WO2009104219A1 - Heat melting device - Google Patents

Heat melting device Download PDF

Info

Publication number
WO2009104219A1
WO2009104219A1 PCT/JP2008/000279 JP2008000279W WO2009104219A1 WO 2009104219 A1 WO2009104219 A1 WO 2009104219A1 JP 2008000279 W JP2008000279 W JP 2008000279W WO 2009104219 A1 WO2009104219 A1 WO 2009104219A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
blade
amount
edge
joule heat
Prior art date
Application number
PCT/JP2008/000279
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤貞夫
Original Assignee
有限会社ダルトン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ダルトン filed Critical 有限会社ダルトン
Priority to PCT/JP2008/000279 priority Critical patent/WO2009104219A1/en
Priority to JP2009554411A priority patent/JPWO2009104768A1/en
Priority to PCT/JP2009/053093 priority patent/WO2009104768A1/en
Publication of WO2009104219A1 publication Critical patent/WO2009104219A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • B26F3/06Severing by using heat
    • B26F3/08Severing by using heat with heated members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/08Means for treating work or cutting member to facilitate cutting
    • B26D7/10Means for treating work or cutting member to facilitate cutting by heating

Definitions

  • the present invention relates to a heat fusing device for fusing gates and the like in plastic molding.
  • the thermal conductivity is low, and there is uneven heat on the side of the wide blade edge. And the high heat part melts the product and causes dripping and stringing. And in the low heat part, the amount of pressurization became high, causing the product to be distorted or cracked.
  • heat is applied to the heating blade by heat conduction by a heater made of nichrome wire.
  • the heater is larger than the heating blade, and the structure supporting the heater is also larger. And it was not easy to raise the heating blade to the required temperature efficiently because the heat radiation of the structure itself increased.
  • a thermostat In the conventional heat fusing device, a thermostat is used, but since the heat conductivity such as a heating blade and a heater is generally low, the response speed is slow, and temperature control during fusing is almost impossible.
  • a current is passed through a heating coil to generate a magnetic field, and the heating blade is heated by electromagnetic induction.
  • the Joule heat of the eddy current limited to the surface layer by the skin effect uses the Joule heat of two surfaces united with the blade edge of the heating blade as a continuous heat source of the blade edge.
  • the uniform magnetic field of electromagnetic induction heating follows the peripheral edges of each remaining eddy current surface while canceling each other's eddy currents flowing in a plane perpendicular to the uniform magnetic flux at each point of the heating blade. Flowing evenly. And a uniform magnetic field produces
  • Joule heat amount is proportional to the square of the voltage, a high potential level shift that controls a higher high voltage generates a higher Joule heat amount and a higher Joule heat amount.
  • the optical fiber between the heating blade and the infrared sensor insulates the energy generated by the Joule heat temperature of the heating blade by transmitting only the energy to the infrared sensor.
  • the optical fiber controls the temperature of the heating blade in real time.
  • the torque transducer measures the torsional moment, The amount of applied pressure is controlled to be constant according to an appropriate set value of the applied pressure setting device.
  • the edge of the Joule heat edge is a direct Joule heat source. Then, the temperature is controlled to an appropriate temperature, the heat taken by the gate is instantaneously captured, and the gate is easily melted. That is, the side of the edge of Joule heat reduces the amount of pressure necessary for fusing and increases the pressurization speed. And the edge of the Joule heat cutting edge aims to improve the stable quality and yield of the product.
  • the ability to blow the gate with a low amount of pressure reduces distortion and cracks caused by stress on the product that accompanies the amount of pressure.
  • a high pressurization rate shortens the heating time for the product, thereby preventing overheating and preventing melting, dripping and stringing.
  • a heat source that supplies Joule heat directly to the cutting edge is efficient energy saving and has high utility.
  • Example 2 If there is uneven heat on the side of the wide blade edge, the hot part will melt the product and cause drooping and stringing. And in the part with low heat, the amount of applied pressure becomes high, which causes the product to be distorted or cracked. However, if the temperature of the wide blade edge is substantially uniform at an appropriate temperature over the entire edge of the Joule heat blade edge, the amount of pressure applied to the wide gate decreases. As a result, product distortion and cracks due to stress on the product are eliminated. Moreover, by shortening the gate fusing time, the product is not overheated, and melting, dripping and stringing are also reduced. The uniform magnetic field can supply almost uniform Joule heat evenly over the entire side of the wide blade edge. Then, the wide gate is blown out evenly. And the quality of a product improves and is made uniform and productivity improves. And uniform Joule heat has extremely high utility.
  • Example 3 Since the amount of Joule heat given to the heating blade is proportional to the square of the high voltage voltage, increasing the voltage of the high voltage gives a high amount of Joule heat to the heating blade.
  • the Joule heating blade easily obtains a high heat source.
  • the low voltage voltage of the low voltage DC power supply is up to 15V
  • the high voltage voltage of the high voltage DC power supply is up to 600V, which is the allowable current rating of the high side switch and the low side switch.
  • the limit value of the Joule heat amount when the power input AC is 100V AC is 100 W
  • the limit value of the Joule heat amount when AC 400V is increased to 1.6 KW.
  • the high potential level shift allows a high voltage to be raised, resulting in a higher joule heat at a higher high voltage. That is, the high potential level shift can easily obtain a high heat source of the Joule heating blade and has high utility.
  • FIG. 1 The effect of Example 4.
  • FIG. 1 The energy attenuated in inverse proportion to the square of the distance (m) connecting the Joule heating blade and the infrared sensor passes through the optical fiber having almost no attenuation, thereby shortening the distance (m) and suppressing the attenuation.
  • the optical fiber efficiently transmits only energy and substantially insulates between the heating blade and the infrared sensor.
  • the optical fiber measures the absolute temperature of the heating blade in real time and controls it to be constant. Real-time heating blade temperature control facilitates stable fusing and is highly useful.
  • Example 5 The effect of Example 5.
  • the current detection element replaces the alternating current with the temperature of the heating blade. That is, the alternating current is controlled in real time so that the temperature of the heating blade is appropriate.
  • the current detection element indirectly controls the temperature of the heating blade. Therefore, the alternating current control is economical and highly useful since the structure is simplified by omitting the optical fiber and the infrared sensor 7.
  • Example 7 A feature of the pressure amount control heating fusing device is that the torsion moment of the torque converter, that is, the strain gauge, is measured and used as the pressure amount. That is, the torque converter blows the gate with an appropriate and constant amount of pressure that is allowed. That is, the temperature distribution of the heating blade is uneven. For this reason, when the temperature distribution is low, the pressurization speed becomes slow because the amount of pressurization is constant. For this reason, the constant amount of applied pressure reduces the distortion caused by the stress on the product and the cracks of the product caused by the excessive amount of applied pressure. When the temperature distribution is high, the pressurization speed is efficiently increased as the amount of applied pressure decreases.
  • an increase in the pressurization speed shortens the heating time for the product, thereby preventing overheating and preventing the product from melting, sagging, and stringing.
  • Fusing the gate with an appropriate constant amount of pressure by means of a torque converter has extremely high usability because the product quality is improved, the product is made uniform, and the productivity is improved.
  • FIG. 1A is an explanatory view of a common structure and electrical action of heat fusing by electromagnetic induction.
  • Example 1 FIG. 1B is an explanatory diagram in which two identical circular induction heaters 11B are arranged symmetrically, and the hot blade 1 obtains a substantially uniform alternating magnetic field 13B.
  • Example 2 FIG. 1C is an explanatory diagram in which two rectangular elliptical heaters 11C are arranged symmetrically and the hot blade 1 obtains a substantially uniform alternating magnetic field 13C.
  • FIG. 2 is an explanatory diagram in which two rectangular elliptical heaters 11C are arranged symmetrically and the hot blade 1 obtains a substantially uniform alternating magnetic field 13C.
  • FIG. 1Ca is an explanatory diagram for controlling a magnetic field by using an action that a magnetic field is generated along a closed curve that vertically encloses a current of a minute conducting wire in order to give a uniform magnetic field to the heating blade 1.
  • FIG. 2A is an explanatory diagram for obtaining a high amount of Joule heat at the cutting edge by high voltage level shift.
  • FIG. 2B is an explanatory diagram in which the optical fiber 6a observes the absolute temperature (T) of the heating blade 1 in real time to control the temperature.
  • FIG. 2C is an explanatory diagram of current control by means for adjusting the alternating current LCI with respect to the temperature control in FIGS . 2A and 2B .
  • FIG. 2D is an explanatory diagram of a timing chart (during melting).
  • FIG. 2E is an explanatory diagram of a (standby) timing chart.
  • FIG. 2F is an explanatory diagram showing a timing chart for preventing the high-side switch HS and the low-side switch LS from being short-circuited in the block BK of FIG. 2A .
  • FIG. 3A is an explanatory diagram of a heating fusing device that controls the amount of applied pressure to be constant.
  • FIG. 3B is an explanatory diagram configured by two sets of pressure application amount control heating fusing devices 3Aa.
  • the timing chart of FIG. 3C is an explanatory diagram showing the state of the negative feedback loop.
  • the timing chart in FIG. 3D is an explanatory diagram showing a rapid change in the environment (Example 7).
  • Electromagnetic induction heater 11 Heating coil 2 3 Alternating current LCI 4 Alternating magnetic field 10 5 Heating blade 1 6 Multicore wire 2a
  • Embodiment 1 FIG. Hereinafter, the respective inventions will be sequentially described using the respective examples of the heating and fusing device by electromagnetic induction according to the present invention.
  • the electromagnetic induction heaters 11, 11 ⁇ / b> B , and 11 ⁇ / b> C will be described with respect to the common structure and electrical action of heating and fusing by electromagnetic induction.
  • Each of the electromagnetic induction heaters 11, 11B, and 11C generates the alternating magnetic fields 10, 10B, and 10C by passing the alternating current LCI through the heating coil 2 including the ultrafine multicore wire 2a.
  • the alternating magnetic fields 10, 10 ⁇ / b> B, and 10 ⁇ / b> C generate eddy currents 4 a and 4 b in the heating blade 1 to generate Joule heat (P).
  • the infrared sensor 7 receives energy 7 a generated by the temperature of the heating blade 1.
  • the infrared sensor 7 receives light between the heating blade 1 and the infrared sensor 7 through the optical fiber 6a.
  • maintains the infrared sensor 7 is comprised with the heat insulating material.
  • the sensor holding base 8 prevents heat conduction from the support base 6.
  • the sensor holding stand 8 suppresses the temperature rise of the infrared sensor 7.
  • the infrared sensor 7 measures the energy 7a, and controls the temperature of the heating blade 1 in real time.
  • the optical fiber 6a bundles a plurality of quartz glass optical fiber cores.
  • the optical fiber 6a is coated with a polyimide resin, and both end surfaces are polished.
  • the Joule heat quantity (P) that is the induction heating characteristic of the material will be described. Assume that the heating blade 1 is iron and the support base 6 and the arm 9 are aluminum. The amount of Joule heat (P) with respect to the characteristics of each conductor is proportional to the resonance frequency (f), the resistivity ( ⁇ ), and the relative permeability ( ⁇ ) with respect to the alternating current LCI of the number N of turns. . The relationship is shown in the following formula (1). Iron is ⁇ (0.17) and ⁇ (200). Aluminum is ⁇ (0.27) and ⁇ (1).
  • the ratio of Joule heat (P) of iron to aluminum is about 15.5 for aluminum and about 35.5 for iron. That is, it is proved that aluminum is hardly subjected to Joule heat (P) as compared with iron.
  • FIG. 1A is an explanatory view of the common electrical action of heat fusing by electromagnetic induction in FIGS . 1B and 1C .
  • the action of the alternating magnetic field 10 on the heating blade 1 in FIG. 1A will be described in detail.
  • an alternating current LCI to the heating coil 2a
  • electromagnetic induction occurs and an alternating magnetic field 10 is generated.
  • the alternating magnetic field 10 generates magnetic fluxes 3a and 3b on the AA and BB surfaces of the heating blade 1.
  • vertical to each magnetic flux 3a, 3b cancels mutually.
  • the remaining eddy currents 4a and 4b flow along the peripheral edges of the AA plane and the BB plane.
  • each eddy current 4a, 4b causes the heat loss of electromagnetic energy, and produces
  • the Joule heat amounts (P) of the two surfaces generated at the edge of the edge of the blade edge 5c are integrated into the blade edge 5c.
  • the cutting edge 5c is a heat source of Joule heat (P). That is, the heating coil 2a generates Joule heat (P) in the cutting edge 5c.
  • each eddy current 4a, 4b expresses the state localized on the surface by the skin effect proportional to the frequency (f) as each skin heat generation 5a, 5b. That is, although each eddy current 4a, 4b and each skin heat generation 5a, 5b are expressed separately for explanation, they are the same.
  • each Joule heat quantity (P) of the skin heat generation 5a on the AA surface and the skin heat generation 5b on the BB surface is integrated with the skin heat generation 5a and 5b of the two surfaces combined with the blade edge 5c into the side of the blade edge 5c. And double. Joule heat quantity (P) is shown in equation (1).
  • each eddy current 4a, 4b due to the skin effect is localized on the surface in proportion to the frequency (f).
  • Each of the eddy currents 4a and 4b decreases exponentially as it enters the inside, and the thickness ( ⁇ ) that becomes 1 / ⁇ of the surface is expressed by the following equation (2).
  • is electrical conductivity
  • is magnetic permeability
  • is specific resistance.
  • the heating blade 1 is made of steel and the plastic gates 14B and 14C have a temperature required for fusing up to 300 degrees, the specific resistance ⁇ that changes with temperature changes to about (20 to 53), and the magnetic field The magnetic permeability ⁇ that changes with the strength changes to about (20 to 1000).
  • the frequency (f) of the alternating current LCI is 20 KHZ
  • the thicknesses ( ⁇ ) of the eddy currents 4a and 4b due to the skin effect differ depending on the temperature and the strength of the magnetic field.
  • the thickness ( ⁇ ) is approximately 0.2 to 2.3 mm.
  • most of the Joule heat (P) is concentrated on the thickness ( ⁇ ) of the surface layer of the heating blade 1 by the skin effect.
  • the effect of the surface layer thickness ( ⁇ ) is also applied in FIGS . 1B and 1C .
  • the sides of the blade edge 5c combined with the skin heat generation 5a and 5b due to the skin effect are direct heat sources of Joule heat (P).
  • the temperature of the side of the blade edge 5c is controlled to an appropriate temperature.
  • the edge of the blade edge 5c instantaneously supplements the heat taken by the gates 14B and 14C.
  • the gates 14B and 14C are easily melted. That is, the side of the blade edge 5c, which is a heat source, reduces the amount of pressure 42b necessary for fusing and increases the pressurization speed.
  • the fact that the gates 14B and 14C can be blown with a low applied pressure 42b reduces distortion and cracks caused by stress on the products 15B and 15C that are generated with the applied pressure 42b.
  • the heating time for each product 15B, 15C is shortened, so that overheating is prevented to prevent melting, sagging, and stringing.
  • the sides of the cutting edge 5c aim to improve the stable quality and yield of the products 15B and 15C.
  • the side of the blade edge 5c of each skin heat generation 5a, 5b is a heat source of direct Joule heat (P), and the Joule heat (P) formula (1) and thickness ( ⁇ ) formula (2). , Prove. And the edge
  • a heat source that supplies Joule heat (P) directly to the cutting edge 5C is efficient energy saving and has high utility.
  • FIG. 1B shows two identical circular induction heaters 11B arranged symmetrically.
  • Two circular heating coils 2B having the same radius R are arranged in parallel and coaxially. Further, the two circular heating coils 2B arranged have the radius R and the two arranged distances D substantially equal.
  • the two circular heating coils 2B are energized with alternating current LCI in the same direction. As a result, the heating blade 1 located at the center of the two circular heating coils 2B obtains a substantially uniform alternating magnetic field 13B.
  • FIG. 1Ca is an explanatory diagram for controlling a magnetic field by using a property that a magnetic field is generated along a closed curve that vertically encloses a current of a minute conducting wire in order to apply a uniform magnetic field to the heating blade 1.
  • the rectangular elliptical heating coil 2C controls the direction of the magnetic field generated at both ends by changing the angle of the shape by making the both ends of the rectangle matched with the shape of the rectangular heating blade 1 into an ellipse (that is, an acute angle).
  • the rectangular elliptical heating coil 2 ⁇ / b> C makes the magnetic field uniform by avoiding a double magnetic field on the superheater blade 1.
  • the rectangular elliptical heating coil 2C generates a magnetic field along the closed curve 13Ca perpendicular to the axial 13Cc with respect to the angle of the current 13Cb of the minute conducting wire at each point by the alternating current LCI. And the magnetic field is controlled by the shape of the both ends of the rectangular heating coil 2C, and gives a uniform magnetic field to the heating blade 1.
  • a heating coil 2 ⁇ / b> C in which both ends of a rectangular shape having these functions are formed into an ellipse (that is, an acute angle) is expressed as a rectangular elliptical heating coil 2 ⁇ / b> C.
  • two rectangular elliptical heaters 11C are arranged symmetrically.
  • the two rectangular elliptical heating coils 2C are arranged in parallel and coaxially. Furthermore, the two rectangular elliptical heating coils 2 ⁇ / b> C that are arranged make the half short side r and the two arranged distances d substantially equal.
  • the two rectangular elliptical heating coils 2C are energized with alternating current LCI in the same direction. As a result, the heating blade 1 located at the center of the two rectangular elliptical heating coils 2C obtains a substantially uniform alternating magnetic field 13C.
  • the uniform alternating magnetic fields 13B and 13C cancel each other out the eddy currents at the respective points flowing in the plane perpendicular to the uniform magnetic fluxes 3a and 3b at the respective points of the heating blade 1.
  • the remaining eddy currents 4a and 4b flow evenly along the peripheral edge of the surface due to the skin effect.
  • the substantially uniform eddy currents 4a, 4b are formed by the wide blade edge 5c. An almost uniform amount of Joule heat is generated over the entire area of the side.
  • the high heat part melts the product 15B and causes dripping and stringing.
  • the amount of applied pressure 42b becomes high and causes each product 15B, 15C to cause a distortion or a crack. That is, if the temperature of the wide blade edge 5c is substantially uniform at an appropriate temperature over the entire side of the blade edge 5c, the amount of pressure 42b applied to the wide gates 14B and 14C decreases. Accordingly, the products 15B and 15C are free from strain and cracks due to stress. Moreover, by shortening the fusing time of the gates 14B and 14C, the products 15B and 15C are not overheated, and melting, sagging, and stringing are also reduced.
  • Each of the uniform alternating magnetic fields 13B and 13C can supply almost uniform Joule heat uniformly over the entire side of the wide blade edge 5c.
  • the uniform alternating magnetic fields 13B and 13C melt the wide gates 14B and 14C evenly. And the quality of each product 15B and 15C improves, is equalized, and productivity improves. That is, uniform Joule heat over the entire side of the wide cutting edge 5c has extremely high utility.
  • the heating coil 2 and the resonance capacitor LCC resonate the series resonance circuit LC.
  • the alternating current LCI is maximized.
  • the interrelationship between the high voltage VH, the alternating current LCI, and the amount of Joule heat (P) applied to the cutting edge 5c of the heating blade 1 is expressed by the following equations (7) and (8). Show. However, the AC loss resistance due to the skin effect of the heating coil 2 is ignored.
  • FIG. 2A illustrates the function of the high potential level shift HLS. Since the shift point SP moves alternately between the high voltage VH and the zero potential V0, the potential of the high side input HI must also move following the shift point SP.
  • the low-side switch LS When the low-side switch LS is on, the power supply capacitor SC charges the low voltage VL via the charging path IC.
  • the reference potential of the high potential level shift HLS is connected to the shift point SP.
  • the shift point SP is the high voltage VH, the low voltage DC power supply VLP is protected by the high voltage blocking diode SD.
  • the power supply capacitor SC charged with the low voltage VL serves as a control power supply for the high potential level shift HLS.
  • the portion between the high side signal HS and the high side input HI is electrically isolated by the floating element FE and transmits only the signal.
  • the high potential level shift HLS shown in FIG. 2A includes a power supply capacitor SC, a high voltage blocking diode SD, and a floating element FE. These functions and circuits are collectively referred to as a high potential level shift HLS.
  • the amount of Joule heat (P) given to the cutting edge 5c of the heating blade 1 is proportional to the square of the voltage of the high voltage VH. Therefore, by increasing the voltage of the high voltage VH higher, A higher amount of Joule heat is given to the cutting edge 5c. The cutting edge 5c of the heating blade 1 easily obtains a higher heat source.
  • the voltage of the low voltage VL of the low voltage DC power supply VLP is up to 15V
  • the voltage of the high voltage VH of the high voltage DC power supply VHP is up to 600V.
  • the high side switches HS, HSR, HSL and the low side switches LS, LSR, LSL are current acceptable ratings. Assuming that the limit value of Joule heat (P) when the power input AC is 100V AC is 100W, the limit value of Joule heat (P) is 400kW when the input voltage is AC 400V. However, the switching loss and steady loss of each switch are ignored.
  • the high potential level shift HLS makes it possible to increase the high voltage VH, and in equation (8), a higher Joule heat (P) is obtained at a higher high voltage VH. That is, the high potential level shift HLS easily obtains a heat source having a high cutting edge 5c of the heating blade 1.
  • the high potential level shift HLS has high utility.
  • the energy (PE) radiated by the absolute temperature (T) of the heating blade 1 receives the amount of infrared rays 7a proportional to the fourth power of the absolute temperature (T) by the thermopile infrared sensor 7 through the optical fiber 6a. Then, the energy (PE) that is the amount of received light is amplified by the fourth root amplifier 22 that approximates the fourth root, and a “measured value” 22 a that is proportional to the absolute temperature (T) of the heating blade 1 is obtained.
  • the optical fiber 6a controls the temperature of the heating blade 1 in real time.
  • ( ⁇ ) is the Stenfan-Boltzmann constant.
  • ( ⁇ ) is the energy emissivity of the substance.
  • FIG. 2C explains how to control the alternating current LCI by replacing the temperature control in FIGS . 2A and 2B with the temperature of the blade edge 5c.
  • the amount of Joule heat (P) applied to the heating blade 1 considers the surrounding environment such as the ambient temperature, the heat dissipation state of the blade edge 5c, and the state of movement of thermal energy to the gates 14B and 14C.
  • the amount of Joule heat (P) applied to the heating blade 1 is optimally adjusted by the means for adjusting the alternating current LCI to the optimum temperature of the blade edge 5c. That is, the alternating current LCI is controlled by adjusting the “set value” of the setting device 23 of the alternating current LCI so that the temperature of the blade edge 5c becomes appropriate. That is, the alternating current LCI controls the Joule heat quantity (P) proportional to the optimum temperature of the cutting edge 5c in real time. It also copes with voltage fluctuations of the input power supply AC.
  • FIG. 2C shows an example of a current detection method.
  • the alternating current LCI of the series resonant circuit LC is detected by the Hall effect current detection element 18 that generates magnetic flux. Since the potential of the current detection element 18 alternately moves between the high voltage VH and the zero potential V0, only the alternating current amount of the alternating current LCI is obtained by the isolation-type alternating current detection circuit 19 that insulates the high voltage. To detect.
  • the alternating current LCI is maximized.
  • the mutual relationship between the alternating current LCI and the Joule heat quantity (P) in the heating coil 2 having N turns with respect to the heating blade 1 is expressed by the following equation (1). However, the AC loss resistance due to the skin effect of the heating coil 2 is ignored.
  • the amount of Joule heat (P) given to the heating blade 1 is proportional to the square of the alternating current LCI. Therefore, by adjusting the alternating current LCI, the temperature of the cutting edge 5c of the heating blade 1 can be adjusted in real time. Easy to adjust.
  • the current detection element 18 replaces the alternating current LCI by current detection with the temperature of the heating blade 1.
  • the alternating current LCI is controlled to the “set value” in real time by comparing the “measured value” 22a of the DC detection circuit 20 with the “set value” of the setter 23 of the alternating current LCI. That is, the temperature of the blade edge 5c is indirectly controlled by controlling the alternating current LCI. Therefore, the temperature control by the alternating current LCI omits the optical fiber 6a and the infrared sensor 7, and the structure is simplified.
  • the control of the alternating current LCI replaced with the temperature of the blade edge 5c is economical and highly useful.
  • each “measured value” 22a of the absolute temperature (T) of the heating blade 1 and the alternating current LCI passes each "measured value” 22a and the “set value” of each setting device 23 through the error amplifier 24, and its error is zero.
  • the negative feedback loop is configured so that That is, each “measured value” 22 a is controlled to be constant by forming a negative feedback loop through the error amplifier 24, the pulse width modulation circuit 26, the logic circuit 27, and the drive circuit 28.
  • FIG. 2D is a timing chart (during cutting).
  • FIG. 2E is a timing chart of (standby).
  • Each timing chart is synchronized with the resonance reference clock CLK.
  • the logic circuit 27 alternately drives each block left BKL and right BKR sequentially.
  • the series resonance circuit LC causes a resonance phenomenon in synchronization with the resonance reference clock CLK, and obtains the maximum alternating current LCI.
  • FIG. 2D (during fusing)
  • a high alternating current LCI is required, and the pulse width PWL of (during fusing) is widened.
  • a low alternating current LCI is required, and the pulse width PWS in (standby) is narrowed.
  • the alternating current LCI selected by the controller 29 is switched between the “set value” and the “measured value” 22a of each of the adjusters 23a and 23b of the setter 23 by an error amplifier. 24, the error is controlled to be zero.
  • the alternating current LCI is controlled by generating a current wave height adjustment width IVM by the current adjustment width PWM generated in the pulse width modulation circuit 26.
  • the alternating current LCI that is, the Joule heat quantity (P) is controlled by configuring a feedback loop so as to follow the absolute temperature (T) and the “setting value” of the setting device 23 of the alternating current LCI.
  • FIG. 2F is a timing chart for preventing the high-side switch HS and the low-side switch LS from being short-circuited in the block BK of FIG. 2A .
  • a time taken until the high side switch HS and the low side switch LS are completely switched off is defined as a turn-off TOF time.
  • a sufficient time that is, a dead time DT is provided for the turn-off TOF in principle.
  • the principle of the dead time DT is also applied to the timing charts of FIGS . 2D and 2E .
  • the frequency of the reference clock 25 for resonating the series resonance circuit LC is adjusted to the resonance frequency (f) of the series resonance circuit LC by the reference clock adjuster 25a.
  • the alternating current LCI maximizes and maximizes the waveform.
  • the logic circuit 27 determines the operation order of the blocks BK, BKL, and BKR and repeats them sequentially.
  • the logic circuit 27 executes the dead time DT shown in FIG. 2F in principle.
  • the drive circuit 28 converts each high-side switch and each low-side switch into an electrical standard for each switch for driving. Embodiment 2. FIG.
  • FIG. 3A is a heating fusing device for controlling the amount of pressure to be constant.
  • the pressurizing amount control heating fusing device 3 ⁇ / b> Aa controls the appropriate pressurizing amount 42 b of the gate 14 along the appropriate “set value” 43 b of the pressurizing setter 43.
  • the pressurizing amount control heating fusing device 3Aa uses the speed control motor 51 as a power source and uses a pressurizing amount 42b for fusing the gate 14 as a load.
  • the measured amount of the strain gauge is the applied pressure amount 42b.
  • the applied pressure amount 42b sets the output of the bridge amplifier 42 to “measured value” 42a.
  • the applied pressure amount 42b is adjusted by the adjuster 43a.
  • the “set value” 43b and the “measured value” 42a of the pressure setting device 43 are controlled so that the error voltage of the error voltage 44a becomes zero through the error voltage amplifier 44.
  • the pressure amount 42b is controlled to be constant by forming a negative feedback loop through the voltage / frequency converter 46, the speed control driver 50, the speed control motor 51, the coupling 52, and the torque converter 41.
  • the voltage / frequency converter 46 adjusts the ratio of frequency to voltage by the voltage / frequency adjuster 46a. Then, the voltage / frequency adjuster 46a adjusts the pressurizing speed which varies depending on the lead 55a.
  • the timing chart of FIG. 3C shows the state of the negative feedback loop. If the “measured value” 42a is higher than the “set value” 43b, the error voltage 44a decreases and the speed of the pulse train 49 also decreases. Accordingly, the speed command 50a is also lowered, and acts to lower the “measured value” 42a. Then, due to the delay of the speed control motor 51, the “measured value” 42a almost converges along the “set value” 43b even though some hunting phenomenon occurs around the “set value” 43b. As the speed control motor 51, a servo motor or a stepping motor is typically used.
  • the timing chart in FIG. 3D shows a rapid change in the environment. That is, it shows a state in which the gate 14 is cured by a slightly irregular change such as a change in ambient temperature, wind, and the condition of the temperature controller. That is, there is a delay included in the negative feedback loop such as the speed control motor 51. Therefore, when the gate 14 is cured, the applied pressure amount 42b is increased so that an unreasonable stress such as a crack is not applied to the product.
  • the applied pressure upper limit detector 47 sets the front of the excessive stress as the “upper limit value” by the upper limit adjuster 47a.
  • the pulse train stop circuit 48 temporarily stops the pulse train 49 and the speed command 50a until the “measurement value” 42a exceeds the “upper limit value” and returns to the “set value” 43b. To do.
  • the products in the drawings in FIGS . 3A and 3B are omitted.
  • FIG. 3A shows a pressurizing amount control fusing device 3Aa as an example of the mechanism means for applying the pressurizing amount 42b.
  • the mechanism is supported by a gantry 60, and includes a belt 53, a screw 55, a lead 55a thereof, a moving table 56 interlocked with the belt 53, an arm 9, heating units 58a and 58b, and movable sides 59a of the heating blade. It is constituted by the fixed side 59b. And there is the economical efficiency which can occupy about half compared with FIG. 3B .
  • the gate 14 there is a drawback that the center point during fusing from the start to the fusing is shifted to the fixed side 59b. And the fault which shift
  • FIG. 3B includes two sets of pressurizing amount control heating fusing devices 3Aa.
  • the operation of each of the two sets of movable heating blades 59a and 59a is synchronized with the controller 29. Further, since the center points of the heating blades 59a and 59a during the melting from the start to the completion are the same, there is a feature that the melting section of the product and the product are not distorted.
  • a feature of the pressure amount control heating fusing device 3Aa is that a torsional moment of the torque converter 41 is measured by a strain gauge to obtain a pressure amount 42b.
  • the torque converter 41 melts the gate 14 with an appropriate fixed pressure amount 42b that is allowed. That is, each heating blade 59a, 59b has uneven temperature distribution. For this reason, when the temperature distribution is low, the pressurizing speed is slowed by the constant pressure 42b.
  • the constant amount of applied pressure 42b reduces distortion caused by stress on the product and cracks (cracks) of the product caused by the excessive amount of applied pressure 42b.
  • the pressurization speed is efficiently increased as the applied pressure amount 42b decreases. Therefore, an increase in the pressurization speed shortens the heating time for the product, thereby preventing overheating and preventing the product from melting, sagging, and stringing.
  • Fusing the gate with an appropriate constant amount of pressure by the torque converter 41 improves the quality of the product, homogenizes the product, further improves productivity, and has extremely high utility. .
  • the heating blade When heating and cutting plastic lens and light guide plate gates, the heating blade is heated with an appropriate amount of Joule heat, and heat cutting without excessive force prevents distortion and overheating due to stress on the product, improving quality and making it uniform. , Productivity is improved and it has extremely high utility.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Cutting Devices (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

Electromagnetic induction occurs by conducting alternating current LCI in a heating coil (2a) and an alternating magnetic field (10) is caused. The alternating magnetic field (10) generates respective magnetic fluxes (3a and 3b) on faces A-A and B-B of a heating blade (1). Eddy currents of respective points, which flow in respective faces vertical to the magnetic fluxes (3a and 3b), negate each other. Remaining eddy currents (4a and 4b) flow along peripheral edges of the faces A-A and B-B. The eddy currents (4a and 4b) cause heat loss of electromagnetic energy and generate a Joule heat amount (P). The Joule heat amount (P) on the two faces, which is caused at an edge of a side of a blade edge (5c), is integrated with the blade edge (5c). The blade edge (5c) is a heat source of the Joule heat amount (P).

Description

加熱溶断装置Heat cutting equipment
 この発明はプラスチック成型において、ゲートなどを溶断する加熱溶断装置に関するものである。 The present invention relates to a heat fusing device for fusing gates and the like in plastic molding.
従来の加熱溶断装置に於いては、ニクロム線から成るヒータによって、熱伝導で、加熱刃に熱を与えていた。
特開2003-23689 「理化学辞典」岩波書店 2004年、高電位レベルシフトIRS2118 Data Sheet IRF社製、光ファイバー MSW200/220C データシート MORITEX社製、ホール効果の電流検出素子 ACS704ELC-015 Data Sheet Allegro社製、 トルク変換器 TPN型 データシート KYOWA社製、
In a conventional heating fusing device, heat is applied to the heating blade by heat conduction by a heater made of nichrome wire.
JP 2003-23689 A RIKEN Dictionary Iwanami Shoten 2004, High Potential Level Shift IRS2118 Data Sheet IRF, Optical Fiber MSW200 / 220C Data Sheet MORITEX, Hall Effect Current Detector ACS704ELC-015 Data Sheet Allegro, Torque Converter TPN Data sheet made by KYOWA,
従来の加熱溶断装置に於いては、ニクロム線から成るヒータによって、熱伝導で加熱刃に熱を与えていた。しかし、熱伝導率が低く、被加熱体(ゲート)に熱を奪われると、加熱刃は、温度が下がり直ぐに回復が出来ないまま、低い熱の状態で加圧する。そのため、加圧力量が高くなり、製品に歪や、クラックを起こす原因となっていた。 In the conventional heating fusing device, heat is applied to the heating blade by heat conduction by a heater made of nichrome wire. However, when the heat conductivity is low and the object to be heated (gate) is deprived of heat, the heating blade pressurizes in a low heat state without recovering immediately after the temperature drops. Therefore, the amount of applied pressure is increased, causing distortion and cracks in the product.
従来の加熱溶断装置に於いては、熱伝導率が低く、幅の広い刃先の辺に熱むらがある。そして、熱の高い部分は、製品を融解し、垂れ、糸引きの原因となる。そして、熱の低い部分は、加圧力量が高くなって、製品に歪や、クラックを起こす原因となっていた。 In a conventional heat fusing device, the thermal conductivity is low, and there is uneven heat on the side of the wide blade edge. And the high heat part melts the product and causes dripping and stringing. And in the low heat part, the amount of pressurization became high, causing the product to be distorted or cracked.
従来の加熱溶断装置に於いては、ニクロム線から成るヒータによって、熱伝導で加熱刃に熱を与えていた。そして、ヒータは加熱刃に比較して大きく、ヒータを支える構造体も大きくなっていた。そして、構造体自身の放熱が大きくなって効率よく加熱刃を必要な温度まであげることは容易ではなかった。 In the conventional heating fusing device, heat is applied to the heating blade by heat conduction by a heater made of nichrome wire. The heater is larger than the heating blade, and the structure supporting the heater is also larger. And it was not easy to raise the heating blade to the required temperature efficiently because the heat radiation of the structure itself increased.
 従来の加熱溶断装置に於いては、サーモスタットを使用しているが、加熱刃やヒータなど総じて熱伝導率が低いため、応答速度が遅く、溶断中の温度制御はほぼ不可能であった。 In the conventional heat fusing device, a thermostat is used, but since the heat conductivity such as a heating blade and a heater is generally low, the response speed is slow, and temperature control during fusing is almost impossible.
 電磁誘導加熱は、加熱コイルに、電流を流して磁界を生成し、加熱刃を電磁誘導加熱する。そして、表皮効果によって表面層に極限された渦電流のジュール熱は、加熱刃の刃先に合体している2面のジュール熱を、刃先の持続的な熱源とする。 In electromagnetic induction heating, a current is passed through a heating coil to generate a magnetic field, and the heating blade is heated by electromagnetic induction. And the Joule heat of the eddy current limited to the surface layer by the skin effect uses the Joule heat of two surfaces united with the blade edge of the heating blade as a continuous heat source of the blade edge.
電磁誘導加熱の均一な磁界は、加熱刃の各点の均一な磁束に垂直な面内に流れる各点の渦電流を相互に打ち消し合いながら、残った各渦電流の面の周囲の縁に沿って均等に流れる。そして、均一な磁界は幅の広い刃先の辺に、均一なジュール熱量の熱源を生成する。 The uniform magnetic field of electromagnetic induction heating follows the peripheral edges of each remaining eddy current surface while canceling each other's eddy currents flowing in a plane perpendicular to the uniform magnetic flux at each point of the heating blade. Flowing evenly. And a uniform magnetic field produces | generates the heat source of a uniform Joule heat amount in the edge | side of a wide blade edge | tip.
 ジュール熱量が電圧の二乗に比例するため、より高い高電圧を制御する高電位レベルシフトは、より高いジュール熱量を生成して、より高いジュール熱量を生成する。 Since the Joule heat amount is proportional to the square of the voltage, a high potential level shift that controls a higher high voltage generates a higher Joule heat amount and a higher Joule heat amount.
加熱刃と赤外線センサの間にある光ファイバーは、加熱刃のジュール熱の温度によって発生するエネルギーを、赤外線センサにエネルギーのみを伝送して断熱する。そして、光ファイバーはリアルタイムに加熱刃の温度を制御する。 The optical fiber between the heating blade and the infrared sensor insulates the energy generated by the Joule heat temperature of the heating blade by transmitting only the energy to the infrared sensor. The optical fiber controls the temperature of the heating blade in real time.
 ニクロム線をヒータとする加熱刃を備えた成型品のゲートを溶断するゲートカット装置にあって、ゲートに対する適切な加圧力量を得るために、トルク変換器は、ねじれモーメントの計測をして、加圧力設定器の適切な設定値に沿って、加圧力量を一定に制御する。 In a gate cutting device that melts the gate of a molded product equipped with a heating blade using nichrome wire as a heater, in order to obtain an appropriate amount of pressure applied to the gate, the torque transducer measures the torsional moment, The amount of applied pressure is controlled to be constant according to an appropriate set value of the applied pressure setting device.
 実施例1の効果。
ジュール熱の刃先の辺は、直接的なジュール熱量の熱源である。そして適温に温度制御して、ゲートに奪われる熱を瞬時に補足して、ゲートを容易に溶断する。つまり、ジュール熱の刃先の辺は溶断に必要な加圧力量を減らして加圧速度を上げる。そして、ジュール熱の刃先の辺は製品の安定した品質と歩留まりの向上を図る。低い加圧力量でゲートを溶断できる事は加圧力量にともない発生する製品への応力による歪、クラック(ひびわれ)を減らす。そして、加圧速度が早い事は製品への加熱時間を短くするため過加熱を防いで融解、垂れ、及び糸引きを防止する。
刃先に直接的なジュール熱量を供給する熱源は、効率的な省エネルギーであって、高い有用性を持つ。
The effect of Example 1.
The edge of the Joule heat edge is a direct Joule heat source. Then, the temperature is controlled to an appropriate temperature, the heat taken by the gate is instantaneously captured, and the gate is easily melted. That is, the side of the edge of Joule heat reduces the amount of pressure necessary for fusing and increases the pressurization speed. And the edge of the Joule heat cutting edge aims to improve the stable quality and yield of the product. The ability to blow the gate with a low amount of pressure reduces distortion and cracks caused by stress on the product that accompanies the amount of pressure. A high pressurization rate shortens the heating time for the product, thereby preventing overheating and preventing melting, dripping and stringing.
A heat source that supplies Joule heat directly to the cutting edge is efficient energy saving and has high utility.
 実施例2の効果。
幅の広い刃先の辺に熱むらがあれば、熱の高い部分は製品を融解し、垂れ、糸引きの原因となる。そして、熱の低い部分は、加圧力量が高くなり、製品に歪や、クラックを起こす原因となる。しかし、幅の広い刃先の温度が、ジュール熱の刃先の辺の全部に亘って適温にほぼ均一であれば、幅の広いゲートにかかる加圧力量は低下する。それにともない、製品への応力による製品の歪や、クラックも無くなる。しかも、ゲートの溶断時間も短縮されることによって、製品は、過加熱がなくなり、融解、垂れ、糸引きも減少する。
均一磁界は、幅の広い刃先の辺の全域に、ほぼ均一なジュール熱をむらなく供給できる。そして、幅の広いゲートを、むらなく溶断する。そして、製品の品質は、向上して、均一化されて、生産性も向上する。そして、均一なジュール熱は極めて高い有用性を持つ。
The effect of Example 2.
If there is uneven heat on the side of the wide blade edge, the hot part will melt the product and cause drooping and stringing. And in the part with low heat, the amount of applied pressure becomes high, which causes the product to be distorted or cracked. However, if the temperature of the wide blade edge is substantially uniform at an appropriate temperature over the entire edge of the Joule heat blade edge, the amount of pressure applied to the wide gate decreases. As a result, product distortion and cracks due to stress on the product are eliminated. Moreover, by shortening the gate fusing time, the product is not overheated, and melting, dripping and stringing are also reduced.
The uniform magnetic field can supply almost uniform Joule heat evenly over the entire side of the wide blade edge. Then, the wide gate is blown out evenly. And the quality of a product improves and is made uniform and productivity improves. And uniform Joule heat has extremely high utility.
  実施例3の効果。
加熱刃に与えるジュール熱量は、高電圧の電圧の二乗に比例する為、高電圧の電圧を上げることは、加熱刃に、高いジュール熱量を与える。そして、ジュール熱の加熱刃は高い熱源を容易に得る。
ちなみに、低電圧直流電源の低電圧の電圧は15Vまであって、高電圧直流電源の高電圧の電圧は600Vまでが、ハイサイドスイッチとローサイドスイッチの許容される現在の定格である。仮に、電源入力ACがAC100Vの時ジュール熱量の限界値を100Wとすれば、AC400Vの時ジュール熱量の限界値は、1.6KWまであがる。
高電位レベルシフトは、高電圧を上げることを可能にして、より高い高電圧で、より高いジュール熱量を得る。つまり、高電位レベルシフトは、ジュール熱の加熱刃の高い熱源を容易に得て、高い有用性を持つ。
The effect of Example 3.
Since the amount of Joule heat given to the heating blade is proportional to the square of the high voltage voltage, increasing the voltage of the high voltage gives a high amount of Joule heat to the heating blade. The Joule heating blade easily obtains a high heat source.
Incidentally, the low voltage voltage of the low voltage DC power supply is up to 15V, and the high voltage voltage of the high voltage DC power supply is up to 600V, which is the allowable current rating of the high side switch and the low side switch. If the limit value of the Joule heat amount when the power input AC is 100V AC is 100 W, the limit value of the Joule heat amount when AC 400V is increased to 1.6 KW.
The high potential level shift allows a high voltage to be raised, resulting in a higher joule heat at a higher high voltage. That is, the high potential level shift can easily obtain a high heat source of the Joule heating blade and has high utility.
実施例4の効果。
ジュール熱の加熱刃と赤外線センサを結ぶ距離(m)の二乗に反比例して減衰するエネルギーは、減衰が殆んどない光ファイバーを通すことによって距離(m)を短縮して減衰を抑止する。且つ、光ファイバーは、効率よくエネルギーのみを伝送して、加熱刃と赤外線センサの間を、ほぼ断熱する。
光ファイバーは加熱刃の絶対温度をリアルタイムに計測して一定に制御する。リアルタイムな加熱刃の温度制御は、安定した溶断を容易にして、高い有用性を持つ。
The effect of Example 4. FIG.
The energy attenuated in inverse proportion to the square of the distance (m) connecting the Joule heating blade and the infrared sensor passes through the optical fiber having almost no attenuation, thereby shortening the distance (m) and suppressing the attenuation. In addition, the optical fiber efficiently transmits only energy and substantially insulates between the heating blade and the infrared sensor.
The optical fiber measures the absolute temperature of the heating blade in real time and controls it to be constant. Real-time heating blade temperature control facilitates stable fusing and is highly useful.
実施例5の効果。
電流検出素子は、交番電流を、加熱刃の温度に、置き換える。つまり、加熱刃の温度が、適切になるように、交番電流をリアルタイムに制御する。そして、電流検出素子は間接的に加熱刃の温度を制御する。したがって、交番電流の制御は、光ファイバーや赤外線センサ7を省いて、構造も簡略されて、経済的であって、高い有用性を持つ。
The effect of Example 5.
The current detection element replaces the alternating current with the temperature of the heating blade. That is, the alternating current is controlled in real time so that the temperature of the heating blade is appropriate. The current detection element indirectly controls the temperature of the heating blade. Therefore, the alternating current control is economical and highly useful since the structure is simplified by omitting the optical fiber and the infrared sensor 7.
 実施例7の効果。
加圧力量制御加熱溶断装置の特徴は、トルク変換器のねじれモーメントつまりストレインゲージを、計測して、加圧力量とする。つまり、トルク変換器は、許容される適切な一定の加圧力量で、ゲートを溶断する。つまり、加熱刃の温度分布にむらがある。そのため、温度分布が低いときは、一定の加圧力量であるため、加圧速度が遅くなる。そのため、一定の加圧力量は、無理な加圧力量にともない発生する製品への応力による歪、製品のクラック(ひびわれ)を減らす。温度分布が高い時は、加圧力量が下がるにつれて、効率的に加圧速度が早くなる。したがって、加圧速度が早くなることは、製品への加熱時間が短くなるため、過加熱を防ぎ、製品の融解や、垂れ、糸引き、を防止する。
トルク変換器によって、適切な一定の加圧力量で、ゲートを溶断することは、製品の品質は向上して、製品を均一化して、さらに生産性も向上して、極めて高い有用性を持つ。
The effect of Example 7.
A feature of the pressure amount control heating fusing device is that the torsion moment of the torque converter, that is, the strain gauge, is measured and used as the pressure amount. That is, the torque converter blows the gate with an appropriate and constant amount of pressure that is allowed. That is, the temperature distribution of the heating blade is uneven. For this reason, when the temperature distribution is low, the pressurization speed becomes slow because the amount of pressurization is constant. For this reason, the constant amount of applied pressure reduces the distortion caused by the stress on the product and the cracks of the product caused by the excessive amount of applied pressure. When the temperature distribution is high, the pressurization speed is efficiently increased as the amount of applied pressure decreases. Therefore, an increase in the pressurization speed shortens the heating time for the product, thereby preventing overheating and preventing the product from melting, sagging, and stringing.
Fusing the gate with an appropriate constant amount of pressure by means of a torque converter has extremely high usability because the product quality is improved, the product is made uniform, and the productivity is improved.
図1A、は電磁誘導による加熱溶断の共通する構造及び電気的な作用について説明図である。(実施例1) FIG. 1A is an explanatory view of a common structure and electrical action of heat fusing by electromagnetic induction. Example 1 図1Bは2つの同じ円形誘導加熱器11Bを対称的に配置して、熱刃1はほぼ均一な交番磁界13Bを得る説明図である。(実施例2) FIG. 1B is an explanatory diagram in which two identical circular induction heaters 11B are arranged symmetrically, and the hot blade 1 obtains a substantially uniform alternating magnetic field 13B. (Example 2) 図1Cは2つの長方形楕円加熱器11Cを対称的に配置して、熱刃1はほぼ均一な交番磁界13Cを得る説明図である。(実施例2) FIG. 1C is an explanatory diagram in which two rectangular elliptical heaters 11C are arranged symmetrically and the hot blade 1 obtains a substantially uniform alternating magnetic field 13C. (Example 2) 図1Caは、加熱刃1に均一な磁界を与えるために、微少導線の電流を垂直にかこむ閉曲線に沿って磁界が生成する作用を利用して、磁界を制御する説明図である。(実施例2) FIG. 1Ca is an explanatory diagram for controlling a magnetic field by using an action that a magnetic field is generated along a closed curve that vertically encloses a current of a minute conducting wire in order to give a uniform magnetic field to the heating blade 1. (Example 2) 図2A、は、高電圧レベルシフトによって刃先に高いジュール熱量を得る説明図である。(実施例3) FIG. 2A is an explanatory diagram for obtaining a high amount of Joule heat at the cutting edge by high voltage level shift. (Example 3) 図2B,は、光ファイバー6aが加熱刃1の絶対温度(T)をリアルタイムに観測して温度制御する説明図である。(実施例4) FIG. 2B is an explanatory diagram in which the optical fiber 6a observes the absolute temperature (T) of the heating blade 1 in real time to control the temperature. Example 4 図2Cは、図2A,及び図2Bに於ける温度制御に対して、交番電流LCIの調節手段による電流制御についての説明図である。(実施例5) FIG. 2C is an explanatory diagram of current control by means for adjusting the alternating current LCI with respect to the temperature control in FIGS . 2A and 2B . (Example 5) 図2Dは(溶断中)のタイミングチャートの説明図である。(実施例6) FIG. 2D is an explanatory diagram of a timing chart (during melting). (Example 6) 図2Eは(待機中)のタイミングチャートの説明図である。(実施例6) FIG. 2E is an explanatory diagram of a (standby) timing chart. (Example 6) 図2Fは、図2AのブロックBKの中で、ハイサイドスイッチHSとローサイドスイッチLSが、短絡しないようにする為のタイミングチャートを示す説明図である。(実施例6) FIG. 2F is an explanatory diagram showing a timing chart for preventing the high-side switch HS and the low-side switch LS from being short-circuited in the block BK of FIG. 2A . (Example 6) 図3Aは加圧力量を一定に制御する加熱溶断装置の説明図である。(実施例7) FIG. 3A is an explanatory diagram of a heating fusing device that controls the amount of applied pressure to be constant. (Example 7) 図3Bは、2組の加圧力量制御加熱溶断装置3Aaにより構成されている説明図である。(実施例7) FIG. 3B is an explanatory diagram configured by two sets of pressure application amount control heating fusing devices 3Aa. (Example 7) 図3Cのタイミングチャートは負帰還ループの様子を示した説明図である。(実施例7)The timing chart of FIG. 3C is an explanatory diagram showing the state of the negative feedback loop. (Example 7) 図3Dのタイミングチャートは、環境の急激な変化を示した説明図である(実施例7)The timing chart in FIG. 3D is an explanatory diagram showing a rapid change in the environment (Example 7).
符号の説明Explanation of symbols
1 電磁誘導加熱器11
2 加熱コイル2
3 交番電流LCI
4 交番磁界10
5 加熱刃1
6 多芯線2a
1 Electromagnetic induction heater 11
2 Heating coil 2
3 Alternating current LCI
4 Alternating magnetic field 10
5 Heating blade 1
6 Multicore wire 2a
実施形態1.
以下、この発明に係る電磁誘導による加熱溶断装置のそれぞれの実施例を用いて、それぞれの発明を順次に説明する。
Embodiment 1. FIG.
Hereinafter, the respective inventions will be sequentially described using the respective examples of the heating and fusing device by electromagnetic induction according to the present invention.
図1A図1B、及び図1Cにおいて各電磁誘導加熱器11、11B、11Cが電磁誘導による加熱溶断の共通する構造及び電気的な作用について説明する。各電磁誘導加熱器11、11B、11Cは、極細の多芯線2aより成る加熱コイル2に、交番電流LCIを通電することにより、各交番磁界10,10B,及び10Cを生成する。そして、各交番磁界10,10B,及び10Cは、加熱刃1に、各渦電流4a、4bを生成して、ジュール熱量(P)を生成する。
図1A図1B、及び図1Cにおいて各電磁誘導加熱器11、11B、11Cが共通する構成について説明する。赤外線センサ7は加熱刃1の温度によって発生するエネルギー7aを受光する。そして、赤外線センサ7は加熱刃1と赤外線センサ7の間に光ファイバー6aを通じて受光する。そして、赤外線センサ7を保持するセンサ保持台8は断熱材で構成している。そして、センサ保持台8は支持台6からの熱伝導を阻止する。そして、センサ保持台8は赤外線センサ7の温度上昇を抑止する。そして、赤外線センサ7はエネルギー7aを計測して、リアルタイムに加熱刃1の温度を、制御する。光ファイバー6aは複数の石英ガラス製の光ファイバーのコアを束ねる。そして、光ファイバー6aはポリイミド樹脂でコーティング後両端の面を研磨する。
1A , 1 </ b> B , and 1 </ b> C , the electromagnetic induction heaters 11, 11 </ b> B , and 11 </ b> C will be described with respect to the common structure and electrical action of heating and fusing by electromagnetic induction. Each of the electromagnetic induction heaters 11, 11B, and 11C generates the alternating magnetic fields 10, 10B, and 10C by passing the alternating current LCI through the heating coil 2 including the ultrafine multicore wire 2a. The alternating magnetic fields 10, 10 </ b> B, and 10 </ b> C generate eddy currents 4 a and 4 b in the heating blade 1 to generate Joule heat (P).
A configuration in which the electromagnetic induction heaters 11, 11B, and 11C are common in FIGS . 1A , 1B , and 1C will be described. The infrared sensor 7 receives energy 7 a generated by the temperature of the heating blade 1. The infrared sensor 7 receives light between the heating blade 1 and the infrared sensor 7 through the optical fiber 6a. And the sensor holding stand 8 which hold | maintains the infrared sensor 7 is comprised with the heat insulating material. The sensor holding base 8 prevents heat conduction from the support base 6. And the sensor holding stand 8 suppresses the temperature rise of the infrared sensor 7. And the infrared sensor 7 measures the energy 7a, and controls the temperature of the heating blade 1 in real time. The optical fiber 6a bundles a plurality of quartz glass optical fiber cores. The optical fiber 6a is coated with a polyimide resin, and both end surfaces are polished.
素材の特性が持つ誘導加熱されるジュール熱量(P)について説明する。仮に、加熱刃1は鉄であるとして、支持台6とアーム9はアルミニウムであると仮定する。そして、それぞれの導体の特性に対するジュール熱量(P)は、共振周波数(f)と、抵抗率(ρ)と比透磁率(μ)に、巻数Nの交番電流LCIに対して、比例関係にある。そしてその関係を次の式(1)に示す。鉄はρ(0.17)、μ(200)である。そして、アルミニウムはρ(0.27)、μ(1)とする。 The Joule heat quantity (P) that is the induction heating characteristic of the material will be described. Assume that the heating blade 1 is iron and the support base 6 and the arm 9 are aluminum. The amount of Joule heat (P) with respect to the characteristics of each conductor is proportional to the resonance frequency (f), the resistivity (ρ), and the relative permeability (μ) with respect to the alternating current LCI of the number N of turns. . The relationship is shown in the following formula (1). Iron is ρ (0.17) and μ (200). Aluminum is ρ (0.27) and μ (1).
Figure JPOXMLDOC01-appb-M000001
 
 
Figure JPOXMLDOC01-appb-M000001
 
 
仮に鉄のアルミニウムに対するジュール熱量(P)の割合はアルミニウムが1に対し鉄は約35.5である。つまり、鉄と比べてアルミニウムは殆どジュール熱量(P)を受けにくいことが証明される。 Temporarily, the ratio of Joule heat (P) of iron to aluminum is about 15.5 for aluminum and about 35.5 for iron. That is, it is proved that aluminum is hardly subjected to Joule heat (P) as compared with iron.
図1Aは、図1B、及び図1Cにおいて、電磁誘導による加熱溶断の共通する電気的な作用について説明図である。図1Aにおいて交番磁界10が加熱刃1に与える作用について詳細に説明する。加熱コイル2aに交番電流LCIを通電することによって電磁誘導が生じて、交番磁界10が発生する。交番磁界10は加熱刃1のA-A面とB-B面に各磁束3a、3bを発生させる。そして、各磁束3a、3bに垂直な各面内を流れる各点の渦電流は相互に打ち消しあう。そして、残った各渦電流4a、4bは、A-A面とB-B面の各面の周囲の縁に沿って流れる。そして、各渦電流4a、4bは電磁エネルギーの熱損失をおこしてジュール熱量(P)を生成する。刃先5cの辺の縁に発生する二つの面のジュール熱量(P)は刃先5cに統合する。そして、刃先5cはジュール熱量(P)の熱源である。つまり、加熱コイル2aが刃先5cにジュール熱量(P)を生成する。そして、各渦電流4a、4bは周波数(f)に比例する表皮効果によって表面に局限する状態を各表皮発熱5a、5bと表現する。つまり、各渦電流4a、4bと各表皮発熱5a、5bは説明上別に表したが同じものである。そして、A-A面の表皮発熱5aとB-B面の表皮発熱5bの各ジュール熱量(P)は刃先5cに合体している2面の各表皮発熱5a、5bを刃先5cの辺に統合して倍増する。ジュール熱量(P)は式(1)に示す。 FIG. 1A is an explanatory view of the common electrical action of heat fusing by electromagnetic induction in FIGS . 1B and 1C . The action of the alternating magnetic field 10 on the heating blade 1 in FIG. 1A will be described in detail. By applying an alternating current LCI to the heating coil 2a, electromagnetic induction occurs and an alternating magnetic field 10 is generated. The alternating magnetic field 10 generates magnetic fluxes 3a and 3b on the AA and BB surfaces of the heating blade 1. And the eddy current of each point which flows in each surface perpendicular | vertical to each magnetic flux 3a, 3b cancels mutually. The remaining eddy currents 4a and 4b flow along the peripheral edges of the AA plane and the BB plane. And each eddy current 4a, 4b causes the heat loss of electromagnetic energy, and produces | generates a Joule heat amount (P). The Joule heat amounts (P) of the two surfaces generated at the edge of the edge of the blade edge 5c are integrated into the blade edge 5c. The cutting edge 5c is a heat source of Joule heat (P). That is, the heating coil 2a generates Joule heat (P) in the cutting edge 5c. And each eddy current 4a, 4b expresses the state localized on the surface by the skin effect proportional to the frequency (f) as each skin heat generation 5a, 5b. That is, although each eddy current 4a, 4b and each skin heat generation 5a, 5b are expressed separately for explanation, they are the same. Then, each Joule heat quantity (P) of the skin heat generation 5a on the AA surface and the skin heat generation 5b on the BB surface is integrated with the skin heat generation 5a and 5b of the two surfaces combined with the blade edge 5c into the side of the blade edge 5c. And double. Joule heat quantity (P) is shown in equation (1).
加熱刃1のA-A面とB-B面の表面に於いて、表皮効果による各渦流電流4a、4bは、周波数(f)に比例して表面に局限する。そして、各渦流電流4a、4bは、内部に入るにつれて指数関数的に減少する関係を、表面の1/εになる厚さ(δ)を、次の式(2)で表す。σは電気伝導率、μは透磁率、及びρは固有抵抗とする。 On the surfaces of the AA plane and the BB plane of the heating blade 1, each eddy current 4a, 4b due to the skin effect is localized on the surface in proportion to the frequency (f). Each of the eddy currents 4a and 4b decreases exponentially as it enters the inside, and the thickness (δ) that becomes 1 / ε of the surface is expressed by the following equation (2). σ is electrical conductivity, μ is magnetic permeability, and ρ is specific resistance.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
仮に加熱刃1を鋼として、プラスチックの各ゲート14B、14Cを溶断に必要な温度は300度までとすれば、温度で変化する固有抵抗ρは約(20~53)まで変化して、磁界の強さで変化する透磁率μは約(20~1000)まで変化する。そして、仮に、交番電流LCIの周波数(f)を20KHZとして、表皮効果による各渦電流4a、4b厚さ(δ)は温度や磁界の強さよって異なる。しかし、その厚さ(δ)はおよそ0.2~2.3mmである。そしてジュール熱量(P)は殆どを表皮効果によって加熱刃1の表面層の厚さ(δ)に集約する。表面層の厚さ(δ)の作用は図1B、及び図1Cにおいても適用される。 If the heating blade 1 is made of steel and the plastic gates 14B and 14C have a temperature required for fusing up to 300 degrees, the specific resistance ρ that changes with temperature changes to about (20 to 53), and the magnetic field The magnetic permeability μ that changes with the strength changes to about (20 to 1000). Then, assuming that the frequency (f) of the alternating current LCI is 20 KHZ, the thicknesses (δ) of the eddy currents 4a and 4b due to the skin effect differ depending on the temperature and the strength of the magnetic field. However, the thickness (δ) is approximately 0.2 to 2.3 mm. And most of the Joule heat (P) is concentrated on the thickness (δ) of the surface layer of the heating blade 1 by the skin effect. The effect of the surface layer thickness (δ) is also applied in FIGS . 1B and 1C .
表皮効果による各表皮発熱5a、5bに合体している刃先5cの辺は、直接的なジュール熱量(P)の熱源である。そして、刃先5cの辺は、適温に温度制御される。そして、刃先5cの辺は、各ゲート14B、14Cに奪われる熱を瞬時に補足する。そして、各ゲート14B、14Cは容易に溶断される。つまり、熱源である刃先5cの辺は、溶断に必要な加圧力量42bを減らして、加圧速度を上げる。そして、低い加圧力量42bで各ゲート14B、14Cを溶断できる事は、加圧力量42bにともない発生する各製品15B、15Cへの応力による歪、クラック(ひびわれ)を減らす。つまり、加圧速度が早い事は、各製品15B、15Cへの加熱時間を短くするため、過加熱を防いで融解、垂れ、及び糸引きを防止する。そして、刃先5cの辺は、各製品15B、15Cの安定した品質と歩留まりの向上を図る。 The sides of the blade edge 5c combined with the skin heat generation 5a and 5b due to the skin effect are direct heat sources of Joule heat (P). The temperature of the side of the blade edge 5c is controlled to an appropriate temperature. And the edge of the blade edge 5c instantaneously supplements the heat taken by the gates 14B and 14C. The gates 14B and 14C are easily melted. That is, the side of the blade edge 5c, which is a heat source, reduces the amount of pressure 42b necessary for fusing and increases the pressurization speed. The fact that the gates 14B and 14C can be blown with a low applied pressure 42b reduces distortion and cracks caused by stress on the products 15B and 15C that are generated with the applied pressure 42b. That is, when the pressurizing speed is fast, the heating time for each product 15B, 15C is shortened, so that overheating is prevented to prevent melting, sagging, and stringing. The sides of the cutting edge 5c aim to improve the stable quality and yield of the products 15B and 15C.
各表皮発熱5a、5bの刃先5cの辺は、直接的なジュール熱量(P)の熱源であることを,ジュール熱量(P)の式(1)及び厚さ(δ)の式(2)で,証明する。そして、刃先5cの辺は交番電流LCIの調節によって適切な溶断に必要なジュール熱量(P)をリアルタイムに持続的に確保する。刃先5Cに直接的なジュール熱量(P)を供給する熱源は、効率的な省エネルギーであって、高い有用性を持つ。 The side of the blade edge 5c of each skin heat generation 5a, 5b is a heat source of direct Joule heat (P), and the Joule heat (P) formula (1) and thickness (δ) formula (2). , Prove. And the edge | side of the blade edge | tip 5c ensures continuously the Joule heat amount (P) required for suitable fusing by adjustment of the alternating current LCI in real time. A heat source that supplies Joule heat (P) directly to the cutting edge 5C is efficient energy saving and has high utility.
図1Bは2つの同じ円形誘導加熱器11Bを対称的に配置してある。2つの同じ半径Rの円形加熱コイル2Bは、平行に、且つ、同軸に配置してある。さらに、並ぶ2つの円形加熱コイル2Bは半径Rと2つの並ぶ距離Dをほぼ等しくする。そして、2つの円形加熱コイル2Bは交番電流LCIを同じ方向に通電される。その結果、2つの円形加熱コイル2Bの中央に位置する加熱刃1は、ほぼ均一な交番磁界13Bを得る。 FIG. 1B shows two identical circular induction heaters 11B arranged symmetrically. Two circular heating coils 2B having the same radius R are arranged in parallel and coaxially. Further, the two circular heating coils 2B arranged have the radius R and the two arranged distances D substantially equal. The two circular heating coils 2B are energized with alternating current LCI in the same direction. As a result, the heating blade 1 located at the center of the two circular heating coils 2B obtains a substantially uniform alternating magnetic field 13B.
そして、均一な交番磁界13Bの磁界の強さ(H)は、D=Rのとき、式(3)で表わし、D=1.5Rのときは、式(4)で表わす。 The magnetic field strength (H) of the uniform alternating magnetic field 13B is expressed by equation (3) when D = R, and is expressed by equation (4) when D = 1.5R.
D=Rのとき
Figure JPOXMLDOC01-appb-M000003
When D = R
Figure JPOXMLDOC01-appb-M000003
D=1.5Rのとき
Figure JPOXMLDOC01-appb-M000004
 
When D = 1.5R
Figure JPOXMLDOC01-appb-M000004
図1Caは、加熱刃1に均一な磁界を与えるために、微少導線の電流を垂直にかこむ閉曲線に沿って磁界が生成する性質を利用して、磁界を制御する説明図である。長方形楕円加熱コイル2Cは、長方形の加熱刃1の形状に合わせた長方形の両端部を、楕円(あるいわ鋭角)にして、両端部に発生する磁界の方向を、形状の角度によって制御する。そして長方形楕円加熱コイル2Cは、過熱刃1に、二重にかかる磁界を避けることにより、磁界を均一にする。そして、長方形楕円加熱コイル2Cは、交番電流LCIによって、各点の微少導線の電流13Cbの角度に対して、軸上13Cc内に向かって垂直な各閉曲線13Caに沿って磁界を発生させる。そして、その磁界は、長方形加熱コイル2Cの両端部の形状によって制御され、加熱刃1に、均一な磁界を与える。これ等の作用を持つ形状の長方形の両端部を楕円(あるいわ鋭角)にした加熱コイル2Cは、長方形楕円加熱コイル2Cと表現する。 FIG. 1Ca is an explanatory diagram for controlling a magnetic field by using a property that a magnetic field is generated along a closed curve that vertically encloses a current of a minute conducting wire in order to apply a uniform magnetic field to the heating blade 1. The rectangular elliptical heating coil 2C controls the direction of the magnetic field generated at both ends by changing the angle of the shape by making the both ends of the rectangle matched with the shape of the rectangular heating blade 1 into an ellipse (that is, an acute angle). The rectangular elliptical heating coil 2 </ b> C makes the magnetic field uniform by avoiding a double magnetic field on the superheater blade 1. The rectangular elliptical heating coil 2C generates a magnetic field along the closed curve 13Ca perpendicular to the axial 13Cc with respect to the angle of the current 13Cb of the minute conducting wire at each point by the alternating current LCI. And the magnetic field is controlled by the shape of the both ends of the rectangular heating coil 2C, and gives a uniform magnetic field to the heating blade 1. A heating coil 2 </ b> C in which both ends of a rectangular shape having these functions are formed into an ellipse (that is, an acute angle) is expressed as a rectangular elliptical heating coil 2 </ b> C.
図1Cは2つの長方形楕円加熱器11Cを対称的に配置してある。2つの長方形楕円加熱コイル2Cは、平行に、且つ、同軸に配置してある。さらに、並ぶ2つの長方形楕円加熱コイル2Cは、半短辺rと、2つの並ぶ距離dをほぼ等しくする。そして、2つの長方形楕円加熱コイル2Cは交番電流LCIを同じ方向に通電される。その結果、2つの長方形楕円加熱コイル2Cの中央に位置する加熱刃1は、ほぼ均一な交番磁界13Cを得る。 In FIG. 1C , two rectangular elliptical heaters 11C are arranged symmetrically. The two rectangular elliptical heating coils 2C are arranged in parallel and coaxially. Furthermore, the two rectangular elliptical heating coils 2 </ b> C that are arranged make the half short side r and the two arranged distances d substantially equal. The two rectangular elliptical heating coils 2C are energized with alternating current LCI in the same direction. As a result, the heating blade 1 located at the center of the two rectangular elliptical heating coils 2C obtains a substantially uniform alternating magnetic field 13C.
そして、均一な交番磁界13Cの磁界の強さ(H)は、d=rのとき式(5)で表わし、d=1.5rのとき式(6)で表わす。 The magnetic field strength (H) of the uniform alternating magnetic field 13C is expressed by equation (5) when d = r, and is expressed by equation (6) when d = 1.5r.
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000005
 
Figure JPOXMLDOC01-appb-M000006
 
Figure JPOXMLDOC01-appb-M000006
 
各均一な交番磁界13B、13Cは、加熱刃1の各点の均一な各磁束3a,3bに垂直な面内に流れる各点の渦電流を相互に打ち消しあう。そして、残った各渦電流4a、4bは、表皮効果によって、面の周囲の縁に沿って均等に流れる。そして、各均一な交番磁界13B、13Cの各式(3)、(4)、(5)、(6)で証明するように、ほぼ均一な各渦電流4a、4bは、幅の広い刃先5cの辺の全域に、ほぼ均一なジュール熱量を生成する。 The uniform alternating magnetic fields 13B and 13C cancel each other out the eddy currents at the respective points flowing in the plane perpendicular to the uniform magnetic fluxes 3a and 3b at the respective points of the heating blade 1. The remaining eddy currents 4a and 4b flow evenly along the peripheral edge of the surface due to the skin effect. Then, as proved by the respective equations (3), (4), (5), (6) of the uniform alternating magnetic fields 13B, 13C, the substantially uniform eddy currents 4a, 4b are formed by the wide blade edge 5c. An almost uniform amount of Joule heat is generated over the entire area of the side.
幅の広い刃先5cの辺に熱むらがあれば、熱の高い部分は製品15Bを融解し、垂れ、糸引きの原因となる。そして、熱の低い部分は、加圧力量42bが高くなり、各製品15B、15Cに歪や、クラックを起こす原因となる。
つまり、幅の広い刃先5cの温度が、刃先5cの辺の全部に亘って適温にほぼ均一であれば、各幅の広いゲート14B、14Cにかかる加圧力量42bは低下する。それにともない、各製品15B、15Cは応力による歪や、クラックも無くなる。しかも、各ゲート14B、14Cの溶断時間も短縮されることによって、各製品15B、15Cは、過加熱がなくなり、融解、垂れ、糸引きも減少する。
If there is uneven heat on the side of the wide blade edge 5c, the high heat part melts the product 15B and causes dripping and stringing. And in the low heat part, the amount of applied pressure 42b becomes high and causes each product 15B, 15C to cause a distortion or a crack.
That is, if the temperature of the wide blade edge 5c is substantially uniform at an appropriate temperature over the entire side of the blade edge 5c, the amount of pressure 42b applied to the wide gates 14B and 14C decreases. Accordingly, the products 15B and 15C are free from strain and cracks due to stress. Moreover, by shortening the fusing time of the gates 14B and 14C, the products 15B and 15C are not overheated, and melting, sagging, and stringing are also reduced.
各均一な交番磁界13B、13Cは、幅の広い刃先5cの辺の全域に、ほぼ均一なジュール熱をむらなく供給できる。そして、各均一な交番磁界13B、13Cは幅の広い各ゲート14B、14Cを、むらなく溶断する。そして、各製品15B、15Cの品質は、向上して、均一化されて、生産性も向上する。つまり、幅の広い刃先5cの辺の全域に均一なジュール熱は極めて高い有用性を持つ。 Each of the uniform alternating magnetic fields 13B and 13C can supply almost uniform Joule heat uniformly over the entire side of the wide blade edge 5c. The uniform alternating magnetic fields 13B and 13C melt the wide gates 14B and 14C evenly. And the quality of each product 15B and 15C improves, is equalized, and productivity improves. That is, uniform Joule heat over the entire side of the wide cutting edge 5c has extremely high utility.
図2A図2B及び図2Cは、各電磁誘導加熱器11,11B、及び11Cを駆動するインバータ回路である。各ハイサイドスイッチHS、HSR、及びHSLと各ローサイドスイッチLS、LSR、及びLSLは、交互にスイッチして充放電を繰り返す。そして
加熱コイル2と共振コンデンサLCCは、直列共振回路LCを、共振させる。
直列共振回路LCの共振周波数(f)の時、交番電流LCIは、最大となる。そして、巻数Nの加熱コイル2において、高電圧VHと、交番電流LCIと、加熱刃1の刃先5cに与えるジュール熱量(P)との相互関係は、次の式(7)と(8)に示す。但し、加熱コイル2の表皮効果による交流損失抵抗は無視する。
2A , 2B, and 2C are inverter circuits that drive the electromagnetic induction heaters 11, 11B, and 11C. The high-side switches HS, HSR, and HSL and the low-side switches LS, LSR, and LSL are alternately switched and repeatedly charged and discharged. The heating coil 2 and the resonance capacitor LCC resonate the series resonance circuit LC.
At the resonance frequency (f) of the series resonance circuit LC, the alternating current LCI is maximized. In the heating coil 2 having the number of turns N, the interrelationship between the high voltage VH, the alternating current LCI, and the amount of Joule heat (P) applied to the cutting edge 5c of the heating blade 1 is expressed by the following equations (7) and (8). Show. However, the AC loss resistance due to the skin effect of the heating coil 2 is ignored.
Figure JPOXMLDOC01-appb-M000007
 
Figure JPOXMLDOC01-appb-M000007
 
Figure JPOXMLDOC01-appb-M000008
 
Figure JPOXMLDOC01-appb-M000008
 
図2Aは高電位レベルシフトHLSの機能について説明する。シフトポイントSPは、高電圧VHとゼロ電位V0の間を交互に移動する為、ハイサイド入力HIの電位も、シフトポイントSPにあわせて、追従して移動しなければならない。そして、ローサイドスイッチLSがオンの際は充電経路ICを経て電源コンデンサSCは低電圧VLを充電する。そして、高電位レベルシフトHLSの基準電位はシフトポイントSPと接続されている。そして、シフトポイントSPが高電圧VHの時は高電圧阻止ダイオードSDによって低電圧直流電源VLPを保護する。そして、低電圧VLを充電された電源コンデンサSCは高電位レベルシフトHLSの制御用電源となる。そして、ハイサイド信号HSからハイサイド入力HIの間は、フローティング素子FEによって、電位的に絶縁されていて、信号のみを透過する。図2Aに示す高電位レベルシフトHLSは電源コンデンサSCと高電圧阻止ダイオードSDとフローティング素子FEで構成されている。そして、これ等の機能と回路を総じて高電位レベルシフトHLSと呼ぶ。 FIG. 2A illustrates the function of the high potential level shift HLS. Since the shift point SP moves alternately between the high voltage VH and the zero potential V0, the potential of the high side input HI must also move following the shift point SP. When the low-side switch LS is on, the power supply capacitor SC charges the low voltage VL via the charging path IC. The reference potential of the high potential level shift HLS is connected to the shift point SP. When the shift point SP is the high voltage VH, the low voltage DC power supply VLP is protected by the high voltage blocking diode SD. The power supply capacitor SC charged with the low voltage VL serves as a control power supply for the high potential level shift HLS. The portion between the high side signal HS and the high side input HI is electrically isolated by the floating element FE and transmits only the signal. The high potential level shift HLS shown in FIG. 2A includes a power supply capacitor SC, a high voltage blocking diode SD, and a floating element FE. These functions and circuits are collectively referred to as a high potential level shift HLS.
式(8)に示すとおり、加熱刃1の刃先5cに与えるジュール熱量(P)は、高電圧VHの電圧の二乗に比例する為、より高く高電圧VHの電圧を上げることによって、加熱刃1の刃先5cに、より高いジュール熱量を与える。そして、加熱刃1の刃先5cはより高い熱源を容易に得る。 As shown in the equation (8), the amount of Joule heat (P) given to the cutting edge 5c of the heating blade 1 is proportional to the square of the voltage of the high voltage VH. Therefore, by increasing the voltage of the high voltage VH higher, A higher amount of Joule heat is given to the cutting edge 5c. The cutting edge 5c of the heating blade 1 easily obtains a higher heat source.
ちなみに、低電圧直流電源VLPの低電圧VLの電圧は15Vまであって、高電圧直流電源VHPの高電圧VHの電圧は600Vまでが、各、ハイサイドスイッチHS、HSR、HSLと各、ローサイドスイッチLS、LSR、LSLの許容される現在の定格である。仮に、電源入力ACがAC100Vの時ジュール熱量(P)の限界値を100Wとすれば、AC400Vの時ジュール熱量(P)の限界値は1.6KWまであがる。但し、前記各スイッチのスイッチング損失および定常損失は無視する。 Incidentally, the voltage of the low voltage VL of the low voltage DC power supply VLP is up to 15V, and the voltage of the high voltage VH of the high voltage DC power supply VHP is up to 600V. The high side switches HS, HSR, HSL and the low side switches LS, LSR, LSL are current acceptable ratings. Assuming that the limit value of Joule heat (P) when the power input AC is 100V AC is 100W, the limit value of Joule heat (P) is 400kW when the input voltage is AC 400V. However, the switching loss and steady loss of each switch are ignored.
高電位レベルシフトHLSは、高電圧VHを上げることを可能にして、式(8)において、より高い高電圧VHで、より高いジュール熱量(P)を得る。つまり、高電位レベルシフトHLSは、加熱刃1の刃先5cの高い熱源を、容易に得る。そして、高電位レベルシフトHLSは高い有用性を持つ。 The high potential level shift HLS makes it possible to increase the high voltage VH, and in equation (8), a higher Joule heat (P) is obtained at a higher high voltage VH. That is, the high potential level shift HLS easily obtains a heat source having a high cutting edge 5c of the heating blade 1. The high potential level shift HLS has high utility.
図2A及び図2Bは光ファイバー6aの機能について説明する。加熱刃1の絶対温度(T)によって放射されるエネルギー(PE)は、絶対温度(T)の4乗に比例した赤外線7aの量を、光ファイバー6aを通じて、サーモパイルの赤外線センサ7で受光する。そして、その受光量であるエネルギー(PE)は、ほぼ4乗根に近似する4乗根増幅器22によって増幅して、加熱刃1の絶対温度(T)に比例した「計測値」22aを得る。そして、光ファイバー6aはリアルタイムに加熱刃1の温度を制御する。これ等の関係を次の式(9)と(10)に示す。 2A and 2B illustrate the function of the optical fiber 6a. The energy (PE) radiated by the absolute temperature (T) of the heating blade 1 receives the amount of infrared rays 7a proportional to the fourth power of the absolute temperature (T) by the thermopile infrared sensor 7 through the optical fiber 6a. Then, the energy (PE) that is the amount of received light is amplified by the fourth root amplifier 22 that approximates the fourth root, and a “measured value” 22 a that is proportional to the absolute temperature (T) of the heating blade 1 is obtained. The optical fiber 6a controls the temperature of the heating blade 1 in real time. These relationships are shown in the following equations (9) and (10).
Figure JPOXMLDOC01-appb-M000009
 
Figure JPOXMLDOC01-appb-M000009
 
Figure JPOXMLDOC01-appb-M000010
 
 
(σ)はステンファン・ボルツマン定数である。 
 
(η)は物質のエネルギー放射率である。
Figure JPOXMLDOC01-appb-M000010


(Σ) is the Stenfan-Boltzmann constant.

(Η) is the energy emissivity of the substance.
式(9)において、加熱刃1の表皮発熱と赤外線センサ7を結ぶ距離(m)の二乗に反比例して減衰するエネルギー(PE)は、減衰が殆んどない光ファイバー6aを通じて、伝送される。そして、光ファイバー6aは、距離(m)を短縮して、減衰を抑止する。且つ、光ファイバー6aは、効率よくエネルギー(PE)のみを伝送して、加熱刃1と赤外線センサ7の間を、ほぼ断熱する。
光ファイバー6aは、加熱刃1の絶対温度(T)を、リアルタイムに、計測して、制御する。リアルタイムな加熱刃1の温度制御は、安定した溶断を容易にして、高い有用性を持つ。
In Expression (9), energy (PE) that attenuates in inverse proportion to the square of the distance (m) connecting the skin heat generation of the heating blade 1 and the infrared sensor 7 is transmitted through the optical fiber 6a that is hardly attenuated. The optical fiber 6a shortens the distance (m) and suppresses attenuation. In addition, the optical fiber 6a efficiently transmits only energy (PE) and substantially insulates between the heating blade 1 and the infrared sensor 7.
The optical fiber 6a measures and controls the absolute temperature (T) of the heating blade 1 in real time. Real-time temperature control of the heating blade 1 facilitates stable fusing and has high utility.
図2Cは、図2A,及び図2Bに於ける温度制御に対して、刃先5cの温度に置き換えて、交番電流LCIを、電流制御する様子について説明する。そして、加熱刃1に与えるジュール熱量(P)は、周囲温度、刃先5cの放熱状態、及びゲート14B、14Cへの熱エネルギーの移動状態などの周囲環境を、考慮する。そして、加熱刃1に与えるジュール熱量(P)は刃先5cの最適な温度に交番電流LCIの調節手段によって最適に調節する。つまり、刃先5cの温度が、適切になるように、交番電流LCIの設定器23の「設定値」を調節して、交番電流LCIを制御する。つまり、交番電流LCIは、刃先5cの最適な温度に比例するジュール熱量(P)を、リアルタイムに制御する。且つ、入力電源ACの電圧の変動にも対応する。 FIG. 2C explains how to control the alternating current LCI by replacing the temperature control in FIGS . 2A and 2B with the temperature of the blade edge 5c. The amount of Joule heat (P) applied to the heating blade 1 considers the surrounding environment such as the ambient temperature, the heat dissipation state of the blade edge 5c, and the state of movement of thermal energy to the gates 14B and 14C. The amount of Joule heat (P) applied to the heating blade 1 is optimally adjusted by the means for adjusting the alternating current LCI to the optimum temperature of the blade edge 5c. That is, the alternating current LCI is controlled by adjusting the “set value” of the setting device 23 of the alternating current LCI so that the temperature of the blade edge 5c becomes appropriate. That is, the alternating current LCI controls the Joule heat quantity (P) proportional to the optimum temperature of the cutting edge 5c in real time. It also copes with voltage fluctuations of the input power supply AC.
図2Cは電流検出の方法の一例を示す。直列共振回路LCの交番電流LCIは、磁束を発生するホール効果の電流検出素子18で、検出する。そして、電流検出素子18の電位は、高電圧VHとゼロ電位V0の間を交互に移動する為、高電圧を絶縁するアイソレーション型の交流電流検出回路19によって、交番電流LCIの交流電流量のみを検出する。そして、AC-DCコンバータである直流検波回路20は、交番電流LCIに比例した直流成分を、「計測値」22aとして変換する。 FIG. 2C shows an example of a current detection method. The alternating current LCI of the series resonant circuit LC is detected by the Hall effect current detection element 18 that generates magnetic flux. Since the potential of the current detection element 18 alternately moves between the high voltage VH and the zero potential V0, only the alternating current amount of the alternating current LCI is obtained by the isolation-type alternating current detection circuit 19 that insulates the high voltage. To detect. The DC detection circuit 20, which is an AC-DC converter, converts a DC component proportional to the alternating current LCI as a “measurement value” 22 a.
直列共振回路LCの共振周波数(f)の時、交番電流LCIは、最大となる。そして、加熱刃1に対して、巻数Nの加熱コイル2において、交番電流LCIとジュール熱量(P)との相互関係は、次の式(1)に示す。但し、加熱コイル2の表皮効果による交流損失抵抗は無視する。 At the resonance frequency (f) of the series resonance circuit LC, the alternating current LCI is maximized. The mutual relationship between the alternating current LCI and the Joule heat quantity (P) in the heating coil 2 having N turns with respect to the heating blade 1 is expressed by the following equation (1). However, the AC loss resistance due to the skin effect of the heating coil 2 is ignored.
Figure JPOXMLDOC01-appb-M000011
 
式(1)に示すとおり、加熱刃1に与えるジュール熱量(P)は、交番電流LCIの二乗に比例する為、交番電流LCIを調節することによって、リアルタイムに加熱刃1の刃先5cの温度を、容易に調節する。
Figure JPOXMLDOC01-appb-M000011

As shown in Equation (1), the amount of Joule heat (P) given to the heating blade 1 is proportional to the square of the alternating current LCI. Therefore, by adjusting the alternating current LCI, the temperature of the cutting edge 5c of the heating blade 1 can be adjusted in real time. Easy to adjust.
電流検出素子18は、電流検出による交番電流LCIを、加熱刃1の温度に置き換える。交番電流LCIは、直流検波回路20の「計測値」22aを、交番電流LCIの設定器23の「設定値」の比較によって、リアルタイムに「設定値」に、制御される。つまり、交番電流LCIを制御して、間接的に刃先5cの温度が制御される。したがって、交番電流LCIによる温度制御は、光ファイバー6aや赤外線センサ7を省き、構造も、簡略される。そして、刃先5cの温度に置き換えた交番電流LCIの制御は、経済的であって、高い有用性を持つ。 The current detection element 18 replaces the alternating current LCI by current detection with the temperature of the heating blade 1. The alternating current LCI is controlled to the “set value” in real time by comparing the “measured value” 22a of the DC detection circuit 20 with the “set value” of the setter 23 of the alternating current LCI. That is, the temperature of the blade edge 5c is indirectly controlled by controlling the alternating current LCI. Therefore, the temperature control by the alternating current LCI omits the optical fiber 6a and the infrared sensor 7, and the structure is simplified. The control of the alternating current LCI replaced with the temperature of the blade edge 5c is economical and highly useful.
図2A図2B、及び図2Cは負帰還ループの構成について説明する。加熱刃1の絶対温度(T)及び交番電流LCIの各「計測値」22aは、各「計測値」22aと各設定器23の「設定値」を誤差増幅器24に通して、その誤差がゼロになるように負帰還ループを構成している。つまり、各「計測値」22aは、誤差増幅器24、パルス幅変調回路26、論理回路27、及びドライブ回路28を経て、負帰還ループを構成して、一定に制御される。
各ゲート14B、14Cを加熱溶断の時は、高いジュール熱量(P)で供給し続ける時間帯を、(溶断中)とする。そして、次の溶断のため待機の時は、保温に必要な低いジュール熱量(P)で供給し続ける時間帯を、(待機中)とする。
図2Dは(溶断中)のタイミングチャートである。そして、図2Eは(待機中)のタイミングチャートである。そして、各タイミングチャートは、共振基準クロックCLKに同期している。そして、論理回路27は、各ブロック左BKL、右BKRを交互に順次駆動する。そして、直列共振回路LCは、共振基準クロックCLKに同期して、共振現象を起こして、最大の交番電流LCIを得る。
図2Dの(溶断中)は、高い交番電流LCIを必要として、(溶断中)のパルス幅PWLを、広くしている。逆に、図2Eの(待機中)は、低い交番電流LCIを必要として、(待機中)のパルス幅PWSを、狭くしている。そして、コントローラ29によって選択された各(溶断中)又は(待機中)の交番電流LCIは、設定器23の各調節器23a,23bの「設定値」と各「計測値」22aを、誤差増幅器24に通して、その誤差がゼロになるように、制御される。そして、交番電流LCIは、パルス幅変調回路26において生成された電流調節幅PWMによって、電流波高調節幅IVMを生成して、制御される。交番電流LCIつまりジュール熱量(P)は、絶対温度(T)及び交番電流LCIの設定器23の「設定値」に追従するように、帰還ループを構成して、制御される。
2A , 2B , and 2C describe the configuration of the negative feedback loop. Each "measured value" 22a of the absolute temperature (T) of the heating blade 1 and the alternating current LCI passes each "measured value" 22a and the "set value" of each setting device 23 through the error amplifier 24, and its error is zero. The negative feedback loop is configured so that That is, each “measured value” 22 a is controlled to be constant by forming a negative feedback loop through the error amplifier 24, the pulse width modulation circuit 26, the logic circuit 27, and the drive circuit 28.
When the gates 14B and 14C are heated and melted, the time period during which the gates 14B and 14C are continuously supplied with a high amount of Joule heat (P) is defined as (during melting). Then, when waiting for the next fusing, the time period during which the heat is kept at a low Joule heat (P) necessary for heat retention is set to (standby).
FIG. 2D is a timing chart (during cutting). FIG. 2E is a timing chart of (standby). Each timing chart is synchronized with the resonance reference clock CLK. Then, the logic circuit 27 alternately drives each block left BKL and right BKR sequentially. The series resonance circuit LC causes a resonance phenomenon in synchronization with the resonance reference clock CLK, and obtains the maximum alternating current LCI.
In FIG. 2D (during fusing), a high alternating current LCI is required, and the pulse width PWL of (during fusing) is widened. Conversely, in FIG. 2E (in standby), a low alternating current LCI is required, and the pulse width PWS in (standby) is narrowed. Then, the alternating current LCI selected by the controller 29 is switched between the “set value” and the “measured value” 22a of each of the adjusters 23a and 23b of the setter 23 by an error amplifier. 24, the error is controlled to be zero. The alternating current LCI is controlled by generating a current wave height adjustment width IVM by the current adjustment width PWM generated in the pulse width modulation circuit 26. The alternating current LCI, that is, the Joule heat quantity (P), is controlled by configuring a feedback loop so as to follow the absolute temperature (T) and the “setting value” of the setting device 23 of the alternating current LCI.
図2Fは、図2AのブロックBKの中で、ハイサイドスイッチHSとローサイドスイッチLSが、短絡しないようにする為のタイミングチャートを示す。ハイサイドスイッチHSとローサイドスイッチLSが、完全にスイッチオフになるまでかかる時間を、ターンオフTOF時間とする。そして、ハイサイドスイッチHSとローサイドスイッチLSが短絡しないように、ターンオフTOFに対して十分な時間つまりデッドタイムDTを原則的に設ける。そして、そのデッドタイムDTの原則は図2D図2Eのタイミングチャートにも適用される。 FIG. 2F is a timing chart for preventing the high-side switch HS and the low-side switch LS from being short-circuited in the block BK of FIG. 2A . A time taken until the high side switch HS and the low side switch LS are completely switched off is defined as a turn-off TOF time. In order to prevent short circuit between the high side switch HS and the low side switch LS, a sufficient time, that is, a dead time DT is provided for the turn-off TOF in principle. The principle of the dead time DT is also applied to the timing charts of FIGS . 2D and 2E .
直列共振回路LCを共振させるための基準クロック25の周波数は、基準クロック調節器25aによって、直列共振回路LCの共振周波数(f)にあわせる。そうすると、交番電流LCIは、波形を最良にして、且つ、最大になる。論理回路27は、各ブロックBK,BKL,BKRの各動作順序を決めて、順次繰り返す。且つ、論理回路27は、図2Fに示すデッドタイムDTを原則的に実行する。そして、ドライブ回路28は、各ハイサイドスイッチ及び各ローサイドスイッチを、ドライブする為に、前記各スイッチの電気規格に変換する。
実施形態2.
The frequency of the reference clock 25 for resonating the series resonance circuit LC is adjusted to the resonance frequency (f) of the series resonance circuit LC by the reference clock adjuster 25a. As a result, the alternating current LCI maximizes and maximizes the waveform. The logic circuit 27 determines the operation order of the blocks BK, BKL, and BKR and repeats them sequentially. The logic circuit 27 executes the dead time DT shown in FIG. 2F in principle. The drive circuit 28 converts each high-side switch and each low-side switch into an electrical standard for each switch for driving.
Embodiment 2. FIG.
ニクロム線をヒータとする加熱刃を備えた成型品のゲートを溶断するゲートカット装置にあって、図3Aは加圧力量を一定に制御する加熱溶断装置である。そして、加圧力量制御加熱溶断装置3Aaは、ゲート14の適切な加圧力量42bを、加圧力設定器43の適切な「設定値」43bに沿って、一定に制御する。
加圧力量制御加熱溶断装置3Aaは、速度制御モータ51を動力源として、ゲート14を溶断するための加圧力量42bを、負荷とする。そして、中間に位置するトルク変換器41の入力軸と出力軸に発生するねじれモーメントはストレインゲージによって計測する。そして、ストレインゲージの計測量は加圧力量42bとする。そして、加圧力量42bはブリッジ増幅器42の出力を「計測値」42aとする。そして、加圧力量42bは調節器43aによって調節される。そして、加圧力設定器43の「設定値」43bと「計測値」42aは、誤差電圧増幅器44に通して、その誤差電圧44aの誤差電圧がゼロになるように、制御される。そして、加圧力量42bは、電圧/周波数コンバータ46、速度制御ドライバ50、速度制御モータ51、カップリング52、及びトルク変換器41を経て、負帰還ループを構成して、一定に制御される。
そして、電圧/周波数コンバータ46は電圧に対する周波数の比率を電圧/周波数調節器46aによって調節する。そして、電圧/周波数の調節器46aはリード55aによって変わる加圧速度を調節する。
図3Cのタイミングチャートは前記負帰還ループの様子を示している。仮に、「設定値」43bより「計測値」42aが高ければ、誤差電圧44aは下がり、パルス列49の速度も下がる。したがって、速度指令50aも下がって、「計測値」42aを下げる方向に作用する。そして、速度制御モータ51の遅れもあって、「計測値」42aは「設定値」43bを中心に多少のハンティング現象を起すも、「設定値」43bに沿うようにほぼ収束する。速度制御モータ51は、代表的に、サーボモータ、ステッピングモータが適用される。
In a gate cutting device for fusing a gate of a molded product provided with a heating blade using a nichrome wire as a heater, FIG. 3A is a heating fusing device for controlling the amount of pressure to be constant. The pressurizing amount control heating fusing device 3 </ b> Aa controls the appropriate pressurizing amount 42 b of the gate 14 along the appropriate “set value” 43 b of the pressurizing setter 43.
The pressurizing amount control heating fusing device 3Aa uses the speed control motor 51 as a power source and uses a pressurizing amount 42b for fusing the gate 14 as a load. And the torsional moment which generate | occur | produces in the input shaft and output shaft of the torque converter 41 located in the middle is measured with a strain gauge. The measured amount of the strain gauge is the applied pressure amount 42b. The applied pressure amount 42b sets the output of the bridge amplifier 42 to “measured value” 42a. The applied pressure amount 42b is adjusted by the adjuster 43a. Then, the “set value” 43b and the “measured value” 42a of the pressure setting device 43 are controlled so that the error voltage of the error voltage 44a becomes zero through the error voltage amplifier 44. The pressure amount 42b is controlled to be constant by forming a negative feedback loop through the voltage / frequency converter 46, the speed control driver 50, the speed control motor 51, the coupling 52, and the torque converter 41.
The voltage / frequency converter 46 adjusts the ratio of frequency to voltage by the voltage / frequency adjuster 46a. Then, the voltage / frequency adjuster 46a adjusts the pressurizing speed which varies depending on the lead 55a.
The timing chart of FIG. 3C shows the state of the negative feedback loop. If the “measured value” 42a is higher than the “set value” 43b, the error voltage 44a decreases and the speed of the pulse train 49 also decreases. Accordingly, the speed command 50a is also lowered, and acts to lower the “measured value” 42a. Then, due to the delay of the speed control motor 51, the “measured value” 42a almost converges along the “set value” 43b even though some hunting phenomenon occurs around the “set value” 43b. As the speed control motor 51, a servo motor or a stepping motor is typically used.
図3Dのタイミングチャートは、環境の急激な変化を示している。つまり、周囲温度の変化、風、温調機の具合などのややイレギュラー的な変化によってゲート14が硬化している時に対応する様子を示している。つまり、速度制御モータ51などの前記負帰還ループに含む遅れがある。そのために、ゲート14が硬化している時に、加圧力量42bが上昇して、クラックが入ったりする無理な応力が製品に加わらないようにする。そのために、加圧力上限検出器47は、無理な応力の手前を、上限調節器47aで、「上限値」として設定する。そして、上限検出47bによって、パルス列停止回路48は、「計測値」42aが「上限値」を超えてから「設定値」43bに復帰するまで、パルス列49と速度指令50aを、一時的に、停止する。
図3A及び図3Bに於ける図中の製品を省略している。
The timing chart in FIG. 3D shows a rapid change in the environment. That is, it shows a state in which the gate 14 is cured by a slightly irregular change such as a change in ambient temperature, wind, and the condition of the temperature controller. That is, there is a delay included in the negative feedback loop such as the speed control motor 51. Therefore, when the gate 14 is cured, the applied pressure amount 42b is increased so that an unreasonable stress such as a crack is not applied to the product. For this purpose, the applied pressure upper limit detector 47 sets the front of the excessive stress as the “upper limit value” by the upper limit adjuster 47a. Then, by the upper limit detection 47b, the pulse train stop circuit 48 temporarily stops the pulse train 49 and the speed command 50a until the “measurement value” 42a exceeds the “upper limit value” and returns to the “set value” 43b. To do.
The products in the drawings in FIGS . 3A and 3B are omitted.
図3Aは、加圧力量42bを与える機構手段の1例として、加圧力量制御溶断装置3Aaである。そして、その機構は、架台60に支えられて、ベルト53、ねじ55、そのリード55a、それに連動する移動テーブル56、アーム9、各加熱手段58a,58b、及び加熱刃の各可動側59a,と固定側59bによって、構成される。そして、図3Bに比べてほぼ半分で済む経済性がある。しかし、ゲート14に対し、溶断開始時から完了時の溶断中の中心点が、固定側59bにずれる欠点がある。そして、固定側59bにずれる欠点が、無理な溶断によって、製品の溶断面及び製品に歪を与える可能性がある。 FIG. 3A shows a pressurizing amount control fusing device 3Aa as an example of the mechanism means for applying the pressurizing amount 42b. The mechanism is supported by a gantry 60, and includes a belt 53, a screw 55, a lead 55a thereof, a moving table 56 interlocked with the belt 53, an arm 9, heating units 58a and 58b, and movable sides 59a of the heating blade. It is constituted by the fixed side 59b. And there is the economical efficiency which can occupy about half compared with FIG. 3B . However, with respect to the gate 14, there is a drawback that the center point during fusing from the start to the fusing is shifted to the fixed side 59b. And the fault which shift | deviates to the fixed side 59b may give a distortion to the melt | dissolution cross section of a product, and a product by a forced fusing.
図3Bは、2組の加圧力量制御加熱溶断装置3Aaにより構成されている。そして、2組の可動する各加熱刃59a、59aの動作は、コントローラ29によって同期運転が行われる。そして、各加熱刃59a、59aの溶断開始時から完了時までの溶断中の心点が、同じである為、製品の溶断面及び製品に、歪を与えない特徴がある。 FIG. 3B includes two sets of pressurizing amount control heating fusing devices 3Aa. The operation of each of the two sets of movable heating blades 59a and 59a is synchronized with the controller 29. Further, since the center points of the heating blades 59a and 59a during the melting from the start to the completion are the same, there is a feature that the melting section of the product and the product are not distorted.
加圧力量制御加熱溶断装置3Aaの特徴は、トルク変換器41のねじれモーメントをストレインゲージによって計測して、加圧力量42bとする。つまり、トルク変換器41は、許容される適切な一定の加圧力量42bで、ゲート14を溶断する。つまり、各加熱刃59a,59bは温度分布にむらがある。そのため、温度分布が低いときは、一定の加圧力量42bによって、加圧速度が遅くなる。そして、一定の加圧力量42bは、無理な加圧力量42bにともない発生する製品への応力による歪、製品のクラック(ひびわれ)を減らす。温度分布が高い時は、加圧力量42bが下がるにつれて、効率的に加圧速度が早くなる。したがって、加圧速度が早くなることは、製品への加熱時間が短くなるため、過加熱を防ぎ、製品の融解や、垂れ、糸引き、を防止する。 A feature of the pressure amount control heating fusing device 3Aa is that a torsional moment of the torque converter 41 is measured by a strain gauge to obtain a pressure amount 42b. In other words, the torque converter 41 melts the gate 14 with an appropriate fixed pressure amount 42b that is allowed. That is, each heating blade 59a, 59b has uneven temperature distribution. For this reason, when the temperature distribution is low, the pressurizing speed is slowed by the constant pressure 42b. The constant amount of applied pressure 42b reduces distortion caused by stress on the product and cracks (cracks) of the product caused by the excessive amount of applied pressure 42b. When the temperature distribution is high, the pressurization speed is efficiently increased as the applied pressure amount 42b decreases. Therefore, an increase in the pressurization speed shortens the heating time for the product, thereby preventing overheating and preventing the product from melting, sagging, and stringing.
トルク変換器41によって、適切な一定の加圧力量で、ゲートを溶断することは、製品の品質は向上して、製品を均一化して、さらに生産性も向上して、極めて高い有用性を持つ。 Fusing the gate with an appropriate constant amount of pressure by the torque converter 41 improves the quality of the product, homogenizes the product, further improves productivity, and has extremely high utility. .
プラスチックのレンズ及び導光板のゲートを加熱溶断の際、加熱刃を適切なジュール熱量で、無理のない加熱溶断は、製品への応力による歪や過加熱を防ぎ、品質を向上し、均一化され、生産性も向上し、極めて高い有用性を持つ。 When heating and cutting plastic lens and light guide plate gates, the heating blade is heated with an appropriate amount of Joule heat, and heat cutting without excessive force prevents distortion and overheating due to stress on the product, improving quality and making it uniform. , Productivity is improved and it has extremely high utility.

Claims (7)

  1.  ニクロム線のヒータから熱伝導で加熱刃に熱を与えていた成型品のゲートを溶断するゲートカット装置であって、交番電流を通電した電磁誘導の加熱コイルが前記加熱刃に交番磁界を生成して,刃先の辺の縁に発生する二つの面のジュール熱量は刃先に統合して、前記刃先は前記ジュール熱量の熱源であって、前記加熱コイルが前記刃先に前記ジュール熱量を生成することを特徴とする加熱溶断装置。 This is a gate cutting device that melts the gate of a molded product that has been heated to the heating blade by heat conduction from a nichrome wire heater, and an electromagnetic induction heating coil energized with an alternating current generates an alternating magnetic field on the heating blade. The Joule heat amount of the two surfaces generated at the edge of the edge of the blade edge is integrated into the blade edge, the blade edge is a heat source of the Joule heat amount, and the heating coil generates the Joule heat amount at the blade edge. Heating fusing device characterized.
  2. 請求項1記載の加熱溶断装置において、2つの円形加熱コイルは平行に且つ同軸に配置し、前記2つの円形加熱コイルは前記交番電流を通電されて、前記2つの円形加熱コイルはほぼ中間に位置する前記加熱刃にほぼ均一な交番磁界を与えて、前記2つの円形加熱コイルが刃先の辺の全域にほぼ均一なジュール熱量を生成することを特徴とする加熱溶断装置。 2. The heating and fusing device according to claim 1, wherein the two circular heating coils are arranged in parallel and coaxially, the two circular heating coils are energized with the alternating current, and the two circular heating coils are positioned approximately in the middle. An almost uniform alternating magnetic field is applied to the heating blade, and the two circular heating coils generate a substantially uniform amount of Joule heat across the entire edge of the blade edge.
  3. 請求項1記載の加熱溶断装置において、2つの長方形楕円加熱コイルは平行に且つ同軸に配置し、前記2つの長方形楕円加熱コイルは前記交番電流を通電されて、前記2つの長方形楕円加熱コイルはほぼ中間に位置する前記加熱刃にほぼ均一な交番磁界を与えて、前記2つの長方形楕円加熱コイルが刃先の辺の全域にほぼ均一なジュール熱量を生成することを特徴とする加熱溶断装置。 The heating and fusing device according to claim 1, wherein the two rectangular elliptical heating coils are arranged in parallel and coaxially, the two rectangular elliptical heating coils are energized with the alternating current, and the two rectangular elliptical heating coils are substantially An apparatus for heating and fusing characterized in that a substantially uniform alternating magnetic field is applied to the heating blade located in the middle, and the two rectangular elliptical heating coils generate a substantially uniform amount of Joule heat across the entire edge of the blade edge.
  4. 請求項1記載の加熱溶断装置において、制御用の低電圧を充電した電源コンデンサが有って、高電圧に対し低電圧直流電源を保護する高電圧阻止ダイオードが有って、電位的な絶縁に対し信号のみを透過するフローティング素子が有って、高電位レベルシフトはより高い高電圧の制御によってより高い前記ジュール熱量を前記刃先に生成することを特徴とする加熱溶断装置。 The heating fusing device according to claim 1, wherein there is a power supply capacitor charged with a low voltage for control, and there is a high voltage blocking diode that protects the low voltage DC power supply against high voltage, for potential insulation. On the other hand, there is a floating element that transmits only a signal, and a high potential level shift generates a higher amount of Joule heat at the cutting edge by controlling a higher high voltage.
  5. 請求項1記載の加熱溶断装置において、前記加熱刃の放射されるエネルギーの量は光ファイバーを通じて前記加熱刃の温度として計測して、前記光ファイバーが前記加熱刃の温度を制御すること特徴とする加熱溶断装置。 The heating fusing device according to claim 1, wherein the amount of energy radiated from the heating blade is measured as a temperature of the heating blade through an optical fiber, and the optical fiber controls the temperature of the heating blade. apparatus.
  6. 請求項1記載の加熱溶断装置において、電流検出素子は前記交番電流を計測して、前記電流検出素子が前記刃先の前記ジュール熱量を制御することを特徴とする加熱溶断装置。 The heating fusing device according to claim 1, wherein a current detection element measures the alternating current, and the current detection element controls the Joule heat amount of the cutting edge.
  7. ニクロム線のヒータから熱伝導で加熱刃に熱を与えていた成型品のゲートを溶断するゲートカット装置であって、前記ゲートの加圧力量はトルク変換器のねじりモーメントをストレインゲージによって計測して、前記ストレインゲージが前記加圧力量を制御することを特徴とする加熱溶断装置。 This is a gate cutting device that melts the gate of a molded product that has been heated to the heating blade by heat conduction from a nichrome wire heater. The amount of pressure applied to the gate is measured by measuring the torsional moment of the torque transducer with a strain gauge. The heating fusing device, wherein the strain gauge controls the amount of applied pressure.
PCT/JP2008/000279 2008-02-20 2008-02-20 Heat melting device WO2009104219A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2008/000279 WO2009104219A1 (en) 2008-02-20 2008-02-20 Heat melting device
JP2009554411A JPWO2009104768A1 (en) 2008-02-20 2009-02-20 Fusing equipment
PCT/JP2009/053093 WO2009104768A1 (en) 2008-02-20 2009-02-20 Melting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000279 WO2009104219A1 (en) 2008-02-20 2008-02-20 Heat melting device

Publications (1)

Publication Number Publication Date
WO2009104219A1 true WO2009104219A1 (en) 2009-08-27

Family

ID=40985115

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2008/000279 WO2009104219A1 (en) 2008-02-20 2008-02-20 Heat melting device
PCT/JP2009/053093 WO2009104768A1 (en) 2008-02-20 2009-02-20 Melting apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053093 WO2009104768A1 (en) 2008-02-20 2009-02-20 Melting apparatus

Country Status (2)

Country Link
JP (1) JPWO2009104768A1 (en)
WO (2) WO2009104219A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085054A2 (en) * 2011-12-09 2013-06-13 株式会社高橋型精 Cutting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO334174B1 (en) 2009-11-17 2013-12-30 Smart Installations As Cutting device, method and application for cutting a line from a floating vessel

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181071A (en) * 1994-12-21 1996-07-12 Rohm Co Ltd Film forming method and manufacture of semiconductor device using thereof
JPH08292712A (en) * 1995-04-20 1996-11-05 Syst Design K:Kk Steering wheel device and steering wheel
JPH10225898A (en) * 1996-12-09 1998-08-25 Jiemiko:Kk Cutter for separating caulking material
JP2000042993A (en) * 1998-07-24 2000-02-15 Yaskawa Electric Corp Yarn bundle cutting method
JP2000050403A (en) * 1998-08-03 2000-02-18 Denso Corp Power source unit for hybrid electric automobile
JP2000061360A (en) * 1998-08-18 2000-02-29 Hitachi Koki Co Ltd Control device for motor for centrifugal apparatus
JP2001124933A (en) * 1999-10-28 2001-05-11 Mitsubishi Rayon Co Ltd Method and device for cutting plastic optical fiber
JP2002001775A (en) * 2000-06-21 2002-01-08 Yushin Precision Equipment Co Ltd Gate cutter for resin molded article
JP2002144287A (en) * 2000-11-09 2002-05-21 Seidensha Electronics Co Ltd Cutting method of resin workpiece and device for the same
JP2003166887A (en) * 2001-11-30 2003-06-13 Nitto Seiko Co Ltd Torque detection device
JP2003236896A (en) * 2002-02-19 2003-08-26 Star Seiki Co Ltd Gate cut device for resin molding
WO2005065899A1 (en) * 2004-01-07 2005-07-21 Bridgestone Corporation Cutting device and cutting method
JP2006202939A (en) * 2005-01-20 2006-08-03 Mitsubishi Heavy Ind Ltd Attraction method, releasing method, plasma processing method, electrostatic chuck, and plasma processing apparatus
JP2007152507A (en) * 2005-12-06 2007-06-21 Mayekawa Mfg Co Ltd Bread slicer and bread cutting method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260998A (en) * 1985-05-16 1986-11-19 株式会社井上ジャパックス研究所 Deburring device
US4653362A (en) * 1985-05-22 1987-03-31 Gerber Scientific Inc. Cutting apparatus with heated blade for cutting thermoplastic fabrics and related method of cutting
JPS6343845A (en) * 1986-08-11 1988-02-24 Mikuni Seisakusho:Kk Structure of lid part for trunk rear trim and cutting method thereof
JPS63306855A (en) * 1987-06-02 1988-12-14 ジエ−エ−ペ− グルツプ パスキエ Machining device capable of controlling tool pressure
JP2637632B2 (en) * 1991-03-20 1997-08-06 川崎製鉄株式会社 Heating method for silicon steel slab and holding device for slab in heating furnace
JPH04348765A (en) * 1991-05-27 1992-12-03 Riken Corp Magnetic induction coil for thermotherapy
JPH05343833A (en) * 1992-06-10 1993-12-24 Fujitsu Ltd Cutting apparatus of wiring pattern
JPH11165720A (en) * 1997-11-29 1999-06-22 Toshiba Eng & Constr Co Ltd Bag breaking apparatus
JP2007209054A (en) * 2006-01-31 2007-08-16 Sharp Corp Switching regulator and its control circuit

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181071A (en) * 1994-12-21 1996-07-12 Rohm Co Ltd Film forming method and manufacture of semiconductor device using thereof
JPH08292712A (en) * 1995-04-20 1996-11-05 Syst Design K:Kk Steering wheel device and steering wheel
JPH10225898A (en) * 1996-12-09 1998-08-25 Jiemiko:Kk Cutter for separating caulking material
JP2000042993A (en) * 1998-07-24 2000-02-15 Yaskawa Electric Corp Yarn bundle cutting method
JP2000050403A (en) * 1998-08-03 2000-02-18 Denso Corp Power source unit for hybrid electric automobile
JP2000061360A (en) * 1998-08-18 2000-02-29 Hitachi Koki Co Ltd Control device for motor for centrifugal apparatus
JP2001124933A (en) * 1999-10-28 2001-05-11 Mitsubishi Rayon Co Ltd Method and device for cutting plastic optical fiber
JP2002001775A (en) * 2000-06-21 2002-01-08 Yushin Precision Equipment Co Ltd Gate cutter for resin molded article
JP2002144287A (en) * 2000-11-09 2002-05-21 Seidensha Electronics Co Ltd Cutting method of resin workpiece and device for the same
JP2003166887A (en) * 2001-11-30 2003-06-13 Nitto Seiko Co Ltd Torque detection device
JP2003236896A (en) * 2002-02-19 2003-08-26 Star Seiki Co Ltd Gate cut device for resin molding
WO2005065899A1 (en) * 2004-01-07 2005-07-21 Bridgestone Corporation Cutting device and cutting method
JP2006202939A (en) * 2005-01-20 2006-08-03 Mitsubishi Heavy Ind Ltd Attraction method, releasing method, plasma processing method, electrostatic chuck, and plasma processing apparatus
JP2007152507A (en) * 2005-12-06 2007-06-21 Mayekawa Mfg Co Ltd Bread slicer and bread cutting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085054A2 (en) * 2011-12-09 2013-06-13 株式会社高橋型精 Cutting device
WO2013085054A3 (en) * 2011-12-09 2013-09-26 株式会社高橋型精 Cutting device

Also Published As

Publication number Publication date
JPWO2009104768A1 (en) 2011-06-23
WO2009104768A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
CN101682943B (en) Induction heat treatment of workpieces
BRPI0607428B1 (en) induction heating apparatus for heating a sheet metal and for heating a movable sheet metal through a passage area thereof
BRPI0819185B1 (en) apparatus and method of heating the welding zone of the steel pipe material.
KR102152631B1 (en) Induction heating apparatus
WO2009104219A1 (en) Heat melting device
KR20180092593A (en) High-frequency induction heating system for automotive hood panel sealer bonding
JP2016009590A (en) Heating method and heating device, and method of fabricating press molding
JP4964737B2 (en) Induction heating method and apparatus for metal material
BRPI0719040A2 (en) PROCESS AND DEVICE FOR WELDING SEAM THERMAL TREATMENT
JP2015065091A (en) Induction heating apparatus and induction heating method
JP5987420B2 (en) Electric heating method and hot press molding method
JP2011237479A5 (en)
JP2009295392A (en) Electromagnetic induction heater
JP2018538778A (en) High frequency power supply system with fine-tuned output for workpiece heating
WO2008062993A1 (en) Induction heating bonding apparatus
JP6769532B2 (en) Heat treatment equipment
CN101442846A (en) High-frequency induction heater
CN208087687U (en) A kind of heating device for strip steel weld joint heat treatment
JP5835691B2 (en) Electric heating apparatus and method
CN205793456U (en) The 9 Cr 2 steel using electromagnetic heating fusing device of soft/hard multilayer printed circuit board
CN103619086A (en) High frequency induction heating equipment
JP5018468B2 (en) Fixing device and coil unit
JP2008197318A (en) Fixing device
CN114701176B (en) Thermoplastic composite welding equipment with laser-induced graphene as heating element
JP5976484B2 (en) Induction heating method and induction heating apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08710432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC EPO FORM DD 12/11/10

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 08710432

Country of ref document: EP

Kind code of ref document: A1