WO2009104670A1 - Antimicrobial and antiviral agent and method for use thereof - Google Patents

Antimicrobial and antiviral agent and method for use thereof Download PDF

Info

Publication number
WO2009104670A1
WO2009104670A1 PCT/JP2009/052866 JP2009052866W WO2009104670A1 WO 2009104670 A1 WO2009104670 A1 WO 2009104670A1 JP 2009052866 W JP2009052866 W JP 2009052866W WO 2009104670 A1 WO2009104670 A1 WO 2009104670A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
antiviral agent
particles
antiviral
ultrafine
Prior art date
Application number
PCT/JP2009/052866
Other languages
French (fr)
Japanese (ja)
Inventor
晉 佐藤
伸彌 八幡
哲夫 中山
Original Assignee
東京ナノ・バイオテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京ナノ・バイオテクノロジー株式会社 filed Critical 東京ナノ・バイオテクノロジー株式会社
Priority to JP2009554364A priority Critical patent/JPWO2009104670A1/en
Publication of WO2009104670A1 publication Critical patent/WO2009104670A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/06Aluminium; Calcium; Magnesium; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/10Animals; Substances produced thereby or obtained therefrom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3463Organic compounds; Microorganisms; Enzymes
    • A23L3/3472Compounds of undetermined constitution obtained from animals or plants
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/358Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/56Materials from animals other than mammals
    • A61K35/618Molluscs, e.g. fresh-water molluscs, oysters, clams, squids, octopus, cuttlefish, snails or slugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to an antibacterial and antiviral agent, and more particularly to an antibacterial and antiviral agent composed of baked ultrafine particles derived from shells and a method for using the same.
  • Shellfish shells such as scallops and oysters are used because they generate hundreds of thousands of tons per year, and more than 90% by mass of the components are calcium carbonate, so they are used in many ways as a natural calcium source. Yes.
  • powder obtained by firing and pulverizing shells is listed as a food additive under the name of “shells calcined calcium”.
  • shells calcined calcium since it has a bactericidal and sterilizing effect, it is also used as a processing aid for sterilization washing.
  • Patent Document 1 discloses an antibacterial agent obtained by firing a shell of shellfish shell in an inert gas atmosphere at a final reached temperature of 900 ° C., and has a maximum particle size of 100 ⁇ m or less after pulverization and an average particle size of 1 Antibacterial agents that are ⁇ 50 ⁇ m are described.
  • Patent Document 2 describes a bacterial inhibitor in which a scallop shell is fired at 600 ° C. to 700 ° C., and the pulverized product has a particle size of 5 mm or less, preferably 10 ⁇ m or less.
  • Patent Document 3 describes a virus reducing agent comprising a powder having an average particle size of 10 ⁇ m or less obtained by baking oyster shells at 650 ° C. or higher.
  • the presence of silicon, iron, manganese, etc. in the fired shell is important for the generation of active oxygen species, and the fired shell is a mixture of calcium oxide and calcium carbonate. Therefore, it is said that the firing conditions are preferably within a specific range.
  • the average particle size of the burned material of the shell is on the order of ⁇ m.
  • Patent Document 1 describes an antibacterial agent having an average particle diameter of 1 to 50 ⁇ m
  • Patent Document 2 describes a bacterial inhibitor having an average particle diameter of 10 ⁇ m or less.
  • the upper limit value of the average particle diameter is mostly described in terms of ⁇ m or less as in Patent Document 2, and in this case, it can be read so as to include particles in the order of nm. Actual data are only described for particles on the order of ⁇ m.
  • an object of the present invention is to provide an antibacterial and antiviral agent having a high antibacterial and antiviral effect that can be contained in various products and used for various purposes.
  • the object is to provide an antibacterial and antiviral agent having a high antibacterial and antiviral effect.
  • the present inventor can control the particle size of the primary particles to a size on the order of nm by adding a device to the pulverization method of the fired product of the shell.
  • the particle size distribution can be sharpened and particles having a uniform particle shape can be obtained with good reproducibility.
  • the antibacterial and antiviral action of the fired product of the shell is found to be extremely increased, and the present invention. It came to complete.
  • the suspension of ultrafine particles obtained by the above ultrafine pulverization is used as it is, or when it is used without containing a dispersant or a pH buffering agent. Furthermore, the inventors have found that even better dispersibility and antibacterial and antiviral effects can be exhibited, and have completed the present invention.
  • the present invention relates to an antibacterial antivirus characterized in that it is ultrafine particles obtained by firing and ultrafinely pulverizing a shell, and the number average length (a) in the minor axis direction of the primary particles is 10 nm to 100 nm.
  • An agent is provided.
  • the antibacterial and antiviral agent is provided in which the number average length (b) of primary particles in the major axis direction is 40 nm to 200 nm.
  • the present invention also provides the antibacterial and antiviral agent described above, which is ultrafine particles obtained by firing and ultrafinely pulverizing a shell, wherein the primary particles are manufactured so as to have a certain particle size distribution. It is to provide.
  • the shell is preliminarily pulverized and then fired, and then classified so that the 90% volume particle size is 30 ⁇ m or less, so that the volume average particle size is in the range of 0.5 ⁇ m to 10 ⁇ m.
  • the antibacterial and antiviral agent is characterized in that it is produced by pulverization and then ultrafine pulverization by a wet method.
  • the present invention also provides an antibacterial antiviral agent suspension characterized by suspending the above antibacterial antiviral agent.
  • the present invention is a method of using the above antibacterial antiviral agent or the above antibacterial antiviral agent suspension, wherein the suspension state of the dispersion obtained by ultrafine pulverization by a wet method is substantially reduced.
  • the present invention provides a method for using an antibacterial antiviral agent characterized by being used while being held.
  • the ultrafine particles obtained by calcining and ultra-pulverizing the shell of the present invention have primary particles having a smaller, uniform and narrow particle size distribution than the conventional ones, so that the antibacterial is superior to the conventional ones. An antiviral effect can be exhibited.
  • an antibacterial and antiviral agent having a high antibacterial and antiviral effect and a method for using the antibacterial and antiviral agent, which can be used as a substitute for conventionally used hypochlorite, for example.
  • the antibacterial and antiviral agent of the present invention has a controlled particle size, it is possible to eliminate variations in quality among production lots of such products when used in various products for various applications. is there.
  • FIG. 1 is an antibacterial and antiviral agent of the present invention, and is a view showing an SEM photograph (magnified 100,000 times) of ultrafine particles A having primary spherical particles (Production Example 1). It is a figure which shows the number distribution of the length (a) of a minor axis direction, and the length (b) of a major axis direction (it does not distinguish since it is equal) of the ultrafine particle A in which primary particles are substantially spherical (Production Example 1). .
  • - ⁇ - Fine particle a,- ⁇ -: Fine particle b,- ⁇ -: Ultra fine particle A It is a figure which shows the suspension sample density
  • - ⁇ - Fine particle a,- ⁇ -: Fine particle b,- ⁇ -: Ultra fine particle A
  • the antibacterial and antiviral agent of the present invention is an ultrafine particle having primary particles obtained on the order of nm, which is obtained by subjecting a shell to pre-grinding and baking treatment, and then undergoing a grinding step. That is, the antibacterial and antiviral agent of the present invention is ultrafine particles obtained by firing and ultrafinely pulverizing shells, and the number average length (a) in the minor axis direction of the primary particles is 10 nm to 100 nm.
  • the shell used in the present invention is not particularly limited as long as it is a shell rich in calcium carbonate having a certain crystal structure, but it is preferably available in large quantities, and examples include shells such as scallops, sea bream, and oysters. be able to.
  • scallop has the highest production volume, and more than 98% of its components are calcium carbonate with a regular crystal structure, high whiteness, and high production volume. Since various contaminants such as protein are purified, the content of impurities is small, and the calcium carbonate crystals of scallop shells are orthorhombic, so the pulverized material before firing should be cemented like limestone. Since it has many advantages such as not causing it, it can be suitably used in the present invention.
  • the number average length (a) in the minor axis direction of the primary particles is 10 nm to 100 nm.
  • the thickness is preferably 15 to 90 nm, particularly preferably 20 to 80 nm. If the number average length (a) of the primary particles in the minor axis direction is too small, it may take too much time and cost for pulverization, or may easily aggregate and be difficult to handle. On the other hand, if it is too large, sufficient antibacterial and antiviral effects may not be obtained.
  • the shape of the primary particles is not particularly limited and can be any shape from acicular to spherical.
  • the number average length (b) in the major axis direction of the primary particles is preferably 40 nm to 200 nm. More preferably, it is 45 to 150 nm, and particularly preferably 50 to 120 nm.
  • the number average length (b) in the major axis direction of the primary particles is too small, it may take too much time and cost for pulverization, or may easily aggregate and be difficult to handle. On the other hand, if it is too large, sufficient antibacterial and antiviral effects may not be obtained.
  • the number average length (a) in the minor axis direction and the number average length (b) in the major axis direction of the primary particles are a scanning electron microscope (hereinafter referred to as “300,000 times to 300,000 times). Based on the photograph (abbreviated as “SEM”), randomly select 20 or more primary particles photographed there, and measure the length in the major axis direction and the length in the minor axis direction. Obtained by taking an arithmetic mean. In the light scattering method, measurement cannot be performed because the primary particles are orderly smaller than the wavelength of the measurement light.
  • the shape of the primary particles obtained by firing and ultrafinely pulverizing the shell is not particularly limited, and can be any shape such as a needle shape, a rod shape, a bowl shape, and a spherical shape.
  • FIGS. 1 and 2 show examples of antibacterial and antiviral agents having substantially spherical primary particles
  • FIGS. 3 and 4 show examples of antibacterial and antiviral agents having rod-like primary particles.
  • the antibacterial and antiviral effect of the present invention is extremely high compared to the antimicronized antiviral agent which is not micronized or whose primary particle shape is not controlled.
  • the longest “passing length” among the particles is referred to as “major axis length”.
  • the shorter “passing length” in the direction perpendicular to it is defined as “the length in the minor axis direction”.
  • the number of ultrafine particles in which the length of the primary particles in the minor axis direction falls within the range of a / 2 to 2a is preferably 50% by number or more, It is more preferably at least several percent, particularly preferably at least 70 percent, more preferably at least 80 percent, and most preferably at least 90 percent.
  • “a” indicates the number average length of the primary particles in the minor axis direction.
  • the number of ultrafine particles in which the length of primary particles in the major axis direction falls within the range of b / 2 to 2b is preferably 50% by number or more of the total. 60% by number or more, more preferably 70% by number or more, still more preferably 80% by number or more, and most preferably 90% by number or more.
  • “b” represents the number average length of primary particles in the major axis direction.
  • the number of ultrafine particles falling within the range of “a / 2 to 2a” or “b / 2 to 2b” being equal to or greater than a certain value means that the particle size distribution is sharply controlled.
  • 20 or more randomly selected primary particles were randomly selected based on the SEM photograph in the same manner as described above, and the length in the major axis direction and the length in the minor axis direction were each one. It is obtained by measuring and tabulating. If the number of ultrafine particles within the above range is too large, it may take too much time and cost for pulverization and classification, or may easily aggregate and become difficult to handle. On the other hand, when the amount is too small (when the particle size distribution is broad), sufficient antibacterial and antiviral effects cannot be obtained, or quality variation among production lots of products using the antibacterial and antiviral agent of the present invention increases. Sometimes.
  • FIG. 1 shows a substantially spherical primary particle.
  • the “number average length (a) in the minor axis direction” and the “number average length (b) in the major axis direction” of the primary particles are both 70 nm. is there.
  • the number of ultrafine particles falling within the range of a / 2 to 2a and the range of b / 2 to 2b is 99% of the total.
  • a and b may be easily adjusted to such a length, and are preferably 50 nm to 100 nm, and particularly preferably 60 nm to 90 nm.
  • FIG. 3 shows rod-shaped particles.
  • the “number average length (a) in the minor axis direction” of the primary particles is 25 nm
  • the “number average length (b) in the major axis direction” is 50 nm. It is.
  • the number of ultrafine particles falling within the range of a / 2 to 2a is 100% of the total
  • the number of ultrafine particles falling within the range of b / 2 to 2b is 98%.
  • a may be easily adjusted to such a length, and is preferably 10 nm to 40 nm, and particularly preferably 15 nm to 30 nm.
  • b is likely to have such a length, and is preferably 40 nm to 180 nm, and particularly preferably 45 nm to 150 nm.
  • the antibacterial and antiviral agent of the present invention is preferably ultrafine particles, and the primary particles thereof are manufactured so as to have a certain particle size distribution. “Controlled” refers to setting pulverization conditions such as a pulverizer, a pulverization method, and a dispersion time by paying attention to the particle size distribution of primary particles.
  • the number average length (a) in the minor axis direction of the primary particles is limited, but the average particle size of the secondary particles formed by aggregation of the primary particles is not particularly limited. Absent. This is probably because the size of primary particles is related to the antibacterial and antiviral effects.
  • the secondary particles usually have a number average particle size of 150 nm to 5000 nm (5 ⁇ m), preferably 200 nm to 3000 nm (3 ⁇ m), and more preferably 300 nm to 1000 nm (1 ⁇ m).
  • the volume average particle size of the secondary particles is not particularly limited, and is usually 300 nm to 20000 nm (20 ⁇ m), preferably 400 nm to 5000 nm (5 ⁇ m), and more preferably 500 nm to 2000 nm (2 ⁇ m).
  • the average particle size of the secondary particles is measured by the light scattering method and is defined by the value thus measured.
  • the antibacterial and antiviral agent of the present invention may be used as a powder, or may be used in a suspended state in a dispersion medium such as water or an organic solvent.
  • a dispersion medium such as water or an organic solvent.
  • the antibacterial and antiviral effects of the present invention can be obtained even if the secondary particles are further aggregated to form aggregated particles.
  • the suspension state of the dispersion produced by ultra-fine pulverization is substantially reduced. It is preferable that the antibacterial antiviral agent of the present invention is used while being held.
  • the average particle size of the secondary particles at that time is not particularly limited, but the above range is preferable.
  • the antibacterial and antiviral agent of the present invention is a nano-order ultrafine particle having a specific primary particle size, it is preferable to adopt a specific manufacturing process as shown below in order to manufacture it.
  • the antibacterial and antiviral agent of the present invention is preferably an ultrafine particle, and is produced by controlling as follows so that the primary particles have a certain particle size distribution.
  • the shell may be baked as it is, but it is preferable to first perform calcination after preliminary pulverization until the particle diameter is about several mm.
  • the heating efficiency during firing of shell particles is improved, and the conversion from calcium carbonate to calcium oxide, which is one of the purposes of firing, goes smoothly into the powder. Proceed to.
  • particles with a large number of pores are formed in the porous structure, and as a result, the particles are easily collapsed, and are easily crushed along with taking-out or transporting. The particles are likely to be small enough to be supplied.
  • the preliminary pulverization method is not particularly limited, but a method of crushing manually or using a crusher, a hammer mill or the like is preferable.
  • baking is a treatment in which at least a part of calcium carbonate, which is a component of the shell, is converted into calcium oxide by heating.
  • what is obtained by baking may be hereinafter referred to as “baked product”.
  • the firing method and firing conditions in the present invention are not particularly limited, but the firing temperature is preferably 600 ° C to 1400 ° C, more preferably 700 ° C to 1300 ° C, particularly preferably 800 ° C to 1200 ° C. Most preferably, it is 1000 ° C to 1100 ° C.
  • the firing time depends on the firing conditions and is not particularly limited, but is preferably 30 minutes to 15 hours, more preferably 1 hour to 10 hours, particularly preferably 1.5 hours to 6 hours, and most preferably 2 hours to 4 hours. It's time. If the firing temperature is too high or the firing time is too long, vitrification may occur, and it may not be necessary and disadvantageous in cost.
  • the firing temperature is too low or the firing time is too short, calcium oxide may not be sufficiently produced from calcium carbonate, which is a component of the shell, and the antiviral effect of the present invention may not be exhibited.
  • the pulverization may not be sufficiently performed, and it may be difficult to obtain a product having a predetermined average particle diameter.
  • the atmosphere during firing may be any of air, inert gas such as nitrogen, and vacuum, and is not particularly limited. However, firing in air is preferable because calcium carbonate in the shell easily converts to calcium oxide. .
  • particles fired under the above firing conditions give particularly good results regarding antibacterial and antiviral effects compared to those fired under other firing conditions.
  • Such firing conditions are thought to be because the influence on the subsequent pulverization process, the influence on the surface state of the particles, the change in the crystal structure, and the like are related to the antibacterial and antiviral effects.
  • the particles after firing may be finely pulverized as they are, or may be “pulverized prior to ultrafine pulverization” as they are, but before entering the pulverization step, the 90% volume particle size is 30 ⁇ m or less. It is preferable that the pulverization is performed so that the subsequent pulverization can proceed efficiently and the subsequent pulverization provides a sharp particle size distribution. As described above, since the particles after firing are easily broken, the 90% volume particle size may be 30 ⁇ m or less without actively providing a classification step. In this case, the fired particles can be said to be “classified so that the 90% volume particle size is 30 ⁇ m or less”.
  • classification is preferably performed so that the 90% volume particle size is 30 ⁇ m or less, more preferably 20 ⁇ m or less, and particularly preferably 15 ⁇ m or less.
  • the volume average particle size is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the particle diameter of the particles is defined as that obtained according to a conventional method using a microtrack particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd.) which is a laser diffraction / scattered light type particle size distribution measuring apparatus.
  • the classification step may or may not be provided, but the classification method in the case of providing is not particularly limited, a method of removing large particles by observing them, a method of sieving, and a method of classification by vibration of a container Etc.
  • the method of sieving is preferable from the viewpoint of reliably removing coarse particles.
  • pulverization means to reduce the average particle size, and the pulverization may be performed only once or twice or more, but the particle size is gradually reduced in two or more steps. However, it is preferable in that it can be efficiently reduced and a sharp particle size distribution can be easily obtained.
  • the final pulverization is referred to as “ultra fine pulverization”
  • the previous pulverization non-final pulverization
  • fine pulverization those obtained by pulverization
  • those obtained by pulverization are referred to as “ultrafine particles” and “fine particles”, respectively.
  • ultrafine pulverization can be performed by a wet bead mill method, which will be described later, and it is possible to obtain the antibacterial and antiviral agent of the present invention in which the primary particles are on the order of nm even if the pulverization step is one stage.
  • the particles are first adjusted to a specific particle size range in a fine pulverization step and then subjected to ultrafine pulverization by a wet method or the like. More preferably. That is, it is particularly preferable that at least the volume average particle size is first finely pulverized so as to be in the range of 0.1 ⁇ m to 30 ⁇ m, and then further ultrafinely pulverized until the particle size or particle shape is reached.
  • the first “pulverization” is more preferably performed so that the volume average particle diameter is in the range of 0.5 ⁇ m to 10 ⁇ m, particularly preferably in the range of 0.7 ⁇ m to 8 ⁇ m. It is more preferable to carry out so that it may become the range of 5 micrometers. By reducing the volume average particle size to this range in the fine pulverization step, it becomes easy to finally pulverize into the above-mentioned particle size and particle shape in the ultrafine pulverization step.
  • volume average particle diameter is measured by a laser particle size analyzer CILAS920 manufactured by CILAS, which is a laser diffraction / scattered light type particle size distribution measuring apparatus, and is defined by the volume average particle diameter measured as such.
  • the pulverization method is not particularly limited as long as particles having a target particle diameter can be obtained, and may be a dry method or a wet method.
  • the dry method include a method using a dry pulverizer such as a dry ball mill, a bead mill, a jet mill, or a crusher.
  • the dry method include a method using a wet pulverizer such as a wet ball mill, a bead mill, a triple roll, a planetary mixer, and an optimizer (manufactured by ITOCHU Corporation).
  • the dry method is not necessary for the subsequent ultrafine pulverization, such as replacement of the dispersion medium, and the subsequent ultrafine particle size is relatively sharp. This is preferable because it is suitable for grinding.
  • the method using a jet mill is particularly preferable from the viewpoints similar to the above, a high recovery rate of fine particles, and a low generation of heat during pulverization.
  • the processing time for pulverization can be appropriately set by confirming the particle size of the obtained particles.
  • the antibacterial and antiviral agent of the present invention is ultrafine particles obtained by firing and ultrafinely pulverizing shells, and the primary particles are controlled so as to have a certain particle size distribution.
  • the antibacterial and antiviral agent of the present invention is preferably produced by finely pulverizing and finally ultrafinely pulverizing.
  • the ultra-fine pulverization may be performed by a wet method or a dry method, but the wet method is preferable in that a product having the above-described particle size and particle shape can be obtained.
  • the method using a wet bead mill can obtain ultrafine particles having the aforementioned particle size, particle size distribution, particle shape, etc., does not require the use of a polymer to obtain high viscosity, and requires other additives. This is particularly preferable because it does not pulverize in water.
  • the bead diameter in the wet bead mill is not particularly limited, but it is preferable to use beads having a bead diameter selected from the range of 0.05 mm to 0.5 mm. Particularly preferred are beads having a bead diameter selected from the range of 0.1 mm to 0.4 mm. If the bead diameter is too large, the particle size may not be reduced. On the other hand, if the bead size is too small, it may not be pulverized efficiently. In any case, ultrafine particles having the above-described particle size distribution, particle shape, etc. are obtained. It may be difficult.
  • the material of the beads is not particularly limited, and those usually used in a normal wet bead mill are used.
  • steel, zirconia, silica, stainless steel, glass and the like can be mentioned.
  • the primary particles are sufficiently pulverized, and smaller and uniform primary particles can be obtained.
  • an antibacterial and antiviral agent in which the intended primary particles are effectively finely pulverized to the order of nm and are homogenized in a narrow range of particle size distribution.
  • the concentration of the suspension is 2 to 25% by mass (particularly preferably 3 to 20% by mass); Is water, ethanol, n-propanol, isopropanol, 1,3 butanediol, propylene glycol, glycerin or the like or a mixture thereof; dispersion medium is zirconia beads or silica beads; treatment time is 30 minutes to 30 hours (more preferably 1 hour) Up to 20 hours, particularly preferably from 2 hours to 10 hours); bead filling rate of 80 to 120% (preferably about 100%); for example, when the charging amount is 5 kg, the rotational peripheral speed is 1 to 50 m / sec (preferably 3 -15 m / sec); rotation speed is 100 to 2000 rpm (preferably 400 to 1200 rpm). Regarding the rotational peripheral speed and the rotational speed, it is preferable to adjust the above range according to the amount of ultrafine grinding.
  • the “ultrafine particles of the order of nm in which the size of primary particles is limited” constituting the antibacterial and antiviral agent of the present invention obtained through the above steps is a uniform particle size distribution and a uniform particle shape that were not previously available It can be confirmed by an SEM photograph or the like. That is, the antibacterial and antiviral agent of the present invention is different from the fine powder having a very broad particle size distribution of Non-Patent Document 3, for example, even if it is substantially spherical particles (FIGS. 1 and 3), 4), the SEM photographs in FIGS. 1 and 3 and the particle size distributions in FIGS. 2 and 4 show that the antibacterial and antiviral agents are composed of primary particles having a uniform particle size and a uniform particle shape. It can be confirmed from.
  • the particle size, particle shape, and particle size distribution are determined not only by the above-mentioned ultrafine grinding conditions, but also by controlling the time at each rotational speed, the amount of water added during the ultrafine grinding, the rotational peripheral speed, etc. To control.
  • the antibacterial and antiviral agent of the present invention can be used as a powder or as a dispersion liquid dispersed in a dispersion medium.
  • the antibacterial and antiviral agent of the present invention When used as a dispersion, the antibacterial and antiviral agent of the present invention is characterized in that dispersibility can be maintained without using a dispersant such as a surfactant as a basic property. Therefore, since the antibacterial antiviral agent suspension in which the antibacterial antiviral agent of the present invention is suspended can be used without blending a dispersant, the various uses of the antibacterial antiviral agent of the present invention are taken into consideration. Then, it is preferable that a dispersing agent is not included substantially.
  • the antibacterial antiviral agent suspension obtained by suspending the antibacterial antiviral agent of the present invention is substantially free of an agent having a pH buffering action in the suspension. It is preferable for effective display. For example, as a result of comparing the action against Escherichia coli and the action against influenza virus A type PR8 strain when using physiological saline as a dispersion medium of 0.15% by mass suspension and using PBS, in both cases Anti-E. Coli and anti-influenza virus type A PR8 strains were better when suspended in saline.
  • the concentration of ultrafine particles in the suspension varies depending on the target bacterial species, the purpose of application, the application time and the usage state at the time of application in relation to the purpose, 0.0001% by mass to 20% by mass is preferable, 0.001% by mass to 10% by mass is more preferable, and 0.01% by mass to 5% by mass is particularly preferable.
  • 0.0001% by mass to 20% by mass is preferable
  • 0.001% by mass to 10% by mass is more preferable
  • 0.01% by mass to 5% by mass is particularly preferable.
  • the antibacterial and antiviral agent suspension obtained by suspending the antibacterial and antiviral agent of the present invention may be used as it is in a dispersed state by diluting the dispersion obtained by ultrafine pulverization, if necessary. This is preferable in that it can be used while maintaining a good dispersion state. Once the powder is made into powder or the dispersion medium is replaced, it may not be possible to return to a good dispersion state or the antibacterial and antiviral effects may not be sufficiently obtained.
  • a method for using the antibacterial and antiviral agent of the present invention it is preferable to use the antibacterial and antiviral agent while maintaining the suspended state of the dispersion obtained by ultrafine pulverization by a wet method.
  • the bacterial species to which the antibacterial and antiviral agent of the present invention is applied is not particularly limited because the antibacterial and antiviral agent of the present invention does not exhibit antibacterial properties by attacking a specific part of the bacterium. be able to.
  • the antibacterial species For example, Escherichia coli, Salmonella, and the like are very sensitive, and then the sensitivity decreases in the order of Pseudomonas aeruginosa and Staphylococcus aureus.
  • the virus to which the antibacterial and antiviral agent of the present invention is applied is not limited to a specific virus, such as restriction by properties such as the presence or absence of an envelope, as in the case of the applied bacterial species.
  • the antibacterial and antiviral agent of the present invention can be applied to viruses belonging to any of the above families.
  • paramyxoviridae measles virus, orthomyxoviridae influenza virus, coronaviridae SARS coronavirus It is particularly preferable to be applied to Norovirus of the Caliciviridae family.
  • the use of this drug for emerging infectious diseases caused by such viruses, zoonotic diseases, and new virus infectious diseases is particularly preferable in that the spread of these infectious diseases with few effective therapeutic agents can be prevented. .
  • the infectious titer can be significantly reduced by treatment in a short time for the caliciviridae norovirus that does not have an envelope and is not lipophilic (Examples).
  • 2 See data for feline calicivirus as an alternative to norovirus).
  • Viruses that do not have an envelope and are not lipophilic are known to be highly resistant to various inactivation conditions. For example, 10 5 noroviruses (replaced by feline calicivirus) at 56 ° C. for 3 minutes. It is reported that the infectivity titer may not be reduced by about 1/300 even after treatment for 1 minute with a sodium hypochlorite solution with a final concentration of 1000 ppm (0.1% by mass).
  • JCDoultree et al Inactivation of Feline Calicivirus, a Norwalk Virus Surrogate, Journal of Hospital Infection (1999) 41: 51-57].
  • the “ultrafine particles whose number average length (a) in the minor axis direction of primary particles is 10 nm to 100 nm” of the present invention is the final concentration of 4 ⁇ 10 6 feline calicivirus infectivity. It has been confirmed that a significant effect of reducing the mass to 1/5000 by treatment for 0.5% by weight for 30 seconds and 1/10000 by treatment for 1 minute (Example 2).
  • the sodium hypochlorite 1000 ppm solution corresponds to a concentration of 1/50 that of a commercially available bleach solution, and is highly irritating and toxic to the human body.
  • the 0.5% by mass suspension of the antibacterial and antiviral agent of the present invention has low cytotoxicity and high safety.
  • the antibacterial and antiviral agent of the present invention is contained in various materials and used as various antibacterial and antiviral materials.
  • Such an antibacterial and antiviral material may be solid, liquid, or a mixture or composite thereof as long as it contains the antibacterial and antiviral agent of the present invention.
  • Such antibacterial and antiviral materials include feeds for livestock such as pigs, cattle and sheep; feed for poultry such as chickens, geese and ducks; filters for air conditioners, air cleaners, vacuum cleaners, etc .; , Masks for work, etc .; adhesives; wiping materials such as floor wiping materials, wall wiping materials, etc .; deodorants; kitchen materials; drugs for athlete's foot treatments, mouthwashes, infection prevention agents for pressure ulcers, etc .; Members such as woven fabrics and wall materials are preferred.
  • the infectivity of viruses such as a microbe and influenza virus which contacted this filter, can be attenuated.
  • viruses such as a microbe and influenza virus which contacted this filter
  • the antibacterial and antiviral agent of the present invention is contained in the feed, infection by bacteria and viruses is prevented and a growth promoting effect is obtained.
  • it is not particularly limited, but a method of mixing the powder of the antibacterial and antiviral agent of the present invention into the feed as it is, a method of mixing the suspension of the antibacterial and antiviral agent of the present invention with the feed, etc. are used.
  • the antibacterial and antiviral agent of the present invention is contained in the feed, the antibacterial and antiviral agent of the present invention is contained in an amount of 0.005 to 0.5 parts by mass in terms of ultrafine particles with respect to 100 parts by mass of the feed. Preferably, 0.05 parts by mass to 0.3 parts by mass are mixed. If the content is too small, the antibacterial and antiviral effects may not be obtained. If the content is too large, no further effects may be obtained, cytotoxicity may occur, or the environment may be polluted.
  • antibacterial and antiviral agents When used as a liquid containing antibacterial and antiviral agents, it can be used not only for wiping materials such as floor wiping agents, but also to feed animals as feed to prevent infection with bacteria and viruses. is there. Since this agent does not affect beneficial bacteria such as lactic acid bacteria, it can continue to be fed to domestic animals such as pets, pigs, cows, chickens, sheep, etc. It can inactivate viruses and protect human health as well as pets and livestock.
  • the action and principle of the antibacterial and antiviral effect of the antibacterial and antiviral agent of the present invention are not clear, and the present invention is not limited to the scope of such action and principle, but the following may be considered. That is, as described above, assuming that the active oxygen species are related to the antibacterial and antiviral effect, the active oxygen species has a short lifetime, so that the effect is expected to be limited to the vicinity of the particle surface. Therefore, the appearance of the effect is considered to vary greatly depending on the size and shape of the particles and the difference in other fine conditions on the particle surface. Therefore, regarding the size of the particles constituting the antibacterial and antiviral agent, it is considered that the smaller one showed a stronger antibacterial and antiviral effect.
  • the burned shellfish could have a sharp particle size distribution and a uniform particle shape by a specific pulverization method. It is done.
  • a scallop shell from Aomori Prefecture was pre-ground using a dry ball mill to a particle size of about 5 mm and then fired in air at 1050 ° C. to 1100 ° C. for 3 hours.
  • a part of the fired product was sieved with a 120 mesh sieve. Since it was extremely fragile, it was crushed during sieving, and there was hardly any fired product of shells remaining on the sieve.
  • the volume particle size distribution of the particles under the sieve was measured, the 98% volume particle size was 30 ⁇ m, the 90% volume particle size was 12 ⁇ m, and the volume average particle size was 8 ⁇ m. Even if the classification operation was not particularly performed, the 90% volume particle size was 30 ⁇ m or less.
  • the volume particle size distribution and the like were measured using a Microtrac particle size distribution measuring device (manufactured by Nikkiso Co., Ltd.) according to the instruction manual.
  • the particles under the above sieve were pulverized with a dry jet mill pulverizer (Aisin Nano Technology's NanoJet Mizer) to obtain fine particles.
  • the volume average particle diameter of the fine particles was 1.8 ⁇ m.
  • the volume average particle diameter was measured using a laser particle size analyzer CILAS920 manufactured by CILAS according to the instruction manual.
  • FIG. 1 An SEM photograph of this ultrafine particle A is shown in FIG.
  • the particle size distribution is shown in FIG.
  • the number average length (a) in the minor axis direction of the primary particles of the ultrafine particles A calculated from FIGS. 1 and 2 was 70 nm.
  • the number average length (b) in the major axis direction was also 70 nm.
  • the number of ultrafine particles in which the lengths of the primary particles in the short axis direction and the long axis direction are within the range of a / 2 to 2a and b / 2 to 2b was 99% by number.
  • the number average particle size of the secondary particles formed by the aggregation of the primary particles was 650 nm.
  • Production Example 2 In Production Example 1, a suspension of ultrafine particles B was obtained in the same manner as in Production Example 1, except that the number of rotations and the additional amount of water were adjusted and pulverized for 10 hours.
  • FIG. 1 An SEM photograph of this ultrafine particle A is shown in FIG.
  • the particle size distribution is shown in FIG.
  • the number average length (a) in the minor axis direction of the primary particles of the ultrafine particles B calculated from FIGS. 3 and 4 was 25 nm.
  • the number average length (b) in the major axis direction was 50 nm.
  • the number of ultrafine particles whose lengths in the minor axis direction and major axis direction of the primary particles are in the range of a / 2 to 2a and b / 2 to 2b are 100% by number and 94% by number, respectively.
  • the number average particle diameter of the secondary particles formed by the aggregation of the primary particles was 600 nm.
  • Comparative production example 1 The particles fired and sieved in the same manner as in Production Example 1 were treated with a dry bead mill grinder (manufactured by Ashizawa Finetech) for about 2 hours to obtain “fine particles a”.
  • the volume particle size distribution of the “fine particles a” is shown in FIG. 5, and the number particle size distribution is shown in FIG. “Particle a” has a 10% (volume) particle size of 8.5 ⁇ m, a 50% (volume) particle size of 18.4 ⁇ m, a 90% (volume) particle size of 43.7 ⁇ m, and a volume average particle size of 18.4 ⁇ m.
  • the 10% (number) particle size was 3.3 ⁇ m
  • the 50% (number) particle size was 6.1 ⁇ m
  • the 90% (number) particle size was 13.2 ⁇ m
  • the number average particle size was 6.1 ⁇ m.
  • Comparative production example 2 The particles fired and sieved in the same manner as in Production Example 1 were dispersed in water so as to be 10% by mass and passed 15 times at an injection pressure of 150 MPa using an optimizer (manufactured by Sugino Machine Co., Ltd.). Got. The number average particle diameter of “fine particles b” was 237 nm, and the volume average particle diameter was 670 nm.
  • FIG. 7 shows an SEM photograph.
  • Evaluation Example 1 [Evaluation of antiviral effect (measles virus)] A suspension of “ultrafine particles A” obtained in Production Example 1, a suspension of “fine particles a” obtained in Comparative Production Example 1, and a suspension of “fine particles b” obtained in Comparative Production Example 2 Were each adjusted to 5% by mass with sterilized physiological saline to obtain a “suspension sample”.
  • Measles virus is a measles virus wild isolate MVi / Tokyo. JPN / 18.07 (genotype D5) was used. Grow with B95a cells and use 4 5.0 TCID50 / ⁇ L of measles virus solution.
  • the antiviral effect of the three types of suspension samples was confirmed by confirming the measles virus infectivity titer indicated by the supernatant when mixed with the measles virus solution by the following TCID50 method (50% Tissue Culture Infective Dose). .
  • ⁇ Measurement of measles virus infectivity titer by TCID50 method To 100 ⁇ L of measles virus solution (4 5.0 TCID50 / ⁇ L), the above three types of suspension samples were added to 0.2% by mass and 0.1% by mass, respectively, for 1 minute, 3 minutes, After 5 minutes and 10 minutes, after centrifugation at 13000 rpm for 30 seconds, the measles virus infectivity of each supernatant was measured by the following method.
  • the measles virus infectivity was measured by monolayer culture of B95a cells in a 96-well flat-bottom plate, and the measles virus solution was RPMI1640 supplemented with 1% fetal bovine serum (FBS), stepwise diluted from 1/4 to 4 times. Then, the cytopathic effect after 1 week was observed, and the infectivity titer was measured by the Reed Menchen method.
  • FBS fetal bovine serum
  • Table 1 shows the infectivity titer measured one week after inoculating each supernatant.
  • the infectious titer When added to a concentration of 0.1% by mass, in the ultrafine particles A, the infectious titer decreased to 42.25 after 1 minute contact, and the infectious titer disappeared after 3 minutes of contact. On the other hand, in the case of microparticles a, the infectivity titer slightly decreased to 42.5 at a contact time of 1 minute and 3 minutes, but did not disappear. Further, even if the fine particles b, the contact of one minute time 4 3.25 4 3 infectivity at a contact time of 3 minutes did not disappear in those slightly reduced.
  • the effect of the present invention is that the ultrafine particles A do not simply remove the measles virus by adsorption or the like but have an action of reducing the infectivity of the measles virus itself.
  • Evaluation example 2 [Evaluation of antiviral effect (influenza virus)] A suspension of “ultrafine particles A” obtained in Production Example 1, a suspension of “fine particles a” obtained in Comparative Production Example 1, and a suspension of “fine particles b” obtained in Comparative Production Example 2 Were each adjusted to 5% by mass with sterilized physiological saline to obtain a “suspension sample”.
  • influenza virus As for influenza virus, influenza A / Panama / 2007/99 was inoculated into the chorioallantoic cavity of a chicken fertilized egg and the virus solution was collected. For 200 ⁇ L of influenza virus solution, add the above three types of suspension samples to the virus solution at 0.1%, 0.05%, and 0.025%, respectively, and centrifuge at 13000 rpm for 30 seconds. Qing's influenza virus hemagglutinin (HA) (hereinafter abbreviated as “HA antigen titer”) was measured.
  • HA antigen titer Qing's influenza virus hemagglutinin
  • the HA antigen titer was determined by measuring the agglutination titer using a 96-well U plate, 2-fold serial dilution with PBS, adding an equal amount of 0.5% chicken blood cells and reacting at room temperature for 1 hour.
  • the suspension sample of ultrafine particles A ( ⁇ in FIG. 9) is fine particles a (FIG. 9).
  • the HA antigen titer was smaller compared to the suspension samples of- ⁇ -) and fine particles b (- ⁇ -in FIG. 9). In 0.1%, was completely inactivated in ultrafine particles A and fine particles b suspension sample, the suspension sample particles a, HA antigen titer is not deactivated completely a 2 2.0 It was.
  • feline calicivirus (F9 strain # 2) that can be cultured was used as an alternative because norovirus of the Caliciviridae family could not be cultured.
  • the infectivity value was 4.0 ⁇ 10 6 PFU (number of infectious viruses) / 100 ⁇ L.
  • CRFK cells (cat kidney cell lines) were used as cultured cells.
  • the ultrafine particles B were examined under all conditions, and the fine particles a were examined only for 30 seconds with the control. Further, when the cytotoxicity of the particle solution was examined in the test, no cytotoxicity was observed at a concentration of 0.5% by mass used in the test.
  • the infectivity titer was measured by the usual procedure according to the following procedure. That is, CRFK cells were seeded in a 6-well plate, and used after 7 days after the cells became confluent.
  • the test virus solution was serially diluted 10-fold in a MEM medium without serum.
  • 100 ⁇ L / well of the diluted virus solution was inoculated in two wells.
  • the virus was adsorbed with a CO 2 incubator at 34 ° C. for 1 hour.
  • 3 mL / well of an agar medium was added to each hole.
  • the plate was inverted and cultured at 34 ° C. for 3 days.
  • the infectivity titer rapidly decreased to about 1/5000 after 1 minute contact and about 1/10000 after 1 minute.
  • the infectivity value was only reduced to 1/3000 after 0.5 minutes of contact.
  • the ultrafine particle B sharply decreases the infectivity of feline calicivirus, which is a substitute for norovirus.
  • the fine particles a were inferior to the ultrafine particles B, the infectious value was decreased, which is considered to be due to the high use concentration of 0.5% by mass.
  • feline calicivirus In the case of feline calicivirus, it is not inactivated at all by heat treatment at 56 ° C for 3 minutes, and even when the 1000 ppm sodium hypochlorite high-concentration solution remains at a reduction of 1/300 infectivity in 1 minute treatment time In view of the fact that the infectivity titer can be reduced to 1/10000 by contact with ultrafine particles B for 1 minute, it indicates that ultrafine particles B are effective antiviral agents against norovirus. ing.
  • Evaluation Example 4 Evaluation of antibacterial effect (E. coli, Salmonella, Staphylococcus aureus, Pseudomonas aeruginosa)]
  • the ultrafine particle A obtained in Production Example 1 was adjusted to a suspension of 0.15%, and the viable cell count was measured after 15 seconds, 3 minutes, 10 minutes, and 30 minutes. The results are shown in Table 3. It was.
  • Escherichia coli and Salmonella were reduced to 1/100 or less in 15 seconds and completely disappeared after 3 minutes.
  • S. aureus it took 30 minutes to exert its effect, but it was finally effective.
  • Pseudomonas aeruginosa almost completely in 5 minutes.
  • the antibacterial and antiviral agent of the present invention is excellent in the effect of attenuating the infectivity against various infectious bacteria and viruses, and therefore contains an antibacterial and antiviral agent, including its use as an antibacterial and antiviral agent. It is widely used as antibacterial and antiviral materials such as filters and feeds.

Abstract

An object is to provide an antimicrobial and antiviral agent with high antimicrobial and antiviral activity, which is extremely highly safe, is odorless, has less burden on the environment, can keep freshness of food material, does not generate a hazardous substance by incineration disposal or the like and can be used for various applications by being incorporated in various products. The object was achieved by an antimicrobial and antiviral agent comprising ultrafine particles obtained by burning and ultrafinely pulverizing shells, wherein the number average length (a) in the minor axis direction of the primary particles thereof is from 10nm to 100 nm. Further, the object was achieved by an antimicrobial and antiviral agent produced by burning shells after preliminary pulverization, sieving the burned shells such that the 90% volume particle diameter becomes 30 µm or less, finely pulverizing the sieved material such that the volume average particle diameter falls within the range of from 0.5 µm to 10 µm, followed by further ultrafine pulverization through a wet process.

Description

抗菌抗ウイルス剤及びその使用方法Antibacterial antiviral agent and method of using the same
 本発明は、抗菌抗ウイルス剤に関し、更に詳しくは、貝殻由来の焼成超微粒子からなる抗菌抗ウイルス剤とその使用方法に関する。 The present invention relates to an antibacterial and antiviral agent, and more particularly to an antibacterial and antiviral agent composed of baked ultrafine particles derived from shells and a method for using the same.
 ホタテガイやカキ等の貝殻は年間数十万トンも発生することからその利用が図られており、その成分の90質量%以上が炭酸カルシウムであるため、天然のカルシウム源として多方面で用いられている。特に、貝殻を焼成・粉砕して得られる粉末は、「貝殻焼成カルシウム」の名称で食品用添加物として収載されている。また、殺菌・除菌効果があるため、除菌洗浄用の加工助剤としても用いられている。 Shellfish shells such as scallops and oysters are used because they generate hundreds of thousands of tons per year, and more than 90% by mass of the components are calcium carbonate, so they are used in many ways as a natural calcium source. Yes. In particular, powder obtained by firing and pulverizing shells is listed as a food additive under the name of “shells calcined calcium”. In addition, since it has a bactericidal and sterilizing effect, it is also used as a processing aid for sterilization washing.
 例えば、特許文献1には、ホッキガイの貝殻を不活性ガス雰囲気中、最終到達温度900℃で焼成して得た抗菌剤であって、粉砕後の最大粒子径が100μm以下、平均粒子径が1~50μmである抗菌剤が記載されている。また、特許文献2には、ホタテガイの貝殻を600℃~700℃で焼成し、粉砕物の粒度が5mm以下、好ましくは10μm以下の細菌抑制剤が記載されている。更に、特許文献3には、カキ殻を650℃以上で焼成して得た平均粒径10μm以下の粉体からなる減ウイルス剤が記載されている。 For example, Patent Document 1 discloses an antibacterial agent obtained by firing a shell of shellfish shell in an inert gas atmosphere at a final reached temperature of 900 ° C., and has a maximum particle size of 100 μm or less after pulverization and an average particle size of 1 Antibacterial agents that are ˜50 μm are described. Patent Document 2 describes a bacterial inhibitor in which a scallop shell is fired at 600 ° C. to 700 ° C., and the pulverized product has a particle size of 5 mm or less, preferably 10 μm or less. Furthermore, Patent Document 3 describes a virus reducing agent comprising a powder having an average particle size of 10 μm or less obtained by baking oyster shells at 650 ° C. or higher.
 これら貝殻の焼成物の抗菌抗ウイルス効果の作用・原理については定説がなく、いくつかの説明がなされているが、それらの内容を大別すると2つに集約される。一つは、焼成によって貝殻中の炭酸カルシウムが酸化カルシウムと炭酸ガスになり、得られた酸化カルシウムが水と接触することで一部が水酸化カルシウムとなって、そのアルカリ性のために抗菌効果を示すというものである(例えば、特許文献4及び非特許文献1)。この作用を勘案して焼成を行う場合、炭酸カルシウムの酸化カルシウムへの酸化には比較的高温が要求される。 The action / principle of the antibacterial and antiviral effects of the fired products of these shells has no established theory, and some explanations have been made, but their contents can be roughly divided into two. One is that calcium carbonate in shells is converted into calcium oxide and carbon dioxide by baking, and the resulting calcium oxide comes into contact with water, and part of it becomes calcium hydroxide, which has an antibacterial effect due to its alkalinity. (For example, Patent Document 4 and Non-Patent Document 1). When firing in consideration of this action, a relatively high temperature is required for the oxidation of calcium carbonate to calcium oxide.
 もう一つは、抗菌作用には貝殻の焼成物中のスーパーオキシドやOHラジカル等の活性酸素種が関与しているというものである。これは、特許文献1のように、焼成を不活性ガス雰囲気中で行った方が、抗菌抗ウイルス効果がより効果的であった等、先の酸化カルシウムのアルカリ性のみでは実際の抗菌抗ウイルス効果の差を説明できない場合が多いことから提唱されているものである(例えば、特許文献1、2及び非特許文献2)。 The other is that active oxygen species such as superoxide and OH radicals in the fired shellfish are involved in the antibacterial action. This is because the antibacterial and antiviral effects are more effective when firing is performed in an inert gas atmosphere as in Patent Document 1, and the actual antibacterial and antiviral effects are obtained only with the alkalinity of the above calcium oxide. This is proposed because there are many cases where the difference between the two cannot be explained (for example, Patent Documents 1 and 2 and Non-Patent Document 2).
 更に、特許文献5には、活性酸素種の発生のためには、貝殻の焼成物中のケイ素、鉄、マンガン等の存在が重要で、また、貝殻の焼成物は酸化カルシウムと炭酸カルシウムの混合物となっている方が良く、そのため焼成条件は特定の範囲のものが良いとされている。 Further, in Patent Document 5, the presence of silicon, iron, manganese, etc. in the fired shell is important for the generation of active oxygen species, and the fired shell is a mixture of calcium oxide and calcium carbonate. Therefore, it is said that the firing conditions are preferably within a specific range.
 一方、貝殻の焼成物の粒径については、平均粒径でμmオーダーのものが殆どである。例えば、特許文献1には平均粒径が1~50μmである抗菌剤が記載され、特許文献2には平均粒径が10μm以下の細菌抑制剤が記載されている。ここで、平均粒径の上限値については、特許文献2のように何々μm以下という表現で記載されているものが殆どで、この場合、文言上はnmオーダーの粒子をも含むように読めるが、実際のデータはμmオーダーの粒子について記載されているに過ぎない。 On the other hand, the average particle size of the burned material of the shell is on the order of μm. For example, Patent Document 1 describes an antibacterial agent having an average particle diameter of 1 to 50 μm, and Patent Document 2 describes a bacterial inhibitor having an average particle diameter of 10 μm or less. Here, the upper limit value of the average particle diameter is mostly described in terms of μm or less as in Patent Document 2, and in this case, it can be read so as to include particles in the order of nm. Actual data are only described for particles on the order of μm.
 また、平均粒径がμmオーダーのものでも、そこには直径100nm以下の粒子が混在していたことは考えられる。しかしながら、積極的に平均粒径が100nm以下の粒子で構成された貝殻の焼成物を含有する抗菌抗ウイルス剤は報告されていない。更に、平均粒径100nm以下にすべく意識した粉砕工程によって粒径分布を制御した貝殻の焼成物を含有する抗菌抗ウイルス剤は報告されていない。その理由は、nmオーダーの粒子にまで粉砕するとなると、超微粒子特有の製造上の困難性が増大することに加えて、容器への付着性等のハンドリング上の問題や品質の維持が難しい等の多くの問題が存在するためと考えられる。 Also, even if the average particle size is on the order of μm, it is conceivable that particles having a diameter of 100 nm or less were mixed there. However, an antibacterial antiviral agent containing a fired product of shells actively composed of particles having an average particle diameter of 100 nm or less has not been reported. Furthermore, an antibacterial antiviral agent containing a fired product of shells in which the particle size distribution is controlled by a pulverization process intended to have an average particle size of 100 nm or less has not been reported. The reason for this is that when it is pulverized to particles of the order of nm, the manufacturing difficulties peculiar to ultrafine particles increase, handling problems such as adhesion to containers and the maintenance of quality are difficult. This is probably because there are many problems.
 また、nmオーダーの粒子の場合は、一次粒子で存在することは難しく、多くは凝集して二次粒子を形成して存在する。そのため、単に粒径といった場合、その主体が一次粒子であるのか、一次粒子が凝集した二次粒子であるのかが問題となるが、公知の例ではその主体についての明確な記載は認められておらず、そこまで粒子を制御して製造された貝殻の焼成物はなかった。すなわち、一次粒子の平均粒径まで制御されてなるnmオーダーの粒子の貝殻の焼成物は知られていなかった。 Also, in the case of particles of the order of nm, it is difficult to exist as primary particles, and many of them are present by agglomerating to form secondary particles. Therefore, in the case of simply the particle size, there is a problem whether the main body is a primary particle or a secondary particle in which the primary particles are aggregated, but in the known examples, a clear description of the main body is not recognized. There was no shell fired product produced by controlling the particles. That is, no shell-fired product of nm order particles controlled to the average particle size of primary particles has been known.
 一方、種々の製品に含有させて使用でき、種々の用途に用いられている「抗菌抗ウイルス効果を有するもの」として次亜塩素酸ナトリウムがあるが、それは人体に対する安全性が低く、刺激臭があり、食材の栄養価を減らし、有害有機塩素化合物発生の原因になる等、問題点が多い。 On the other hand, there is sodium hypochlorite as an "antibacterial and antiviral effect" that can be used in various products and used in various applications. However, it has low safety for the human body and has an irritating odor. There are many problems such as reducing the nutritional value of ingredients and causing harmful organic chlorine compounds.
 従って、その代替ともなる、安全性が極めて高く、無臭であり、大量に使用しても環境負荷が小さく、種々の用途・製品に含有させて使用できる、抗菌抗ウイルス効果を有するものがますます要望されるようになってきているが、未だ実現できていなかった。 Therefore, there are anti-virus and anti-virus effects that can be used in various applications and products as alternatives. They are extremely safe, odorless, have a low environmental impact even when used in large quantities. Although it has come to be requested, it has not been realized yet.
特許第3420129号公報Japanese Patent No. 3420129 特開2002-255714号公報JP 2002-255714 A 特開2001-226210号公報JP 2001-226210 A 特開2006-199705号公報JP 2006-199705 A 特開2005-298519号公報JP 2005-298519 A 特開2001-278712号公報JP 2001-278712 A WO2005-013695WO2005-013695
 本発明は上記背景技術に鑑みてなされたものであり、その課題は、安全性が極めて高く、無臭であり、環境負荷が小さく、食材の鮮度を保ち、燃焼廃棄等によって有害な物質が生成することがなく、種々の製品に含有させて種々の用途に使用できる、抗菌抗ウイルス効果の高い抗菌抗ウイルス剤を提供することにある。 The present invention has been made in view of the above-described background art, and its problems are extremely high safety, odorless, low environmental load, keeping freshness of food materials, and generating harmful substances by burning and discarding. Therefore, an object of the present invention is to provide an antibacterial and antiviral agent having a high antibacterial and antiviral effect that can be contained in various products and used for various purposes.
 また、貝殻の焼成物の粉砕方法を検討し、一次粒子の平均粒径が制御された超微粒子を製造して、結果としてnmオーダーの大きさを有する貝殻の焼成物の超微粒子を含有する「抗菌抗ウイルス効果の高い抗菌抗ウイルス剤」を提供することにある。 In addition, the method of pulverizing the fired product of the shell is studied, and ultrafine particles in which the average particle size of the primary particles is controlled are produced. The object is to provide an antibacterial and antiviral agent having a high antibacterial and antiviral effect.
 本発明者は、上記の課題を解決すべく鋭意検討を重ねた結果、貝殻の焼成物の粉砕法に工夫を加えることによって、一次粒子の粒径をnmオーダーの大きさに制御でき、特に貝殻の焼成物では、粒径分布もシャープにでき、粒子形状も均一な粒子を再現性良く得ることができることが分かった。そして、貝殻の焼成物を超微粉砕して、その一次粒子の大きさを特定の範囲に制御することによって、貝殻の焼成物が有する抗菌抗ウイルス作用が極めて増大することを見出して、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventor can control the particle size of the primary particles to a size on the order of nm by adding a device to the pulverization method of the fired product of the shell. In the fired product, it was found that the particle size distribution can be sharpened and particles having a uniform particle shape can be obtained with good reproducibility. And, by pulverizing the fired product of the shell and controlling the size of the primary particles within a specific range, the antibacterial and antiviral action of the fired product of the shell is found to be extremely increased, and the present invention. It came to complete.
 また、先の超微粒子の使用方法を検討した結果、上記超微粉砕によって得られた超微粒子の懸濁液をそのまま使用したり、分散剤やpH緩衝剤を含まない状態で使用したりした場合に、更に良好な分散性や抗菌抗ウイルス効果を発揮できることを見出し、本発明を完成するに至った。 In addition, as a result of examining the usage method of the ultrafine particles, the suspension of ultrafine particles obtained by the above ultrafine pulverization is used as it is, or when it is used without containing a dispersant or a pH buffering agent. Furthermore, the inventors have found that even better dispersibility and antibacterial and antiviral effects can be exhibited, and have completed the present invention.
 すなわち本発明は、貝殻を焼成し超微粉砕してなる超微粒子であって、その一次粒子の短軸方向の個数平均長さ(a)が10nm~100nmであることを特徴とする抗菌抗ウイルス剤を提供するものである。更に、一次粒子の長軸方向の個数平均長さ(b)が40nm~200nmである上記の抗菌抗ウイルス剤を提供するものである。 That is, the present invention relates to an antibacterial antivirus characterized in that it is ultrafine particles obtained by firing and ultrafinely pulverizing a shell, and the number average length (a) in the minor axis direction of the primary particles is 10 nm to 100 nm. An agent is provided. Furthermore, the antibacterial and antiviral agent is provided in which the number average length (b) of primary particles in the major axis direction is 40 nm to 200 nm.
 また本発明は、貝殻を焼成し超微粉砕してなる超微粒子であって、その一次粒子が一定の粒径分布を有するように制御されて製造されたものである上記の抗菌抗ウイルス剤を提供するものである。 The present invention also provides the antibacterial and antiviral agent described above, which is ultrafine particles obtained by firing and ultrafinely pulverizing a shell, wherein the primary particles are manufactured so as to have a certain particle size distribution. It is to provide.
 また本発明は、貝殻を予備粉砕した後に焼成し、次いで、90%体積粒径が30μm以下になるように分級したものを、体積平均粒径が0.5μm~10μmの範囲になるように微粉砕し、その後更に、湿式法によって超微粉砕して製造されたものであることを特徴とする上記の抗菌抗ウイルス剤を提供するものである。 In the present invention, the shell is preliminarily pulverized and then fired, and then classified so that the 90% volume particle size is 30 μm or less, so that the volume average particle size is in the range of 0.5 μm to 10 μm. The antibacterial and antiviral agent is characterized in that it is produced by pulverization and then ultrafine pulverization by a wet method.
 また本発明は、上記の抗菌抗ウイルス剤が懸濁されてなることを特徴とする抗菌抗ウイルス剤懸濁液を提供するものである。 The present invention also provides an antibacterial antiviral agent suspension characterized by suspending the above antibacterial antiviral agent.
 また本発明は、上記の抗菌抗ウイルス剤や上記の抗菌抗ウイルス剤懸濁液を使用する方法であって、湿式法によって超微粉砕して得られた分散液の懸濁状態を実質的に保持しながら使用に供することを特徴とする抗菌抗ウイルス剤の使用方法を提供するものである。 Further, the present invention is a method of using the above antibacterial antiviral agent or the above antibacterial antiviral agent suspension, wherein the suspension state of the dispersion obtained by ultrafine pulverization by a wet method is substantially reduced. The present invention provides a method for using an antibacterial antiviral agent characterized by being used while being held.
 本発明によれば、天然物を原料にしているので安全性が極めて高く、無臭であり、大量に使用しても環境負荷が小さく、食品や飼料に配合した場合にそれらの鮮度を保ち、調理器具を傷めず、次亜塩素酸塩のように塩素を含有していないため、燃焼廃棄しても有害な塩素含有有機化合物が生成することがなく、有害化学物質を減少させ、繊維加工品、消毒剤、医薬品・医薬部外品、飼料等の種々の製品に含有させて種々の用途に使用できる抗菌抗ウイルス剤懸濁液を提供できる。 According to the present invention, since natural products are used as raw materials, safety is extremely high, odorless, environmental impact is small even when used in large quantities, and when blended in foods and feeds, their freshness is maintained and cooking is performed. Does not damage the equipment and does not contain chlorine like hypochlorite, so it does not produce harmful chlorine-containing organic compounds even when burned and discarded. It is possible to provide an antibacterial and antiviral suspension that can be used in various applications by being contained in various products such as disinfectants, pharmaceuticals / quasi drugs, and feeds.
 本発明の貝殻を焼成し超微粉砕してなる超微粒子は、従来のものに比較して、より小さく均一で狭い粒径分布を有する一次粒子を有するので、従来のものに比べて優れた抗菌抗ウイルス効果を奏することができる。 The ultrafine particles obtained by calcining and ultra-pulverizing the shell of the present invention have primary particles having a smaller, uniform and narrow particle size distribution than the conventional ones, so that the antibacterial is superior to the conventional ones. An antiviral effect can be exhibited.
 また、従来から使用されてきた例えば次亜塩素酸塩等の代替ともなり得る、抗菌抗ウイルス効果の高い抗菌抗ウイルス剤とその抗菌抗ウイルス剤の使用方法を提供することができる。 Also, it is possible to provide an antibacterial and antiviral agent having a high antibacterial and antiviral effect and a method for using the antibacterial and antiviral agent, which can be used as a substitute for conventionally used hypochlorite, for example.
 また、本発明の抗菌抗ウイルス剤は粒径が制御されているため、種々の製品に含有させて種々の用途に使用する場合、かかる製品の製造ロット間の品質のばらつきをなくすことが可能である。 In addition, since the antibacterial and antiviral agent of the present invention has a controlled particle size, it is possible to eliminate variations in quality among production lots of such products when used in various products for various applications. is there.
本発明の抗菌抗ウイルス剤であって、一次粒子がほぼ球状の超微粒子AのSEM写真(10万倍)を示す図である(製造例1)。FIG. 1 is an antibacterial and antiviral agent of the present invention, and is a view showing an SEM photograph (magnified 100,000 times) of ultrafine particles A having primary spherical particles (Production Example 1). 一次粒子がほぼ球状の超微粒子Aの、短軸方向の長さ(a)と長軸方向の長さ(b)(等しいので区別せず)の個数分布を示す図である(製造例1)。It is a figure which shows the number distribution of the length (a) of a minor axis direction, and the length (b) of a major axis direction (it does not distinguish since it is equal) of the ultrafine particle A in which primary particles are substantially spherical (Production Example 1). . 本発明の抗菌抗ウイルス剤であって、一次粒子が棒状の超微粒子BのSEM写真(20万倍)を示す図である(製造例2)。It is an antibacterial antiviral agent of this invention, Comprising: A primary particle is a figure which shows the SEM photograph (200,000 times) of the ultrafine particle B which is rod-shaped (manufacture example 2). 一次粒子が棒状の超微粒子Bの、短軸方向の長さ(a)の個数分布と長軸方向の長さ(b)の個数分布である(製造例2)。(A):短軸方向の長さ(a)(右側のグラフは横軸を細分化しただけである)、(B):長軸方向の長さ(b)These are the number distribution of the length (a) in the minor axis direction and the number distribution of the length (b) in the major axis direction of the rod-shaped ultrafine particles B (Production Example 2). (A): Length in the minor axis direction (a) (the graph on the right is just a subdivision of the horizontal axis), (B): Length in the major axis direction (b) 微粒子aの体積粒径分布を示す図である(比較製造例1)。It is a figure which shows the volume particle size distribution of the microparticles | fine-particles (comparative manufacture example 1). 微粒子aの個数粒径分布を示す図である(比較製造例1)。It is a figure which shows the number particle size distribution of the microparticles | fine-particles (comparative manufacture example 1). 微粒子bのSEM写真(12500倍)を示す図である(比較製造例2)。It is a figure which shows the SEM photograph (12500 times) of the microparticles | fine-particles (comparative manufacture example 2). インフルエンザウイルス液に、懸濁液試料を0.1%となるように添加したときの、上清のHA抗原価の接触時間による変化を示す図である(評価例2)。  -□-:微粒子a、-○-:微粒子b、-△-:超微粒子AIt is a figure which shows the change by the contact time of the HA antigen titer of a supernatant when a suspension sample is added to an influenza virus liquid so that it may become 0.1% (evaluation example 2). -□-: Fine particle a,-○-: Fine particle b,-△-: Ultra fine particle A インフルエンザウイルス液に対し、懸濁液試料を添加して2分後に遠心し上清のHA抗原価を測定したときの、HA抗原価の懸濁液試料濃度依存性を示す図である(評価例2)。  -□-:微粒子a、-●-:微粒子b、-△-:超微粒子AIt is a figure which shows the suspension sample density | concentration dependence of a HA antigen titer when adding a suspension sample with respect to influenza virus liquid, and centrifuging 2 minutes afterward, and measuring the HA antigen titer of a supernatant liquid (evaluation example) 2). -□-: Fine particle a,-●-: Fine particle b,-△-: Ultra fine particle A
 以下、本発明について説明するが、本発明は以下の具体的形態に限定されるものではなく、本発明の技術的範囲内で任意に変形することができる。 Hereinafter, the present invention will be described, but the present invention is not limited to the following specific embodiments, and can be arbitrarily modified within the technical scope of the present invention.
 本発明の抗菌抗ウイルス剤は、貝殻を予備粉砕後に焼成処理し、その後、粉砕工程を経て得られる、一次粒子がnmオーダーの超微粒子である。すなわち、本発明の抗菌抗ウイルス剤は、貝殻を焼成し超微粉砕してなる超微粒子であって、その一次粒子の短軸方向の個数平均長さ(a)が10nm~100nmであることを特徴とする。 The antibacterial and antiviral agent of the present invention is an ultrafine particle having primary particles obtained on the order of nm, which is obtained by subjecting a shell to pre-grinding and baking treatment, and then undergoing a grinding step. That is, the antibacterial and antiviral agent of the present invention is ultrafine particles obtained by firing and ultrafinely pulverizing shells, and the number average length (a) in the minor axis direction of the primary particles is 10 nm to 100 nm. Features.
 本発明で使用する貝殻は、一定の結晶構造を有する炭酸カルシウムを豊富に含む貝殻であれば特に制限はされないが、大量に入手が可能なものが好ましく、ホタテガイ、ホッキガイ、カキ等の貝殻を挙げることができる。中でもホタテガイは、最も生産量が多いこと、その成分の98%以上が規則正しい結晶構造を持つ炭酸カルシウムであること、白色度が高いこと、生産量が多いことから野積み期間の長いものが多くその間にタンパク質等の各種付着物が浄化されるので不純物の含有が少ないこと、ホタテガイの貝殻の炭酸カルシウム結晶については、斜方晶系であるため、焼成前の粉砕物は石灰石のようなセメント化を起こさない等の多くの利点を有することから、本発明に好適に用いることができる。 The shell used in the present invention is not particularly limited as long as it is a shell rich in calcium carbonate having a certain crystal structure, but it is preferably available in large quantities, and examples include shells such as scallops, sea bream, and oysters. be able to. Among them, scallop has the highest production volume, and more than 98% of its components are calcium carbonate with a regular crystal structure, high whiteness, and high production volume. Since various contaminants such as protein are purified, the content of impurities is small, and the calcium carbonate crystals of scallop shells are orthorhombic, so the pulverized material before firing should be cemented like limestone. Since it has many advantages such as not causing it, it can be suitably used in the present invention.
 本発明の抗菌抗ウイルス剤は、その一次粒子の短軸方向の個数平均長さ(a)が10nm~100nmである。好ましくは15~90nm、特に好ましくは20~80nmである。一次粒子の短軸方向の個数平均長さ(a)が小さ過ぎる場合は、粉砕に時間やコストがかかり過ぎたり、凝集し易く扱いにくかったりする場合がある。一方、大き過ぎる場合は、十分な抗菌抗ウイルス効果が得られない場合がある。上記一次粒子の形状は特に限定はなく針状から球状まであらゆる形状が可能であるが、形状にかかわらず短軸方向の個数平均長さ(a)と抗菌抗ウイルス効果に相関があり、一次粒子の短軸方向の個数平均長さ(a)が上記範囲に入っていると、高い抗菌抗ウイルス効果が得られる。 In the antibacterial and antiviral agent of the present invention, the number average length (a) in the minor axis direction of the primary particles is 10 nm to 100 nm. The thickness is preferably 15 to 90 nm, particularly preferably 20 to 80 nm. If the number average length (a) of the primary particles in the minor axis direction is too small, it may take too much time and cost for pulverization, or may easily aggregate and be difficult to handle. On the other hand, if it is too large, sufficient antibacterial and antiviral effects may not be obtained. The shape of the primary particles is not particularly limited and can be any shape from acicular to spherical. Regardless of the shape, there is a correlation between the number average length (a) in the minor axis direction and the antibacterial and antiviral effect. When the number average length (a) in the minor axis direction is within the above range, a high antibacterial and antiviral effect can be obtained.
 本発明の抗菌抗ウイルス剤は、その一次粒子の長軸方向の個数平均長さ(b)が40nm~200nmであることが好ましい。より好ましくは45~150nm、特に好ましくは50~120nmである。一次粒子の長軸方向の個数平均長さ(b)が小さ過ぎる場合は、粉砕に時間やコストがかかり過ぎたり、凝集し易く扱いにくかったりする場合がある。一方、大き過ぎる場合は、十分な抗菌抗ウイルス効果が得られない場合がある。 In the antibacterial and antiviral agent of the present invention, the number average length (b) in the major axis direction of the primary particles is preferably 40 nm to 200 nm. More preferably, it is 45 to 150 nm, and particularly preferably 50 to 120 nm. When the number average length (b) in the major axis direction of the primary particles is too small, it may take too much time and cost for pulverization, or may easily aggregate and be difficult to handle. On the other hand, if it is too large, sufficient antibacterial and antiviral effects may not be obtained.
 本発明において、一次粒子の短軸方向の個数平均長さ(a)と長軸方向の個数平均長さ(b)は、10万倍から30万倍で撮影した走査型電子顕微鏡(以下、「SEM」と略記する)写真をもとに、そこに撮影された一次粒子を無作為に20個以上選択し、その長軸方向の長さと短軸方向の長さを測定して、それぞれの相加平均をとることによって得られる。光散乱方式では、一次粒子が測定光の波長よりオーダー的に小さいため測定ができない。一次粒子が棒状であり斜めに撮影されている場合には、目視でその傾斜角を特定して、測定された投影長さを傾斜角の余弦(cos)で割って、実際の超微粒子の「一次粒子の長軸方向の長さ」に換算する。 In the present invention, the number average length (a) in the minor axis direction and the number average length (b) in the major axis direction of the primary particles are a scanning electron microscope (hereinafter referred to as “300,000 times to 300,000 times). Based on the photograph (abbreviated as “SEM”), randomly select 20 or more primary particles photographed there, and measure the length in the major axis direction and the length in the minor axis direction. Obtained by taking an arithmetic mean. In the light scattering method, measurement cannot be performed because the primary particles are orderly smaller than the wavelength of the measurement light. When primary particles are rod-shaped and photographed obliquely, the inclination angle is visually identified, the measured projection length is divided by the cosine of the inclination angle (cos), and “ It is converted into “the length of primary particles in the major axis direction”.
 本発明において、貝殻を焼成し超微粉砕してなる一次粒子の形状は特に限定はなく、針状、棒状、俵状、球状等あらゆる形状が可能である。図1と図2はほぼ球状の一次粒子を有する抗菌抗ウイルス剤の例を示し、図3と図4は棒状の一次粒子を有する抗菌抗ウイルス剤の例を示すが、これらは何れも、従来の超微粉砕されていない又は一次粒子の形状が制御されていない抗菌抗ウイルス剤と比較して、極めて高い抗菌抗ウイルス効果を示す。ほぼ球状の場合、すなわち、長軸方向の長さと短軸方向の長さにあまり相違がない場合であっても、粒子の中で最も長い「差し渡し長さ」を「長軸方向の長さ」と定義し、それに直角方向の短い方の「差し渡し長さ」を「短軸方向の長さ」と定義する。 In the present invention, the shape of the primary particles obtained by firing and ultrafinely pulverizing the shell is not particularly limited, and can be any shape such as a needle shape, a rod shape, a bowl shape, and a spherical shape. FIGS. 1 and 2 show examples of antibacterial and antiviral agents having substantially spherical primary particles, and FIGS. 3 and 4 show examples of antibacterial and antiviral agents having rod-like primary particles. The antibacterial and antiviral effect of the present invention is extremely high compared to the antimicronized antiviral agent which is not micronized or whose primary particle shape is not controlled. In the case of almost spherical shape, that is, when there is not much difference between the length in the major axis direction and the length in the minor axis direction, the longest “passing length” among the particles is referred to as “major axis length”. The shorter “passing length” in the direction perpendicular to it is defined as “the length in the minor axis direction”.
 本発明の抗菌抗ウイルス剤は、一次粒子の短軸方向の長さがa/2~2aの範囲内に入っている超微粒子の個数が、全体の50個数%以上であることが好ましく、60個数%以上であることがより好ましく、70個数%以上であることが特に好ましく、80個数%以上であることが更に好ましく、90個数%以上であることが最も好ましい。ここで「a」は、一次粒子の短軸方向の個数平均長さを示す。 In the antibacterial and antiviral agent of the present invention, the number of ultrafine particles in which the length of the primary particles in the minor axis direction falls within the range of a / 2 to 2a is preferably 50% by number or more, It is more preferably at least several percent, particularly preferably at least 70 percent, more preferably at least 80 percent, and most preferably at least 90 percent. Here, “a” indicates the number average length of the primary particles in the minor axis direction.
 また、本発明の抗菌抗ウイルス剤は、一次粒子の長軸方向の長さがb/2~2bの範囲内に入っている超微粒子の個数が、全体の50個数%以上であることが好ましく、60個数%以上であることがより好ましく、70個数%以上であることが特に好ましく、80個数%以上であることが更に好ましく、90個数%以上であることが最も好ましい。ここで「b」は、一次粒子の長軸方向の個数平均長さを示す。 In the antibacterial and antiviral agent of the present invention, the number of ultrafine particles in which the length of primary particles in the major axis direction falls within the range of b / 2 to 2b is preferably 50% by number or more of the total. 60% by number or more, more preferably 70% by number or more, still more preferably 80% by number or more, and most preferably 90% by number or more. Here, “b” represents the number average length of primary particles in the major axis direction.
 「a/2~2aの範囲内」又は「b/2~2bの範囲内」に入っている超微粒子の個数が一定値以上であることは、粒径分布がシャープに制御されていることを示す。粒径分布は、上記と同様にSEM写真をもとに、そこに撮影された一次粒子を無作為に20個以上選択し、その長軸方向の長さと短軸方向の長さをそれぞれ1個ずつ測定し、集計することによって得られる。上記範囲内に入っている超微粒子の個数を極めて多くし過ぎるようにすると、粉砕や分級に時間やコストがかかり過ぎたり、凝集し易く扱いにくくなったりする場合がある。一方、少な過ぎる場合(粒径分布がブロードの場合)は、十分な抗菌抗ウイルス効果が得られなかったり、本発明の抗菌抗ウイルス剤を使用した製品の製造ロット間の品質のばらつきが大きくなったりする場合がある。 The number of ultrafine particles falling within the range of “a / 2 to 2a” or “b / 2 to 2b” being equal to or greater than a certain value means that the particle size distribution is sharply controlled. Show. As for the particle size distribution, 20 or more randomly selected primary particles were randomly selected based on the SEM photograph in the same manner as described above, and the length in the major axis direction and the length in the minor axis direction were each one. It is obtained by measuring and tabulating. If the number of ultrafine particles within the above range is too large, it may take too much time and cost for pulverization and classification, or may easily aggregate and become difficult to handle. On the other hand, when the amount is too small (when the particle size distribution is broad), sufficient antibacterial and antiviral effects cannot be obtained, or quality variation among production lots of products using the antibacterial and antiviral agent of the present invention increases. Sometimes.
 図1はほぼ球形の一次粒子を示しているが、その一次粒子の「短軸方向の個数平均長さ(a)」及び「長軸方向の個数平均長さ(b)」は何れも70nmである。また、図2から分かるように、a/2~2aの範囲及びb/2~2bの範囲に入っている超微粒子の個数は全体の99%である。このような球形の一次粒子の場合、aとbは、そのような長さに調整し易いこともあり、50nm~100nmが好ましく、60nm~90nmが特に好ましい。 FIG. 1 shows a substantially spherical primary particle. The “number average length (a) in the minor axis direction” and the “number average length (b) in the major axis direction” of the primary particles are both 70 nm. is there. As can be seen from FIG. 2, the number of ultrafine particles falling within the range of a / 2 to 2a and the range of b / 2 to 2b is 99% of the total. In the case of such spherical primary particles, a and b may be easily adjusted to such a length, and are preferably 50 nm to 100 nm, and particularly preferably 60 nm to 90 nm.
 また、図3は棒状粒子を示しているが、その一次粒子の「短軸方向の個数平均長さ(a)」は25nmであり、「長軸方向の個数平均長さ(b)」は50nmである。また、図4から分かるように、a/2~2aの範囲に入っている超微粒子の個数は全体の100%であり、b/2~2bの範囲に入っている超微粒子の個数は全体の98%である。このような棒状粒子の場合、aは、そのような長さに調整し易いこともあり、10nm~40nmが好ましく、15nm~30nmが特に好ましい。また、bは、そのような長さになり易いこともあり、40nm~180nmが好ましく、45nm~150nmが特に好ましい。 Further, FIG. 3 shows rod-shaped particles. The “number average length (a) in the minor axis direction” of the primary particles is 25 nm, and the “number average length (b) in the major axis direction” is 50 nm. It is. As can be seen from FIG. 4, the number of ultrafine particles falling within the range of a / 2 to 2a is 100% of the total, and the number of ultrafine particles falling within the range of b / 2 to 2b is 98%. In the case of such rod-like particles, a may be easily adjusted to such a length, and is preferably 10 nm to 40 nm, and particularly preferably 15 nm to 30 nm. Further, b is likely to have such a length, and is preferably 40 nm to 180 nm, and particularly preferably 45 nm to 150 nm.
 本発明の抗菌抗ウイルス剤は、超微粒子であって、その一次粒子が一定の粒径分布を有するように制御されて製造されたものであることが好ましい。「制御されて」とは、粉砕装置、粉砕方法、分散時間等の粉砕条件を、一次粒子の粒径分布に着目して設定することをいう。 The antibacterial and antiviral agent of the present invention is preferably ultrafine particles, and the primary particles thereof are manufactured so as to have a certain particle size distribution. “Controlled” refers to setting pulverization conditions such as a pulverizer, a pulverization method, and a dispersion time by paying attention to the particle size distribution of primary particles.
 本発明の抗菌抗ウイルス剤は、その一次粒子の短軸方向の個数平均長さ(a)が限定されているが、一次粒子が集合してなる二次粒子の平均粒径については特に限定はない。抗菌抗ウイルス効果には1次粒子の大きさが関係しているからだと考えられる。ただ、二次粒子に関しては、通常その個数平均粒径は150nm~5000nm(5μm)であり、好ましくは200nm~3000nm(3μm)であり、より好ましくは300nm~1000nm(1μm)である。また、二次粒子の体積平均粒径も特に限定はなく、通常300nm~20000nm(20μm)であり、好ましくは400nm~5000nm(5μm)であり、より好ましくは500nm~2000nm(2μm)である。二次粒子の平均粒径は光散乱法で測定され、そのように測定された値で定義される。 In the antibacterial and antiviral agent of the present invention, the number average length (a) in the minor axis direction of the primary particles is limited, but the average particle size of the secondary particles formed by aggregation of the primary particles is not particularly limited. Absent. This is probably because the size of primary particles is related to the antibacterial and antiviral effects. However, the secondary particles usually have a number average particle size of 150 nm to 5000 nm (5 μm), preferably 200 nm to 3000 nm (3 μm), and more preferably 300 nm to 1000 nm (1 μm). The volume average particle size of the secondary particles is not particularly limited, and is usually 300 nm to 20000 nm (20 μm), preferably 400 nm to 5000 nm (5 μm), and more preferably 500 nm to 2000 nm (2 μm). The average particle size of the secondary particles is measured by the light scattering method and is defined by the value thus measured.
 本発明の抗菌抗ウイルス剤は、粉体として利用に供してもよく、水、有機溶媒等の分散媒に懸濁状態で利用に供してもよい。粉体の場合は、上記二次粒子が更に凝集して凝集粒子を形成していても本発明の抗菌抗ウイルス効果が得られる。また、懸濁状態の場合は、貝殻を焼成し超微粉砕してなる超微粒子が湿式法によって得られたもののときは、超微粉砕して製造された分散液の懸濁状態を実質的に保持しながら使用に供することが、本発明の抗菌抗ウイルス剤の使用方法として好ましい。その際の二次粒子の平均粒径については特に限定はないが上記範囲が好ましい。 The antibacterial and antiviral agent of the present invention may be used as a powder, or may be used in a suspended state in a dispersion medium such as water or an organic solvent. In the case of powder, the antibacterial and antiviral effects of the present invention can be obtained even if the secondary particles are further aggregated to form aggregated particles. In the case of a suspended state, when the ultrafine particles obtained by calcining and ultra-pulverizing the shell are obtained by a wet method, the suspension state of the dispersion produced by ultra-fine pulverization is substantially reduced. It is preferable that the antibacterial antiviral agent of the present invention is used while being held. The average particle size of the secondary particles at that time is not particularly limited, but the above range is preferable.
 本発明の抗菌抗ウイルス剤は、一次粒子が特定の大きさをしたnmオーダーの超微粒子であるため、それを製造するためには、以下に示すような特定の製造工程を採ることが好ましい。本発明の抗菌抗ウイルス剤は、超微粒子であって、その一次粒子が一定の粒径分布を有するように、以下のように制御されて製造されたものであることが好ましい。 Since the antibacterial and antiviral agent of the present invention is a nano-order ultrafine particle having a specific primary particle size, it is preferable to adopt a specific manufacturing process as shown below in order to manufacture it. The antibacterial and antiviral agent of the present invention is preferably an ultrafine particle, and is produced by controlling as follows so that the primary particles have a certain particle size distribution.
 貝殻は、そのまま焼成してもよいが、まず数mm程度の粒径になるまで予備粉砕した後に焼成処理を行うことが好ましい。焼成前に貝殻を数mm程度の粒状にした場合、貝殻の粒子の焼成時の加熱効率が向上し、焼成の目的の一つである炭酸カルシウムから酸化カルシウムへの変換が粉末内部に至るまでスムーズに進行する。また、焼成後に多孔質構造で空孔の多い粒子が形成され、その結果容易に崩れ易い状態となり、取り出しや移送等に伴って簡単に解砕され、その後の工程である超微粉砕又は微粉砕に供給されるに十分な小ささの粒子となり易い。 The shell may be baked as it is, but it is preferable to first perform calcination after preliminary pulverization until the particle diameter is about several mm. When shells are granulated to several millimeters before firing, the heating efficiency during firing of shell particles is improved, and the conversion from calcium carbonate to calcium oxide, which is one of the purposes of firing, goes smoothly into the powder. Proceed to. Also, after firing, particles with a large number of pores are formed in the porous structure, and as a result, the particles are easily collapsed, and are easily crushed along with taking-out or transporting. The particles are likely to be small enough to be supplied.
 予備粉砕の方法としては特に限定はないが、人力で潰したり、クラッシャー、ハンマーミル等を用いて行う方法が好ましい。 The preliminary pulverization method is not particularly limited, but a method of crushing manually or using a crusher, a hammer mill or the like is preferable.
 本発明においては焼成することが必須である。本発明における「焼成」とは、加熱により貝殻の成分である炭酸カルシウムの少なくとも一部を酸化カルシウムにする処理である。なお、焼成で得られるものを、以下、「焼成物」ということがある。 In the present invention, firing is essential. “Baking” in the present invention is a treatment in which at least a part of calcium carbonate, which is a component of the shell, is converted into calcium oxide by heating. In addition, what is obtained by baking may be hereinafter referred to as “baked product”.
 本発明における焼成方法や焼成条件としては特に限定されるものではないが、焼成温度については、好ましくは600℃~1400℃、より好ましくは700℃~1300℃、特に好ましくは800℃~1200℃、最も好ましくは1000℃~1100℃である。焼成時間は焼成条件にも依存し特に限定はないが、好ましくは30分~15時間、より好ましくは1時間~10時間、特に好ましくは1.5時間~6時間、最も好ましくは2時間~4時間である。焼成温度が高過ぎたり焼成時間が長過ぎたりすると、ガラス化する場合があり、また、その必要性がなくコスト的に不利となる場合もある。一方、焼成温度が低過ぎたり焼成時間が短過ぎたりすると、貝殻の成分である炭酸カルシウムから酸化カルシウムが十分に生成されない場合があり、本発明の抗ウイルス効果が発揮できなかったり、また、その後に粉砕をする場合、粉砕が十分にできず、所定の平均粒径のものが得られ難くなったりする場合がある。 The firing method and firing conditions in the present invention are not particularly limited, but the firing temperature is preferably 600 ° C to 1400 ° C, more preferably 700 ° C to 1300 ° C, particularly preferably 800 ° C to 1200 ° C. Most preferably, it is 1000 ° C to 1100 ° C. The firing time depends on the firing conditions and is not particularly limited, but is preferably 30 minutes to 15 hours, more preferably 1 hour to 10 hours, particularly preferably 1.5 hours to 6 hours, and most preferably 2 hours to 4 hours. It's time. If the firing temperature is too high or the firing time is too long, vitrification may occur, and it may not be necessary and disadvantageous in cost. On the other hand, if the firing temperature is too low or the firing time is too short, calcium oxide may not be sufficiently produced from calcium carbonate, which is a component of the shell, and the antiviral effect of the present invention may not be exhibited. When the pulverization is performed, the pulverization may not be sufficiently performed, and it may be difficult to obtain a product having a predetermined average particle diameter.
 焼成時の雰囲気は、空気中、窒素等の不活性気体中、真空中等何れでもよく特に限定はないが、空気中で焼成することが貝殻中の炭酸カルシウムが酸化カルシウムに変換し易い点で好ましい。 The atmosphere during firing may be any of air, inert gas such as nitrogen, and vacuum, and is not particularly limited. However, firing in air is preferable because calcium carbonate in the shell easily converts to calcium oxide. .
 また、上記焼成条件で焼成を行った粒子は、抗菌抗ウイルス効果に関し、他の焼成条件で焼成を行ったものに比べて特に良好な結果を与える。かかる焼成条件は、後の粉砕工程への影響や、粒子の表面状態、結晶構造の変化等への影響等が、抗菌抗ウイルス効果に関係しているからだと考えられる。 Also, particles fired under the above firing conditions give particularly good results regarding antibacterial and antiviral effects compared to those fired under other firing conditions. Such firing conditions are thought to be because the influence on the subsequent pulverization process, the influence on the surface state of the particles, the change in the crystal structure, and the like are related to the antibacterial and antiviral effects.
 焼成後の粒子は、そのまま超微粉砕してもよく、また、そのまま「超微粉砕に先立つ微粉砕」をしてもよいが、それら粉砕工程に入る前に、90%体積粒径が30μm以下になるように分級されていることが、その後の粉砕を効率よく進行させ、その後の粉砕で粒径分布がシャープなものを得たりする等のために好ましい。上記したように、焼成後の粒子は容易に崩れるため、積極的に分級工程を設けなくても90%体積粒径が30μm以下になっている場合がある。その場合にも、かかる焼成後の粒子は、「90%体積粒径が30μm以下になるように分級した」粒子といえる。 The particles after firing may be finely pulverized as they are, or may be “pulverized prior to ultrafine pulverization” as they are, but before entering the pulverization step, the 90% volume particle size is 30 μm or less. It is preferable that the pulverization is performed so that the subsequent pulverization can proceed efficiently and the subsequent pulverization provides a sharp particle size distribution. As described above, since the particles after firing are easily broken, the 90% volume particle size may be 30 μm or less without actively providing a classification step. In this case, the fired particles can be said to be “classified so that the 90% volume particle size is 30 μm or less”.
 粉砕工程に入る前に、90%体積粒径が30μm以下になるように分級されていることが好ましいが、より好ましくは20μm以下、特に好ましくは15μm以下である。また、体積平均粒径は20μm以下にしておくことが好ましく、15μm以下がより好ましく、10μm以下が特に好ましい。ここで、粒子の粒径は、レーザー回析・散乱光式の粒度分布測定装置であるマイクロトラック粒度分布測定装置(日機装社製)を用いて、常法に従って得られたものとして定義される。 Prior to entering the pulverization step, classification is preferably performed so that the 90% volume particle size is 30 μm or less, more preferably 20 μm or less, and particularly preferably 15 μm or less. The volume average particle size is preferably 20 μm or less, more preferably 15 μm or less, and particularly preferably 10 μm or less. Here, the particle diameter of the particles is defined as that obtained according to a conventional method using a microtrack particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd.) which is a laser diffraction / scattered light type particle size distribution measuring apparatus.
 上記したように分級工程は設けても設けなくてもよいが、設ける場合の分級方法は特に限定はなく、大きな粒子を観察してそれを取り除く方法、ふるい分けする方法、容器の振動で分別する方法等が挙げられる。このうち、ふるい分けする方法が、確実に粗大粒子を除ける点で好ましい。 As described above, the classification step may or may not be provided, but the classification method in the case of providing is not particularly limited, a method of removing large particles by observing them, a method of sieving, and a method of classification by vibration of a container Etc. Among these, the method of sieving is preferable from the viewpoint of reliably removing coarse particles.
 本発明においては粉砕することが必須である。本発明における「粉砕」とは、平均粒径を小さくすることをいい、粉砕は1回だけでもまた2回以上でもよいが、2回以上に分けて段階的に粒径を小さくしていくことが、効率よく小さくできること、シャープな粒径分布を得やすいこと等の点で好ましい。2回以上粉砕する場合、最終の粉砕を「超微粉砕」といい、その前の粉砕(最終でない粉砕)を「微粉砕」という。また、粉砕されてできたものを、それぞれ「超微粒子」、「微粒子」という。 In the present invention, it is essential to grind. In the present invention, “pulverization” means to reduce the average particle size, and the pulverization may be performed only once or twice or more, but the particle size is gradually reduced in two or more steps. However, it is preferable in that it can be efficiently reduced and a sharp particle size distribution can be easily obtained. When pulverizing twice or more, the final pulverization is referred to as “ultra fine pulverization”, and the previous pulverization (non-final pulverization) is referred to as “fine pulverization”. In addition, those obtained by pulverization are referred to as “ultrafine particles” and “fine particles”, respectively.
 焼成後、後述する湿式ビーズミル法等による超微粉砕を行うこともでき、粉砕工程が1段階でも一次粒子がnmオーダーである本発明の抗菌抗ウイルス剤を得ることは可能である。しかしながら、より小さくより均一な一次粒子からなる抗菌抗ウイルス剤を安定的に得るためには、まず微粉砕工程で粒子を特定の粒径範囲に整えた上で、湿式法等による超微細粉砕を行うことがより好ましい。すなわち、少なくとも、まず体積平均粒径が0.1μm~30μmの範囲になるように微粉砕し、その後更に、前記した粒径や粒子形状になるまで最終的に超微粉砕することが特に好ましい。 After calcination, ultrafine pulverization can be performed by a wet bead mill method, which will be described later, and it is possible to obtain the antibacterial and antiviral agent of the present invention in which the primary particles are on the order of nm even if the pulverization step is one stage. However, in order to stably obtain an antibacterial and antiviral agent consisting of smaller and more uniform primary particles, the particles are first adjusted to a specific particle size range in a fine pulverization step and then subjected to ultrafine pulverization by a wet method or the like. More preferably. That is, it is particularly preferable that at least the volume average particle size is first finely pulverized so as to be in the range of 0.1 μm to 30 μm, and then further ultrafinely pulverized until the particle size or particle shape is reached.
 最初の上記「微粉砕」は、体積平均粒径が0.5μm~10μmの範囲になるように行うことがより好ましく、0.7μm~8μmの範囲になるように行うことが特に好ましく、1μm~5μmの範囲になるように行うことが更に好ましい。微粉砕工程でこの範囲にまで体積平均粒径を小さくしておくことによって、最終的に超微粉砕工程で前記した粒径や粒子形状に粉砕し易くなる。 The first “pulverization” is more preferably performed so that the volume average particle diameter is in the range of 0.5 μm to 10 μm, particularly preferably in the range of 0.7 μm to 8 μm. It is more preferable to carry out so that it may become the range of 5 micrometers. By reducing the volume average particle size to this range in the fine pulverization step, it becomes easy to finally pulverize into the above-mentioned particle size and particle shape in the ultrafine pulverization step.
 ここで、「体積平均粒径」は、レーザー回析・散乱光式の粒度分布測定装置であるCILAS社製、レーザーパーティクルサイズアナライザーCILAS920によって測定され、そのように測定した体積平均粒径で定義される。 Here, the “volume average particle diameter” is measured by a laser particle size analyzer CILAS920 manufactured by CILAS, which is a laser diffraction / scattered light type particle size distribution measuring apparatus, and is defined by the volume average particle diameter measured as such. The
 微粉砕の方法は、目的とする粒径を有する粒子が得られる方法であれば特に限定されず、乾式法でも湿式法でもよい。乾式法としては、例えば、乾式のボールミル、ビーズミル、ジェットミル、クラッシャー等の乾式粉砕機を用いる方法が挙げられる。また、乾式法としては、例えば、湿式のボールミル、ビーズミル、三本ロール、プラネタリーミキサー、アルティマイザー(伊藤忠産機社製)等の湿式粉砕機を用いる方法が挙げられる。 The pulverization method is not particularly limited as long as particles having a target particle diameter can be obtained, and may be a dry method or a wet method. Examples of the dry method include a method using a dry pulverizer such as a dry ball mill, a bead mill, a jet mill, or a crusher. Examples of the dry method include a method using a wet pulverizer such as a wet ball mill, a bead mill, a triple roll, a planetary mixer, and an optimizer (manufactured by ITOCHU Corporation).
 このうち、乾式法によるものが、その後の超微粉砕のために分散媒置換等の処理が不要である点、粒度分布が比較的シャープな粒径の微粒子が得られる点等、その後の超微粉砕を考慮してそれに好適であるために好ましい。中でもジェットミルによる方法が、上記と同様の点、微粒子の回収率が高い点、粉砕時の熱の発生が少ない点等から特に好ましい。微粉砕の際の処理時間は得られる粒子の粒径を確認することで適宜設定することができる。 Of these, the dry method is not necessary for the subsequent ultrafine pulverization, such as replacement of the dispersion medium, and the subsequent ultrafine particle size is relatively sharp. This is preferable because it is suitable for grinding. Among them, the method using a jet mill is particularly preferable from the viewpoints similar to the above, a high recovery rate of fine particles, and a low generation of heat during pulverization. The processing time for pulverization can be appropriately set by confirming the particle size of the obtained particles.
 本発明の抗菌抗ウイルス剤は貝殻を焼成し超微粉砕してなる超微粒子であって、その一次粒子が一定の粒径分布を有するように制御されて製造されたものである。本発明の抗菌抗ウイルス剤は微粉砕した後、更に最終的に超微粉砕して製造されたものであることが好ましい。超微粉砕は湿式法でも乾式法でもよいが、前記した粒径と粒子形状を有するものが得られる点で湿式法が好ましい。中でも、湿式のビーズミルによる方法が、前記した粒径、粒径分布、粒子形状等を有する超微粒子が得られる点、高粘度を得るため高分子を用いる必要がない点、その他添加剤を必要としない点、水中で粉砕が可能である点等から特に好ましい。 The antibacterial and antiviral agent of the present invention is ultrafine particles obtained by firing and ultrafinely pulverizing shells, and the primary particles are controlled so as to have a certain particle size distribution. The antibacterial and antiviral agent of the present invention is preferably produced by finely pulverizing and finally ultrafinely pulverizing. The ultra-fine pulverization may be performed by a wet method or a dry method, but the wet method is preferable in that a product having the above-described particle size and particle shape can be obtained. Among them, the method using a wet bead mill can obtain ultrafine particles having the aforementioned particle size, particle size distribution, particle shape, etc., does not require the use of a polymer to obtain high viscosity, and requires other additives. This is particularly preferable because it does not pulverize in water.
 湿式ビーズミルにおけるビーズ径は特に限定はないが、0.05mm~0.5mmの範囲内から選ばれるビーズ径を有するビーズを用いることが好ましい。特に好ましくは、0.1mm~0.4mmの範囲内から選ばれるビーズ径を有するビーズである。ビーズ径が大き過ぎると、粒径を小さくできない場合があり、一方、小さ過ぎると効率よく粉砕できない場合があり、何れにしても、前記した粒径分布、粒子形状等を有する超微粒子が得られ難い場合がある。 The bead diameter in the wet bead mill is not particularly limited, but it is preferable to use beads having a bead diameter selected from the range of 0.05 mm to 0.5 mm. Particularly preferred are beads having a bead diameter selected from the range of 0.1 mm to 0.4 mm. If the bead diameter is too large, the particle size may not be reduced. On the other hand, if the bead size is too small, it may not be pulverized efficiently. In any case, ultrafine particles having the above-described particle size distribution, particle shape, etc. are obtained. It may be difficult.
 ビーズの材質は特に限定はなく、通常の湿式ビーズミルに通常用いられるものが用いられる。例えば、鋼、ジルコニア、シリカ、ステンレス、ガラス等が挙げられる。 The material of the beads is not particularly limited, and those usually used in a normal wet bead mill are used. For example, steel, zirconia, silica, stainless steel, glass and the like can be mentioned.
 湿式のビーズミルによって行われる超微粉砕によって、一次粒子の粉砕が十分に進行し、より小さく均一な一次粒子を得ることができる。その結果、目的の一次粒子の粒径がnmオーダーまで効果的に超微粉砕され、しかも粒度分布が狭い範囲に均質化された抗菌抗ウイルス剤とすることができる。 By ultrafine pulverization performed by a wet bead mill, the primary particles are sufficiently pulverized, and smaller and uniform primary particles can be obtained. As a result, it is possible to obtain an antibacterial and antiviral agent in which the intended primary particles are effectively finely pulverized to the order of nm and are homogenized in a narrow range of particle size distribution.
 以下に限定されるものではないが、参考として湿式ビーズミル法の好ましい実施態様の一例を挙げると、懸濁液の濃度としては2~25質量%(特に好ましくは3~20質量%);分散媒は水、エタノール、n-プロパノール、イソプロパノール、1,3ブタンジオール、プロピレングリコール、グリセリン等又はそれらの混合物;分散メディアはジルコニアビーズ又はシリカビーズ;処理時間は30分~30時間(より好ましくは1時間~20時間、特に好ましくは2時間~10時間);ビーズ充填率80~120%(好ましくは約100%);例えば仕込み量5kgの場合には、回転周速1~50m/秒(好ましくは3~15m/秒);回転数100~2000rpm(好ましくは400~1200rpm)である。回転周速と回転数については、超微粉砕する量によって、上記範囲を調節することが好ましい。 Although not limited to the following, an example of a preferred embodiment of the wet bead mill method is given as a reference. The concentration of the suspension is 2 to 25% by mass (particularly preferably 3 to 20% by mass); Is water, ethanol, n-propanol, isopropanol, 1,3 butanediol, propylene glycol, glycerin or the like or a mixture thereof; dispersion medium is zirconia beads or silica beads; treatment time is 30 minutes to 30 hours (more preferably 1 hour) Up to 20 hours, particularly preferably from 2 hours to 10 hours); bead filling rate of 80 to 120% (preferably about 100%); for example, when the charging amount is 5 kg, the rotational peripheral speed is 1 to 50 m / sec (preferably 3 -15 m / sec); rotation speed is 100 to 2000 rpm (preferably 400 to 1200 rpm). Regarding the rotational peripheral speed and the rotational speed, it is preferable to adjust the above range according to the amount of ultrafine grinding.
 以上の工程を経て得られた本発明の抗菌抗ウイルス剤を構成する、「一次粒子の大きさが限定されたnmオーダーの超微粒子」は、従来なかった均一な粒径分布と均一な粒子形状を有していることはSEM写真等によって確認することができる。つまり、本発明の抗菌抗ウイルス剤は、例えば非特許文献3の非常にブロードな粒度分布を持つ微細粉末とは異なり、ほぼ球形粒子(図1、3)であっても棒状粒子(図2、4)であっても、均一な粒径と均一な粒子形状を有する一次粒子からなる抗菌抗ウイルス剤となっていることが図1及び図3のSEM写真、図2及び図4の粒径分布から確認できる。 The “ultrafine particles of the order of nm in which the size of primary particles is limited” constituting the antibacterial and antiviral agent of the present invention obtained through the above steps is a uniform particle size distribution and a uniform particle shape that were not previously available It can be confirmed by an SEM photograph or the like. That is, the antibacterial and antiviral agent of the present invention is different from the fine powder having a very broad particle size distribution of Non-Patent Document 3, for example, even if it is substantially spherical particles (FIGS. 1 and 3), 4), the SEM photographs in FIGS. 1 and 3 and the particle size distributions in FIGS. 2 and 4 show that the antibacterial and antiviral agents are composed of primary particles having a uniform particle size and a uniform particle shape. It can be confirmed from.
 粒径、粒子形状及び粒径分布は、上記した超微粉砕の条件の他、特に、各回転数での時間の制御、超微粉砕に際し途中で追加する水の量、回転周速等によってもコントロールする。 The particle size, particle shape, and particle size distribution are determined not only by the above-mentioned ultrafine grinding conditions, but also by controlling the time at each rotational speed, the amount of water added during the ultrafine grinding, the rotational peripheral speed, etc. To control.
 本発明の抗菌抗ウイルス剤は、粉体としても使用できるし、分散媒に分散された分散液としても使用できる。 The antibacterial and antiviral agent of the present invention can be used as a powder or as a dispersion liquid dispersed in a dispersion medium.
 分散液としても使用する場合、本発明の抗菌抗ウイルス剤はその性状から、基本的性質として界面活性剤等の分散剤を用いなくとも分散性を維持できるという特徴を有している。従って、本発明の抗菌抗ウイルス剤が懸濁されてなる抗菌抗ウイルス剤懸濁液では、分散剤を配合することなく用いることができるので、本発明の抗菌抗ウイルス剤の種々の用途を勘案すると、分散剤を実質的に含有していないことが好ましい。 When used as a dispersion, the antibacterial and antiviral agent of the present invention is characterized in that dispersibility can be maintained without using a dispersant such as a surfactant as a basic property. Therefore, since the antibacterial antiviral agent suspension in which the antibacterial antiviral agent of the present invention is suspended can be used without blending a dispersant, the various uses of the antibacterial antiviral agent of the present invention are taken into consideration. Then, it is preferable that a dispersing agent is not included substantially.
 本発明の抗菌抗ウイルス剤が懸濁されてなる抗菌抗ウイルス剤懸濁液には、懸濁液中にpH緩衝作用を有する剤が実質的に含有されていないことが、抗菌抗ウイルス作用を効果的に発揮させる上で好ましい。例えば、0.15質量%懸濁液の分散媒として生理食塩水を用いた場合とPBSを用いた場合の大腸菌に対する作用、インフルエンザウイルスA型PR8株に対する作用を比較した結果、どちらの場合も生理食塩水に懸濁した場合の方が良好な抗大腸菌、抗インフルエンザウイルスA型PR8株作用を示した。この際の懸濁液上清のpHはほとんど変わらないことが確認されており(例えば、生理食塩水pH12.76、PBSpH12.78)、単純な緩衝作用による影響でないことが確認されているが、懸濁液にpH緩衝剤を用いない方が好ましいことが分かる。 The antibacterial antiviral agent suspension obtained by suspending the antibacterial antiviral agent of the present invention is substantially free of an agent having a pH buffering action in the suspension. It is preferable for effective display. For example, as a result of comparing the action against Escherichia coli and the action against influenza virus A type PR8 strain when using physiological saline as a dispersion medium of 0.15% by mass suspension and using PBS, in both cases Anti-E. Coli and anti-influenza virus type A PR8 strains were better when suspended in saline. It has been confirmed that the pH of the suspension supernatant at this time hardly changes (for example, physiological saline pH 12.76, PBS pH 12.78), and it has been confirmed that there is no influence by a simple buffering action. It can be seen that it is preferable not to use a pH buffer in the suspension.
 上記懸濁液中の超微粒子の濃度は、対象とする菌種や適用時の目的、その目的に関連して適用時間や適用時の使用状態等で変わってくるが、懸濁液全体に対して0.0001質量%~20質量%が好ましく、0.001質量%~10質量%がより好ましく、0.01質量%~5質量%が特に好ましい。菌やウイルスとの接触時間を長くとれる場合は低濃度で用い、医療用等の殺菌消毒剤として用いる場合等、できるだけ短時間で多くの菌やウイルスに対する効果が求められる場合は、より高濃度で用いられる。 The concentration of ultrafine particles in the suspension varies depending on the target bacterial species, the purpose of application, the application time and the usage state at the time of application in relation to the purpose, 0.0001% by mass to 20% by mass is preferable, 0.001% by mass to 10% by mass is more preferable, and 0.01% by mass to 5% by mass is particularly preferable. When the contact time with bacteria and viruses can be long, use at a low concentration, and when used as a disinfectant for medical use, etc. Used.
 本発明の抗菌抗ウイルス剤が懸濁されてなる抗菌抗ウイルス剤懸濁液は、前記超微粉砕されて得られた分散液を、要すれば希釈してその分散状態のまま使用することが、良好な分散状態を維持しつつ使用できる点で好ましい。一旦粉体にしたり、分散媒置換等をした場合には、良好な分散状態に戻せなかったり、抗菌抗ウイルス効果が十分に得られない場合がある。本発明の抗菌抗ウイルス剤の使用方法としては、湿式法によって超微粉砕して得られた前記分散液の懸濁状態を実質的に保持しながら使用に供することが好ましい。 The antibacterial and antiviral agent suspension obtained by suspending the antibacterial and antiviral agent of the present invention may be used as it is in a dispersed state by diluting the dispersion obtained by ultrafine pulverization, if necessary. This is preferable in that it can be used while maintaining a good dispersion state. Once the powder is made into powder or the dispersion medium is replaced, it may not be possible to return to a good dispersion state or the antibacterial and antiviral effects may not be sufficiently obtained. As a method for using the antibacterial and antiviral agent of the present invention, it is preferable to use the antibacterial and antiviral agent while maintaining the suspended state of the dispersion obtained by ultrafine pulverization by a wet method.
 本発明の抗菌抗ウイルス剤が適用される菌種については、本発明の抗菌抗ウイルス剤が菌の特定の部分を攻撃等することによって抗菌性を呈しているものではないため、特に制限なく用いることができる。ただし、各種の菌に対する検討では、抗菌性に関して菌種によって感受性に差がある。例えば、大腸菌、サルモネラ菌等では、感受性が非常に強く、次いで緑膿菌、黄色ブドウ菌の順で感受性は低下する。 The bacterial species to which the antibacterial and antiviral agent of the present invention is applied is not particularly limited because the antibacterial and antiviral agent of the present invention does not exhibit antibacterial properties by attacking a specific part of the bacterium. be able to. However, in studies on various bacteria, there is a difference in susceptibility with respect to the antibacterial species. For example, Escherichia coli, Salmonella, and the like are very sensitive, and then the sensitivity decreases in the order of Pseudomonas aeruginosa and Staphylococcus aureus.
 本発明の抗菌抗ウイルス剤が適用されるウイルスも、適用菌種同様にエンベロープの有無等の性状による制限等、特定のウイルスに限定されるものではない。例えば、マイオウイルス科(Myoviridae)、サイフォウイルス科(Siphovirida)、ポドウイルス科(Podoviridae)、アデノウイルス科(Adenoviridae)、ヘルペスウイルス科(Herpesviridae)、パポーバウイルス科(Papovaviridae)、ポックスウイルス科(Poxviridae)、イノウイルス科(Inoviridae)、ミクロウイルス科(Microviridae)、パルボウイルス科(Parvoviridae)、レオウイルス科(Reoviridae)、コロナウイルス科(Coronaviridae)、フラビウイルス科(Flaviviridae)、ピコルナウイルス科(Picornaviridae)、トガウイルス科(Togaviridae)、カリシウイルス科(Caliciviridae)、へペウイルス科(Hepeviridae)、フィロウイルス科(Filoviridae)、ラブドウイルス科(Rhabdoviridae)、パラミクソウイルス科(Paramyxoviridae)、オルトミクソウイルス科(Orthomyxoviridae)、ブニヤウイルス科(Bunyaviridae)、アレナウイルス科(Arenaviridae)、レトロウイルス科(Lentivirinae)、ヘパドナウイルス科(Hepadnaviridae)、カリモウイルス科(Caulimoviridae)等が考えられる。 The virus to which the antibacterial and antiviral agent of the present invention is applied is not limited to a specific virus, such as restriction by properties such as the presence or absence of an envelope, as in the case of the applied bacterial species. For example, Myoviridae, Siphoviridae, Podoviridae, Adenoviridae, Herpesviridae, Papovaviroxe, Papovaviroxe Viridae (Inobiridae), Microviridae, Parvoviridae, Reoviridae, Coronaviridae, Flaviviridae, Piraviridae, Piraviridae, Piraviridae Virology (To aviridae, Caliciviridae, Hepeviridae, Filoviridae, Rhabdoviridae, Paramyxoviridae, Paramyxoviridae, Paramyxoviridae Examples include Bunyaviridae, Arenaviridae, Retroviridae, Hepadnaviridae, and Calimoviridae.
 本発明の抗菌抗ウイルス剤は、上記何れの科に属するウイルスでも適用することができるが、中でも、パラミクソウイルス科の麻疹ウイルス、オルトミクソウイルス科のインフルエンザウイルス、コロナウイルス科のSARSコロナウイルス、カリシウイルス科のノロウイルス等に対して適用されることが特に好適である。かかるウイルスによる新興感染症、人畜共通感染症、新型ウイルス感染症に対して本剤を用いることは、現在有効な治療薬の少ないこれらの感染症の蔓延を予防することができるという点で特に好ましい。 The antibacterial and antiviral agent of the present invention can be applied to viruses belonging to any of the above families. Among them, paramyxoviridae measles virus, orthomyxoviridae influenza virus, coronaviridae SARS coronavirus, It is particularly preferable to be applied to Norovirus of the Caliciviridae family. The use of this drug for emerging infectious diseases caused by such viruses, zoonotic diseases, and new virus infectious diseases is particularly preferable in that the spread of these infectious diseases with few effective therapeutic agents can be prevented. .
 先のウイルスの内、特筆すべきことは、エンベロープを有さず親油性でないカリシウイルス科のノロウイルスに対して、短時間での処理でその感染価を大幅に減じることができることである(実施例2:ノロウイルスの代替としてのネコカリシウイルスのデータ参照)。エンベロープを有さず親油性でないウイルスは、各種の不活化条件に対して抵抗性の強いことが知られており、例えば10個のノロウイルス(ネコカリシウイルスで代替)は56℃、3分間の処理では全く不活化されず、最終濃度1000ppm(0.1質量%)の次亜塩素酸ナトリウム液で1分間の処理でも感染価が1/300程度の低下にとどまる場合があることが報告されている[J.C.Doultree et al:Inactivation of Feline Calicivirus, a Norwalk Virus Surrogate, Journal of Hospital Infection(1999)41:51~57]。 Among the viruses mentioned above, it should be noted that the infectious titer can be significantly reduced by treatment in a short time for the caliciviridae norovirus that does not have an envelope and is not lipophilic (Examples). 2: See data for feline calicivirus as an alternative to norovirus). Viruses that do not have an envelope and are not lipophilic are known to be highly resistant to various inactivation conditions. For example, 10 5 noroviruses (replaced by feline calicivirus) at 56 ° C. for 3 minutes. It is reported that the infectivity titer may not be reduced by about 1/300 even after treatment for 1 minute with a sodium hypochlorite solution with a final concentration of 1000 ppm (0.1% by mass). [JCDoultree et al: Inactivation of Feline Calicivirus, a Norwalk Virus Surrogate, Journal of Hospital Infection (1999) 41: 51-57].
 以上に対して、本発明の「一次粒子の短軸方向の個数平均長さ(a)が10nm~100nmである超微粒子」は、4×10個のネコカリシウイルスの感染価を、最終濃度0.5質量%30秒間の処理で1/5000に、1分間の処理で1/10000に低下させるという顕著な効果を示すことが確認されている(実施例2)。ちなみに、次亜塩素酸ナトリウム1000ppm溶液は、市販のブリーチ液の1/50の濃度に該当し、高濃度で人体に対しても刺激性や毒性の強いものである。これに対し、本発明品の抗菌抗ウイルス剤の0.5質量%懸濁液は、細胞毒性も少なく安全性の高いものである。 In contrast to the above, the “ultrafine particles whose number average length (a) in the minor axis direction of primary particles is 10 nm to 100 nm” of the present invention is the final concentration of 4 × 10 6 feline calicivirus infectivity. It has been confirmed that a significant effect of reducing the mass to 1/5000 by treatment for 0.5% by weight for 30 seconds and 1/10000 by treatment for 1 minute (Example 2). Incidentally, the sodium hypochlorite 1000 ppm solution corresponds to a concentration of 1/50 that of a commercially available bleach solution, and is highly irritating and toxic to the human body. On the other hand, the 0.5% by mass suspension of the antibacterial and antiviral agent of the present invention has low cytotoxicity and high safety.
 本発明の抗菌抗ウイルス剤は、各種の材料に含有させて、各種抗菌抗ウイルス材として使用に供される。かかる抗菌抗ウイルス材としては、本発明の抗菌抗ウイルス剤を含有すれば、固体であっても、液体であっても、また、それらの混合、複合であってもよい。 The antibacterial and antiviral agent of the present invention is contained in various materials and used as various antibacterial and antiviral materials. Such an antibacterial and antiviral material may be solid, liquid, or a mixture or composite thereof as long as it contains the antibacterial and antiviral agent of the present invention.
 かかる抗菌抗ウイルス材としては、ブタ、ウシ、ヒツジ等の家畜類の飼料;ニワトリ、ガチョウ、アヒル等の家禽類の飼料;エアコンディショナー、空気清浄機、掃除機等のフィルター;家庭用、医療用、作業用等のマスク;接着剤;床拭き材、壁拭き材等の拭き材;消臭材;キッチン用部材;水虫治療薬、うがい薬、褥瘡の感染予防剤等の薬剤;不織布、糸、織布、壁材等の部材等が好ましいものとして挙げられる。 Such antibacterial and antiviral materials include feeds for livestock such as pigs, cattle and sheep; feed for poultry such as chickens, geese and ducks; filters for air conditioners, air cleaners, vacuum cleaners, etc .; , Masks for work, etc .; adhesives; wiping materials such as floor wiping materials, wall wiping materials, etc .; deodorants; kitchen materials; drugs for athlete's foot treatments, mouthwashes, infection prevention agents for pressure ulcers, etc .; Members such as woven fabrics and wall materials are preferred.
 例えば、本発明の抗菌抗ウイルス剤を含有するフィルターであれば、このフィルターに接触した菌やインフルエンザウイルス等のウイルスの感染力を減弱させることができる。これにより、例えばエアコンディショナー等に使用すれば、各種の菌やインフルエンザウイルス等の感染を防ぐことができる。 For example, if it is a filter containing the antibacterial antiviral agent of this invention, the infectivity of viruses, such as a microbe and influenza virus which contacted this filter, can be attenuated. Thereby, if it uses for an air conditioner etc., infection with various microbes, influenza viruses, etc. can be prevented, for example.
 また、本発明の抗菌抗ウイルス剤を飼料に含有させれば、菌やウイルスによる感染を防止し、発育促進効果がある。飼料に用いる場合は、特に制限されないが、本発明の抗菌抗ウイルス剤の粉末をそのまま飼料に混合する方法や、本発明の抗菌抗ウイルス剤の懸濁液を飼料と混ぜ合わせる方法等が用いられる。本発明の抗菌抗ウイルス剤を飼料に含有させる場合、飼料100質量部に対して、本発明の抗菌抗ウイルス剤を超微粒子換算で、0.005質量部~0.5質量部含有させることが好ましく、0.05質量部~0.3質量部混合することが特に好ましい。含有量が少な過ぎると、抗菌抗ウイルス効果が得られない場合があり、多過ぎると、それ以上の効果がでなかったり、細胞毒性が生じたり、環境を汚染したりする場合がある。 In addition, if the antibacterial and antiviral agent of the present invention is contained in the feed, infection by bacteria and viruses is prevented and a growth promoting effect is obtained. When used for feed, it is not particularly limited, but a method of mixing the powder of the antibacterial and antiviral agent of the present invention into the feed as it is, a method of mixing the suspension of the antibacterial and antiviral agent of the present invention with the feed, etc. are used. . When the antibacterial and antiviral agent of the present invention is contained in the feed, the antibacterial and antiviral agent of the present invention is contained in an amount of 0.005 to 0.5 parts by mass in terms of ultrafine particles with respect to 100 parts by mass of the feed. Preferably, 0.05 parts by mass to 0.3 parts by mass are mixed. If the content is too small, the antibacterial and antiviral effects may not be obtained. If the content is too large, no further effects may be obtained, cytotoxicity may occur, or the environment may be polluted.
 抗菌抗ウイルス剤を含有する液体として用いる場合では、床拭き剤等の拭き材等に用いるだけではなく、菌やウイルスに感染するのを予防するために、動物に飼料として摂取させることも可能である。本剤は乳酸菌等の有益な菌には影響しないので、ペットや、ブタ、ウシ、ニワトリ、ヒツジ等の家畜に継続して飲ませ続けることで、有益な菌を殺さずに、有害な菌やウイルスを不活性化させ、ペットや家畜はもとより、人の健康も守ることが可能である。 When used as a liquid containing antibacterial and antiviral agents, it can be used not only for wiping materials such as floor wiping agents, but also to feed animals as feed to prevent infection with bacteria and viruses. is there. Since this agent does not affect beneficial bacteria such as lactic acid bacteria, it can continue to be fed to domestic animals such as pets, pigs, cows, chickens, sheep, etc. It can inactivate viruses and protect human health as well as pets and livestock.
 本発明の抗菌抗ウイルス剤が優れた抗菌抗ウイルス効果を示す作用・原理は明らかではなく、また本発明はかかる作用・原理の範囲に限定されるわけではないが、以下のことが考えられる。すなわち、前記した通り、活性酸素種が抗菌抗ウイルス効果に関係しているとすると、活性酸素種は寿命が短いので、その効果は粒子表面近傍に限られると予想される。従って、粒子の大きさや形状、その他の粒子表面上の微細な状況の違い等によってその効果の現れ方は大きく変動するものと考えられる。従って、抗菌抗ウイルス剤を構成する粒子の大きさについては、より小さなものの方がより強い抗菌抗ウイルス効果を示したと考えられる。 The action and principle of the antibacterial and antiviral effect of the antibacterial and antiviral agent of the present invention are not clear, and the present invention is not limited to the scope of such action and principle, but the following may be considered. That is, as described above, assuming that the active oxygen species are related to the antibacterial and antiviral effect, the active oxygen species has a short lifetime, so that the effect is expected to be limited to the vicinity of the particle surface. Therefore, the appearance of the effect is considered to vary greatly depending on the size and shape of the particles and the difference in other fine conditions on the particle surface. Therefore, regarding the size of the particles constituting the antibacterial and antiviral agent, it is considered that the smaller one showed a stronger antibacterial and antiviral effect.
 また、貝殻の焼成物は、特定の粉砕方法によって、極めて粒径分布がシャープで、また粒子形状が揃ったものができることが分かったが、それによっても上記効果がより顕著にでたものと考えられる。 In addition, it was found that the burned shellfish could have a sharp particle size distribution and a uniform particle shape by a specific pulverization method. It is done.
 以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限りこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to these examples as long as the gist thereof is not exceeded.
製造例1
 青森県産のホタテガイの貝殻を、粒径5mm程度に乾式ボールミルを用いて予備粉砕してから、空気中で1050℃~1100℃で3時間焼成した。この焼成物の一部を120メッシュの篩によって篩別した。極めて脆いため篩別中に解砕され、篩上に残存する貝殻の焼成物は殆どなかった。篩下の粒子の体積粒径分布を測定したところ、98%体積粒径は30μm、90%体積粒径は12μm、体積平均粒径は8μmであった。分級操作は特に行わなくても、90%体積粒径は30μm以下となっていた。なお、体積粒径分布等は、マイクロトラック粒度分布測定装置(日機装社製)を用いて、使用説明書に従って測定した。
Production Example 1
A scallop shell from Aomori Prefecture was pre-ground using a dry ball mill to a particle size of about 5 mm and then fired in air at 1050 ° C. to 1100 ° C. for 3 hours. A part of the fired product was sieved with a 120 mesh sieve. Since it was extremely fragile, it was crushed during sieving, and there was hardly any fired product of shells remaining on the sieve. When the volume particle size distribution of the particles under the sieve was measured, the 98% volume particle size was 30 μm, the 90% volume particle size was 12 μm, and the volume average particle size was 8 μm. Even if the classification operation was not particularly performed, the 90% volume particle size was 30 μm or less. The volume particle size distribution and the like were measured using a Microtrac particle size distribution measuring device (manufactured by Nikkiso Co., Ltd.) according to the instruction manual.
 上記の篩下の粒子を、乾式ジェットミル粉砕機(アイシンナノテクノロジー社製ナノジェットマイザー)で粉砕し微粒子を得た。この微粒子の体積平均粒径は1.8μmであった。体積平均粒径は、CILAS社製レーザーパーティクルサイズアナライザーCILAS920を用いて、その使用説明書に従って測定した。 The particles under the above sieve were pulverized with a dry jet mill pulverizer (Aisin Nano Technology's NanoJet Mizer) to obtain fine particles. The volume average particle diameter of the fine particles was 1.8 μm. The volume average particle diameter was measured using a laser particle size analyzer CILAS920 manufactured by CILAS according to the instruction manual.
 上記微粒子を10質量%となるように分散媒である水に懸濁した後、湿式ビーズミル粉砕機で、分散メディアとして直径0.2mmのジルコニアビーズを用い、一定条件、一定時間毎に水を加えながら、回転数を400rpmから最終的に1200rpmまで(周速を3.7m/sから最終的に11m/sまで)、徐々に上げていって8時間粉砕処理し、超微粒子Aの5質量%懸濁液を得た。 After suspending the fine particles in water as a dispersion medium so as to be 10% by mass, using a wet bead mill pulverizer, zirconia beads having a diameter of 0.2 mm are used as the dispersion medium, and water is added at constant conditions and every constant time. However, the rotation speed was gradually increased from 400 rpm to 1200 rpm (peripheral speed was increased from 3.7 m / s to finally 11 m / s), and pulverized for 8 hours to obtain 5% by mass of the ultrafine particles A. A suspension was obtained.
 この超微粒子AのSEM写真を図1に示す。また、粒径分布を図2に示す。図1及び図2から算定される超微粒子Aの一次粒子の短軸方向の個数平均長さ(a)は70nmであった。また、長軸方向の個数平均長さ(b)も70nmであった。 An SEM photograph of this ultrafine particle A is shown in FIG. The particle size distribution is shown in FIG. The number average length (a) in the minor axis direction of the primary particles of the ultrafine particles A calculated from FIGS. 1 and 2 was 70 nm. The number average length (b) in the major axis direction was also 70 nm.
 また、一次粒子の短軸方向、長軸方向の長さがa/2~2a、b/2~2bの範囲内に入っている超微粒子の個数は、全体の99個数%であった。また、上記一次粒子が集合してなる二次粒子の個数平均粒径は650nmであった。 In addition, the number of ultrafine particles in which the lengths of the primary particles in the short axis direction and the long axis direction are within the range of a / 2 to 2a and b / 2 to 2b was 99% by number. The number average particle size of the secondary particles formed by the aggregation of the primary particles was 650 nm.
製造例2
 製造例1において、回転数、途中の水の追加量を調整し、10時間粉砕処理した以外は、製造例1と同様にして、超微粒子Bの懸濁液を得た。
Production Example 2
In Production Example 1, a suspension of ultrafine particles B was obtained in the same manner as in Production Example 1, except that the number of rotations and the additional amount of water were adjusted and pulverized for 10 hours.
 この超微粒子AのSEM写真を図3に示す。また、粒径分布を図4に示す。図3及び図4から算定される超微粒子Bの一次粒子の短軸方向の個数平均長さ(a)は25nmであった。また、長軸方向の個数平均長さ(b)は50nmであった。 An SEM photograph of this ultrafine particle A is shown in FIG. The particle size distribution is shown in FIG. The number average length (a) in the minor axis direction of the primary particles of the ultrafine particles B calculated from FIGS. 3 and 4 was 25 nm. The number average length (b) in the major axis direction was 50 nm.
 また、一次粒子の短軸方向、長軸方向の長さがa/2~2a、b/2~2bの範囲内に入っている超微粒子の個数は、それぞれ全体の100個数%、94個数%であった。また、上記一次粒子が集合してなる二次粒子の個数平均粒径は600nmであった。 In addition, the number of ultrafine particles whose lengths in the minor axis direction and major axis direction of the primary particles are in the range of a / 2 to 2a and b / 2 to 2b are 100% by number and 94% by number, respectively. Met. The number average particle diameter of the secondary particles formed by the aggregation of the primary particles was 600 nm.
比較製造例1
 製造例1と同様に焼成及び篩別した粒子を、乾式ビーズミル粉砕機(アシザワ・ファインテック社製)で約2時間処理し、「微粒子a」を得た。この「微粒子a」の体積粒径分布を図5、個数粒径分布を図6に示す。「微粒子a」の10%(体積)粒径は8.5μm、50%(体積)粒径は18.4μm、90%(体積)粒径は43.7μm、体積平均粒径は18.4μmであり、10%(個数)粒径は3.3μm、50%(個数)粒径は6.1μm、90%(個数)粒径は13.2μm、個数平均粒径は6.1μmであった。
Comparative production example 1
The particles fired and sieved in the same manner as in Production Example 1 were treated with a dry bead mill grinder (manufactured by Ashizawa Finetech) for about 2 hours to obtain “fine particles a”. The volume particle size distribution of the “fine particles a” is shown in FIG. 5, and the number particle size distribution is shown in FIG. “Particle a” has a 10% (volume) particle size of 8.5 μm, a 50% (volume) particle size of 18.4 μm, a 90% (volume) particle size of 43.7 μm, and a volume average particle size of 18.4 μm. Yes, the 10% (number) particle size was 3.3 μm, the 50% (number) particle size was 6.1 μm, the 90% (number) particle size was 13.2 μm, and the number average particle size was 6.1 μm.
比較製造例2
 製造例1と同様に焼成及び篩別した粒子を10質量%となるように水に分散させ、アルティマイザー(スギノマシン社製)を用いて、噴射圧力150MPaで15回パスさせ、「微粒子b」を得た。「微粒子b」の個数平均粒径は237nmであり、体積平均粒径は670nmであった。図7にSEM写真を示す。
Comparative production example 2
The particles fired and sieved in the same manner as in Production Example 1 were dispersed in water so as to be 10% by mass and passed 15 times at an injection pressure of 150 MPa using an optimizer (manufactured by Sugino Machine Co., Ltd.). Got. The number average particle diameter of “fine particles b” was 237 nm, and the volume average particle diameter was 670 nm. FIG. 7 shows an SEM photograph.
評価例1
[抗ウイルス効果の評価(麻疹ウイルス)]
 製造例1で得られた「超微粒子A」の懸濁液、比較製造例1で得られた「微粒子a」の懸濁液、比較製造例2で得られた「微粒子b」の懸濁液を、それぞれ滅菌生理食塩水で5質量%に調整し、「懸濁液試料」とした。
Evaluation Example 1
[Evaluation of antiviral effect (measles virus)]
A suspension of “ultrafine particles A” obtained in Production Example 1, a suspension of “fine particles a” obtained in Comparative Production Example 1, and a suspension of “fine particles b” obtained in Comparative Production Example 2 Were each adjusted to 5% by mass with sterilized physiological saline to obtain a “suspension sample”.
 「超微粒子A」、「微粒子a」及び「微粒子b」について、麻疹ウイルスを対象として接触時間による抗ウイルス効果を調べた。麻疹ウイルスは、麻疹ウイルス野生分離株MVi/Tokyo.JPN/18.07(genotype D5)を用いた。B95a細胞で増殖させ、45.0TCID50/μLの麻疹ウイルス液を用いた。 With respect to “ultrafine particle A”, “fine particle a”, and “fine particle b”, the antiviral effect according to the contact time was examined for measles virus. Measles virus is a measles virus wild isolate MVi / Tokyo. JPN / 18.07 (genotype D5) was used. Grow with B95a cells and use 4 5.0 TCID50 / μL of measles virus solution.
 3種の懸濁液試料の抗ウイルス効果は、以下のTCID50法(50%Tissue Culture Infective Dose)によって、麻疹ウイルス液と混合したときの上清の示す麻疹ウイルス感染価を確認することにより行った。 The antiviral effect of the three types of suspension samples was confirmed by confirming the measles virus infectivity titer indicated by the supernatant when mixed with the measles virus solution by the following TCID50 method (50% Tissue Culture Infective Dose). .
<TCID50法による麻疹ウイルス感染価の測定>
 麻疹ウイルス液(45.0TCID50/μL)100μLに、上記3種類の懸濁液試料をそれぞれ、0.2質量%、0.1質量%となるように加えて、1分、3分、5分、10分後に、13000rpmで30秒間遠心処理した後、各上清液の麻疹ウイルス感染価を以下の方法で測定した。
<Measurement of measles virus infectivity titer by TCID50 method>
To 100 μL of measles virus solution (4 5.0 TCID50 / μL), the above three types of suspension samples were added to 0.2% by mass and 0.1% by mass, respectively, for 1 minute, 3 minutes, After 5 minutes and 10 minutes, after centrifugation at 13000 rpm for 30 seconds, the measles virus infectivity of each supernatant was measured by the following method.
 麻疹ウイルス感染価の測定は、96穴平底プレートにB95a細胞を単層培養し、麻疹ウイルス液は1%胎児ウシ血清(FBS)を添加したRPMI1640で、1/4倍希釈から4倍まで階段希釈し、1週後の細胞変性効果を観察し、Reed Menchen法により感染価を測定した。 The measles virus infectivity was measured by monolayer culture of B95a cells in a 96-well flat-bottom plate, and the measles virus solution was RPMI1640 supplemented with 1% fetal bovine serum (FBS), stepwise diluted from 1/4 to 4 times. Then, the cytopathic effect after 1 week was observed, and the infectivity titer was measured by the Reed Menchen method.
 各上清液を接種してから1週間後に測定した感染価を表1に示す。 Table 1 shows the infectivity titer measured one week after inoculating each supernatant.
 麻疹ウイルス液(45.0TCID50/μL)の感染価に与えるホタテガイの貝殻の焼成粒子の影響 (粒子種類・濃度及び接触時間の影響)
Figure JPOXMLDOC01-appb-T000001
Effect of burned particles of scallop shells on the infectivity of measles virus solution (4 5.0 TCID50 / μL) (Effects of particle type / concentration and contact time)
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、何れの粒子の場合でも、0.2質量%の濃度となるよう評価用試料を麻疹ウイルス液に添加した場合、感染価は接触時間1分以内に消失した。 As can be seen from Table 1, when the sample for evaluation was added to the measles virus solution so that the concentration was 0.2% by mass in any of the particles, the infectivity titer disappeared within 1 minute of the contact time.
 0.1質量%の濃度となるように添加した場合は、超微粒子Aでは、1分間の接触で、42.25と感染価が減少し、3分間の接触で感染価が消失した。一方、微粒子aの場合、1分間、3分間の接触時間では、42.5と感染価はやや減少するものの消失しなかった。また、微粒子bの場合も、1分間の接触時間では43.25、3分間の接触時間では4と感染価は僅かに減少するものの消失しなかった。 When added to a concentration of 0.1% by mass, in the ultrafine particles A, the infectious titer decreased to 42.25 after 1 minute contact, and the infectious titer disappeared after 3 minutes of contact. On the other hand, in the case of microparticles a, the infectivity titer slightly decreased to 42.5 at a contact time of 1 minute and 3 minutes, but did not disappear. Further, even if the fine particles b, the contact of one minute time 4 3.25 4 3 infectivity at a contact time of 3 minutes did not disappear in those slightly reduced.
 なお、感染価の消失した上清液中に麻疹ウイルスが残存しているかどうかについて、PCRによるウイルス遺伝子の有無の確認を行ったところ、麻疹ウイルス遺伝子は存在することが確認された。このことから、本発明の効果について、超微粒子Aが単純に麻疹ウイルスを吸着等により除去しているのではなく、麻疹ウイルス自体の感染価を減弱させる作用のあることが推察された。 In addition, when the presence or absence of the viral gene was confirmed by PCR as to whether or not the measles virus remained in the supernatant liquid from which the infectivity value disappeared, it was confirmed that the measles virus gene was present. From this, it was inferred that the effect of the present invention is that the ultrafine particles A do not simply remove the measles virus by adsorption or the like but have an action of reducing the infectivity of the measles virus itself.
評価例2
[抗ウイルス効果の評価(インフルエンザウイルス)]
 製造例1で得られた「超微粒子A」の懸濁液、比較製造例1で得られた「微粒子a」の懸濁液、比較製造例2で得られた「微粒子b」の懸濁液を、それぞれ滅菌生理食塩水で5質量%に調整し、「懸濁液試料」とした。
Evaluation example 2
[Evaluation of antiviral effect (influenza virus)]
A suspension of “ultrafine particles A” obtained in Production Example 1, a suspension of “fine particles a” obtained in Comparative Production Example 1, and a suspension of “fine particles b” obtained in Comparative Production Example 2 Were each adjusted to 5% by mass with sterilized physiological saline to obtain a “suspension sample”.
 「超微粒子A」、「微粒子a」及び「微粒子b」について、インフルエンザウイルスを対象として接触時間による抗ウイルス効果を調べた。 The antiviral effect of contact time was examined for “ultrafine particle A”, “fine particle a”, and “fine particle b” for influenza virus.
 インフルエンザウイルスは、インフルエンザA/パナマ/2007/99をニワトリ受精卵のしょう尿膜腔に接種しウイルス液を採取した。インフルエンザウイルス液200μLに対し、上記3種類の懸濁液試料を、それぞれ0.1%、0.05%、0.025%になるようにウイルス液に添加し、13000rpmで30秒間遠心し、上清のインフルエンザウイルス赤血球凝集素抗原価(Hemagglutinin:HA)(以下、「HA抗原価」と略記する)を測定した。HA抗原価は、96穴Uプレートを用い、PBSで2倍階段希釈し、0.5%ニワトリ血球を等量添加し室温で1時間反応させ凝集価を測定することにより求めた。 As for influenza virus, influenza A / Panama / 2007/99 was inoculated into the chorioallantoic cavity of a chicken fertilized egg and the virus solution was collected. For 200 μL of influenza virus solution, add the above three types of suspension samples to the virus solution at 0.1%, 0.05%, and 0.025%, respectively, and centrifuge at 13000 rpm for 30 seconds. Qing's influenza virus hemagglutinin (HA) (hereinafter abbreviated as “HA antigen titer”) was measured. The HA antigen titer was determined by measuring the agglutination titer using a 96-well U plate, 2-fold serial dilution with PBS, adding an equal amount of 0.5% chicken blood cells and reacting at room temperature for 1 hour.
 インフルエンザウイルス液200μLに対し、上記3種類の懸濁液試料を、それぞれ0.1%になるように添加し、2分後と5分後に遠心し上清のインフルエンザHA抗原価を測定した結果を図8に示した。図8から分かるように、ウイルスコントロール(懸濁液試料不添加)は、210のHA抗原価を有していたが、超微粒子Aの懸濁液試料0.1%で2分間処理すると完全に失活した(図8中、-△-)。 The above three types of suspension samples were added to 200 μL of the influenza virus solution so that each was 0.1%, centrifuged after 2 minutes and 5 minutes, and the results of measuring the influenza HA antigen titer of the supernatant were obtained. This is shown in FIG. As can be seen from FIG. 8 completely, virus control (suspension sample not added), when it had an HA antigen titer of 2 10 to 2 minutes with a suspension of 0.1% sample of the super fine particles A (-Δ- in FIG. 8).
 一方、微粒子aの懸濁液試料では、2分後にHA抗原価は22.0にまで低下したが完全には失活しなかった(図8中、-□-)。また、微粒子bの懸濁液試料0.1%で2分間処理すると、HA抗原価は21.0にまで低下したが完全には失活しなかった(図8中、-○-)。 On the other hand, in the suspension sample particles a, HA antigen titer after 2 minutes was reduced to 2 2.0 did not completely deactivated (in Figure 8, - □ -). Further, treatment for 2 minutes with a suspension of 0.1% sample of particles b, HA antigen titer is decreased to 2 1.0 did not completely deactivated (in Figure 8, - ○ -).
 インフルエンザウイルス液200μLに対し、上記3種類の懸濁液試料を、それぞれ0.1%、0.05%、0.025%になるようにウイルス液に添加し、2分後に遠心し上清のインフルエンザHA抗原価を測定した結果を図9に示した。図9から分かるように、各懸濁液試料の濃度が0.025%及び0.05%では、超微粒子Aの懸濁液試料(図9中、-△-)が、微粒子a(図9中、-□-)や微粒子b(図9中、-●-)の懸濁液試料に比べてHA抗原価が小さくなった。0.1%では、超微粒子Aと微粒子b懸濁液試料では完全に失活したが、微粒子aの懸濁液試料では、HA抗原価は22.0であり完全には失活しなかった。 For 200 μL of influenza virus solution, add the above three types of suspension samples to the virus solution at 0.1%, 0.05%, and 0.025%, respectively, and centrifuge after 2 minutes. The results of measuring the influenza HA antigen titer are shown in FIG. As can be seen from FIG. 9, when the concentration of each suspension sample is 0.025% and 0.05%, the suspension sample of ultrafine particles A (−Δ− in FIG. 9) is fine particles a (FIG. 9). The HA antigen titer was smaller compared to the suspension samples of-□-) and fine particles b (-●-in FIG. 9). In 0.1%, was completely inactivated in ultrafine particles A and fine particles b suspension sample, the suspension sample particles a, HA antigen titer is not deactivated completely a 2 2.0 It was.
評価例3
[抗ウイルス効果の評価(ネコカリシウイルス)]
 製造例2で得られた「超微粒子B」及び比較製造例1で得られた「微粒子a」を、それぞれ5質量%蒸留水懸濁液としておき、最終濃度0.5質量%で用いた。
Evaluation Example 3
[Evaluation of antiviral effect (feline calicivirus)]
“Ultrafine particles B” obtained in Production Example 2 and “fine particles a” obtained in Comparative Production Example 1 were each placed in a 5% by mass distilled water suspension and used at a final concentration of 0.5% by mass.
 試験ウイルスとして、カリシウイルス科のノロウイルスは培養できない為に、その代替として培養が可能なネコカリシウイルス(F9株#2)を使用した。感染価4.0×10PFU(感染ウイルス数)/100μLであった。 As a test virus, feline calicivirus (F9 strain # 2) that can be cultured was used as an alternative because norovirus of the Caliciviridae family could not be cultured. The infectivity value was 4.0 × 10 6 PFU (number of infectious viruses) / 100 μL.
 培養細胞として、CRFK細胞(ネコ腎株化細胞)を用いた。 CRFK cells (cat kidney cell lines) were used as cultured cells.
 感染価測定希釈用チューブ中に、MEM培地900μL(対照の10倍希釈用)、ウイルス液900μL(4本:30秒、1分、3分、10分用)を分注しておき、粒子懸濁液を100μL加えて直ちにミックス後、ミックス液を直前に液を抜いておいたプレートの培養細胞に各条件2穴ずつ接種した。 Dispense 900 μL of MEM medium (for 10-fold dilution of control) and 900 μL of virus solution (4 tubes: for 30 seconds, 1 minute, 3 minutes, and 10 minutes) into the dilution tube for infectivity titration. After 100 μL of the turbid solution was added and mixed immediately, the cultured cells on the plate from which the solution had been removed immediately before were inoculated in two wells under each condition.
 超微粒子Bは全ての条件を検討し、微粒子aは対照と30秒のみ検討した。また、試験の実施にあたり粒子液の細胞毒性について検討したところ、試験に供した0.5質量%の濃度では細胞毒性は観察されなかった。 The ultrafine particles B were examined under all conditions, and the fine particles a were examined only for 30 seconds with the control. Further, when the cytotoxicity of the particle solution was examined in the test, no cytotoxicity was observed at a concentration of 0.5% by mass used in the test.
 感染価の測定は通常のプラック法により次の手順で行った。すなわち、CRFK細胞を6穴プレートにまき、7日後に細胞がコンフルエントになったところで以下に使用した。
(1)被検ウイルス液を、血清の入っていないMEM培地で10倍ずつ段階希釈した。
(2)希釈後のウイルス液を、100μL/well、2穴ずつ接種した。
(3)34℃のCO恒温器で、1時間ウイルスを吸着させた。
(4)1時間後、各穴に寒天培地を3mL/well加えた。
(5)プレートを逆さにして、34℃で3日間培養した。
(6)培養後、ホルマリンで細胞を固定し、固定後に寒天培地を流し、メチレンブルー染色後に洗浄、乾燥させてからプラックを数えた。
The infectivity titer was measured by the usual procedure according to the following procedure. That is, CRFK cells were seeded in a 6-well plate, and used after 7 days after the cells became confluent.
(1) The test virus solution was serially diluted 10-fold in a MEM medium without serum.
(2) 100 μL / well of the diluted virus solution was inoculated in two wells.
(3) The virus was adsorbed with a CO 2 incubator at 34 ° C. for 1 hour.
(4) After 1 hour, 3 mL / well of an agar medium was added to each hole.
(5) The plate was inverted and cultured at 34 ° C. for 3 days.
(6) After culturing, the cells were fixed with formalin, and after fixation, the agar medium was poured, washed with methylene blue, dried and dried, and plaques were counted.
 得られた結果を表2に示す。
 粒子の種類と接触時間の、ネコカリシウイルス感染価(PFU/100μL)に与える影響
Figure JPOXMLDOC01-appb-T000002
The obtained results are shown in Table 2.
Effect of particle type and contact time on feline calicivirus infectivity (PFU / 100μL)
Figure JPOXMLDOC01-appb-T000002
 超微粒子Bでは、0.5分の接触で、感染価が約1/5000、1分間で約1/10000に急激に減少した。一方、微粒子aでは、0.5分の接触で感染価は1/3000に減少したに過ぎなかった。 In the case of ultrafine particles B, the infectivity titer rapidly decreased to about 1/5000 after 1 minute contact and about 1/10000 after 1 minute. On the other hand, in the case of the fine particles a, the infectivity value was only reduced to 1/3000 after 0.5 minutes of contact.
 超微粒子Bは、ノロウイルスの代替であるネコカリシウイルスの感染価を急激に減少させることが確認された。微粒子aも超微粒子Bより劣るものの感染価を減少させたが、これは使用濃度が0.5質量%と高かったことによるものと考えられる。 It was confirmed that the ultrafine particle B sharply decreases the infectivity of feline calicivirus, which is a substitute for norovirus. Although the fine particles a were inferior to the ultrafine particles B, the infectious value was decreased, which is considered to be due to the high use concentration of 0.5% by mass.
 ネコカリシウイルスの場合、56℃、3分間の加熱処理では全く不活化されず、次亜塩素酸ナトリウムの1000ppm高濃度液でも、1分間の処理時間で1/300の感染価の減少に留まる場合があることを勘案すると、超微粒子Bによる1分間の接触で感染価を1/10000とすることができたことは、超微粒子Bがノロウイルスに対しても有効な抗ウイルス剤となることを示している。 In the case of feline calicivirus, it is not inactivated at all by heat treatment at 56 ° C for 3 minutes, and even when the 1000 ppm sodium hypochlorite high-concentration solution remains at a reduction of 1/300 infectivity in 1 minute treatment time In view of the fact that the infectivity titer can be reduced to 1/10000 by contact with ultrafine particles B for 1 minute, it indicates that ultrafine particles B are effective antiviral agents against norovirus. ing.
評価例4
[抗菌効果の評価(大腸菌、サルモネラ菌、黄色ブドウ球菌、緑膿菌)]
 製造例1で得られた超微粒子Aを、0.15%の懸濁液に調整し、15秒、3分、10分、30分後の生菌数を測定し、結果を表3に示した。
Evaluation Example 4
[Evaluation of antibacterial effect (E. coli, Salmonella, Staphylococcus aureus, Pseudomonas aeruginosa)]
The ultrafine particle A obtained in Production Example 1 was adjusted to a suspension of 0.15%, and the viable cell count was measured after 15 seconds, 3 minutes, 10 minutes, and 30 minutes. The results are shown in Table 3. It was.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 大腸菌、サルモネラ菌は15秒で1/100以下に低下し、3分後には完全に消失した。黄色ブドウ球菌に対してはその効果を発揮するには30分を要したが、最終的に効果を奏した。また、緑膿菌に対しても、5分でほぼ完全に殺菌することができた。 Escherichia coli and Salmonella were reduced to 1/100 or less in 15 seconds and completely disappeared after 3 minutes. For S. aureus, it took 30 minutes to exert its effect, but it was finally effective. Moreover, it was able to sterilize Pseudomonas aeruginosa almost completely in 5 minutes.
 本発明の抗菌抗ウイルス剤は、各種の感染性の菌やウイルスに対してその感染価を減弱させる効果に優れているため、抗菌抗ウイルス剤としての利用をはじめ、抗菌抗ウイルス剤を含有するフィルター、飼料等の抗菌抗ウイルス材として広く利用されるものである。 The antibacterial and antiviral agent of the present invention is excellent in the effect of attenuating the infectivity against various infectious bacteria and viruses, and therefore contains an antibacterial and antiviral agent, including its use as an antibacterial and antiviral agent. It is widely used as antibacterial and antiviral materials such as filters and feeds.
 本願は、2008年2月19日に出願した日本の特許出願である特願2008-037941に基づくものであり、その出願の全ての内容はここに引用し、本願発明の明細書の開示として取り込まれるものである。 This application is based on Japanese Patent Application No. 2008-037941 filed on Feb. 19, 2008, the entire contents of which are hereby incorporated by reference and incorporated herein by reference. It is what

Claims (15)

  1.  貝殻を焼成し超微粉砕してなる超微粒子であって、その一次粒子の短軸方向の個数平均長さ(a)が10nm~100nmであることを特徴とする抗菌抗ウイルス剤。 An antibacterial antiviral agent characterized in that it is an ultrafine particle obtained by firing and ultrafinely pulverizing a shell, and the number average length (a) in the minor axis direction of the primary particle is 10 nm to 100 nm.
  2.  一次粒子の長軸方向の個数平均長さ(b)が40nm~200nmである請求項1記載の抗菌抗ウイルス剤。 The antibacterial and antiviral agent according to claim 1, wherein the number average length (b) of the primary particles in the major axis direction is 40 nm to 200 nm.
  3.  貝殻を焼成し超微粉砕してなる超微粒子であって、その一次粒子が一定の粒径分布を有するように制御されて製造されたものである請求項1又は請求項2記載の抗菌抗ウイルス剤。 The antibacterial and antiviral product according to claim 1 or 2, wherein ultrafine particles are obtained by firing and ultrafinely pulverizing shells, the primary particles of which are controlled so as to have a certain particle size distribution. Agent.
  4.  一次粒子の短軸方向の長さがa/2~2aの範囲内に入っている超微粒子の個数が、全体の50個数%以上である請求項1ないし請求項3の何れかの請求項記載の抗菌抗ウイルス剤。 4. The number of ultrafine particles whose length in the minor axis direction of primary particles is in the range of a / 2 to 2a is 50% by number or more of the total number. Antibacterial antiviral agent.
  5.  一次粒子の長軸方向の長さがb/2~2bの範囲内に入っている超微粒子の個数が、全体の50個数%以上である請求項1ないし請求項4の何れかの請求項記載の抗菌抗ウイルス剤。 5. The number of ultrafine particles whose length in the major axis direction of primary particles falls within the range of b / 2 to 2b is 50% by number or more of the whole. Antibacterial antiviral agent.
  6.  一次粒子が集合してなる二次粒子の個数平均粒径が150nm~5000nm(5μm)である請求項1ないし請求項5の何れかの請求項記載の抗菌抗ウイルス剤。 6. The antibacterial and antiviral agent according to any one of claims 1 to 5, wherein the number average particle size of secondary particles formed by aggregating primary particles is 150 nm to 5000 nm (5 μm).
  7.  貝殻を予備粉砕した後に焼成し、次いで、90%体積粒径が30μm以下になるように分級したものを、体積平均粒径が0.5μm~10μmの範囲になるように微粉砕し、その後更に、湿式法によって超微粉砕して製造されたものであることを特徴とする請求項1ないし請求項6の何れかの請求項記載の抗菌抗ウイルス剤。 The shell is preliminarily pulverized and then baked, and then classified so that the 90% volume particle diameter is 30 μm or less, and then pulverized so that the volume average particle diameter is in the range of 0.5 μm to 10 μm. The antibacterial and antiviral agent according to any one of claims 1 to 6, wherein the antibacterial and antiviral agent is produced by ultrafine pulverization by a wet method.
  8.  上記湿式法による超微粉砕が、ビーズ径0.05mm~0.5mmの範囲内から選ばれるビーズ径を有するビーズを用いた湿式ビーズミルを用いてなされたものである請求項7記載の抗菌抗ウイルス剤。 8. The antibacterial and antiviral according to claim 7, wherein the ultrafine pulverization by the wet method is performed using a wet bead mill using beads having a bead diameter selected from a range of bead diameters of 0.05 mm to 0.5 mm. Agent.
  9.  上記微粉砕が、ジェットミルを用いて乾式法によってなされたものである請求項7又は請求項8記載の抗菌抗ウイルス剤。 The antibacterial and antiviral agent according to claim 7 or 8, wherein the fine pulverization is performed by a dry method using a jet mill.
  10.  貝殻がホタテガイの貝殻である請求項1ないし請求項9の何れかの請求項記載の抗菌抗ウイルス剤。 The antibacterial and antiviral agent according to any one of claims 1 to 9, wherein the shell is a scallop shell.
  11.  ウイルスが、パラミクソウイルス科、オルトミクソウイルス科、コロナウイルス科又はカリシウイルス科に属するものである請求項1ないし請求項10の何れかの請求項記載の抗菌抗ウイルス剤。 The antibacterial antiviral agent according to any one of claims 1 to 10, wherein the virus belongs to Paramyxoviridae, Orthomyxoviridae, Coronaviridae, or Caliciviridae.
  12.  請求項1ないし請求項11の何れかの請求項記載の抗菌抗ウイルス剤が懸濁されてなることを特徴とする抗菌抗ウイルス剤懸濁液。 An antibacterial and antiviral agent suspension, wherein the antibacterial and antiviral agent according to any one of claims 1 to 11 is suspended.
  13.  分散剤を実質的に含有していない請求項12記載の抗菌抗ウイルス剤懸濁液。 The antibacterial and antiviral suspension according to claim 12, which contains substantially no dispersant.
  14.  pH緩衝剤を実質的に含有していない請求項12又は請求項13記載の抗菌抗ウイルス剤懸濁液。 14. The antibacterial and antiviral suspension according to claim 12 or 13, which does not substantially contain a pH buffer.
  15.  請求項1ないし請求項11の何れかの請求項記載の抗菌抗ウイルス剤を使用する方法であって、湿式法によって超微粉砕して得られた分散液の懸濁状態を実質的に保持しながら使用に供することを特徴とする抗菌抗ウイルス剤の使用方法。 A method of using the antibacterial and antiviral agent according to any one of claims 1 to 11, wherein the suspension of the dispersion obtained by ultrafine pulverization by a wet method is substantially maintained. A method of using an antibacterial and antiviral agent, characterized in that it is used while being used.
PCT/JP2009/052866 2008-02-19 2009-02-19 Antimicrobial and antiviral agent and method for use thereof WO2009104670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009554364A JPWO2009104670A1 (en) 2008-02-19 2009-02-19 Antibacterial antiviral agent and method of using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008037941 2008-02-19
JP2008-037941 2008-02-19

Publications (1)

Publication Number Publication Date
WO2009104670A1 true WO2009104670A1 (en) 2009-08-27

Family

ID=40985548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052866 WO2009104670A1 (en) 2008-02-19 2009-02-19 Antimicrobial and antiviral agent and method for use thereof

Country Status (2)

Country Link
JP (1) JPWO2009104670A1 (en)
WO (1) WO2009104670A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058964A1 (en) * 2009-11-10 2011-05-19 株式会社かわかみ Virus-inactivating agent
JP2011245399A (en) * 2010-05-25 2011-12-08 Mikuni Color Ltd Dispersant for dispersing sea shell powder, and sea shell powder dispersion
JP2012062257A (en) * 2010-09-14 2012-03-29 Tahara Masanori Antivirus material using fired shell calcium powder
JP2018024617A (en) * 2016-08-10 2018-02-15 株式会社J−Style Scallop burned powder, mixed liquid thereof, manufacturing method and preservation method
JP2020090624A (en) * 2018-12-06 2020-06-11 有限会社日革研究所 Allergen reducing agent and allergen reducing method
JP2020200278A (en) * 2019-06-11 2020-12-17 株式会社プラスラボ Disinfectant or wound-healing agent for pseudomonas aeruginosa-infected wound
EP3789348A1 (en) * 2019-09-04 2021-03-10 Wen-Lung Chin Water purifying agent and method for making it
EP3789351A1 (en) * 2019-09-04 2021-03-10 Wen-Lung Chin Water deodorizer and method for making it
WO2022055311A1 (en) * 2020-09-10 2022-03-17 건국대학교 산학협력단 Composition comprising hydroxyapatite and calcium hydroxide with antibacterial or antiviral activity and manufacturing method therefor
KR20220033962A (en) * 2020-09-10 2022-03-17 건국대학교기술지주 주식회사 Hydroxyapatite with Anti-viral or Anti-bacterial Activity and Preparation Method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278712A (en) * 2000-03-30 2001-10-10 Yushiro Chem Ind Co Ltd Antibacterial and antifungal agent, antibacterial and antifungal agent for filter and depurative filter
JP2003231604A (en) * 1999-03-17 2003-08-19 Surfcera Kk Aqueous solution of antimicrobial agent
WO2005013695A1 (en) * 2003-08-12 2005-02-17 Mochigase Electrical Equipment Co., Ltd. Antiviral agent and fibers and antiviral members using the same
WO2007064000A1 (en) * 2005-11-30 2007-06-07 Nippon Natural Resource Co. Ltd. Antifungal/antibacterial agent comprising two-step baked shell powder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226210A (en) * 2000-02-18 2001-08-21 Hozawa Hiroki Virus-reducing agent and method for producing the same
JP2002255714A (en) * 2001-02-27 2002-09-11 Koowa:Kk Bacterium inhibitor comprising calcination product of scallop shell powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231604A (en) * 1999-03-17 2003-08-19 Surfcera Kk Aqueous solution of antimicrobial agent
JP2001278712A (en) * 2000-03-30 2001-10-10 Yushiro Chem Ind Co Ltd Antibacterial and antifungal agent, antibacterial and antifungal agent for filter and depurative filter
WO2005013695A1 (en) * 2003-08-12 2005-02-17 Mochigase Electrical Equipment Co., Ltd. Antiviral agent and fibers and antiviral members using the same
WO2007064000A1 (en) * 2005-11-30 2007-06-07 Nippon Natural Resource Co. Ltd. Antifungal/antibacterial agent comprising two-step baked shell powder

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058964A1 (en) * 2009-11-10 2011-05-19 株式会社かわかみ Virus-inactivating agent
CN102612320A (en) * 2009-11-10 2012-07-25 株式会社川上 Virus-inactivating agent
AU2010319177B2 (en) * 2009-11-10 2014-02-06 Kawakami Co., Ltd. Virus-inactivating agent
CN102612320B (en) * 2009-11-10 2014-10-08 株式会社川上 Virus-inactivating agent
JP5763546B2 (en) * 2009-11-10 2015-08-12 株式会社かわかみ Virus inactivating agent
JP2011245399A (en) * 2010-05-25 2011-12-08 Mikuni Color Ltd Dispersant for dispersing sea shell powder, and sea shell powder dispersion
JP2012062257A (en) * 2010-09-14 2012-03-29 Tahara Masanori Antivirus material using fired shell calcium powder
JP2018024617A (en) * 2016-08-10 2018-02-15 株式会社J−Style Scallop burned powder, mixed liquid thereof, manufacturing method and preservation method
JP2020090624A (en) * 2018-12-06 2020-06-11 有限会社日革研究所 Allergen reducing agent and allergen reducing method
JP2020200278A (en) * 2019-06-11 2020-12-17 株式会社プラスラボ Disinfectant or wound-healing agent for pseudomonas aeruginosa-infected wound
JP7302785B2 (en) 2019-06-11 2023-07-04 株式会社プラスラボ Antiseptic or wound-healing agent for Pseudomonas aeruginosa-infected wounds
EP3789348A1 (en) * 2019-09-04 2021-03-10 Wen-Lung Chin Water purifying agent and method for making it
EP3789351A1 (en) * 2019-09-04 2021-03-10 Wen-Lung Chin Water deodorizer and method for making it
WO2022055311A1 (en) * 2020-09-10 2022-03-17 건국대학교 산학협력단 Composition comprising hydroxyapatite and calcium hydroxide with antibacterial or antiviral activity and manufacturing method therefor
KR20220033962A (en) * 2020-09-10 2022-03-17 건국대학교기술지주 주식회사 Hydroxyapatite with Anti-viral or Anti-bacterial Activity and Preparation Method therefor
KR102546359B1 (en) * 2020-09-10 2023-06-28 건국대학교기술지주 주식회사 Manufacturing Method of Anti-bacterial and Anti-viral film using Micro-particles containing Shell-derived Calcium hydroxide and Hydroxyapatite

Also Published As

Publication number Publication date
JPWO2009104670A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
WO2009104670A1 (en) Antimicrobial and antiviral agent and method for use thereof
Dung et al. Silver nanoparticles as potential antiviral agents against African swine fever virus
Stanković et al. Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents
JP5019123B2 (en) Antifungal / antibacterial agent consisting of two-stage fired shell powder
JP2008179555A (en) Antivirus agent using shell as raw material
Zhu et al. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna
JP6144413B2 (en) Hydrochloric acid-containing virus killing agent
CN105854823B (en) A kind of biological composite antibacterial adsorbent material and preparation method thereof
TW201615559A (en) Mineral functional water and method for producing same as well as method for controlling unicellular organisms and/or viruses
US20130036907A1 (en) Non-woven fabric for filter, and process for production thereof
CN105517956A (en) Nanoparticulate titanium dioxide nanomaterial modified with functional groups and with citric extracts adsorbed on the surface, for the removal of a wide range of microorganisms
JP2019077648A (en) Bactericidal/sorbent composition in which calcium oxide is dispersed in water
JP2011026254A (en) Burned shell calcium powder, burned shell calcium aqueous solution, and sprayer for burned shell calcium aqueous solution
AU2015376853B2 (en) Improved pathogen inhibitor
KR20080069884A (en) Antivirals made from shells
US6627229B2 (en) Antiviral agent and method of producing the same
Khan et al. Facile synthesis of silver modified zinc oxide nanocomposite: An efficient visible light active nanomaterial for bacterial inhibition and dye degradation
KR20160112370A (en) Method for producing a fine powder of firing ionized calcium and the Nanosize powder of firing ionized calcium antibacterial additive produced with the production method
JP2011012000A (en) Anti-avian influenza virus agent containing lime originated from oyster shell, material for livestock industry for mammals or fowls, feed for livestock industry for mammals or fowls, food container and sanitary good
JP2012062257A (en) Antivirus material using fired shell calcium powder
CN104001202B (en) Disinfection powder for cow beds and preparation method thereof
JP6820579B2 (en) Antiviral agents and virus removal methods
Motoike et al. Antiviral activities of heated dolomite powder
JP6172611B2 (en) Method for generating hydroxyl radical and hydroxyl radical generating material
JP2018024617A (en) Scallop burned powder, mixed liquid thereof, manufacturing method and preservation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09712368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009554364

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09712368

Country of ref document: EP

Kind code of ref document: A1