WO2009103210A1 - 棘轮式转子发动机 - Google Patents

棘轮式转子发动机 Download PDF

Info

Publication number
WO2009103210A1
WO2009103210A1 PCT/CN2008/072715 CN2008072715W WO2009103210A1 WO 2009103210 A1 WO2009103210 A1 WO 2009103210A1 CN 2008072715 W CN2008072715 W CN 2008072715W WO 2009103210 A1 WO2009103210 A1 WO 2009103210A1
Authority
WO
WIPO (PCT)
Prior art keywords
ratchet
cylinder
circular
rotor
compression
Prior art date
Application number
PCT/CN2008/072715
Other languages
English (en)
French (fr)
Inventor
刘宏伟
Original Assignee
Liu Hongwei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liu Hongwei filed Critical Liu Hongwei
Publication of WO2009103210A1 publication Critical patent/WO2009103210A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/02Methods of operating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/12Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
    • F01C1/14Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F01C1/20Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with dissimilar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • F02B53/08Charging, e.g. by means of rotary-piston pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/08Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/14Shapes or constructions of combustion chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a rotor engine, and more particularly to a ratchet type rotor engine.
  • the object of the present invention is to overcome the deficiencies of the reciprocating piston engine and the current rotor engine described above.
  • a ratchet type rotary engine is provided, and the whole machine has no reciprocating mechanism, and there is no linear motion. All the moving mechanisms are rotating motions, and the structure is simple, the design is reasonable, the processing difficulty is low, and the engine speed is improved.
  • the engine is light in weight, small in size, high in power and high in power; the friction coefficient between parts is small, the operation is stable, and the vibration noise is small; energy saving and environmental protection, long service life, few parts, convenient processing, maintenance and disassembly.
  • a ratchet type rotary engine includes: a main shaft, an engine block, a spark plug, a valve train, a positive and negative control mechanism, an intake and exhaust pipe, and the engine block is at least A group of unit cylinders, each set of unit cylinders being composed of an intake compression cylinder and a power discharge cylinder body, wherein the intake compression cylinder is provided with a circular intake compression cylinder and at least one ratchet
  • the intake compression compression ratchet rotor is coordinated, at least one circular compression auxiliary cylinder is connected around the circular intake compression cylinder, and an intake compression gear ratchet is arranged in the circular compression auxiliary cylinder, and the circular compression auxiliary cylinder is connected through the intake compression gear ratchet a circular air intake compression cylinder;
  • the working power row cylinder is provided with a circular working power cylinder and a working exhaust ratchet rotor of at least one ratchet, and at least one circular pair is connected around the circular power cylinder
  • the cylinder is provided with
  • the gas distribution mechanism is disposed in an intermediate gas distribution plate between the power discharge cylinder block and the intake compression cylinder body,
  • the gas distribution mechanism described above is connected to a circular intake compression cylinder and a circular auxiliary cylinder respectively through a vent hole provided with a valve, and the valve is connected to a ratchet positive control mechanism, and the ratchet positive control mechanism is disposed at Inside the control panel; a front end cover is disposed on an outer surface of the working cylinder block, and a control panel and a rear end cover are sequentially disposed on the outer side of the air intake compression cylinder.
  • the ratcheting positive control mechanism is respectively connected to the intake compression gear ratchet and the working exhaust gear ratchet through the intake compression gear ratchet control shaft and the work exhaust gear ratchet control shaft, and the two ends of the intake compression gear ratchet control shaft
  • the two sides of the ratchet control shaft are respectively matched with the front end cover, the middle gas distribution plate and the rear end cover respectively.
  • the structure of the intake compression ratchet rotor and the work exhaust ratchet rotor are collectively referred to as a ratchet rotor, and the ratchet rotor is composed of a cylindrical body and a ratchet fixedly connected to the main body, and the ratchet rotor is a two-half ratchet rotor
  • the inner surface of the two halves of the ratchet rotor is provided with four spring holes, and a spring is arranged in the spring hole, the top of the ratchet is provided with a sealing strip, and a spring is arranged between the sealing strip and the ratchet, at both end faces of the ratchet rotor
  • An annular outer sealing jaw is provided on the connecting surface with the cylinder block.
  • the cross-shaped four-tooth ratchet of the intake compression gear ratchet and the work exhaust gear ratchet structure are collectively referred to as a ratchet wheel, and the gear ratchet is composed of two parts which are mutually butt-joined with each other, and the inner surfaces of the ratchets of the two halves are respectively.
  • a sealing strip is arranged on the top end of the impeller of the gear ratchet, and a ring is arranged on the outer end surface of the ratchet wheel. Externally sealed ⁇ .
  • the circular intake compression cylinder and the circular compression secondary cylinder communicate with the intake pipe at the connection of the start side of the intake compression ratchet rotor, and the circular compression compression cylinder and the circular compression secondary cylinder operate in the intake compression ratchet rotor.
  • the air distribution hole is connected to the connection at the end side.
  • the circular working power row cylinder and the circular auxiliary cylinder communicate with the air distribution hole at the joint of the working exhaust ratchet rotor starting side, and the circular working power cylinder and the circular auxiliary cylinder are working as the exhaust ratchet rotor. Connect the exhaust pipe to the connection at the end of the operation.
  • the invention has the advantages of simple structure, reasonable design and low processing difficulty, is beneficial to the improvement of the engine speed, and makes the engine light in weight, small in volume, high in power and high in power; the friction coefficient between components is small, and the operation is stable due to no nonlinear motion. , low vibration and noise; energy saving and environmental protection, long service life, few parts, easy disassembly and assembly, easy to use and popularized, purely a green engine.
  • This kind of rotary engine can be enlarged or reduced in design. The larger the circumference of the ratchet rotor, the greater the output power, and the expansion can also be expanded. The cylinder volume increases the detonation power of the fuel.
  • the engine uses a wide range of fuels: fuels such as gasoline, diesel and liquefied gases are available. According to the output power requirements, a single ratchet rotor, a double ratchet rotor or a multi-rathchet rotor rotor engine can be designed. In the 360-degree circumference, the number of ratchet rotors increases, and the number of ignitions increases. It is conducive to improving the engine's power index, economic indicators and environmental indicators.
  • Figure 1 is a schematic view of the structure of a single ratcheting rotary engine
  • FIG. 2 is a schematic plan view of the A direction of FIG. 1;
  • FIG. 3 is a cross-sectional view taken along line A-A of the intake compression cylinder of FIG. 1 in an initial state of intake compression;
  • Figure 4 is a cross-sectional view of the B-B of the power-discharge cylinder of Figure 1 in the initial state of work and exhaust;
  • FIG. 5 is a cross-sectional view taken along line A-A of the intake compression cylinder of FIG. 1 in an end state of intake compression;
  • Figure 6 is a cross-sectional view of the B-B in the working and exhausting state of the working cylinder in Figure 1;
  • FIG. 7 is a cross-sectional view taken along line C-C of the initial working state of the working cylinder of FIG. 1;
  • FIG. 8 is an operation diagram of an intake compression cylinder of a rotor engine embodiment having four ratchet groups, A-A cross-sectional view;
  • FIG. 9 is a B-B cross-sectional view showing the initial state of the work cylinder of the rotor engine embodiment having four ratchet sets;
  • Figure 10 is a schematic view showing the structure of the two parts of the ratchet rotor convex and concave jaws;
  • FIG. 11 is a schematic structural view of the claw-type ratchet rotor after the butt joint;
  • Figure 12 is a top plan view of the portion of the ratchet rotor seal of Figure 11;
  • FIG. 13 is a schematic cross-sectional structural view of a ratchet portion having a double seal
  • Figure 14 is a schematic view showing the structure of the ratchet rotor and the cylinder
  • Figure 15 is a schematic view of the structure of the gear ratchet.
  • Figure 16 is a cross-sectional view of the gear ratchet of Figure 15;
  • Figure 17 is a schematic view of the assembly structure of the two-cylinder rotor engine of the present rotor engine.
  • a single ratchet type rotary engine as shown in Figs. 1 and 2, includes:
  • the engine block is composed of a group of unit cylinders, and each group of unit blocks is sequentially sealed with the main shaft 1 and front end sealed with each other.
  • a cover 2 a work cylinder block 3, an intermediate gas distribution plate 4, an intake compression cylinder 5, a control plate 6 and a rear end cover 7, wherein the intake compression cylinder 5 is provided with a circular intake compression
  • the cylinder 501 is in dynamic cooperation with a ratcheting intake compression ratchet rotor 502.
  • the circular intake compression cylinder 501 is connected to a circular compression sub-cylinder 503, and an intake compression gear ratchet 504 is disposed in the circular compression sub-cylinder 503.
  • the compression sub-cylinder 503 is connected to the circular intake compression cylinder 501 through the intake compression gear ratchet 504; the circular work cylinder 301 and the at least one ratcheting work exhaust gas are disposed in the power discharge cylinder block 3
  • the ratchet rotor 302 is movably coupled, and the circular work cylinder 301 is connected to at least one circular sub-cylinder 303.
  • the circular sub-cylinder 303 communicates with the circular work cylinder 301 through the work exhaust gear ratchet 304.
  • the intake compression ratchet a rotor 502 and a working exhaust ratchet rotor 302 are respectively fixed on the main shaft 1;
  • the intake air compression cylinder 50 1 communicates with the circular sub cylinder 303 through the valve train 41.
  • the gas distribution mechanism 41 is disposed in the intermediate gas distribution plate 4 between the work discharge cylinder block 3 and the intake compression cylinder 5, and the gas distribution mechanism 41 is provided by the valve assembly.
  • the two ends of the air hole respectively communicate with the circular intake compression cylinder 501 and the circular auxiliary cylinder 303, the valve is connected to the ratchet positive control mechanism 8, and the ratchet positive control mechanism 8 is disposed in the control board 6;
  • a front end cover 2 is disposed on the outer surface of the power discharge cylinder block 3, and the control plate 6 and the rear end cover 7 are sequentially disposed outside the air intake compression cylinder 5.
  • the ratcheting positive control mechanism 8 is connected to the intake compression gear ratchet 504 and the work exhaust gear ratchet 304 through the intake compression gear ratchet control shaft 11 and the work exhaust gear ratchet control shaft 12, respectively.
  • the two ends of the compression gear ratchet control shaft 11 are respectively matched with the intermediate gas distribution plate 4 and the rear end cover 7; the two ends of the working exhaust gas supply ratchet control shaft 12 respectively pass through the bearing and the front end cover 2
  • the plate 4 and the rear end cover 7 are movably fitted. as shown in picture 2.
  • the intake compression ratchet rotor 502 and the work exhaust ratchet rotor 302 have the same structure, collectively referred to as a ratchet rotor 02, and the ratchet rotor 02 is composed of a cylindrical body 021 and a ratchet 022 fixedly coupled to the main body.
  • the ratchet rotor 02 is a two-half ratchet rotor-clamping structure 033.
  • the inner surfaces of the two halves of the ratchet rotor are respectively provided with four spring holes 023, and a spring 024 is disposed in the spring hole 023, and the top of the ratchet wheel is provided with a sealing strip 026.
  • a spring 029 is disposed between the sealing strip 026 and the ratchet, and a circular outer sealing ⁇ 030 is disposed on the connecting surface of the both ends of the ratchet rotor and the cylinder.
  • the intake compression gear ratchet 504 has the same structure as the work exhaust gear ratchet 304.
  • the cross-shaped four-tooth ratchet is collectively referred to as the gear ratchet 04, and the gear ratchet 04 is composed of two parts which are mutually butt-joined, and in two
  • the inner surface of the half gear ratchet is provided with four spring holes 041, the spring hole 041 is provided with a spring 042, and the inner surface of the two half ratchets is provided with a circular inner seal ⁇ 043, which is embedded in the top end of the impeller of the gear ratchet 04
  • the sealing strip 044 is provided with a circular outer sealing ⁇ 045 on the outer end surface of the ratchet.
  • the circular intake compression cylinder 501 and the circular compression sub-cylinder 503 communicate with the intake pipe 9 at the connection of the start side of the intake compression ratchet rotor 502, and the circular intake compression cylinder 501 and the circular compression pair
  • the cylinder 503 communicates with the air distribution hole 401 at the connection end of the intake compression ratchet rotor 502. As shown in Figure 3.
  • the circular work cylinder 301 and the circular sub-cylinder 303 communicate with the air distribution hole 401 at the joint of the operation start side of the work exhaust ratchet rotor 302, and the circular work cylinder 301 and the circular pair
  • the cylinder 303 communicates with the exhaust pipe 10 at the junction of the working end side of the working exhaust ratchet rotor 302. As shown in Figure 4.
  • the intake compression ratchet rotor rotates along the circumferential smoothing needle, and a vacuum is formed in the independent closed chamber d, and the combustible mixed gas is sucked in from the intake port 9. Since the intake compression ratchet rotor pressure is rotated 360° in the intake compression cylinder, the volume of the independent closed chamber is continuously expanded, and the combustible mixed gas is continuously sucked. When the intake compression ratchet rotor rotates to reach the top dead center, the combustible gas mixture is filled. The intake stroke is completed throughout the intake compression cylinder. As shown in Figure 5.
  • the intake compression compression ratchet 504 is fixed under the control of the ratchet positioning control mechanism 8 after the rotation of the reverse rotation needle is 90°, and the intake compression compression rat rotor 502 is further rotated over the intake compression gear ratchet 504. , return to the position of Figure 3 and start the second intake stroke. In this continuous reciprocating rotation, the combustible gas mixture is continuously sucked into the intake compression cylinder.
  • the top end face of the gas compression ratchet rotor is pressed against the cylinder wall of the intake compression cylinder.
  • the intake compression compresses the rotation of the ratchet rotor, the space e between the intake compression cylinder and the intake compression ratchet rotor is continuously reduced, thereby compressing the inhaled combustible mixed gas into a small space to form a high-pressure combustible mixed gas. That is, the position shown in Figure 5.
  • the air distribution hole 401 is opened, and as the intake compression ratchet rotor continues to rotate, the high pressure combustible mixed gas is pressed into the work cylinder 3 to prepare for ignition, and then the air distribution hole 401 is closed, and the intake compression gear ratchet starts to reverse the needle. After being rotated by 90°, it is fixed, and the same intake compression compression ratchet rotor continues to rotate along the circumference of the intake compression gear ratchet, and returns to the position of Figure 3 to complete the compression stroke. When the intake compression ratchet rotor continues to rotate along the circumference, the second compression stroke is started, so that the combustible mixed gas is continuously circulated and compressed.
  • Both the intake stroke and the compression stroke are continuously and continuously completed in an intake compression cylinder.
  • the higher the spindle revolutions The greater the pressure of the combustible gas mixture, the higher the temperature and the easier ignition.
  • the work stroke and the exhaust stroke are completed in the power discharge cylinder block 3.
  • the intermediate air distribution plate 4 is connected between the intake compression cylinder 5 and the two cylinders of the power discharge cylinder block 3.
  • the air distribution hole 401 in the intermediate gas distribution plate functions as the intake valve of the reciprocating engine.
  • the intake valve is opened to press the compressed combustible gas mixture into the explosion cylinder at the designated turn, and then the intake valve spark plug is turned off. Gong.
  • an impeller of the working exhaust gear ratchet forms a seal on the circumferential outer diameter point of the working exhaust ratchet rotor, and performs work exhausting.
  • the other impeller of the gear ratch is pressed at the point b of the cylinder wall of the auxiliary cylinder to form a seal.
  • the top surface of the rotor of the working exhaust ratchet is pressed against the cylinder wall c of the working cylinder to form a seal, so that it is formed at the intake valve.
  • a fully enclosed combustion chamber is opened, the high pressure gas is pressed into the combustion chamber, and the spark plug 13 fixed to the end cover corresponding to the intake valve is ignited, as shown in Fig. 7, igniting the high temperature and high pressure combustor in the combustion chamber
  • the mixed gas because the working exhaust gear ratchet and the working cylinder wall are fixed, so the expanding gas can only push the working power, the exhaust ratchet rotor rotates along the circumference, and the working exhaust ratchet rotor is fixed at On the main shaft, the power is directly transmitted to the main shaft to directly output the rotational torque.
  • the single ratchet rotor rotates once a week for one work, and the ratchets of several ratchets rotate one revolution for the same number of times as the ratchets, and so on.
  • the usual reciprocating engine is that the piston moves up and down four times in the cylinder, acting through the linkage mechanism to the song.
  • the crankshaft rotates for two weeks (720°) to complete the four strokes of intake, compression, work (burst), and exhaust, and work once.
  • the intake stroke and the compression stroke are completed in one cylinder, and the work stroke and the exhaust stroke are completed in the other cylinder, since the ratchet rotors in both cylinders are fixed at On the same main shaft (a certain angle difference), each time the explosive work is performed, the ratchet rotor is rotated one round (360°) along the circumferential path, and the intake, compression, and work (explosion) are completed in each of the two cylinders. 4 strokes of exhaust gas directly drive the spindle output torque. This is the great advantage of a ratchet rotor engine over a reciprocating engine.
  • An intermediate gas distribution plate 4 is provided between the intake compression cylinder 5 and the power discharge cylinder block 3, as shown in Fig. 1.
  • a gas distribution mechanism 41 is provided in the intermediate gas distribution plate, and a gas distribution hole 401 is provided in the intermediate gas distribution plate, and a gas distribution mechanism 41 is provided at an intermediate position of the gas distribution hole 401.
  • One end of the gas distribution hole communicates with the intake compression cylinder 5, and the other end communicates with the work discharge cylinder 3, and a gas distribution valve is arranged in the middle of the gas distribution hole, and the gas distribution valve can be used with an electric valve or a hydraulic valve or a hydraulic valve. Mechanical valve.
  • the intake compression gear ratchet 504 and the work exhaust gear ratchet 304 respectively pass the intake compression gear ratchet control shaft 11 and the work exhaust gear ratchet control shaft 12, and the ratchet positioning control mechanism 8 provided in the control board.
  • the connection see Fig. 2, controls the rotation of the intake compression gear ratchet 504 and the work exhaust gear ratchet 304 by the ratchet positioning control mechanism 8.
  • Ratchet positioning control mechanism 8 Automatic control or mechanical mechanism transmission control.
  • the working exhaust ratchet rotor 302, the intake compression ratchet rotor 502 and the working exhaust gear ratchet 304, and the intake compression gear ratchet 504 in the rotor engine of the present invention are all embedded in the teeth.
  • the structure makes the working exhaust ratchet rotor, the intake compression ratchet rotor and the working exhaust gear ratchet, and the sides of the intake compression gear ratchet respectively achieve a better sealing with the side cylinder wall of the cylinder.
  • the ratchet rotor 02 is composed of two parts which are mutually butt-joined with each other. See Figure 10-17.
  • Four spring holes 023 are provided on the inner surfaces of the two halves of the ratchet rotor, which are respectively combined by four springs 024.
  • the two halves of the ratchet rotor expand outwardly, and the inner surface of the two halves of the ratchet rotor is further provided with a circular inner seal ⁇ 025 for sealing the gap between the four springs.
  • a sealing strip 026 is embedded in the top end of the ratchet, and the sealing strip can be single As shown in Fig. 12, it can also be formed by two or two sealing strips. As shown in Fig.
  • two or more sealing strips can be inserted in parallel at the top end of the ratchet.
  • the sealing strip is I-shaped and inlaid.
  • In the fixing groove 027 at the top of the ratchet there is a certain gap, which can be moved up and down.
  • a spring hole 028 is opened under the fixing groove, and a spring 029 is installed in the spring hole, and the sealing strip is pressed against the cylinder block by the spring pressure to seal the function.
  • the ratchet rotor 02 and the cylinder block are provided with a circular outer seal ⁇ 030 on the joint faces of the both ends of the ratchet rotor 02 and the cylinder block.
  • the working exhaust gear ratchet and the intake compression gear ratchet have the same structure. As shown in Figure 15-16, it is also composed of two parts which are mutually butt-joined, and four spring holes 041 are provided on the inner surfaces of the two halves of the ratchets, respectively, which are combined by four springs 042.
  • the two halves of the ratchet expand outwardly, and a circular inner seal ⁇ 043 is provided on the inner surface of the two halves of the ratchet for sealing the gap between the four springs.
  • a sealing strip 044 is embedded in the top end of the impeller of the ratchet, and a circular outer sealing 045 045 is provided on the outer end surface of the ratchet.
  • the shape of the outer circumferential surface of the ratchet rotor 02 should be consistent with the shape of the surface of the impeller end face of the above-mentioned gear ratchet.
  • the shape of the circumferential end surface of the ratchet rotor should coincide with the shape of the surface surface of the cylinder end surface. It is flat, or it can be a concave or convex surface, or it can be other shapes.
  • the shape of the circumferential end face of the ratchet rotor is concave curved surface, which makes the explosive force of the combustible gas mixture more concentrated, so that the sealing effect is better.
  • the surface of the cylinder can be curved or otherwise shaped to achieve better sealing and work.
  • the invention has the advantages of simple structure, reasonable design and low processing difficulty, is beneficial to the improvement of the engine speed, and makes the engine light in weight, small in volume, high in power and high in power; the friction coefficient between components is small, and the operation is stable due to no nonlinear motion. , low vibration and noise; energy saving and environmental protection, long service life, few parts, easy disassembly and assembly, easy to use and popularized, purely a green engine.
  • the rotor engine can be designed to be enlarged or reduced. The larger the circumference of the ratchet rotor, the greater the output power, and the expansion of the cylinder volume can increase the detonation power of the fuel.
  • the engine uses a wide range of fuels: fuels such as gasoline, diesel and liquefied gases are available.
  • fuels such as gasoline, diesel and liquefied gases are available.
  • the rotor engine can be composed into a two-cylinder rotor engine, as shown in Figure 17. In this way, the output power can be doubled.
  • Rotor engines of four ratchet sets as shown in Figs. 8, 9:
  • the structure is basically the same as that of Embodiment 1, except that: the circular intake compression cylinder 501 and the four ratchets are advanced.
  • the air compression ratchet rotor 502 is dynamically mated, and the circular intake compression cylinder 501 is connected to four circular compression sub-cylinders 503.
  • the circular compression sub-cylinder 503 is provided with an intake compression gear ratchet 504, and the circular compression sub-cylinder 503 is passed.
  • the gas compression gear ratchet 504 is connected to the circular intake compression cylinder 501; the circular power cylinder 301 is arranged in the power cylinder block 3, and the circular work cylinder 30 1 and the four ratchets work.
  • the exhaust ratchet rotor 302 is movably engaged, and the circular work cylinder 301 is connected to four circular sub-cylinders 303, and the circular sub-cylinder 303 communicates with the circular work-discharge cylinder 301 through the work exhaust-disc ratchet 304.
  • the four ratchets of the intake compression ratchet rotor 502 in the intake compression cylinder cooperate in the same turn with the corresponding intake compression ratchet 504 in the circular compression subcylinder 503: ratchet rotor 502
  • the tops of the impellers of the four ratchets corresponding to the ratchets 504 are respectively pressed against the outer diameter of the rotor to form a seal
  • the tops of the four ratchets of the ratchet rotor 502 of the intake compression cylinder are respectively pressed against the cylinder wall to form a seal, thereby forming 4 sealed spaces
  • the ratchet rotor 502 makes a smooth needle rotation, thus expanding the space in the four small chambers, so that the four small chambers form a vacuum in the same chamber, and the combustible mixed gas is from different angles on the cylinder.
  • the four intake ports 9 are sucked into the cylinder block.
  • the intake compression ratchet rotor 502 When the intake compression ratchet rotor 502 is rotated, the compression stroke is started in the forward direction of the intake compression ratchet rotor, and the combustible mixed gas sucked in from the previous stroke is compressed. That is, when the four ratchet teeth on the intake compression ratchet rotor respectively pass over the impeller on the intake compression gear ratchet, the sealed small space on the other side of the four ratchet teeth of the ratchet rotor 502 is already filled with the combustible mixed gas, the ratchet The rotor 502 performs a circular needle rotation motion, and begins to compress the cavity space, thereby compressing the sucked combustible mixed gas into a small space to form a high-pressure combustible mixed gas, and the intake rattles the ratchet rotor by four ratchets.
  • the middle air distribution hole 401 is opened, and the compressed high pressure combustible mixture The gas is pressed into the work cylinder 3, and then the air distribution hole 401 is closed.
  • the intake compression ratchet rotor 502 continues to rotate, respectively, the corresponding impeller ⁇ on the corresponding intake compression gear ratchet 504 is passed, and the compression stroke is completed simultaneously. .
  • the four closed small chambers are respectively filled with the high-pressure combustible mixed gas compressed by the intake compression cylinder 501, and the four spark plugs corresponding to the intake holes are simultaneously ignited, and the high-pressure combustible mixed gas is in four small chambers.
  • the chambers are respectively detonated, and the four ratcheting work exhaust ratchet rotors are directly driven to rotate, and the spindle 1 is driven to perform work.
  • the four ratchets of the working exhaust ratchet rotor are respectively close to the corresponding impellers on the working exhaust gear ratchets, that is, the four normally open exhaust holes 10 ⁇ are respectively passed, and the work stroke is completed. .
  • the four venting holes 10 are normally open, when the ratchet rotor rotates along the circumference, the four ratchets respectively compress the exhaust gas after the above-mentioned four small chambers are detonated along the vent hole, when The four ratchets of the working exhaust ratchet rotor are respectively close to the corresponding group impellers on the working exhaust gear ratchets corresponding thereto, and the exhaust gas is completely discharged, and the exhaust stroke is completed.
  • the ratchet rotor drives the continuous output power of the center output shaft, that is, the center output shaft completes 16 strokes of intake, compression, explosion, and exhaust per 360° rotation.
  • the rotor output of these four ratchet sets is four times that of a single ratcheted rotary engine. It far exceeds the output power of an equivalent reciprocating engine. According to the advantage that the rotary engine can output high power, it can be used on large ships, high-power internal combustion engines or on military tanks and armored transport vehicles. Multiple single-cylinder four ratchets can be combined in series on the same central output shaft. Rotor-type rotary engine, if it is connected in series at different angles of 360°, its output power is the same as that of the existing multi-type engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Supercharger (AREA)

Description

说明书 棘轮式转子发动机
技术领域
[1] 本发明涉及一种转子发动机, 具体是一种棘轮式转子发动机。
[2] 背景技术
[3] 目前, 世界上普遍使用的发动机, 都是往复式活塞发动机, 到目前为止虽然有 很多发明涉及各种形式的转子发动机, 但是大都没有得到广泛的使用和推广。 其原因主要是: 结构复杂、 输出功率小、 实用性差、 使用寿命短、 加工精度要 求高、 对部件材料的质量要求高、 密封不易解决等。
[4] 发明内容
[5] 本发明的目的在于: 为了克服上述往复式活塞发动机和目前转子发动机的不足
, 提供一种棘轮式转子发动机, 它的整机没有往复运动机构, 没非有线性运动 , 所有运动机构都是旋转运动, 达到结构简单、 设计合理、 加工难度低, 有利 于发动机转速的提高, 使发动机重量轻、 体积小、 功率大、 升功率高; 零部件 之间摩擦系数小, 运行平稳, 振动噪音小; 节能环保, 使用寿命长, 零部件少 , 加工、 维修、 拆装方便。
[6] 本发明是这样实现的: 一种棘轮式转子发动机, 包括: 主轴、 发动机缸体、 火 花塞、 配气机构、 正吋控制机构, 进、 排气管, 所述的发动机缸体由至少一组 单元缸体构成, 每组单元缸体由进气压缩缸体和作功排气缸体构成, 所述的进 气压缩缸体内设有圆形进气压缩缸与至少一个棘齿的进气压缩棘轮转子动配合 , 圆形进气压缩缸周边至少连通一个圆形压缩副缸, 在圆形压缩副缸内设置进 气压缩档棘轮, 圆形压缩副缸通过进气压缩档棘轮连通圆形进气压缩缸; 所述 的作功排气缸体内设置圆形作功排气缸与至少一个棘齿的作功排气棘轮转子动 配合, 圆形作功排气缸周边至少连通一个圆形副缸, 圆形副缸通过作功排气档 棘轮与圆形作功排气缸连通, 进气压缩棘轮转子和作功排气棘轮转子分别连主 轴; 所述的圆形进气压缩缸通过配气机构连通圆形副缸。
[7] 所述的配气机构设置在作功排气缸体与进气压缩缸体之间的中间配气板内, 所 述的配气机构-由设置配气阀的通气孔两端分别连通圆形进气压缩缸、 圆形副缸 , 所述的配气阀连接棘轮正吋控制机构, 棘轮正吋控制机构设置在控制板内; 所述的作功排气缸体的外面设置前端盖, 所述的进气压缩缸体外面依次设置控 制板、 后端盖。
所述的棘轮正吋控制机构通过进气压缩档棘轮控制轴和作功排气档棘轮控制轴 分别连接进气压缩档棘轮、 作功排气档棘轮, 进气压缩档棘轮控制轴的两端分 别与中间配气板及后端盖动配合; 所述的作功排气档棘轮控制轴的两端分别与 前端盖、 中间配气板及后端盖动配合。
所述的进气压缩棘轮转子和作功排气棘轮转子结构相同统称为棘轮转子, 所述 的棘轮转子由圆柱形主体和固定连接在主体上的棘轮构成, 棘轮转子为两半棘 轮转子牙嵌式结构, 两半棘轮转子的内表面各设有 4个弹簧孔, 在弹簧孔内设置 弹簧, 该棘轮的顶端设置有密封条, 密封条与该棘轮之间设置弹簧, 在棘轮转 子的两端面与缸体的连接面上设有圆环形外密封圏。
所述的进气压缩档棘轮与作功排气档棘轮结构相同的十字形四齿棘轮统称档棘 轮, 档棘轮由相互凸凹牙嵌式对接的两部分构成, 在两半档棘轮的内表面各设 有 4个弹簧孔, 弹簧孔内设置弹簧, 在两半棘轮的内表面设有圆环形内密封圏, 在档棘轮的叶轮的顶端镶嵌有密封条, 在棘轮的外端面设有圆环形外密封圏。 所述的圆形进气压缩缸与圆形压缩副缸在进气压缩棘轮转子运转始侧连接处连 通进气管, 在圆形进气压缩缸与圆形压缩副缸在进气压缩棘轮转子运转终侧连 接处连通配气孔。
所述的圆形作功排气缸与圆形副缸在作功排气棘轮转子运转始侧的连接处连通 配气孔, 在圆形作功排气缸与圆形副缸在作功排气棘轮转子运转终侧的连接处 连通排气管。
本发明结构简单、 设计合理、 加工难度低, 有利于发动机转速的提高, 使发动 机重量轻、 体积小、 功率大、 升功率高; 零部件之间摩擦系数小, 由于没有非 线性运动, 运行平稳, 振动噪音小; 节能环保, 使用寿命长, 零部件少, 拆装 、 维修方便, 便于应用普及和推广, 纯属于绿色发动机。 这种转子发动机在设 计上可放大或缩小, 棘轮转子的圆周越大, 输出功率就越大, 同吋还可以扩大 气缸容积加大燃料的爆燃力量。 本发动机用的燃料广泛: 可用汽油、 柴油和液 化气等燃料。 按输出功率的要求, 可以设计出单棘轮转子、 双棘轮转子或多棘 轮转子的转子发动机。 在 360度圆周内棘轮转子增多, 点火次数也随之增加。 有 利于提高发动机的动力性指标、 经济性指标以及环保指标等。
[14] 附图说明
[15] 图 1是单棘轮式转子发动机结构示意图;
[16] 图 2是图 1的 A向俯视示意图;
[17] 图 3是图 1的进气压缩缸体在进气压缩初始状态中 A-A剖示意图;
[18] 图 4是图 1中作功排气缸在作功、 排气初始状态的 B-B剖示意图;
[19] 图 5是图 1中进气压缩缸体在进气压缩终了状态的中 A-A剖示意图;
[20] 图 6是图 1中作功排气缸在作功、 排气终了状态中 B-B剖示意图;
[21] 图 7是图 1中作功排气缸作功初始状态的 C-C剖示意图;
[22] 图 8、 是具有 4个棘轮组的转子发动机实施例的进气压缩缸体工作状态 A-A剖示 意图;
[23] 图 9、 是具有 4个棘轮组的转子发动机实施例的作功排气缸初始状态的 B-B剖示 意图;
[24] 图 10图是棘轮转子凸凹牙嵌式对接的两部分的结构示意图;
[25] 图 11是牙嵌式棘轮转子凸凹对接后的结构示意图;
[26] 图 12是图 11中棘轮转子密封条部分的俯视结构示意图;
[27] 图 13是具有双密封条的棘轮部分的剖面结构示意图;
[28] 图 14是棘轮转子与缸体相配合的结构示意图;
[29] 图 15是档棘轮的结构示意图。
[30] 图 16是图 15的档棘轮剖面示意图。
[31] 图 17是本转子发动机组成双缸转子发动机的总装结构示意图。
[32] 图中编号:
[33] 1、 主轴,
[34] 2、 前端盖,
[35] 3、 作功排气缸体, 301、 圆形作功排气缸, 302、 作功排气棘轮转子, 303、 圆 形副缸, 304、 作功排气档棘轮;
[36] 4、 中间配气板, 41配气机构, 401配气孔;
[37] 5、 进气压缩缸体, 501、 圆形进气压缩缸, 502、 进气压缩棘轮转子, 503、 圆 形压缩副缸, 504、 进气压缩档棘轮,
[38] 6、 控制板,
[39] 7、 后端盖,
[40] 8、 棘轮定位控制机构, 9、 进气口, 10、 排气管,
[41] 11、 进气压缩档棘轮控制轴, 12、 作功排气棘轮控制轴,
[42] 12、 作功排气棘轮控制轴, 13、 火花塞,
[43] 02、 棘轮转子, 021、 圆柱形主体, 022、 棘轮, 023、 028弹簧孔;
[44] 024、 029弹簧, 025、 内密封圏, 026、 密封条, 027、 固定槽;
[45] 030、 外密封圏, 031、 内密封圏槽, 032、 外密封圏槽,
[46] 033、 牙嵌结构, 034、 主轴花键孔;
[47] 04、 棘轮, 040、 叶轮, 041、 弹簧孔, 042、 弹簧, 043、 内密封圏,
[48] 044、 密封条, 045、 外密封圏槽, 046、 牙嵌, 047、 控制轴花键孔;
[49] 具体实施方式
[50] 实施例 1
[51] 一种单棘轮式转子发动机, 如图 1、 2所示, 它包括: 发动机缸体由一组单元缸 体构成, 每组单元缸体由主轴 1依次与相互密封装配在一起的前端盖 2、 作功排 气缸体 3、 中间配气板 4、 进气压缩缸体 5、 控制板 6和后端盖 7, 所述的进气压缩 缸体 5内设有圆形进气压缩缸 501与一个棘齿的进气压缩棘轮转子 502动配合, 圆 形进气压缩缸 501周边连通一个圆形压缩副缸 503, 在圆形压缩副缸 503内设置进 气压缩档棘轮 504, 圆形压缩副缸 503通过进气压缩档棘轮 504连通圆形进气压缩 缸 501 ; 所述的作功排气缸体 3内设置圆形作功排气缸 301与至少一个棘齿的作功 排气棘轮转子 302动配合, 圆形作功排气缸 301周边至少连通一个圆形副缸 303, 圆形副缸 303通过作功排气档棘轮 304与圆形作功排气缸 301连通, 进气压缩棘轮 转子 502和作功排气棘轮转子 302分别固定在主轴 1上; 所述的圆形进气压缩缸 50 1通过配气机构 41连通圆形副缸 303。 [52] 所述的配气机构 41设置在作功排气缸体 3与进气压缩缸体 5之间的中间配气板 4 内, 所述的配气机构 41由设置配气阀的通气孔两端分别连通圆形进气压缩缸 501 、 圆形副缸 303, 所述的配气阀连接棘轮正吋控制机构 8, 棘轮正吋控制机构 8设 置在控制板 6内; 所述的作功排气缸体 3的外面设置前端盖 2, 所述的进气压缩缸 体 5外面依次设置控制板 6、 后端盖 7。
[53] 所述的棘轮正吋控制机构 8通过进气压缩档棘轮控制轴 11和作功排气档棘轮控 制轴 12分别连接进气压缩档棘轮 504、 作功排气档棘轮 304, 进气压缩档棘轮控 制轴 11的两端分别与中间配气板 4及后端盖 7动配合; 所述的作功排气档棘轮控 制轴 12的两端分别通过轴承与前端盖 2、 中间配气板 4及后端盖 7动配合。 如图 2 所示。
[54] 所述的进气压缩棘轮转子 502和作功排气棘轮转子 302结构相同, 统称为棘轮转 子 02, 所述的棘轮转子 02由圆柱形主体 021和固定连接在主体上的棘轮 022构成 , 棘轮转子 02为两半棘轮转子牙嵌式结构 033, 两半棘轮转子的内表面各设有 4 个弹簧孔 023, 在弹簧孔 023内设置弹簧 024, 该棘轮的顶端设置有密封条 026, 密封条 026与该棘轮之间设置弹簧 029, 在棘轮转子的两端面与缸体的连接面上 设有圆环形外密封圏 030。
[55] 所述的进气压缩档棘轮 504与作功排气档棘轮 304结构相同的十字形四齿棘轮统 称档棘轮 04, 档棘轮 04由相互凸凹牙嵌式对接的两部分构成, 在两半档棘轮的 内表面各设有 4个弹簧孔 041, 弹簧孔 041内设置弹簧 042, 在两半棘轮的内表面 设有圆环形内密封圏 043, 在档棘轮 04的叶轮的顶端镶嵌有密封条 044, 在棘轮 的外端面设有圆环形外密封圏 045。
[56] 所述的圆形进气压缩缸 501与圆形压缩副缸 503在进气压缩棘轮转子 502运转始 侧连接处连通进气管 9, 在圆形进气压缩缸 501与圆形压缩副缸 503在进气压缩棘 轮转子 502运转终侧连接处连通配气孔 401。 如图 3所示。
[57] 所述的圆形作功排气缸 301与圆形副缸 303在作功排气棘轮转子 302运转始侧的 连接处连通配气孔 401, 在圆形作功排气缸 301与圆形副缸 303在作功排气棘轮转 子 302运转终侧的连接处连通排气管 10。 如图 4所示。
[58] 工作原理如下: [59] (1) 进气行程: 如图 3所示, 在进气压缩缸体 5中, 进气压缩棘轮转子 502跟主 轴 1同步顺吋针转动, 从上止点沿圆周顺吋针运动, 此吋, 由于进气压缩档棘轮 504的一个叶轮压在进气压缩棘轮转子的圆周外径 a点上形成密封, 进气压缩档棘 轮的另一个叶轮压在副缸缸壁 b点上形成密封, 进气压缩棘轮转子的顶端面压在 进气压缩缸缸壁 c点上形成密封, 由此构成了一个独立的封闭室^ 由于此吋进气 压缩档棘轮是固定不动, 所以随着进气压缩棘轮转子沿圆周的顺吋针转动, 独 立的封闭室 d内形成真空, 可燃混合气体从进气口 9被吸入进来。 由于进气压缩 棘轮转子压在进气压缩缸做 360°旋转运动, 独立封闭室的容积不断扩大, 可燃混 合气体不断被吸入, 当进气压缩棘轮转子转动到达上止点吋, 可燃混合气体充 满整个进气压缩缸内, 进气行程完成。 如图 5所示。 这吋进气压缩档棘轮 504在 棘轮定位控制机构 8控制下, 开始逆吋针旋转 90°后固定不动, 同吋使进气压缩棘 轮转子 502越过进气压缩档棘轮 504顺吋针继续转动, 重新回到图 3位置, 并开始 第 2次进气行程。 如此不断往复旋转, 可燃混合气体就被不断吸入进气压缩缸内
[60] (2) 压缩行程: 见图 3, 在进气压缩缸体 5中, 当进气压缩棘轮转子 502从上止 点转动的同吋, 在进气压缩棘轮转子的前进方向则开始进行压缩行程, 对前一 行程吸进来的可燃混合气体进行压缩。 此吋与进气行程初始位置相同, 即进气 压缩档棘轮 504的一个叶轮压在进气压缩棘轮转子的外径上, 进气压缩档棘轮的 另一个叶轮压在副缸缸壁上, 进气压缩棘轮转子的顶端面压在进气压缩缸的缸 壁上。 随着进气压缩棘轮转子的转动, 不断缩小进气压缩缸和进气压缩棘轮转 子之间的空间 e, 从而把吸进来的可燃混合气体压缩到一个很小的空间当中形成 高压可燃混合气体, 即图 5所示位置。 此吋配气孔 401打开, 随着进气压缩棘轮 转子继续转动, 就将高压可燃混合气体压入到作功排气缸 3中准备点火, 然后配 气孔 401关闭, 进气压缩档棘轮开始逆吋针旋转 90°后固定不动, 同吋进气压缩棘 轮转子越过进气压缩档棘轮沿圆周顺吋针继续转动, 重新回到图 3位置, 完成压 缩行程。 当进气压缩棘轮转子沿圆周继续顺吋针转动吋, 开始第 2次压缩行程, 如此不断循环往复的将可燃混合气体压缩。
[61] 进气行程和压缩行程都是在一个进气压缩缸内不断连续完成的, 主轴转数越高 , 可燃混合气体压力就越大, 温度也就越高, 易点火。 作功行程和排气行程是 在作功排气缸体 3中完成。 进气压缩缸体 5和作功排气缸体 3两个缸体之间, 由中 间配气板 4相连接。 中间配气板中的配气孔 401的作用如同往复式发动机的进气 门, 打开进气门把被压缩的可燃混合气体在指定的吋间压入爆发缸内, 然后关 闭进气门火花塞点火作功。
[62] (3) 作功 (爆发) 行程: 见图 4, 在作功排气缸体 3内的圆形作功排气缸 301中
, 当作功排气棘轮转子 302越过作功排气档棘轮 304后, 作功排气档棘轮的一个 叶轮压在作功排气棘轮转子的圆周外径 a点上形成密封, 作功排气档棘轮的另外 一个叶轮压在副缸缸壁 b点上形成密封, 作功排气棘轮转子的顶端面压在作功排 气缸的缸壁 c点上形成密封, 因此在进气门处就形成一个全封闭的燃烧室 此吋 进气门打开, 高压气体被压入燃烧室, 同吋与进气门对应的固定在端盖上的火 花塞 13点火, 见图 7, 点燃燃烧室内的高温高压可燃混合气体, 由于作功排气档 棘轮和作功排气缸缸壁都是固定不动的, 所以膨胀气体只能推动作功排气棘轮 转子沿圆周做旋转运动, 作功排气棘轮转子固定在主轴上, 所以动力直接传输 给主轴将转动力矩直接输出。 当作功排气棘轮转子被推到上止点接近作功排气 档棘轮吋, 见图 5, 作功排气档棘轮开始逆吋针转动 90°, 使作功排气棘轮转子越 过作功排气档棘轮见图 3开始下一次进气点火。 如此循环周而复始地进行, 发动 机便产生连续的动力输出。
[63] 单棘轮转子旋转一周点火作功 1次, 几个棘齿的棘轮转子旋转一周点火作功次 与棘齿个数相同, 以此类推。
[64] (4) 排气行程: 见图 4, 当作功排气棘轮转子 302转动到上止点吋, 在作功排 气棘轮转子的前进方向则是上一次作功 (爆发) 留下的废气。 由于在作功排气 缸体上设有一个长开着的排气管 10, 当作功排气棘轮转子转动吋, 便推动废气 沿圆周轨迹向排气管方向推出, 当作功排气棘轮转子到达上止点接近作功排气 档棘轮的叶轮吋, 残留在作功排气缸内的废气就被全部排出, 如图 6位置。 这吋 作功排气档棘轮又转动 90°使作功排气棘轮转子越过作功排气档棘轮的叶轮, 进 入下一次排气行程。
[65] 通常的往复式发动机是活塞在气缸内做上下运动 4次, 通过连杆机构作用到曲 轴上, 曲轴旋转两周 (720°) 完成进气、 压缩、 作功 (爆发) 、 排气四个行程, 作功一次。 而本发明的转子发动机是把进气行程和压缩行程在一个缸体内完成 , 把作功行程和排气行程在另一个缸体内完成, 由于两个缸体内的棘轮转子都 是固定在同一根主轴上 (相差一定角度) , 每当爆发作功一次推动棘轮转子沿 圆周轨迹转动一周 (360°) 吋, 分别在两个缸体内各自完成了进气、 压缩、 作功 (爆发) 、 排气 4个行程, 直接带动主轴输出力矩。 这就是棘轮转子发动机比往 复式发动机的巨大优越性。
[66] 2、 中间配气板中, 配气机构的结构和工作原理:
[67] 在进气压缩缸体 5和作功排气缸体 3之间设置中间配气板 4, 见图 1。 在中间配气 板中设有配气机构 41, 在中间配气板中设有一个配气孔 401, 在配气孔 401的中 间位置设有配气机构 41。 配气孔的一端与进气压缩缸 5相通, 另一端与作功排气 缸 3相通, 在配气孔的中间位置设有配气阀, 配气阀可以釆用电动阀或釆用液压 阀或釆用机械阀。
[68] 在本单棘轮式转子发动机中, 主轴 1每转动一周 360° , 配气机构 41配气 1次。
[69] 釆用这种配气机构 41吋, 为了保证配气准确无误。
[70] 棘轮定位控制机构 8的工作原理:
[71] 进气压缩档棘轮 504和作功排气档棘轮 304分别通过进气压缩档棘轮控制轴 11和 作功排气档棘轮控制轴 12, 与设在控制板中的棘轮定位控制机构 8连接, 见图 2 , 由棘轮定位控制机构 8控制进气压缩档棘轮 504和作功排气档棘轮 304转动。
[72] 棘轮定位控制机构 8釆用自动控制或釆用机械式机构传动控制等方式。
[73] 为了保证密封的要求, 本发明转子发动机中的作功排气棘轮转子 302、 进气压 缩棘轮转子 502和作功排气档棘轮 304、 进气压缩档棘轮 504, 都釆用牙嵌式结构 , 使作功排气棘轮转子、 进气压缩棘轮转子和作功排气档棘轮、 进气压缩档棘 轮的两侧面分别与气缸的侧面气缸壁达到较好的密封。
[74] 棘轮转子 02由相互凸凹牙嵌式对接的两部分构成, 见图 10-17, 在两半棘轮转 子的内表面各设有 4个弹簧孔 023, 分别用 4个弹簧 024把合起来的两半棘轮转子 向外胀开, 在两半棘轮转子的内表面还设有圆环形内密封圏 025, 用于密封由 4 个弹簧胀开的牙嵌缝隙。 在棘轮的顶端镶嵌有密封条 026, 密封条可以是单体的 如图 12所示, 也可以由 2两个密封条对接组合而成, 如图 13所示,还可以在棘轮的 顶端平行镶嵌 2个或 2个以上密封条, 密封条呈工字型, 镶嵌在棘轮顶部的固定 槽 027内, 有一定间隙, 可上下移动, 固定槽下开有弹簧孔 028, 在弹簧孔里装 有弹簧 029, 密封条受弹簧压力始终压在气缸体, 起到密封作用。 棘轮转子 02与 缸体的配合如图 14所示, 在棘轮转子 02的两端面与缸体的连接面上设有圆环形 外密封圏 030。
[75] 所述的作功排气档棘轮和进气压缩档棘轮的结构相同。 如图 15-16所示,也是由 相互凸凹牙嵌式对接的两部分构成, 在所述的两半棘轮的内表面各设有 4个弹簧 孔 041, 分别用 4个弹簧 042把合起来的两半棘轮向外胀开, 在两半棘轮的内表面 设有圆环形内密封圏 043, 用于密封由 4个弹簧胀开的牙嵌缝隙。 在棘轮的叶轮 的顶端镶嵌有密封条 044, 在棘轮的外端面设有圆环形外密封圏 045。
[76] 为了达到较好的密封效果, 棘轮转子 02的外圆周表面形状应和上述的档棘轮的 叶轮端面表面形状相吻合, 棘轮转子的圆周端面形状应和缸体端面表面形状相 吻合, 可以是平面的、 也可以是对应凹凸曲面的, 也可以是其它形状。 棘轮转 子的圆周端面形状是凹弧形曲面的, 可使可燃混合气体的爆发力更集中, 从而 密封效果更好。 另外根据需要缸体表面也可以做成弧形或其它形状, 以达到更 好的密封和作功。
[77] 另外, 与本发明转子发动机配套的其它部分, 如供给系、 点火系、 冷却系、 润 滑系、 启动系等, 均可釆用现有技术中的最先进技术与其配套, 本专业的技术 人员均不需创造性劳动即可完成, 本发明中不多叙述。
[78] 实验证明:
本发明结构简单、 设计合理、 加工难度低, 有利于发动机转速的提高, 使发动 机重量轻、 体积小、 功率大、 升功率高; 零部件之间摩擦系数小, 由于没有非 线性运动, 运行平稳, 振动噪音小; 节能环保, 使用寿命长, 零部件少, 拆装 、 维修方便, 便于应用普及和推广, 纯属于绿色发动机。 这种转子发动机在设 计上可放大或缩小, 棘轮转子的圆周越大, 输出功率就越大, 同吋还可以扩大 气缸容积加大燃料的爆燃力量。 本发动机用的燃料广泛: 可用汽油、 柴油和液 化气等燃料。 为了提高效率,可以将本转子发动机组成双缸转子发动机,如图 17所 示,这样输出功率就可以提高一倍。
[79] 实施例 2
[80] 4个棘轮组的转子发动机, 如图 8、 9所示: 其结构与实施例 1基本相同, 不同之 处在于: 所述的圆形进气压缩缸 501与 4个棘齿的进气压缩棘轮转子 502动配合, 圆形进气压缩缸 501周边连通 4个圆形压缩副缸 503, 在圆形压缩副缸 503内设置 进气压缩档棘轮 504, 圆形压缩副缸 503通过进气压缩档棘轮 504连通圆形进气压 缩缸 501 ; 所述的作功排气缸体 3内设置圆形作功排气缸 301, 圆形作功排气缸 30 1与 4个棘齿的作功排气棘轮转子 302动配合, 圆形作功排气缸 301周边连通 4个圆 形副缸 303, 圆形副缸 303通过作功排气档棘轮 304与圆形作功排气缸 301连通。
[81] 其进气行程、 压缩行程、 作功行程和排气行程这四行程的工作原理同实施例 1 , 因为 4个进气压缩档棘轮 504和 4个作功排气档棘轮 304同步工作。
[82] 1、 进气行程:
[83] 见图 8, 在进气压缩缸内进气压缩棘轮转子 502的 4棘齿在同一吋间同步与其对 应在圆形压缩副缸 503内进气压缩档棘轮 504配合工作: 棘轮转子 502的 4棘齿对 应的档棘轮 504的叶轮顶部分别压在转子的外径上形成密封, 进气压缩缸内棘轮 转子 502的 4个棘齿的顶部分别压在气缸壁上形成密封, 从而, 构成 4个密封空间 , 当棘轮转子 502做顺吋针旋转, 这样就在 4个小腔体内不断阔大空间, 使 4个小 腔体内同吋形成真空, 可燃混合气体就从设在气缸上不同角度的 4个进气口 9被 吸进缸体内, 当该棘轮转子 502继续旋转, 分别越过相对应的进气压缩档棘轮 50 4上的叶轮吋, 进气行程完成。
[84] 2、 压缩行程:
[85] 当进气压缩棘轮转子 502旋转吋, 在进气压缩棘轮转子的前进方向则开始进行 压缩行程, 对前一行程吸进来的可燃混合气体进行压缩。 即当进气压缩棘轮转 子上的 4个棘齿分别越过进气压缩档棘轮上的叶轮后, 在该棘轮转子 502的 4个棘 齿另一面的密封小空间中已经充满了可燃混合气体, 棘轮转子 502做顺吋针旋转 运动, 便开始压缩这腔体空间, 从而把吸进来的可燃混合气体压缩到一个很小 的空间, 形成高压可燃混合气体, 当进气压缩棘轮转子的 4个棘齿分别接近进气 压缩档棘轮 504上的对应叶轮吋, 中间的配气孔 401打开, 将压缩的高压可燃混 合气体压入作功排气缸 3内, 然后配气孔 401关闭, 当进气压缩棘轮转子 502继续 旋转, 分别越过相对应的进气压缩档棘轮 504上的对应的叶轮吋, 压缩行程同吋 完成。
[86] 2、 作功 (爆发) 排气行程:
[87] 见图 9, 同理, 由于 4个作功排气缸档棘轮 304上的 4组叶轮都分别压在作功排气 棘轮转子 302的外径上形成 4个密封, 上述的 4个作功排气缸档棘轮 304上的叶轮 分别压在圆形副缸 303的缸壁上形成密封, 而上述的作功排气棘轮转子 304的 4个 棘齿又在不同角度分别压在气缸壁上形成密封。 因此在密闭的 4个小腔体内分别 充满了由进气压缩缸 501压缩过来的高压可燃混合气体, 这吋与进气孔相对应的 4个火花塞同吋点火, 高压可燃混合气体在 4个小腔体内分别爆燃, 并同吋直接 推动该 4个棘齿的作功排气棘轮转子做旋转运动, 同吋带动主轴 1做功。 当作功 排气棘轮转子的 4个棘齿分别接近同它们相对应的作功排气档棘轮上的叶轮吋, 也就是分别越过了 4个常开的排气孔 10吋, 作功行程完成。
[88] 4、 排气行程
[89] 当旋转的作功排气棘轮转子 302的 4个棘齿在作功排气缸 301内旋转, 分别越过 作功排气档棘轮 304上的对应组叶片, 开始作功行程的同吋, 在作功排气棘轮转 子的 4个棘齿另一面的 4个小腔体内, 同吋开始排气行程, 排除上一个作功 (爆 发) 行程中的高压可燃混合气体爆燃后的废气。 由于 4个排气孔 10都是常开着的 , 当该棘轮转子沿圆周顺吋针转动吋, 4个棘齿分别压缩上述的 4个小腔体内爆 燃后的废气沿排气孔推出, 当作功排气棘轮转子的 4个棘齿分别接近与它们相对 应的作功排气档棘轮上的对应组叶轮吋, 废气被全部排出, 排气行程完成。
[90] 这样如此循环往复旋转运动, 棘轮转子则带动中心输出轴不断的输出功力, 也 就是中心输出轴每旋转一周 360°就完成 16次进气、 压缩、 爆发、 排气四个行程。
[91] 这种 4个棘轮组的转子发动机输出功率是单棘轮式转子发动机的 4倍。 它远远超 过同等往复式发动机的输出功率。 根据转子发动机可以输出大功率的优势, 它 可以用在大型轮船、 大功率内燃机上或在军用坦克车、 装甲运输车上, 可在同 一根中心输出轴上串接组合多个这样单缸四棘轮转子式转子发动机, 按 360°的不 同角度串接的话, 其输出功率是现有同等大小的往往复式发动机远远不能相比
Figure imgf000014_0001

Claims

权利要求书
[1] 1、 一种棘轮式转子发动机, 包括: 主轴 (1) 、 发动机缸体、 火花塞 (13
) 、 配气机构、 正吋控制机构, 进、 排气管, 其特征在于: 所述的发动机 缸体由至少一组单元缸体构成, 每组单元缸体由进气压缩缸体 (5) 和作功 排气缸体 (3) 构成, 所述的进气压缩缸体 (5) 内设有圆形进气压缩缸 (5 01) 与至少一个棘齿的进气压缩棘轮转子 (502) 动配合, 圆形进气压缩缸
(501) 周边至少连通一个圆形压缩副缸 (503) , 在圆形压缩副缸 (503) 内设置进气压缩档棘轮 (504) , 圆形压缩副缸 (503) 通过进气压缩档棘 轮 (504) 连通圆形进气压缩缸 (501) ; 所述的作功排气缸体 (3) 内设置 圆形作功排气缸 (301) 与至少一个棘齿的作功排气棘轮转子 (302) 动配 合, 圆形作功排气缸 (301) 周边至少连通一个圆形副缸 (303) , 圆形副 缸 (303) 通过作功排气档棘轮 (304) 与圆形作功排气缸 (301) 连通, 进 气压缩棘轮转子 (502) 和作功排气棘轮转子 (302) 分别连主轴 (1) ; 所 述的圆形进气压缩缸 (501) 通过配气机构 (41) 连通圆形副缸 (303) 。
[2] 2、 如权利要求 1所述的棘轮式转子发动机, 其特征在于: 所述的配气机构
(41) 设置在作功排气缸体 (3) 与进气压缩缸体 (5) 之间的中间配气板 (4) 内, 所述的配气机构 (41) 由设置配气阀的通气孔两端分别连通圆形 进气压缩缸 (501) 、 圆形副缸 (303) , 所述的配气阀连接棘轮正吋控制 机构 (8) , 棘轮正吋控制机构 (8) 设置在控制板 (6) 内; 所述的作功排 气缸体 (3) 的外面设置前端盖 (2) , 所述的进气压缩缸体 (5) 外面依次 设置控制板 (6) 、 后端盖 (7) 。
[3] 3、 如权利要求 1或 2所述的棘轮式转子发动机, 其特征在于: 所述的棘轮正 吋控制机构 (8) 通过进气压缩档棘轮控制轴 (11) 和作功排气档棘轮控制 轴 (12) 分别连接进气压缩档棘轮 (504) 、 作功排气档棘轮 (304) , 进 气压缩档棘轮控制轴 (11) 的两端分别与中间配气板 (4) 及后端盖 (7) 动配合; 所述的作功排气档棘轮控制轴 (12) 的两端分别与前端盖 (2) 、 中间配气板 (4) 及后端盖 (7) 动配合。
[4] 4、 如权利要求 1所述的棘轮式转子发动机, 其特征在于: 所述的进气压缩 棘轮转子 (502) 和作功排气棘轮转子 (302) 结构相同统称为棘轮转子 (0 2) , 所述的棘轮转子 (02) 由圆柱形主体 (021) 和固定连接在主体上的 棘轮 (022) 构成, 棘轮转子 (02) 为两半棘轮转子牙嵌式结构 (033) , 两半棘轮转子的内表面各设有 4个弹簧孔 (023) , 在弹簧孔 (023) 内设置 弹簧 (024) , 该棘轮的顶端设置有密封条 (026) , 密封条 (026) 与该棘 轮之间设置弹簧 (029) , 在棘轮转子的两端面与缸体的连接面上设有圆环 形外密封圏 (030) 。
5、 如权利要求 1所述的棘轮式转子发动机, 其特征在于: 所述的进气压缩 档棘轮 (504) 与作功排气档棘轮 (304) 结构相同的十字形四齿棘轮统称 档棘轮 (04) , 档棘轮 (04) 由相互凸凹牙嵌式对接的两部分构成, 在两 半档棘轮的内表面各设有 4个弹簧孔 (041) , 弹簧孔 (041) 内设置弹簧 ( 042) , 在两半棘轮的内表面设有圆环形内密封圏 (043) , 在档棘轮 (04 ) 的叶轮的顶端镶嵌有密封条 (044) , 在棘轮的外端面设有圆环形外密封 圏 (045) 。
6、 如权利要求 1所述的棘轮式转子发动机, 其特征在于: 所述的圆形进气 压缩缸 (501) 与圆形压缩副缸 (503) 在进气压缩棘轮转子 (502) 运转始 侧连接处连通进气管 (9) , 在圆形进气压缩缸 (501) 与圆形压缩副缸 (5 03) 在进气压缩棘轮转子 (502) 运转终侧连接处连通配气孔 (401) 。
7、 如权利要求 1所述的棘轮式转子发动机, 其特征在于: 所述的圆形作功 排气缸 (301) 与圆形副缸 (303) 在作功排气棘轮转子 (302) 运转始侧的 连接处连通配气孔 (401) , 在圆形作功排气缸 (301) 与圆形副缸 (303) 在作功排气棘轮转子 (302) 运转终侧的连接处连通排气管 (10) 。
PCT/CN2008/072715 2008-02-22 2008-10-16 棘轮式转子发动机 WO2009103210A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008100072786A CN101245732B (zh) 2008-02-22 2008-02-22 棘轮式转子发动机
CN200810007278.6 2008-02-22

Publications (1)

Publication Number Publication Date
WO2009103210A1 true WO2009103210A1 (zh) 2009-08-27

Family

ID=39946382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072715 WO2009103210A1 (zh) 2008-02-22 2008-10-16 棘轮式转子发动机

Country Status (2)

Country Link
CN (1) CN101245732B (zh)
WO (1) WO2009103210A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245732B (zh) * 2008-02-22 2012-11-21 刘宏伟 棘轮式转子发动机
CN101260830B (zh) * 2008-04-23 2011-11-02 刘宏伟 棘轮转子发动机控制装置
CN103195561B (zh) * 2013-03-22 2014-12-10 苏犁 双交叉同侧滑动四转子内燃发动机
CN107084042A (zh) * 2017-04-17 2017-08-22 俞啟元 并列式旋转活塞内燃机
CN117489472A (zh) * 2023-12-11 2024-02-02 国智科技(河北)股份有限公司 片状小体积带动大型滚轴转动的叶轮式活塞及内燃机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245597A (en) * 1977-10-20 1981-01-20 Thill Ernest M Split cycle heat engines
CN1062953A (zh) * 1991-01-01 1992-07-22 马光复 双缸体凸轮式转子发动机
CN1073746A (zh) * 1991-12-26 1993-06-30 张波 间歇齿轮转子式内燃机
DE4322097A1 (de) * 1993-07-02 1995-01-12 Harald Heppner Drehzylinderhubkolbenmotor
CN1034687C (zh) * 1990-10-24 1997-04-23 赖秀坤 分缸压气燃烧旋转活塞内燃机
DE19954480A1 (de) * 1999-11-12 2001-05-17 Kaiser Raimund Rotationskolben-Verbrennungsmaschine
CN101245732A (zh) * 2008-02-22 2008-08-20 刘宏伟 棘轮式转子发动机
CN101260830A (zh) * 2008-04-23 2008-09-10 刘宏伟 棘轮转子发动机控制装置
CN201155360Y (zh) * 2008-02-22 2008-11-26 刘宏伟 棘轮式转子发动机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245597A (en) * 1977-10-20 1981-01-20 Thill Ernest M Split cycle heat engines
CN1034687C (zh) * 1990-10-24 1997-04-23 赖秀坤 分缸压气燃烧旋转活塞内燃机
CN1062953A (zh) * 1991-01-01 1992-07-22 马光复 双缸体凸轮式转子发动机
CN1073746A (zh) * 1991-12-26 1993-06-30 张波 间歇齿轮转子式内燃机
DE4322097A1 (de) * 1993-07-02 1995-01-12 Harald Heppner Drehzylinderhubkolbenmotor
DE19954480A1 (de) * 1999-11-12 2001-05-17 Kaiser Raimund Rotationskolben-Verbrennungsmaschine
CN101245732A (zh) * 2008-02-22 2008-08-20 刘宏伟 棘轮式转子发动机
CN201155360Y (zh) * 2008-02-22 2008-11-26 刘宏伟 棘轮式转子发动机
CN101260830A (zh) * 2008-04-23 2008-09-10 刘宏伟 棘轮转子发动机控制装置

Also Published As

Publication number Publication date
CN101245732B (zh) 2012-11-21
CN101245732A (zh) 2008-08-20

Similar Documents

Publication Publication Date Title
US11187146B2 (en) Compound engine system with rotary engine
EP2653694B1 (en) Rotary engine and rotor unit thereof
US11098588B2 (en) Circulating piston engine having a rotary valve assembly
US7434563B2 (en) Rotary engine
CN109339940B (zh) 一种转子与定子间导流式转子内燃机
WO2009103210A1 (zh) 棘轮式转子发动机
US3314401A (en) Two-stroke cycle rotary engine
US3902465A (en) Rotary engine
US20060150946A1 (en) Rotary piston engine
WO2024037320A1 (zh) 独立配气缸内直燃圆周冲程内燃机和圆周冲程汽轮机
CN103147851B (zh) 受控转子块四行程转子发动机
WO2013041013A1 (zh) 轮环样气缸环转活塞发动机
CN108167071B (zh) 一种新型转子发动机
CN111120083B (zh) 一种双转子活塞发动机
CN201155360Y (zh) 棘轮式转子发动机
CN103343709B (zh) 受控转子块往复四行程转子发动机
RU2444635C2 (ru) Роторный двигатель
EP1085182B1 (en) Internal combustion rotary engine
US9273556B2 (en) Rotary engine with rotary power heads
CN2497044Y (zh) 旋转活塞转子发动机
US20070119407A1 (en) 8-stroke cycle rotary engine
CA2743062A1 (en) Rotary external combustion engine
RU2425233C1 (ru) Роторно-поршневой двигатель внутреннего сгорания
JPH0227121A (ja) 4枚の弁と楕円形ローターで構成する内燃機関
CN113864044A (zh) 一种双转子可变力臂发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08872733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08872733

Country of ref document: EP

Kind code of ref document: A1