WO2009102077A1 - Carbon nanotube rubber composition, wiring, electroconductive paste, electronic circuit, and process for producing the carbon nanotube rubber composition - Google Patents

Carbon nanotube rubber composition, wiring, electroconductive paste, electronic circuit, and process for producing the carbon nanotube rubber composition Download PDF

Info

Publication number
WO2009102077A1
WO2009102077A1 PCT/JP2009/052825 JP2009052825W WO2009102077A1 WO 2009102077 A1 WO2009102077 A1 WO 2009102077A1 JP 2009052825 W JP2009052825 W JP 2009052825W WO 2009102077 A1 WO2009102077 A1 WO 2009102077A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
rubber
wiring
ionic liquid
rubber composition
Prior art date
Application number
PCT/JP2009/052825
Other languages
French (fr)
Japanese (ja)
Inventor
Takao Someya
Tsuyoshi Sekitani
Kenji Hata
Original Assignee
The University Of Tokyo
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo, National Institute Of Advanced Industrial Science And Technology filed Critical The University Of Tokyo
Priority to PCT/JP2009/052825 priority Critical patent/WO2009102077A1/en
Priority to JP2009553493A priority patent/JPWO2009102077A1/en
Publication of WO2009102077A1 publication Critical patent/WO2009102077A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/0283Stretchable printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0133Elastomeric or compliant polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/026Nanotubes or nanowires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0271Mechanical force other than pressure, e.g. shearing or pulling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a carbon nanotube rubber composition, a carbon nanotube rubber, a carbon nanotube rubber paste, a wiring, a conductive belt, an electronic circuit and a method for producing the same.
  • the present invention provides a carbon nanotube rubber composition that provides a truly rubbery elastic conductor, carbon nanotube rubber, carbon nanotube rubber paste, wiring, conductive paste, a method for producing the same, and an electron using the same. It relates to the circuit.
  • Organic transistors can be fabricated on plastic films in a low temperature process, unlike conventional inorganic materials such as silicon, making it possible to make electronic devices that are both light and bendable. In addition, since it can be manufactured using printing technology, the manufacturing cost for making large-area products is also much lower than silicon. Applications of organic transistors to drive circuits for wireless tags and electronic paper are expected using this feature.
  • the present inventors worked on researches to apply organic transistors to large-area sensors and large-area sensors, electronic artificial skin for robots, sheet-type scanners, ultra-thin Braille displays, wireless power transmission sheets, We have shown the possibility of applying organic transistors to large area electronics, such as realizing communication sheets. In particular, machined polymer films printed with organic transistors.
  • JP-A-2001-185 there is disclosed a gel-like composition comprising carbon nanotubes and an ionic liquid.
  • a gel-like composition obtained by adding a polymer component to a gel and an ionic liquid has been proposed, and it has also been proposed to form an electronic circuit using such a gel-like composition.
  • materials obtained from these gel compositions have not been able to provide sufficient conductivity to the extent that they can be used as constituent materials of electronic circuits. Disclosure of the invention
  • the present invention solves the problems of the prior art as described above, has sufficient conductivity for use as a component material of an electronic circuit, and elasticity equal to that of a normal rubber material, and realizes flexible electronics.
  • Carbon nanotube rubber composition capable of providing stretchable electronic devices, carbon nanotube rubber, carbon nanotube rubber paste, wiring, conductive paste, and articles comprising them, and electronic circuit And to provide a method for manufacturing the same.
  • the present invention provides means for solving the above problems, and comprises the following.
  • a carbon nanotube rubber composition comprising carbon nanotubes, rubber and an ionic liquid
  • a carbon nanotube rubber composition characterized in that the rubber is miscible with an ionic liquid.
  • An article comprising the carbon nanotube rubber composition according to any one of 1 to 10 above.
  • the force-on-nanotube contained in the carbon nanotube rubber is a single-walled carbon nanotube.
  • An electronic circuit comprising: a substrate; an electronic component provided on the substrate; and stretchable wiring electrically connected to the electronic component.
  • the stretchable wiring comprises a wiring containing a carbon nanotube and a rubber-containing carbon nanotube rubber composition.
  • the carbon nanotube contained in the carbon nanotube rubber composition is a single-walled carbon nanotube,
  • the electronic circuit according to any one of the items 3 to 4 above.
  • Step 1 A step of preparing a carbon nanotube ionic liquid gel in which carbon nanotubes, an ionic liquid, and, if necessary, an organic solvent are dispersed.
  • Step 2 Preparation of carbon nanotube paste in which carbon nanotube ionic liquid gel, rubber polymer and optionally organic solvent are dispersed
  • Process 3 Process of removing organic solvent from carbon nanotube paste and manufacturing carbon nanotube rubber
  • a method of producing a carbon nanotube rubber composition comprising the following steps:
  • Step 1 Preparation of a carbon nanotube ionic liquid gel in which carbon nanotubes, an ionic liquid, and, if necessary, an organic solvent are dispersed
  • Step 2 Preparation of carbon nanotube nanotube paste in which carbon nanotube ionic liquid gel, rubber polymer and, if necessary, organic solvent are dispersed
  • Step 3 A step of removing the organic solvent from carbon nanotube paste to produce carbon nanotube rubber
  • Step 4 Removal of ionic liquid from carbon nanotube rubber
  • a method of producing a stretchable wiring comprising the following steps: Step 1: A step of preparing a carbon nanotube, an ionic liquid, and, if necessary, a carbon nanotube ionic liquid gel in which an organic solvent is dispersed. Step 2: Preparation of carbon nanotube paste in which carbon nanotube ionic liquid gel, rubber polymer and, if necessary, organic solvent are dispersed
  • Step 3 Remove organic solvent from carbon nanotube paste and manufacture stretchable wire containing carbon nanotube rubber
  • a method of manufacturing a carbon nanotube rubber wiring comprising the steps of:
  • Step 1 A step of preparing a carbon nanotube ionic liquid gel in which carbon nanotubes, an ionic liquid, and, if necessary, an organic solvent are dispersed.
  • Step 2 Preparation of carbon nanotube paste in which carbon nanotube ionic liquid gel, rubber polymer and, if necessary, organic solvent are dispersed
  • Process 3 A process of removing the organic solvent from carbon nanotube paste to produce carbon nanotube rubber
  • Process 4 A process of removing an ionic liquid from carbon nanotube rubber to produce a stretchable wiring
  • a method for producing a conductive paste comprising the following steps.
  • Step 1 Preparation of carbon nanotube ionic liquid gel in which carbon nanotubes, ionic liquid and, if necessary, organic solvent are dispersed
  • Step 2 Process for producing conductive paste including carbon nanotube paste in which carbon nanotube ionic liquid gel, rubber polymer and, if necessary, organic solvent are dispersed
  • the carbon nanotube rubber composition of the present invention carbon nanotube rubber, carbon nanotube rubber paste, wiring, conductive base
  • One of the strips has sufficient conductivity and extensibility when used as a constituent material of an electronic circuit, thereby providing an extensible electronic device.
  • FIG. 1 is an image of the carbon nanotube rubber of the present invention molded into a film shape obtained in one example of the present invention and photographed with a digital camera.
  • FIG. 2 is a digital camera photographed image of a reticulated carbon nanotube rubber obtained by machining holes in the plate-like carbon nanotube rubber obtained in one embodiment of the present invention.
  • FIG. 3 is a digital camera image of the carbon nanotube rubber paste obtained in one embodiment of the present invention.
  • FIG. 4 is a digital camera image of an article obtained by coating the carbon nanotube rubber obtained in one example of the present invention with a silicone rubber (P D M S) based on dimethylsiloxane.
  • FIG. 5 is a digital camera photographed image of an electronic circuit in which a carbon nanotube rubber is incorporated as a wire, obtained in one embodiment of the present invention.
  • FIG. 6 is a digital camera photographed image in a state where the active matrix constituting the circuit of FIG. 5 is expanded.
  • FIG. 7 is a schematic view showing an example of the method for producing a carbon nanotube rubber composition of the present invention.
  • FIG. 8 is a digital camera photographed image of carbon nanotube rubber obtained in one example.
  • FIG. 9 is a digital camera image of a wire made of patterned carbon nanotube rubber obtained in one embodiment.
  • FIG. 10 is a digital camera photographed image in a state in which the wiring made of carbon nanotube rubber in FIG. 9 is bent.
  • FIG. 11 is a scanning electron micrograph image of a portion of the patterned carbon nanotube rubber of FIG.
  • FIG. 12 is a graph showing the relationship between the carbon nanotube content and the conductivity and elongation rate in the carbon nanotube rubber composition obtained in one example of the present invention.
  • FIG. 13 is a photographic image showing the miscibility between various ionic liquids and rubber necessary for producing the carbon nanotube rubber composition of the present invention.
  • Figures 14 to 17 show the carbon nanotube rubber composition, carbon nanotube rubber, carbon nanotube rubber paste, stretchable carbon nanotube, ionic liquid, obtained in one embodiment of the present invention, respectively.
  • Fig.14 is a graph showing changes in conductivity and elongation when the composition ratio of rubber is changed.
  • Fig.14, Fig.15, Fig.16 show the strain and stress characteristics at that time,
  • Fig.17 shows the electric characteristics Indicates
  • FIG. 18 is a graph showing the relationship between the elongation and the conductivity in the carbon nanotube rubber composition obtained in one example of the present invention.
  • FIG. 19 is a graph showing the relationship between the content of carbon nanotubes, ionic liquid and rubber in the carbon nanotube-based rubber composition obtained in one example of the present invention and the conductivity.
  • FIG. 20 is a graph showing the relationship between the content of carbon nanotubes, ionic liquid and rubber in the carbon nanotube rubber composition obtained in one example of the present invention and the conductivity.
  • FIG. 21 is a graph showing the relationship between the rubber content in the carbon nanotube-rubber dispersed gel and the conductivity in the carbon nanotube rubber composition obtained in one example of the present invention.
  • FIG. 22 is a graph showing the relationship between the rubber content in the carbon nanotube / rubber dispersion gel and the critical elongation in the carbon nanotube rubber composition obtained in one example of the present invention.
  • Figures 23 and 24 show stretchability obtained by electrically connecting the stretchable wiring according to the present invention and a known electronic component using a stretchable wiring or a conductive paste according to an embodiment of the present invention. It is a figure explaining the manufacturing process of the electronic circuit which has.
  • FIG. 25 is a schematic view showing one constitutional unit of the extendable active matrix constituting the circuit of FIG.
  • Figures 26 to 29 show, for the expandable matrix that constitutes the circuit of Figure 5, 0 to 100% of this active matrix sheet in the axial or biaxial directions. After stretching with various tensile stresses, the elongation strain is released, and the transfer curve obtained when the channel current (I D s) in the transistor placed on the sheet at that time is measured. And the relationship between the tensile stress at that time and the channel current (I D s ), where FIGS. 26 and 28 are graphs of the transfer curves, and FIGS. It is a graph which shows the relation between stress and channel current ( IDS ).
  • FIG. 30 is a graph showing the relationship between the elongation and the conductivity in the carbon nanotube rubber composition obtained in one example of the present invention and in the carbon nanotube rubber composition obtained in the comparative example. is there.
  • the carbon nanotube rubber composition of the present invention is a material containing carbon nanotubes, rubber, and, if necessary, an ionic liquid, and is in the form of liquid, gel, solid, rubber or paste. It may be in a form. Furthermore, it may contain an organic solvent, if necessary.
  • the carbon nanotube rubber composition of the present invention preferably has a conductivity of 1 S / cm or more and an extensibility of 10% or more. In the present specification, extension and extension are used in the same sense.
  • carbon having both extensibility and conductivity as in the present invention is obtained. It is not possible to make nanotube compositions. That is, a carbon nanotube composition having both extensibility and conductivity is an innovative new material that can only be realized by the present invention.
  • a carbon nanotube rubber composition a carbon nanotube rubber and a carbon nanotube rubber paste, which will be described in detail below, can be exemplified.
  • the carbon nanotube rubber of the present invention is a rubber-like elastic body and a carbon nanotube rubber composition which also has high conductivity imparted from carbon nanotubes.
  • the carbon nanotube rubber of the present invention preferably has a conductivity of 1 S / cm or more and an extensibility of 10% or more. Even if carpone nanotubes and rubber are dispersed using known methods, or rubber is impregnated into carbon nanotubes using known methods, the extensibility and conductivity as in the present invention can be achieved as in the present invention. It is impossible to produce carbon nanotube rubber that has both.
  • carpone nanotube rubber having both extensibility and conductivity is an innovative new material that can be realized for the first time by the present invention, and it can be used for various flexible and stretchable articles that require extensibility and conductivity. It can be used.
  • carbon nanotube rubber has stretchability. Such stretchable wiring is suitable for producing stretchable electronic circuits.
  • the conductivity of the rubber nanotube tube rubber according to the present invention is high, but it is not possible to obtain conductivity higher than the conductivity of the rubber ribbon tube itself.
  • conductivity is lSzcm or more, it can be used as a circuit wiring, which is preferable. If the conductivity is 1 O S / cm or more, it is suitable for use as a wiring of a large area device. further. Conductivity is
  • the upper limit of the elongation of rubber is 400% and the upper limit of the elongation of carbon nanotube rubber.
  • the elongation rate is 10% or more, it is preferable to use carbon nano tube rubber as wiring of a stretchable circuit. If the elongation rate is 25% or more, the carbon nanotube rubber can be bent, which is suitable for use as a bendable flexible member. Further, if the elongation rate is 50% or more, carbon nanotube rubber can be disposed on a free-form surface, and can be suitably used for three-dimensional devices of various shapes and shapes.
  • the shape of carbon nanotube rubber in the present invention is Depending on the application, an appropriate form can be considered. For example, in addition to a flat surface, a film, a rod, a solid, etc. may be used, and the thickness does not matter.
  • the ionic liquid is removed from the tube rubber composition by Soxhlet method etc., carbon nanotube, carbon nanotube rubber consisting of rubber, carbon nanotube rubber paste, carbon nanotube rubber composition are also manufactured by the method of the present invention. it can. Although the conductivity of the carbon nanotube rubber from which the ionic liquid has been removed is lowered as compared with the case where it contains an ionic liquid, the recovered ionic liquid can be reused, and the manufacturing cost can be significantly reduced. . If a method capable of recovering ionic liquid such as the Soxhlet method is used, the fluid can be recovered with as much as 99% ion. Therefore, using this method, it is possible to know whether or not the carbon nanotube rubber, carbon nanotube rubber paste, carbon nanotube rubber composition contains an ionic liquid, and if it contains, its mass%.
  • carbon nanotube rubber paste in the present invention refers to a liquid, gel-like, fluid nanotube rubber composition.
  • the carbon nanotube rubber paste of the present invention preferably has a conductivity of 1 Szcm or more and an extensibility of 10% or more. Even if carbon nanotubes and rubber are simply dispersed using a known method, or rubber is impregnated onto carbon nanotubes using a known method, carbon having both extensibility and conductivity as in the present invention It is not possible to produce nanotube rubber paste. By removing at least a part of the organic solvent from the carbon nanotube tube rubber paste by heat drying or the like, and solidifying the carbon nanotube rubber paste, the carbon nanotube rubber paste from the conductive carbon nanotube rubber is obtained. Can be manufactured. If necessary, a crosslinking agent or a crosslinking initiator may be added to the carpone nanotube rubber base. The crosslinking agent and crosslinking initiator can control the viscosity and extensibility of the rubber tube.
  • Carbon nanotube rubber paste can be easily molded and processed
  • a processed carbon nanotube rubber paste is suitable for producing a conductive carbon nanotube rubber of a desired shape.
  • the prepared carbon nanotube rubber paste can be cast on a predetermined substrate, dried to form a film, and then machined to form a predetermined conductive carbon nanotube rubber.
  • the prepared carbon nanotube rubber paste is used as an ink for all printing presses including screen printing, ink jet printing, dispensers, etc., and then printed in a predetermined pattern and then dried. It is possible to form a pattern consisting of a carbon nanotube rubber.
  • a pattern made of a carbon nanotube rubber can be used as a wire having stretchability. Furthermore, it enables the manufacture of elastic articles and electronic circuits provided with elastic wiring.
  • Carbon nanotube rubber composition, carbon nanotube rubber foam, carbon nanotube rubber, etc. may be disposed on an elastic material such as rubber, or an elastic material such as rubber, carbon nanotube rubber composition, carbon nanotube rubber paste, etc.
  • the carbon nanotube rubber may be covered.
  • the conductive carbon nanotube rubber composition, carbon nanotube rubber paste, carbon nanotube rubber can be isolated from the surroundings, or the elastic function of the rubber can be added.
  • the wiring of the present invention refers to a wiring which has both a carbon nanotube and rubber, and thus has both extensibility and conductivity.
  • a wire having a stretchability of 10% or more is called a stretchable wire.
  • a wire having both extensibility and conductivity preferably has a conductivity of lSZ cm or more and 10% or more.
  • carbon nanotubes and rubber using known methods Even if it is dispersed or rubber is impregnated into a carbon nanotube using a known method, it is not possible to produce a wire having both extensibility and conductivity as in the present invention.
  • a wire having a conductivity of more than 1 S / cm and an extensibility of 10% or more is a revolutionary electronic component realized for the first time by the present invention.
  • the wiring of the present invention can be manufactured from a carbon nanotube rubber composition, a carbon nano tube rubber paste, and a carbon nanotube rubber.
  • the wiring may contain an ionic liquid as needed.
  • the conductivity of the wire is increased and the stretchability is improved by the ionic liquid.
  • at least a portion of the wire is disposed on an elastic material such as rubber, or at least a portion of the wire is rubber or the like. It may be coated with an elastic material. This is suitable to insulate at least a part of the wiring and to add a rubber elastic function to the wiring.
  • the conductivity of carbon nanotubes is the upper limit of the conductivity of wiring. If the conductivity of the wiring is 1 S Z cm or more, it can be used as a circuit wiring. If the conductivity is 10 S z cm or more, it is suitable for use as a wiring of a large area device. Further, if the conductivity is 20 Szcm or more, the current which can flow in the wiring is increased, which is preferable because various devices can be driven.
  • the upper limit 4000% of the elongation rate of the rubber is the upper limit of the elongation rate of the wiring.
  • the wire can be used as a wire of a stretchable circuit, which is preferable. If the expansion rate is 25% or more, you can bend the wiring. Suitable for use as flexible flexible wiring. Also, if the extension ratio is 50% or more, the wiring can be disposed on a free-form surface, which is suitable for manufacturing three-dimensional wiring of various shapes and forms.
  • the conductive paste of the present invention includes a carbon nanotube rubber paste containing carbon nanotubes and rubber, and therefore refers to a conductive paste having both extensibility and conductivity.
  • the conductive base of the present invention preferably has a conductivity of lS / cm or more and a extensibility of 10% or more. Even if the carbon nanotube and the rubber are simply dispersed using a known method, or if the rubber is impregnated into the carbon nanotube using a known method, both extensibility and conductivity are achieved as in the present invention. It is not possible to produce conductive paces.
  • the conductive paste which has both conductivity and extensibility, has a conductivity of more than 1 S / cm and a stretchability of 10% or more, is the innovative electronic component material realized for the first time by the present invention.
  • the conductive paste of the present invention can be produced from a carbon nanotube rubber composition and carbon nanotube rubber paste.
  • the conductive base may contain an ionic liquid as needed. The ionic liquid increases the conductivity of the conductive paste and improves the stretchability.
  • the conductive paste may be disposed on an elastic material such as rubber, or at least a portion of the conductive paste may be coated with an elastic material such as rubber. This is suitable to insulate at least a part of the conductive paste and to add the elastic function of the rubber to the wiring.
  • the conductivity of the conductive paste is more preferable, but it is not possible to obtain conductivity exceeding that of the carbon nanotube itself. Therefore, the conductivity of the carbon nanotube 1 0 0 OSZ cm is the conductivity It is the upper limit of the conductivity of the pacemaker. If the conductivity of the conductive paste is 1 SZ cm or more, it can be used to electrically connect the conductive terminal and the wiring. A conductivity of 10 Sz cm or more is suitable for electrically connecting the conductive terminals of the large area device and the wiring. Furthermore, if the conductivity is 2 OS / cm or more, the current that can flow to the electrical connection between the conductive terminal and the wiring increases, which is preferable because it can drive various devices.
  • the upper limit of the elongation of rubber is 400% and the upper limit of the elongation of conductive paste. If the elongation rate is 10% or more, the conductive paste can be used to electrically connect the conductive terminal of the stretch circuit and the wiring, which is preferable. If the elongation rate is 25% or more, the wiring can be bent, which is suitable for use as a bendable flexible wiring. Also, if the elongation rate is 50% or more, the wiring can be disposed on a free-form surface, which is suitable for manufacturing three-dimensional wiring of various shapes and shapes.
  • Stretchable wiring according to the present invention conductivity A pace can be combined with a known existing substrate and a known existing electronic component to produce an electronic circuit having stretchability.
  • an electronic circuit having a stretchability of preferably 10% or more is referred to as a stretchable electronic circuit.
  • stretchability obtained by electrically connecting a known existing electronic component provided on a known existing substrate to a stretchable wiring using a conductive paste or stretchable wiring.
  • a circuit can be illustrated.
  • the substrate be harder than the stretchable wiring.
  • “hard” means that Young's elastic modulus is large.
  • known existing substrates known already The existing electronic components are hard and have no stretchability.
  • existing electronic components have the problem that their electrical characteristics change when they are distorted.
  • the electronic circuit configuration when the electronic circuit is distorted, the softer stretchable wiring is distorted and the hard substrate is not distorted. As a result, the electrical characteristics of the electronic component on the substrate do not change. Furthermore, the electronic component can be electrically connected to the stretchable wiring by connecting the electronic component on the board and the stretchable wiring using the conductive paste having stretchability and the stretchable wiring.
  • the conductive paste stretches and stretches the elastic wiring to absorb the strain, so that the electronic component is not distorted and the electrical characteristics of the electronic component do not change.
  • the electronic circuit having such a configuration is characterized in that the entire circuit is stretchable, and the change in the electrical characteristics of the circuit is small even if it is stretched. Such a stretchable electronic circuit is realized for the first time by the present invention.
  • a substrate useful for electronic circuits there is no particular limitation on a substrate useful for electronic circuits, and any known substrate that can be provided with electronic components and harder than stretchable wiring can be used, regardless of the shape, material, and thickness.
  • Examples include flat, curved, and flexible substrates made of various metals, ceramics, silicon, resins, and the like.
  • the electronic component of the present invention is not particularly limited, and any known electronic component which can be electrically connected by a conductive paste or stretchable wiring can be used. It can be exemplified by CMOS circuits, transistors, integrated circuits, organic transistors, light emitting elements, actuators, memories, sensors, coils, capacitors, resistors, and combinations thereof.
  • Fig. 1 shows an image of a carbon nanotube rubber of the present invention molded and processed into a film shape with a digital camera.
  • Fig. 2 shows a mesh-like carbon nanotube rubber machined with holes in a plate-like carbon nanotube rubber
  • Fig. 3 shows an image of a conductive carbon nanotube rubber paste taken with a digital camera.
  • Fig. 4 is an image of a carbon nanotube rubber coated with dimethyl siloxane based silicone rubber (PDMS) taken with a digital force camera.
  • Fig. 5 is an organic image provided on a polyimide substrate.
  • Fig. 6 is an image of the stretched elastic circuit shown in Fig. 5 taken with a digital camera.
  • any of single-walled carbon nanotube (SWNT) and multi-walled carbon nanotube (MWNT) can be appropriately selected. It can be used.
  • the carbon nano tube is long, the purity is high, and the specific surface area is high. Therefore, single-walled carbon nanotubes having a high specific surface area and a long length are more preferable than multi-walled carbon nanotubes generally having a low specific surface area and a short length.
  • carbon nanotubes be as long as possible. This is because, in the case where the carbon nanotube network (knit structure) in the carbon nanotube polymer composition is composed of long carbon nanotubes, more electrical paths can be formed and the network can extend even if it extends. Is more difficult to be destroyed. There is no upper limit on the length of carbon nanotube to obtain high conductivity and high elongation rate, but it is generally long Carbon nanotubes have lower dispersibility, which makes it difficult to produce a carbon nanotube rubber composition.
  • carbon nanotubes having a length of 1 or more and 10 cm or less have good dispersibility, are easily obtained in high purity, and are preferable in obtaining high conductivity and high elongation.
  • Carbon nanotubes with a length of 1 m or less make it difficult to form a network to achieve high conductivity and high elongation.
  • Carbon nanotubes having a length of 10 cm or more have poor dispersibility, and are easily cut during dispersion processing.
  • a solution of carpone nanotubes containing a solvent, rubber or polymer of rubber is diluted thinly with an organic solvent etc. and dropped onto a substrate, and then scanned with a scanning atomic force microscope.
  • the length of one carbon nanotube instead, it can be evaluated by measuring the length of the bundle.
  • a carbon nanotube bundle having a length of 1 m or more and 10 cm or less is preferable for obtaining high conductivity and high elongation rate.
  • carbon nanotubes are vertically aligned from a substrate by using the method described in Japanese Patent Application No. 2 0 6 5 2 5 8 9 4 4 (corresponding to WO 2 0 6 0 6 0 1 5 5 5 5 5 6 5 6 5 6 5 6 9 8
  • the height of the aligned carbon nanotube aligned aggregate can be the length of the carbon nanotube. That is, a carbon nanotube oriented aggregate having a height of 1 m or more and 10 cm or less is preferable in order to obtain high conductivity and high elongation. In order to obtain high conductivity and high elongation, it is desirable that carbon nanotubes be as pure as possible.
  • the term "purity" as used herein is carbon purity, and indicates what percentage of the mass of carbon nanotubes consists of carbon. There is no upper limit to the purity to obtain high conductivity and high elongation rate, but it is difficult to obtain carbon nanotubes of 99.9999% or more due to manufacturing convenience. If the carbon purity is less than 90%, including impurities such as metals, the metal impurities will agglomerate during the manufacturing process and the carbon nanotube rubber composition becomes brittle, making it difficult to obtain high conductivity and high elongation. It becomes. From these points, it is preferable that the purity of carbon nanotube is 90% or more.
  • the purity of carbon nanotubes can be obtained by elemental analysis using fluorescent X-rays. Elemental analysis of the single-walled carbon nanotube used in Example 1 later described by fluorescence X-ray analysis revealed that it was 9 9. 9 8% in carbon, 0. 0 13% in iron, and other elements were not measured. .
  • carbon nanotubes have as high specific surface area as possible. This is because carbon nanotubes having a high specific surface area have many surfaces, so the interface between the ionic liquid and the rubber is large and they are likely to interact.
  • carbon nanotubes with high specific surface area contain less carbon impurities other than carbon nanotubes and impurities other than carbon such as metals, and are preferable for the reasons described above.
  • Single-walled carbon nanotubes whose specific surface area is less than 600 m 2 / g contain several tens percent (about 40%) of impurities such as metals or carbon impurities, Can not express the function of
  • the specific surface area of single-walled carbon nanotubes can be determined by measuring the adsorption / desorption isotherm at 77 K of liquid nitrogen. As an example, it can be determined from adsorption / desorption isothermal curves measured using BELS ORP-MINI (made by Nippon Bell Co., Ltd.) for 30 mg of single-walled CNT aggregate (adsorption equilibrium time was set to 600 seconds) ). When the specific surface area was measured by the method of Brunauer, EmmeU, Teller from the adsorption-desorption isotherm of the single-walled carbon nanotube used in the present invention, it was 110 m 2 Z g.
  • the specific surface area of single-walled single-walled nanotubes in the range of 1000 Om 2 / g to 230 m 2 Zg can be obtained by changing the opening treatment temperature from 350 ° C. to 600 ° C.
  • Such single-walled carbon nanotubes are suitable for realizing the carbon nanotube rubber composition of the present invention having both high conductivity and high elongation rate.
  • the ionic liquid useful for the carbon nanotube rubber composition, carbon nanotube rubber, carbon nanotube paste, wiring and conductive belt of the present invention is not particularly limited, but carbon nanotube may be used. It is preferable to have high affinity to the gel and to become gel-like after dispersion treatment, for example, 1-ethyl 3-methylimidazolium tetrafluoroporate (EM IBF 4 ), 1-ethyl-3-methylimidazole Xaflurophosphate (EM IPF 6 ), 1-ethyl 3-methylimidazolium bis (trifluoromethylsulfonyl) imide (EM ITFSI), 1-butyl-3-methylimidazole tetrafluorinated ⁇ (BM IBF 4 ), 1-butyl 3-methylimidazolium hexafluorophosphate (BIPF 6 ), 1 1-ptyru 3-methyl-i Named midazolium bis (trifluoromethylsulfonyl) imide (BM ITFSI) Can
  • a carbon nanotube composition having both extensibility and conductivity can be manufactured.
  • the carbon nanotube rubber composition of the present invention is not particularly limited as a rubber useful for carbon nanotube rubber, carbon nanotube paste wiring, conductive base, and in a broad sense, it may be any elastomer.
  • an elastic material having an organic polymer such as natural rubber or synthetic rubber as a main component, that is, elastic rubber is preferable.
  • fluorine rubber for example, Daikin Industries, Ltd., D ai e 1-G 8 0 1 D a i e
  • any solvent capable of dissolving such rubber can be used, and it can be appropriately selected and used depending on the rubber to be used.
  • 4-methyl-2-pentanone is particularly preferable because toluen xylene, asphalt, carbon tetrachloride and the like can be used, and many rubbers including fluororubber and silicone rubber are soluble.
  • carbon nanotube rubber composition carbon nanotube In rubber, carbon nanotube paste, wiring, and conductive paste
  • the more uniformly carbon nanotubes are dispersed in the composition the higher the conductivity and the stretch elasticity. That is, in order to realize the article of the present invention having both high conductivity and high elongation rate, carbon nanotubes which are long, high in purity and high in specific surface area can be incorporated into rubber without impairing their functions. It is important to have uniform dispersion.
  • carbon nanotubes are materials with very low solubility, low affinity with rubber materials, and do not disperse in rubber.
  • the inventor of the present invention has made extensive efforts and found that it is preferable to use an ionic liquid in order to enhance the dispersibility of carbon nanotubes and rubber.
  • an ionic liquid As described in Japanese Patent Application Laid-Open No. 200-15764, the force-carbon nanotube and the ionic liquid have a high affinity, and the force-containing tube is dispersed in the ionic liquid. It becomes gel-like by doing.
  • this carbon nanotube ionic liquid gel is formed is unknown at present, the ionic liquid is adsorbed to each carbon nanotube and the van der Waals force that bonds the carbon nanotubes is I think that it is weakening. As a result, the carbon nanotubes, which are usually easily bundled, disperse in the ionic liquid to form a gel-like composition. So to speak, it is believed that ionic liquids function as dispersants for carbon nanotube.
  • the inventor has found that, by using a polymer miscible with the ionic liquid, the rubber can be uniformly dispersed in the carbon nanotube ionic liquid gel, and the high conductivity of the present invention, high We have realized a carbon nanotube rubber composition that also has an elongation rate.
  • carbon nanotube rubber composition is formed by mixing
  • the ionic liquid adsorbed to the carbon nanotube has an affinity to the rubber and mixes it, which makes it possible to dissolve the carbon nanotube in the rubber, usually in the rubber Carbon nanotubes that are difficult to disperse are considered to be uniformly dispersed in rubber.
  • miscibility refers to the property that the ionic liquid, the rubber or rubber polymer, and, if necessary, the dispersion solution containing the organic solvent are mixed to such an extent that they do not phase separate.
  • miscibility there is no upper limit to the preferred degree of miscibility, and substantially, the above-mentioned carbon nanotube, rubber and ionic liquid, and, if necessary, organic solvent are mixed, carbon nanotube is uniformly dispersed in the rubber, and the final It is sufficient that carbon nanotube rubber compositions having both extremely high conductivity and high elongation rate can be produced, and the number of dispersions containing an ionic liquid, a polymer of rubber or rubber, and, optionally, an organic solvent may be sufficient. It is suitable that the time does not cause phase separation more preferably for several days.
  • compatibility means the property that two or more kinds of substances have an affinity to each other to form a solution or a mixture.
  • carbon nanotubes are uniformly dispersed in the rubber. That is, the carbon nanotube rubber composition of the present invention in which carbon nanotubes, ionic liquid and rubber are uniformly dispersed and mixed, carbon nanotube rubber, carbon nanotube paste, wiring and conductive paste are produced. Jet mill and pole mill for mixing and dispersing each component An ultrasonic dispersing machine or the like can be used, and from the viewpoint of dispersing carbon nanotubes more uniformly in the composition, it is preferable to use a jet mill.
  • step S 1 carbon nanotubes, an ionic liquid, and an organic solvent are mixed and dispersed using a stirrer, jet mill or the like to obtain a carbon nanotube ionic liquid gel (step S 1).
  • the method of producing the carbon nanotube ionic liquid gel is not limited to the present method, and the patent 367 367, the patent 3 8 8 5 6 0, the patent 3 9 2 4 2 7 A known method for producing a carbon nanotube ionic liquid gel as described in JP-A-3, JP-A-2005-25054, JP-A-2008-17664-28, etc. The following method can be used.
  • step S 2 the obtained carbon nanotube ionic liquid gel, rubber, and, if necessary, an organic solvent are mixed and dispersed to obtain a carbon nanotube tube rubber paste of the present invention.
  • An organic solvent is added as appropriate before, during, or after the dispersion process, or the organic solvent is partially removed by evaporation, etc. before, during, or after the dispersion process to obtain a carbon nanotube rubber paste.
  • the viscosity of can be adjusted.
  • An example of the conductive paste of the present invention is one containing a carbon nanotube rubber paste having an appropriate viscosity, conductivity and elongation.
  • a carbon nanotube rubber paste may be molded as required to obtain a carbon nanotube rubber of a desired shape.
  • a known method of molding and processing a flowable paced rod-shaped article can be used, and examples thereof include coating, printing, extrusion, casting, and injection.
  • the carbon nanotube rubber paste is dried, heated, evacuated or the like to remove all or part of the organic solvent, and solidified to obtain the conductive carbon nanotube rubber of the present invention ( Process S 4). After solidification, the obtained carbon nanotube rubber can be machined to form a conductive carbon nanotube rubber having a predetermined shape.
  • the carbon nanotube rubber composition containing carbon nanotubes, ionic liquid, rubber, carbon nanotube rubber paste, carbon nanotube rubber, the ionic liquid is removed using the Soxhlet method etc.
  • carbon nanotube rubber comprising carbon nanotubes and rubber may be manufactured (step S 5). The conductivity of the carbon nanotube rubber from which the ionic liquid has been removed is reduced compared to the case where the ionic liquid is contained, but the recovered ionic liquid can be reused, and the production cost can be significantly reduced. Ru.
  • An example of the conductive paste of the present invention is one containing a carbon nanotube rubber paste having appropriate conductivity and extensibility.
  • the preparation procedure for obtaining the carbon nanotube rubber composition, the carbon nanotube rubber tube, and the carbon nanotube rubber according to the present invention is not limited to the above-mentioned example, and may be appropriately selected as needed. , Some steps may be omitted, or the order may be changed. For example, the forming process of step S3 may be omitted, and the forming process may be performed after step S4. If necessary, a crosslinking agent, a crosslinking initiator, etc. may be added as appropriate in an appropriate step.
  • step S1 and step S2 for producing the carbon nanotube rubber composition is not limited to the above, and a method capable of uniformly dispersing carbon nanotubes, ionic liquid and rubber. If it is, well-known carbon nanotube dispersion method can be used suitably.
  • a powdery single-walled carbon nanotube (hereinafter SWN T) in which the oriented aggregate was peeled from the growth substrate was used.
  • the carbon nanotube has a density of 0.03 g / cm 3 , a BET specific surface area of 120 m 2 / g, an outer diameter of 2.5 nm, a half width of 2 nm, and a carbon purity of 99.9% Hermann's orientation coefficient of 0.8, length of 3 0 0 0 m or more and 8 0 0 or less.
  • this carbon nanotube ionic liquid gel is treated with an organic solvent 4 -Methyl mono-pentanone (typical amount 80 m)) miscible with ionic liquid, compatible fluoro rubber (D ai-kin Industries D aie 1-G 9 12) (typical amount 5 0-1 50 O mg) is added, and the mixture is stirred at room temperature for 16 hours under the condition of about 300 rpm using a stirrer to obtain a carbon nanotube rubber paste as shown in FIG. (Step S 2).
  • organic solvent 4 -Methyl mono-pentanone typically amount 80 m
  • compatible fluoro rubber typically 5 0-1 50 O mg
  • the carbon nanotube-rubber dispersion gel is dried at room temperature for 12 hours to obtain a carbon nanotube rubber shown in FIG. 8 (step S 4).
  • the composition of this carbon nanotube rubber was 1 wt% of S WN T 2, 3 wt% of B M IT F S I 4, and 6 wt% of G 9 1 2 36 5.
  • the conductivity showed 7 3 S Z cm.
  • the carbon nanotube rubber foam obtained in step S2 is dried at room temperature for 6 hours, and part of 4-methyl-2-pentaninone is evaporated to adjust the viscosity, and then the silicone elastomer is removed.
  • the desired pattern was printed on one substrate (PDM S, 3 1 &]: & (1 84, 00-(0) "] 1 11 stock company) (step S3). It is preferable to adjust the viscosity to about 1 Pas in the case of using the frame printing, the die-off printing, etc., and to set the viscosity to about 10 m Pas in the case of the dispenser or the ink jet printing.
  • the carbon nanotube rubber paste printed on the PDMS substrate is further dried to form a wiring composed of carbon nanotube rubber on the PDM S substrate patterned to a line width of 100 m shown in FIG. Obtained (step S 4).
  • Fig. 10 is a view showing a bent Pon Nano tube rubber wire on such a PDM substrate. It is understood that the wiring made of carbon nanotube rubber has extensibility, without the wiring being broken. Such a carbon nanotube rubber is an example of the stretchable wiring of the present invention.
  • Figure 1 1 shows the patterned force on Figure 9 It is the image of the scanning electron microscope which expanded a part of blobs.
  • FIGS. 12A and 12B The relationship between the SWNT content and the conductivity and elongation at this time is shown in FIGS. 12A and 12B. As can be seen from Fig. 12 A, conductivity and elongation are in a contradictory relationship with SWNT content.
  • the wire made of carbon nanotube rubber obtained as described above was confirmed to exhibit conductivity of 1 S / cm to 10 2 SZ cm and elongation rate of 2 9 to 1 2 9%.
  • the results show that by controlling the content of carbon nanotube, it is possible to control continuously the conductivity and elongation rate of carbon nanotube composition, carbon nanotube rubber and wiring. Moreover, in the manufacturing method of the present embodiment, the range of the content of carbon nanotube from 1.4 mass% to 15.58 mass% is suitable for achieving high conductivity and high elongation rate. It is shown that.
  • the wiring made of this carbon nanotube rubber does not change its conductivity even when it is expanded and contracted, and is suitable as an elastic wiring. I understand that there is.
  • silicone rubber (Sy 1 gard 84 or SH 9 5 5 made by Dow Corning Co., Ltd.) is used in place of fluorine rubber (D aiel — G 9 1 2) to further enhance the expansion ratio.
  • fluorine rubber D aiel — G 9 1 2
  • the miscibility between the ionic liquid and the rubber necessary for producing the carbon nanotube rubber composition of the present invention was investigated.
  • As the ionic liquid BMITFSI and EMIBF 4 BMIBF 4 were used, and as the rubber, G801, G921 and Kyner were used.
  • Each rubber polymer (300 mg) and each ionic liquid (300 mg) are mixed with 1 ml of 2 ml of 2-methyl 2-pentanone, and the resulting solution is stirred using a stirrer at room temperature for 12 hours. did. Thereafter, the dispersion was allowed to stand for 3 days and then observed. As shown in Fig. 13, phase separation of the ionic liquid and the rubber polymer was observed in 5 of the 9 combinations.
  • the conductivity and elongation were evaluated by changing the composition ratio of carbon nanotube rubber composition, carbon nanotube rubber, carbon nanotube rubber paste, stretchable wires SWNT, BMITFSI, and G9122 according to the above manufacturing method.
  • the content ratio of SWTN to BMITFSI is fixed at 1: 2, the amount of 09 12 is set to 100 1118, and SWNT is varied in the range of 1.4 mass% to 18.58 mass%.
  • Fig. 14 shows the strain-stress characteristics and Fig. 17 shows the electrical characteristics.
  • the strain and stress characteristics when the ionic liquid is removed and the SWTN is changed in the range of 1.5 mass% to 23 mass% are shown in FIG. 15, and the electrical characteristics are shown in FIG.
  • the figure shows the strain-one stress characteristics when the amounts of SWTN and G912 are 3 O mg and 50 O mg, respectively, and the BM ITFSI content is changed in the range of 0 to 32 mass%. Shown in 1 6
  • Fig. 14 and Fig. 15 show that the elongation rate according to the manufacturing method of this example is in the range of 1.4 mass% to 23 mass% of SWTN, regardless of including ionic liquid. It has been shown that it is possible to produce good carbon nanotube rubber composition, carbon nanotube rubber, carbon nanotube rubber paste, and stretchable wiring in excess of 10%.
  • the carbon nanotube has a density of 0.53 g / cm 3 , a BET surface area of 1 200 m 2 Z g, an average outer diameter of 2.5 nm, a half width of 2 nm, and a carbon purity of 9 9. 9% Hermann's orientation coefficient is 0.8, and the length is 3 0 0 to 8 0 0 m.
  • SWNT 50 mg
  • BITFSI ionic liquid
  • This gel 10 O mg, in turn, 8 ml of 2-methyl-2-pentanone and vinylidene fluoride-one hexafluoropropyrene copolymer 1 (Daikin Industries, D aie 1-G 800, less than 2-methyl-2-pentanone, The mixture was stirred at 25 ° C. for 1 hour and sonicated at 30 ° C. for 1 hour (SMT). UH _ 5 0). Stirring again at 80 ° C. for 1 hour gave an expanded carbon nanotube rubber paste (step S 2).
  • Step S 3 Pour this carbon nanotube rubber paste onto a glass plate by drop casting (Step S 3), let it air dry for 24 hours, and remove the organic solvent, as shown in Figure 1, a film The carbon nanotube rubber was obtained (Step S 4).
  • step S 5 When the ionic liquid was recovered using the Soxhlet method, it was possible to recover the liquid with 99% of the ions used (step S 5).
  • the conductivity of the produced carbon nanotube rubber containing no ionic liquid was 10 S Z cm, and the elongation was 10% or more.
  • This film-like carbon nanotube rubber has flexibility and extensibility, but the shrinkage is not so great.
  • a film-like carbon nanotube rubber is machined using a numerical control (NC) punching system to form a net-like structure as shown in FIG. It was covered with a base silicone rubber (PDM S, Dow Corning S y 1 gard 1 84 or SH 9 5 5).
  • NC numerical control
  • PDM S Dow Corning S y 1 gard 1 84 or SH 9 5 5
  • the resultant P-DM S-coated film-like carbon nanotube rubber is shown in FIG.
  • a film-like carbon nanotube rubber coated with PDM S is useful as a stretchable wire because it has both extensibility and conductivity.
  • a film-like carbon nanotube rubber coated with P DM S, which has been formed into a suitable network, linear, wire or the like, is an example of the stretchable wiring of the present invention.
  • Film-like carbon nanotube rubber and PD obtained from the above The carbon nanotube rubber in the form of an MS-coated film was stretched, and its electrical and mechanical properties were examined.
  • Figure 18 shows the conductivity when stretched.
  • commercial conductive rubber containing carbon particles (Kinugawa Rubber Industry) is also shown.
  • the elongation rate of commercially available conductive rubber exceeded 150%, the conductivity was as low as 0.1 S / cm (curve 3). This conductivity is insufficient for use as wiring of electronic circuits.
  • the film-like carbon nanotube rubber exhibited a very high conductivity of 5 7 SZ cm, and when the elongation rate was 38% or less, no significant change was observed in the conductivity and mechanical deterioration ( Curve 1).
  • the carbon nanotube rubber coated with PDM S showed a large conductivity of 5 7 S / cm, and even if it was stretched to 134%, the conductivity decreased only gradually (curve 2) The conductivity was 6 SZ cm even under the elongation of 134% ⁇
  • the above results show that the carbon nanotube rubber made of the carbon nanotube rubber and the PDM S coated film-like carbon nanotube rubber manufactured according to the present example elongates. It shows that it has both conductivity and conductivity.
  • the miscibility of the carbon nanotube rubber composition of this example, the carbon nanotube rubber, the carbon nanotube rubber belt, and the ionic liquid necessary for producing a stretchable wiring was examined.
  • the composition ratios of the rubber polymer were 0.78: 0.22 (G801) and 0.88: 0.12 (AKYMA manufactured by KYNAR-FLEX, hereinafter referred to simply as KYNAR).
  • BMIPF 6 and BMIBF 4 were used for vinylidene fluoride-hexafluoro-propylene copolymer and ionic liquids.
  • the film-like carbon nanotube rubber obtained is very smooth when using G801 and BM ITFSI, which are combinations of mutually compatible rubber polymer and ionic liquid. It was flat, uniform, and, as mentioned above, had both extensibility and conductivity.
  • the amounts of SWNT and G801 were 50 mg and 100 mg, respectively, and the content of BMITFSI was changed in the range of 12 to 47% by weight.
  • the content of BM ITFSI was more than 40% by weight, film-like carbon nanotube rubber could not be produced.
  • carbon nanotube rubber became brittle and the conductivity was small.
  • FIG. 19 when the content of BMITFSI was 10% by mass or more and 40% by mass or less, a carbon nanotube rubber having both extensibility and conductivity could be produced.
  • the film-like carbon nanotube rubber produced in this manner exhibited a very smooth surface and excellent mechanical properties in addition to excellent electrical properties, and could be suitably used for stretchable wiring.
  • the maximum conductivity of 57 S / cm was obtained when the contents of SWNT and BMITFSI were both 20% by mass. Such a high conductivity was realized because a good carbon nanotube rubber could be produced without the sacrifice of flexibility or flexibility, even if the content of SWN T was 20% by mass. . This is because the ionic liquid and the rubber are miscible and compatible, and the carbon nanotubes were uniformly dispersed in the rubber. That is, carbon nanotube rubber in which carbon nanotubes, ionic liquid and rubber are uniformly dispersed and mixed can be produced.
  • the ionic liquid is preferable for good carbon nanotube rubber production and has a remarkable effect of improving the extensibility and the conductivity. Furthermore, a carbon nanotube rubber composition having both extensibility and conductivity, carbon nanotube rubber, carbon nanotube rubber paste, and an elastic liquid, the content of the ionic liquid is 10% by mass or more. It is indicated that mass% or less is preferable.
  • the content ratio of SWNT and BM ITFSI was fixed at 1: 1, the amount of G801 was 10 O mg, and SWNT was varied in the range of 1 wt% to 45 wt%.
  • the content of SWN T was less than 10% by mass, film-like carbon nanotube rubber could not be produced.
  • the content of SWNT content was 30% by mass or more, the carbon nanotube rubber became brittle and the conductivity was small.
  • FIG. 20 when the content of SWTN was 10% by mass or more and 30% by mass or less, a carbon nanotube rubber having both extensibility and conductivity could be produced.
  • the film-like carbon nanotube rubber produced in this manner exhibited a very smooth surface and excellent mechanical properties in addition to excellent electrical properties, and could be suitably used for stretchable wiring.
  • the content of S WNT is 16 mass At%, the conductivity increased to 5 3 S cm.
  • the results show that in this example, the carbon nanotube rubber composition having both extensibility and conductivity, carbon nanotube rubber, carbon nanotube rubber paste, and SWNT content of 10% by mass for elastic wiring. It has shown that 30 mass% or less is preferable.
  • the amount of G801 is set to 10 Omg
  • the content ratio of SWNT and BMITFSI is changed from 1: 2 to 2: 1, and SWTN and B M
  • the content of 1 T F S I was changed to 3 0 O mg.
  • the conductivity is shown in Fig. 2 1 and the limit elongation rate (extension rate at which the object breaks) in Fig. 2 2 when the content ratio of SWNT and BM ITFSI is in the range of 1: 2 to 1: 2
  • the carbon nanotube rubber composition having both extensibility and conductivity, carbon nanotube rubber, carbon nanotube rubber paste, and a SWNT / BMITFSI content ratio of 1: 1 for stretch wiring. It is shown that 2 to 2: 1 is preferable.
  • Conductivity based on SWTN is obtained by crosslinking the polymer matrix consisting of G801 using the carbon nanotube rubber paste containing G801 obtained in step S2 of Example 2.
  • Produced a sex paste That is, a peroxide crosslinking initiator (NO.F. Perhexane-having the following structure) was used in a carbon nanotube rubber paste containing G 801.
  • an array of 19.times.3 7 organic transistors was formed on a polyimide substrate, with a channel of pendentene and a gate insulator of polyimide.
  • the polyimide substrate is harder than stretchable wiring.
  • the organic transistor was manufactured using a known ink jet printing, screen printing, and a vacuum evaporation apparatus of Penthene (Step 4-A).
  • Step 4-A an mechanical punching device
  • the organic transistor section except that the polyimide substrates were partially removed so that the organic transistors could be connected to each other at the four corners through the polyimide substrate
  • the organic transistor array to which the four corners are connected is a 500 m thick silicone rubber based on dimethylsiloxane (PDM S, Dow Corning S y l g a r d l 4 or
  • Step 4-C Paste to 5 H 9 5 5 5 5)
  • Step 4-D the connections connecting the organic transistors were removed using a mechanical punching device (MP-8200 Z, UHT Co., Ltd.), and each organic transistor was separated (step 4-D).
  • the substrate containing this discrete organic transistor array was uniformly covered with a 5 parylene seal layer.
  • a mechanical punching device holes of 1 mm in diameter for via wiring were made in the source, drain and gate electrodes, and the holes were filled with Ag paste to form conductive terminals (step 4-E).
  • a stretchable wiring comprising PDM S coated carbon nanotube rubber according to Example 2 of the present invention for the conductive terminals of the gate electrode, the source electrode and the drain electrode. They were electrically connected as word lines (gate electrodes) and bit lines (source electrodes) (step 4 F, step 4 1 G).
  • the properties of the organic transistor did not change even after electrically connecting the produced stretchable wiring with a conductive paste.
  • Fig. 5 shows a photograph of an electronic circuit containing conductive pastes that are connected in series
  • Fig. 25 shows a schematic diagram of one configuration unit of this electronic circuit.
  • the electronic circuit having the organic transistor array obtained as described above, as shown in FIG. 6, the electronic circuit is stretched while the tensile stress is increased, and the transistor provided in the stretched electronic circuit is obtained. I investigated the nature of That is, the electronic circuit is uniaxially or biaxially
  • the electrical characteristics of the electronic circuit were measured by stretching at various expansion rates from 0 to 100%. We also released the strain and measured the electrical characteristics of the transistor in the electronic circuit.
  • FIGS 2 6 and 2 8 electrical characteristics obtained, also showing the relationship between the elongation and the channel current (I D s) in FIGS 2 7 and 2 9.
  • the value of I D s are those standardized by the I D s, measured in the initial state before the experiment.
  • FIGS. 26 to 29 when the elongation is 70% or more, irreversible deterioration occurs, but when the elongation of the electronic circuit is less than 70%, the change in the electrical characteristics is negligible.
  • the stretchable electronic circuit can be easily manufactured using the stretchable wiring according to the present invention and the conductive paste.
  • Such an expansion material and an electronic circuit provided with the same can be suitably used for various types of electronic devices.
  • Fig. 30 shows the change in conductivity when the elongation rate is changed Film-like according to Example 2 While carbon nanotube rubber shows high conductivity regardless of elongation rate, film-like carbon nanotube rubber consisting of single-walled carbon nanotube with short length, low specific surface area and low carbon purity is conductive Conductivity is lowered as the elongation is low. The This indicates that long, high specific surface area, high purity single-walled carbon nanotubes are suitable for realizing the carbon nanotube rubber composition of the present invention having both conductivity and high elongation rate. ing.
  • the inventors of the present invention have achieved the highest conductivity (10 2 S / cm) as a chemically stable elastomer (rubber-like elastic body) using a carbon nanotube.
  • a new stretchable conductor with Furthermore, by using this new material as the wiring of the organic transistor integrated circuit, a self-expanding integrated circuit sheet like rubber is realized.
  • Stretchable integrated circuit sheets can be used in many new applications, such as elastic electronic artificial skin that can be attached to moving parts of machines such as the joints of a rodot. .
  • the present invention is extremely useful in industry because it can provide a carbon nanotube rubber composition having sufficient conductivity and elasticity when used as a constituent material of an electronic circuit.

Abstract

Disclosed is a carbon nanotube rubber composition comprising a carbon nanotube, an ionic liquid, and a rubber miscible with the ionic liquid. The composition is produced by preparing a carbon nanotube-dispersed gel containing a carbon nanotube, an ionic liquid and optionally an organic solvent dispersed therein, preparing a carbon nanotube/rubber-dispersed gel containing the carbon nanotube-dispersed gel, a rubber, and optionally an organic solvent dispersed therein, and drying the carbon nanotube/rubber-dispersed gel. The composition provides a carbon nanotube rubber, a carbon nanotube rubber paste, a wiring, an electroconductive paste, and an electronic circuit.

Description

カーボンナノチューブゴム組成物、 配線、 導電性ペース ト、 電子回 路およびその製造方法 Carbon nanotube rubber composition, wiring, conductive paste, electronic circuit and method for producing the same
技術分野 Technical field
本発明は、 カーボンナノチ明ューブゴム組成物、 カーボンナノチュ —ブゴム、 カーボンナノチューブゴムペース ト、 配線、 導電性べ 細 一 ス ト、 電子回路およびその製造方法に関する。 特に、 本発明は、 真 にゴム状の弾性導体を与えるカーボンナノチューブゴム組成物、 力 一ボンナノチューブゴム、 カーボンナノチューブゴムペース ト、 配 線、 導電性ペース ト、 その製造方法およびそれを用いた電子回路に 関する。  The present invention relates to a carbon nanotube rubber composition, a carbon nanotube rubber, a carbon nanotube rubber paste, a wiring, a conductive belt, an electronic circuit and a method for producing the same. In particular, the present invention provides a carbon nanotube rubber composition that provides a truly rubbery elastic conductor, carbon nanotube rubber, carbon nanotube rubber paste, wiring, conductive paste, a method for producing the same, and an electron using the same. It relates to the circuit.
背景技術 Background art
有機トランジスタは、 シリコンなど従来の無機材料素子とは違つ て、 低温プロセスでプラスティ ックフィルム上に形成できるため、 軽くて、 曲げられる電子機器を作ることができる。 また、 印刷技術 で製造できるため、 面積の大きなものを作る場合の製造コス トもシ リコンに比べて格段に安い。 この特徴を利用して、 有機トランジス 夕は、 無線タグや電子ペーパーの駆動回路などへの応用が期待され ている。 一方、 本発明者らは、 有機トランジスタを大面積センサや 大面積ァクチユエ一夕に応用する研究に取り組み、 ロボッ ト用電子 人工皮膚、 シート型スキャナー、 超薄型点字ディスプレイ、 ワイヤ レス電力伝送シート、 通信シートを実現するなど有機トランジスタ を大面積エレク トロ二クスに応用する可能性を示してきた。 特に、 有機トランジス夕を印刷した高分子フィルムを機械加工でメッシュ 構造にすることで、 伸縮性のある電子人工皮膚の作製に成功してい る (T. Someya, et al. , Proc. Natl. Acad. Sci. USA. 102, 1232 1, 2005) 。 このメッシュ構造は、 2 5 %以上伸張させると金属の 配線が破断して機能しなくなったため、 伸び縮み可能な導電性物質 が必要とされてきた。 一方で、 相田、 福島らは、 独立行政法人科学 技術振興機構 E RAT Oプロジェク 卜において、 カーボンナノチュ —ブの束をィオン性液体で解きほぐしたペース ト状の導電物質 (バ ツキ一ゲル) を発見しており (T. Fukushima, et al. , Science 300 , 2072, 2003)、 この新物質を活用して伸縮性導体の実現を目指し た共同研究プロジェク トがスタートした。 特に、 畠らが開発したス 一パ一グロース法による長さが長く、 比表面積が高く、 純度が高い 単層カーボンナノチューブ (K. Hata, et al. , Science 306, 1362 , 2004)を用いることによって、 伸縮させても導電率が全く変化し ないといつた従来の材料科学の常識では考えられない驚異的な物性 が実現された。 Organic transistors can be fabricated on plastic films in a low temperature process, unlike conventional inorganic materials such as silicon, making it possible to make electronic devices that are both light and bendable. In addition, since it can be manufactured using printing technology, the manufacturing cost for making large-area products is also much lower than silicon. Applications of organic transistors to drive circuits for wireless tags and electronic paper are expected using this feature. On the other hand, the present inventors worked on researches to apply organic transistors to large-area sensors and large-area sensors, electronic artificial skin for robots, sheet-type scanners, ultra-thin Braille displays, wireless power transmission sheets, We have shown the possibility of applying organic transistors to large area electronics, such as realizing communication sheets. In particular, machined polymer films printed with organic transistors. By constructing it, it has succeeded in producing elastic electronic artificial skin (T. Someya, et al., Proc. Natl. Acad. Sci. USA. 102, 1232 1, 2005). In this mesh structure, a stretchable conductive material has been required because the metal wire breaks and becomes nonfunctional when stretched by 25% or more. On the other hand, Aida, Fukushima et al., At the independent administrative corporation's Agency for Science and Technology Promotion E RATO project, used a paste-like conductive material (Batukiichi gel) obtained by dissolving carbon nanotube bundles with an ionic liquid. We have discovered this (T. Fukushima, et al., Science 300, 2072, 2003), and a joint research project aimed at realizing a stretchable conductor using this new material has started. In particular, use single-walled carbon nanotubes (K. Hata, et al., Science 306, 1362, 2004) which have a long length, high specific surface area, and high purity according to the spark growth method developed by you. As a result, remarkable physical properties have been realized that can not be considered in the conventional material science common sense that the conductivity does not change at all even if it is expanded and contracted.
しかるに、 伸長可能なエレク トロニクスデバイスの開発における 最も困難な課題の 1つは、 機械的な耐久性と電気的性能を同時に達 成することである。 通常、 堅固な材料は、 優れた電気的性能と、 優 れた制御性または安定性を示すが、 機械的な耐久性は劣る。 それに 対して柔らかい材料は優れた機械的特性を示すが、 電気的性能は劣 る。 実際、 炭素粒子を含む導電性ゴムの導電率の最大値は 0. 1 S Z c mである。 この値は、 集積回路の配線に利用するには小さすぎ る。  However, one of the most difficult issues in the development of extensible electronics devices is to simultaneously achieve mechanical durability and electrical performance. Hard materials usually exhibit excellent electrical performance and excellent controllability or stability but poor mechanical durability. Soft materials, on the other hand, exhibit excellent mechanical properties but poor electrical performance. In fact, the maximum value of conductivity of conductive rubber containing carbon particles is 0.1 S Z cm. This value is too small to be used for integrated circuit wiring.
例えば、 特許第 3 6 7 6 3 3 7号公報、 特許第 3 8 8 0 5 6 0号 公報、 特許第 3 9 2 4 2 7 3号公報、 特開 2 0 0 4— 2 5 5 4 8 1 号公報、 特開 2 0 0 5— 1 7 6 4 2 8号公報には、 カーボンナノチ ユーブとイオン性液体からなるゲル状組成物またはカーボンナノチ ユープとイオン性液体とにポリマー成分を加えてなるゲル状組成物 が提案され、 またかかるゲル状組成物を用いて電子回路を形成する ことが提案されている。 しかしながら、 これらのゲル状組成物から 得られる材料においても、 電子回路の構成材料として利用できる程 度に十分な導電率を与えるには至っていない。 発明の開示 For example, Japanese Patent No. 367637, Japanese Patent No. 3880650, Japanese Patent No. 3924237, and Japanese Patent Laid-Open No. 20054-5. In JP-A-2001-185, there is disclosed a gel-like composition comprising carbon nanotubes and an ionic liquid. A gel-like composition obtained by adding a polymer component to a gel and an ionic liquid has been proposed, and it has also been proposed to form an electronic circuit using such a gel-like composition. However, even materials obtained from these gel compositions have not been able to provide sufficient conductivity to the extent that they can be used as constituent materials of electronic circuits. Disclosure of the invention
本発明は、 上記の如き従来技術の問題点を解決し、 電子回路の構 成材料として用いるのに十分な導電性と通常のゴム材料にも劣らな い弾性を有し、 フレキシブルエレク トロニクスの実現が可能となる 伸長可能なエレク トロニクスデバイスを与えることのできるカーボ ンナノチューブゴム組成物、 カーボンナノチューブゴム、 力一ボン ナノチューブゴムペース 卜、 配線、 導電性ペース 卜、 及びそれらを 備える物品、 及び電子回路を提供し、 またその製造方法を提供する ことを課題とする。  The present invention solves the problems of the prior art as described above, has sufficient conductivity for use as a component material of an electronic circuit, and elasticity equal to that of a normal rubber material, and realizes flexible electronics. Carbon nanotube rubber composition capable of providing stretchable electronic devices, carbon nanotube rubber, carbon nanotube rubber paste, wiring, conductive paste, and articles comprising them, and electronic circuit And to provide a method for manufacturing the same.
本発明は、 上記課題を解決するための手段を提供するものであつ て、 下記からなる。  The present invention provides means for solving the above problems, and comprises the following.
1 . カーボンナノチューブ、 ゴム、 およびイオン性液体からなる カーボンナノチューブゴム組成物であって、  1. A carbon nanotube rubber composition comprising carbon nanotubes, rubber and an ionic liquid,
前記ゴムはイオン性液体と混和性を有することを特徴とするカー ボンナノチューブゴム組成物。  A carbon nanotube rubber composition characterized in that the rubber is miscible with an ionic liquid.
2 . 前記カーボンナノチューブゴム組成物が弾性体 (ゴム) であ ることを特徴とする上記 1 に記載のカーボンナノチューブゴム組成 物。  2. The carbon nanotube rubber composition as described in 1 above, wherein the carbon nanotube rubber composition is an elastic body (rubber).
3 . 前記カーボンナノチューブゴム組成物がペース ト状であるこ とを特徴とする上記 1または 2に記載のカーボンナノチューブゴム 組成物。 4 . 前記カーボンナノチューブゴム組成物が伸長性を有する伸長 性カーボンナノチューブゴム組成物であることを特徴とする上記 1 〜 3のいずれかに記載のカーボンナノチューブゴム組成物。 3. The carbon nanotube rubber composition as described in 1 or 2 above, wherein the carbon nanotube rubber composition is paste-like. 4. The carbon nanotube rubber composition as described in any one of 1 to 3 above, wherein the carbon nanotube rubber composition is a stretchable carbon nanotube rubber composition.
5 . 前記カーボンナノチューブゴム組成物の伸長率が 1 0 %以上 であることを特徴とする上記 4に記載のカーボンナノチューブゴム 組成物。  5. The carbon nanotube rubber composition as described in 4 above, wherein the elongation of the carbon nanotube rubber composition is 10% or more.
6 . 前記カーボンナノチューブゴム組成物の導電率が I S/ c m以 上であることを特徴とする上記 1 〜 5のいずれかに記載のカーボン ナノチューブゴム組成物。  6. The carbon nanotube rubber composition according to any one of the above 1 to 5, wherein the conductivity of the carbon nanotube rubber composition is I S / cm or more.
7 . 前記力一ボンナノチューブゴム組成物に含まれるカーボンナ ノチューブが単層カーボンナノチューブであることを特徴とする上 記 1 〜 6のいずれかに記載のカーボンナノチューブゴム組成物。  7. The carbon nanotube rubber composition according to any one of the above 1 to 6, wherein the carbon nanotube contained in the carbon nanotube rubber composition is a single-walled carbon nanotube.
8 . 前記カーボンナノチューブゴム組成物に含まれるカーボンナ ノチューブの純度が 9 0 %以上であることを特徴とする上記 1〜 7 のいずれかに記載のカーボンナノチューブゴム組成物。  8. The carbon nanotube rubber composition according to any one of the above 1 to 7, wherein the carbon nanotube contained in the carbon nanotube rubber composition has a purity of 90% or more.
9 . 前記カーボンナノチューブゴム組成物に含まれる力一ポンナ ノチューブの比表面積が 6 0 0 m 2 / g以上であることを特徴する 上記 1 〜 8のいずれかに記載のカーボンナノチューブゴム組成物。 9. The carbon nanotube rubber composition according to any one of the above 1 to 8, characterized in that the specific surface area of the carbon nanotube rubber composition contained in the carbon nanotube rubber composition is 600 m 2 / g or more.
1 0 . 上記 1〜 9のいずれかに記載の力一ボンナノチューブゴム 組成物からイオン性液体を除去したことを特徴とするカーボンナノ チューブゴム組成物。  10. A carbon nanotube rubber composition obtained by removing an ionic liquid from the carbon nanotube rubber composition according to any one of the above 1 to 9.
1 1 . 上記 1〜 1 0のいずれかに記載のカーボンナノチューブゴ ム組成物を備える物品。  An article comprising the carbon nanotube rubber composition according to any one of 1 to 10 above.
1 2 . 前記物品が電子回路を含むことを特徴とする上記 1 1 に記 載の物品。  1 2. The article according to 1 above, wherein the article comprises an electronic circuit.
1 3 . カーボンナノチューブ及びゴムを含むカーボンナノチュー プゴムを含む配線。 1 4. 前記配線が伸縮性を有する伸縮性配線であることを特徴と する上記 1 3に記載の配線。 13 3. Wiring containing carbon nanotube rubber including carbon nanotubes and rubber. 1 4. The wire according to the above item 13, wherein the wire is a stretchable wire having stretchability.
1 5. 前記配線の伸長率が 1 0 %以上であることを特徴とする上 記 1 4に記載の配線。  1 5. The wiring according to 14 above, wherein the expansion ratio of the wiring is 10% or more.
1 6. 前記配線の導電率が 1 S/c m以上であることを特徴とする 上記 1 3〜 1 5のいずれかに記載の配線。  1 6. The wiring according to any one of the above 13 to 15, wherein the conductivity of the wiring is 1 S / cm or more.
1 7. 前記配線の少なく とも一部が弾性材料 (ゴム) に配設また はかつ被覆されていることを特徴とする上記 1 3〜 1 6のいずれか に記載の配線。  1 7. The wiring according to any one of the items 1 to 16, wherein at least a part of the wiring is disposed or covered with an elastic material (rubber).
1 8. 前記力一ボンナノチューブゴムがィオン性液体を含むこと を特徴とする上記 1 3〜 1 Ίのいずれかに記載の配線。  1 8. The wiring according to any one of 13 to 1 above, wherein the carbon nanotube rubber contains an ionic liquid.
1 9. 前記カーボンナノチューブゴムに含まれる力一ボンナノチ ユ ーブが単層カーボンナノチューブであることを特徴とする上記 1 9. The force-on-nanotube contained in the carbon nanotube rubber is a single-walled carbon nanotube.
3〜 1 8のいずれかに記載の配線。 Wiring according to any one of 3 to 18.
2 0. 上記 1 3〜 1 9のいずれかに記載の配線を備える物品。 2 1. 前記物品が電子回路を含むことを特徴とする上記 2 0に記 載の物品。  2 0. An article comprising the wiring according to any one of the above 13 to 19. 2 1. The article according to the above 20, wherein the article comprises an electronic circuit.
2 2. カーボンナノチューブ及びゴムを含むカーボンナノチュー ブゴムペース トを含む導電性ペース ト。  2 2. Conductive paste containing carbon nanotube rubber paste containing carbon nanotubes and rubber.
2 3. 前記導電性ペース 卜が伸縮性を有することを特徴とする上 記 2 2に記載の導電性ペース ト。  2 3. The conductive paste as described in 22 above, wherein the conductive paste has stretchability.
2 4. 前記導電性ペース トの伸長率が 1 0 %以上であることを特 徵とする上記 2 3に記載の導電性ペース ト。  2 4. The conductive paste as described in the above item 23, characterized in that the extension rate of the conductive paste is 10% or more.
2 5. 前記配線材料の導電率が I S/ c m以上であることを特徴と する上記 2 2〜 2 4のいずれかに記載の導電性ペース ト。  2 5. The conductive paste according to any one of 22 to 24 above, wherein the conductivity of the wiring material is I S / cm or more.
2 6. 前記配線材料の少なく とも一部が弾性材料 (ゴム) に配設 またはかつ被覆されていることを特徴とする上記 2 2〜 2 5のいず れかに記載の導電性ペース ト。 6 6. At least a part of the wiring material is disposed or covered with an elastic material (rubber), and any one of 22 to 25 above is characterized. Conductive paste as described in
2 7 . 前記カーボンナノチューブゴムペース トがィオン性液体を 含むことを特徴とする上記 2 2〜 2 6のいずれかに記載の導電性べ ース 卜。  27. The conductive base according to any one of the above items 22 to 26, wherein the carbon nanotube rubber paste contains an ionic liquid.
2 8 . 前記カーボンナノチューブゴムペース トに含まれるカーボ ンナノチューブが単層カーボンナノチューブであることを特徴とす る上記 2 2〜 2 7のいずれかに記載の導電性ペース ト。  The conductive paste according to any one of 22 to 27 above, wherein the carbon nanotubes contained in the carbon nanotube rubber paste are single-walled carbon nanotubes.
2 9 . 上記 2 2〜 2 8のいずれかに記載の導電性ペース トを備え る物品。  An article provided with the conductive paste according to any one of the above 22 to 28.
3 0 . 前記物品が電子回路を含むことを特徴とする上記 2 9 に記 載の物品。  3 0. The article according to the above 2 9, wherein the article comprises an electronic circuit.
3 1 . 基板と、 前記基板に設けられた電子部品と、 前記電子部品 と電気的に接続されている伸縮性配線を含むことを特徴とする電子 回路。  3. An electronic circuit comprising: a substrate; an electronic component provided on the substrate; and stretchable wiring electrically connected to the electronic component.
3 2 . 前記伸縮性配線の導電率が 1 S/ c m以上であることを特徴 とする上記 3 1 に記載の電子回路。  3 2. The electronic circuit according to 3 1 above, wherein the conductivity of the stretchable wiring is 1 S / cm or more.
3 3 . 前記伸縮性配線の伸長率が 1 0 %以上であることを特徴と する上記 3 1 または 3 2に記載の電子回路。  3 3. The electronic circuit according to 3 1 or 32, wherein an expansion rate of the stretchable wiring is 10% or more.
3 4 . 前記伸縮性配線がカーボンナノチューブ及びゴムを含む力 一ボンナノチューブゴム組成物を含む配線から成る上記 3 1〜 3 3 のいずれかに記載の電子回路。  The electronic circuit according to any one of the items 31 to 33, wherein the stretchable wiring comprises a wiring containing a carbon nanotube and a rubber-containing carbon nanotube rubber composition.
3 5 . 前記カーボンナノチューブゴム組成物に含まれるカーボン ナノチューブが単層カーボンナノチューブであることを特徴とする 上記 3 :!〜 3 4のいずれかに記載の電子回路。  3 5. The carbon nanotube contained in the carbon nanotube rubber composition is a single-walled carbon nanotube, The electronic circuit according to any one of the items 3 to 4 above.
3 6 . 上記 3 1〜 3 4のいずれかに記載の電子部品と伸縮性配線 がカーボンナノチューブゴムペース 卜で電気的に接続されているこ とを特徴とする上記 3 1〜 3 5のいずれかに記載の電子回路。 3 7 . 以下の工程を含むことを特徴とするカーボンナノチューブ ゴム組成物の製造方法。 6 6. Any of the above 3 1 to 3 5 characterized in that the electronic component according to any one of 3 to 3 above and the stretchable wiring are electrically connected by a carbon nanotube rubber paste. Electronic circuit described in. A method of producing a carbon nanotube rubber composition comprising the following steps:
工程 1 : カーボンナノチューブ、 イオン性液体、 及び必要に応じ て有機溶媒を分散させたカーボンナノチューブイオン性液体ゲルを 調製する工程  Step 1: A step of preparing a carbon nanotube ionic liquid gel in which carbon nanotubes, an ionic liquid, and, if necessary, an organic solvent are dispersed.
工程 2 : カーボンナノチューブイオン性液体ゲルとゴムポリマ一 と必要に応じて有機溶媒を分散させたカーボンナノチューブペース トを調製する工程  Step 2: Preparation of carbon nanotube paste in which carbon nanotube ionic liquid gel, rubber polymer and optionally organic solvent are dispersed
工程 3 : カーボンナノチューブペースから有機溶剤を除去し、 力 一ボンナノチューブゴムを製造する工程  Process 3: Process of removing organic solvent from carbon nanotube paste and manufacturing carbon nanotube rubber
3 8 . 以下の工程を含むことを特徴とするカーボンナノチューブ ゴム組成物の製造方法。  A method of producing a carbon nanotube rubber composition comprising the following steps:
工程 1 : カーボンナノチューブ、 ィオン性液体、 及び必要に応じ て有機溶媒を分散させたカーボンナノチューブイオン性液体ゲルを 調製する工程  Step 1: Preparation of a carbon nanotube ionic liquid gel in which carbon nanotubes, an ionic liquid, and, if necessary, an organic solvent are dispersed
工程 2 : カーボンナノチューブイオン性液体ゲルとゴムポリマー と必要に応じて有機溶媒を分散させた力一ボンナノチューブペース トを調製する工程  Step 2: Preparation of carbon nanotube nanotube paste in which carbon nanotube ionic liquid gel, rubber polymer and, if necessary, organic solvent are dispersed
工程 3 : カ一ボンナノチューブペース トから有機溶剤を除去し、 カーボンナノチューブゴムを製造する工程  Step 3: A step of removing the organic solvent from carbon nanotube paste to produce carbon nanotube rubber
工程 4 : カーボンナノチューブゴムからイオン性液体を除去する 工程  Step 4: Removal of ionic liquid from carbon nanotube rubber
3 9 . 以下の工程を含むことを特徴とする伸縮性配線の製造方法 工程 1 : カーボンナノチューブ、 イオン性液体、 及び必要に応じ て有機溶媒を分散させたカーボンナノチューブイオン性液体ゲルを 調製する工程 工程 2 : カーボンナノチューブイオン性液体ゲルとゴムポリマー と必要に応じて有機溶媒を分散させたカーボンナノチューブペース トを調製する工程 9 9. A method of producing a stretchable wiring comprising the following steps: Step 1: A step of preparing a carbon nanotube, an ionic liquid, and, if necessary, a carbon nanotube ionic liquid gel in which an organic solvent is dispersed. Step 2: Preparation of carbon nanotube paste in which carbon nanotube ionic liquid gel, rubber polymer and, if necessary, organic solvent are dispersed
工程 3 : カーボンナノチューブペースから有機溶剤を除去し、 力 一ボンナノチューブゴムを含む伸縮性配線を製造する工程  Step 3: Remove organic solvent from carbon nanotube paste and manufacture stretchable wire containing carbon nanotube rubber
4 0 . 以下の工程を含むことを特徴とする力一ボンナノチューブ ゴム配線の製造方法。  4 0. A method of manufacturing a carbon nanotube rubber wiring comprising the steps of:
工程 1 : カーボンナノチューブ、 イオン性液体、 及び必要に応じ て有機溶媒を分散させたカーボンナノチューブイオン性液体ゲルを 調製する工程  Step 1: A step of preparing a carbon nanotube ionic liquid gel in which carbon nanotubes, an ionic liquid, and, if necessary, an organic solvent are dispersed.
工程 2 : カーボンナノチューブイオン性液体ゲルとゴムポリマー と必要に応じて有機溶媒を分散させたカーボンナノチューブペース トを調製する工程  Step 2: Preparation of carbon nanotube paste in which carbon nanotube ionic liquid gel, rubber polymer and, if necessary, organic solvent are dispersed
工程 3 : カ一ボンナノチューブペース トから有機溶剤を除去し、 力一ボンナノチューブゴムを製造する工程  Process 3: A process of removing the organic solvent from carbon nanotube paste to produce carbon nanotube rubber
工程 4 : カーボンナノチューブゴムからイオン性液体を除去し、 伸縮性配線を製造する工程  Process 4: A process of removing an ionic liquid from carbon nanotube rubber to produce a stretchable wiring
4 1 . 以下の工程を含むことを特徴とする導電性ペース トの製造 方法。  4 1. A method for producing a conductive paste, comprising the following steps.
工程 1 : カ一ボンナノチューブ、 イオン性液体、 及び必要に応じ て有機溶媒を分散させたカーボンナノチューブイオン液体ゲルを調 製する工程  Step 1: Preparation of carbon nanotube ionic liquid gel in which carbon nanotubes, ionic liquid and, if necessary, organic solvent are dispersed
工程 2 : カーボンナノチューブイオン性液体ゲルとゴムポリマー と必要に応じて有機溶媒を分散させたカーボンナノチューブペース トを含む導電性ペース トを製造する工程  Step 2: Process for producing conductive paste including carbon nanotube paste in which carbon nanotube ionic liquid gel, rubber polymer and, if necessary, organic solvent are dispersed
上記本発明のカーボンナノチューブゴム組成物、 カーボンナノチ ユーブゴム、 カーボンナノチューブゴムペース ト、 配線、 導電性べ 一ス トは、 電子回路の構成材料として用いたときに、 十分な導電性 と伸長性とを有し、 これによつて伸長可能なエレク 卜ロニクスデバ イスを与えることができる。 図面の簡単な説明 The carbon nanotube rubber composition of the present invention, carbon nanotube rubber, carbon nanotube rubber paste, wiring, conductive base One of the strips has sufficient conductivity and extensibility when used as a constituent material of an electronic circuit, thereby providing an extensible electronic device. Brief description of the drawings
図 1は、 本発明の一実施例で得られたフィルム状に成型加工され た本発明のカーボンナノチューブゴムをデジタルカメラで撮影した 画像である。  FIG. 1 is an image of the carbon nanotube rubber of the present invention molded into a film shape obtained in one example of the present invention and photographed with a digital camera.
図 2は、 本発明の一実施例で得られた板状のカーボンナノチュー ブゴムに機械加工で穴を空けた網目状のカーボンナノチューブゴム のデジタルカメラ撮影画像である。  FIG. 2 is a digital camera photographed image of a reticulated carbon nanotube rubber obtained by machining holes in the plate-like carbon nanotube rubber obtained in one embodiment of the present invention.
図 3は、 本発明の一実施例で得られた力一ボンナノチューブゴム ペース トのデジタルカメラ撮影画像である。  FIG. 3 is a digital camera image of the carbon nanotube rubber paste obtained in one embodiment of the present invention.
図 4は、 本発明の一実施例で得られたカーボンナノチューブゴム をジメチルシロキサンをべ一スとするシリコーンゴム (P D M S ) で被覆した物品のデジ夕ルカメラ撮影画像である。  FIG. 4 is a digital camera image of an article obtained by coating the carbon nanotube rubber obtained in one example of the present invention with a silicone rubber (P D M S) based on dimethylsiloxane.
図 5は、 本発明の一実施例で得られた、 カーボンナノチューブゴ ムを配線として組み込んだ電子回路のデジタルカメラ撮影画像であ る。  FIG. 5 is a digital camera photographed image of an electronic circuit in which a carbon nanotube rubber is incorporated as a wire, obtained in one embodiment of the present invention.
図 6は、 図 5の回路を構成するアクティブマトリ ックスを引き伸 ばした状態のデジ夕ルカメラ撮影画像である。  FIG. 6 is a digital camera photographed image in a state where the active matrix constituting the circuit of FIG. 5 is expanded.
図 7は、 本発明のカーボンナノチューブゴム組成物の製造方法の 一例を示す模式図である。  FIG. 7 is a schematic view showing an example of the method for producing a carbon nanotube rubber composition of the present invention.
図 8は、 一実施例で得られたカーボンナノチューブゴムのデジ夕 ルカメラ撮影画像である。  FIG. 8 is a digital camera photographed image of carbon nanotube rubber obtained in one example.
図 9は、 一実施例で得られた、 パターンされたカーボンナノチュ ーブゴムからなる配線のデジタルカメラ撮影画像である。 図 1 0は図 9のカーボンナノチューブゴムからなる配線を曲げた 状態のデジタルカメラ撮影画像である。 FIG. 9 is a digital camera image of a wire made of patterned carbon nanotube rubber obtained in one embodiment. FIG. 10 is a digital camera photographed image in a state in which the wiring made of carbon nanotube rubber in FIG. 9 is bent.
図 1 1は、 図 9のパターンされた力一ポンナノチューブゴムの一 部を拡大した走査電子顕微鏡写真画像である。  FIG. 11 is a scanning electron micrograph image of a portion of the patterned carbon nanotube rubber of FIG.
図 1 2は、 本発明の一実施例で得られたカーボンナノチューブゴ ム組成物におけるカーボンナノチューブ含有率と導電率および伸長 率との関係を示すグラフである。  FIG. 12 is a graph showing the relationship between the carbon nanotube content and the conductivity and elongation rate in the carbon nanotube rubber composition obtained in one example of the present invention.
図 1 3は、 本発明のカーボンナノチューブゴム組成物を製造する ために必要な各種イオン性液体とゴムとの混和性を示す写真画像で ある。  FIG. 13 is a photographic image showing the miscibility between various ionic liquids and rubber necessary for producing the carbon nanotube rubber composition of the present invention.
図 1 4〜 1 7は、 それぞれ、 本発明の一実施例で得られるカーボ ンナノチューブゴム組成物、 力一ボンナノチューブゴム、 力一ポン ナノチューブゴムペース ト、 伸縮性配線のカーボンナノチューブ、 イオン性液体、 ゴムの組成比を変えたときの導電率、 伸長率の変化 を示すグラフであり、 図 1 4、 1 5、 1 6はそのときの歪一応力特 性を示し、 図 1 7は電気特性を示す。  Figures 14 to 17 show the carbon nanotube rubber composition, carbon nanotube rubber, carbon nanotube rubber paste, stretchable carbon nanotube, ionic liquid, obtained in one embodiment of the present invention, respectively. Fig.14 is a graph showing changes in conductivity and elongation when the composition ratio of rubber is changed. Fig.14, Fig.15, Fig.16 show the strain and stress characteristics at that time, Fig.17 shows the electric characteristics Indicates
図 1 8は、 本発明の一実施例で得られたカーボンナノチューブゴ ム組成物における伸長率と導電率との関係を示すグラフである。  FIG. 18 is a graph showing the relationship between the elongation and the conductivity in the carbon nanotube rubber composition obtained in one example of the present invention.
図 1 9は、 本発明の一実施例で得られたカーボンナノチュ一ブゴ ム組成物におけるカーボンナノチューブ、 イオン性液体およびゴム の含有量と導電率との関係を示すグラフである。  FIG. 19 is a graph showing the relationship between the content of carbon nanotubes, ionic liquid and rubber in the carbon nanotube-based rubber composition obtained in one example of the present invention and the conductivity.
図 2 0は、 本発明の一実施例で得られたカーボンナノチューブゴ ム組成物におけるカーボンナノチューブ、 イオン性液体およびゴム の含有量と導電率との関係を示すグラフである。  FIG. 20 is a graph showing the relationship between the content of carbon nanotubes, ionic liquid and rubber in the carbon nanotube rubber composition obtained in one example of the present invention and the conductivity.
図 2 1は、 本発明の一実施例で得られたカーボンナノチューブゴ ム組成物におけるカーボンナノチューブ ゴム分散ゲル中のゴム含 有量と導電率との関係を示すグラフである。 図 2 2は、 本発明の一実施例で得られたカーボンナノチューブゴ ム組成物におけるカーボンナノチューブ/ゴム分散ゲル中のゴム含 有量と限界伸長率との関係を示すグラフである。 FIG. 21 is a graph showing the relationship between the rubber content in the carbon nanotube-rubber dispersed gel and the conductivity in the carbon nanotube rubber composition obtained in one example of the present invention. FIG. 22 is a graph showing the relationship between the rubber content in the carbon nanotube / rubber dispersion gel and the critical elongation in the carbon nanotube rubber composition obtained in one example of the present invention.
図 2 3、 2 4は、 本発明の一実施例における、 本発明に係る伸縮 性配線と公知の電子部品とを、 伸縮性配線や導電性ペース トを用い て電気的に接続した、 伸縮性を有する電子回路の製造プロセスを説 明する図である。  Figures 23 and 24 show stretchability obtained by electrically connecting the stretchable wiring according to the present invention and a known electronic component using a stretchable wiring or a conductive paste according to an embodiment of the present invention. It is a figure explaining the manufacturing process of the electronic circuit which has.
図 2 5は、 図 5の回路を構成する伸長可能なアクティブマトリ ツ クスの一構成単位を示す模式図である。  FIG. 25 is a schematic view showing one constitutional unit of the extendable active matrix constituting the circuit of FIG.
図 2 6〜 2 9は、 それぞれ、 図 5の回路を構成する伸長可能なァ クティブマトリ ックスについて、 このアクティブマトリ ックスのシ 一トをー軸方向または二軸方向に、 0〜 1 0 0 %までの種々の引つ 張り応力で引き伸ばした後、 その伸長ひずみを開放し、 そのときの そのシート上に載置されている トランジスタにおけるチャネル電流 ( I D s ) を測定したときに得られた伝達曲線並びにそのときの引 つ張り応力とチャネル電流 ( I D s ) との関係を示し、 ここで図 2 6および 2 8は前記伝達曲線のグラフであり、 図 2 7および 2 9は そのときの引っ張り応力とチャネル電流 ( I D S ) との関係を示す グラフである。 Figures 26 to 29 show, for the expandable matrix that constitutes the circuit of Figure 5, 0 to 100% of this active matrix sheet in the axial or biaxial directions. After stretching with various tensile stresses, the elongation strain is released, and the transfer curve obtained when the channel current (I D s) in the transistor placed on the sheet at that time is measured. And the relationship between the tensile stress at that time and the channel current (I D s ), where FIGS. 26 and 28 are graphs of the transfer curves, and FIGS. It is a graph which shows the relation between stress and channel current ( IDS ).
図 3 0は、 本発明の一実施例で得られた力一ボンナノチューブゴ ム組成物および比較例で得られた力一ボンナノチューブゴム組成物 における伸長率と導電率との関係を示すグラフである。 発明を実施するための最良の形態  FIG. 30 is a graph showing the relationship between the elongation and the conductivity in the carbon nanotube rubber composition obtained in one example of the present invention and in the carbon nanotube rubber composition obtained in the comparative example. is there. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の好ましい実施の形態を説明するが、 本発明はこれ らの形態のみに限定されるものではなく、 本発明の精神とその実施 の範囲内において様々な変形が可能であることを理解されたい。 本発明のカーボンナノチューブゴム組成物とは、 カーボンナノチ ユーブとゴム、 及び必要に応じてイオン性液体を含む物のことであ り、 液体状、 ゲル状、 固体状、 ゴム状、 ペース ト状の形態を取って いてもよい。 さらには、 必要に応じて、 有機溶剤を含んでいても良 い。 本発明のカーボンナノチューブゴム組成物は好ましくは導電率 が l S/ c m以上、 かつ 1 0 %以上の伸長性を有する。 なお本明細書 では伸長と伸縮はほぼ同意義に用いられている。 単に、 カーボンナ ノチューブとゴムとを公知の手法を用いて分散させたり、 ゴムを力 一ボンナノチューブに公知の手法を用いて含浸しても、 本発明のよ うに伸長性と導電性を兼ね備えるカーボンナノチューブ組成物を製 造することはできない。 つまり、 伸長性と導電性を兼ね備える力一 ボンナノチューブ組成物は本発明によりはじめて実現が可能となつ た革新的な新しい材料である。 カーボンナノチューブゴム組成物と して、 以下に詳しく説明する力一ボンナノチューブゴム、 力一ボン ナノチューブゴムペース 卜を例示できる。 The preferred embodiments of the present invention will be described below, but the present invention is not limited to only these embodiments, and various modifications can be made within the spirit of the present invention and the scope of its implementation. I want you to understand. The carbon nanotube rubber composition of the present invention is a material containing carbon nanotubes, rubber, and, if necessary, an ionic liquid, and is in the form of liquid, gel, solid, rubber or paste. It may be in a form. Furthermore, it may contain an organic solvent, if necessary. The carbon nanotube rubber composition of the present invention preferably has a conductivity of 1 S / cm or more and an extensibility of 10% or more. In the present specification, extension and extension are used in the same sense. Even if carbon nanotubes and rubber are simply dispersed using a known method, or rubber is impregnated into carbon nanotubes using a known method, carbon having both extensibility and conductivity as in the present invention is obtained. It is not possible to make nanotube compositions. That is, a carbon nanotube composition having both extensibility and conductivity is an innovative new material that can only be realized by the present invention. As the carbon nanotube rubber composition, a carbon nanotube rubber and a carbon nanotube rubber paste, which will be described in detail below, can be exemplified.
本発明のカーボンナノチューブゴムとは、 ゴム状の弾性体で、 か つカーボンナノチューブから付与される高い導電性をも兼ね備える カーボンナノチューブゴム組成物である。 本発明のカーボンナノチ ユーブゴムは好ましくは導電率が 1 S/ c m以上、 かつ 1 0 %以上の 伸長性を有する。 単に 、 カーポンナノチューブとゴムとを公知の手 法を用いて分散させたり、 ゴムをカ一ボンナノチュ一ブに公知の手 法を用いて含浸しても 、 本発明のように伸長性と導電性を兼ね備え るカーボンナノチューブゴムを製造できない。 つまり 、 伸長性と導 電性を兼ね備えるカーポンナノチューブゴムは本発明によりはじめ て実現が可能となった革新的な新しい材料であり、 伸長性かつ導電 性が必要な種々のフレキシブル、 ス トレツチヤブルな物品に用いる ことができる。 特にカーボンナノチューブゴムは伸縮性を有する配 線に好適に用いることがでさ、 かかる伸縮性配線は、 伸縮性電子回 路を製造するのに好適である The carbon nanotube rubber of the present invention is a rubber-like elastic body and a carbon nanotube rubber composition which also has high conductivity imparted from carbon nanotubes. The carbon nanotube rubber of the present invention preferably has a conductivity of 1 S / cm or more and an extensibility of 10% or more. Even if carpone nanotubes and rubber are dispersed using known methods, or rubber is impregnated into carbon nanotubes using known methods, the extensibility and conductivity as in the present invention can be achieved as in the present invention. It is impossible to produce carbon nanotube rubber that has both. That is, carpone nanotube rubber having both extensibility and conductivity is an innovative new material that can be realized for the first time by the present invention, and it can be used for various flexible and stretchable articles that require extensibility and conductivity. It can be used. In particular, carbon nanotube rubber has stretchability. Such stretchable wiring is suitable for producing stretchable electronic circuits.
本発明による力一ポンナノチュ―ブゴムの導電率は高ければより 好適であるが 、 力一ポンナノチュ ~プ自体の導電率を凌駕する導電 性を得ることはできない。 よつて力ーポンナノチューブの導電性 1 It is more preferable that the conductivity of the rubber nanotube tube rubber according to the present invention is high, but it is not possible to obtain conductivity higher than the conductivity of the rubber ribbon tube itself.ー ー-の の ナ ノ チ ュ ー ブ 性 1
0 0 0 S / c mが力一ボンナノチュ一ブゴムの導電性の上限となる0 0 0 S / cm is the upper limit of conductivity of carbon nanotube rubbers
。 導電率が l S Z c m以上であれば、 回路の配線として用いること ができ 、 好適である。 導電率が 1 O S / c m以上であれば、 大面禾責 のデバイスの配線として用いるのに好適である。 さらに。 導電率が. If the conductivity is lSzcm or more, it can be used as a circuit wiring, which is preferable. If the conductivity is 1 O S / cm or more, it is suitable for use as a wiring of a large area device. further. Conductivity is
2 0 S / c m以上であれば、 配線中を流せる電流が増加し、 様 な デパイスの駆動ができ好ましい If it is 20 S / cm or more, the current which can flow in the wiring will increase, and it is possible to drive similar de-pice.
本発明によるカーボンナノチュ —ブゴムの伸長率は大きいほどよ り好適である力 s、 ゴム自体を凌駕する伸長性を得ることはできない The greater the elongation rate of the carbon nanotube rubber according to the present invention, the more suitable the force s, and the extensibility over the rubber itself can not be obtained.
。 よつてゴムの伸長率の上限 4 0 0 %がカーボンナノチューブゴム の伸長率の上限となる。 伸長率が 1 0 %以上であれば、 カーボンナ ノチューブゴムをス トレツチヤブル回路の配線として使用する と ができ、 好適である。 伸長率が 2 5 %以上であれば、 カーボンナノ チューブゴムを折り曲げることができ、 折り曲げ可能なフレキシブ ル部材として使用するのに好適である。 また、 伸長率が 5 0 %以上 であればカーボンナノチューブゴムを自由曲面に配設することでき 、 様々な形状 · 形態の三次元デバイスに好適に用いることができる 本発明におけるカーボンナノチューブゴムの形状は用途に応じて 適宜な形態が考えられ、 例えば、 平面や、 フィルムのほか、 棒、 固 体等でもよく、 厚みは問わない。 . Therefore, the upper limit of the elongation of rubber is 400% and the upper limit of the elongation of carbon nanotube rubber. If the elongation rate is 10% or more, it is preferable to use carbon nano tube rubber as wiring of a stretchable circuit. If the elongation rate is 25% or more, the carbon nanotube rubber can be bent, which is suitable for use as a bendable flexible member. Further, if the elongation rate is 50% or more, carbon nanotube rubber can be disposed on a free-form surface, and can be suitably used for three-dimensional devices of various shapes and shapes. The shape of carbon nanotube rubber in the present invention is Depending on the application, an appropriate form can be considered. For example, in addition to a flat surface, a film, a rod, a solid, etc. may be used, and the thickness does not matter.
カーボンナノチューブ、 イオン性液体、 ゴムを含むカーボンナノ チューブゴム、 カーボンナノチューブゴムペース 卜やカーボンナノ チューブゴム組成物から、 ソックスレー法などを用いて、 イオン性 液体を除去し、 カーボンナノチューブ、 ゴムから成るカーボンナノ チューブゴム、 カーボンナノチューブゴムペース 卜やカーボンナノ チューブゴム組成物も本発明の手法により製造できる。 イオン性液 体を除去したカーボンナノチューブゴムの導電性はイオン性液体を 含む場合と比較して低下するものの、 回収されたイオン性液体は再 利用でき、 製造コス トの大幅な低減が可能となる。 ソックスレー法 などィオン性液体を回収可能な方法を用いると 9 9 %ものィオンで 液体が回収できる。 そのため、 本手法を用いて、 カーボンナノチュ ーブゴム、 カーボンナノチューブゴムペース トゃカーボンナノチュ ーブゴム組成物がイオン性液体を含むかどうか、 含む場合にはその 質量%がわかる。 Carbon nanotube, ionic liquid, carbon nanotube rubber including rubber, carbon nanotube rubber paste, carbon nano and carbon nano The ionic liquid is removed from the tube rubber composition by Soxhlet method etc., carbon nanotube, carbon nanotube rubber consisting of rubber, carbon nanotube rubber paste, carbon nanotube rubber composition are also manufactured by the method of the present invention. it can. Although the conductivity of the carbon nanotube rubber from which the ionic liquid has been removed is lowered as compared with the case where it contains an ionic liquid, the recovered ionic liquid can be reused, and the manufacturing cost can be significantly reduced. . If a method capable of recovering ionic liquid such as the Soxhlet method is used, the fluid can be recovered with as much as 99% ion. Therefore, using this method, it is possible to know whether or not the carbon nanotube rubber, carbon nanotube rubber paste, carbon nanotube rubber composition contains an ionic liquid, and if it contains, its mass%.
本発明での力一ボンナノチューブゴムペース 卜とは、 液体状ゃゲ ル状の流動性があるナノチューブゴム組成物のことを言う。 本発明 のカーボンナノチューブゴムペース トは好ましくは導電率が 1 S Z c m以上、 かつ 1 0 %以上の伸長性を有する。 単に、 カーボンナノ チューブとゴムとを公知の手法を用いて分散させたり、 ゴムを力一 ボンナノチューブに公知の手法を用いて含浸しても、 本発明のよう に伸長性と導電性を兼ね備えるカーボンナノチュ ブゴムペース 卜 を製造することはでさない。 カーボンナノチュ―ブゴムぺ一ス 卜か ら熱ゃ乾燥等で有機溶剤の少なく とも一部を除去し 、 力一ボンナノ チューブゴムペース 卜を固化させることで、 カーポンナノチューブ ゴムペース 卜から導電性カーボンナノチューブゴムを製造できる。 必要に応じて、 カーポンナノチューブゴムべース に架橋剤や架橋 開始剤を添加してもよい。 架橋剤や架橋開始剤により、 力一ポンナ ノチューブゴムペース トの粘度や、 伸長性を制御できる。  The term “carbon nanotube rubber paste” in the present invention refers to a liquid, gel-like, fluid nanotube rubber composition. The carbon nanotube rubber paste of the present invention preferably has a conductivity of 1 Szcm or more and an extensibility of 10% or more. Even if carbon nanotubes and rubber are simply dispersed using a known method, or rubber is impregnated onto carbon nanotubes using a known method, carbon having both extensibility and conductivity as in the present invention It is not possible to produce nanotube rubber paste. By removing at least a part of the organic solvent from the carbon nanotube tube rubber paste by heat drying or the like, and solidifying the carbon nanotube rubber paste, the carbon nanotube rubber paste from the conductive carbon nanotube rubber is obtained. Can be manufactured. If necessary, a crosslinking agent or a crosslinking initiator may be added to the carpone nanotube rubber base. The crosslinking agent and crosslinking initiator can control the viscosity and extensibility of the rubber tube.
カーボンナノチューブゴムペース トは容易に成形加工でき、 成形 加工されたカーボンナノチューブゴムペース 卜、 所望の形状の導電 性カーボンナノチューブゴムを製造するのに好適である。 例えば、 調製されたカーボンナノチューブゴムペース トを、 所定の基板上に キャス トし、 乾燥させてフィルムとした後、 これを機械加工して所 定の導電性カーボンナノチューブゴムを形成することもできる。 Carbon nanotube rubber paste can be easily molded and processed A processed carbon nanotube rubber paste is suitable for producing a conductive carbon nanotube rubber of a desired shape. For example, the prepared carbon nanotube rubber paste can be cast on a predetermined substrate, dried to form a film, and then machined to form a predetermined conductive carbon nanotube rubber.
また、 調製されたカーボンナノチューブゴムペース トを、 スクリ ーン印刷、 インクジェッ ト印刷、 ディスペンサーなどを含むあらゆ る印刷機のインクとして用いて所定のパターンに印刷し、 次いで乾 燥させることにより、 導電性カーボンナノチューブゴムから成るパ ターンを形成することができる。  In addition, the prepared carbon nanotube rubber paste is used as an ink for all printing presses including screen printing, ink jet printing, dispensers, etc., and then printed in a predetermined pattern and then dried. It is possible to form a pattern consisting of a carbon nanotube rubber.
カーボンナノチューブゴムペース トを印刷などで成型加工した力 一ボンナノチューブゴムからなるパターンは、 伸縮性を有する配線 として用いることができる。 さらには伸縮性配線を備える伸縮性を 有する物品や電子回路の製造を可能とする。  A force obtained by molding and processing a carbon nanotube rubber paste by printing etc. A pattern made of a carbon nanotube rubber can be used as a wire having stretchability. Furthermore, it enables the manufacture of elastic articles and electronic circuits provided with elastic wiring.
カーボンナノチューブゴム組成物、 カーボンナノチューブゴムべ —ス ト、 カーボンナノチューブゴムなどをゴム等の弾性材料に配設 したり、 ゴム等の弾性材料でカーボンナノチューブゴム組成物、 力 —ボンナノチューブゴムペース 卜、 カーボンナノチューブゴムを被 覆してもよい。 この場合、 導電性カーボンナノチューブゴム組成物 、 力一ボンナノチューブゴムペース 卜、 カーボンナノチューブゴム を周囲から絶縁したり、. ゴムの弾性機能を付加することができる。 本発明の配線は、 力一ボンナノチューブとゴムを含む力一ポンナ ノチューブゴムを含み、 そのため伸長性と導電性を兼ね備える配線 のことを言う。 本発明において、 1 0 %以上の伸長性を有する配線 を伸長性配線と言う。 つまり、 伸長性と導電性を兼ね備える配線は 好ましくは導電率が l S Z c m以上、 かつ 1 0 %以上の伸長性を有 する。 単に、 カーボンナノチューブとゴムとを公知の手法を用いて 分散させたり、 ゴムを力—ボンナノチュ一ブに公知の手法を用いて 含浸しても、 本発明のように伸長性と導電性を兼ね備える配線を製 造することはできない。 導電率が 1 S / c m以上を超え、 かつ 1 0 %以上の伸長性を有する配線は本発明によりはじめて実現した画期 的な電子部品である。 Carbon nanotube rubber composition, carbon nanotube rubber foam, carbon nanotube rubber, etc. may be disposed on an elastic material such as rubber, or an elastic material such as rubber, carbon nanotube rubber composition, carbon nanotube rubber paste, etc. The carbon nanotube rubber may be covered. In this case, the conductive carbon nanotube rubber composition, carbon nanotube rubber paste, carbon nanotube rubber can be isolated from the surroundings, or the elastic function of the rubber can be added. The wiring of the present invention refers to a wiring which has both a carbon nanotube and rubber, and thus has both extensibility and conductivity. In the present invention, a wire having a stretchability of 10% or more is called a stretchable wire. That is, a wire having both extensibility and conductivity preferably has a conductivity of lSZ cm or more and 10% or more. Simply, carbon nanotubes and rubber using known methods Even if it is dispersed or rubber is impregnated into a carbon nanotube using a known method, it is not possible to produce a wire having both extensibility and conductivity as in the present invention. A wire having a conductivity of more than 1 S / cm and an extensibility of 10% or more is a revolutionary electronic component realized for the first time by the present invention.
本発明の配線は、 カーボンナノチューブゴム組成物、 カーボンナ ノチューブゴムペース 卜、 カーボンナノチユーブゴムから製造する ことができる。 配線は必要に応じてイオン性液体を含んでいてもよ い。 ィオン性液体により配線の導電率は増加し、 伸縮性は向上する さらには、 配線の少なく とも一部をゴム等の弾性材料に配設した り、 またはかつ配線の少なく とも一部をゴム等の弾性材料で被覆し ても良い。 これは、 配線の少なく とも一部を絶縁したり、 ゴムの弹 性機能を配線に付加するのに好適である。  The wiring of the present invention can be manufactured from a carbon nanotube rubber composition, a carbon nano tube rubber paste, and a carbon nanotube rubber. The wiring may contain an ionic liquid as needed. The conductivity of the wire is increased and the stretchability is improved by the ionic liquid. Furthermore, at least a portion of the wire is disposed on an elastic material such as rubber, or at least a portion of the wire is rubber or the like. It may be coated with an elastic material. This is suitable to insulate at least a part of the wiring and to add a rubber elastic function to the wiring.
配線の導電率は高ければより好適であるが、 力一ボンナノチュー ブ自体の導電率を凌駕する導電性を得る とはできない。 よって力 The higher the conductivity of the wiring, the better, but it is impossible to obtain conductivity exceeding that of the carbon nanotube itself. Thus the force
—ボンナノチューブの導電性 1 0 0 0 S c mが配線の導電性の上 限となる。 配線の導電率が 1 S Z c m以上であれば、 回路の配線と して用いることができる。 導電率が 1 0 S Z c m以上であれば、 大 面積のデバイスの配線として用いるのに好適である。 さらに導電率 が 2 0 S Z c m以上であれば、 配線中を流せる電流が増加し、 様々 なデバイスの駆動ができ好ましい。 -The conductivity of carbon nanotubes is the upper limit of the conductivity of wiring. If the conductivity of the wiring is 1 S Z cm or more, it can be used as a circuit wiring. If the conductivity is 10 S z cm or more, it is suitable for use as a wiring of a large area device. Further, if the conductivity is 20 Szcm or more, the current which can flow in the wiring is increased, which is preferable because various devices can be driven.
配線の伸長率は大きいほどより好適であるが、 ゴム自体を凌駕す る伸長性を得ることはできない。 よってゴムの伸長率の上限 4 0 0 %が配線の伸長率の上限となる。 伸長率が 1 0 %以上であれば、 配 線をス トレツチヤブル回路の配線として使用することができ、 好適 である。 伸長率が 2 5 %以上であれば、 配線を折り曲げることがで き、 折り曲げ可能なフレキシブル配線として使用するのに好適であ る。 また、 伸長率が 5 0 %以上であれば配線を自由曲面に配設する ことでき、 様々な形状 · 形態の三次元配線を製造するのに好適であ る。 The higher the elongation of the wire, the better, but it is not possible to obtain the extensibility that would damage the rubber itself. Therefore, the upper limit 4000% of the elongation rate of the rubber is the upper limit of the elongation rate of the wiring. If the expansion rate is 10% or more, the wire can be used as a wire of a stretchable circuit, which is preferable. If the expansion rate is 25% or more, you can bend the wiring. Suitable for use as flexible flexible wiring. Also, if the extension ratio is 50% or more, the wiring can be disposed on a free-form surface, which is suitable for manufacturing three-dimensional wiring of various shapes and forms.
本発明の導電性ペース トは力一ボンナノチューブ及びゴムを含む カーボンナノチューブゴムペース トを含み、 そのため伸長性と導電 性を兼ね備える導電性ペース卜のことを言う。 本発明の導電性べ一 ス トは好ましくは導電率が l S / c m以上、 かつ 1 0 %以上の伸長 性を有する。 単に、 力一ボンナノチューブとゴムとを公知の手法を 用いて分散させたり、 ゴムを力一ボンナノチューブに公知の手法を 用いて含浸しても、 本発明のように伸長性と導電性を兼ね備える導 電性ペース 卜を製造することはできない。 つまり、 伸長性と導電性 を兼ね備える導電率が 1 S / c m以上を超え、 かつ 1 0 %以上の伸 長性を有する導電性ペース トは本発明によりはじめて実現した画期 的な電子部品材料である。 本発明の導電性ペース トは、 カーボンナ ノチューブゴム組成物、 力一ボンナノチューブゴムペース トから製 造することができる。 導電性べ一ス トは必要に応じてイオン性液体 を含んでいてもよい。 イオン性液体により導電性ペース 卜の導電率 は増加し、 伸縮性は向上する。  The conductive paste of the present invention includes a carbon nanotube rubber paste containing carbon nanotubes and rubber, and therefore refers to a conductive paste having both extensibility and conductivity. The conductive base of the present invention preferably has a conductivity of lS / cm or more and a extensibility of 10% or more. Even if the carbon nanotube and the rubber are simply dispersed using a known method, or if the rubber is impregnated into the carbon nanotube using a known method, both extensibility and conductivity are achieved as in the present invention. It is not possible to produce conductive paces. In other words, the conductive paste, which has both conductivity and extensibility, has a conductivity of more than 1 S / cm and a stretchability of 10% or more, is the innovative electronic component material realized for the first time by the present invention. is there. The conductive paste of the present invention can be produced from a carbon nanotube rubber composition and carbon nanotube rubber paste. The conductive base may contain an ionic liquid as needed. The ionic liquid increases the conductivity of the conductive paste and improves the stretchability.
さらには、 導電性ペース トの少なく とも一部をゴム等の弾性材料 に配設したり、 またはかつ導電性ペース トの少なく とも一部をゴム 等の弾性材料で被覆しても良い。 これは、 導電性ペース トの少なく とも一部を絶縁したり、 ゴムの弾性機能を配線に付加するのに好適 である。  Furthermore, at least a portion of the conductive paste may be disposed on an elastic material such as rubber, or at least a portion of the conductive paste may be coated with an elastic material such as rubber. This is suitable to insulate at least a part of the conductive paste and to add the elastic function of the rubber to the wiring.
導電性ペース トの導電率は高ければより好適であるが、 カーボン ナノチューブ自体の導電率を凌駕する導電性を得ることはできない 。 よってカーボンナノチューブの導電性 1 0 0 O S Z c mが導電性 ペース卜の導電性の上限となる。 導電性ペース 卜の導電率が 1 S Z c m以上であれば、 導電端子と配線を電気的に接続するために用い ることができる。 導電率が 1 0 S Z c m以上であれば、 大面積のデ バイスの導電端子と配線を電気的に接続するために好適である。 さ らに導電率が 2 O S / c m以上であれば、 導電端子と配線の電気的 接続部に流せる電流が増加し、 様々なデバイスの駆動ができ好まし い。 The conductivity of the conductive paste is more preferable, but it is not possible to obtain conductivity exceeding that of the carbon nanotube itself. Therefore, the conductivity of the carbon nanotube 1 0 0 OSZ cm is the conductivity It is the upper limit of the conductivity of the pacemaker. If the conductivity of the conductive paste is 1 SZ cm or more, it can be used to electrically connect the conductive terminal and the wiring. A conductivity of 10 Sz cm or more is suitable for electrically connecting the conductive terminals of the large area device and the wiring. Furthermore, if the conductivity is 2 OS / cm or more, the current that can flow to the electrical connection between the conductive terminal and the wiring increases, which is preferable because it can drive various devices.
導電性ペース 卜の伸長率は大きいほどより好適であるが、 ゴム自 体を凌駕する伸長性を得ることはできない。 よってゴムの伸長率の 上限 4 0 0 %が導電性ペース トの伸長率の上限となる。 伸長率が 1 0 %以上であれば、 導電性ペース トをス トレツチャプル回路の導電 端子と配線を電気的に接続するために使用することができ、 好適で ある。 伸長率が 2 5 %以上であれば、 配線を折り曲げることができ 、 折り曲げ可能なフレキシブル配線として使用するのに好適である 。 また、 伸長率が 5 0 %以上であれば配線を自由曲面に配設するこ とでき、 様々な形状 · 形態の三次元配線を製造するのに好適である 本発明による伸縮性配線、 導電性ペース 卜を、 公知の既存の基板 、 公知の既存の電子部品と組み合わせ、 伸縮性を有する電子回路を 製造できる。 本明細書において、 好ましくは 1 0 %以上の伸長性を 有する電子回路を伸長性電子回路と言う。 例えば、 伸縮性電子回路 の構成として、 公知の既存の基板に設けられた、 公知の既存の電子 部品を、 導電性ペース 卜や伸縮性配線を用いて電気的に伸縮性配線 に接続した伸縮性回路を例示できる。  The higher the elongation rate of the conductive paste, the better, but the elongation over the rubber itself can not be obtained. Therefore, the upper limit of the elongation of rubber is 400% and the upper limit of the elongation of conductive paste. If the elongation rate is 10% or more, the conductive paste can be used to electrically connect the conductive terminal of the stretch circuit and the wiring, which is preferable. If the elongation rate is 25% or more, the wiring can be bent, which is suitable for use as a bendable flexible wiring. Also, if the elongation rate is 50% or more, the wiring can be disposed on a free-form surface, which is suitable for manufacturing three-dimensional wiring of various shapes and shapes. Stretchable wiring according to the present invention, conductivity A pace can be combined with a known existing substrate and a known existing electronic component to produce an electronic circuit having stretchability. In the present specification, an electronic circuit having a stretchability of preferably 10% or more is referred to as a stretchable electronic circuit. For example, as a construction of a stretchable electronic circuit, stretchability obtained by electrically connecting a known existing electronic component provided on a known existing substrate to a stretchable wiring using a conductive paste or stretchable wiring. A circuit can be illustrated.
この構成の伸縮性電子回路を実現するためには、 基板が伸縮性配 線よりも硬いことが好ましい。 なお本明細書で硬いとはヤング弾性 率が大きいことを言う。 一般的には、 公知の既存の基板、 公知の既 存の電子部品は硬く、 伸縮性を有さない。 また、 既存の電子部品は 歪むと電気特性が変化するという問題がある。 In order to realize the stretchable electronic circuit of this configuration, it is preferable that the substrate be harder than the stretchable wiring. In the present specification, "hard" means that Young's elastic modulus is large. Generally, known existing substrates, known already The existing electronic components are hard and have no stretchability. In addition, existing electronic components have the problem that their electrical characteristics change when they are distorted.
上記の本発明による電子回路構成にすることで、 電子回路が歪を 受けた時、 より柔らかい伸縮性配線が歪み、 硬い基板は歪まない。 その結果、 基板上の電子部品の電気特性が変化しない。 さらに、 基 板上の電子部品と伸縮性配線の間は、 伸縮性を有する導電性ペース トゃ伸縮性配線を用いて接続することで、 電子部品を伸縮性配線と 電気的に接続できる。 導電性ペース トゃ伸縮性配線が伸縮し歪を吸 収することで、 電子部品に歪を与えず、 電子部品の電気特性が変化 しない。 このような構成の電子回路は、 回路全体が伸縮性を持ち、 かつ、 伸縮させても、 回路の電気特性の変化が少ないという特徴を 持つ。 このような伸縮可能な電子回路は本発明によりはじめて実現 したものである。  With the above-described electronic circuit configuration according to the present invention, when the electronic circuit is distorted, the softer stretchable wiring is distorted and the hard substrate is not distorted. As a result, the electrical characteristics of the electronic component on the substrate do not change. Furthermore, the electronic component can be electrically connected to the stretchable wiring by connecting the electronic component on the board and the stretchable wiring using the conductive paste having stretchability and the stretchable wiring. The conductive paste stretches and stretches the elastic wiring to absorb the strain, so that the electronic component is not distorted and the electrical characteristics of the electronic component do not change. The electronic circuit having such a configuration is characterized in that the entire circuit is stretchable, and the change in the electrical characteristics of the circuit is small even if it is stretched. Such a stretchable electronic circuit is realized for the first time by the present invention.
電子回路に有用な基板としては、 特に制限はなく、 電子部品を設 けることができ伸縮性配線よりも硬い、 公知の何れの基板も使用す ることができ、 形状、 材質、 厚みに左右されない。 各種金属、 セラ ミックス、 シリコン、 樹脂などを材質とする平面状、 曲面状、 フレ キシブルな基板を例示することができる。  There is no particular limitation on a substrate useful for electronic circuits, and any known substrate that can be provided with electronic components and harder than stretchable wiring can be used, regardless of the shape, material, and thickness. . Examples include flat, curved, and flexible substrates made of various metals, ceramics, silicon, resins, and the like.
本発明の電子部品としては、 特に制限はなく、 導電性ペース トや 伸縮性配線で電気的に接続できる、 公知の何れの電子部品も使用す ることできる。 C M O S電子回路、 トランジスタ、 集積回路、 有機 トランジスタ、 発光素子、 ァクチユエ一夕、 メモリ、 センサ、 コィ ル、 コンデンサー、 抵抗、 及びこれらの組み合わせを例示すること ができる。  The electronic component of the present invention is not particularly limited, and any known electronic component which can be electrically connected by a conductive paste or stretchable wiring can be used. It can be exemplified by CMOS circuits, transistors, integrated circuits, organic transistors, light emitting elements, actuators, memories, sensors, coils, capacitors, resistors, and combinations thereof.
本発明の好ましい実施形態について以下に添付の図面を参照して 詳細に説明する。 図 1 は、 フィルム状に成型加工された本発明の力 一ボンナノチューブゴムをデジタルカメラで撮影した画像であり、 図 2は、 板状のカーボンナノチューブゴムに機械加工で穴を空けた 網目状のカーボンナノチューブゴムであり、 図 3は導電性ペース ト であるカーボンナノチューブゴムペース トをデジタルカメラで撮影 した画像であり、 図 4は、 カーボンナノチューブゴムをジメチルシ ロキサンをベースとするシリコーンゴム (P D M S ) で被覆した伸 縮性配線をデジタル力メラで撮影した画像であり、 図 5はポリイミ ド基板に設けられた、 有機トランジスタを、 導電性ペース トを用い て電気的に伸縮性配線に接続した伸縮性回踭をデジタル力メラで撮 影した画像である。 図 6は図 5の引き伸ばした伸縮性回路をデジ夕 ルカメラで撮影した画像である。 The preferred embodiments of the present invention will be described in detail below with reference to the attached drawings. Fig. 1 shows an image of a carbon nanotube rubber of the present invention molded and processed into a film shape with a digital camera. Fig. 2 shows a mesh-like carbon nanotube rubber machined with holes in a plate-like carbon nanotube rubber, and Fig. 3 shows an image of a conductive carbon nanotube rubber paste taken with a digital camera. Fig. 4 is an image of a carbon nanotube rubber coated with dimethyl siloxane based silicone rubber (PDMS) taken with a digital force camera. Fig. 5 is an organic image provided on a polyimide substrate. It is an image of a stretchable ring, in which a transistor is electrically connected to stretchable wiring using a conductive paste, with a digital force camera. Fig. 6 is an image of the stretched elastic circuit shown in Fig. 5 taken with a digital camera.
カーボンナノチューブゴム組成物、 カーボンナノチューブゴム、 力一ボンナノチューブペース ト、 配線、 導電性ペース トに含まれる カーボンナノチューブとしては、 単層カーボンナノチューブ ( S W N T ) および多層カーボンナノチューブ (M W N T ) のいずれをも 適宜用いることができる。 高導電性を持ち、 かつ高い伸長率を持つ カーボンナノチューブゴム組成物を実現するためには、 カーボンナ ノチューブが長いこと、 純度が高いこと、 及び比表面積が高いこと が好ましい。 そのため、 一般的に比表面積が低く、 長さも短い多層 カーボンナノチューブより、 比表面積が高く、 長さも長い単層力一 ボンナノチューブがより好ましい。  As carbon nanotubes included in carbon nanotube rubber composition, carbon nanotube rubber, carbon nanotube paste, wiring, and conductive paste, any of single-walled carbon nanotube (SWNT) and multi-walled carbon nanotube (MWNT) can be appropriately selected. It can be used. In order to realize a carbon nanotube rubber composition having high conductivity and high elongation rate, it is preferable that the carbon nano tube is long, the purity is high, and the specific surface area is high. Therefore, single-walled carbon nanotubes having a high specific surface area and a long length are more preferable than multi-walled carbon nanotubes generally having a low specific surface area and a short length.
高導電性、 高い伸長率を得るためには、 カーボンナノチューブが '可能な限り長いことが望ましい。 これは、 カーボンナノチュープゴ ム組成物中のカーボンナノチューブのネッ トワーク (編み目構造) が長いカーボンナノチューブにより構成された場合、 より電気を通 す経路が多く形成でき、 かつ伸長した場合においてもネッ トワーク がより破壊されにくいためである。 高導電性、 高い伸長率を得る上 でのカーボンナノチューブの長さには上限はないが、 一般的に長い カーボンナノチューブはより分散性が低くなりカーボンナノチュー ブゴム組成物の製造が困難となる。 特に長さが 1 以上 1 0 c m 以下の長さのカーボンナノチューブは分散性が良く、 高純度のもの が得やすく、 高導電性、 高い伸長率を得る上で好ましい。 長さが 1 m以下のカーボンナノチューブでは高導電性、 高い伸長率を実現 するためのネッ トワークを形成することが困難である。 長さが 1 0 c m以上のカーボンナノチューブは分散性が悪く、 かつ分散処理中 に容易に切断される。 In order to obtain high conductivity and high elongation, it is desirable that carbon nanotubes be as long as possible. This is because, in the case where the carbon nanotube network (knit structure) in the carbon nanotube polymer composition is composed of long carbon nanotubes, more electrical paths can be formed and the network can extend even if it extends. Is more difficult to be destroyed. There is no upper limit on the length of carbon nanotube to obtain high conductivity and high elongation rate, but it is generally long Carbon nanotubes have lower dispersibility, which makes it difficult to produce a carbon nanotube rubber composition. In particular, carbon nanotubes having a length of 1 or more and 10 cm or less have good dispersibility, are easily obtained in high purity, and are preferable in obtaining high conductivity and high elongation. Carbon nanotubes with a length of 1 m or less make it difficult to form a network to achieve high conductivity and high elongation. Carbon nanotubes having a length of 10 cm or more have poor dispersibility, and are easily cut during dispersion processing.
カーボンナノチューブはナノスケールの直径をもちつつ、 長さは 長い非常に細長いナノマテリアルのために 、 一本一本の長さを測定 することは非常に困難である。 本発明の場合 、 宜、 ィオン性液体 While carbon nanotubes have nanoscale diameters, it is very difficult to measure the length of each one because of the length of the elongated nanomaterials that are long. In the case of the present invention, the ionizable liquid
、 溶媒、 ゴムやゴムのポリマ一を含むカーポンナノチューブ分散液 を有機溶媒等で薄く希釈して基板上に滴下し 、 走査型原子間力顕微 鏡 で II察し 一本一本のカーボンナノチューブの長さではなく、 バンドルの長さを測定することにより評価可能である。 走査型原子 間力顕微鏡で測定した力一ボンナノチューブバンドルの長さと構成 するカーボンナノチューブの長さには相関性があり、 長いカーボン ナノチューブより構成されるバンドルは長くなる。 特に長さが 1 m以上 1 0 c m以下の長さのカーボンナノチューブバンドルは高導 電性、 高い伸長率を得る上で好ましい。 A solution of carpone nanotubes containing a solvent, rubber or polymer of rubber is diluted thinly with an organic solvent etc. and dropped onto a substrate, and then scanned with a scanning atomic force microscope. The length of one carbon nanotube Instead, it can be evaluated by measuring the length of the bundle. There is a correlation between the length of the carbon nanotube bundle and the length of the constituent carbon nanotubes measured by scanning atomic force microscopy, and the bundle composed of long carbon nanotubes becomes longer. In particular, a carbon nanotube bundle having a length of 1 m or more and 10 cm or less is preferable for obtaining high conductivity and high elongation rate.
また、 カーボンナノチューブとして、 特願 2 0 0 6— 5 2 7 8 9 4 ( W O 2 0 0 6 / 0 1 1 6 5 5対応) に記載の方法などを用いて 基板から垂直配向したカーボンナノチューブ配向集合体を成長基板 から剥離して用いる場合には、 垂直配向したカーボンナノチューブ 配向集合体の高さをカーボンナノチューブの長さとすることができ る。 つまり高さが 1 m以上 1 0 c m以下の長さのカーボンナノチ ユーブ配向集合体は高導電性、 高い伸長率を得る上で好ましい。 高導電性、 高い伸長率を得るためには、 カーボンナノチューブが 可能な限り高純度であることが望ましい。 ここでいう純度とは、 炭 素純度であり、 カーボンナノチューブの質量の何パーセントが炭素 で構成されているかを示す。 高導電性、 高い伸長率を得る上での純 度に上限はないが、 製造上の都合から、 9 9. 9 9 9 9 %以上の力 一ボンナノチューブを得ることは困難である。 金属などの不純物を 含んで炭素純度が 9 0 %に満たないと、 金属不純物が製造プロセス 中に凝集し、 カーボンナノチューブゴム組成物が脆くなるため、 高 導電性、 高い伸長率を得ることが困難となる。 これらの点から、 力 一ボンナノチューブの純度は 9 0 %以上であることが好ましい。 In addition, carbon nanotubes are vertically aligned from a substrate by using the method described in Japanese Patent Application No. 2 0 6 5 2 5 8 9 4 4 (corresponding to WO 2 0 6 0 6 0 1 5 5 5 5 5 6 5 6 5 6 5 6 5 6 9 8 When the aggregate is peeled from the growth substrate, the height of the aligned carbon nanotube aligned aggregate can be the length of the carbon nanotube. That is, a carbon nanotube oriented aggregate having a height of 1 m or more and 10 cm or less is preferable in order to obtain high conductivity and high elongation. In order to obtain high conductivity and high elongation, it is desirable that carbon nanotubes be as pure as possible. The term "purity" as used herein is carbon purity, and indicates what percentage of the mass of carbon nanotubes consists of carbon. There is no upper limit to the purity to obtain high conductivity and high elongation rate, but it is difficult to obtain carbon nanotubes of 99.9999% or more due to manufacturing convenience. If the carbon purity is less than 90%, including impurities such as metals, the metal impurities will agglomerate during the manufacturing process and the carbon nanotube rubber composition becomes brittle, making it difficult to obtain high conductivity and high elongation. It becomes. From these points, it is preferable that the purity of carbon nanotube is 90% or more.
カーボンナノチューブの純度は、 蛍光 X線を用いた元素分析結果 より得られる。 後述の実施例 1で用いた単層カーボンナノチューブ を蛍光 X線によって元素分析したところ、 炭素が 9 9. 9 8 %、 鉄 が 0. 0 1 3 %であり、 その他の元素は計測されなかった。  The purity of carbon nanotubes can be obtained by elemental analysis using fluorescent X-rays. Elemental analysis of the single-walled carbon nanotube used in Example 1 later described by fluorescence X-ray analysis revealed that it was 9 9. 9 8% in carbon, 0. 0 13% in iron, and other elements were not measured. .
さらには、 高導電性、 高い伸長率を得るためには、 カーボンナノ チューブが可能な限り高比表面積であることが望ましい。 これは、 高比表面積のカーボンナノチューブは、 表面が多いため、 イオン性 液体とゴムとの界面が多くなり相互作用しやすいためである。 また 、 高比表面積の力一ボンナノチューブは、 カーボンナノチューブ以 外の炭素不純物、 金属等の炭素以外の不純物の含有が少なく、 上記 した理由で好適である。 比表面積が 6 0 0 m2 / gに満たない単層 カーボンナノチューブは、 金属などの不純物もしくは炭素不純物を 重量の数十パーセント ( 4 0 %程度) 含んでおり、 単層力一ポンナ ノチューブ本来の機能を発現することができず、 不適である。 Furthermore, in order to obtain high conductivity and high elongation rate, it is desirable that carbon nanotubes have as high specific surface area as possible. This is because carbon nanotubes having a high specific surface area have many surfaces, so the interface between the ionic liquid and the rubber is large and they are likely to interact. In addition, carbon nanotubes with high specific surface area contain less carbon impurities other than carbon nanotubes and impurities other than carbon such as metals, and are preferable for the reasons described above. Single-walled carbon nanotubes whose specific surface area is less than 600 m 2 / g contain several tens percent (about 40%) of impurities such as metals or carbon impurities, Can not express the function of
単層カーボンナノチューブの比表面積は、 一般的には大きければ 大きいほど好ましいが、 理論的に上限があり、 未開口のものは 1 3 0 0 m2 Z g程度であり、 開口したものは 2 6 0 0 m2 / g程度で ある。 Generally, the larger the specific surface area of single-walled carbon nanotubes, the better, but there is a theoretical upper limit; unopened ones are about 1 300 m 2 Z g and open ones are 2 6 At around 0 0 m 2 / g is there.
単層カーボンナノチューブの比表面積は、 液体窒素の 7 7 Kでの 吸脱着等温線の計測によって求めることができる。 その一例として 、 単層 CNT配向集合体 3 0mgについて、 B E L S ORP—M I N I (株式会社日本ベル製) を用いて計測した吸脱着等温曲線から 求めることができる (吸着平衡時間は 6 0 0秒とした) 。 本発明で 用いた、 単層カーボンナノチューブの吸脱着等温曲線から Brunauer , EmmeU, Tellerの方法で比表面積を計測したところ、 1 1 0 0m2 Z gであった。 なお、 開口処理温度を 3 5 0 °Cから 6 0 0 °Cに変化 させることにより、 1 0 0 Om2 /g〜 2 3 0 0 m 2 Zgの範囲で 単層力一ボンナノチューブの比表面積を変化させることができ、 か かる単層カーボンナノチューブは高導電性及び高い伸長率を兼ね備 える本発明のカーボンナノチューブゴム組成物を実現するのに好適 である。 The specific surface area of single-walled carbon nanotubes can be determined by measuring the adsorption / desorption isotherm at 77 K of liquid nitrogen. As an example, it can be determined from adsorption / desorption isothermal curves measured using BELS ORP-MINI (made by Nippon Bell Co., Ltd.) for 30 mg of single-walled CNT aggregate (adsorption equilibrium time was set to 600 seconds) ). When the specific surface area was measured by the method of Brunauer, EmmeU, Teller from the adsorption-desorption isotherm of the single-walled carbon nanotube used in the present invention, it was 110 m 2 Z g. The specific surface area of single-walled single-walled nanotubes in the range of 1000 Om 2 / g to 230 m 2 Zg can be obtained by changing the opening treatment temperature from 350 ° C. to 600 ° C. Such single-walled carbon nanotubes are suitable for realizing the carbon nanotube rubber composition of the present invention having both high conductivity and high elongation rate.
本発明のカーボンナノチューブゴム組成物、 カーボンナノチュ一 ブゴム、 力一ボンナノチューブペース ト、 配線、 導電性べ一ス トに 有用なイオン性液体としては、 特に制限はないが、 カーボンナノチ ユ ーブと親和性が高く、 分散処理をした際にゲル状となるものが好 ましく、 例えば、 1—ェチルー 3—メチルイミダゾリゥム テトラ フルォロポレート (EM I B F4 ) 、 1—ェチル— 3—メチルイミ ダゾリゥム へキサフルォロホスフェート (EM I P F 6 ) 、 1— ェチルー 3—メチルイミダゾリゥム ビス (トリフルォロメチルス ルホニル) イミ ド (EM I T F S I ) 、 1一ブチル— 3—メチルイ ミダゾリゥム テトラフルォロボレ一卜 (BM I B F4 ) 、 1ーブ チルー 3—メチルイミダゾリゥム へキサフルォロホスフェート ( B I P F 6 ) 、 1一プチルー 3—メチルイミダゾリウム ビス ( トリフルォロメチルスルホニル) イミ ド (BM I T F S I ) を挙げ ることができる。 The ionic liquid useful for the carbon nanotube rubber composition, carbon nanotube rubber, carbon nanotube paste, wiring and conductive belt of the present invention is not particularly limited, but carbon nanotube may be used. It is preferable to have high affinity to the gel and to become gel-like after dispersion treatment, for example, 1-ethyl 3-methylimidazolium tetrafluoroporate (EM IBF 4 ), 1-ethyl-3-methylimidazole Xaflurophosphate (EM IPF 6 ), 1-ethyl 3-methylimidazolium bis (trifluoromethylsulfonyl) imide (EM ITFSI), 1-butyl-3-methylimidazole tetrafluorinated卜 (BM IBF 4 ), 1-butyl 3-methylimidazolium hexafluorophosphate (BIPF 6 ), 1 1-ptyru 3-methyl-i Named midazolium bis (trifluoromethylsulfonyl) imide (BM ITFSI) Can be
イオン性液体の効果は、 伸長性と導電性の著しい向上に寄与する The effect of ionic liquids contributes to a significant improvement in extensibility and conductivity
。 イオン性液体の含有量が 0質量%を超え 4 0質量%以下の場合 伸長性と導電性を兼ね備えるカーボンナノチューブ組成物を製造す ることができた。 . When the content of the ionic liquid is more than 0% by mass and 40% by mass or less, a carbon nanotube composition having both extensibility and conductivity can be manufactured.
本発明のカーボンナノチューブゴム組成物 カーボンナノチュ プゴム、 カーボンナノチューブペース ト 配線 、 導電性べ —ス 卜に 有用なゴムとしては、 特に制限がなく、 り広義にはエラス 卜マ ― であればよく、 特に天然ゴムや合成ゴムのような有機高分子を主成 分とする弾性材料すなわち弾性ゴムが好ましい 。 例えば、 フッ素ゴ ム (例えば、 ダイキン工業社製、 D a i e 1 ― G 8 0 1 D a i e The carbon nanotube rubber composition of the present invention is not particularly limited as a rubber useful for carbon nanotube rubber, carbon nanotube paste wiring, conductive base, and in a broad sense, it may be any elastomer. In particular, an elastic material having an organic polymer such as natural rubber or synthetic rubber as a main component, that is, elastic rubber is preferable. For example, fluorine rubber (for example, Daikin Industries, Ltd., D ai e 1-G 8 0 1 D a i e
1 - G 9 1 2 ) 、 天然ゴム、 プロピレンゴム ブタジエンゴム、 ィ ソプレンゴム、 スチレンブタジエンゴム ク a口プレンァク 'J口ゴ ム、 二トリルブタジエンゴム、 プチルゴム エチレンプロピレンゴ ム、 ウレタンゴム、 シリコーンゴム、 ク 口スチレン化ポリェチレ ンゴム、 塩化ポリエチレンゴム、 ァクリルゴム 、 ェピクロ □ヒ ド V ンゴム、 多硫化ゴム等のいずれのゴムをも用いることがでさる。 れらのうちでは、 取り扱いが容易であり 1 られる組成物に十分な 弾性を与え、 また望ましい特性を阻害しない観点から、 フッ素ゴム およびシリコ ンゴムが好ましい 1-G 9 1 2), natural rubber, propylene rubber, butadiene rubber, isoprene rubber, styrene butadiene rubber, a-port rubber, J-rubber, 2-tolyl butadiene rubber, butyl rubber, ethylene propylene rubber, urethane rubber, silicone rubber, It is possible to use any rubber such as styrenated polyethylene rubber, chlorinated polyethylene rubber, acrylic rubber, epoxy rubber and silicone rubber, and polysulfide rubber. Among them, fluororubbers and silicone rubbers are preferred from the viewpoint of easy handling, sufficient elasticity for the composition to be obtained, and not inhibiting the desired properties.
また、 有機溶剤としては、 かかるゴムを溶解するものでめれ よ く、 用いるゴムによつて適宜に選択して用いることができる。 具体 的にはトルェン キシレン、 ァセ hン、 四塩化炭素等を用いること ができ、 またフッ ゴムおよびシ Uコーンゴムを含む多くのゴムが 可溶であることから 4ーメチルー 2 ペン夕ノンを特に好適に用い ることができる  Further, as the organic solvent, any solvent capable of dissolving such rubber can be used, and it can be appropriately selected and used depending on the rubber to be used. Specifically, 4-methyl-2-pentanone is particularly preferable because toluen xylene, asphalt, carbon tetrachloride and the like can be used, and many rubbers including fluororubber and silicone rubber are soluble. Can be used for
本発明の力 ポンナノチューブゴム組成物、 カーボンナノチュー ブゴム、 カーボンナノチューブペース ト、 配線、 導電性ペーストに おいては、 カーボンナノチューブが組成物内に均一分散されている ほど導電性および伸縮弾性が高くなる。 つまり、 高導電性及び高い 伸長率を兼ね備える本発明の物品を実現するためには、 長く、 純度 が高く、 比表面積が高いカーボンナノチューブを、 その機能を損な わずに、 如何にゴム中に均一分散させるかが肝要となる。 一般的に は、 カーボンナノチューブは非常に溶解性が低い材料で、 ゴム材料 との親和性は低く、 ゴム中に分散しない。 そのために、 カーボンナ ノチューブが均一分散しており、 そのために高導電性及び高い伸長 率を兼ね備える、 本発明の物品の実現は著しく困難だった。 本発明 者は鋭意工夫を重ね、 カーボンナノチューブとゴムの分散性を高め るために、 イオン性液体を用いると好適であることを見出した。 特開 2 0 0 5— 1 7 6 4 2 8号公報に記述されているように、 力 —ボンナノチューブとイオン性液体は親和性が高く、 力一ポンナ入 チューブをイオン性液体中に分散処理することで、 ゲル状になる。 このカーボンナノチューブイオン性液体ゲルが形成される詳しい機 構は現時点では不明であるが、 イオン性液体が一本一本のカーボン ナノチューブに吸着し、 カーボンナノチューブ同士をくつつけてい るファンデルワールス力を弱めていると考えらる。 その結果、 通常 容易にバンドル化するカーボンナノチューブが、 イオン性液体中で 分散し、 ゲル状組成物を形成する。 いわば、 力一ボンナノチューブ の分散剤としてイオン性液体が機能すると考えられる。 Force of the present invention, carbon nanotube rubber composition, carbon nanotube In rubber, carbon nanotube paste, wiring, and conductive paste, the more uniformly carbon nanotubes are dispersed in the composition, the higher the conductivity and the stretch elasticity. That is, in order to realize the article of the present invention having both high conductivity and high elongation rate, carbon nanotubes which are long, high in purity and high in specific surface area can be incorporated into rubber without impairing their functions. It is important to have uniform dispersion. In general, carbon nanotubes are materials with very low solubility, low affinity with rubber materials, and do not disperse in rubber. For this reason, it has been extremely difficult to realize the article of the present invention in which the carbon nanotubes are uniformly dispersed, and therefore both the high conductivity and the high elongation rate are combined. The inventor of the present invention has made extensive efforts and found that it is preferable to use an ionic liquid in order to enhance the dispersibility of carbon nanotubes and rubber. As described in Japanese Patent Application Laid-Open No. 200-15764, the force-carbon nanotube and the ionic liquid have a high affinity, and the force-containing tube is dispersed in the ionic liquid. It becomes gel-like by doing. Although the detailed mechanism by which this carbon nanotube ionic liquid gel is formed is unknown at present, the ionic liquid is adsorbed to each carbon nanotube and the van der Waals force that bonds the carbon nanotubes is I think that it is weakening. As a result, the carbon nanotubes, which are usually easily bundled, disperse in the ionic liquid to form a gel-like composition. So to speak, it is believed that ionic liquids function as dispersants for carbon nanotube.
本発明においては、 発明者は、 イオン性液体と混和性を有するゴ ムを用いると、 上記カーボンナノチューブイオン性液体ゲル中にゴ ムを均一に分散できることを見いだし、 本発明の高導電性、 高い伸 長率を兼ね備える力一ボンナノチューブゴム組成物を実現した。 混 和により、 カーボンナノチューブゴム組成物が形成される詳しい機 構は現時点では不明であるが、 カーボンナノチューブに吸着したィ オン性液体が、 ゴムと親和性を持ち混和することで、 カーボンナノ チューブをゴム中に溶け込むことを可能にし、 通常ではゴム中に分 散が困難なカーボンナノチューブがゴム中に均一分散するものと考 えられる。 In the present invention, the inventor has found that, by using a polymer miscible with the ionic liquid, the rubber can be uniformly dispersed in the carbon nanotube ionic liquid gel, and the high conductivity of the present invention, high We have realized a carbon nanotube rubber composition that also has an elongation rate. Detailed machine where carbon nanotube rubber composition is formed by mixing Although the composition is unknown at present, the ionic liquid adsorbed to the carbon nanotube has an affinity to the rubber and mixes it, which makes it possible to dissolve the carbon nanotube in the rubber, usually in the rubber Carbon nanotubes that are difficult to disperse are considered to be uniformly dispersed in rubber.
ここで混和性とは、 イオン性液体と、 ゴムやゴムのポリマー、 必 要に応じて有機溶剤を含む分散溶液が相分離しない程度に混ざり合 う性質を言う。 好ましい混和性の程度に上限はなく、 実質的に、 上 記力一ボンナノチューブ、 ゴムとイオン性液体、 そして必要に応じ て有機溶剤が混ざり合い、 カーボンナノチューブがゴム中に均一に 分散し、 最終的に高導電性、 高い伸長率を兼ね備えるカーボンナノ チューブゴム組成物を製造できる程度であれば良く、 通常イオン性 液体とゴムやゴムのポリマ一、 必要に応じて有機溶剤を含む分散液 が数時間、 より好ましくは数日間相分離しない程度であれば好適で ある。  Here, the term “miscibility” refers to the property that the ionic liquid, the rubber or rubber polymer, and, if necessary, the dispersion solution containing the organic solvent are mixed to such an extent that they do not phase separate. There is no upper limit to the preferred degree of miscibility, and substantially, the above-mentioned carbon nanotube, rubber and ionic liquid, and, if necessary, organic solvent are mixed, carbon nanotube is uniformly dispersed in the rubber, and the final It is sufficient that carbon nanotube rubber compositions having both extremely high conductivity and high elongation rate can be produced, and the number of dispersions containing an ionic liquid, a polymer of rubber or rubber, and, optionally, an organic solvent may be sufficient. It is suitable that the time does not cause phase separation more preferably for several days.
イオン性液体とゴムやゴムのポリマー、 必要に応じて有機溶剤が 相溶性を示すことは、 より良い混和性、 分散性を実現するために好 ましい。 ここで、 相溶性とは、 2種類または多種類の物質が相互に 親和性を有し、 溶液または混和物を形成する性質をいう。  The compatibility of the ionic liquid with the rubber or polymer of the rubber and, if necessary, the organic solvent is preferable for achieving better miscibility and dispersibility. Here, compatibility means the property that two or more kinds of substances have an affinity to each other to form a solution or a mixture.
このように、 イオン性液体と、 混和性、 相溶性を持つ、 ゴムゃゴ ムのポリマーを用いて、 カーボンナノチューブ組成物を製造すると 、 力一ボンナノチューブがゴム中に均一に分散する。 つまり、 力一 ボンナノチューブ、 イオン性液体、 ゴムが均一に分散し、 混和する 本発明のカーボンナノチューブゴム組成物、 カーボンナノチュー ブゴム、 力一ボンナノチューブペース ト、 配線、 導電性ペース トの 製造に際して、 各成分の混合分散にはジェッ トミル、 ポールミル、 超音波分散機等を用いることができ、 カーボンナノチューブを組成 物中により均一に分散させる観点からはジェッ トミルを用いるのが 好ましい。 Thus, when a carbon nanotube composition is produced using a polymer of rubber or rubber which is miscible and compatible with an ionic liquid, carbon nanotubes are uniformly dispersed in the rubber. That is, the carbon nanotube rubber composition of the present invention in which carbon nanotubes, ionic liquid and rubber are uniformly dispersed and mixed, carbon nanotube rubber, carbon nanotube paste, wiring and conductive paste are produced. Jet mill and pole mill for mixing and dispersing each component An ultrasonic dispersing machine or the like can be used, and from the viewpoint of dispersing carbon nanotubes more uniformly in the composition, it is preferable to use a jet mill.
本発明の力一ボンナノチューブゴム組成物、 カーボンナノチュー プゴム、 カーボンナノチューブペース ト、 配線、 導電性ペース トの 製造方法のうち、 特に好ましいプロセスの一例を、 図 7 を参照しな がら、 以下に具体的に説明する。  Among the process for producing the carbon nanotube rubber composition, carbon nanotube rubber, carbon nanotube paste, wiring, and conductive paste of the present invention, an example of a particularly preferable process will be described below with reference to FIG. This will be described specifically.
この方法においては、 先ず、 カーボンナノチューブ、 イオン性液 体、 有機溶剤を混合し、 ス夕一ラー、 ジェッ トミル等を用いて、 分 散させ、 カーボンナノチューブイオン性液体ゲルを得る (工程 S 1 ) 。 カーボンナノチューブイオン性液体ゲルを製造する方法は本手 法に限らず、 特許第 3 6 7 6 3 3 7号公報、 特許第 3 8 8 0 5 6 0 号公報、 特許第 3 9 2 4 2 7 3号公報、 特開 2 0 0 4— 2 5 5 4 8 1号公報、 特開 2 0 0 5 — 1 7 6 4 2 8号公報などに記載のカーボ ンナノチューブイオン性液体ゲルを製造する公知の手法を用いるこ とができる。  In this method, first, carbon nanotubes, an ionic liquid, and an organic solvent are mixed and dispersed using a stirrer, jet mill or the like to obtain a carbon nanotube ionic liquid gel (step S 1). . The method of producing the carbon nanotube ionic liquid gel is not limited to the present method, and the patent 367 367, the patent 3 8 8 5 6 0, the patent 3 9 2 4 2 7 A known method for producing a carbon nanotube ionic liquid gel as described in JP-A-3, JP-A-2005-25054, JP-A-2008-17664-28, etc. The following method can be used.
次に、 得られたカーボンナノチューブイオン性液体ゲル、 ゴム、 及び必要により有機溶剤を混合して分散させ、 本発明のカーボンナ ノチューブゴムペース トを得る (工程 S 2 ) 。 分散プロセスの前、 途中、 後などに適宜、 有機溶剤を追加したり、 分散プロセスの前、 途中、 後などに適宜、 有機溶剤を蒸発等で一部除去して、 力一ボン ナノチューブゴムペース トの粘度を調整することができる。  Next, the obtained carbon nanotube ionic liquid gel, rubber, and, if necessary, an organic solvent are mixed and dispersed to obtain a carbon nanotube tube rubber paste of the present invention (step S 2). An organic solvent is added as appropriate before, during, or after the dispersion process, or the organic solvent is partially removed by evaporation, etc. before, during, or after the dispersion process to obtain a carbon nanotube rubber paste. The viscosity of can be adjusted.
本発明の導電性ペース トの一例は、 適切な粘度、 導電性、 及び伸 長性を持つカーボンナノチューブゴムペース トを含有するものであ る。  An example of the conductive paste of the present invention is one containing a carbon nanotube rubber paste having an appropriate viscosity, conductivity and elongation.
次に、 所望の形状のカーボンナノチューブゴムを得るために、 力 一ボンナノチューブゴムペース トを必要に応じて成型加工してもよ い (工程 S 3 ) 。 成型加工は、 流動性のあるペース 卜状の物を成型 加工する公知の手法を用いることができ、 塗布、 印刷、 押し出し、 キャス ト、 射出等を例示できる。 Next, a carbon nanotube rubber paste may be molded as required to obtain a carbon nanotube rubber of a desired shape. (Step S 3). As the molding process, a known method of molding and processing a flowable paced rod-shaped article can be used, and examples thereof include coating, printing, extrusion, casting, and injection.
最後に、 カーボンナノチューブゴムペース トを乾燥、 加熱、 真空 引き等の手段を用いて、 全部、 もしくは一部の有機溶媒を除去し、 固化することにより、 本発明の導電性カーボンナノチューブゴムを 得る (工程 S 4 ) 。 固化後、 得られたカーボンナノチューブゴムを 機械加工して所定の形状を有する導電性カーボンナノチューブゴム を形成することもできる。  Finally, the carbon nanotube rubber paste is dried, heated, evacuated or the like to remove all or part of the organic solvent, and solidified to obtain the conductive carbon nanotube rubber of the present invention ( Process S 4). After solidification, the obtained carbon nanotube rubber can be machined to form a conductive carbon nanotube rubber having a predetermined shape.
さらには、 必要に応じて、 力一ボンナノチューブ、 イオン性液体 、 ゴムを含むカーボンナノチューブゴム組成物、 カーボンナノチュ ーブゴムペース 卜、 カーボンナノチューブゴムから、 ソックスレ一 法などを用いて、 イオン性液体を除去し、 カーボンナノチューブ、 ゴムから成るカーボンナノチューブゴムを製造しても良い (工程 S 5 ) 。 イオン性液体を除去したカーボンナノチューブゴムの導電性 は、 イオン性液体を含む場合と比較して低下するものの、 回収され たイオン性液体は再利用でき、 製造コス トの大幅な低減が可能とな る。  Furthermore, if necessary, the carbon nanotube rubber composition containing carbon nanotubes, ionic liquid, rubber, carbon nanotube rubber paste, carbon nanotube rubber, the ionic liquid is removed using the Soxhlet method etc. Alternatively, carbon nanotube rubber comprising carbon nanotubes and rubber may be manufactured (step S 5). The conductivity of the carbon nanotube rubber from which the ionic liquid has been removed is reduced compared to the case where the ionic liquid is contained, but the recovered ionic liquid can be reused, and the production cost can be significantly reduced. Ru.
本発明の導電性ペース 卜の一例は、 適切な導電性、 及び伸長性を 持つカーボンナノチューブゴムペース トを含有するものである。 本発明の、 カーボンナノチューブゴム組成物、 カーボンナノチュ ーブゴムべ一ス ト、 カーボンナノチューブゴムを得るための製造プ 口セスゃ手順は上記の例に限定されるものではなく、 適宜必要に応 じて、 一部工程を省略したり、 順序を変更しても良い。 例えば、 ェ 程 S 3の成型加工を省略し、 工程 S 4の後に成型加工してもよい。 また必要に応じて、 適切な工程において、 適宜架橋剤や架橋開始剤 等を添加してもよい。 さらには、 カーボンナノチューブゴム組成物の製造方法するため の工程 S l、 工程 S 2で用いられる分散手法は上記に限定されず、 力一ボンナノチューブ、 イオン性液体、 ゴムを均一に分散できる方 法であれば公知のカーボンナノチューブの分散手法を適宜使用でき る。 An example of the conductive paste of the present invention is one containing a carbon nanotube rubber paste having appropriate conductivity and extensibility. The preparation procedure for obtaining the carbon nanotube rubber composition, the carbon nanotube rubber tube, and the carbon nanotube rubber according to the present invention is not limited to the above-mentioned example, and may be appropriately selected as needed. , Some steps may be omitted, or the order may be changed. For example, the forming process of step S3 may be omitted, and the forming process may be performed after step S4. If necessary, a crosslinking agent, a crosslinking initiator, etc. may be added as appropriate in an appropriate step. Furthermore, the dispersion method used in step S1 and step S2 for producing the carbon nanotube rubber composition is not limited to the above, and a method capable of uniformly dispersing carbon nanotubes, ionic liquid and rubber. If it is, well-known carbon nanotube dispersion method can be used suitably.
実施例 1  Example 1
以下に具体的な実施例を挙げて、 本発明に係るカーボンナノチュ ーブゴム組成物、 力一ポンナノチューブゴムペース ト、 カーボンナ ノチューブゴム、 配線、 導電性ペース トについてより詳細に説明す る。  Hereinafter, the carbon nanotube rubber composition, carbon nanotube rubber paste, carbon nanotube rubber, wiring, and conductive paste according to the present invention will be described in more detail by way of specific examples.
カーボンナノチューブとして、 特願 2 0 0 9 - 0 0 1 5 8 6、 特 願 2 0 0 6 - 5 2 7 8 9 4に記載の方法などを用いて基板から垂直 配向した成長させた、 カーボンナノチューブ配向集令体を成長基板 から剥離した、 粉体状の単層カーボンナノチューブ (以下 SWN T ) を用いた。 カーボンナノチューブは、 密度 : 0. 0 3 g / c m3 、 B E T—比表面積 : 1 2 0 0 m2 / g、 平均外径 : 2. 5 n m、 半値幅 2 n m、 炭素純度 9 9. 9 %、 ヘルマンの配向係数 0. 8、 長さ 3 0 0 m以上 8 0 0 以下の特性を持つ。 A carbon nanotube vertically grown from a substrate by using the method described in Japanese Patent Application No. 2 0 0 0 0 0 5 5 6 3 and Patent No. 2 0 0 6 5 2 7 8 9 4 as a carbon nanotube, A powdery single-walled carbon nanotube (hereinafter SWN T) in which the oriented aggregate was peeled from the growth substrate was used. The carbon nanotube has a density of 0.03 g / cm 3 , a BET specific surface area of 120 m 2 / g, an outer diameter of 2.5 nm, a half width of 2 nm, and a carbon purity of 99.9% Hermann's orientation coefficient of 0.8, length of 3 0 0 0 m or more and 8 0 0 or less.
有機溶剤 4ーメチルー 2 —ペン夕ノン (典型量 2 0 m l ) に SW NT (典型量 3 0 m g) およびイオン性液体 BM I T F S I (典型 量 6 0 m g) を添加し、 ス夕一ラーを用い、 7 0 0 r p mを超える 回転数の条件下に、 室温で 1 6時間攪拌し、 得られた混合物をジェ ッ トミル分散機 (NANO-JET PAL, JN 1 0 , J OKOH株式会社) に 入れ、 6 0 M P aでジェッ トし、 カーボンナノチューブを有機溶剤 中に均一分散させて、 カーボンナノチューブイオン液体ゲルを得る (工程 S 1 ) 。  Organic solvent 4-methyl-2-pentanone (typical amount 20 ml) to which SW NT (typical amount 30 mg) and ionic liquid BM ITFSI (typical amount 60 mg) were added, using a stirrer, The mixture is stirred at room temperature for 16 hours under conditions of rotation speed exceeding 700 rpm, and the resulting mixture is put into a jet mill disperser (NANO-JET PAL, JN 10, J OKOH Co., Ltd.), 6 Jet with 0 MP a and uniformly disperse carbon nanotubes in an organic solvent to obtain a carbon nanotube ionic liquid gel (Step S 1).
次に、 このカーボンナノチューブイオン性液体ゲルに有機溶剤 4 -メチル一 2—ペンタノン (典型量 8 0 m 〗 ) とイオン性液体との 混和性、 相溶性を有するフッ素ゴム (ダイキン工業社製 D a i e 1 - G 9 1 2 ) (典型量 5 0— 1 5 0 O m g) を添加し、 ス夕一ラ一 を用い、 約 3 0 0 r pmの条件下に、 室温で 1 6時間攪拌して、 図 3に示すようなカーボンナノチューブゴムペース トを得る (工程 S 2 ) 。 Next, this carbon nanotube ionic liquid gel is treated with an organic solvent 4 -Methyl mono-pentanone (typical amount 80 m)) miscible with ionic liquid, compatible fluoro rubber (D ai-kin Industries D aie 1-G 9 12) (typical amount 5 0-1 50 O mg) is added, and the mixture is stirred at room temperature for 16 hours under the condition of about 300 rpm using a stirrer to obtain a carbon nanotube rubber paste as shown in FIG. (Step S 2).
このカーボンナノチューブ ゴム分散ゲルを室温で 1 2時間乾燥 することにより、 図 8に示す力一ボンナノチューブゴムを得る (ェ 程 S 4 ) 。 このカーボンナノチューブゴムの組成は S WN T 2 1 重量%、 B M I T F S I 4 3重量%、 G 9 1 2 3 6重量%であ り、 導電性は 7 3 S Z c mを示した。  The carbon nanotube-rubber dispersion gel is dried at room temperature for 12 hours to obtain a carbon nanotube rubber shown in FIG. 8 (step S 4). The composition of this carbon nanotube rubber was 1 wt% of S WN T 2, 3 wt% of B M IT F S I 4, and 6 wt% of G 9 1 2 36 5. The conductivity showed 7 3 S Z cm.
あるいは、 工程 S 2で得られる、 カーボンナノチューブゴムべ一 ス トを室温で 6時間乾燥し、 4一メチル— 2—ペン夕ノンの一部を 蒸散させて、 粘度を調整した後、 シリコーンエラス トマ一基板 (P DM S、 3 1 & ]: & (1 1 8 4、 00 ー( 0 ]" ] 1 11 株式会 社) 上に所望のパターンに印刷した (工程 S 3 ) 。 ここで、 スクリ ーン印刷や型抜き印刷等を用いる場合には粘度を 1 P a s程度に調 整し、 ディスペンサーやインクジェッ ト印刷の場合には粘度を 1 0 m P a s程度とするのが好ましい。  Alternatively, the carbon nanotube rubber foam obtained in step S2 is dried at room temperature for 6 hours, and part of 4-methyl-2-pentaninone is evaporated to adjust the viscosity, and then the silicone elastomer is removed. The desired pattern was printed on one substrate (PDM S, 3 1 &]: & (1 84, 00-(0) "] 1 11 stock company) (step S3). It is preferable to adjust the viscosity to about 1 Pas in the case of using the frame printing, the die-off printing, etc., and to set the viscosity to about 10 m Pas in the case of the dispenser or the ink jet printing.
この P D M S基板上に印刷されたカーボンナノチューブゴムぺー ス トをさらに乾燥させて、 図 9 に示す幅 1 0 0 mの線幅にパター ンされた P DM S基板上のカーボンナノチューブゴムからなる配線 を得た (工程 S 4 ) 。 図 1 0はかかる P DM S基板上の力一ポンナ ノチューブゴムからなる配線を曲げた図である。 配線が破線せず、 カーボンナノチューブゴムからなる配線が伸長性をもっていること がわかる。 かかる力一ボンナノチューブゴムは本発明の伸縮性配線 の一例である。 図 1 1は図 9のパターンされた力一ポンナノチュー ブゴムの一部を拡大した走査電子顕微鏡の画像である。 ゴムがィォ ン性液体との混和性、 相溶性を有するために、 ゴム (白い構造体) 中にカーボンナノチューブ (黒い構造体) が均一分散している、 つ まりゴムとイオン性液体とカーボンナノチューブが混和しているこ とが分かる。 図 9、 1 0において、 1 0はカーボンナノチューブゴ ムによる伸縮性配線、 1 1は基板である。 The carbon nanotube rubber paste printed on the PDMS substrate is further dried to form a wiring composed of carbon nanotube rubber on the PDM S substrate patterned to a line width of 100 m shown in FIG. Obtained (step S 4). Fig. 10 is a view showing a bent Pon Nano tube rubber wire on such a PDM substrate. It is understood that the wiring made of carbon nanotube rubber has extensibility, without the wiring being broken. Such a carbon nanotube rubber is an example of the stretchable wiring of the present invention. Figure 1 1 shows the patterned force on Figure 9 It is the image of the scanning electron microscope which expanded a part of blobs. Since the rubber is miscible and compatible with the ionic liquid, carbon nanotubes (black structure) are uniformly dispersed in the rubber (white structure), ie, rubber, ionic liquid and carbon It can be seen that the nanotubes are mixed. In FIGS. 9 and 10, 10 is an elastic wiring made of carbon nanotube rubber, and 11 is a substrate.
上記のようにして得られるカーボンナノチューブゴムからなる伸 縮性配線において、 S WNT含有量 1. 4質量%から 1 5. 8質量 %まで変えて得られたカーボンナノチューブゴムについて、 導電率 、 伸長率を測定した。 SWNTと BM I T F S I の質量比は 1 : 2 であった。 S WNT含有量を大幅に変化させたにも関わらず、 高い 導電性と伸長性率を示す、 良好なカーボンナノチューブゴムからな る配線の製造が可能であった。  Regarding the carbon nanotube rubber obtained by changing the SWNT content from 1. 4 mass% to 15. 8 mass% in the expandable wiring composed of the carbon nanotube rubber obtained as described above, the conductivity and elongation rate Was measured. The mass ratio of SWNT to BM I T F S I was 1: 2. Despite significant changes in SWNT content, it was possible to produce a good carbon nanotube rubber wire that exhibits high conductivity and extensibility.
このときの SWNT含有率と導電率および伸長率との関係を図 1 2 Aおよび Bに示す。 図 1 2 Aからわかるように、 導電率と伸長率 は、 SWNT含有率に対して、 相反する関係にある。 上記のように して得られるカーボンナノチューブゴムからなる配線は、 1 S / c mから 1 0 2 S Z c mまでの導電率と、 2 9 %から 1 2 9 %までの 伸長率を示すことが確認された。  The relationship between the SWNT content and the conductivity and elongation at this time is shown in FIGS. 12A and 12B. As can be seen from Fig. 12 A, conductivity and elongation are in a contradictory relationship with SWNT content. The wire made of carbon nanotube rubber obtained as described above was confirmed to exhibit conductivity of 1 S / cm to 10 2 SZ cm and elongation rate of 2 9 to 1 2 9%. The
この結果は、 力一ボンナノチューブの含有量を制御することで、 カーボンナノチューブ組成物、 カーボンナノチューブゴム、 配線の 導電性、 伸長率を連続的に制御することが可能なことを示す。 また 、 本実施例の製造法方法では、 力一ボンナノチューブの含有量が 1 . 4質量%から 1 5. 8質量%までの範囲は高導電性、 高い伸長率 を実現するのに好適であることを示している。  The results show that by controlling the content of carbon nanotube, it is possible to control continuously the conductivity and elongation rate of carbon nanotube composition, carbon nanotube rubber and wiring. Moreover, in the manufacturing method of the present embodiment, the range of the content of carbon nanotube from 1.4 mass% to 15.58 mass% is suitable for achieving high conductivity and high elongation rate. It is shown that.
さらに、 図 1 2 Bから、 このカーボンナノチューブゴムからなる 配線は、 伸縮させても導電率が変化せず、 伸縮性配線として好適で あることがわかる。 Further, from FIG. 12 B, the wiring made of this carbon nanotube rubber does not change its conductivity even when it is expanded and contracted, and is suitable as an elastic wiring. I understand that there is.
上記のプロセスにおいて、 伸縮率をさらに高めるためにフッ素ゴ ム (D a i e l — G 9 1 2 ) に代えて、 シリコーンゴム (ダウコ一 ニング社製 S y 1 g a r d l 8 4または S H 9 5 5 5 ) を用いて、 カーボンナノチューブ組成物、 力一ボンナノチューブゴム、 配線を 製造し評価したところ、 伸縮率は 1 5 0 %を超えることが認められ た。 この結果は、 様々なゴムから高導電性、 高い伸長率を持つ力一 ボンナノチューブ組成物、 カーボンナノチューブゴム、 配線が製造 できることを示している。  In the above process, silicone rubber (Sy 1 gard 84 or SH 9 5 5 made by Dow Corning Co., Ltd.) is used in place of fluorine rubber (D aiel — G 9 1 2) to further enhance the expansion ratio. When the carbon nanotube composition, carbon nanotube rubber, and wiring were manufactured and evaluated using them, it was found that the expansion ratio exceeded 150%. This result indicates that a carbon nanotube composition, carbon nanotube rubber, and wiring having high conductivity and high elongation can be manufactured from various rubbers.
本発明のカーボンナノチューブゴム組成物を製造するために必要 なイオン性液体と、 ゴムの混和性について調べた。 イオン性液体と しては、 B M I T F S I、 E M I B F 4 B M I B F 4 、 ゴムとし ては、 G 8 0 1、 G 9 1 2、 Kynerを用いた。 各々のゴムポリマー 3 0 O m gと各々のイオン性液体 3 0 O m gを 1 O m l の 2—メチ ルー 2—ペン夕ノンに混ぜ、 得られた溶液を室温で 12時間スターラ 一を用いて攪拌した。 その後、 分散液を 3 日間放置し、 その後観察 した。 図 1 3に示すように、 9種類の組み合わせのうち、 5種類で イオン性液体とゴムポリマーの相分離が観察された。 この 5種類の イオン性液体とゴムポリマーの組み合わせでは、 高導電性を持ち、 かつ高い伸長率を持つカーボンナノチューブ組成物、 カーボンナノ チューブゴム、 配線を製造できず、 製造した物は脆弱だったり、 膜 状に成型加工できなかった。 対して、 イオン性液体とゴムが混和し て相分離しなかつた、 4種類のイオン性液体とゴムポリマーの組み 合わせでは、 高導電性を持ち、 かつ高い伸長率を持つカーボンナノ チューブ組成物、 カーボンナノチューブゴム、 配線の製造が可能で あった。 この結果は、 様々なゴムとイオン性液体の組み合わせから 高導電性、 高い伸長率を持つカーボンナノチューブ組成物、 カーボ 5 ンナノチューブゴム、 配線が製造できることを示している。 さらに は、 高導電性を持ち、 かつ高い伸長率を持つカーボンナノチューブ 組成物、 カーボンナノチューブゴム、 配線の実現のためには、 ィォ ン性液体とゴムの混和性が大事であることを示している。 The miscibility between the ionic liquid and the rubber necessary for producing the carbon nanotube rubber composition of the present invention was investigated. As the ionic liquid, BMITFSI and EMIBF 4 BMIBF 4 were used, and as the rubber, G801, G921 and Kyner were used. Each rubber polymer (300 mg) and each ionic liquid (300 mg) are mixed with 1 ml of 2 ml of 2-methyl 2-pentanone, and the resulting solution is stirred using a stirrer at room temperature for 12 hours. did. Thereafter, the dispersion was allowed to stand for 3 days and then observed. As shown in Fig. 13, phase separation of the ionic liquid and the rubber polymer was observed in 5 of the 9 combinations. The combination of these five types of ionic liquids and rubber polymers can not produce carbon nanotube compositions with high conductivity and high elongation, carbon nanotube rubber, and wiring, and the manufactured products are fragile. It could not be molded into a film. On the other hand, in the combination of four kinds of ionic liquid and rubber polymer in which the ionic liquid and the rubber are not mixed and the phases are separated, carbon nanotube composition having high conductivity and high elongation rate, Production of carbon nanotube rubber and wiring was possible. The results are as follows: carbon nanotube composition with high conductivity and high elongation ratio from various rubber and ionic liquid combinations; It shows that it is possible to manufacture 5-carbon nanotube rubber and wiring. Furthermore, to realize carbon nanotube compositions with high conductivity and high elongation, carbon nanotube rubber, and wiring, it is shown that the compatibility between the ionic liquid and the rubber is important. There is.
上記の製造法によるカーボンナノチューブゴム組成物、 カーボン ナノチューブゴム、 カーボンナノチューブゴムペース ト、 伸縮性配 線の S WNT、 B M I T F S I 、 G 9 1 2の組成比を変えて、 導電 率、 伸長率を評価した。 S WN Tと B M I T F S I の含有比を 1 : 2に固定し、 09 1 2の量を 1 0 0 1118にし、 S WN Tを 1 . 4質 量%から 1 5. 8質量%の範囲で変化させた場合の歪一応力特性を 図 1 4に電気特性を図 1 7 に示す。 イオン性液体を除去し、 S WN Tを 1 . 5質量%から 2 3質量%の範囲で変化させた場合の歪一応 力特性を図 1 5に、 電気特性を図 1 7 に示す。 S WN Tと G 9 1 2 の量をそれぞれ 3 O m gと 5 0 O m gにし、 BM I T F S I の含有 量を 0〜 3 1 . 2質量%の範囲で変化させた場合の歪一応力特性を 図 1 6 に示す。  The conductivity and elongation were evaluated by changing the composition ratio of carbon nanotube rubber composition, carbon nanotube rubber, carbon nanotube rubber paste, stretchable wires SWNT, BMITFSI, and G9122 according to the above manufacturing method. . The content ratio of SWTN to BMITFSI is fixed at 1: 2, the amount of 09 12 is set to 100 1118, and SWNT is varied in the range of 1.4 mass% to 18.58 mass%. Fig. 14 shows the strain-stress characteristics and Fig. 17 shows the electrical characteristics. The strain and stress characteristics when the ionic liquid is removed and the SWTN is changed in the range of 1.5 mass% to 23 mass% are shown in FIG. 15, and the electrical characteristics are shown in FIG. The figure shows the strain-one stress characteristics when the amounts of SWTN and G912 are 3 O mg and 50 O mg, respectively, and the BM ITFSI content is changed in the range of 0 to 32 mass%. Shown in 1 6
イオン性液体を含む場合 (図 1 4 ) と含まない場合 (図 1 5 ) を 比較すると、 イオン性液体が伸長性の向上に著しい効果を持つこと がわかる。 図 1 4、 図 1 5は、 イオン性液体を含む、 含まないにか かわらず、 S WN Tが 1 . 4質量%から 2 3質量%の範囲において 、 本実施例の製造法により、 伸長率 1 0 %を超える、 良好なカーボ ンナノチューブゴム組成物、 カーボンナノチューブゴム、 カーボン ナノチューブゴムペース ト、 伸縮性配線を製造することができるこ とを示している。  Comparing the cases with ionic liquid (Fig. 14) and without (Fig. 15), it can be seen that the ionic liquid has a remarkable effect on improving the extensibility. Fig. 14 and Fig. 15 show that the elongation rate according to the manufacturing method of this example is in the range of 1.4 mass% to 23 mass% of SWTN, regardless of including ionic liquid. It has been shown that it is possible to produce good carbon nanotube rubber composition, carbon nanotube rubber, carbon nanotube rubber paste, and stretchable wiring in excess of 10%.
さらには、 図 1 6より、 B M I T F S I の含有量 0〜 2 5. 4質 量%の範囲において、 伸長率 1 0 %を超える、 良好なカーボンナノ チューブゴム組成物、 カーボンナノチューブゴム、 カーボンナノチ ユープゴムペース ト、 伸縮性配線を製造することができることを示 している。 Furthermore, according to FIG. 16, when the content of BMITFSI is in the range of 0 to 24 mass%, the elongation rate is more than 10%, a good carbon nanotube rubber composition, carbon nanotube rubber, carbon nanotitre It shows that rubber rubber paste and elastic wiring can be manufactured.
また、 図 1 7より、 SWN Tが 1. 4質量%から 2 3質量%の範 囲において、 l S/ c mを超える、 良好なカーボンナノチューブゴ ム組成物、 カーボンナノチューブゴム、 カーボンナノチューブゴム ペース ト、 伸縮性配線を製造することができることを示している。 また、 ィオン性液体が導電率の向上に著しい効果を持つことを示し ている。  In addition, according to Fig.17, good carbon nanotube rubber composition, carbon nanotube rubber, carbon nanotube rubber paste exceeding 1 S / cm in the range of 1.4 mass% to 23 mass% of SWN T , It has shown that stretchable wiring can be manufactured. In addition, it is shown that the ionic liquid has a significant effect on the improvement of the conductivity.
実施例 2  Example 2
また本発明に係る、 カーボンナノチューブゴム組成物、 カーボン ナノチューブゴムペース 卜、 カーボンナノチューブゴム、 配線の別 の製造法について以下に説明する。  Further, another method of producing a carbon nanotube rubber composition, a carbon nanotube rubber paste, a carbon nanotube rubber, and a wiring according to the present invention will be described below.
カーボンナノチューブとして、 特願 2 0 0 9 — 0 0 1 5 8 6、 特 願 2 0 0 6 一 5 2 7 8 9 4に記載の方法などを用いて基板から垂直 配向した成長させた、 カーボンナノチューブ配向集合体を成長基板 から剥離した、 粉体状の単層カーボンナノチューブ (以下 SWN T ) を用いた。 力一ボンナノチューブは、 密度 : 0. 0 3 g / c m3 、 B E T—比表面積 : 1 2 0 0 m2 Z g、 平均外径 : 2. 5 n m、 半値幅 2 nm、 炭素純度 9 9. 9 % ヘルマンの配向係数 0. 8、 長さ 3 0 0 以上 8 0 0 m以下の特性を持つ。 Carbon nanotubes vertically grown from a substrate by using the method described in Japanese Patent Application No. 2 0 0 0 0 0 5 5 6 3, Patent application No. 2 0 0 6 1 5 2 7 8 9 4 as carbon nanotubes A powdery single-walled carbon nanotube (hereinafter SWN T) in which the oriented aggregate was peeled from the growth substrate was used. The carbon nanotube has a density of 0.53 g / cm 3 , a BET surface area of 1 200 m 2 Z g, an average outer diameter of 2.5 nm, a half width of 2 nm, and a carbon purity of 9 9. 9% Hermann's orientation coefficient is 0.8, and the length is 3 0 0 to 8 0 0 m.
典型的には、 SWNT ( 5 0 m g ) を 5 O m gのイオン性液体 ( B I T F S I ) と混合し、 得られた懸濁液を 1時間にわたって自 動粉砕システムにかけると、 黒いペース ト状の力一ボンナノチュー ブイオン性液体ゲルが得られた (工程 S 1 ) 。  Typically, SWNT (50 mg) is mixed with 5 O mg of ionic liquid (BITFSI), and the resulting suspension is subjected to an automatic grinding system for 1 hour, resulting in a black pasty force. A single-nanotube ionic liquid gel was obtained (step S 1).
このゲル 1 0 O m gに、 順番に、 2 —メチル— 2 —ペンタノン 8 m l と、 フッ素ゴムであるフッ化ビニリデン一へキサフルォロプロ ピレンコポリマ一 (ダイキン工業社製 D a i e 1 - G 8 0 1、 以下 単に G 8 0 1 と記す) 1 0 0 1118を添加し、 得られた混合物を 2 5 °Cにて 1時間にわたって撹拌し、 3 0でにて 1時間にわたって超音 波処理した ( S M T社製 U H _ 5 0 ) 。 8 0 °Cにて 1時間にわたつ て再び撹拌すると膨張した力一ボンナノチューブゴムペース トが得 られた (工程 S 2 ) 。 This gel 10 O mg, in turn, 8 ml of 2-methyl-2-pentanone and vinylidene fluoride-one hexafluoropropyrene copolymer 1 (Daikin Industries, D aie 1-G 800, less than 2-methyl-2-pentanone, The mixture was stirred at 25 ° C. for 1 hour and sonicated at 30 ° C. for 1 hour (SMT). UH _ 5 0). Stirring again at 80 ° C. for 1 hour gave an expanded carbon nanotube rubber paste (step S 2).
この力一ボンナノチューブゴムペース 卜を、 ドロップキャスティ ングによってガラス板の上に注ぎ (工程 S 3 ) 、 2 4時間かけて風 乾させ、 有機溶媒を除去すると、 図 1 に示すような、 フィルム状の カーボンナノチューブゴムが得られた (工程 S 4 ) 。  Pour this carbon nanotube rubber paste onto a glass plate by drop casting (Step S 3), let it air dry for 24 hours, and remove the organic solvent, as shown in Figure 1, a film The carbon nanotube rubber was obtained (Step S 4).
ソックスレー法を用いてイオン性液体を回収すると用いた 9 9 % のイオンで液体が回収できた (工程 S 5 ) 。 製造されたイオン性液 体を含まないカーボンナノチューブゴムの導電性は 1 0 S Z c mで あり、 伸長性は 1 0 %以上であった。  When the ionic liquid was recovered using the Soxhlet method, it was possible to recover the liquid with 99% of the ions used (step S 5). The conductivity of the produced carbon nanotube rubber containing no ionic liquid was 10 S Z cm, and the elongation was 10% or more.
このフィルム状のカーボンナノチューブゴムは、 可撓性と伸長性 を持っているが、 収縮性はそれほど大きくない。 伸長性と収縮性を 改善するため、 数値制御 (N C) パンチングシステムを用いてフィ ルム状のカーボンナノチューブゴムを機械加工して図 2 に示すよう なネッ ト状構造を形成した後、 ジメチルシロキサンをベースとする シリコーンゴム (P DM S、 ダウコ一ニング社製 S y 1 g a r d 1 8 4または S H 9 5 5 5 ) で覆った。 得られた P DM Sで被覆され たフィルム状のカーボンナノチューブゴムを図 4に示す。  This film-like carbon nanotube rubber has flexibility and extensibility, but the shrinkage is not so great. In order to improve extensibility and shrinkage, a film-like carbon nanotube rubber is machined using a numerical control (NC) punching system to form a net-like structure as shown in FIG. It was covered with a base silicone rubber (PDM S, Dow Corning S y 1 gard 1 84 or SH 9 5 5). The resultant P-DM S-coated film-like carbon nanotube rubber is shown in FIG.
P DM Sで被覆されたフィルム状のカーボンナノチューブゴムは 伸長性と導電性を兼ね備えるため、 伸縮性配線として有用である。 適切な網目状、 線状、 ワイヤ状などに成形加工された、 P DM Sで 被覆されたフィルム状のカーボンナノチューブゴムは本発明の伸縮 性配線の一例である。  A film-like carbon nanotube rubber coated with PDM S is useful as a stretchable wire because it has both extensibility and conductivity. A film-like carbon nanotube rubber coated with P DM S, which has been formed into a suitable network, linear, wire or the like, is an example of the stretchable wiring of the present invention.
上記より得られたフィルム状のカーボンナノチューブゴムと P D M S被覆フィルム状のカーボンナノチュ一ブゴムについて、 引き伸 ばし、 電気的特性と機械的特性を調べた。 図 1 8に、 伸長させたと きの導電率を示す。 比較のため、 炭素粒子を含む市販の導電性ゴム (鬼怒川ゴム工業) についても示してある。 市販の導電性ゴムの伸 長率は 1 5 0 %を超えるが、 導電率は 0. 1 S / c mと低かった ( 曲線 3 ) 。 この導電率は電子回路の配線として用いるには不十分で ある。 対して、 フィルム状のカーボンナノチューブゴムは、 5 7 S Z c mという非常に大きな導電率を示し、 伸長率が 3 8 %以下の時 には導電率と機械的劣化に著しい変化は見られなかった (曲線 1 ) 。 さらに、 P DM S被覆フィルム状のカーボンナノチューブゴムは 、 5 7 S / c mという大きな導電率を示し、 1 3 4 %まで伸長して も、 導電率は少しずつしか減少しなかった (曲線 2〉 。 1 3 4 %© 伸長下でも導電率は 6 S Z c mを示した。 以上の結果は、 本実施例 により製造された力一ボンナノチューブゴムと P DM S被覆フィル ム状のカーボンナノチューブゴムが伸長性と導電性を兼ね備えるこ とを示している。 Film-like carbon nanotube rubber and PD obtained from the above The carbon nanotube rubber in the form of an MS-coated film was stretched, and its electrical and mechanical properties were examined. Figure 18 shows the conductivity when stretched. For comparison, commercial conductive rubber containing carbon particles (Kinugawa Rubber Industry) is also shown. Although the elongation rate of commercially available conductive rubber exceeded 150%, the conductivity was as low as 0.1 S / cm (curve 3). This conductivity is insufficient for use as wiring of electronic circuits. In contrast, the film-like carbon nanotube rubber exhibited a very high conductivity of 5 7 SZ cm, and when the elongation rate was 38% or less, no significant change was observed in the conductivity and mechanical deterioration ( Curve 1). Furthermore, the carbon nanotube rubber coated with PDM S showed a large conductivity of 5 7 S / cm, and even if it was stretched to 134%, the conductivity decreased only gradually (curve 2) The conductivity was 6 SZ cm even under the elongation of 134% © The above results show that the carbon nanotube rubber made of the carbon nanotube rubber and the PDM S coated film-like carbon nanotube rubber manufactured according to the present example elongates. It shows that it has both conductivity and conductivity.
本実施例のカーボンナノチューブゴム組成物、 カーボンナノチュ ーブゴム、 力一ボンナノチューブゴムべ一ス ト、 伸縮性配線を製造 するために必要なイオン性液体と、 ゴムの混和性について調べた。 ゴムポリマーとして、 組成比を 0. 7 8 : 0. 2 2 ( G 8 0 1 ) と 0. 8 8 : 0. 1 2 (A r k e m a社製 KYNAR— F L E X、 以 下単に K Y N A Rと記す) としたフッ化ビニリデン—へキサフルォ 口プロピレンコポリマー、 イオン性液体に関しては、 B M I T F S I に加え、 B M I P F 6 と B M I B F 4 を用いた。 The miscibility of the carbon nanotube rubber composition of this example, the carbon nanotube rubber, the carbon nanotube rubber belt, and the ionic liquid necessary for producing a stretchable wiring was examined. The composition ratios of the rubber polymer were 0.78: 0.22 (G801) and 0.88: 0.12 (AKYMA manufactured by KYNAR-FLEX, hereinafter referred to simply as KYNAR). In addition to BMITFSI, BMIPF 6 and BMIBF 4 were used for vinylidene fluoride-hexafluoro-propylene copolymer and ionic liquids.
互いに混和性、 相溶性を有するゴムポリマ一とィオン性液体の組 み合わせである、 G 8 0 1 と BM I T F S I を使用したとき、 得ら れたフィルム状のカーボンナノチューブゴムは、 非常に滑らかで、 平坦で、 一様であり、 上記したように伸長性と導電性を兼ね備えて いた。 The film-like carbon nanotube rubber obtained is very smooth when using G801 and BM ITFSI, which are combinations of mutually compatible rubber polymer and ionic liquid. It was flat, uniform, and, as mentioned above, had both extensibility and conductivity.
逆に、 混和性、 相溶性を有さない G 8 0 1 と B M I B F 4 との組 み合わせや KYNARと BM I T F S I との組み合わせでは、 良好 な伸長性と導電性を兼ね備えるフィルム状のカーボンナノチューブ ゴムは製造できなかった。 例えば、 硬い樹脂である K Y N A Rは B M I T F S I と混和せず、 この組み合わせで得られたフィルム状の 力一ボンナノチューブゴムは容易に皺を生じたり変形したり した。 この結果は、 高導電性を持ち、 かつ高い伸長率を持つカーボンナノ チューブ組成物、 力一ボンナノチューブゴム、 力一ポンナノチュー ブゴムペース ト、 配線の実現のためには、 イオン性液体とゴムの混 和性、 相溶性が大事であることを示している。  On the contrary, in the combination of G801 and BMIBF 4 which are not miscible and incompatible, and the combination of KYNAR and BM ITFSI, a film-like carbon nanotube rubber having both good extensibility and conductivity is It could not be manufactured. For example, K Y N A R, which is a hard resin, was not miscible with B M I T F S I, and the film-like carbon nanotube rubber obtained by this combination was easily wrinkled or deformed. The result is a carbon nanotube composition with high conductivity and high elongation, carbon nanotube rubber, carbon nanotube rubber paste, and the combination of ionic liquid and rubber to realize wiring. It shows that sex and compatibility are important.
本実施例の製造法により力一ボンナノチューブゴム組成物、 力一 ボンナノチューブゴム、 カーボンナノチューブゴムペース ト、 伸縮 性配線の S WNT、 B M I T F S I 、 G 8 0 1の組成比を変えて、 導電率、 伸長率、 硬さを評価した。  By changing the composition ratio of the carbon nanotube rubber composition, carbon nanotube rubber paste, carbon nanotube rubber paste, elastic wire S WNT, BMITFSI, G 801 according to the manufacturing method of this embodiment, the conductivity, The elongation rate and hardness were evaluated.
はじめに、 SWNTと G 8 0 1の量をそれぞれ 5 0 m gと 1 0 0 mgにし、 B M I T F S I の含有量を 1 2〜 4 7重量%の範囲で変 化させた。 BM I T F S I の含有量が 4 0重量%よりも多いと、 フ イルム状のカーボンナノチューブゴムが製造できなかった。 この含 有量が 1 0質量%未満の時、 カーボンナノチューブゴム脆くなり、 導電率は小さかった。 図 1 9に示すように、 B M I T F S I の含有 量が 1 0質量%以上 4 0質量%以下の場合、 伸長性と導電性を兼ね 備えるカーボンナノチューブゴムを製造することができた。 このよ うにして製造したフィルム状のカーボンナノチューブゴムは、 優れ た電気的特性に加え、 非常に滑らかな表面と優れた機械的特性を示 し、 伸縮性配線に好適に使用できた。 S WNTと B M I T F S I の含有量がいずれも 2 0質量%である ときに最大の導電率 5 7 S / c mが得られた。 このように大きな導 電率が実現されたのは、 SWN Tを 2 0質量%含有しても、 可撓性 または柔軟性が犠牲になることなく、 良好なカーボンナノチューブ ゴムが製造できたからである。 これはイオン性液体とゴムが混和性 、 相溶性を有し、 カーボンナノチューブがゴム中に均一に分散した からである。 つまり、 カーボンナノチューブ、 イオン性液体、 ゴム が均一に分散し、 混和した、 カーボンナノチューブゴムが製造でき たからである。 First, the amounts of SWNT and G801 were 50 mg and 100 mg, respectively, and the content of BMITFSI was changed in the range of 12 to 47% by weight. When the content of BM ITFSI was more than 40% by weight, film-like carbon nanotube rubber could not be produced. When the content was less than 10% by mass, carbon nanotube rubber became brittle and the conductivity was small. As shown in FIG. 19, when the content of BMITFSI was 10% by mass or more and 40% by mass or less, a carbon nanotube rubber having both extensibility and conductivity could be produced. The film-like carbon nanotube rubber produced in this manner exhibited a very smooth surface and excellent mechanical properties in addition to excellent electrical properties, and could be suitably used for stretchable wiring. The maximum conductivity of 57 S / cm was obtained when the contents of SWNT and BMITFSI were both 20% by mass. Such a high conductivity was realized because a good carbon nanotube rubber could be produced without the sacrifice of flexibility or flexibility, even if the content of SWN T was 20% by mass. . This is because the ionic liquid and the rubber are miscible and compatible, and the carbon nanotubes were uniformly dispersed in the rubber. That is, carbon nanotube rubber in which carbon nanotubes, ionic liquid and rubber are uniformly dispersed and mixed can be produced.
以上の結果は、 イオン性液体は、 良好なカーボンナノチューブゴ ム製造にとって好ましいこと、 また伸長性と導電性を向上させる著 しい効果を有することを示している。 さらには、 伸長性と導電性を 兼ね備えるカーボンナノチューブゴム組成物、 カーボンナノチュ一 ブゴム、 力一ボンナノチューブゴムペース ト、 伸縮性配線のために はイオン液体の含有量は 1 0質量%以上 4 0質量%以下が好ましい ことを示している。  The above results indicate that the ionic liquid is preferable for good carbon nanotube rubber production and has a remarkable effect of improving the extensibility and the conductivity. Furthermore, a carbon nanotube rubber composition having both extensibility and conductivity, carbon nanotube rubber, carbon nanotube rubber paste, and an elastic liquid, the content of the ionic liquid is 10% by mass or more. It is indicated that mass% or less is preferable.
次に、 S WNTと BM I T F S I の含有比を 1 : 1 に固定し、 G 8 0 1 の量を 1 0 O mgにし、 S WNTを 1質量%から 4 5質量% の範囲で変化させた。 SWN Tの含有量が 1 0質量%未満の時、 フ イルム状のカーボンナノチューブゴムが製造できなかった。 S W N Tの含有量が 3 0質量%以上の時、 力一ボンナノチューブゴム脆く なり、 導電率は小さかった。 図 2 0 に示すように、 S WN Tの含有 量が 1 0質量%以上 3 0質量%以下の場合、 伸長性と導電性を兼ね 備えるカーボンナノチューブゴムを製造することができた。 このよ うにして製造したフィルム状のカーボンナノチューブゴムは、 優れ た電気的特性に加え、 非常に滑らかな表面と優れた機械的特性を示 し、 伸縮性配線に好適に使用できた。 S WNTの含有量が 1 6質量 %のとき、 導電率は 5 3 S c mと大きくなつた。 この結果は、 本 実施例において、 伸長性と導電性を兼ね備えるカーボンナノチュー ブゴム組成物、 カーボンナノチューブゴム、 力一ボンナノチューブ ゴムペース ト、 伸縮性配線のためには S W N Tの含有量は 1 0質量 %以上 3 0質量%以下が好ましいことを示している。 Next, the content ratio of SWNT and BM ITFSI was fixed at 1: 1, the amount of G801 was 10 O mg, and SWNT was varied in the range of 1 wt% to 45 wt%. When the content of SWN T was less than 10% by mass, film-like carbon nanotube rubber could not be produced. When the SWNT content was 30% by mass or more, the carbon nanotube rubber became brittle and the conductivity was small. As shown in FIG. 20, when the content of SWTN was 10% by mass or more and 30% by mass or less, a carbon nanotube rubber having both extensibility and conductivity could be produced. The film-like carbon nanotube rubber produced in this manner exhibited a very smooth surface and excellent mechanical properties in addition to excellent electrical properties, and could be suitably used for stretchable wiring. The content of S WNT is 16 mass At%, the conductivity increased to 5 3 S cm. The results show that in this example, the carbon nanotube rubber composition having both extensibility and conductivity, carbon nanotube rubber, carbon nanotube rubber paste, and SWNT content of 10% by mass for elastic wiring. It has shown that 30 mass% or less is preferable.
次に、 G 8 0 1の量を 1 0 O m gにし、 S WN Tと B M I T F S I の含有比を 1 : 2から 2 : 1 まで変化させ、 かつ S WN Tと B M Next, the amount of G801 is set to 10 Omg, the content ratio of SWNT and BMITFSI is changed from 1: 2 to 2: 1, and SWTN and B M
1 T F S I の含有量を 3 0 O m gまで変化させた。 図 2 1 に導電率 を、 図 2 2に限界伸長率 (物体が破断する限界の伸長率) を示す S WNTと BM I T F S I の含有比が 1 : 2から 1 : 2の範囲にある 場合、 伸長性と導電性を兼ね備えるカーボンナノチューブゴムを製 造することができた。 この結果は、 本実施例において、 伸長性と導 電性を兼ね備えるカーボンナノチューブゴム組成物、 カーボンナノ チューブゴム、 カーボンナノチューブゴムペース ト、 伸縮性配線の ためには S W N Tと B M I T F S I の含有比が 1 : 2から 2 : 1が 好ましいことを示している。 The content of 1 T F S I was changed to 3 0 O mg. The conductivity is shown in Fig. 2 1 and the limit elongation rate (extension rate at which the object breaks) in Fig. 2 2 when the content ratio of SWNT and BM ITFSI is in the range of 1: 2 to 1: 2 It has been possible to produce carbon nanotube rubber that has both conductivity and conductivity. The results show that in this example, the carbon nanotube rubber composition having both extensibility and conductivity, carbon nanotube rubber, carbon nanotube rubber paste, and a SWNT / BMITFSI content ratio of 1: 1 for stretch wiring. It is shown that 2 to 2: 1 is preferable.
実施例 3  Example 3
また本発明に係る、 カーボンナノチューブゴムペース トを含む導 電性ペース トの製造法について以下に説明する。 実施例 2の工程 S 2で得られた G 8 0 1 を含有するカーボンナノチューブゴムペース トを用い、 G 8 0 1からなるポリマーマトリ ックスを架橋させるこ とにより、 S WN Tをベースとした導電性ペース トを製造した。 す なわち、 G 8 0 1含有カーボンナノチューブゴムペース トに、 下記 の構造を有する、 過酸化物架橋開始剤 (NO F社製ペルへキサン— Further, a method of producing a conductive paste containing carbon nanotube rubber paste according to the present invention will be described below. Conductivity based on SWTN is obtained by crosslinking the polymer matrix consisting of G801 using the carbon nanotube rubber paste containing G801 obtained in step S2 of Example 2. Produced a sex paste. That is, a peroxide crosslinking initiator (NO.F. Perhexane-having the following structure) was used in a carbon nanotube rubber paste containing G 801.
2 5 B) 1. 3 m gと架橋剤 (TA I C) 4 m gを添加し、 得られ た混合物を 8 0 にて 1時間にわたって撹拌した後風乾させると、 一部が架橋したフッ素化ポリマーを含む図 3 に示すような導電性べ 一ス トが得られた。 この導電性ペース トは、 5〜 1 0 S Z c mとレ う大きな導電率と、 大きな接着能力を示した。 そのため、 この導電 性ペース トはコン夕ク トパッ ドゃワイヤなどの用途に好適で、 基板 に設けられた有機トランジス夕などの電子部品と本発明による伸縮 性配線を電気的に接続するのに好適である。 25 B) 1. 3 mg and 4 mg of a crosslinker (TA IC) are added, and the resulting mixture is stirred at 80 for 1 hour and then air dried to contain partially crosslinked fluorinated polymer. The conductive plate as shown in Figure 3 One cost was obtained. This conductive paste showed a large conductivity of 5 to 10 SZ cm and a large bonding ability. Therefore, this conductive paste is suitable for applications such as conductive pads and wires, and suitable for electrically connecting the electronic component such as an organic transistor provided on the substrate with the elastic wiring according to the present invention. It is.
Figure imgf000042_0001
Figure imgf000042_0001
ペルへキサン— 2 5 B  Perhexane-2 5 B
Figure imgf000042_0002
Figure imgf000042_0002
T A I C  T A I C
実施例 4  Example 4
本発明による伸縮性配線と公知の電子部品を、 伸縮性配線や導電 性ペース トを用いて電気的に接続した、 伸縮性を有する電子回路の 製造法について、 以下に図 2 3、 図 2 4に基づき説明する。  A method of manufacturing an electronic circuit having stretchability, in which the stretchable wiring according to the present invention and the known electronic component are electrically connected using the stretchable wiring and the conductive paste, will be described below with reference to FIGS. It explains based on.
最初に、 公知の手法を用いて、 ポリイミ ド基板上にペン夕センを チャネル、 ポリイミ ドをゲート絶縁物とする有機トランジスタの 1 9 X 3 7個の配列を作製した。 ポリイミ ド基板には伸縮性配線より も硬いものを使用した。 有機トランジスタは、 公知のインクジエツ 卜プリンティ ング、 スクリーン印刷、 ペン夕センの真空蒸着装置を 用いて製造された (工程 4 — A) 。 次に機械的パンチング装置 (M P — 8 2 0 0 Z、 U H T株式会社) を用いて、 有機トランジスタ部 を除く、 ポリイミ ド基板の一部を除去し、 有機トランジスタが四隅 でポリイミ ド基板を介して、 お互いに接続されるようにした (工程First, using a known method, an array of 19.times.3 7 organic transistors was formed on a polyimide substrate, with a channel of pendentene and a gate insulator of polyimide. The polyimide substrate is harder than stretchable wiring. The organic transistor was manufactured using a known ink jet printing, screen printing, and a vacuum evaporation apparatus of Penthene (Step 4-A). Next, using an mechanical punching device (MP-8 2 0 0 Z, UHT Corporation), the organic transistor section Except that the polyimide substrates were partially removed so that the organic transistors could be connected to each other at the four corners through the polyimide substrate (process
4 - B ) 。 次にこの四隅が接続されている有機トランジスタ配列を ジメチルシロキサンをベースとする 5 0 0 mの厚さのシリコーン ゴム (P DM S、 ダウコーニング社製 S y l g a r d l 8 4または4-B). Next, the organic transistor array to which the four corners are connected is a 500 m thick silicone rubber based on dimethylsiloxane (PDM S, Dow Corning S y l g a r d l 4 or
5 H 9 5 5 5 ) に貼り付けた (工程 4— C ) 。 次に有機トランジス 夕をつないでいる接続部を機械的パンチング装置 (M P— 8 2 0 0 Z、 UHT株式会社) を用いて除去して、 各々の有機トランジスタ を離散させた (工程 4一 D) 。 この離散した有機トランジスタ配列 を含む基板を厚さ 5 のパリ レン封止層で一様に覆った。 機械式 パンチング装置を用いてビア配線のための直径 1 mmの穴をソース 、 ドレイン、 ゲート電極に設け、 その穴を A gペース トで満たし、 導電端子を形成した (工程 4一 E) 。 次に、 本発明の実施例 3 によ る導電性ペース 卜を用い、 ゲート電極、 ソース電極、 ドレイン電極 の導電端子に本発明の実施例 2による P DM S被覆カーボンナノチ ユーブゴムからなる伸縮性配線をワード線 (ゲ一卜電極) 、 ビッ ト 線 (ソース電極) として電気的に接続した (工程 4一 F、 工程 4·一 G) 。 作製した伸縮性配線を導電性ペース トにより電気的に接続し た後も有機トランジスタの性質は変化しなかった。 製造された、 ポ リイミ ド基板、 ポリイミ ド基板上に設けられた有機トランジスタ、 ワード線、 ビッ ト線としての伸縮性配線、 及び伸縮性配線と 卜ラン ジス夕のソース、 ゲート、 ドレイン電極を電気的に接続する導電性 ペース トを含む電子回路の写真を図 5に、 この電子回路の一構成単 位の模式図を図 2 5に示す。 Paste to 5 H 9 5 5 5) (Step 4-C). Next, the connections connecting the organic transistors were removed using a mechanical punching device (MP-8200 Z, UHT Co., Ltd.), and each organic transistor was separated (step 4-D). . The substrate containing this discrete organic transistor array was uniformly covered with a 5 parylene seal layer. Using a mechanical punching device, holes of 1 mm in diameter for via wiring were made in the source, drain and gate electrodes, and the holes were filled with Ag paste to form conductive terminals (step 4-E). Next, using the conductive paste according to Example 3 of the present invention, a stretchable wiring comprising PDM S coated carbon nanotube rubber according to Example 2 of the present invention for the conductive terminals of the gate electrode, the source electrode and the drain electrode. They were electrically connected as word lines (gate electrodes) and bit lines (source electrodes) (step 4 F, step 4 1 G). The properties of the organic transistor did not change even after electrically connecting the produced stretchable wiring with a conductive paste. Polyimide substrate manufactured, organic transistor provided on polyimide substrate, word line, stretchable wiring as bit line, and stretchable wiring and source and gate electrodes of drain and drain electrode Fig. 5 shows a photograph of an electronic circuit containing conductive pastes that are connected in series, and Fig. 25 shows a schematic diagram of one configuration unit of this electronic circuit.
上記で得られた有機トランジス夕配列からなる電子回路について 、 図 6 に示すように、 引っ張り応力を大きく しながら電子回路を引 き伸ばし、 その引き伸ばされた電子回路に設けられたトランジスタ の性質を調べた。 すなわち、 電子回路を一軸方向または二軸方向にWith regard to the electronic circuit having the organic transistor array obtained as described above, as shown in FIG. 6, the electronic circuit is stretched while the tensile stress is increased, and the transistor provided in the stretched electronic circuit is obtained. I investigated the nature of That is, the electronic circuit is uniaxially or biaxially
、 0〜 1 0 0 %までの種々の伸長率で引き伸ばし、 電子回路のトラ ンジス夕の電気特性を測定した。 また、 伸長ひずみを開放し、 電子 回路の トランジスタにおける電気特性を測定した。 得られた電気特 性をそれぞれ図 2 6および 2 8に、 また伸長率とチャネル電流 ( I D s ) との関係をそれぞれ図 2 7および 2 9に示す。 ここで、 I D s の値は、 実験前の初期状態で測定した I D s で規格化したもので ある。 図 2 6〜 2 9からわかるように、 伸びが 7 0 %以上になると 、 不可逆的な劣化が起きたが、 電子回路の伸びが 7 0 %未満のとき は、 電気特性の変化は無視できるぐらい小さく、 伸長ひずみを開放 すれば、 電気特性は、 初期状態に復帰した。 これは、 電子回路が引 き伸ばされても電気的に安定であること、 つまり電子回路が伸長性 を有することを示している。 The electrical characteristics of the electronic circuit were measured by stretching at various expansion rates from 0 to 100%. We also released the strain and measured the electrical characteristics of the transistor in the electronic circuit. In FIGS 2 6 and 2 8 electrical characteristics obtained, also showing the relationship between the elongation and the channel current (I D s) in FIGS 2 7 and 2 9. Here, the value of I D s are those standardized by the I D s, measured in the initial state before the experiment. As can be seen from FIGS. 26 to 29, when the elongation is 70% or more, irreversible deterioration occurs, but when the elongation of the electronic circuit is less than 70%, the change in the electrical characteristics is negligible. The electrical characteristics returned to the initial state when the strain was released small. This indicates that the electronic circuit is electrically stable even when it is stretched, that is, the electronic circuit has extensibility.
上記したように、 本発明による伸縮性配線や、 導電性ペース トを 用いて、 伸縮性電子回路を容易に製造することができる。 かかる伸 縮材料とそれを備える電子回路は、 さまざまなタイプの電子機器に 好適に用いることができる。  As described above, the stretchable electronic circuit can be easily manufactured using the stretchable wiring according to the present invention and the conductive paste. Such an expansion material and an electronic circuit provided with the same can be suitably used for various types of electronic devices.
比較例 1  Comparative example 1
実施例 2と同等な工程で、 長さが短く ( l ^m以下、 比表面積が 低く (6 0 0m2 / g) 、 炭素純度が低い (7 0 %) 市販の単層力 一ボンナノチューブ (CN I社、 H i P c o) を用いてフィルム状 のカーボンナノチューブゴムを製造した。 図 3 0に、 伸長率を変化 させたときの導電率の変化を示す。 実施例 2による、 フィルム状の カーボンナノチューブゴムが伸長率によらず、 高い導電性を示すの に対し、 長さが短く、 比表面積が低く、 炭素純度が低い、 単層力一 ポンナノチューブから成るフィルム状のカーボンナノチューブゴム は導電性が低く、 かつ伸長率が増加するとともに、 導電性が低下し た。 このことは、 長く、 比表面積が高く、 純度が高い単層力一ボン ナノチューブは髙導電性及び高い伸長率を兼ね備える本発明のカー ボンナノチューブゴム組成物を実現するのに好適であることを示し ている。 In a similar process to Example 2, the length is short (l ^ m or less, the specific surface area is low (600 m 2 / g), the carbon purity is low (70%). Film-like carbon nanotube rubber was produced using CIN I, H i P co) Fig. 30 shows the change in conductivity when the elongation rate is changed Film-like according to Example 2 While carbon nanotube rubber shows high conductivity regardless of elongation rate, film-like carbon nanotube rubber consisting of single-walled carbon nanotube with short length, low specific surface area and low carbon purity is conductive Conductivity is lowered as the elongation is low. The This indicates that long, high specific surface area, high purity single-walled carbon nanotubes are suitable for realizing the carbon nanotube rubber composition of the present invention having both conductivity and high elongation rate. ing.
すなわち、 上記したように、 本発明者らは、 力一ボンナノチュー ブを用いて、 化学的に安定なエラス トマ一 (ゴム状の弾性体) とし ては世界最高導電率 ( 1 0 2 S / c m ) を有する新しい伸縮性導体 の開発に成功したものである。 さらに、 有機トランジスタ集積回路 の配線としてこの新材料を用いることによってゴムのように伸縮自 在な集積回路シートを実現した。 伸縮自在な集積回路シートを利用 すると、 ロポッ トの関節のような機械の可動部にも貼り付けられる 伸縮性の電子人工皮膚を実現することができるなど、 多くの新用途 に活用することができる。 また、 薄型のシート型デバイスを自由曲 面に貼り付けることによって様々な機器の表面を電子化することが 可能となり、 その結果、 ヒ ト、 モノ、 環境と相互作用するユニーク なュビキタスエレク トロ二クスを実現することが可能になると期待 される。 産業上の利用可能性  That is, as described above, the inventors of the present invention have achieved the highest conductivity (10 2 S / cm) as a chemically stable elastomer (rubber-like elastic body) using a carbon nanotube. Has succeeded in developing a new stretchable conductor with Furthermore, by using this new material as the wiring of the organic transistor integrated circuit, a self-expanding integrated circuit sheet like rubber is realized. Stretchable integrated circuit sheets can be used in many new applications, such as elastic electronic artificial skin that can be attached to moving parts of machines such as the joints of a rodot. . In addition, by attaching thin sheet type devices to free curved surfaces, it becomes possible to digitize the surface of various devices, and as a result, it is possible to create unique UVICITAS electronics that interact with the human body, the environment and the environment. It is expected that this will be possible. Industrial applicability
本発明は、 電子回路の構成材料として用いたときに十分な導電性 と弾性とを有するカーボンナノチューブゴム組成物を提供すること ができるので、 産業上極めて有用である。  The present invention is extremely useful in industry because it can provide a carbon nanotube rubber composition having sufficient conductivity and elasticity when used as a constituent material of an electronic circuit.

Claims

1 . 力一ボンナノチューブ、 ゴム、 およびイオン性液体からなる カーボンナノチューブゴム組成物であって、 1. A carbon nanotube rubber composition comprising carbon nanotubes, rubber and an ionic liquid,
前記ゴムはイオン性液体と混和性を有することを特徴とする力一 ポンナノチューブゴム組成物。  The rubber is miscible with an ionic liquid.
 Moth
2 . 前記カーボンナノチュ一ブゴム組成物が弾性体 (ゴム) であ ることを特徴とする請求項 1 に記載のカーボンナノチューブゴム組 成物。  2. The carbon nanotube rubber composition according to claim 1, wherein the carbon nanotube rubber composition is an elastic body (rubber).
3 . 前記カーボンナノチューブゴム組成物がペース ト状であるこ とを特徴とする請求項 1 または 2に記載の囲カーボンナノチューブゴ ム組成物。  3. The carbon nanotube rubber composition according to claim 1, wherein the carbon nanotube rubber composition is paste-like.
4 . 前記カーボンナノチューブゴム組成物が伸長性を有する伸長 性カーボンナノチューブゴム組成物であることを特徴とする請求項 1〜 3のいずれかに記載のカーボンナノチューブゴム組成物。  4. The carbon nanotube rubber composition according to any one of claims 1 to 3, wherein the carbon nanotube rubber composition is a stretchable carbon nanotube rubber composition.
5 . 前記カーボンナノチューブゴム組成物の伸長率が 1 0 %以上 であることを特徴とする請求項 4に記載のカーボンナノチューブゴ ム組成物。  5. The carbon nanotube rubber composition according to claim 4, wherein the elongation of the carbon nanotube rubber composition is 10% or more.
6 . 前記カーボンナノチューブゴム組成物の導電率が 1 S/ c m以 上であることを特徴とする請求項 1 〜 5のいずれかに記載のカーボ ンナノチューブゴム組成物。  6. The carbon nanotube rubber composition according to any one of claims 1 to 5, wherein the conductivity of the carbon nanotube rubber composition is 1 S / cm or more.
7 . 前記カーボンナノチューブゴム組成物に含まれるカーボンナ ノチューブが単層カーボンナノチューブであることを特徴とする請 求項 1 〜 6のいずれかに記載のカーボンナノチューブゴム組成物。  7. The carbon nanotube rubber composition according to any one of claims 1 to 6, wherein the carbon nanotube contained in the carbon nanotube rubber composition is a single-walled carbon nanotube.
8 . 前記カーボンナノチューブゴム組成物に含まれる力一ポンナ ノチューブの純度が 9 0 %以上であることを特徴とする請求項 1 〜 7のいずれかに記載の力一ボンナノチューブゴム組成物。 8. The carbon nanotube rubber composition according to any one of claims 1 to 7, wherein the purity of the carbon nanotube rubber contained in the carbon nanotube rubber composition is 90% or more.
9 . 前記カーボンナノチューブゴム組成物に含まれるカーボンナ ノチューブの比表面積が 6 0 0 m 2 Z g以上であることを特徴する 請求項 1 〜 8のいずれかに記載のカーボンナノチューブゴム組成物 9. The carbon nanotube rubber composition according to any one of claims 1 to 8, wherein the specific surface area of the carbon nanotube contained in the carbon nanotube rubber composition is not less than 600 m 2 Z g.
1 0 . 請求項 1 〜 9のいずれかに記載の力一ボンナノチューブゴ ム組成物からイオン性液体を除去したことを特徴とするカーボンナ ノチューブゴム組成物。 A carbon nano tube rubber composition obtained by removing an ionic liquid from the carbon nanotube rubber composition according to any one of claims 1 to 9.
1 1 . 請求項 1 〜 1 0のいずれかに記載のカーボンナノチューブ ゴム組成物を備える物品。  An article comprising the carbon nanotube rubber composition according to any one of claims 1 to 10.
1 2, 前記物品が電子回路を含むことを特徴とする請求項 1 1 に 記載の物品。  The article according to claim 1, wherein the article comprises an electronic circuit.
1 3 . カーボンナノチューブ及びゴムを含むカーボンナノチュー ブゴムを含む配線。  13. A wire containing carbon nanotube rubber including carbon nanotubes and rubber.
1 . 前記配線が伸縮性を有する伸縮性配線であることを特徴と する請求項 1 3に記載の配線。  1. The wiring according to claim 13, wherein the wiring is a stretchable wiring having stretchability.
1 5 . 前記配線の伸長率が 1 0 %以上であることを特徴とする請 求項 1 4に記載の配線。  The wiring according to claim 14, wherein an expansion rate of the wiring is 10% or more.
1 6 . 前記配線の導電率が 1 S/ c m以上であることを特徴とする 請求項 1 3 〜 1 5のいずれかに記載の配線。  16. The wiring according to any one of claims 13 to 15, wherein the conductivity of the wiring is 1 S / cm or more.
1 7 . 前記配線の少なく とも一部が弾性材料 (ゴム) に配設また はかつ被覆されていることを特徴とする請求項 1 3 〜 1 6のいずれ かに記載の配線。  17. The wiring according to any one of claims 13 to 16, wherein at least a part of the wiring is disposed or covered with an elastic material (rubber).
1 8 . 前記カーボンナノチューブゴムがイオン性液体を含むこと を特徴とする請求項 1 3 〜 1 7のいずれかに記載の配線。  18. The wiring according to any one of claims 13 to 17, wherein the carbon nanotube rubber contains an ionic liquid.
1 9 . 前記カーボンナノチューブゴムに含まれるカーボンナノチ ユ ープが単層カーボンナノチューブであることを特徴とする請求項 1 9. The carbon nanotube rubber contained in the carbon nanotube rubber is a single-walled carbon nanotube.
1 3 〜 1 8のいずれかに記載の配線。 Wiring according to any one of 1 to 18.
2 0. 請求項 1 3〜 1 9のいずれかに記載の配線を備える物品。 2 1. 前記物品が電子回路を含むことを特徴とする請求項 2 0に 記載の物品。 20. An article comprising the wiring according to any one of claims 13 to 19. 2 1. The article according to any one of the preceding claims, characterized in that the article comprises an electronic circuit.
2 2. カーボンナノチューブ及びゴムを含むカーボンナノチュ一 ブゴムペース トを含む導電性ペース ト。  2 2. Conductive paste containing carbon nanotube rubber paste containing carbon nanotubes and rubber.
2 3. 前記導電性ペース 卜が伸縮性を有することを特徴とする請 求項 2 2に記載の導電性ペース ト。  2. The conductive paste according to claim 2, wherein the conductive paste has elasticity.
2 4. 前記導電性ペース 卜の伸長率が 1 0 %以上であることを特 徴とする請求項 2 3 に記載の導電性ペース ト。  2. The conductive paste according to claim 2, wherein an elongation rate of the conductive paste is 10% or more.
2 5. 前記配線材料の導電率が 1 S/c m以上であることを特徴と する請求項 2 2〜 2 4のいずれかに記載の導電性ペース ト。  2 5. The conductive paste according to any one of claims 22 to 24, wherein the conductivity of the wiring material is 1 S / cm or more.
2 6. 前記配線材料の少なく とも一部が弾性材料 (ゴム) に配設 またはかつ被覆されていることを特徴とする請求項 2 2〜 2 5のい ずれかに記載の導電性ペース ト。  6. The conductive paste according to any one of claims 22 to 25, wherein at least a part of the wiring material is disposed or covered with an elastic material (rubber).
2 7. 前記カーボンナノチューブゴムペース トがイオン性液体を 含むことを特徴とする請求項 2 2〜 2 6のいずれかに記載の導電性 ペース ト。  The conductive paste according to any one of claims 22 to 26, wherein the carbon nanotube rubber paste contains an ionic liquid.
2 8. 前記カーボンナノチューブゴムべ一ス トに含まれるカーボ ンナノチューブが単層カーボンナノチューブであることを特徴とす る請求項 2 2〜 2 7のいずれかに記載の導電性ペース ト。  2. The conductive paste according to any one of claims 2 to 27, wherein the carbon nanotubes contained in the carbon nanotube rubber base are single-walled carbon nanotubes.
2 9. 請求項 2 2〜 2 8のいずれかに記載の導電性ペース トを備 える物品。  2. An article comprising the conductive paste according to any one of claims 2 to 2.
3 0. 前記物品が電子回路を含むことを特徴とする請求項 2 9 に 記載の物品。  An article according to any one of the preceding claims, wherein the article comprises an electronic circuit.
3 1. 基板と、 前記基板に設けられた電子部品と、 前記電子部品 と電気的に接続されている伸縮性配線を含むことを特徴とする電子 回路。 3 1. An electronic circuit comprising: a substrate; an electronic component provided on the substrate; and stretchable wiring electrically connected to the electronic component.
3 2 . 前記伸縮性配線の導電率が 1 S/ c m以上であることを特徴 とする請求項 3 1 に記載の電子回路。 3 2. The electronic circuit according to claim 3, wherein the conductivity of the stretchable wiring is 1 S / cm or more.
3 3 . 前記伸縮性配線の伸長率が 1 0 %以上であることを特徴と する請求項 3 1 または 3 2に記載の電子回路。  3 3. The electronic circuit according to claim 3, wherein an expansion rate of the stretchable wiring is 10% or more.
3 4 . 前記伸縮性配線が力一ボンナノチューブ及びゴムを含む力 —ボンナノチューブゴム組成物を含む配線から成る請求項 3 1〜 3 3のいずれかに記載の電子回路。  The electronic circuit according to any one of claims 31 to 33, wherein the stretchable wiring comprises a wiring including a carbon nanotube rubber composition containing carbon nanotubes and rubber.
3 5 . 前記カーボンナノチューブゴム組成物に含まれる力一ボン ナノチューブが単層カーボンナノチューブであることを特徴とする 請求項 3 1〜 3 4のいずれかに記載の電子回路。  The electronic circuit according to any one of claims 31 to 34, wherein the carbon nanotube contained in the carbon nanotube rubber composition is a single-walled carbon nanotube.
3 6 . 請求項 3 1〜 3 4のいずれかに記載の電子部品と伸縮性配 線がカーボンナノチューブゴムペーストで電気的に接続されている ことを特徴とする請求項 3 1〜 3 5のいずれかに記載の電子回路。  The electronic component according to any one of claims 3 1 to 34 and the stretchable wiring are electrically connected to each other by a carbon nanotube rubber paste. Electronic circuit described in.
3 7 . 以下の工程を含むことを特徴とするカーボンナノチューブ ゴム組成物の製造方法。  A method of producing a carbon nanotube rubber composition comprising the following steps:
工程 1 : カ一ボンナノチューブ、 イオン性液体、 及び必要に応じ て有機溶媒を分散させたカーボンナノチューブイオン性液体ゲルを 調製する工程  Step 1: Preparation of carbon nanotube ionic liquid gel in which carbon nanotubes, ionic liquid, and, if necessary, organic solvent are dispersed
工程 2 : カ一ボンナノチューブイオン性液体ゲルとゴムポリマー と必要に応じて有機溶媒を分散させたカーボンナノチューブペース トを調製する工程  Step 2: Preparation of carbon nanotube paste in which carbon nanotube ionic liquid gel, rubber polymer and, if necessary, organic solvent are dispersed
工程 3 : カ一ボンナノチューブペースから有機溶剤を除去し、 力 一ボンナノチューブゴムを製造する工程  Process 3: Process to remove organic solvent from carbon nanotube paste and manufacture carbon nanotube rubber
3 8 . 以下の工程を含むことを特徴とするカーボンナノチューブ ゴム組成物の製造方法。  A method of producing a carbon nanotube rubber composition comprising the following steps:
工程 1 : カーボンナノチューブ、 イオン性液体、 及び必要に応じ て有機溶媒を分散させたカーボンナノチューブイオン性液体ゲルを 調製する工程 Step 1: Carbon nanotube, ionic liquid, and carbon nanotube ionic liquid gel in which organic solvent is dispersed as needed Process to prepare
工程 2 : カーボンナノチューブイオン性液体ゲルとゴムポリマ一 と必要に応じて有機溶媒を分散させたカーボンナノチューブペース 卜を調製する工程  Step 2: Preparation of carbon nanotube paste in which carbon nanotube ionic liquid gel, rubber polymer and optionally organic solvent are dispersed
工程 3 : カーボンナノチューブペース トから有機溶剤を除去し、 力一ボンナノチューブゴムを製造する工程  Step 3: A step of removing the organic solvent from the carbon nanotube paste to produce a carbon nanotube rubber
工程 4 : カーボンナノチューブゴムからイオン性液体を除去する 工程  Step 4: Removal of ionic liquid from carbon nanotube rubber
3 9 . 以下の工程を含むことを特徴とする伸縮性配線の製造方法 工程 1 : カーボンナノチューブ、 イオン性液体、 及び必要に応じ て有機溶媒を分散させた力一ボンナノチュ一ブイオン性液体ゲルを 調製する工程  9 9. A method of producing a stretchable wiring comprising the following steps: Step 1: Preparation of carbon nanotube, ionic liquid, and, if necessary, ionic carbon nanotube ionic liquid gel in which an organic solvent is dispersed. Process
工程 2 : カーボンナノチューブイオン性液体ゲルとゴムポリマー と必要に応じて有機溶媒を分散させた力一ボンナノチューブぺ一ス 卜を調製する工程  Step 2: Preparation of carbon nanotube ionic liquid gel, rubber polymer and, if necessary, organic solvent dispersed organic carbon nanotube paste
工程 3 : カーボンナノチューブペースから有機溶剤を除去し、 力 一ボンナノチューブゴムを含む伸縮性配線を製造する工程  Step 3: Remove organic solvent from carbon nanotube paste and manufacture stretchable wire containing carbon nanotube rubber
4 0 . 以下の工程を含むことを特徴とするカーボンナノチューブ ゴム配線の製造方法。  4 0. A method for producing a carbon nanotube / rubber wire comprising the steps of:
工程 1 : カ一ボンナノチューブ、 イオン性液体、 及び必要に応じ て有機溶媒を分散させたカーボンナノチューブイオン性液体ゲルを 調製する工程  Step 1: Preparation of carbon nanotube ionic liquid gel in which carbon nanotubes, ionic liquid, and, if necessary, organic solvent are dispersed
工程 2 : カーボンナノチューブイオン性液体ゲルとゴムポリマー と必要に応じて有機溶媒を分散させたカーボンナノチューブペース 卜を調製する工程  Step 2: Preparation of a carbon nanotube paste in which carbon nanotube ionic liquid gel, rubber polymer and, if necessary, organic solvent are dispersed
工程 3 : カーボンナノチューブペース トから有機溶剤を除去し、 カーボンナノチューブゴムを製造する工程 Step 3: Remove the organic solvent from the carbon nanotube paste, Process for producing carbon nanotube rubber
工程 4 : カーボンナノチューブゴムからイオン性液体を除去し、 伸縮性配線を製造する工程  Process 4: A process of removing an ionic liquid from carbon nanotube rubber to produce a stretchable wiring
4 1 . 以下の工程を含むことを特徴とする導電性ペーストの製造 方法。  4 1. A method of producing a conductive paste comprising the following steps.
工程 1 : カーボンナノチューブ、 イオン性液体、 及び必要に応じ て有機溶媒を分散させたカーボンナノチューブイオン液体ゲルを調 製する工程  Step 1: A step of preparing a carbon nanotube ionic liquid gel in which carbon nanotubes, an ionic liquid, and, if necessary, an organic solvent are dispersed.
工程 2 : カーボンナノチューブイオン性液体ゲルとゴムポリマー と必要に応じて有機溶媒を分散させたカーボンナノチュ一ブペース トを含む導電性ペーストを製造する工程  Process 2: A process of producing a conductive paste containing carbon nanotube paste in which carbon nanotube ionic liquid gel, rubber polymer and, if necessary, organic solvent are dispersed.
PCT/JP2009/052825 2008-02-11 2009-02-12 Carbon nanotube rubber composition, wiring, electroconductive paste, electronic circuit, and process for producing the carbon nanotube rubber composition WO2009102077A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/052825 WO2009102077A1 (en) 2008-02-11 2009-02-12 Carbon nanotube rubber composition, wiring, electroconductive paste, electronic circuit, and process for producing the carbon nanotube rubber composition
JP2009553493A JPWO2009102077A1 (en) 2008-02-11 2009-02-12 Carbon nanotube rubber composition, wiring, conductive paste, electronic circuit and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US6402408P 2008-02-11 2008-02-11
US61/064,024 2008-02-11
PCT/JP2009/052825 WO2009102077A1 (en) 2008-02-11 2009-02-12 Carbon nanotube rubber composition, wiring, electroconductive paste, electronic circuit, and process for producing the carbon nanotube rubber composition

Publications (1)

Publication Number Publication Date
WO2009102077A1 true WO2009102077A1 (en) 2009-08-20

Family

ID=41600731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052825 WO2009102077A1 (en) 2008-02-11 2009-02-12 Carbon nanotube rubber composition, wiring, electroconductive paste, electronic circuit, and process for producing the carbon nanotube rubber composition

Country Status (2)

Country Link
JP (1) JPWO2009102077A1 (en)
WO (1) WO2009102077A1 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121129A (en) * 2008-11-17 2010-06-03 Xerox Corp Phase change ink containing graphene-based carbon allotrope colorant
WO2010076885A1 (en) * 2008-12-30 2010-07-08 独立行政法人産業技術総合研究所 Aligned single-walled carbon nanotube assembly, bulk aligned single-walled carbon nanotube assembly, powder-like aligned single-walled carbon nanotube assembly, and method for producing same
WO2011024539A1 (en) * 2009-08-25 2011-03-03 独立行政法人産業技術総合研究所 Expansion device using carbon nanotube and method for manufacturing same
JP2011521063A (en) * 2008-05-23 2011-07-21 ライン・ケミー・ライノー・ゲーエムベーハー Organic media containing carbon nanotubes and microgels
CN102145883A (en) * 2011-04-29 2011-08-10 清华大学 Directly-prepared ultrahigh-purity carbon nanotube and preparation method thereof
JP2012028051A (en) * 2010-07-20 2012-02-09 Osaka Univ Conductive wire, manufacturing device for conductive wire, manufacturing method for conductive wire, and manufacturing method for wiring board
JP2012054192A (en) * 2010-09-03 2012-03-15 Bayer Material Science Ag Conductive member with elastic wiring
JP2012097219A (en) * 2010-11-04 2012-05-24 Sony Corp Conductive ink, method of preparing the same, and method of preparing transparent conductive film
EP2500376A1 (en) * 2011-03-17 2012-09-19 Basf Se Antistatic or electrically conductive polyurethanes
WO2012141307A1 (en) * 2011-04-15 2012-10-18 株式会社環境・エネルギーナノ技術研究所 Apparatus for producing carbon nanomaterial, and use thereof
WO2013005653A1 (en) * 2011-07-06 2013-01-10 日本ゼオン株式会社 Composition
WO2013031958A1 (en) * 2011-09-02 2013-03-07 独立行政法人産業技術総合研究所 Carbon nanotube composite material and conductive material
US20130109790A1 (en) * 2010-07-09 2013-05-02 3M Innovative Properties Company Fluoropolymer Blend and Articles Thereof
JP2013227396A (en) * 2012-04-25 2013-11-07 Nippon Zeon Co Ltd Reactive composition and reaction injection molding body
JP2013230951A (en) * 2012-04-27 2013-11-14 Toray Ind Inc Method for manufacturing carbon nanotube dispersion liquid
US20130316160A1 (en) 2010-11-05 2013-11-28 National Institute Of Advanced Industrial Science And Technology Cnt dispersion liquid, cnt compact, cnt composition, cnt aggregate, and method of producing each
JP2014502289A (en) * 2010-11-05 2014-01-30 エヴォニク ゴールドシュミット ゲーエムベーハー Composition comprising polymer and conductive carbon
WO2014030556A1 (en) * 2012-08-23 2014-02-27 独立行政法人科学技術振興機構 Carbon nanomaterial, composition, conductive material, and manufacturing method therefor
JP2014156385A (en) * 2013-01-15 2014-08-28 Nippon Zeon Co Ltd Carbon nanotube dispersion and its utilization
JP2014162124A (en) * 2013-02-26 2014-09-08 Fujikura Ltd Stretchable circuit board, production method therefor, and electronic component including stretchable circuit board
JP2014189595A (en) * 2013-03-26 2014-10-06 Tokai Rubber Ind Ltd Conductive material and transducer
WO2014171440A1 (en) * 2013-04-16 2014-10-23 独立行政法人産業技術総合研究所 Elastomer structure containing carbon nanotubes, and method for producing same
JP2014208560A (en) * 2013-04-16 2014-11-06 独立行政法人産業技術総合研究所 Carbon nanotube composite film
JP2014208727A (en) * 2013-04-16 2014-11-06 独立行政法人産業技術総合研究所 Carbon nanotube composite structure and method for forming the same
WO2015005204A1 (en) 2013-07-08 2015-01-15 東洋紡株式会社 Electrically conductive paste
JP2015019806A (en) * 2013-07-18 2015-02-02 独立行政法人科学技術振興機構 Biocompatible electrode structure and manufacturing method therefor, and device and manufacturing method therefor
JP2015041419A (en) * 2013-08-20 2015-03-02 バンドー化学株式会社 Elastic electrode and sensor sheet
WO2015079951A1 (en) * 2013-11-28 2015-06-04 バンドー化学株式会社 Stretchable electrode, sensor sheet and capacitive sensor
EP2798647A4 (en) * 2011-12-30 2015-06-10 Kolon Inc Transparent electrode
JPWO2013172334A1 (en) * 2012-05-15 2016-01-12 日本ゼオン株式会社 Conductive composition
EP2978285A1 (en) * 2014-07-07 2016-01-27 Hamilton Sundstrand Corporation Improved method for fabricating printed electronics
EP2924695A4 (en) * 2012-11-21 2016-01-27 Sumitomo Riko Co Ltd Flexible conductive member and transducer using same
KR20160147921A (en) 2014-05-16 2016-12-23 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Stretchable electrically-conductive circuit and manufacturing method therefor
WO2017126325A1 (en) 2016-01-19 2017-07-27 トクセン工業株式会社 Stretchable wiring sheet and stretchable touch sensor sheet
JP2018016806A (en) * 2017-10-04 2018-02-01 国立研究開発法人産業技術総合研究所 Carbon nanotube composite film
JP2018081952A (en) * 2016-11-14 2018-05-24 国立研究開発法人産業技術総合研究所 Electronic device
JP2018157605A (en) * 2018-06-14 2018-10-04 株式会社ニコン Imaging apparatus and camera
US10119045B2 (en) 2015-01-14 2018-11-06 Toyobo Co., Ltd. Electroconductive silver paste
JP2019056087A (en) * 2017-09-22 2019-04-11 日信工業株式会社 Polyurethane composite material and method for producing polyurethane composite material
US10295367B2 (en) 2012-10-02 2019-05-21 Japan Science And Technology Agency Signal detection device and signal detection method
KR20190058480A (en) 2016-09-20 2019-05-29 오사카 유키가가쿠고교 가부시키가이샤 (Meth) acrylic conductive material
US10365171B2 (en) 2013-03-29 2019-07-30 Bando Chemical Industries, Ltd. Capacitive sensor sheet and capacitive sensor for measuring elastic deformation
JP2019173021A (en) * 2017-10-04 2019-10-10 国立研究開発法人産業技術総合研究所 Carbon nanotube composite film
WO2020204171A1 (en) * 2019-04-03 2020-10-08 国立大学法人 東京大学 Electronic functional member and strain sensor
CN114133221A (en) * 2021-12-21 2022-03-04 八龙应用材料科技(海南)有限公司 Carbon-ceramic composite heat insulation material and preparation method thereof
US11638348B2 (en) 2018-07-06 2023-04-25 Raytheon Company Patterned conductive microstructures within a heat shrinkable substrate
WO2023162783A1 (en) * 2022-02-24 2023-08-31 日本ゼオン株式会社 Elastomer composition
US11925478B2 (en) * 2019-11-08 2024-03-12 Daegu Gyeongbuk Institute Of Science And Technology Implantable biosensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331885A (en) * 2003-05-09 2004-11-25 Hokushin Ind Inc Rubber composition having moderate resistance and rubber member using the same
JP2005048139A (en) * 2003-07-31 2005-02-24 Tokai Rubber Ind Ltd Conductive rubber composition
JP2005220316A (en) * 2004-02-09 2005-08-18 Tokai Rubber Ind Ltd Conductive composition for electrophotographic instrument, method for producing the same, and conductive member for electrophotographic instrument by using the same
JP2006040853A (en) * 2004-06-25 2006-02-09 Tokyo Institute Of Technology Ion conductive filler and ion conductive polymer composition
WO2006130593A2 (en) * 2005-05-31 2006-12-07 The University Of Alabama Methods of preparing high orientation nanoparticle-containing sheets and films using ionic liquids, and the sheets and films produced thereby
WO2007018239A1 (en) * 2005-08-09 2007-02-15 The Yokohama Rubber Co., Ltd. Electropeeling composition, and making use of the same, adhesive and electropeeling multilayer adhesive
JP2007321115A (en) * 2006-06-05 2007-12-13 Japan Carlit Co Ltd:The Electroconductivity-imparting agent and electroconductive resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331885A (en) * 2003-05-09 2004-11-25 Hokushin Ind Inc Rubber composition having moderate resistance and rubber member using the same
JP2005048139A (en) * 2003-07-31 2005-02-24 Tokai Rubber Ind Ltd Conductive rubber composition
JP2005220316A (en) * 2004-02-09 2005-08-18 Tokai Rubber Ind Ltd Conductive composition for electrophotographic instrument, method for producing the same, and conductive member for electrophotographic instrument by using the same
JP2006040853A (en) * 2004-06-25 2006-02-09 Tokyo Institute Of Technology Ion conductive filler and ion conductive polymer composition
WO2006130593A2 (en) * 2005-05-31 2006-12-07 The University Of Alabama Methods of preparing high orientation nanoparticle-containing sheets and films using ionic liquids, and the sheets and films produced thereby
WO2007018239A1 (en) * 2005-08-09 2007-02-15 The Yokohama Rubber Co., Ltd. Electropeeling composition, and making use of the same, adhesive and electropeeling multilayer adhesive
JP2007321115A (en) * 2006-06-05 2007-12-13 Japan Carlit Co Ltd:The Electroconductivity-imparting agent and electroconductive resin composition

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521063A (en) * 2008-05-23 2011-07-21 ライン・ケミー・ライノー・ゲーエムベーハー Organic media containing carbon nanotubes and microgels
JP2010121129A (en) * 2008-11-17 2010-06-03 Xerox Corp Phase change ink containing graphene-based carbon allotrope colorant
JP2014185077A (en) * 2008-12-30 2014-10-02 National Institute Of Advanced Industrial & Technology Powdery monolayer carbon nanotube oriented aggregate
WO2010076885A1 (en) * 2008-12-30 2010-07-08 独立行政法人産業技術総合研究所 Aligned single-walled carbon nanotube assembly, bulk aligned single-walled carbon nanotube assembly, powder-like aligned single-walled carbon nanotube assembly, and method for producing same
WO2011024539A1 (en) * 2009-08-25 2011-03-03 独立行政法人産業技術総合研究所 Expansion device using carbon nanotube and method for manufacturing same
JP2011047702A (en) * 2009-08-25 2011-03-10 National Institute Of Advanced Industrial Science & Technology Expansion device using carbon nanotube and method of manufacturing the same
US20130109790A1 (en) * 2010-07-09 2013-05-02 3M Innovative Properties Company Fluoropolymer Blend and Articles Thereof
JP2012028051A (en) * 2010-07-20 2012-02-09 Osaka Univ Conductive wire, manufacturing device for conductive wire, manufacturing method for conductive wire, and manufacturing method for wiring board
JP2012054192A (en) * 2010-09-03 2012-03-15 Bayer Material Science Ag Conductive member with elastic wiring
JP2012097219A (en) * 2010-11-04 2012-05-24 Sony Corp Conductive ink, method of preparing the same, and method of preparing transparent conductive film
JP2014502289A (en) * 2010-11-05 2014-01-30 エヴォニク ゴールドシュミット ゲーエムベーハー Composition comprising polymer and conductive carbon
US20130316160A1 (en) 2010-11-05 2013-11-28 National Institute Of Advanced Industrial Science And Technology Cnt dispersion liquid, cnt compact, cnt composition, cnt aggregate, and method of producing each
JP2014196246A (en) * 2010-11-05 2014-10-16 独立行政法人産業技術総合研究所 Cnt dispersion liquid, cnt compact, cnt composition, cnt aggregate, and method of producing each
US10040686B2 (en) 2010-11-05 2018-08-07 National Institute Of Advanced Industrial Science And Technology CNT dispersion solution, CNT compact, CNT composition, CNT aggregate, and method of producing each
EP2500376A1 (en) * 2011-03-17 2012-09-19 Basf Se Antistatic or electrically conductive polyurethanes
DE102012203994B4 (en) 2011-03-17 2023-11-02 Basf Se Antistatic or electrically conductive cellular polyurethane, its use and process for its production
WO2012141307A1 (en) * 2011-04-15 2012-10-18 株式会社環境・エネルギーナノ技術研究所 Apparatus for producing carbon nanomaterial, and use thereof
US9403685B2 (en) 2011-04-15 2016-08-02 Environment energy nano technical research institute Apparatus for producing carbon nanomaterial, and use thereof
JP6068334B2 (en) * 2011-04-15 2017-01-25 株式会社環境・エネルギーナノ技術研究所 Carbon nanomaterial manufacturing apparatus and use thereof
CN102145883A (en) * 2011-04-29 2011-08-10 清华大学 Directly-prepared ultrahigh-purity carbon nanotube and preparation method thereof
WO2013005653A1 (en) * 2011-07-06 2013-01-10 日本ゼオン株式会社 Composition
US9552904B2 (en) 2011-07-06 2017-01-24 Zeon Corporation Composition containing nano-carbon material and a polyether-based polymer containing oxirane unites having a cationic group
KR20140041565A (en) * 2011-07-06 2014-04-04 니폰 제온 가부시키가이샤 Composition
US9865371B2 (en) 2011-09-02 2018-01-09 National Institute Of Advanced Industrial Science And Technology Carbon nanotube composite material and conductive material
WO2013031958A1 (en) * 2011-09-02 2013-03-07 独立行政法人産業技術総合研究所 Carbon nanotube composite material and conductive material
EP2798647A4 (en) * 2011-12-30 2015-06-10 Kolon Inc Transparent electrode
JP2013227396A (en) * 2012-04-25 2013-11-07 Nippon Zeon Co Ltd Reactive composition and reaction injection molding body
JP2013230951A (en) * 2012-04-27 2013-11-14 Toray Ind Inc Method for manufacturing carbon nanotube dispersion liquid
US10283231B2 (en) 2012-05-15 2019-05-07 Zeon Corporation Conductive composition
JPWO2013172334A1 (en) * 2012-05-15 2016-01-12 日本ゼオン株式会社 Conductive composition
JP2017133042A (en) * 2012-05-15 2017-08-03 日本ゼオン株式会社 Conductive composition
WO2014030556A1 (en) * 2012-08-23 2014-02-27 独立行政法人科学技術振興機構 Carbon nanomaterial, composition, conductive material, and manufacturing method therefor
US10295367B2 (en) 2012-10-02 2019-05-21 Japan Science And Technology Agency Signal detection device and signal detection method
EP2924695A4 (en) * 2012-11-21 2016-01-27 Sumitomo Riko Co Ltd Flexible conductive member and transducer using same
JP2014156385A (en) * 2013-01-15 2014-08-28 Nippon Zeon Co Ltd Carbon nanotube dispersion and its utilization
JP2014162124A (en) * 2013-02-26 2014-09-08 Fujikura Ltd Stretchable circuit board, production method therefor, and electronic component including stretchable circuit board
JP2014189595A (en) * 2013-03-26 2014-10-06 Tokai Rubber Ind Ltd Conductive material and transducer
US10365171B2 (en) 2013-03-29 2019-07-30 Bando Chemical Industries, Ltd. Capacitive sensor sheet and capacitive sensor for measuring elastic deformation
JP2014208727A (en) * 2013-04-16 2014-11-06 独立行政法人産業技術総合研究所 Carbon nanotube composite structure and method for forming the same
JP2014208560A (en) * 2013-04-16 2014-11-06 独立行政法人産業技術総合研究所 Carbon nanotube composite film
US10023715B2 (en) 2013-04-16 2018-07-17 National Institute Of Advanced Industrial Science And Technology Elastomer structure containing carbon nanotubes and method for producing the same
WO2014171440A1 (en) * 2013-04-16 2014-10-23 独立行政法人産業技術総合研究所 Elastomer structure containing carbon nanotubes, and method for producing same
JP6078892B2 (en) * 2013-04-16 2017-02-15 国立研究開発法人産業技術総合研究所 Carbon nanotube-containing elastomer structure and method for producing the same
JPWO2014171440A1 (en) * 2013-04-16 2017-02-23 国立研究開発法人産業技術総合研究所 Carbon nanotube-containing elastomer structure and method for producing the same
KR20160027090A (en) 2013-07-08 2016-03-09 도요보 가부시키가이샤 Electrically conductive paste
US9761349B2 (en) 2013-07-08 2017-09-12 Toyobo Co., Ltd. Electrically conductive paste
WO2015005204A1 (en) 2013-07-08 2015-01-15 東洋紡株式会社 Electrically conductive paste
US10413242B2 (en) 2013-07-18 2019-09-17 Japan Science And Technology Agency Biocompatible electrode structure and method for manufacturing the same, and device and method for manufacturing the same
JP2015019806A (en) * 2013-07-18 2015-02-02 独立行政法人科学技術振興機構 Biocompatible electrode structure and manufacturing method therefor, and device and manufacturing method therefor
JP2015041419A (en) * 2013-08-20 2015-03-02 バンドー化学株式会社 Elastic electrode and sensor sheet
WO2015079951A1 (en) * 2013-11-28 2015-06-04 バンドー化学株式会社 Stretchable electrode, sensor sheet and capacitive sensor
CN105765668A (en) * 2013-11-28 2016-07-13 阪东化学株式会社 Stretchable electrode, sensor sheet and capacitive sensor
US10184779B2 (en) 2013-11-28 2019-01-22 Bando Chemical Industries, Ltd. Stretchable electrode, sensor sheet and capacitive sensor
JPWO2015079951A1 (en) * 2013-11-28 2017-03-16 バンドー化学株式会社 Stretchable electrode, sensor sheet, and capacitive sensor
JP2019091717A (en) * 2013-11-28 2019-06-13 バンドー化学株式会社 Stretchable electrode, sensor sheet and capacitive sensor
US10386248B2 (en) 2014-05-16 2019-08-20 National Institute Of Advanced Industrial Science And Technology Stretchable electrically-conductive circuit and manufacturing method therefor
KR20160147921A (en) 2014-05-16 2016-12-23 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Stretchable electrically-conductive circuit and manufacturing method therefor
EP2978285A1 (en) * 2014-07-07 2016-01-27 Hamilton Sundstrand Corporation Improved method for fabricating printed electronics
US10119045B2 (en) 2015-01-14 2018-11-06 Toyobo Co., Ltd. Electroconductive silver paste
US11259408B2 (en) 2016-01-19 2022-02-22 Tokusen Kogyo Co., Ltd. Stretchable wiring sheet and stretchable touch sensor sheet
WO2017126325A1 (en) 2016-01-19 2017-07-27 トクセン工業株式会社 Stretchable wiring sheet and stretchable touch sensor sheet
KR20190058480A (en) 2016-09-20 2019-05-29 오사카 유키가가쿠고교 가부시키가이샤 (Meth) acrylic conductive material
US10913806B2 (en) 2016-09-20 2021-02-09 Osaka Organic Chemical Industry Ltd. (Meth)acrylic conductive material
JP2018081952A (en) * 2016-11-14 2018-05-24 国立研究開発法人産業技術総合研究所 Electronic device
JP2019056087A (en) * 2017-09-22 2019-04-11 日信工業株式会社 Polyurethane composite material and method for producing polyurethane composite material
JP2019173021A (en) * 2017-10-04 2019-10-10 国立研究開発法人産業技術総合研究所 Carbon nanotube composite film
JP2018016806A (en) * 2017-10-04 2018-02-01 国立研究開発法人産業技術総合研究所 Carbon nanotube composite film
JP2018157605A (en) * 2018-06-14 2018-10-04 株式会社ニコン Imaging apparatus and camera
US11638348B2 (en) 2018-07-06 2023-04-25 Raytheon Company Patterned conductive microstructures within a heat shrinkable substrate
WO2020204171A1 (en) * 2019-04-03 2020-10-08 国立大学法人 東京大学 Electronic functional member and strain sensor
CN113924630A (en) * 2019-04-03 2022-01-11 国立大学法人东京大学 Electronic functional component and strain sensor
US11925478B2 (en) * 2019-11-08 2024-03-12 Daegu Gyeongbuk Institute Of Science And Technology Implantable biosensor
CN114133221A (en) * 2021-12-21 2022-03-04 八龙应用材料科技(海南)有限公司 Carbon-ceramic composite heat insulation material and preparation method thereof
WO2023162783A1 (en) * 2022-02-24 2023-08-31 日本ゼオン株式会社 Elastomer composition

Also Published As

Publication number Publication date
JPWO2009102077A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
WO2009102077A1 (en) Carbon nanotube rubber composition, wiring, electroconductive paste, electronic circuit, and process for producing the carbon nanotube rubber composition
Khan et al. Recent advances of conductive nanocomposites in printed and flexible electronics
Kim et al. 3D printable composite dough for stretchable, ultrasensitive and body-patchable strain sensors
Shang et al. Carbon nanotubes based high temperature vulcanized silicone rubber nanocomposite with excellent elasticity and electrical properties
EP3330327B1 (en) Paste material, wiring member formed from the paste material, and electronic device including the wiring member
TWI682405B (en) Conductive silver paste
Ma et al. Carbon‐Nanotube/Silver networks in nitrile butadiene rubber for highly conductive flexible adhesives
Wang et al. Mechanically robust, degradable and conductive MXene-composited gelatin organohydrogel with environmental stability and self-adhesiveness for multifunctional sensor
Ko et al. Stretchable conductive adhesives with superior electrical stability as printable interconnects in washable textile electronics
TW201802828A (en) Electrically conductive composition
CN105461948A (en) Preparation method of conductive macromolecule non-covalent functionalized graphene modified electrokinetic energy conversion polymer material
JP6690528B2 (en) Conductive film
Hwang et al. Stretchable carbon nanotube conductors and their applications
Zhu et al. Three-dimensional highly conductive silver nanowires sponges based on cotton-templated porous structures for stretchable conductors
Xiao et al. Polymer composites with lychee-like core covered by segregated conducting and flexible networks: Unique morphology, high flexibility, stretchability and thermoelectric performance
Cao et al. Ultrastretchable conductive liquid metal composites enabled by adaptive interfacial polarization
KR102128237B1 (en) Three-dimensionally printable composition for preparing highly conductive flexible electrodes
Wang et al. Viscoelastic metal-in-water emulsion gel via host–guest bridging for printed and strain-activated stretchable electrodes
Jo et al. Printable self-activated liquid metal stretchable conductors from polyvinylpyrrolidone-functionalized eutectic gallium indium composites
CN109659071B (en) Flexible composite polymer film containing carbon nano tube and nano silver and preparation method thereof
Lu et al. A printable and conductive yield-stress fluid as an ultrastretchable transparent conductor
Wang et al. Insights into the synergistic effect of methoxy functionalized halloysite nanotubes for dielectric elastomer with improved dielectric properties and actuated strain
KR101233982B1 (en) Ultrahigh conductive elastomeric and printable nanocomposite films and the method for preparing the same
Viannie et al. Electrical and mechanical properties of flexible multiwalled carbon nanotube/poly (dimethylsiloxane) based nanocomposite sheets
CN113990557A (en) Preparation method and application of elastomer with high conductivity and high stretchability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711462

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009553493

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09711462

Country of ref document: EP

Kind code of ref document: A1