22, 23, and 24 are a rear view, a side view, and a perspective view for explaining the insulating cover of the battery module according to the third embodiment
  • FIG. 25 shows a bus bar of the battery module according to the third embodiment. It is a perspective view for demonstrating.
  • the third embodiment is different from the first embodiment regarding the configuration and support structure of the bus bar, and the insulating cover 370 according to the third embodiment includes a main body base 372 and a main body base 372 that are located on the front side of the battery module 100.
  • the side surface portion 390 extends substantially perpendicularly from the upper and lower end edges of the battery module 100 to the back side of the battery module 100, and the main body base portion 372 is provided with ribs (contact portions) 380 and openings 374 to 376.
  • the rib 380 is in contact with the bus bar 396.
  • the bus bar 396 is a connecting portion to the output terminals 366 and 367 of the tabs (electrode terminals) 347 of the flat batteries 344A to 344D.
  • the bus bar 396 has a stepped shape and has a fixed end 398 fixed to (maintained by) the spacer 360E and a rib 380. Has a free end 397 that abuts and is cantilevered. That is, the tabs 347 of the flat batteries 344A to 344D are joined to each other via the bus bar 396.
  • the free end 397 of the bus bar 396 is in contact with the rib 380, so that the vibration is suppressed and, for example, the occurrence of cracks in the tab 347 is reliably eliminated. Further, since the rib 380 is not disposed on the spacers 360A to 360E, when the tabs are joined together in the stacking direction to form the output terminals 366 and 367, the rib 380 interferes with the joining device that joins the tab 347 and the bus bar 396. Does not cause.
  • the battery module according to Embodiment 3 requires a bus bar configuration having a height, and the longer the length from the fixed end to the free end of the bus bar, the greater the vibration of the bus bar, and the more the tab cracks. It is easy to generate. For this reason, the vibration suppression effect by installation of the rib 380 is particularly remarkable. Moreover, since the rib 380 has a simple structure, it is preferable in that the cost can be reduced and the space can be saved.
  • the fixing structure between the bus bar 396 and the spacer 360E is not particularly limited.
  • the abutment direction of the rib 380 with respect to the bus bar 396 coincides with the stacking direction. Therefore, vibration can be reliably and efficiently suppressed.
  • the rib 380 protrudes in the fitting direction D of the insulating cover 370, and one side is connected to the side surface portion 390.
  • the corner portion 381 on the other distal end side that is not connected to the side surface portion 390 is smoothed by chamfering or rounding, and the insertability is improved.
  • the insulating cover 370 is fitted and disposed so as to cover the window portions of the spacers 360E and 360A located in the outermost layer, interference (for example, catching) to the bus bar 396 by the rib 380 is suppressed, and the spacer 360 is inserted smoothly. Therefore, the generation of defective products can be prevented and the quality can be improved.
  • FIG. 23 is a protrusion having a cylindrical wall terminal (guide) and an extended portion, and reference numerals 347A and 396A shown in FIG. 25 indicate joints between the tab 347 and the bus bar 396. ing.
  • FIG. 26 is a perspective view for explaining the output terminal forming step
  • FIG. 27 is a perspective view for explaining the insulating cover attaching step following FIG. 26, and
  • FIG. 28 is for explaining the fitting of the insulating cover.
  • FIG. 29 and FIG. 30 are a rear view and a perspective view for explaining the support structure of the bus bar.
  • the third embodiment is generally different from the first embodiment regarding the output terminal forming step and the insulating cover attaching step.
  • a laminated body 342 in which flat batteries 344A to 344D and a spacer 360 are laminated is formed.
  • the ultrasonic bonding apparatus 10 is used to bond the tabs 347 exposed through the windows of the flat batteries 344A to 344D constituting the stacked body 342 in the stacking direction, and the output terminal 366. , 367.
  • the tab 347 and the joint portions 347A and 396A of the bus bar 396 are set on the anvil 12 of the ultrasonic bonding apparatus 10 so as to overlap each other. Then, the horn part 14 of the ultrasonic bonding apparatus 10 is lowered, and the joints 347A and 396A of the tab 347 and the bus bar 396 are pressurized by the chip 16 disposed below the horn part 14.
  • the horn portion 14 applies ultrasonic vibration to the joint portions 347A and 396A in this pressurized state, and joins the interface between the tab 347 and the bus bar 396.
  • the rib 380 of the insulating cover 370 does not cause interference with the ultrasonic bonding apparatus 10 and has good workability.
  • the side surface portion 390 of the insulating cover 370 is attached so as to sandwich the laminate 342, thereby forming a cell unit.
  • the insulating cover is fitted so as to cover the window portions of the spacers 360A and 360E located on the outermost layer in the stacking direction.
  • the rib 380 of the insulating cover 370 protrudes in the fitting direction D of the insulating cover 370, and the corner portion 381 on the tip side is smoothed by chamfering or rounding. Therefore, as shown in FIG. 28, when the insulating cover 370 is fitted, interference (for example, catching) by the rib 380 with respect to the bus bar 396 is suppressed and smoothly inserted, so that generation of defective products is prevented and quality is improved. Can be improved.
  • the cell unit In the metal container housing step, the cell unit is housed in the case, and a battery module in which the window portion of the insulating plate located in the outermost layer is covered with the insulating cover is manufactured.
  • the rib 380 of the insulating cover 370 is in contact with the free end 397 of the bus bar 396 that is cantilevered by the fixed end 398. Therefore, even if vibration is input, the rib 380 is suppressed. The Further, since the abutting direction of the rib 380 with respect to the bus bar 396 coincides with the stacking direction, vibration can be reliably and efficiently suppressed.
  • the insulating cover has a rib that comes into contact with the free end of the bus bar. Therefore, when vibration is input, the vibration is suppressed by the contact between the bus bar and the rib. Further, since the rib is not disposed on the spacer, it does not cause interference with the joining device that joins the tab and the bus bar.
  • the rib contact direction with the bus bar coincides with the stacking direction. Therefore, vibration can be reliably and efficiently suppressed.
  • the corners of the ribs are smoothed by chamfering or rounding, and the insertability is improved. Therefore, when the insulating cover is fitted and the spacer window located in the outermost layer is covered, interference with the ribs on the bus bar (for example, catching) is suppressed and inserted smoothly, resulting in defective products. Can be prevented and the quality can be improved.
  • the rib of the insulating cover does not cause interference with the ultrasonic bonding apparatus and has good workability.
  • the insulating cover mounting step because of the presence of chamfered or rounded corner portions, when the insulating cover is fitted, interference (for example, catching) to the bus bar due to the ribs is suppressed, and it is inserted smoothly. , Generation of defective products is prevented and quality is improved.
  • the rib of the insulating cover is not limited to a form that abuts against the free end of the bus bar itself, and may be configured to abut on a portion located between the free end and the fixed end of the bus bar.
  • connection part for the output terminal in the tab of the flat battery is not limited to the stepped bus bar having a fixed end fixed to the spacer, and can be supported by a cantilever and has a free end that generates vibration. It is possible to apply.
  • the connecting portion is not limited to the form constituted by the bus bar, and for example, the rib according to the third embodiment can be applied to the first embodiment.
  • the tabs of the flat battery are directly joined to each other, and the connection portion with respect to the output terminal in the electrode terminal of the flat battery is a tab that is cantilevered by the flat battery. Therefore, the ribs of the insulating cover are set so as to come into contact with each other.
  • the window portion of the insulating plate located in the outermost layer is covered with the insulating cover.
  • an insulation cover will interpose between the electrode terminal exposed from the window part, and the inner surface of a metal container, and the short circuit with an electrode terminal and a metal container is suppressed.
  • the battery module is manufactured in which the window portion of the insulating plate located in the outermost layer is covered with the insulating cover, that is, while suppressing an increase in product cost, It is possible to manufacture a battery module that can prevent a short circuit between the terminal and the metal container. Therefore, the battery module manufacturing method of the present invention is industrially applicable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 複数の扁平型電池(144A~144D)が積層された積層体(142)を収納してなる電池モジュールであり、扁平型電池と、出力端子と、金属容器と、絶縁プレートと、絶縁カバー(170)とを有する。前記扁平型電池(144A~144D)は、発電要素、発電要素を封止するための外装材および外装材から外部に導出される電極端子を有する。前記出力端子は、並列もしくは直列に複数の扁平型電池(144A~144D)の電極端子を接続して出力するために使用される。前記金属容器は、積層体を収納するために使用される。前記絶縁プレートは、各扁平型電池(144A~144D)の電極端子を絶縁するように挟持して配置され、かつ、前記接続のために、電極端子を露出するための窓部を有する。前記絶縁カバー(170)は、最外層に位置する絶縁プレート(160A,160E)の窓部を覆うように配置されている。

Description

電池モジュールおよび電池モジュールの製造方法
 本発明は、電池モジュールおよび電池モジュールの製造方法に関する。
 特開2007-172893号公報は、外装材から外部に導出される電極端子を有する扁平型電池を、複数積層し、電気的に直列および/又は並列に接続することにより、高出力および/又は高容量の電池モジュールを開示している。
 しかし、扁平型電池の電極端子の上下両側は、作業用の窓部を有する絶縁プレートにより挟み込まれており、前記窓部は、電極端子と出力端子との電気的接続のため、もしくは電極端子同士の接続のために使用される。このような積層体を金属容器に収納する場合には、最外層に位置する絶縁プレートの窓部は、扁平型電池を収納するための金属容器の内面に相対しており、窓部から露出している電極端子と金属容器の内面との間には、空隙が存在するのみである。そのため、電極端子と金属容器との短絡を防止するためには、金属容器の内面の絶縁性を高くしなければならず、製品コストが増加する問題を有している。
 本発明は、上記従来技術に伴う課題を解決するためになされたものであり、製品コストの増加を抑制しつつ、電極端子と金属容器との短絡を防止し得る電池モジュールおよびその製造方法を、提供することを目的とする。
 上記目的を達成するための本発明の一様相は、複数の扁平型電池が積層された積層体を収納してなる電池モジュールであり、扁平型電池と、出力端子と、金属容器と、絶縁プレートと、絶縁カバーとを有する。前記扁平型電池は、発電要素、発電要素を封止するための外装材および外装材から外部に導出される電極端子を有する。前記出力端子は、並列もしくは直列に複数の扁平型電池の電極端子を接続して出力するために使用される。前記金属容器は、積層体を収納するために使用される。前記絶縁プレートは、各扁平型電池の電極端子を絶縁するように挟持して配置され、かつ、前記接続のために、電極端子を露出するための窓部を有する。前記絶縁カバーは、最外層に位置する絶縁プレートの窓部を覆うように配置されている。
 上記目的を達成するための本発明の別の一様相は、複数の扁平型電池が積層された積層体を収納してなる電池モジュールの製造方法である。当該製造方法は、積層体形成ステップ、出力端子形成ステップ、絶縁カバー取付けステップおよび金属容器収容ステップを有する。前記積層体形成ステップにおいては、発電要素、前記発電要素を封止するための外装材および前記外装材から外部に導出される電極端子を有する複数の扁平型電池と、前記電極端子を露出するための窓部を有し、前記各扁平型電池の電極端子を絶縁するように挟持して配置される絶縁プレートと、を積層し、前記扁平型電池の積層体を形成する。前記出力端子形成ステップにおいては、前記窓部を介して露出している前記電極端子を接合し、出力端子を形成する。前記絶縁カバー取付けステップにおいては、前記積層方向の最外層に位置する前記絶縁プレートの窓部を覆うように、前記絶縁カバーを前記絶縁プレートに嵌め込む。前記金属容器収容ステップにおいては、前記絶縁カバーが嵌め込まれた前記積層体を、金属容器に収容する。
図1は、実施の形態1に係る電池モジュールを説明するための斜視図である。 図2は、図1に示されるケースの内部のセルユニットを説明するための斜視図である。 図3は、図2に示される絶縁カバーを説明するための斜視図である。 図4は、図2に示される積層体の前面側を説明するための斜視図である。 図5は、図2に示される積層体の前面側を説明するための分解斜視図である。 図6は、図2に示される積層体の背後側を説明するための分解斜視図である。 図7は、図2に示される積層体を構成する扁平型電池を説明するための、図2のVII-VII線に沿った断面図である。 図8は、図3に示される絶縁カバーの側壁部を説明するための、図3のVIII-VIII線に沿った断面図である。 図9は、図8に示される側壁部の先端に配置される拡張部を説明するための、図3のIX-IX線に沿った断面図である。 図10は、実施の形態1に係る電池モジュールの製造方法を説明するための斜視図であり、出力端子形成ステップを示している。 図11は、図10に続く、絶縁カバー取付けステップを説明するための斜視図である。 図12は、実施の形態1に係る変形例1を説明するための、図8に相当する断面図である。 図13は、実施の形態1に係る変形例2を説明するための、図8に相当する断面図である。 図14は、実施の形態1に係る変形例3を説明するための、図8に相当する断面図である。 図15は、実施の形態1に係る変形例4を説明するための、図8に相当する断面図である。 図16は、実施の形態1に係る変形例5を説明するための、図8に相当する断面図である。 図17は、実施の形態1に係る変形例6を説明するための、図8に相当する断面図である。 図18は、実施の形態1に係る変形例7を説明するための斜視図である。 図19は、実施の形態2に係る電池モジュールの絶縁カバーを説明するための斜視図である。 図20は、図19に示される絶縁カバーの背後形状を説明するための斜視図である。 図21は、図19に示される絶縁カバーを説明するための断面図である。 図22は、実施の形態3に係る電池モジュールの絶縁カバーを説明するための背面図である。 図23は、実施の形態3に係る電池モジュールの絶縁カバーを説明するための側面図である。 図24は、実施の形態3に係る電池モジュールの絶縁カバーを説明するための斜視図である。 図25は、実施の形態3に係る電池モジュールのバスバーを説明するための斜視図である。 図26は、実施の形態3に係る電池モジュールの製造方法を説明するための斜視図であり、出力端子形成ステップを示している。 図27は、図26に続く、絶縁カバー取付けステップを説明するための斜視図である。 図28は、絶縁カバーの嵌め込みを説明するための側面図である。 図29は、バスバーの支持構造を説明するための背面図である。 図30は、バスバーの支持構造を説明するための斜視図である。
 以下、本発明の実施の形態を、図面を参照しつつ説明する。なお、各図において、UPは、電池モジュールのセルユニットを構成する扁平型電池の積層方向上方を示し、FRは、電池モジュールの前方を示す。
 図1に記載の通り、実施の形態1に係る電池モジュール100は、ケース(金属容器)120を有し、当該ケース120の内部に、図2に記載の通り、セルユニット140および電気絶縁性を備えた絶縁カバー170を有する。電池モジュール100は、単独で使用することが可能であるが、例えば、複数の電池モジュール100を直列化および/又は並列化することで、所望の電流、電圧、容量に対応した組電池を形成することができる。なお、絶縁カバー170は、後述するように、セルユニット140とケース120との短絡を防止しており、そのためケース120の内面の絶縁性を高くする必要は無く、製品コストの増加が抑制されている。
 図1に戻り、ケース120は、セルユニット140を収容するために使用され、略矩形の箱形状をなすロアケース122およびその蓋体をなすアッパーケース124を有する。アッパーケース124の縁部は、カシメ加工によって、ロアケース122の周壁の縁部に巻き締められている。ロアケース122およびアッパーケース124は、比較的薄肉の鋼板またはアルミ板から形成され、プレス加工によって強度確保したり、セルユニット140を保持する為の所定形状が付与されている。
 ロアケース122およびアッパーケース124は、貫通孔130を有する。貫通孔130は、ロアケース122およびアッパーケース124の隅部の4箇所に配置されており、電池モジュール100同士を複数積み重ねて組み電池として保持する為の通しボルト(図示せず)を挿通するために使用される。また、ロアケース122は、前面123の側壁部に形成された開口部132,133,134を有する。
 図2に記載の通り、セルユニット140は、複数の扁平型電池144(144A~144D)が電気的に接続されて積層された積層体142、および、電気絶縁性を有する複数のスペーサ(絶縁プレート)160,161を有する。
 扁平型電池144は、例えば、リチウムイオン二次電池であり、図7に記載されるとおり、発電要素145、発電要素145を封止するための外装材146および外装材から外部に導出されるタブ(電極端子)147,148を有する。
 発電要素145は、正極板、負極板およびセパレータを順に積層して形成される。正極板は、例えば、LiMn等のリチウム-遷移金属複合酸化物からなる正極活物質層を有する。負極板は、例えば、カーボンおよびリチウム-遷移金属複合酸化物からなる負極活物質層を有する。セパレータは、例えば、電解質を浸透し得る通気性を有するポーラス状のPE(ポリエチレン)から形成される。
 外装材146は、軽量化および熱伝導性の観点から、アルミニウム、ステンレス、ニッケル、銅などの金属(合金を含む)をポリプロピレンフィルム等の絶縁体で被覆した高分子-金属複合ラミネートフィルムなどのシート材からなり、その外周部の一部または全部が、熱融着により接合されている。
 タブ147および148は、発電要素145から電流を引き出すための部材であり、双方とも扁平型電池144の前面側から前方へ延長している。
 図2に記載の電気絶縁性を有する複数のスペーサ(絶縁プレート)160は、図5にその分解図を示すとおり、スペーサ160(160A~160E)は、積層体142の前面側に配置され、かつ各扁平型電池144のタブ147,148を挟持するよう位置決めされており、窓部163、貫通孔164および電圧検出部169を有する。
 窓部163は、扁平型電池144を電気的に接続するために使用され、タブ147またはタブ148の一部を露出している。
 貫通孔164は、隅部の2箇所に配置されており、前述のロアケース122およびアッパーケース124の前面側の貫通孔130と位置合せされており、通しボルトを挿通するために使用される。
 電圧検出部169は、挟持したタブ147またはタブ148の周縁の一部を露出させる切り欠きから形成され、扁平型電池144の電圧を検出するために使用される。電圧の検出は、電池モジュール100の充放電管理のために行われる。電圧検出部169は、ロアケース122の前面123の側壁部に形成される開口部134に相対するように位置決めされ、開口部134を介して、外部に露出可能である。なお、電圧検出部169は、専用端子によって構成することも可能である。
 最上位(最外層の一方)のスペーサ160Aの上面および最下位(最外層の他方)のスペーサ160Eの下面には、絶縁カバー170を装着するための凹部162が設けられている。スペーサ160Aの直下に位置するスペーサ160Bは、タブ147に電気的に接合された出力端子167を有する。スペーサ160Eは、バスバー196を介してタブ147に電気的に接合された出力端子166を有する。出力端子166,167は、ロアケース122の前面123の側壁部に形成される開口部132,133から突出するように配置されている。なお、符号147A,196Aは、タブ147およびバスバー196の接合部を示している。
 図2に記載の電気絶縁性を有する複数のスペーサ(絶縁プレート)161は、図6にその分解図を示すとおり、スペーサ161(161A~161E)は、積層体142の背後側に配置され、かつ扁平型電池144の背後側延長部149を挟持するよう位置決めされており、貫通孔165を有する。貫通孔165は、隅部の2箇所に配置されており、ロアケース122およびアッパーケース124の背後側の貫通孔130と位置合せされており、通しボルトを挿通するために使用される。
 次に、絶縁カバー170を説明する。
 絶縁カバー170は、図3に示されるように、電池モジュール100の幅方向に垂直な断面において略コ字状の断面形状を有しており、電池モジュール100の前面側に位置する本体基部172および本体基部172の上下両端縁から電池モジュール100の背後側へ略直角に延長する上下側面部190を有し、上下側面部190によってセルユニット140を挟む込みように構成されている。
 本体基部172は、図2に示されるセルユニット140の前面側と相対するように配置され、側方に位置する開口部174,175および中央部に位置する差込口176を有する。
 開口部174,175は、出力端子166,167と位置合せされ、かつ、出力端子166,167が前方へ突出可能に形成されている。開口部174,175の縁部には、外部に向かって延長している突出部184,185を有する。突出部184,185は、図1に示されるロアケース122の前面123の開口部132,133から突出自在であり、かつ、筒状壁部186および筒状壁部186の先端に配置される拡張部188を有する。
 筒状壁部186は、図8に示されるように、出力端子166,167の外周形状に対応する略矩形の断面形状を有する。したがって、筒状壁部186は、単純な構造であるが、絶縁カバー170をセルユニット140に装着してケース120に収容した際に、外部に露出する出力端子166,167の周囲を取り囲み、出力端子166,167を保持するための端子ガイドとして機能する。
 そのため、出力端子166,167に外力が付与された際に、出力端子166,167の接合部およびスペーサ160に対する負荷を、軽減することが可能である。また、筒状壁部186の断面形状が非円形状であるため、出力端子166,167のボルトの締付け時において、筒状壁部186を回り止めとして利用することで、出力端子166,167に加わる応力を緩和し、出力端子166,167の接合部およびスペーサ160に対する負荷を、軽減することが可能である。さらに、筒状壁部186は、絶縁カバー170(本体基部172)と一体化されており、部品点数が減少するため、製品コストを削減することが可能である。
 拡張部188は、絶縁カバー170をセルユニット140に装着してケース120に収容した際に、出力端子166,167の先端(出力端子166,167の接続部位)を越えた位置まで前方に延長しているように、構成されている。拡張部188は、出力端子166,167の先端と外部に存在する電気伝導体との接触を妨げるため、短絡の発生を抑制することが可能である。
 差込口176は、扁平型電池144の電圧を検出するためのコネクタ(電圧検出コネクタ)が差し込まれる開口部であり、図5に示されるスペーサ160(160A~160E)の電圧検出部169を、露出するように配置されている。また、差込口176の縁部には、内側に向かって延長しているガイド部材177が配置されている。ガイド部材177は、コネクタの抜き差しを案内するためのコネクタガイドである。ガイド部材177は、絶縁カバー170(本体基部172)と一体化されており、部品点数が減少するため、製品コストを削減することが可能である。
 なお、筒状壁部186の拡張部188は、図9に示されるように、中央部に位置する差込口176に相対するように位置決めされる。差込口176は、電圧検出コネクタが差し込まれるため、出力端子166,167のコネクタ用配線は、電圧検出コネクタ用配線との干渉をさけるため、側方に配置される。したがって、筒状壁部186の拡張部188は、出力端子166,167のコネクタ用配線の邪魔とならない。
 上下側面部190は、最上位のスペーサ160Aの上面の凹部162および最下位のスペーサ160Eの下面の凹部162にそれぞれ配置され、スペーサ160A,160Eの窓部163を覆うように構成されている。つまり、窓部163から露出しているタブ147,148とケース120(ロアケース122およびアッパーケース124)の内面との間には、スペーサ160A,160Eおよび絶縁カバー170の側面部190が介在することとなり、タブ147,148とケース120との短絡が抑制される。そのため、ケース120の内面の絶縁性を高くする必要は無く、製品コストの増加が抑制される。
 次に、実施の形態1に係る電池モジュールの製造方法を説明する。
 図10は、出力端子形成ステップを説明するための斜視図、図11は、図10に続く、絶縁カバー取付けステップを説明するための斜視図である。
 実施の形態1に係る電池モジュールの製造方法は、積層体形成ステップ、出力端子形成ステップ、絶縁カバー取付けステップおよび金属容器収容ステップを有する。
 積層体形成ステップにおいては、図5および図6に示される扁平型電池144A~144Dとスペーサ160,161とを積層し、図4に示される積層体を形成する。
 出力端子形成ステップにおいては、窓部163を介して露出しているタブ147,148を接合し、出力端子166を形成する。
 接合は、例えば、図10に示される超音波接合装置10が適用される。超音波接合装置10は、アンビル12およびホーン部14を有する。アンビル12には、例えばタブ147およびバスバー196の接合部147A,196Aが重ね合わされた状態でセットされる。ホーン部14は、下端部に着脱自在に取り付けられたチップ16を有し、超音波振動する。
 タブ147およびバスバー196は、アンビル12上でチップ16によって加圧された状態で、超音波振動が付与される。超音波振動は、タブ147およびバスバー196を構成する素材の金属原子を拡散し、さらに再結晶させることによって、タブ147およびバスバー196の界面を接合する。なお、接合は、超音波接合に限定されず、溶接(例えば、接触抵抗)や接着を適用することも可能である。
 絶縁カバー取付けステップにおいては、図11に示されるように、絶縁カバー170を、側面部190で積層体142を挟む込みようにして取り付け、図2示されるセルユニット140を形成する。この際、絶縁カバー170は、積層方向の最外層に位置するスペーサ160A,160Eの窓部163を覆うように、嵌め込まれる。
 金属容器収容ステップにおいては、セルユニット140を、ケース120に収容する(図1参照)。この際、セルユニット140をロアケース122内に配置し、ロアケース122をアッパーケース124によって蓋をし、アッパーケース124の縁部を、カシメ加工によって、ロアケース122の周壁の縁部に巻き締める。これにより、最外層に位置する絶縁プレートの窓部が絶縁カバーによって覆われている電池モジュール100が製造されることとなる。
 図12~図17は、実施の形態1に係る変形例1~6を説明するための断面図である。
 筒状壁部186の断面形状は、出力端子166,167の外周形状に対応する形状に限定されないが、ボルトの締付け時において、回り止めとして利用することができる非円形状が好ましい。例えば、上記の略矩形形状に加えて、楕円形状(図12)、三角形状(図13)、八角形状(図14)、十字形状(図15)、円の一部に突出部が形成された形状(図16)、円の一部に凹部が形成された形状(図17)を適用することも可能である。
 図18は、実施の形態1に係る変形例7を説明するための斜視図である。
 絶縁カバー170の側面部190上に、例えば、ウレタンから形成される緩衝材192を配置することも可能である。緩衝材192は、ケース120の内面と、絶縁カバー170との間に位置するため、ケース120に衝撃(例えば、振動)が付与された際に、側面部190によって挟み込まれているセルユニット140(積層体142)に対する影響を軽減し、電池モジュール100の耐久性を向上させることが可能である。緩衝材192は、絶縁カバー170の側面部190の一方のみに配置することも可能である。
 以上のように、実施の形態1に係る電池モジュールにおいては、最上位および最下位に位置するスペーサの窓部は、絶縁カバーによって覆われる。つまり、窓部から露出しているタブとケースの内面との間には、絶縁カバーが介在することとなり、タブとケースとの短絡が抑制される。そのため、ケースの内面の絶縁性を高くする必要は無く、製品コストの増加が抑制される。したがって、製品コストの増加を抑制しつつ、タブとケースとの短絡を防止し得る電池モジュールを、提供することが可能である。
 実施の形態1に係る製造方法においては、最外層に位置する絶縁プレートの窓部が絶縁カバーによって覆われている前記電池モジュールを製造することが可能である。つまり、製品コストの増加を抑制しつつ、電極端子と金属容器との短絡を防止し得る電池モジュールの製造方法を、提供することが可能である。
 また、出力端子が筒状壁部によって保持されているため、出力端子に外力が付与された際に、出力端子の接合部およびスペーサに対する負荷を、軽減することが可能である。筒状壁部は、単純な構造によって出力端子を保持すること可能であり、好ましい。筒状壁部は、出力端子の先端を越えて延長する拡張部を有しており、出力端子と外部に存在する電気伝導体との接触を妨げるため、短絡の発生をさらに抑制することが可能である。筒状壁部の断面形状は、略矩形状(非円形状)であり、ボルトの締付け時において、筒状壁部を回り止めとして利用することで、出力端子に加わる応力を緩和し、出力端子の接合部およびスペーサに対する負荷を、軽減することが可能である。
 また、筒状壁部は、絶縁カバーと一体化されており、部品点数を減少させることで、製品コストを削減することが可能である。さらに、絶縁カバーは、扁平型電池の電圧検出ネクタの差込口を有し、差込口の縁部には、コネクタの抜き差しを案内するためのコネクタガイドが配置されており、絶縁カバーとコネクタガイドは、一体化されている。そのため、部品点数を減少させ、製品コストを削減することが可能である。
 なお、ケースの内面と、絶縁カバーとの間に緩衝材を配置する場合、ケースに衝撃(例えば、振動)が付与された際に、積層体に対する影響を軽減し、電池モジュールの耐久性を向上させることが可能である。
 次に、実施の形態2を説明する。
 図19は、実施の形態2に係る電池モジュールを説明するための斜視図、図20は、図19に示される絶縁カバーの背後形状を説明するための斜視図、図21は、図19に示される絶縁カバーを説明するための断面図である。なお、以下において、実施の形態1と同様の機能を有する部材については類似する符号を使用し、重複を避けるため、その説明を省略する。
 実施の形態2は、筒状壁部(端子ガイド)の構成に関し、実施の形態1と概して異なっており、実施の形態2に係る絶縁カバー270は、筒状壁部286が配置された本体基部272を有する。筒状壁部286は、本体基部272からセルユニット(積層体)に向かって延長している。
 筒状壁部286の基部287は、出力端子266(267)の先端より外側に位置しており、出力端子266(267)の先端と筒状壁部286の基部287は、凹部294を形成する。凹部294は、外付のバスバー296を配置するために使用される。
 したがって、実施の形態2においては、外付のバスバーを容易に位置決めすることが可能である。また、出力端子と外付のバスバーの回り止めを、筒状壁部286によって一体的に構成することが可能となる。なお、出力端子の先端を、筒状壁部の基部より外側に位置させることも可能である。この場合、絶縁カバーからの出力端子の突出量が減少するため、出力端子と外部に存在する部材との干渉の発生を抑制することが可能である。なお、符号222および247は、ロアケースおよびタブを示している。
 次に、実施の形態3を説明する。
 図22、図23および図24は、実施の形態3に係る電池モジュールの絶縁カバーを説明するための背面図、側面図および斜視図、図25は、実施の形態3に係る電池モジュールのバスバーを説明するための斜視図である。
 実施の形態3は、バスバーの構成および支持構造に関し、実施の形態1と異なっており、実施の形態3に係る絶縁カバー370は、電池モジュール100の前面側に位置する本体基部372および本体基部372の上下両端縁から電池モジュール100の背後側へ略直角に延長する側面部390を有し、本体基部372には、リブ(当接部)380および開口部374~376が配置されている。
 リブ380は、バスバー396に当接している。バスバー396は、扁平型電池344A~344Dのタブ(電極端子)347における出力端子366,367に対する接続部であり、階段状を呈し、スペーサ360Eに固定(保持)される固定端398と、リブ380と当接する自由端397を有し、片持ち支持されている。つまり、扁平型電池344A~344Dのタブ347は、バスバー396を介して互いに接合されている。
 振動が入力される場合、バスバー396の自由端397は、リブ380に当接しているため、前記振動が抑制され、例えば、タブ347の亀裂の発生が確実に排除される。また、リブ380は、スペーサ360A~360Eに配置されていないため、タブ同士を積層方向で接合し、出力端子366,367を形成する際に、タブ347とバスバー396とを接合する接合装置と干渉を引き起こさない。
 特に、実施の形態3に係る電池モジュールは、高さをもたせたバスバー構成が必要となり、バスバーの固定端から自由端までの長さが長い分、バスバーの振動が大きくなり、タブの亀裂がより発生し易い。このため、リブ380の設置による振動抑制効果は、特に顕著となる。また、リブ380は、簡単な構造であるため、低コストかつ省スペースを図ることができる点で、好ましい。なお、バスバー396とスペーサ360Eとの固定構造は、特に限定されない。
 また、バスバー396に対するリブ380の当接方向(リブ380の支持方向)は、積層方向に一致している。そのため、振動を確実かつ効率的に抑制することできる。
 さらに、リブ380は、絶縁カバー370の嵌め込み方向Dに突出しており、側方の一方は、側面部390に連結されている。また、側面部390に連結されていない側方の他方の先端側のコーナー部381は、面取り加工あるいは丸みが形成されることで円滑となっており、挿入性を向上させている。
 したがって、絶縁カバー370を嵌め込んで、最外層に位置するスペーサ360E,360Aの窓部を覆うように配置する際、リブ380によるバスバー396に対する干渉(例えば、引っ掛かり)が抑制され、円滑に挿入されるため、不良品発生を防止し、かつ品質を向上させることができる。
 なお、図23に示される符号384は、筒状壁部端子(ガイド)および拡張部を有する突出部であり、図25に示される符号347A,396Aは、タブ347およびバスバー396の接合部を示している。
 次に、実施の形態3に係る電池モジュールの製造方法を説明する。
 図26は、出力端子形成ステップを説明するための斜視図、図27は、図26に続く、絶縁カバー取付けステップを説明するための斜視図、図28は、絶縁カバーの嵌め込みを説明するための側面図、図29および図30は、バスバーの支持構造を説明するための背面図および斜視図である。
 実施の形態3は、出力端子形成ステップおよび絶縁カバー取付けステップに関し、実施の形態1と概して異なっている。
 まず、積層体形成ステップにおいては、扁平型電池344A~344Dとスペーサ360とが積層されてなる積層体342を形成する。
 出力端子形成ステップにおいては、超音波接合装置10を使用し、積層体342を構成する扁平型電池344A~344Dの窓部を介して露出しているタブ347を積層方向で接合し、出力端子366,367を形成する。
 この際、図26に示されるように、超音波接合装置10のアンビル12には、タブ347およびバスバー396の接合部347A,396Aが重ね合わされた状態でセットされる。そして、超音波接合装置10のホーン部14が降下し、ホーン部14の下方に配置されるチップ16によって、タブ347およびバスバー396の接合部347A,396Aが加圧される。
 ホーン部14は、この加圧状態で、接合部347A,396Aに超音波振動を付与し、タブ347およびバスバー396の界面を接合する。なお、出力端子形成ステップにおいては、絶縁カバー370は取り付けられていないため、絶縁カバー370のリブ380は、超音波接合装置10と干渉を引き起こさず、良好な作業性を有する。
 絶縁カバー取付けステップにおいては、図27に示されるように、絶縁カバー370の側面部390によって、積層体342を挟む込みように取り付けられ、セルユニットが形成される。この際、絶縁カバーは、積層方向の最外層に位置するスペーサ360A,360Eの窓部を覆うように、嵌め込まれる。
 また、絶縁カバー370のリブ380は、絶縁カバー370の嵌め込み方向Dに突出しており、先端側のコーナー部381は、面取り加工あるいは丸みが形成されることで円滑となっている。したがって、図28に示されるように、絶縁カバー370を嵌め込む際、リブ380によるバスバー396に対する干渉(例えば、引っ掛かり)が抑制され、円滑に挿入されるため、不良品発生が防止され、かつ品質を向上させることができる。
 金属容器収容ステップにおいては、セルユニットを、ケースに収容し、最外層に位置する絶縁プレートの窓部が絶縁カバーによって覆われている電池モジュールが製造されることとなる。絶縁カバー370のリブ380は、図29および図30に示されるように、固定端398によって片持ち支持されているバスバー396の自由端397と当接しているため、振動が入力されても抑制される。また、バスバー396に対するリブ380の当接方向は、積層方向に一致しているため、振動を確実かつ効率的に抑制することできる。
 以上のように、実施の形態3に係る電池モジュールにおいては、絶縁カバーは、バスバーの自由端に当接するリブを有する。そのため、振動が入力される場合、バスバーとリブとの当接により、前記振動が抑制される。また、リブは、スペーサに配置されていないため、タブとバスバーとを接合する接合装置と干渉を引き起こさない。
 また、バスバーに対するリブの当接方向は、積層方向に一致している。そのため、振動を確実かつ効率的に抑制することできる。
 リブのコーナー部は、面取り加工あるいは丸みが形成されることで円滑となっており、挿入性が向上している。そのため、絶縁カバーを嵌め込んで、最外層に位置するスペーサの窓部を覆うように配置する際、リブによるバスバーに対する干渉(例えば、引っ掛かり)を抑制し、円滑に挿入することで、不良品発生を防止し、かつ品質を向上させることができる。
 実施の形態3に係る製造方法にの出力端子形成ステップにおいては、絶縁カバーは取り付けられていないため、絶縁カバーのリブは、超音波接合装置と干渉を引き起こさず、良好な作業性を有する。また、絶縁カバー取付けステップにおいては、面取り加工あるいは丸みが形成されるコーナー部の存在により、絶縁カバーを嵌め込む際、リブによるバスバーに対する干渉(例えば、引っ掛かり)が抑制され、円滑に挿入されるため、不良品発生が防止され、かつ品質が向上する。
 なお、絶縁カバーのリブは、バスバーの自由端自体に当接する形態に限定されず、バスバーにおける自由端と固定端との間に位置する部位と、当接するように構成することも可能である。
 また、扁平型電池のタブにおける出力端子に対する接続部は、スペーサに固定される固定端を有する階段状のバスバーに限定されず、片持ち支持されかつ振動を生じる自由端を有する構成であれば、適用することが可能である。
 さらに、接続部は、前記バスバーによって構成する形態に限定されず、例えば、実施の形態3に係るリブを、実施の形態1に適用することも可能である。実施の形態1においては、扁平型電池のタブ同士が直接接合されており、扁平型電池の電極端子における出力端子に対する接続部は、扁平型電池によって片持ち支持されているタブであり、当該タブに当接するように絶縁カバーのリブを設定することとなる。
 以上説明した実施の形態は、本発明の理解を容易にするために記載された単なる例示に過ぎず、本発明はそれらの実施の形態に限定されるものではない。例えば、実施の形態2および3に係る電池モジュールに、実施の形態1に係る変形例1~7を適用したものなど、上記実施の形態に開示された各要素、上記実施の形態を適宜組み合わせたもの、本発明の技術的範囲に属する変形又は変更は、すべて本発明の範囲内のものである。
 本出願は、2008年2月29日に出願された日本国特許願第2008-049930号、および2008年12月18日に出願された日本国特許願第2008-322830号に基づく優先権を主張しており、これらの出願の内容が参照により本発明の明細書に組み込まれる。
産業上の利用の可能性
 本発明の電池モジュールによれば、最外層に位置する絶縁プレートの窓部が、絶縁カバーによって覆われる。これにより、窓部から露出している電極端子と金属容器の内面との間に、絶縁カバーが介在することとなり、電極端子と金属容器との短絡が抑制される。また、金属容器の内面の絶縁性を高くする必要が無くなり、製品コストの増加が抑制される。したがって、本発明の電池モジュールは、産業上利用可能である。
 本発明の電池モジュールの製造方法によれば、最外層に位置する絶縁プレートの窓部が絶縁カバーによって覆われている前記電池モジュールを製造すること、つまり、製品コストの増加を抑制しつつ、電極端子と金属容器との短絡を防止し得る電池モジュールを製造することが可能である。したがって、本発明の電池モジュールの製造方法は、産業上利用可能である。

Claims (13)

  1.  複数の扁平型電池が積層された積層体を収納してなる電池モジュールであって、
     発電要素、前記発電要素を封止するための外装材および前記外装材から外部に導出される電極端子を有する扁平型電池と、
     並列もしくは直列に前記複数の扁平型電池の電極端子を接続して出力する出力端子と、
     前記積層体を収納するための金属容器と、
     前記各扁平型電池の電極端子を絶縁するように挟持して配置され、かつ、前記接続のために、前記電極端子を露出するための窓部を有する絶縁プレートと、
     最外層に位置する前記絶縁プレートの窓部を覆うように配置されている絶縁カバーと、
     を有することを特徴とする電池モジュール。
  2.  前記絶縁カバーは、前記出力端子を保持するための端子ガイドを有することを特徴とする請求項1に記載の電池モジュール。
  3.  前記端子ガイドは、前記出力端子の周囲を取り囲んでいる筒状壁部を有することを特徴とする請求項2に記載の電池モジュール。
  4.  前記筒状壁部は、前記出力端子の先端を越えて延長する拡張部を有することを特徴とする請求項3に記載の電池モジュール。
  5.  前記金属容器の内面と、前記絶縁カバーとの間に配置される緩衝材を有することを特徴とする請求項1に記載の電池モジュール。
  6.  前記筒状壁部の断面形状は、非円形状であることを特徴とする請求項3に記載の電池モジュール。
  7.  前記絶縁カバーは、前記扁平型電池の電圧を検出するためのコネクタが差し込まれる開口部を有し、前記開口部の縁部には、コネクタの抜き差しを案内するためのコネクタガイドが配置されており、前記絶縁カバーと前記コネクタガイドは、一体化されていることを特徴とする請求項2に記載の電池モジュール。
  8.  前記筒状壁部は、前記積層体に向かって延長していることを特徴とする請求項3に記載の電池モジュール。
  9.  前記筒状壁部の基部は、前記出力端子の先端より外側に位置しており、前記出力端子の先端と前記筒状壁部の基部によって構成される凹部には、外付のバスバーが配置されていることを特徴とする請求項8に記載の電池モジュール。
  10.  前記絶縁カバーは、前記扁平型電池の電極端子における前記出力端子に対する接続部に、当接する当接部を有することことを特徴とする請求項1に記載の電池モジュール。
  11.  前記当接部の当接方向は、積層方向に一致していることを特徴とする請求項10に記載の電池モジュール。
  12.  前記当接部は、前記絶縁カバーの嵌め込み方向に突出しており、前記当接部の先端側のコーナー部は、面取り加工あるいは丸みが形成されていることを特徴とする請求項10に記載の電池モジュール。
  13.  発電要素、前記発電要素を封止するための外装材および前記外装材から外部に導出される電極端子を有する複数の扁平型電池と、前記電極端子を露出するための窓部を有し、前記各扁平型電池の電極端子を絶縁するように挟持して配置される絶縁プレートと、を積層し、前記扁平型電池の積層体を形成するステップと、
     前記窓部を介して露出している前記電極端子を接合し、出力端子を形成するステップと、
     前記積層方向の最外層に位置する前記絶縁プレートの窓部を覆うように、前記絶縁カバーを前記絶縁プレートに嵌め込むステップと、
     前記絶縁カバーが嵌め込まれた前記積層体を、金属容器に収容するステップと、
     を有することを特徴とする電池モジュールの製造方法。
PCT/JP2009/053406 2008-02-29 2009-02-25 電池モジュールおよび電池モジュールの製造方法 WO2009107657A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127004467A KR101252413B1 (ko) 2008-02-29 2009-02-25 전지 모듈 및 전지 모듈의 제조 방법
KR1020107019042A KR101189430B1 (ko) 2008-02-29 2009-02-25 전지 모듈 및 전지 모듈의 제조 방법
EP09715124.5A EP2262040B1 (en) 2008-02-29 2009-02-25 Battery module and method for producing battery module
US12/919,969 US8771863B2 (en) 2008-02-29 2009-02-25 Battery module and manufacturing method of battery module
CN2009801063560A CN101960647A (zh) 2008-02-29 2009-02-25 电池组件及电池组件的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008049930 2008-02-29
JP2008-049930 2008-02-29
JP2008322830A JP4775436B2 (ja) 2008-02-29 2008-12-18 電池モジュールおよび電池モジュールの製造方法
JP2008-322830 2008-12-18

Publications (1)

Publication Number Publication Date
WO2009107657A1 true WO2009107657A1 (ja) 2009-09-03

Family

ID=41016045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053406 WO2009107657A1 (ja) 2008-02-29 2009-02-25 電池モジュールおよび電池モジュールの製造方法

Country Status (6)

Country Link
US (1) US8771863B2 (ja)
EP (2) EP2262040B1 (ja)
JP (1) JP4775436B2 (ja)
KR (2) KR101252413B1 (ja)
CN (3) CN103367681B (ja)
WO (1) WO2009107657A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120171557A1 (en) * 2011-01-05 2012-07-05 Samsung Sdi Co., Ltd. Battery pack
US20120264007A1 (en) * 2011-04-14 2012-10-18 Gs Yuasa International Ltd. Battery and method of manufacturing the same
CN102834947A (zh) * 2010-04-07 2012-12-19 日产自动车株式会社 电池组件
US20130078498A1 (en) * 2011-01-13 2013-03-28 Ferrari S.P.A. Storage system for the storage of electric energy for a vehicle with electric propulsion
JP2013161745A (ja) * 2012-02-08 2013-08-19 Nifco Inc バッテリー体の外部接続部のカバー
US8598471B2 (en) 2010-12-28 2013-12-03 Gs Yuasa International Ltd. Electric storage device
US8632912B2 (en) 2011-04-14 2014-01-21 Gs Yuasa International Ltd. Battery including baffling member and sealing material that seals auxiliary terminal to lid plate
WO2014057756A1 (ja) * 2012-10-10 2014-04-17 株式会社オートネットワーク技術研究所 蓄電モジュール
US8765293B2 (en) 2010-12-28 2014-07-01 Gs Yuasa International Ltd. Electric storage device
US8795882B2 (en) 2010-12-10 2014-08-05 Gs Yuasa International Ltd. Battery
US20140342207A1 (en) * 2010-07-26 2014-11-20 Enerdel, Inc. Battery cell system with interconnected frames
US10714715B2 (en) 2011-01-20 2020-07-14 Gs Yuasa International Ltd. Electric storage device

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4775436B2 (ja) * 2008-02-29 2011-09-21 日産自動車株式会社 電池モジュールおよび電池モジュールの製造方法
US9099713B2 (en) 2009-03-30 2015-08-04 Piolax Inc. Module terminal including interference preventive member
EP2538468B1 (en) * 2010-02-17 2016-06-22 Piolax Inc. Terminal for module
JP5437849B2 (ja) * 2010-02-19 2014-03-12 株式会社ニフコ 電池モジュール用電極構成体
JP2012079543A (ja) * 2010-10-01 2012-04-19 Nifco Inc 電池モジュール用セルユニットの締結構造及び締結部材
CN102479972B (zh) * 2010-11-30 2015-09-02 比亚迪股份有限公司 一种锂离子二次电池
CN102655227B (zh) * 2011-03-02 2014-09-17 珠海银隆新能源有限公司 动力电池组
KR101252935B1 (ko) 2011-04-21 2013-04-09 로베르트 보쉬 게엠베하 배터리 모듈
US9219262B2 (en) * 2011-04-28 2015-12-22 Toyota Jidosha Kabushiki Kaisha Assembled battery and vehicle
KR101359310B1 (ko) * 2011-07-25 2014-02-07 주식회사 엘지화학 안전성이 향상된 전지팩
WO2013015380A1 (ja) * 2011-07-28 2013-01-31 株式会社ニフコ 電池モジュール用電極構成体
US9028996B2 (en) * 2011-09-29 2015-05-12 Lithium Energy Japan Battery pack
JP5895488B2 (ja) * 2011-12-02 2016-03-30 日産自動車株式会社 位置決め部材および金型
KR101404712B1 (ko) * 2012-01-26 2014-06-09 주식회사 엘지화학 안전성이 향상된 전지팩
CN104170122B (zh) * 2012-02-21 2017-10-24 矢崎总业株式会社 汇流条模块和电源单元
JP6017812B2 (ja) 2012-03-29 2016-11-02 日産自動車株式会社 バスバー取り付け装置およびバスバー取り付け方法
CN103427054B (zh) * 2012-05-14 2016-08-03 万向电动汽车有限公司 一种采用层叠电芯的平躺式电池模块
KR101898295B1 (ko) * 2012-08-20 2018-09-12 에스케이이노베이션 주식회사 전지모듈 어셈블리 및 그 제조방법
EP2903053B1 (en) * 2012-09-25 2019-01-09 NGK Insulators, Ltd. Power storage device
JP6020903B2 (ja) 2012-10-24 2016-11-02 株式会社オートネットワーク技術研究所 蓄電モジュール
KR101652653B1 (ko) * 2012-12-27 2016-08-30 닛산 지도우샤 가부시키가이샤 전지 모듈 및 조전지
JP5954585B2 (ja) * 2013-04-05 2016-07-20 株式会社オートネットワーク技術研究所 機器用コネクタ
JP6120996B2 (ja) * 2013-05-15 2017-04-26 エルジー・ケム・リミテッド 新規な構造の電池モジュールアセンブリー用ベースプレート
JP6226573B2 (ja) * 2013-06-06 2017-11-08 株式会社オートネットワーク技術研究所 蓄電モジュール
JP2015167102A (ja) * 2014-03-04 2015-09-24 株式会社オートネットワーク技術研究所 蓄電モジュール
US9646774B2 (en) 2014-06-05 2017-05-09 Trion Energy Solutions Corp. Power wafer
WO2015188168A1 (en) * 2014-06-05 2015-12-10 Waterford Energy Solutions Corp. Power wafer
US9647471B2 (en) 2014-10-17 2017-05-09 Trion Energy Solutions Corp. Battery management system and method
JP6394141B2 (ja) * 2014-07-16 2018-09-26 日産自動車株式会社 積層体のカバー装着装置
JP2016031914A (ja) * 2014-07-30 2016-03-07 株式会社オートネットワーク技術研究所 蓄電モジュール
US10008733B2 (en) 2014-08-08 2018-06-26 Nissan Motor Co., Ltd. Battery manufacturing apparatus
KR101766014B1 (ko) 2015-06-17 2017-08-07 현대자동차주식회사 파우치 접촉 타입 배터리 셀 및 이를 적용한 배터리 셀 유닛, 배터리 모듈, 배터리 시스템
KR102026852B1 (ko) * 2015-09-30 2019-09-30 주식회사 엘지화학 배터리 모듈
US9755198B2 (en) * 2015-10-07 2017-09-05 Lg Chem, Ltd. Battery cell assembly
WO2017068707A1 (ja) 2015-10-22 2017-04-27 日産自動車株式会社 組電池の製造方法および製造装置
CN105591060B (zh) * 2016-02-25 2019-09-03 宁德时代新能源科技股份有限公司 动力电池组装置
US10756315B2 (en) * 2016-05-30 2020-08-25 Amogreentech Co., Ltd. Heat-radiating cartridge and electric car battery pack using same
US11251484B2 (en) * 2016-09-26 2022-02-15 Envision Aesc Japan Ltd. Assembly including unit cell and spacer
JP6782136B2 (ja) 2016-09-26 2020-11-11 株式会社エンビジョンAescジャパン スペーサおよび組電池
JP2018116893A (ja) * 2017-01-20 2018-07-26 株式会社東芝 電池セルおよび組電池
KR102097087B1 (ko) 2017-04-07 2020-04-03 주식회사 엘지화학 배터리 모듈 및 이를 포함하는 배터리 팩 및 자동차
JP6299918B1 (ja) * 2017-08-17 2018-03-28 株式会社オートネットワーク技術研究所 配線モジュール
KR102395228B1 (ko) * 2018-10-10 2022-05-04 주식회사 엘지에너지솔루션 버스바 프레임 조립 방법
CN113169408B (zh) * 2018-11-28 2023-05-26 三洋电机株式会社 电池组件
CN111384336A (zh) * 2018-12-30 2020-07-07 宁德时代新能源科技股份有限公司 一种电池模块、电池包及车辆
CN115066794A (zh) * 2020-03-31 2022-09-16 三洋电机株式会社 电池组件
WO2023227939A1 (ja) * 2022-05-25 2023-11-30 日産自動車株式会社 電池モジュール
WO2024136322A1 (ko) * 2022-12-20 2024-06-27 주식회사 엘지에너지솔루션 안전성이 향상된 전지 팩

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210312A (ja) * 2004-10-26 2006-08-10 Nissan Motor Co Ltd 組電池
JP2007172893A (ja) 2005-12-19 2007-07-05 Nissan Motor Co Ltd 電池モジュール

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8432260D0 (en) * 1984-12-20 1985-01-30 Lucas Ind Plc Electric storage battery
US5487958A (en) * 1993-12-06 1996-01-30 Tura; Drew Interlocking frame system for lithium-polymer battery construction
KR100556101B1 (ko) * 2003-12-16 2006-03-03 주식회사 엘지화학 이차전지 모듈
CN2874782Y (zh) 2004-10-26 2007-02-28 日产自动车株式会社 组合电池
KR100796097B1 (ko) * 2004-10-26 2008-01-21 닛산 지도우샤 가부시키가이샤 배터리 모듈
JP4379467B2 (ja) 2006-12-11 2009-12-09 日産自動車株式会社 電池モジュール
JP4775436B2 (ja) * 2008-02-29 2011-09-21 日産自動車株式会社 電池モジュールおよび電池モジュールの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210312A (ja) * 2004-10-26 2006-08-10 Nissan Motor Co Ltd 組電池
JP2007172893A (ja) 2005-12-19 2007-07-05 Nissan Motor Co Ltd 電池モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2262040A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102834947A (zh) * 2010-04-07 2012-12-19 日产自动车株式会社 电池组件
US20140342207A1 (en) * 2010-07-26 2014-11-20 Enerdel, Inc. Battery cell system with interconnected frames
US8795882B2 (en) 2010-12-10 2014-08-05 Gs Yuasa International Ltd. Battery
US8598471B2 (en) 2010-12-28 2013-12-03 Gs Yuasa International Ltd. Electric storage device
US9685643B2 (en) 2010-12-28 2017-06-20 Gs Yuasa International Ltd. Electric storage device
US8765293B2 (en) 2010-12-28 2014-07-01 Gs Yuasa International Ltd. Electric storage device
US8980465B2 (en) * 2011-01-05 2015-03-17 Samsung Sdi Co., Ltd. Battery pack
US20120171557A1 (en) * 2011-01-05 2012-07-05 Samsung Sdi Co., Ltd. Battery pack
US20130078498A1 (en) * 2011-01-13 2013-03-28 Ferrari S.P.A. Storage system for the storage of electric energy for a vehicle with electric propulsion
US8993154B2 (en) * 2011-01-13 2015-03-31 Ferrari S.P.A. Storage system for the storage of electric energy for a vehicle with electric propulsion
US10714715B2 (en) 2011-01-20 2020-07-14 Gs Yuasa International Ltd. Electric storage device
US8632912B2 (en) 2011-04-14 2014-01-21 Gs Yuasa International Ltd. Battery including baffling member and sealing material that seals auxiliary terminal to lid plate
US8748034B2 (en) * 2011-04-14 2014-06-10 Gs Yuasa International Ltd. Battery including baffling member including one of projecting portion and recessed portion extending from lid plate
US20120264007A1 (en) * 2011-04-14 2012-10-18 Gs Yuasa International Ltd. Battery and method of manufacturing the same
JP2013161745A (ja) * 2012-02-08 2013-08-19 Nifco Inc バッテリー体の外部接続部のカバー
JP2014078372A (ja) * 2012-10-10 2014-05-01 Auto Network Gijutsu Kenkyusho:Kk 蓄電モジュール
US9892867B2 (en) 2012-10-10 2018-02-13 Autonetworks Technologies, Ltd. Electricity storage module
WO2014057756A1 (ja) * 2012-10-10 2014-04-17 株式会社オートネットワーク技術研究所 蓄電モジュール

Also Published As

Publication number Publication date
EP2712008B1 (en) 2015-09-30
EP2262040A4 (en) 2012-11-21
JP4775436B2 (ja) 2011-09-21
EP2262040B1 (en) 2014-08-27
CN103367681A (zh) 2013-10-23
CN103367681B (zh) 2016-08-17
CN104752670B (zh) 2017-09-29
US20110014512A1 (en) 2011-01-20
KR101189430B1 (ko) 2012-10-10
EP2712008A2 (en) 2014-03-26
KR20100111307A (ko) 2010-10-14
US8771863B2 (en) 2014-07-08
CN101960647A (zh) 2011-01-26
CN104752670A (zh) 2015-07-01
JP2009231267A (ja) 2009-10-08
KR101252413B1 (ko) 2013-04-08
EP2712008A3 (en) 2014-11-19
EP2262040A1 (en) 2010-12-15
KR20120037018A (ko) 2012-04-18

Similar Documents

Publication Publication Date Title
WO2009107657A1 (ja) 電池モジュールおよび電池モジュールの製造方法
JP6522418B2 (ja) 角形二次電池及びそれを用いた組電池、並びにその製造方法
JP6522417B2 (ja) 角形二次電池及びそれを用いた組電池
EP2731174B1 (en) Secondary battery pack
EP2725639B1 (en) Secondary battery pack
EP2736097B1 (en) Rechargeable battery and module of the same
WO2012131802A1 (ja) 電池パック
JPWO2018003843A1 (ja) 二次電池及びその製造方法
JP2013105567A (ja) 電極リード接続体及び非水電解質蓄電装置並びにその製造方法
WO2012131803A1 (ja) 電池パック
JP2019114569A (ja) 角形二次電池及びそれを用いた組電池
KR20170032098A (ko) 배터리 모듈 및 이에 적용되는 보호구조물
JP3662895B2 (ja) 電池パック
JP5034152B2 (ja) 組電池
JP6965446B2 (ja) 電池モジュールおよび電池パック
JP2008147089A (ja) 電池モジュールとその製造方法
CN106328843B (zh) 二次电池
JP2015125878A (ja) 電池セル及び組電池
JP2020161461A (ja) 蓄電装置
JP2018110084A (ja) 蓄電装置及び蓄電装置の製造方法
JP2020161460A (ja) 蓄電装置
JP2020161338A (ja) 蓄電装置
KR102543155B1 (ko) 버스바 프레임 및 이를 갖는 배터리 모듈
WO2021166625A1 (ja) 蓄電装置
JP2021132016A (ja) 蓄電装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106356.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107019042

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12919969

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009715124

Country of ref document: EP