WO2009099302A2 - 염료 감응 태양전지용 염료 및 이를 함유하는 태양전지 - Google Patents

염료 감응 태양전지용 염료 및 이를 함유하는 태양전지 Download PDF

Info

Publication number
WO2009099302A2
WO2009099302A2 PCT/KR2009/000561 KR2009000561W WO2009099302A2 WO 2009099302 A2 WO2009099302 A2 WO 2009099302A2 KR 2009000561 W KR2009000561 W KR 2009000561W WO 2009099302 A2 WO2009099302 A2 WO 2009099302A2
Authority
WO
WIPO (PCT)
Prior art keywords
compound
dye
group
formula
mmol
Prior art date
Application number
PCT/KR2009/000561
Other languages
English (en)
French (fr)
Other versions
WO2009099302A3 (ko
Inventor
Kwang-Yol Kay
Kang-Jin Kim
Jong-Hyung Kim
Young-Jin Kwon
Original Assignee
Solarsys Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080011757A external-priority patent/KR20080018238A/ko
Priority claimed from KR1020080012929A external-priority patent/KR20080019669A/ko
Priority claimed from KR1020080035194A external-priority patent/KR20080039863A/ko
Priority claimed from KR1020090008472A external-priority patent/KR101082086B1/ko
Application filed by Solarsys Co., Ltd. filed Critical Solarsys Co., Ltd.
Priority to US12/866,347 priority Critical patent/US8629269B2/en
Publication of WO2009099302A2 publication Critical patent/WO2009099302A2/ko
Publication of WO2009099302A3 publication Critical patent/WO2009099302A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a dye used in a dye-sensitized solar cell and a dye-sensitized solar cell using the same. More particularly, a novel dye having a high light absorption is prepared and applied to a light absorbing layer for a solar cell to improve photoelectric current conversion efficiency.
  • the present invention relates to a dye that can increase the open voltage.
  • Dye-sensitized solar cells instead of the electrical energy used in the organic electroluminescent display (OLED) driving mechanism, are a mechanism that absorbs the light energy of visible light and generates electron-hole pairs. It is a photoelectrochemical solar cell whose main component material is a transition metal oxide which transfers electrons.
  • a dye-sensitized solar cell using nanoparticle titanium oxide developed in 1991 by Michael Graetzel of the Swiss National Institute of Advanced Technology (EPFL), is a representative example of conventional dye-sensitized solar cells.
  • the dye-sensitized solar cells developed by them have the advantage that they can be applied to glass walls or glass greenhouses of buildings due to the transparent electrodes and are cheaper to manufacture than conventional silicon solar cells. .
  • the photoelectric current conversion efficiency is proportional to the amount of electrons generated by the absorption of sunlight.
  • the conventional method has a limitation in improving the photoelectric conversion efficiency of the solar cell, and therefore, the development of a new technology for improving the efficiency, in particular, the improvement of the photoelectric conversion efficiency through the development of a new dye having high light absorption and broad light absorption area. This situation is urgent required.
  • the present invention provides a compound having a structure of the following formula (1) or (2) and a dye for a dye-sensitized solar cell comprising the same.
  • X 1 and X 2 are independently a substituent consisting of a (C6-C60) aryl group, a (C3-C60) heteroaryl group, or a combination thereof, wherein at least one of X 1 and X 2 is a popinyl group, phenothia A vinyl group, a coumarinyl group, or a phthalocyanyl group;
  • Y 1 and Y 2 are independently a substituent consisting of a (C 6 -C 60) aromatic hydrocarbon group, a (C 3 -C 60) aromatic heterocyclic group, a combination thereof, or Y 3 and Y 4 are independently selected from a substituent consisting of a (C 6 -C 60) aryl group, a (C 3 -C 60) heteroaryl group, or a combination thereof, at least one of Y 1 to Y 4 is selected from A popinyl group, a phenothiazinyl group, a coumarinyl group, or a phthalocyanyl group;
  • Z 1 and Z 2 are independently a chemical bond or are selected from (C 6 -C 30) arylene, at least one (C 3 -C 30) heteroarylene, at least one vinylene, or a combination thereof;
  • a 1 and A 2 are acidic functional groups
  • the aryl, heteroaryl, arylene, heteroaryl or vinylene group is further substituted with one or more substituents selected from (C1-C20) alkyl, (C1-C20) alkoxy, halogen, amino, nitro and cyano (CN) groups. May be substituted.]
  • the first step in driving a solar cell in a dye-sensitized solar cell is the process of generating a photo charge from the light energy.
  • a dye material is used to generate a photo charge, and the dye material is excited by absorbing light transmitted through the conductive transparent substrate.
  • Metal complexes are widely used as the dye material, and mono, bis, or tris (substituted 2,2'-bipyridine) complex salts of ruthenium are generally used among the metal complexes.
  • they have relatively high efficiencies with the advantage that both metallization and absorption by the ligand and the metal to ligand charge transfer (MLCT) can be used.
  • MLCT metal to ligand charge transfer
  • they have a problem in that the efficiency of the electrons excited by light in the bottom state of the metal composite falls back to the ground state is relatively high, resulting in low efficiency.
  • many cases have been reported in which various electron transfer materials are introduced into a metal complex through covalent bonds.
  • the introduction of electron transfer materials through covalent bonds has a problem that the process is very complicated and difficult to introduce various electron transfer materials.
  • the larger the light absorbing area and the higher the light absorbency is advantageous, but the conventional ruthenium composite has a problem of low light absorbance.
  • a new dye having high light absorbency was synthesized by providing a compound or ruthenium complex in which a popinyl group, phenothiazinyl group, coumarinyl group, and phthalocyanyl group were introduced into an aniline structure as a dye for a solar cell.
  • a popinyl group, phenothiazinyl group, coumarinyl group, and phthalocyanyl group were introduced into an aniline structure as a dye for a solar cell.
  • the dye for a dye-sensitized solar cell according to the present invention is selected from the compounds of Formula 1 or Formula 2.
  • the aryl is an aromatic hydrocarbon group selected from the group consisting of phenyl group, naphthyl group, anthracenyl group, fluorenyl group, biphenyl group, and combinations thereof, and has a carbocycle aromatic compound having 6 to 30 carbon atoms. (carbocyclic aromatic compound) is preferred.
  • the heteroaryl is an aromatic heterocyclic group containing a hetero element such as nitrogen (N), sulfur (S), oxygen (O) to form an aromatic ring, pyran, pyrrole, thiophene, carbazole and combinations thereof It is preferable to select from the substituent which consists of.
  • Z 1 and Z 2 is a chemical bond or in the form of a radical capable of bonding at both ends, and is selected from arylene, heteroarylene, vinylene and combinations thereof, specifically vinylene, polyvinylene, phenyl Ethylene, naphthylene, anthracenylene, fluorenylene, biphenylene, pyranylene, pyrrolene, thiophenylene, carbazoylene group or a combination thereof.
  • the A 1 and A 2 is an acidic functional group, specifically, selected from a substituent consisting of a carboxyl group, a phosphorous acid group, a sulfonic acid group, a phosphinic acid group, a hydroxy group, an oxycarboxylic acid, an acid amide, and a combination thereof, and more preferably.
  • Carboxyl group is an acidic functional group, specifically, selected from a substituent consisting of a carboxyl group, a phosphorous acid group, a sulfonic acid group, a phosphinic acid group, a hydroxy group, an oxycarboxylic acid, an acid amide, and a combination thereof, and more preferably.
  • Carboxyl group is an acidic functional group, specifically, selected from a substituent consisting of a carboxyl group, a phosphorous acid group, a sulfonic acid group, a phosphinic acid group, a hydroxy group, an oxycarboxylic
  • the dye includes at least one functional group selected from a popinyl group, a phenothiazinyl group, a coumarinyl group, or a phthalocyanyl group in the compound, and a popinyl group, phenothiazinyl group, and coumarinyl group in one compound. Or more preferably two or more functional groups selected from phthalocyanyl groups.
  • the compound of Formula 1 is more specifically selected from the compound of Formula 3, the compound of Formula 2 is more specifically selected from the compound of Formula 4 or Formula 5.
  • [X 11 and Y 11 to Y 13 in Chemical Formulas 3 to 5 may be independently selected from the following structures:
  • X 12 is selected from the structure
  • Z 11 and Z 12 are independently Is selected from,
  • Z 21 to Z 24 are independently Is selected from,
  • n is an integer from 0 to 4
  • j is an integer from 0 to 2
  • k is an integer from 0 to 4
  • p is an integer of 0-2
  • q is an integer of 0-4.
  • R 11 to R 22 and R 30 to R 31 are independently hydrogen or selected from (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy, halogen element, amino group, nitro group or cyano group (CN).]
  • the compound of Formula 3 to Formula 5 is specifically selected from compounds of the following structure, in the compound of the structure 11 To R 22 , R 31 To R 32 And R 40 Is independently selected from hydrogen or (C1-C20) alkyl, n is an integer from 0 to 4, a is 0 or 1, b is an integer from 0 to 2, c is 0 or 1, d is 0 It is an integer of 2 to.
  • the present invention provides a solar cell containing at least one of the dye materials according to the present invention in a light absorption layer.
  • FIG. 1 The vertical structure of the solar cell containing the dye material according to the present invention is shown in FIG. 1.
  • the titanium alkoxide solution is coated on an FTO glass substrate and then dried, followed by coating, drying, and heat treating a titania sol to form a titania film.
  • the substrate on which the titania film is formed is immersed in a dye-containing solution and dried to adsorb the dye onto the titania film made of titania particles.
  • a substrate having a dye layer and a substrate having an electrode layer were bonded to each other to manufacture a solar cell having a structure as shown in FIG. 1.
  • FIG. 1 is a schematic cross-sectional view of a dye-sensitized solar cell device according to an embodiment of the present invention.
  • 13 is a current-voltage curve of a solar cell prepared using compounds 102 and 103,
  • 17 is a current-voltage curve of a solar cell prepared using compound 108,
  • 19 is a current-voltage curve of a solar cell prepared using Compound 110.
  • Compound 11 Compound 10 (4.50 g, 16.46 mmol) is added to glacial acetic acid (50 ml), and the temperature is raised to 70 ° C. After confirming that the reactants are completely dissolved, KI (5.46g, 32.87mmol), KIO 3 (10.56 g, 49.33 mmol) was added and then stirred for 3 hours. After cooling the reaction solution, the resulting solids are filtered and washed several times with water. The product was dissolved in dichloromethane, washed with dilute ammonia solution (pH ⁇ 8), and then NaHSO 3 Wash several times with saturated solution and water.
  • Compound 14 Compound 13 (3.0 g, 13.80 mmol), DMF (3.2 ml, 38.4 mmol) and POCl 3 (3.9 ml, 38.4 mmol) were added to 1,2-dichloroethane (20 ml). Next, the mixture is stirred at room temperature for 1 hour and then refluxed for 1 hour. The reaction solution is cooled to room temperature, poured slowly into a saturated aqueous sodium acetate solution, and then stirred for 10 minutes. Extracted with dichloromethane, the organic layer was separated and dried over MgSO 4 .
  • Compound 16 Compound 15 (0.15 g, 0.68 mmol), Compound 11 (0.15 g, 0.28 mmol), Pd (OAc) 2 (3 mg, 0.014 mmol), K 2 CO 3 (0.14g, 0.14mmol), Bu 4 NBr (0.18 g, 0.57 mmol) was added to DMF (5 ml), then the temperature was raised to 95 ° C. and stirred for 16 h. After cooling the reaction solution, water (50ml) is added and extracted with dichloromethane.
  • Compound 18 Compound 17 (6.10 g, 9.79 mmol), 2-thiophenebronic acid (0.42 g, 3.26 mmol), Pd (PPh) 4 (0.15 g, 0.13 mmol), K 2 CO 3 (1.18 g, 9.79 mmol) was added to DMF (5 ml), then the temperature was raised to 60 ° C. and stirred for 2 hours. After cooling the reaction solution, water (50ml) is added and extracted with dichloromethane.
  • Compound 20 Compound 15 (0.41 g, 1.68 mmol), Compound 19 (0.28 g, 0.46 mmol), Pd (OAc) 2 (5mg, 0.023mmol), K 2 CO 3 (0.22g, 1.84mmol), Bu 4 NBr (0.30 g, 0.92 mmol) was added to DMF (5 ml), then the temperature was 95 Raise to C and stir for 6 hours. After cooling the reaction solution, water (50ml) was added and extracted with dichloromethane. The organic layer was separated and then MgSO 4 After drying under reduced pressure, the solvent was removed under reduced pressure, and the liquid was chromatographed with dichloromethane as a developing solvent. (0.36 g, 100%).
  • Compound 21 Compound 17 (3.20 g, 5.13 mmol), 2,2'-bithiophene-5-bronic acid pinacol ester (0.50 g, 1.71 mmol), Pd ( PPh) 4 (79mg, 0.068mmol), K 2 CO 3 (0.62 g, 5.13 mmol) was added to DMF (5 ml), and then the temperature was 60 Raise to C and stir for 2 hours. After cooling the reaction solution, water (50ml) was added and extracted with dichloromethane.
  • Compound 23 Compound 15 (0.20 g, 0.82 mmol), Compound 22 (0.24 g, 0.35 mmol), Pd (OAc) 2 (4mg, 0.017mmol), K 2 CO 3 (0.17g, 1.40mmol), Bu 4 NBr (0.22 g, 0.70 mmol) was added to DMF (5 ml), then the temperature was 95 Raise to C and stir for 16 h. After cooling the reaction solution, water (50ml) was added and extracted with dichloromethane.
  • Compound 25 Compound 24 (1.0 g, 1.59 mmol), DMF (1.3 ml, 15.87 mmol), POCl in 1,2-Dichloroethane (20 ml) 3 (1.6ml, 15.87mmol) was added thereto, stirred at room temperature for 10 minutes, and refluxed for 16 hours. The reaction solution is cooled to room temperature, poured slowly into a saturated aqueous sodium acetate solution, and then stirred for 10 minutes. Extract with dichloromethane, separate organic layer, MgSO 4 To dry. The solvent was removed by distillation under reduced pressure, and liquid chromatography was carried out using dichloromethane as a developing solvent to obtain a red solid compound (0.86 g, 81.1%).
  • Compound 26 Compound 25 (0.48 g, 2.19 mmol), Compound 15 (0.48 g, 0.73 mmol), Pd (OAc) 2 (8mg, 0.036mmol), K 2 CO 3 (0.35g, 2.92mmol), Bu 4 NBr (0.47 g, 1.46 mmol) was added to DMF (5 ml), then the temperature was raised to 95 ° C. and stirred for 16 h. After cooling the reaction solution, water (50ml) was added and extracted with dichloromethane.
  • Absorption of the ultraviolet-visible region of the compound 104 was measured at 2 * 10 -5 M concentration using 2-methoxyethanol as a solvent, as shown in FIG. 5, and the absorbance of 58000 dm 3 mol -1 cm -1 was measured. Indicated.
  • Compound 28 Compound 27 in Glacial acetic acid (10 ml) (1.0 g, 3.32 mmol) was added and the temperature was raised to 70 ° C. After confirming that the reactants are all dissolved, KI (0.55g, 3.32mmol), KIO 3 (1.07 g, 4.98 mmol) is added and then stirred for 16 hours. After cooling the reaction solution, the resulting solids are filtered and washed several times with water. The product was dissolved in dichloromethane, washed with dilute ammonia solution (pH ⁇ 8), and then NaHSO 3 Wash several times with saturated solution and water. MgSO organic layer 4 To a light yellow solid which is then dried under reduced pressure to remove the solvent.
  • Compound 29 Compound 28 (0.34 g, 1.55 mmol), Compound 15 (0.66 g, 1.55 mmol), Pd (OAc) 2 (17mg, 0.077mmol), K 2 CO 3 (0.56g, 4.65mmol), Bu 4 NBr (0.75 g, 2.33 mmol) was added to DMF (5 ml), then the temperature was 95 Raise to C and stir for 4 h. After cooling the reaction solution, water (50ml) is added and extracted with dichloromethane.
  • the absorbance of the ultraviolet-visible region at 2.5 * 10 -5 M concentration using 2-methoxyethanol as a solvent for the compound 105 was shown in FIG. 6, and the absorbance of 67000 dm 3 mol -1 cm -1 was measured. Indicated.
  • Compound 32 Compound 31 (3.0 g, 13.56 mmol) was added to Isopropyl alcohol (100 ml), and a solution of NaSH (6.03 g, 108.48 mmol) dissolved in water (5 ml) was added thereto, followed by reflux for 16 hours. do. After cooling the reaction solution, the solvent is removed under reduced pressure and washed with excess water. Ethyl acetate is added to completely dissolve the resulting solids, and then poured into water (100 ml) and stirred for 10 minutes.
  • Compound 36 Compound 32 in o-Xylene (20 ml) (0.25 g, 1.21 mmol), Compound 35 (1.09g, 3.0mmol), Pd (OAc) 2 (11 mg, 0.05 mmol), P ( t Bu) 3 (0.03ml), NaO t Bu (0.35 g, 1.63 mmol) is added and then refluxed for 16 h. After cooling the reaction solution, the catalyst and by-products are removed by filtration, and then the solvent is removed under reduced pressure.
  • Compound 37 Compound 36 in THF (150 ml), water (50 ml) (0.39g, 0.51mmol), CF 3 COOH (10 ml) is added and then stirred for 1 hour. NaHCO 3 The reaction solution is neutralized with an aqueous solution and then extracted with dichloromethane. The organic layer was separated and then MgSO 4 After drying under reduced pressure, the solvent was removed under reduced pressure, and the liquid was chromatographed with dichloromethane as a developing solvent. (0.24 g, 68.6%).
  • Compound 38 Compound 34 (7.07 g, 24.94 mmol), DMF (5.82 ml, 74.83 mmol), and POCl 3 (6.98 ml, 74.83 mmol) were added to 1,2-dichloroethane (30 ml). Next, the mixture is stirred at room temperature for 1 hour and then refluxed for 2 hours. The reaction solution is cooled to room temperature, poured slowly into a saturated aqueous sodium acetate solution, and then stirred for 10 minutes. Extracted with dichloromethane, the organic layer was separated and dried over MgSO 4 .
  • Compound 40 Compound 11 (0.19 g, 0.36 mmol) prepared in Synthesis Example 1, compound 39 (0.27 g, 0.87 mmol), Pd (OAc) 2 (4mg, 0.018mmol), K 2 CO 3 (0.17g, 1.44mmol), Bu 4 NBr (0.23 g, 0.72 mmol) was added to DMF (5 ml), and then the temperature was 95 Raise to C and stir for 6 hours. After cooling the reaction solution, water (50ml) was added and extracted with dichloromethane.
  • the absorption wavelength of the ultraviolet-visible wide region of the compound 107 is shown in FIG. 8. Under 1.5 * 10 -5 M condition using 2-methoxyethanol as a solvent, the absorbance is 70,000 dm 3 mol -1 cm -1 or more, which is significantly higher than that of conventional dyes.
  • Triethylamine (4.67ml, 33.5mmol) is added and stirred for 30 minutes before terminating the reaction.
  • TLC dichloromethane
  • Compound 45 Compound 11 (120 mg, 0.19 mmol) and Compound 44 (40 mg, 0.077 mmol) prepared in Synthesis Example 1 were added to the purified dimethylformamide (3 ml) after blocking light under a nitrogen stream, followed by stirring. do.
  • Palladium (II) acetate (8 mg, 0.039 mmol), tetrabutylammonium bromide (TBAB, 62 mg, 0.19 mmol), anhydrous potassium carbonate anhydrous (K 2 CO 3 , 56 mg, 0.462 ) Is added and stirred at 95 ° C. for 15 hours. Extract using dichloromethane.
  • Compound 52 Compound 51 in Absolute ethanol (80 ml) (1.0 g, 4.09 mmol) was added, the mixture was stirred for 10 minutes, and concentrated sulfuric acid (1 ml) was added to the reaction solution, followed by reflux for 80 hours. After the temperature was lowered to room temperature and distilled water (80 ml) was added, the solution was neutralized with 1M aqueous sodium hydroxide solution. The resulting solid is filtered and dried to give a white solid compound (1.18g, 95.0%) is obtained. M.p.
  • Compound 53 Compound 52 in Absolute ethanol (70 ml) (1.1 g, 3.66 mmol) and sodium borohydride (2.77 g, 73.2 mmol) are added, and the reaction solution is refluxed for 3 hours. Lower the temperature to room temperature, and add a solution of ammonium chloride solution (3.8g, 75.0mmol) in distilled water (75ml) to the reaction solution. The white solid product is filtered off and then depressurized to remove the solvent. Ethyl acetate was added to completely dissolve the produced solids, and then the organic layer was separated and then MgSO 4 After drying under reduced pressure, the solvent is removed to give a pale pink solid compound. (0.69 g, 87.5%). M.p.
  • Compound 54 Compound 53 (0.69 g, 3.16 mmol) is dissolved in 48% HBr (15.5 ml) and concentrated sulfuric acid (5.1 ml) and refluxed for 6 hours. After cooling the reaction solution, distilled water (30 ml) is added. After neutralizing with 1M sodium hydroxide solution, the pale pink solid product was filtered and dissolved in chloroform. The organic layer was separated and then MgSO 4 After drying under reduced pressure, the solvent is removed to give a pale pink solid compound. (0.83 g, 76.0%) is obtained. M.p.
  • Compound 56 Compound 55 (0.40 g, 0.88 mmol) and 95% NaH (64 mg, 2.62 mmol) were added to THF (10 ml), followed by stirring for 30 minutes, followed by compound 14 (0.46 g, 2.10 mmol) prepared in Synthesis Example 1. Add and stir for 16 hours. Water (50 ml) was added to the reaction solution, followed by extraction with chloroform. The organic layer was separated and then MgSO. 4 To dry. Solvent is removed under reduced pressure, and the solid formed by methanol is washed (0.25 g, 48.1%).
  • Compound 109 has an absorption up to about 740 nm (band edge), shows an absorption wavelength of coumarin structure at 465 nm and a metal to ligand charge transfer (MLCT) band at 557 nm, and a molar extinction coefficient ( ⁇ , M -1 cm -1 ) are calculated as 54,000 (465 nm) and 23,000 (557 nm), respectively.
  • MLCT metal to ligand charge transfer
  • the MLCT band was moved to a long wavelength of about 43 nm while having a much higher absorbance than N719.
  • Such high absorbance allows light to be absorbed more efficiently when applied to solar cells, thus further improving the photoelectric conversion efficiency of the solar cell.
  • Compound 57 Compound 55 (0.20 g, 0.44 mmol) and 95% NaH (32 mg, 1.31 mmol) prepared in Synthesis Example 9 were added to THF (5 ml), and stirred for 1 hour, followed by compound 38 prepared in Synthesis Example 7. (0.33 g, 1.05 mmol) was added and stirred for 16 hours. Water (50 ml) was added to the reaction solution, followed by extraction with chloroform. The organic layer was separated and then MgSO. 4 To dry. Remove the solvent by depressurizing and wash the solid produced with methanol. (0.24 g, 70.6%).
  • Compound 110 had absorption up to about 740 nm (band edge), showed maximum absorption wavelength at 307 nm, absorption wavelength of phenothiazine structure at 434 nm, and metal to ligand charge transfer (MLCT) band at 545 nm.
  • the molar extinction coefficients ( ⁇ , M -1 cm -1 ) are calculated as 100,000 (307 nm), 59,000 (434 nm) and 28,000 (545 nm), respectively.
  • the MLCT band was moved to a long wavelength at about 30 nm while having a much higher absorbance than N719. Such high absorbance allows light to be absorbed more efficiently when applied to solar cells, thus further improving the photoelectric conversion efficiency of the solar cell.
  • the dyes for dye-sensitized solar cells of Synthesis Examples 1 to 10 have a high absorbance of 5 times or more than conventional dyes (N719), and thus can be improved in photoelectric conversion efficiency when applied to dye-sensitized solar cells.
  • Dysol titania (TiO 2 ) is coated on the FTO glass by the doctor blade method.
  • the coated film is dried in an oven at 100 ° C. for 10 minutes and then heat treated at 450 ° C. for 30 minutes to obtain a 10 micrometer thick TiO 2 film.
  • the TiO 2 film is immersed in an anhydrous ethanol solution of the synthesized dye at a concentration of 0.5 mM for 24 hours to adsorb the dye (when the dye is not dissolved in anhydrous ethanol, a solvent that can be dissolved is dissolved. use).
  • the dye that has not been adsorbed with anhydrous ethanol is thoroughly washed and dried. The dye-adsorbed film is scraped off, leaving only the size of 4 mm x 4 mm.
  • the electrolyte solution was 0.1 M LiI, 0.05 MI 2 , 0.6 M 1-hexyl-2,3-dimethylimidazolium iodide and 0.5 M 4-t-butylpyridine. (4- tert- butylpyridine) was prepared using 3-methoxypropionitrile solvent.
  • the M236 source measure unit SMU, Keithley was used to obtain the current-voltage curve.
  • the electric potential ranged from -0.8 V to 0.2 V, and the light intensity was 100 mW / cm 2 .
  • the solar cell device was manufactured by the method described above, and its characteristics were checked. Opening voltages (V oc ) and short circuits measured from the used dye and the manufactured solar cell device were measured.
  • the current (J sc ), fill factor (FF), and photoelectric conversion efficiency (%) are shown in Table 3 below.
  • the efficiency according to the following examples is based on device structure, size of titanium oxide, and concentration of co-adsorbant. And type, concentration and type of electrolyte, and the like, and are therefore not limited to the following values.
  • the dye according to the present invention exhibits high light absorption, and the dye-sensitized solar cell including the dye has excellent photoelectric conversion efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hybrid Cells (AREA)

Abstract

본 발명은 염료감응 태양전지용 염료에 관한 것으로, 본 발명에 의한 염료는 높은 광 흡수도를 가지며 태양 전지용 광 흡수층에 적용되어 광전 전류 변환 효율을 향상시킬 수 있다.

Description

염료 감응 태양전지용 염료 및 이를 함유하는 태양전지
본 발명은 염료 감응 태양전지에 사용하는 염료와 이를 이용한 염료 감응 태양전지에 관한 것으로, 보다 자세하게는 높은 광 흡수도를 가지는 신규 염료를 제조하고 이를 태양 전지용 광 흡수층에 적용하여 광전 전류 변환 효율을 향상 시키고 개방전압을 증가 시킬 수 있는 염료에 관한 것이다.
최근 들어 지구온난화의 주범으로 지목되는 이산화탄소의 배출량을 감소시키고 직면하는 에너지 문제를 해결하기 위하여 기존의 화석 연료를 대체할 수 있는 다양한 연구가 진행되어 오고 있다. 풍력, 원자력, 태양광 등의 자연 에너지를 활용하기 위한 광범위한 연구가 멀지 않은 장래에 고갈될 석유 자원을 대체하기 위한 연구로 진행되어 오고 있으며, 이 중 태양에너지를 이용한 태양 전지는 가장 환경친화적이며, 다른 에너지원과는 달리 우리가 적절한 활용방법만 개발하면 자원이 무한하다. 셀레니움(Se)을 이용한 태양전지가 1983년 개발된 이후로 최근에는 실리콘 태양 전지가 각광을 받고 있으나, 제작 비용 측면에서 상당히 고가이기 때문에 실용화에는 한계가 있고, 전지효율이 아직은 상당히 부족하다. 이러한 문제를 극복하기 위하여 비용이 저렴한 염료 감응 태양 전지의 개발이 여러 그룹에서 적극 검토되어 오고 있다.
유기전기발광디스플레이(OLED)의 구동메카니즘에서 사용했던 전기에너지 대신 염료 감응 태양 전지는 가시광선의 빛에너지를 흡수하여 전자-홀 쌍(electron-hole pair)을 생성하는 메카니즘이며, 감광성 염료 분자 및 생성된 전자를 전달하는 전이 금속 산화물을 주된 구성 재료로 하는 광 전기화학적 태양 전지이다. 스위스 국립 로잔 고등기술원(EPFL)의 마이클 그라첼(Michael Graetzel)의 연구팀이 1991년 개발한 나노입자 산화티타늄을 이용한 염료 감응 태양 전지가 종래의 염료 감응 태양 전지 중에서 대표적인 연구사례이다.
이들이 개발한 염료 감응 태양 전지는 투명한 전극으로 인해 건물 외벽 유리창이나 유리 온실 등에 응용이 가능하다는 이점이 있고 기존의 실리콘 태양 전지에 비해 제조 단가가 저렴하지만, 광전변환 효율이 낮아서 실제 적용에는 한계가 있다.
광전 전류 변환효율은 태양빛의 흡수에 의해 생성된 전자의 양에 비례한다. 태양 전지의 효율을 증가시키기 위해서는 적절한 방법으로 태양빛의 흡수를 증가시키거나 흡착된 염료의 량을 높여 전자를 더 많이 생성되게 하거나, 또는 생성된 여기전자가 전자-홀 재결합에 의해 소멸되는 것을 막아줄 수도 있다. 태양빛의 흡수를 높이기 위해 백금전극의 반사율을 높이거나, 산화물 반도체의 입자를 나노미터 수준의 크기로 제조하여 단위면적당 염료의 흡착량을 높일 수 있으며, 수 마이크로 크기의 반도체 산화물 광산란자를 섞어서 제조하는 방법 등이 개발되어 있다.
그러나 종래 방법으로는 태양 전지의 광전변환 효율 향상에 한계가 있으며, 따라서 효율 향상을 위한 새로운 기술 개발, 특히 광 흡수도가 높으며 동시에 광 흡수의 영역이 넓은 새로운 염료의 개발을 통한 광전변환 효율의 향상이 절실히 요구되고 있는 실정이다.
본 발명의 목적은 높은 광 흡수도를 나타내는 염료 감응 태양 전지용 염료를 제공하여, 상기 염료를 포함하는 광전변환 효율이 개선된 염료 감응 태양 전지를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1 또는 하기 화학식 2의 구조를 갖는 화합물 및 이를 포함하는 염료 감응 태양 전지용 염료를 제공한다.
[화학식 1]
Figure PCTKR2009000561-appb-I000001
[화학식 2]
Figure PCTKR2009000561-appb-I000002
[상기 화학식 1 내지 화학식 2에서,
X1 및 X2는 독립적으로 (C6~C60)아릴기, (C3~C60)헤테로아릴기, 또는 이들의 조합으로 이루어진 치환기이며, 이때 X1 및 X2 중 적어도 하나는 포피리닐기, 페노티아지닐기, 쿠마리닐기 또는 프탈로시아닐기를 포함하고;
Y1 및 Y2는 독립적으로 (C6~C60)방향족 탄화수소기, (C3~C60)방향족 헤테로고리기, 이들의 조합으로 이루어진 치환기, 또는
Figure PCTKR2009000561-appb-I000003
로부터 선택되고, 상기 Y3 및 Y4는 독립적으로 (C6~C60)아릴기, (C3~C60)헤테로아릴기 또는 이들의 조합으로 이루어진 치환기로부터 선택되며, 상기 Y1 내지 Y4 중 적어도 하나는 포피리닐기, 페노티아지닐기, 쿠마리닐기 또는 프탈로시아닐기를 포함하고;
Z1 및 Z2는 독립적으로 화학결합이거나, (C6~C30)아릴렌, 1이상의 (C3~C30)헤테로아릴렌, 1이상의 비닐렌, 또는 이들의 조합으로부터 선택되고;
A1 및 A2는 산성작용기이며;
상기 아릴, 헤테로아릴, 아릴렌, 헤테로아릴 또는 비닐렌기는 (C1~C20)알킬, (C1~C20)알콕시, 할로겐원소, 아미노기, 니트로기 및 시아노기(CN)로부터 선택되는 1 이상의 치환기로 더 치환될 수 있다.]
이하, 본 발명에 대하여 보다 상세히 설명한다.
염료감응 태양전지에서 태양 전지가 구동되는 첫 단계는 광 에너지로부터 광 전하를 생성하는 과정이다. 통상적으로 광 전하 생성을 위하여 염료물질을 사용하는데, 상기 염료물질은 전도성 투명기판을 투과한 빛을 흡수하여 여기된다.
상기 염료물질로는 금속 복합체가 널리 사용되고 있으며, 상기 금속 복합체 중에서도 루테늄의 모노, 비스 또는 트리스(치환 2,2'-비피리딘)착염 등이 일반적으로 사용되고 있다. 특히 이들은 금속 착염의 리간드에 의한 흡수와 중심 금속에서 리간드로의 전자 전이(MLCT, metal to ligand charge transfer) 에 의한 흡수를 모두 이용할 수 있다는 장점으로 비교적 높은 효율을 가진다. 그러나 이들은 금속 복합체의 바닥상태에서 빛에 의해 여기된 전자가 다시 바닥상태로 떨어지는 속도가 비교적 빨라 효율이 낮다는 문제가 있었다. 이러한 문제를 해결하기 위해 공유결합을 통해 금속 복합체에 다양한 전자 전달 물질을 도입하는 사례가 많이 보고되었다. 하지만 공유결합을 통한 전자 전달 물질 도입은 그 과정이 매우 복잡하고 어려워 다양한 전자 전달물질을 도입하기가 어렵다는 문제가 있다. 또한 태양전지의 효율 향상을 위해서는 광 흡수 영역이 넓을수록 그리고 광 흡수도가 높을수록 유리하나 종래 루테늄 복합체는 광 흡수도가 낮은 문제점이 있다.
이에 대해 본 발명에서는 태양전지용 염료로서 아닐린 구조에 포피리닐기, 페노티아지닐기, 쿠마리닐기, 그리고 프탈로시아닐기를 도입한 화합물 또는 루테늄 착물을 제공함으로써 높은 광 흡수도를 가진 새로운 염료를 합성하였으며, 이를 염료 감응 태양 전지에 이용 시 광전전류 변환효율의 향상이 기대된다.
본 발명에 따른 염료 감응 태양전지용 염료는 상기 화학식 1 또는 화학식 2의 화합물로부터 선택된다.
상기 화학식 1 및 화학식 2에서 상기 아릴은 방향족 탄화수소기로서 페닐기, 나프틸기, 안트라세닐기, 플루오레닐기, 비페닐기 및 이들의 조합으로 이루어진 군에서 선택되며 탄소수 6 내지 30의 카르보사이클 방향족계 화합물(carbocyclic aromatic compound)인 것이 바람직하다. 또한 상기 헤테로아릴은 방향족 헤테로고리기로서 질소(N), 황(S), 산소(O) 등의 헤테로원소가 포함되어 방향족고리를 형성하는 것으로서 피란, 피롤, 티오펜, 카바졸 및 이들의 조합으로 이루어진 치환기에서 선택되는 것이 바람직하다.
또한 Z1 및 Z2는 화학결합이거나, 양 말단이 결합가능한 라디칼의 형태를 가지며, 아릴렌, 헤테로아릴렌, 비닐렌 및 이들의 조합으로부터 선택되며, 구체적으로는 비닐렌, 폴리비닐렌, 페닐렌, 나프틸렌, 안트라세닐렌, 플루오레닐렌, 비페닐렌, 피란일렌, 피롤렌, 티오펜일렌, 카바졸일렌기 또는 이들의 조합으로 이루어진 군에서 선택된다.
상기 A1 및 A2는 산성 작용기로서 구체적으로는 카르복시기, 아인산기, 술폰산기, 포스핀산기, 히드록시기, 옥시카르복시산, 산아미드 및 이들의 조합으로 이루어진 치환기에서 선택되는 것이 바람직하며, 보다 바람직하게는 카르복시기이다.
또한 상기 염료는 화합물 내에 포피리닐기, 페노티아지닐기, 쿠마리닐기 또는 프탈로시아닐기로부터 선택되는 기능기를 적어도 하나 이상 포함하는 것으로, 하나의 화합물 내에 포피리닐기, 페노티아지닐기, 쿠마리닐기 또는 프탈로시아닐기로부터 선택되는 기능기가 2개 이상 함유되는 것이 더욱 바람직하다.
상기 화학식 1의 화합물은 보다 구체적으로 하기 화학식 3의 화합물로부터 선택되고, 상기 화학식 2의 화합물은 보다 구체적으로 하기 화학식 4 또는 화학식 5의 화합물로부터 선택된다.
[화학식 3]
Figure PCTKR2009000561-appb-I000004
[화학식 4]
Figure PCTKR2009000561-appb-I000005
[화학식 5]
Figure PCTKR2009000561-appb-I000006
[상기 화학식 3 내지 화학식 5에서 X11 및 Y11 내지 Y13은 독립적으로 하기 구조로부터 선택되고
Figure PCTKR2009000561-appb-I000007
X12는 하기 구조로부터 선택되며
Figure PCTKR2009000561-appb-I000008
Z11 및 Z12는 독립적으로
Figure PCTKR2009000561-appb-I000009
로부터 선택되고,
Z21 내지 Z24는 독립적으로
Figure PCTKR2009000561-appb-I000010
로부터 선택되며,
m은 0 내지 2의 정수이고, n은 0 내지 4의 정수이고,
j은 0 내지 2의 정수이고, k는 0 내지 4의 정수이며,
p은 0 내지 2의 정수이고, q는 0 내지 4의 정수이다.
R11 내지 R22 및 R30 내지 R31은 독립적으로 수소이거나, (C1~C20)알킬, (C1~C20)알콕시, 할로겐원소, 아미노기, 니트로기 또는 시아노기(CN)로부터 선택된다.]
상기 화학식 3 내지 화학식 5의 화합물은 구체적으로 하기 구조의 화합물로부터 선택되며, 하기 구조의 화합물에서 R11 내지 R22, R31내지 R32 R40은 독립적으로 수소 또는 (C1~C20)알킬로부터 선택되고, n은 0 내지 4의 정수이며, a 는 0 또는 1이고, b는 0 내지 2의 정수이며, c 는 0 또는 1이고, d는 0 내지 2의 정수이다.
Figure PCTKR2009000561-appb-I000011
Figure PCTKR2009000561-appb-I000012
Figure PCTKR2009000561-appb-I000013
Figure PCTKR2009000561-appb-I000014
Figure PCTKR2009000561-appb-I000015
Figure PCTKR2009000561-appb-I000016
Figure PCTKR2009000561-appb-I000017
Figure PCTKR2009000561-appb-I000018
Figure PCTKR2009000561-appb-I000019
Figure PCTKR2009000561-appb-I000020
Figure PCTKR2009000561-appb-I000021
Figure PCTKR2009000561-appb-I000022
Figure PCTKR2009000561-appb-I000023
Figure PCTKR2009000561-appb-I000024
Figure PCTKR2009000561-appb-I000025
Figure PCTKR2009000561-appb-I000026
Figure PCTKR2009000561-appb-I000027
본 발명은 본 발명에 따른 염료 물질 중 하나 이상을 광흡수층에 함유하는 태양전지를 제공한다.
본 발명에 따른 염료 물질을 함유하는 태양전지의 일례로서 그 수직 구조를 도 1에 도시하였다. 도 1을 참조하면 FTO 유리기판 상에 티타늄알콕사이드 용액을 코팅한 후 건조한 후 티타니아 졸을 코팅 및 건조하고 열처리하여 티타니아 막을 형성한다. 티타니아 막이 형성된 기판을 염료함유 용액에 침지한 후 건조하여 티타니아 입자로 이루어진 티타니아 막에 염료를 흡착시킨다. 또 다른 FTO 유리기판 상에 백금 전극층을 형성한 후 염료층이 형성된 기판 및 전극층이 형성된 기판을 서로 접합하여 도 1에 도시된 바와 같은 구조의 태양전지 셀을 제조하였다.
도 1은 본 발명의 일 실시예에 따른 염료감응 태양전지 소자의 단면 모식도이다.
도 2는 합성예 1에서 제조된 염료(화합물 101)의 흡광도 그래프이고,
도 3은 합성예 2에서 제조된 염료(화합물 102)의 흡광도 그래프이고,
도 4는 합성예 3에서 제조된 염료(화합물 103)의 흡광도 그래프이고,
도 5는 합성예 4에서 제조된 염료(화합물 104)의 흡광도 그래프이고,
도 6은 합성예 5에서 제조된 염료(화합물 105)의 흡광도 그래프이고,
도 7은 합성예 6에서 제조된 염료(화합물 105)의 흡광도 그래프이고,
도 8은 합성예 7에서 제조된 염료(화합물 107)의 흡광도 그래프이고,
도 9은 합성예 8에서 제조된 염료(화합물 108)의 흡광도 그래프이고,
도 10는 합성예 9에서 제조된 염료(화합물 109)의 흡광도 그래프이고,
도 11은 합성예 10에서 제조된 염료(화합물 110)의 흡광도 그래프이다.
도 12는 화합물 101, 104를 사용하여 제조된 태양전지의 전류-전압곡선이고,
도 13은 화합물 102, 103을 사용하여 제조된 태양전지의 전류-전압곡선이고,
도 14는 화합물 105를 사용하여 제조된 태양전지의 전류-전압곡선이고,
도 15는 화합물 106을 사용하여 제조된 태양전지의 전류-전압곡선이고,
도 16은 화합물 107을 사용하여 제조된 태양전지의 전류-전압곡선이고,
도 17은 화합물 108을 사용하여 제조된 태양전지의 전류-전압곡선이고,
도 18은 화합물 109를 사용하여 제조된 태양전지의 전류-전압곡선이고,
도 19는 화합물 110을 사용하여 제조된 태양전지의 전류-전압곡선이다.
아래에 실시예를 통하여 본 발명을 더 구체적으로 설명한다. 단, 하기 실시예는 본 발명의 예시에 불과한 것으로서 본 발명의 특허 청구 범위가 이에 따라 한정되는 것은 아니다.
합성예 1: 쿠마린 함유 염료(화합물 101)의 합성
Figure PCTKR2009000561-appb-I000028
Figure PCTKR2009000561-appb-I000029
Figure PCTKR2009000561-appb-I000030
화합물 10: 1,2-디클로로에탄(1,2-Dichloroethane) (20ml)에 트리페닐아민(triphenylamine) (3.0g, 12.23mmol), 디메틸포름아마이드(DMF) (2.89ml, 36.69mmol), POCl3 (3.41ml, 36.69mmol)을 넣은 다음, 상온에서 1시간 동안 교반한 후, 1시간 동안 환류한다. 반응용액을 실온으로 식힌 다음, 포화 아세트산나트륨(Sodium acetate) 수용액에 천천히 부은 후, 10분간 교반한다. 디클로로메탄(Dichloromethane)으로 추출하여, 유기층을 분리한 다음, MgSO4 로 건조한다. 감압하여 용매를 제거하고, 디클로로메탄(Dichloromethane)을 전개용매로 하여 액체 크로마토그래피하면 노란색 액체화합물(3.04g, 89.5%)을 얻는다. 1H-NMR (400MHz, CDCl3): δ = 9.78 (s, 1H), 7.65 (d, J = 4.8Hz, 2H), 7.31 (m, 4H), 7.15 (m, 6H), 6.99 (d, J = 4.8Hz, 2H). ; IR (KBr): ν= 2835, 2733, 1688, 1585, 1506, 1244, 1161, 1034 cm-1.
화합물 11: 빙초산(Glacial acetic acid) (50ml)에 화합물 10 (4.50g, 16.46mmol)을 넣고, 온도를 70℃로 올린다. 반응물이 완전히 녹은 것을 확인한 후에, KI (5.46g, 32.87mmol), KIO3 (10.56g, 49.33mmol)을 가한 후, 3시간 동안 교반한다. 반응용액을 식히고, 생성된 고체를 여과(Suction) 한 후, 물로 여러 번 씻어준다. 생성물을 디클로로메탄(Dichloromethane)에 녹인 다음, 묽은 암모니아용액 (pH ~8)으로 씻은 후, NaHSO3 포화용액, 물로 여러 번 씻어준다. 유기층을 MgSO4 로 건조한 다음, 감압하여 용매를 제거하면 노란색 고체화합물 (8.44g, 97.7%)을 얻는다. 1H-NMR (400MHz, CDCl3): δ = 9.81 (s, 1H), 7.68 (d, J = 8.4Hz , 2H), 7.60 (d, J = 8.4Hz, 4H), 7.04 (d, J = 8.4Hz, 2H), 6.88 (d, J = 8.4Hz , 2H). ; IR (KBr): ν= 2833, 2733, 1688, 1585, 1506, 1244 cm-1.
화합물 13: 무수에탄올(Absolute ethanol) (10ml)에 4-(디에틸아미노)살리실알데하이드(4-(diethylamino)salicylaldehyde) (5.0g, 25.87mmol), 디에틸말로네이트(diethylmalonate) (5.9ml, 51.75mmol), 피페리딘(piperidine) (3ml)을 가한 다음, 2시간 동안 환류한다. 반응용액을 식힌 후, 감압하여 용매를 완전히 제거한 후에, 35% HCl (10ml), 빙초산(glacial acetic acid) (10ml)를 가한 후, 16시간 동안 환류한다. 용액을 식힌 후, NaOH 수용액을 천천히 가하여 pH ~5로 맞춘 후, 생성된 고체를 여과(suction)한다. 생성물을 물로 여러 번 씻은 후, 오븐에서 건조하면 노란색 고체화합물 (4.30g, 76.5%)을 얻는다. M.p. 85 ℃; 1H-NMR (400MHz, CDCl3): δ = 7.51 (d, J = 8.8Hz, 1H), 7.22 (d, J = 8.8Hz, 1H), 6.55 (d, J = 16.4Hz, 1H), 6.47 (s, 1H), 6.02 (d, J = 10.0Hz, 1H), 3.40 (q, 4H), 1.21 (t, 6H).
화합물 14: 1,2-디클로로에탄(1,2-Dichloroethane) (20ml)에 화합물 13 (3.0g, 13.80mmol), DMF (3.2ml, 38.4mmol), POCl3 (3.9ml, 38.4mmol)을 넣은 다음, 상온에서 1시간 동안 교반한 후, 1시간 동안 환류한다. 반응용액을 실온으로 식힌 다음, 포화 소듐 아세테이트(Sodium acetate) 수용액에 천천히 부은 후, 10분간 교반한다. 디클로로메탄(Dichloromethane)으로 추출하여, 유기층을 분리한 다음, MgSO4로 건조한다. 감압하여 용매를 제거하고, 에틸아세테이트/n-헥산(Ethyl acetate/n-hexane = 1 : 1)을 전개용매로 하여 액체 크로마토그래피하면 노란색 고체화합물 (2.63g, 77.6%)을 얻는다. M.p. 182 ℃; 1H-NMR (400MHz, CDCl3): δ = 10.10 (s, 1H), 8.24 (s, 1H), 7.38 (d, J = 8.8Hz, 1H), 6.63 (d, J = 8.8Hz, 1H), 6.47 (s, 1H), 3.47 (q, 4H), 1.25 (t, 6H).
화합물 15: 테트라하이드로퓨란(THF) (5ml)에 메틸트리페닐포스포늄브로마이드(methyltriphenylphosphonium bromide) (1.94g, 5.42mmol), NaH (0.16g, 6.78mmol)을 넣고 1시간 동안 교반한 후, 화합물 14 (1.0g, 4.52mmol)를 넣고, 16시간 동안 교반한다. 반응용액에 물 (50ml)을 가한 다음, 디클로로메탄(Dichloromethane)으로 추출하여, 유기층을 분리한 다음, MgSO4로 건조한다. 감압하여 용매를 제거하고, 디클로로메탄(Dichloromethane)을 전개용매로 하여 액체 크로마토그래피하면 노란색 액체화합물 (0.80g, 80.8%)을 얻는다. 1H-NMR (400MHz, CDCl3) : δ = 7.56 (s, 1H), 7.24 (d, J = 8.8Hz, 1H), 6.65 (dd, J = 11.2Hz, 11.2Hz, 1H), 6.55 (d, J = 8.8Hz, 1H), 6.46 (s, 1H), 6.02 (d, J = 9.6Hz, 1H), 5.28 (d, J = 9.0Hz, 1H), 3.47 (q, 4H), 1.25 (t, 6H).
화합물 16: 화합물 15 (0.15g, 0.68mmol), 화합물 11 (0.15g, 0.28mmol), Pd(OAc)2 (3mg, 0.014mmol), K2CO3 (0.14g, 0.14mmol), Bu4NBr (0.18g, 0.57mmol)을 DMF (5ml)에 가한 다음, 온도를 95 ℃로 올린 후 16시간 동안 교반한다. 반응용액을 식힌 후, 물 (50ml)을 가한 다음 디클로로메탄(Dichloromethane)으로 추출한다. 유기층을 분리한 다음, MgSO4로 건조한 후, 감압하여 용매를 제거하고, 에틸아세테이트/n-헥산(Ethyl acetate/n-hexane = 1 : 1)을 전개용매로 하여 액체 크로마토그래피하면 주황색 고체화합물 (0.12g, 60.0%)을 얻는다. 1H-NMR (400MHz, CDCl3) : δ = 9.81 (s, 1H), 7.70 (d, J = 8.8Hz, 2H), 7.65 (s, 2H), 7.45 (m, 6H), 7.26 (d, J = 8.8Hz, 2H), 7.11 (d, J = 8.8Hz, 4H), 7.04 (m, 4H), 6.58 (dd, J = 2.4Hz, 2.4Hz, 2H), 6.49 (d, J = 2.4Hz, 2H), 3.42 (q, 8H), 1.22 (t, 12H).
화합물 101 : 무수 클로로포름(Chloroform) (30ml)에 화합물 16 (0.30g, 0.34mmol), 시아노아세트산(cyanoacetic acid) (0.29g, 3.37mmol), 피페리딘(piperidine) (0.1ml, 1.01mmol)을 가한 후, 6시간 동안 환류한다. 반응용액을 식힌 후, 물 (50ml)을 가한 다음 클로로포름(Chloroform)으로 추출한다. 유기층을 분리한 다음, MgSO4로 건조한 후, 감압하여 용매를 제거하고, 메탄올/디클로로메탄(Methanol/dichloromethane = 1 : 6)을 전개용매로 하여 액체 크로마토그래피하면 주황색 고체화합물 (0.24g, 74.4%)을 얻는다. 1H-NMR (400MHz, DMSO, d6) : δ = 8.04 (s, 2H), 7.83 (s, 1H), 7.80 (d, J = 8.8Hz, 2H), 7.52 (d, J = 8.8Hz, 4H), 7.46 (d, J = 7.6Hz, 2H), 7.46 (s, 2H), 7.08 (d, J = 8.4Hz, 4H), 7.03 (m, 4H), 6.70 (dd, J = 2.4Hz, 2.4Hz, 2H), 6.54 (d, J = 2.4Hz, 2H), 3.47 (q, 8H), 1.25 (t, 12H).
상기 화합물 101에 대하여 2-메톡시에탄올을 용매로 2*10-5M 농도에서 자외선-가시광선 영역의 흡수를 측정한 결과를 도 2에 나타내었으며, 59000 dm3mol-1cm-1의 흡광도를 나타내었다.
합성예 2: 쿠마린 함유 염료(화합물 102)의 합성
Figure PCTKR2009000561-appb-I000031
Figure PCTKR2009000561-appb-I000032
Figure PCTKR2009000561-appb-I000033
화합물 17: 빙초산(Glacial acetic acid) (100ml), 물 (10ml)에 트리페닐아민(triphenylamine) (6.13g, 25.0mmol), KI (8.3g, 50.0mmol) 을 넣고, 환류한다. 반응물이 완전히 녹은 것을 확인한 후에, KIO3 (10.7g, 50.0mmol)을 가한 후, 1시간 동안 환류한다. 반응용액을 식히고, 물 (50ml) 을 가한 다음, 생성된 고체를 여과(Suction)한 후, 물로 여러 번 씻어준다. 생성물을 디클로로메탄(Dichloromethane)에 녹인 다음, 포화 소듐 티오설페이트(sodium thiosulfate) 용액으로 유기층을 씻어 준 후, 유기층을 MgSO4로 건조한 다음, 감압하여 용매를 제거하면 노란색 고체화합물 (14.5g, 93.1%)을 얻는다. 1H-NMR (400MHz, CDCl3) : δ = 7.50 (d, 6H), 6.80 (d, 6H).
화합물 18: 화합물 17 (6.10g, 9.79mmol), 2-티오펜보론산(2-thiophenebronic acid) (0.42g, 3.26mmol), Pd(PPh)4 (0.15g, 0.13mmol), K2CO3 (1.18g, 9.79mmol)을 DMF (5ml)에 가한 다음, 온도를 60 ℃로 올린 후 2시간 동안 교반한다. 반응용액을 식힌 후, 물 (50ml)을 가한 다음 디클로로메탄(Dichloromethane)으로 추출한다. 유기층을 분리한 다음, MgSO4 로 건조한 후, 감압하여 용매를 제거하고, 디클로로메탄/n-헥산(Dichloromethane/n-hexane = 1 : 3)을 전개용매로 하여 액체 크로마토그래피하면 백색 고체화합물 (0.76g, 40.2%)을 얻는다. 1H-NMR (400MHz, CDCl3): δ = 7.52 (d, 4H), 7.47 (d, 2H), 7.23 (m, 1H), 7.04 (m, 3H), 6.84 (d, 4H), 6.79 (d, 1H).
화합물 19: 1,2-디클로로에탄(1,2-Dichloroethane) (20ml)에 화합물 18 (0.48g, 0.83mmol), DMF (0.19ml, 2.49mmol), POCl3 (0.23ml, 2.49mmol)을 넣은 다음, 상온에서 1시간 동안 교반한 후, 16시간 동안 환류한다. 반응용액을 실온으로 식힌 다음, 포화 소듐 아세테이트(Sodium acetate) 수용액에 천천히 부은 후, 10분간 교반한다. 디클로로메탄(Dichloromethane)으로 추출하여, 유기층을 분리한 다음, MgSO4 로 건조한다. 감압하여 용매를 제거하고, 디클로로메탄/n-헥산(Dichloromethane/n-hexane = 1 : 1) 을 전개용매로 하여 액체 크로마토그래피하면 노란색 고체화합물 (0.19g, 38.0%)을 얻는다. 1H-NMR (400MHz, CDCl3): δ = 9.85 (s, 1H), 7.70 (d, 1H), 7.55 (d, 4H), 7.52 (d, 2H), 7.30 (d, 1H), 7.05 (d, 2H), 6.85 (d, 4H).
화합물 20: 화합물 15 (0.41g, 1.68mmol), 화합물 19 (0.28g, 0.46mmol), Pd(OAc)2 (5mg, 0.023mmol), K2CO3 (0.22g, 1.84mmol), Bu4NBr (0.30g, 0.92mmol)을 DMF (5ml)에 가한 다음, 온도를 95 ℃로 올린 후 6시간 동안 교반한다. 반응용액을 식힌 후, 물 (50ml)을 가한 다음 디클로로메탄(Dichloromethane)으로 추출한다. 유기층을 분리한 다음, MgSO4로 건조한 후, 감압하여 용매를 제거하고, 디클로로메탄(Dichloromethane)을 전개용매로 하여 액체 크로마토그래피하면 주황색 고체화합물 (0.36g, 100%)을 얻는다. 1H-NMR (400MHz, CDCl3) : δ = 9.81 (s, 1H), 7.70 (d, 1H), 7.65 (s, 2H), 7.54 (d, 2H), 7.43 (d, 4H), 7.40 (s, 2H), 7.31 (d, 1H), 7.28 (d, 2H), 7.20 (s, 2H), 7.10 (d, 4H), 7.02 (d, 2H), 6.58 (dd, 2H), 6.51 (d, 2H), 3.42 (q, 8H), 1.22 (t, 12H).
화합물 102: 무수 클로로포름(Chloroform) (30ml)에 화합물 20 (0.36g, 0.43mmol), 시아노아세트산(cyanoacetic acid) (0.37g, 4.30mmol), 피페리딘(piperidine) (0.13ml, 1.29mmol)을 가한 후, 6시간 동안 환류한다. 반응용액을 식힌 후, 물 (50ml)을 가한 다음 클로로포름(Chloroform)으로 추출한다. 유기층을 분리한 다음, MgSO4 로 건조한 후, 감압하여 용매를 제거하고, 메탄올/디클로로메탄(Methanol/dichloromethane = 1 : 10)을 전개용매로 하여 액체 크로마토그래피하면 주황색 고체화합물 (0.29g, 76.3%)을 얻는다. 1H-NMR (400MHz, DMSO, d6) : δ = 8.04 (d, 2H), 7.93 (s, 1H), 7.70 (d, 1H), 7.64 (d, 2H), 7.53 (d, 1H), 7.50 (d, 4H), 7.46 (d, 2H), 7.42 (s, 2H), 7.04 (m, 8H), 6.71 (d, 2H), 6.54 (d, 2H), 3.47 (q, 8H), 1.25 (t, 12H).
상기 화합물 102에 대하여 2-메톡시에탄올을 용매로 2.5*10-5M 농도에서 자외선-가시광선 영역의 흡수를 측정한 결과를 도 3에 나타내었으며, 54000 dm3mol-1cm-1의 흡광도를 나타내었다.
합성예 3: 쿠마린 함유 염료(화합물 103)의 합성
Figure PCTKR2009000561-appb-I000034
화합물 21: 화합물 17 (3.20g, 5.13mmol), 2,2'-비티오펜-5-보론산 피나콜 에스터(2,2'-bithiophene-5-bronic acid pinacol ester) (0.50g, 1.71mmol), Pd(PPh)4 (79mg, 0.068mmol), K2CO3 (0.62g, 5.13mmol)을 DMF (5ml)에 가한 다음, 온도를 60 ℃로 올린 후 2시간 동안 교반한다. 반응용액을 식힌 후, 물 (50ml)을 가한 다음 디클로로메탄(Dichloromethane)으로 추출한다. 유기층을 분리한 다음, MgSO4로 건조한 후, 감압하여 용매를 제거하고, 디클로로메탄/n-헥산(Dichloromethane/n-hexane = 1 : 3)을 전개용매로 하여 액체 크로마토그래피하면 노란색 고체화합물 (0.70g, 61.9%)을 얻는다. 1H-NMR (400MHz, CDCl3): δ = 7.56 (d, 4H), 7.49 (d, 2H), 7.23 (d, 1H), 7.21 (d, 1H), 7.15 (m, 2H), 7.05 (m, 3H), 6.87 (d, 4H).
화합물 22: 1,2-디클로로에탄(1,2-Dichloroethane) (20ml)에 화합물 21 (0.70g, 1.06mmol), DMF (0.25ml, 3.18mmol), POCl3 (0.30ml, 3.18mmol)을 넣은 다음, 상온에서 1시간 동안 교반한 후, 2시간 동안 환류한다. 반응용액을 실온으로 식힌 다음, 포화 소듐 아세테이트(Sodium acetate) 수용액에 천천히 부은 후, 10분간 교반한다. 디클로로메탄(Dichloromethane)으로 추출하여, 유기층을 분리한 다음, MgSO4로 건조한다. 감압하여 용매를 제거하고, 디클로로메탄(Dichloromethane)을 전개용매로 하여 액체 크로마토그래피하면 주황색 고체화합물 (0.24g, 32.9%)을 얻는다. 1H-NMR (400MHz, CDCl3): δ = 9.88 (s, 1H), 7.70 (d, 1H), 7.55 (d, 4H), 7.50 (d, 2H), 7.34 (d, 1H), 7.27 (d, 1H), 7.20 (d, 1H), 7.08 (d, 2H), 6.89 (d, 4H).
화합물 23: 화합물 15 (0.20g, 0.82mmol), 화합물 22 (0.24g, 0.35mmol), Pd(OAc)2 (4mg, 0.017mmol), K2CO3 (0.17g, 1.40mmol), Bu4NBr (0.22g, 0.70mmol)을 DMF (5ml)에 가한 다음, 온도를 95 ℃로 올린 후 16시간 동안 교반한다. 반응용액을 식힌 후, 물 (50ml)을 가한 다음 디클로로메탄(Dichloromethane)으로 추출한다. 유기층을 분리한 다음, MgSO4 로 건조한 후, 감압하여 용매를 제거하고, 디클로로메탄/아세톤(Dichloromethane/acetone = 50 : 1)을 전개용매로 하여 액체 크로마토그래피하면 적색 고체화합물 (0.16g, 53.3%)을 얻는다. 1H-NMR (400MHz, CDCl3) : δ = 9.88 (s, 1H), 7.70 (m, 3H), 7.50 (m, 8H), 7.30 (m, 4H), 7.21 (d, 1H), 7.15 (m, 6H), 7.05 (d, 2H), 6.62 (dd, 2H), 6.53 (d, 2H), 3.42 (q, 8H), 1.22 (t, 12H).
화합물 103: 무수 클로로포름(Chloroform) (30ml)에 화합물 23 (0.16g, 0.18mmol), 시아노아세트산(cyanoacetic acid) (0.16g, 1.83mmol), 피페리딘(piperidine) (0.05ml, 0.54mmol)을 가한 후, 6시간 동안 환류한다. 반응용액을 식힌 후, 물 (50ml)을 가한 다음 클로로포름(Chloroform)으로 추출한다. 유기층을 분리한 다음, MgSO4로 건조한 후, 감압하여 용매를 제거하고, 메탄올/디클로로메탄(Methanol/dichloromethane = 1 : 5) 을 전개용매로 하여 액체 크로마토그래피하면 적색 고체화합물 (0.14g, 82.4%)을 얻는다. 1H-NMR (400MHz, DMSO, d6): δ = 8.04 (d, 4H), 7.93 (s, 1H), 7.60 (m, 4H), 7.44 (m, 10H), 7.02 (m, 6H), 6.68 (d, 2H), 6.51 (d, 2H), 3.47 (q, 8H), 1.25 (t, 12H).
상기 화합물 103에 대하여 2-메톡시에탄올을 용매로 2.5*10-5M 농도에서 자외선-가시광선 영역의 흡수를 측정한 결과를 도 4에 나타내었으며, 51000 dm3mol-1cm-1의 흡광도를 나타내었다.
합성예 4: 쿠마린 함유 염료(화합물 104)의 합성
Figure PCTKR2009000561-appb-I000035
화합물 24: 무수에탄올(Absolute ethanol) (5ml)에 화합물 11 (1.20g, 2.28mmol), 2-티오펜 아세토니트릴(2-thiophene acetonitrile) (0.56ml, 6.84mmol), 피페리딘(piperidine) (0.68ml, 6.84mmol)을 가한 후, 8시간 동안 환류한다. 반응용액을 식힌 후, 감압하여 용매를 제거한 다음, 디클로로메탄/n-헥산(Dichloromethane/n-hexane = 1 : 1) 을 전개용매로 하여 액체 크로마토그래피하면, 노란색 고체화합물 (1.03g, 71.5%)을 얻는다. 1H-NMR (400MHz, CDCl3) : δ = 7.72 (d, J = 8.4Hz, 2H), 7.58 (d, J = 8.4Hz, 4H), 7.31 (s, 1H), 7.25 (m, 2H), 7.04 (m, 3H), 6.86 (d, J = 8.4Hz, 4H).
화합물 25: 1,2-디클로로에탄(1,2-Dichloroethane) (20ml)에 화합물 24 (1.0g, 1.59mmol), DMF (1.3ml, 15.87mmol), POCl3 (1.6ml, 15.87mmol)을 넣은 다음, 상온에서 10분간 교반한 후, 16시간 동안 환류한다. 반응용액을 실온으로 식힌 다음, 포화 소듐 아세테이트(Sodium acetate) 수용액에 천천히 부은 후, 10분간 교반한다. 디클로로메탄(Dichloromethane)으로 추출하여, 유기층을 분리한 다음, MgSO4로 건조한다. 감압하여 용매를 제거하고, 디클로로메탄(Dichloromethane)을 전개용매로 하여 액체 크로마토그래피하면, 붉은색 고체화합물 (0.86g, 81.1%)을 얻는다. 1H-NMR (400MHz, CDCl3) : δ = 9.85 (s, 1H), 7.78 (d, J = 8.4Hz , 2H), 7.70 (d, J = 4.0Hz , 1H), 7.60 (d, J = 8.4Hz, 4H), 7.43 (s, 1H), 7.39 (d, J = 4.0Hz, 1H), 7.04 (d, J = 8.4Hz, 2H), 6.86 (d, J = 8.4Hz, 4H).
화합물 26: 화합물 25 (0.48g, 2.19mmol), 화합물 15 (0.48g, 0.73mmol), Pd(OAc)2 (8mg, 0.036mmol), K2CO3 (0.35g, 2.92mmol), Bu4NBr (0.47g, 1.46mmol)을 DMF (5ml)에 가한 다음, 온도를 95 ℃로 올린 후 16시간 동안 교반한다. 반응용액을 식힌 후, 물 (50ml)을 가한 다음 디클로로메탄(Dichloromethane)으로 추출한다. 유기층을 분리한 다음, MgSO4 로 건조한 후, 감압하여 용매를 제거하고, 에틸아세테이트/n-헥산(Ethyl acetate/n-hexane = 1 : 1)을 전개용매로 하여 액체 크로마토그래피하면 검붉은색 고체화합물 (0.12g, 52.5%)을 얻는다. 1H-NMR (400MHz, CDCl3) : δ = 9.84 (s, 1H), 7.78 (d, J = 8.8Hz, 2H), 7.68 (d, J = 4.0Hz, 1H), 7.66 (s, 2H), 7.46 (m, 6H), 7.38 (d, J = 4.0Hz, 1H), 7.28 (d, J = 8.8Hz, 2H), 7.22 (s, 1H), 7.12 (d, J = 8.4Hz, 4H), 7.08 (d, J = 8.8Hz, 2H), 7.02 (d, J = 16.0Hz, 2H), 6.58 (dd, J = 2.4Hz, 2.4Hz, 2H), 6.50 (d, J = 2.4Hz, 2H), 3.43 (q, 8H), 1.22 (t, 12H).
화합물 104: 무수 클로로포름(Chloroform) (30ml)에 화합물 26 (0.18g, 0.21mmol), 시아노아세트산(cyanoacetic acid) (73mg, 0.86mmol), 피레리딘(piperidine) (0.08ml, 0.86mmol)을 가한 후, 6시간 동안 환류한다. 반응용액을 식힌 후, 물 (50ml)을 가한 다음 클로로포름(Chloroform)으로 추출한다. 유기층을 분리한 다음, MgSO4로 건조한 후, 감압하여 용매를 제거하고, 메탄올/에틸아세테이트(Methanol/ethyl acetate = 1 : 5)을 전개용매로 하여 액체 크로마토그래피하면 붉은색 고체화합물 (80mg, 42.1%)을 얻는다. 1H-NMR (400MHz, DMSO, d6) : δ = 8.04 (s, 2H), 7.87 (br, s, 2H), 7.80 (d, J = 8.4Hz, 2H), 7.52 (d, J = 8.8Hz, 4H), 7.47 (s, 1H), 7.44 (d, J = 8.4Hz, 4H), 7.08 (d, J = 8.4Hz, 4H), 7.06 (s, 1H), 7.02 (d, J = 8.8Hz, 4H), 6.70 (dd, J = 2.4Hz, 2.4Hz, 2H), 6.54 (d, J = 2.4Hz, 2H), 3.47 (q, 8H), 1.25 (t, 12H).
상기 화합물 104에 대하여 2-메톡시에탄올을 용매로 2*10-5M 농도에서 자외선-가시광선 영역의 흡수를 측정한 결과를 도 5에 나타내었으며, 58000 dm3mol-1cm-1의 흡광도를 나타내었다.
합성예 5: 쿠마린 함유 염료(화합물 105)의 합성
Figure PCTKR2009000561-appb-I000036
화합물 27: 1,2-디클로로에탄(1,2-Dichloroethane) (20ml)에 트리페닐아민(triphenylamine) (3.0g, 12.23mmol), DMF (9.5ml, 122.3mmol), POCl3 (11.4ml, 122.3mmol) 을 넣은 다음, 상온에서 1시간 동안 교반한 후, 24시간 동안 환류한다. 반응용액을 실온으로 식힌 다음, 포화 소듐 아세테이트(Sodium acetate) 수용액에 천천히 부은 후, 10분간 교반한다. 디클로로메탄(Dichloromethane)으로 추출하여, 유기층을 분리한 다음, MgSO4로 건조한다. 감압하여 용매를 제거하고, 디클로로메탄(Dichloromethane)을 전개용매로 하여 액체 크로마토그래피하면 노란색 고체화합물 (1.40g, 38.0%)을 얻는다. 1H-NMR (400MHz, CDCl3): δ = 9.87 (s, 2H), 7.77 (d, J = 8.4Hz, 4H), 7.36 (m, 2H), 7.18 (m, 2H), 7.16 (m, 5H).
화합물 28: 빙초산(Glacial acetic acid) (10ml)에 화합물 27 (1.0g, 3.32mmol) 을 넣고, 온도를 70 ℃로 올린다. 반응물이 다 녹은 것을 확인한 후에, KI (0.55g, 3.32mmol), KIO3 (1.07g, 4.98mmol) 을 가한 후, 16시간 동안 교반한다. 반응용액을 식히고, 생성된 고체를 여과(Suction) 한 후, 물로 여러 번 씻어준다. 생성물을 디클로로메탄(Dichloromethane)에 녹인 다음, 묽은 암모니아용액 (pH ~8) 으로 씻은 후, NaHSO3 포화용액, 물로 여러 번 씻어준다. 유기층을 MgSO4로 건조한 다음, 감압하여 용매를 제거하면 연노란색 고체화합물 (1.33g, 93.7%)을 얻는다. 1H-NMR (400MHz, CDCl3): δ = 9.88 (s, 2H), 7.78 (d, J = 8.4Hz, 4H), 7.66 (d, J = 8.4Hz, 2H), 7.15 (d, J = 8.4Hz, 4H), 6.90 (d, J = 8.4Hz, 2H).
화합물 29: 화합물 28 (0.34g, 1.55mmol), 화합물 15 (0.66g, 1.55mmol), Pd(OAc)2 (17mg, 0.077mmol), K2CO3 (0.56g, 4.65mmol), Bu4NBr (0.75g, 2.33mmol)을 DMF (5ml)에 가한 다음, 온도를 95 ℃로 올린 후 4시간 동안 교반한다. 반응용액을 식힌 후, 물 (50ml)을 가한 다음 디클로메탄(Dichloromethane)으로 추출한다. 유기층을 분리한 다음, MgSO4 로 건조한 후, 감압하여 용매를 제거하고, 에틸아세테이트/n-헥산(Ethyl acetate/n-hexane = 1 : 1)을 전개용매로 하여 액체 크로마토그래피하면 주황색 고체화합물 (0.40g, 50.0%)을 얻는다. 1H-NMR (400MHz, CDCl3) : δ = 9.89 (s, 2H), 7.78 (m, 4H), 7.68 (s, 1H), 7.52 (d, J = 8.8Hz, 2H), 7.46 (m, 1H), 7.28 (d, J = 9.2Hz, 1H), 7.22 (m, 4H), 7.12 (m, 2H), 7.08 (d, J = 16.0Hz, 1H), 6.61 (dd, J = 2.4Hz, 2.4Hz, 1H), 6.50 (d, J = 2.4Hz, 1H), 3.43 (q, 4H), 1.24 (t, 6H).
화합물 105: 무수 클로로포름(Chloroform) (30ml) 에 화합물 29 (0.30g, 0.58mmol), 시아노아세트산(cyanoacetic acid) (0.49g, 5.78mmol), 피레리딘(piperidine) (0.17ml, 1.73mmol)을 가한 후, 16시간 동안 환류한다. 반응용액을 식힌 후, 물 (50ml)을 가한 다음 클로로포름(Chloroform)으로 추출한다. 유기층을 분리한 다음, MgSO4 로 건조한 후, 감압하여 용매를 제거하고, 메탄올/디클로로메탄(Methanol/dichloromethane = 1 : 10) 을 전개용매로 하여 액체 크로마토그래피하면 주황색 고체화합물 (0.16g, 42.1%)을 얻는다. 1H-NMR (400MHz, DMSO, d6) : δ = 8.02 (br, s, 1H), 7.92~7.80 (br, m, 6H), 7.56~7.40 (br, m, 5H), 7.20~7.00 (br, m, 6H), 6.68 (br, d, 1H), 6.52 (br, s, 1H), 3.47 (br, m, 4H), 1.25 (br, m, 6H).
상기 화합물 105에 대하여 2-메톡시에탄올을 용매로 2.5*10-5M 농도에서 자외선-가시광선 영역의 흡수를 측정한 결과를 도 6에 나타내었으며, 67000 dm3mol-1cm-1의 흡광도를 나타내었다.
합성예 6: 페노티아진 함유 염료(화합물 106)의 합성
Figure PCTKR2009000561-appb-I000037
화합물 31: 톨루엔(Toluene) (50ml)에 4-니트로벤즈알데하이드(4-nitrobenzaldehyde) (2.0g, 13.23mmol), 네오펜틸 글리콜(neopentyl glycol) (2.76g, 26.46mmol), p-톨루엔설폰산(p-toluenesulfonic acid) (50mg)을 가한 후, 딘-스탁(dean-stark)을 설치한 다음, 16시간 동안 환류한다. 반응용액을 식힌 후, 감압하여 용매를 제거하고, 디클로로메탄(Dichloromethane)을 전개용매로 하여 액체 크로마토그래피하면 노란색 고체화합물 (2.90g, 99.0%)을 얻는다. 1H-NMR (400MHz, CDCl3): δ = 8.20 (d, J = 8.8Hz, 2H), 7.66 (d, J = 8.4Hz, 2H), 5.45 (s, 1H), 3.78 (d, J = 11.2Hz, 2H), 3.66 (d, J = 11.2Hz, 2H), 1.28 (s, 3H), 0.82 (s, 3H).
화합물 32: 이소프로필 알코올(Isopropyl alcohol) (100ml)에 화합물 31 (3.0g, 13.56mmol) 을 넣고, NaSH (6.03g, 108.48mmol)을 물 (5ml)에 녹인 용액을 가한 후, 16시간 동안 환류한다. 반응용액을 식힌 후, 감압하여 용매를 제거하고, 과량의 물로 씻어준다. 에틸아세테이트(Ethyl acetate)를 가해 생성된 고체를 완전히 녹인 후, 물 (100ml)에 붓고 10분간 교반한다. 유기층을 분리한 후 MgSO4 로 건조한 다음, 감압하여 용매를 제거하고, 에틸아세테이트/n-헥산(Ethyl acetate/n-hexane = 1 : 3)을 전개용매로 하여 액체 크로마토그래피하면 노란색 고체화합물 (2.13g, 75.8%)을 얻는다. 1H-NMR (400MHz, CDCl3) : δ = 7.24 (d, J = 7.6Hz, 2H), 7.60 (d, J = 8.4Hz, 2H), 5.26 (s, 1H), 3.70 (d, J = 11.2Hz, 2H), 3.66 (br, s, 2H), 3.58 (d, J = 11.2Hz, 2H), 1.28 (s, 3H), 0.76 (s, 3H).
화합물 34: DMF (20ml) 에 페노티아진(Phenothiazine) (화합물 33, 5.0g, 25.09mmol)을 넣고 온도를 0 ℃로 낮춘 후, 60% NaH (1.51g, 37.64mmol) 을 넣고 10분간 교반한다. 반응용액에 1-브로모헥산(1-Bromohexane) (4.23ml, 30.11mmol) 을 넣고 30분간 교반한 다음, 온도를 상온으로 올린 후, 10시간 동안 교반한다. 반응용액에 물 (200ml)을 가한 다음, 디클로로메탄(Dichloromethane)으로 추출한 후, 유기층을 분리하고 MgSO4 로 건조한다. 감압하여 용매를 제거하고, 디클로로메탄/n-헥산(Dichloromethane/n-hexane = 1 : 3) 을 전개용매로 하여 액체 크로마토그래피하면 무색 액체화합물 (7.07g, 99.4%)을 얻는다. 1H-NMR (400MHz, CDCl3): δ = 7.18 (m, 4H), 6.94 (m, 4H), 3.88 (t, 2H), 1.86 (m, 2H), 1.51 (m, 2H), 1.37 (m, 4H), 0.97 (t, 3H).
화합물 35: DMF (20ml)에 화합물 34 (4.18g, 14.75mmol), NBS (2.63g, 14.75mmol)을 가한 후, 3시간 동안 교반한다. 반응용액에 물 (200ml)을 가한 후, 디클로로메탄(Dichloromethane)으로 추출하고, 유기층을 분리한다. MgSO4로 건조한 다음, 감압하여 용매를 제거하고, 디클로로메탄/n-헥산(Dichloromethane /n-hexane = 1 : 5) 을 전개용매로 하여 액체 크로마토그래피하면 갈색 액체화합물 (4.05g, 75.8%)을 얻는다. 1H-NMR (400MHz, CDCl3): δ = 7.18 (d, J = 2.4Hz, 1H), 7.12 (m, 1H), 7.08 (d, J = 8.0Hz, 1H), 6.89 (m, 1H), 6.82 (d, J = 8.0Hz, 1H), 6.64 (m, 2H), 3.77 (t, 2H), 1.75 (m, 2H), 1.37 (m, 2H), 1.28 (m, 4H), 0.86 (t, 3H).
화합물 36: o-자일렌(o-Xylene) (20ml)에 화합물 32 (0.25g, 1.21mmol), 화합물 35 (1.09g, 3.0mmol), Pd(OAc)2 (11mg, 0.05mmol), P(tBu)3 (0.03ml), NaOtBu (0.35g, 1.63mmol)을 가한 다음, 16시간 동안 환류한다. 반응용액을 식힌 후, 걸러서 촉매 및 부산물을 제거한 다음, 감압하여 용매를 제거한다. 디클로로메탄/n-헥산(Dichloromethane /n-hexane = 1 : 1)을 전개용매로 하여 액체 크로마토그래피하면 연노란색 액체화합물 (0.39g, 41.9%)을 얻는다. 1H-NMR (400MHz, CDCl3) : δ = 7.24~7.14 (br, m, 2H), 7.08~6.94 (m, 5H), 6.92~6.56 (br, m, 11H), 5.24 (s, 1H), 3.72 (t, 4H), 3.66 (d, J = 11.2Hz, 2H), 3.54 (d, J = 11.2Hz, 2H), 1.70 (m, 4H), 1.33 (m, 4H), 1.21 (m, 11H), 0.79 (t, 6H), 0.74 (s, 3H).
화합물 37: THF (150ml), 물 (50ml)에 화합물 36 (0.39g, 0.51mmol), CF3COOH (10ml)를 가한 후, 1시간 동안 교반한다. NaHCO3 수용액으로 반응용액을 중화 시킨 후, 디클로로메탄(dichloromethane)으로 추출한다. 유기층을 분리한 다음, MgSO4로 건조한 후, 감압하여 용매를 제거하고, 디클로로메탄(Dichloromethane)을 전개용매로 하여 액체 크로마토그래피하면 노란색 액체화합물 (0.24g, 68.6%)을 얻는다. 1H-NMR (400MHz, CDCl3) : δ = 9.74 (s, 1H), 7.61 (d, J = 8.8Hz, 2H), 7.16 (m, 2H), 7.08 (d, J = 8.4Hz, 2H), 6.94~6.76 (m, 12H), 3.80 (t, 4H), 1.80 (m, 4H), 1.43 (m, 4H), 1.30 (m, 8H), 0.88 (t, 6H).
화합물 106: 무수 클로로포름(Chloroform) (30ml)에 화합물 37 (0.24g, 0.35mmol), 시아노아세트산(cyanoacetic acid) (0.29g, 3.50mmol), 피페리딘(piperidine) (0.1ml, 1.05mmol)을 가한 후, 16시간 동안 환류한다. 반응용액을 식힌 후, 물 (50ml)을 가한 다음 클로로포름(Chloroform)으로 추출한다. 유기층을 분리한 다음, MgSO4로 건조한 후, 감압하여 용매를 제거하고, 메탄올/클로로포름(Methanol/chloroform = 1 : 7)을 전개용매로 하여 액체 크로마토그래피하면 주황색 고체화합물 (0.23g, 88.5%)을 얻는다. 1H-NMR (400MHz, DMSO, d6) : δ = 8.11 (s, 1H), 7.90 (s, 1H), 7.71 (d, J = 8.4Hz, 2H), 7.15 (m, 2H), 7.04 (d, J = 7.2Hz, 2H), 6.96~6.84 (m, 9H), 6.81 (d, J = 8.4Hz, 2H), 3.81 (t, 4H), 1.73 (m, 4H), 1.41 (m, 4H), 1.28 (m, 8H), 0.85 (t, 6H).
상기 화합물 106에 대하여 2-메톡시에탄올을 용매로 2.7*10-5M 농도에서 자외선-가시광선 영역의 흡수를 측정한 결과를 도 7에 나타내었으며, 33000 dm3mol-1cm-1의 흡광도를 나타내었다.
합성예 7: 페노티아진 함유 염료(화합물 107)의 합성
Figure PCTKR2009000561-appb-I000038
Figure PCTKR2009000561-appb-I000039
화합물 38: 1,2-디클로로에탄(1,2-Dichloroethane) (30ml)에 화합물 34 (7.07g, 24.94mmol), DMF (5.82ml, 74.83mmol), POCl3 (6.98ml, 74.83mmol)을 넣은 다음, 상온에서 1시간 동안 교반한 후, 2시간 동안 환류한다. 반응용액을 실온으로 식힌 다음, 포화 소듐 아세테이트(Sodium acetate) 수용액에 천천히 부은 후, 10분간 교반한다. 디클로로메탄(Dichloromethane)으로 추출하여, 유기층을 분리한 다음, MgSO4로 건조한다. 감압하여 용매를 제거하고, 디클로로메탄/n-헥산(Dichloromethane/n-hexane = 1 : 3)을 전개용매로 하여 액체 크로마토그래피하면 노란색 액체화합물 (5.72g, 77.6%)을 얻는다. 1H-NMR (400MHz, CDCl3) : δ = 9.77 (s, 1H), 7.61 (dd, J = 2.4Hz, 2.4Hz, 1H), 7.56 (d, J = 2.4Hz, 1H), 7.16 (m, 1H), 7.08 (dd, J = 2.4Hz, 2.4Hz, 1H), 6.93 (m, 1H), 6.89 (m, 2H), 3.87 (t, 2H), 1.79 (m, 2H), 1.42 (m, 2H), 1.32 (m, 4H), 0.87 (t, 3H).
화합물 39: THF (5ml)에 메틸트리페닐포스포늄 브로마이드(methyltriphenylphosphonium bromide) (2.52g, 7.08mmol), 95% NaH (0.21g, 8.84mmol)을 넣고 1시간 동안 교반한 후, 화합물 38 (1.74g, 5.89mmol)를 넣고, 16시간 동안 교반한다. 반응용액에 물 (50ml)을 가한 다음, 디클로로메탄(Dichloromethane)으로 추출하여, 유기층을 분리한 다음, MgSO4로 건조한다. 감압하여 용매를 제거하고, 디클로로메탄/n-헥산(Dichloromethane/n-hexane = 1 : 3)을 전개용매로 하여 액체 크로마토그래피하면 연노란색 액체화합물 (1.44g, 78.5%)을 얻는다. 1H-NMR (400MHz, CDCl3) : δ = 7.14 (d, J = 2.4Hz, 1H), 7.07 (m, 3H), 6.83 (m, 1H), 6.80 (d, J = 8.4Hz, 1H), 6.70 (d, J = 8.0Hz, 1H), 6.52 (dd, J = 10.8Hz, 10.8Hz, 1H), 5.57 (d, J = 17.6Hz, 1H), 5.08 (d, J = 10.8Hz, 1H), 3.74 (t, 2H), 1.73 (m, 2H), 1.36 (m, 2H), 1.25 (m, 4H), 0.84 (t, 3H).
화합물 40: 합성예 1에서 제조한 화합물 11 (0.19g, 0.36mmol), 화합물 39 (0.27g, 0.87mmol), Pd(OAc)2 (4mg, 0.018mmol), K2CO3 (0.17g, 1.44mmol), Bu4NBr (0.23g, 0.72mmol) 을 DMF (5ml)에 가한 다음, 온도를 95 ℃로 올린 후 6시간 동안 교반한다. 반응용액을 식힌 후, 물 (50ml)을 가한 다음 디클로로메탄(Dichloromethane)으로 추출한다. 유기층을 분리한 다음, MgSO4로 건조한 후, 감압하여 용매를 제거하고, 디클로로메탄/n-헥산(Dichloromethane/n-hexane = 1 : 1)을 전개용매로 하여 액체 크로마토그래피하면 노란색 고체화합물 (0.30g, 93.8%)을 얻는다. 1H-NMR (400MHz, CDCl3) : δ = 9.80 (s, 1H), 7.69 (d, J = 8.8Hz, 2H), 7.42 (d, J = 8.4Hz, 4H), 7.23 (m, 4H), 7.12 (m, 10H), 7.04 (m, 6H), 6.81 (dd, J = 8.4Hz, 8.4Hz, 4H), 3.83 (t, 4H), 1.80 (m, 4H), 1.43 (m, 4H), 1.30 (m, 8H), 0.87 (t, 6H).
화합물 107: 무수 클로로포름(Chloroform) (30ml)에 화합물 40 (0.30g, 0.34mmol), 시아노아세트산(cyanoacetic acid) (0.21g, 3.37mmol), 피레리딘(piperidine) (0.1ml, 1.01mmol)을 가한 후, 4시간 동안 환류한다. 반응용액을 식힌 후, 물 (50ml)을 가한 다음 클로로포름(Chloroform)으로 추출한다. 유기층을 분리한 다음, MgSO4로 건조한 후, 감압하여 용매를 제거하고, 메탄올/클로로포름(Methanol/chloroform = 1 : 6)을 전개용매로 하여 액체 크로마토그래피하면 주황색 고체화합물 (0.24g, 75.0%)을 얻는다. 1H-NMR (400MHz, DMSO, d6) : δ = 7.89 (s, 1H), 7.80 (d, J = 8.8Hz, 2H), 7.53 (d, J = 8.8Hz, 4H), 7.36 (m, 4H), 7.19~7.05 (m, 10H), 7.02~6.88 (m, 10H), 3.85 (t, 4H), 1.66 (m, 4H), 1.37 (m, 4H), 1.23 (m, 8H), 0.83 (t, 6H).
화합물 107의 자외선-가시광역 영역의 흡수파장을 도 8에 나타내었다. 2-메톡시에탄올을 용매로 1.5*10-5M 조건에서 흡광도는 70,000 dm3mol-1cm-1 이상으로, 기존의 염료에 비해 현저히 높은 값을 가진다.
합성예 8: 포피린 함유 염료(화합물 108)의 합성
Figure PCTKR2009000561-appb-I000040
Figure PCTKR2009000561-appb-I000041
Figure PCTKR2009000561-appb-I000042
화합물 41: 질소 기류 하에서 헥산알(hexanal) (3.1ml, 25mmol), 메틸-4-포르밀벤조에이트(methyl-4-formylbenzoate) (1.37g, 8.35mmol), 피롤(pyrrole) (2.3ml, 33.3mmol)을 디클로로메탄(dichloromethane) (3.3L)에 녹인 후, 빛을 차단한다. BF3·OEt2 (Boron trifluoride diethyl etherate, 1.7ml, 13.4mmol)와 2-프로판올(2-propanol) (22ml)을 첨가하고 90분 동안 교반한다. 2,3-디클로로-5,6-디시아니-1,4-벤조퀴논(2,3-Dichloro-5,6-dicyani-1,4-benzoquinone) (DDQ, 7.57g, 33.3mmol)을 첨가하고 70분 동안 교반한다. 트리에틸아민(Triethylamine) (4.67ml, 33.5mmol)을 첨가하고 30분 동안 교반한 후 반응을 종결한다. 감압 증류를 통하여 반응 혼합물의 용매를 제거한다. 액체 크로마토그래피(silicagel, CHCl3:hexane=3:1, Rf=0.17)로 분리하여 보라색의 고체 화합물 (0.438g, 8%)을 얻는다. TLC (dichloromethane) Rf=0.17 m.p.= 222℃ 1H-NMR (CDCl3, 400MHz) : δ(ppm) = -2.67(s, 2H), 0.98(m, 9H), 1.54(m, 6H), 1.77(m, 6H), 2.52(m, 6H), 4.13(s, 3H), 4.95(m, 6H), 8.23(d, 2H), 8.40(d, 2H), 8.71(d, 2H), 9.36(d, 2H), 9.49(q, 4H)
화합물 42: 질소 기류 하에서 THF (20ml)에 리튬 알루미늄 하이드라이드(lithium aluminum hydride) (34mg, 0.916mmol)를 넣고 교반한다. 빛을 차단한 후 화합물 41(200mg, 0.305mmol)를 첨가하고 30분간 교반한다. 소량의 물을 적가한 후 반응을 종결한다. 디클로로메탄(Dichloromethane)을 이용하여 추출한다. 무수 소듐설페이트(Sodium sulfate anhydrous)를 이용하여 수분을 제거한 후 감압 증류하여 용매를 제거한다. 액체 크로마토그래피(silica gel, dichloromethane)하여 분리하면 보라색의 고체 화합물 (182mg, 95%)을 얻을 수 있다. TLC (dichloromethane) Rf=0.12 m.p.= 200℃ 1H-NMR (CDCl3, 400MHz) : δ(ppm) = -2.67(s, 2H), 0.98(m, 9H), 1.54(m, 6H), 1.78(m, 6H), 2.52(m, 6H), 4.95(m, 6H), 5.04(d, 2H), 7.61(d, 2H), 8.13(d, 2H), 8.76(d, 2H), 9.34(d, 2H), 9.48(q, 4H)
화합물 43: 질소 기류 하에 빛을 차단한 후 디클로로메탄(dichloromethane) (15ml)에 화합물 42 (500mg, 0.79mmol)을 녹인다. 온도를 0℃로 낮춘 후 피리디늄 클로로크로메이트(pyridinium chlorochromate;PCC, 344mg, 1.59mmol)를 첨가한 후 30분 동안 0℃에서 교반한 후 반응을 종료한다. 디클로로메탄(Dichloromethane)을 이용하여 거른 후 걸러진 유기 용매를 감압하여 증류한다. 액체 컬럼크로마토그래피(silicagel, dichloromethane:hexane=1:1, Rf=0.76)로 분리하여 화합물 43 (230mg, 46%)을 얻는다. TLC (dichloromethane:hexane=1:1) Rf=0.76 m.p.= 148℃ 1H-NMR (CDCl3, 400MHz) : δ(ppm) = -2.67(s, 2H), 0.98(m, 9H), 1.54(m, 6H), 1.78(m, 6H), 2.52(m, 6H), 4.95(m, 6H), 8.24(d, 2H), 8.33(d, 2H), 8.70(d, 2H), 9.37(d, 2H), 9.50(q, 4H), 10.36(s, 1H)
화합물 44: 질소기류 하에서 정제한 THF(3ml)에 소듐 하이드라이드(sodium hydride) (37mg, 1.54mmol), 메틸-트리페닐 포스포늄 브로마이드(methyl-triphenyl phosphonium bromide) (366mg, 1.024mmol)을 넣고 10분 동안 교반한다. 빛을 차단한 후 화합물 43 (160mg, 0.256mmol)을 첨가하고 30분간 교반한다. 소량의 물을 적가하고 반응을 종료한다. 감압 증류하여 용매를 제거한 후 디클로로메탄(dichloromethane)을 이용하여 거른다. 유기용매를 다시 감압하여 증류한 후 액체 크로마토그래피(silica gel, dichloromethane:hexane=1:3, Rf=0.18)로 분리하면 화합물 44 (132mg, 83%)을 획득할 수 있다. TLC (dichloromethane:hexane=1:3) Rf=0.18 m.p.= 99℃ 1H-NMR (CDCl3, 400MHz) : δ(ppm) = -2.63(s, 2H), 0.99(m, 9H), 1.57(m, 6H), 1.80(m, 6H), 2.55(m, 6H), 4.96(m, 6H), 5.50(d, 2H), 6.08(d, 2H), 7.07(q, 1H), 7.78(d, 2H), 8.12(d, 2H), 8.81(d, 2H), 9.37(d, 2H), 9.50(q, 4H)
화합물 45: 질소 기류 하에서 빛을 차단한 후 정제한 디메틸포름아미드(dimethylformamide) (3ml)에 합성예 1에서 제조한 화합물 11(120mg, 0.19mmol)과 화합물 44(40mg, 0.077mmol)를 첨가하고 교반한다. 팔라듐 아세테이트(Palladium(II) acetate) (8mg, 0.039mmol), 테트라뷰틸암모늄 브로마이드(tetrabutylammonium bromide) (TBAB, 62mg, 0.19mmol), 무수 포타슘카보네이트(potassium carbonate anhydrous) (K2CO3, 56mg, 0.462)를 첨가하고 95℃로 15시간 교반한다. 디클로로메탄(Dichloromethane)을 이용하여 추출한다. 무수 소듐설페이트(Sodium sulfate anhydrous)를 이용하여 건조한 후 혼합용액을 감압 증류한다. 액체 크로마토그래피(silica gel, dichloromethane:hexane=1:1, Rf=0.26)로 분리하여 화합물 45(90mg, 77%)를 얻을 수 있다. TLC (dichloromethane:hexane=1:1) Rf=0.26 m.p.= >350℃ 1H-NMR (CDCl3, 400MHz) : δ(ppm) = -2.60(s, 4H), 1.01(m, 18H), 1.59(m, 12H), 1.80(m, 12H), 2.55(m, 12H), 4.95(m, 12H), 7.23(d, 2H), 7.30(d, 4H), 7.44(s, 4H), 7.68(d, 4H), 7.80(d, 2H), 7.89(d, 4H), 8.17(d, 4H), 8.87(d, 4H), 9.38(d, 4H), 9.50(q, 8H), 9.90(s, 1H)
화합물 46: 질소 기류 하에서 빛을 차단한 후 화합물 45(85mg, 0.056mmol)를 클로로포름(chloroform) (3.5ml)에 녹인 후 시아노아세트산(cyanoacetic acid) (47mg, 0.56mmol), 피페리딘(piperidine) (0.026ml, 0.28mmol)을 첨가한 후 3시간 동안 환류 한다. 클로로포름(Chloroform)으로 추출한 후 무수 소듐 설페이트(sodium sulfate anhydrous)를 이용하여 건조한다. 감압 증류하여 용매를 제거하고 액체 크로마토그래피(silica gel, dichloromethane:methanol=9:1, Rf=0.31)로 분리하면 화합물 46(73mg, 82%)을 얻을 수 있다. TLC (dichloromethane:methanol=9:1) Rf=0.31 m.p.= >350℃ 1H-NMR ((methyl sulfoxide)-d 6, 400MHz) : δ (ppm) = -2.60(s, 4H), 1.01(m, 18H), 1.59(m, 12H), 1.80(m, 12H), 2.55(m, 12H), 4.95(m, 12H), 7.17(d, 2H), 7.30(d, 4H), 7.44(s, 4H), 7.68(d, 4H), 7.80(d, 2H), 7.89(d, 4H), 8.17(d, 4H), 8.87(d, 4H), 9.38(d, 4H), 9.50(q, 8H), 9.70(s, 1H)
화합물 108: 질소 기류 하에서 빛을 차단한 후 화합물 17(70mg, 0.046mmol)을 디클로로메탄/메탄올(dichloromethane:methanol=5:1) (10ml)에 녹인 후 아세트산아연(zinc acetate) (84mg, 0.46mmol)을 넣고 1시간 동안 상온에서 교반한다. 디클로로메탄(Dichloromethane)을 이용하여 거른 후 감압 증류하여 용매를 제거한다. 액체 크로마토그래피(silicagel, dichloromethane:methanol=9:1, Rf=0.31)로 분리하여 화합물 108(68mg, 87%)을 얻는다. TLC (dichloromethane:methanol=9:1) Rf=0.31 m.p.= >350℃ 1H-NMR ((methyl sulfoxide)-d 6, 400MHz) : δ(ppm) = -2.60(s, 4H), 1.01(m, 18H), 1.59(m, 12H), 1.80(m, 12H), 2.55(m, 12H), 4.95(m, 12H), 7.18(d, 2H), 7.30(d, 4H), 7.63(s, 4H), 7.82(d, 4H), 7.92(d, 2H), 8.05(d, 4H), 8.13(d, 4H), 8.77(d, 4H), 9.50(d, 4H), 9.60(q, 8H), 9.70(s, 1H)
상기 화합물 108에 대하여 2-메톡시에탄올을 용매로 1.56*10-5M 농도에서 자외선-가시광선 영역의 흡수를 측정한 결과를 도 9에 나타내었으며, 430 nm 에서 100,000 dm3mol-1cm-1 이상으로, 기존의 염료에 비해 현저히 높은 값을 가진다.
합성예 9: 쿠마린 함유 루테늄 착물계 염료(화합물 109)의 합성
Figure PCTKR2009000561-appb-I000043
Figure PCTKR2009000561-appb-I000044
Figure PCTKR2009000561-appb-I000045
화합물 51: 진한 황산 (50ml)에 4,4-디메틸-2,2'-비피리딘(4,4'-dimethyl-2,2'-bipyridine) (화합물 50, 2.0g, 10.0mmol) 을 녹인 후, 온도가 40 ℃가 넘지 않도록 주의하면서 포타슘디크로메이트(potassium dichromate) (9.6g, 32.52mmol)를 첨가한다. 반응용액을 30분간 교반한 다음, 반응용액이 진한 녹색으로 변한 것을 확인한 후 반응을 종료한다. 얼음물 (800ml)에 반응용액을 가한 후, 생성된 고체를 거르고 건조한다. 엷은 노란색의 고체를 50% HNO3 수용액에 가하고 4시간 동안 환류한다. 얼음물 (800ml)에 반응용액을 붓고, 생성된 고체를 거른 다음, 건조시킨다. 이후 건조된 고체를 메탄올로 여러 번 씻어 주면, 백색 고체화합물 (2.4g, 93.7%)을 얻는다. .M.p. > 350 ℃ (dec.) ; 1H-NMR (400MHz, D2SO4) : δ = 3.50 (d, 2H), 3.32 (s, 2H), 3.14 (d, 2H).
화합물 52: 무수에탄올(Absolute ethanol) (80ml)에 화합물 51 (1.0g, 4.09mmol)을 가하고 10분간 교반한 다음, 진한 황산 (1ml)를 반응용액에 가한 후, 80시간 동안 환류한다. 온도를 상온으로 낮추고 증류수 (80ml)를 가한 후, 1M 수산화나트륨(Sodium hydroxide) 수용액으로 용액을 중화한다. 생성된 고체를 거른 후, 건조하면 백색 고체화합물 (1.18g, 95.0%)을 얻는다. M.p. 161 ℃; 1H-NMR (400MHz, CDCl3): δ = 8.93 (s, 2H), 8.84 (d, J = 8.8Hz, 2H), 7.88 (d, J = 8.8Hz, 2H), 4.48 (q, 4H), 1.43 (t, 6H).
화합물 53: 무수 에탄올(Absolute ethanol) (70ml)에 화합물 52 (1.1g, 3.66mmol), 소듐보로하이드라이드(sodium borohydride) (2.77g, 73.2mmol)를 가한 후, 반응용액을 3시간 동안 환류한다. 온도를 상온으로 낮추고, 암모늄클로라이드 용액(ammonium chloride solution) (3.8g, 75.0mmol)을 증류수 (75ml)에 녹인 용액을 반응용액에 가한다. 백색 고체생성물을 거른 다음, 감압하여 용매를 제거한다. 에틸아세테이트(Ethyl acetate)를 가하여 생성된 고체를 완전히 녹인 후, 유기층을 분리한 다음, MgSO4 로 건조한 후, 감압하여 용매를 제거하면 엷은 분홍색 고체화합물 (0.69g, 87.5%)을 얻는다. M.p. 152 ℃; 1H-NMR (400MHz, acetone, d6) : δ = 8.60 (d, J = 8.8Hz, 2H), 8.48 (s, 2H), 7.39 (d, J = 8.8Hz, 2H), 4.75 (s, 4H).
화합물 54: 화합물 53 (0.69g, 3.16mmol)를 48% HBr (15.5ml)과 진한 황산 (5.1ml)에 녹인 후 6시간 동안 환류한다. 반응용액을 식힌 후 증류수 (30ml)를 가한다. 이후 1M 수산화나트륨용액(Sodium hydroxide solution)을 이용하여 중화시킨 다음, 엷은 분홍색 고체생성물을 거른 후, 클로로포름(chloroform)에 녹인다. 유기층을 분리한 다음, MgSO4 로 건조한 후, 감압하여 용매를 제거하면 엷은 분홍색 고체화합물 (0.83g, 76.0%)을 얻는다. M.p. 172 ℃; 1H-NMR (400MHz, CDCl3): δ = 8.65 (d, J = 8.8Hz, 2H), 8.41 (s, 2H), 7.34 (d, J = 8.8Hz, 2H), 4.47 (s, 4H).
화합물 55: 화합물 54 (0.83g, 2.42mmol)을 클로로포름(Chloroform) (6ml)에 완전히 녹인 다음, 트리에틸포스페이트(triethyl phosphate) (9ml)를 반응용액에 가하고 3시간 동안 환류한다. 용액을 식힌 후, 감압하여 용매를 제거한다. 에틸 아세테이트/메탄올(Ethyl acetate/methanol = 10 : 1)을 전개용매로 하여 액체 크로마토그래피하면 백색 고체화합물 (1.08g, 98.0%)을 얻는다. M.p. 109 ℃; 1H-NMR (400MHz, CDCl3): δ = 8.57 (d, J = 8.8Hz, 2H), 8.30 (s, 2H), 7.31 (m, 2H), 4.03 (m, 8H), 3.22 (d, 4H), 1.26 (t, 12H).
화합물 56: THF (10ml) 에 화합물 55 (0.40g, 0.88mmol), 95% NaH (64mg, 2.62mmol)을 넣고 30분간 교반한 후, 합성예 1에서 제조한 화합물 14 (0.46g, 2.10mmol)을 넣고, 16시간 동안 교반한다. 반응용액에 물 (50ml)을 가한 다음, 클로로포름으로 추출하여, 유기층을 분리한 다음, MgSO4로 건조한다. 감압하여 용매를 제거하고, 메탄올로 생성된 고체를 씻어주면 오렌지색 고체화합물 (0.25g, 48.1%)을 얻는다. 1H-NMR (400MHz, CDCl3) : δ = 8.93 (s, 2H), 8.66 (d, J = 8.8Hz, 2H), 7.87 (s, 2H), 7.67 (d, J = 8.4Hz, 4H), 7.50 (d, J = 8.8Hz, 2H), 7.35 (d, J = 8.8Hz, 2H), 6.02 (d, J = 8.8Hz, 2H), 6.50 (s, 2H), 3.38 (q, 8H), 1.20 (t, 12H).
화합물 109: 무수 DMF (5ml) 에 디-u-클로로비스(p-시민)클로로루테늄(di-u-chlorobis(p-cymene)chlororuthenium(Ⅱ)) (91mg, 0.149mmol), 화합물 56 (176mg, 0.298mmol)을 넣고, 빛 차단 후 150 ℃에서 4시간 동안 교반한다. 반응용액에 화합물 14 (73mg, 0.298mmol)을 넣고 4시간 동안 교반한 후, NH4NCS (170mg, 2.235mmol)을 넣고 4시간 동안 교반한다. 반응용액을 실온으로 식힌 후, 감압하여 용매를 제거하고, pH ~3의 질산수용액으로 생성물을 산성화 시킨 후, 생성된 고체를 거른다. 과량의 물과 디클로로메탄(Dichloromethane)으로 생성된 고체를 여러 번 씻어 준 다음, 테트라뷰틸암모늄 하이드록사이드(tetrabutylammonium hydroxide) (1M in methanol, 0.1ml) 및 소량의 메탄올을 가해 생성된 고체를 완전히 녹인다. 메탄올을 전개용매로 하여 액체 크로마토그래피(Sephadex LH 20 gel)하여 첫번째 띠를 분리하는 과정을 2~3회 반복한 후, 감압하여 용매를 제거하고 pH ~3의 질산수용액, 증류수로 생성된 고체를 씻어주면 검정색 고체화합물 (0.20g, 61.0%)을 얻는다. 1H-NMR (400MHz, DMSO, d6): δ = 9.38 (s, 1H), 9.06~8.60 (m, 6H), 8.25~7.10 (m, 13H), 6.75~6.50 (m, 4H), 3.38 (q, 8H), 1.20 (t, 12H).
화합물 109의 자외선-가시광선 영역의 흡광도를 확인하기 위하여 DMF 를 용매로, 2.5x10-5M 의 농도로 측정한 결과를 도 10에 나타내었다. 화합물 109는 약 740 nm (band edge)까지 흡수를 가지며, 465 nm 에서 쿠마린 구조체의 흡수파장 및 557 nm 에서 MLCT (Metal to ligand charge transfer) 밴드(band)를 보였으며, 몰흡광계수(ε, M-1cm-1) 는 각각 54,000 (465 nm), 23,000 (557 nm) 으로 계산된다. 하기 표 1에 나타낸 바와 같이 기존의 루테늄 착염계 염료 N719 와 비교하면, N719 에 비해 월등히 높은 흡광도를 가지는 동시에 MLCT 밴드가 약 43 nm 정도 장파장으로 이동하였다. 이러한 높은 흡광도는 태양전지에 적용 시 보다 효율적으로 빛을 흡수하게 하며, 따라서 태양전지의 광전변환 효율을 더욱 향상시킬 수 있다.
[표 1]
Figure PCTKR2009000561-appb-I000046
합성예 10: 페노티아진 함유 루테늄 착물계 염료(화합물 110)의 합성
Figure PCTKR2009000561-appb-I000047
Figure PCTKR2009000561-appb-I000048
화합물 57: THF (5ml)에 합성예 9에서 제조한 화합물 55 (0.20g, 0.44mmol), 95% NaH (32mg, 1.31mmol)을 넣고 1시간 동안 교반한 후, 합성예 7에서 제조한 화합물 38 (0.33g, 1.05mmol)를 넣고, 16시간 동안 교반한다. 반응용액에 물 (50ml) 을 가한 다음, 클로로포름으로 추출하여, 유기층을 분리한 다음, MgSO4 로 건조한다. 감압하여 용매를 제거하고, 메탄올로 생성된 고체를 씻어주면 주황색 고체화합물 (0.24g, 70.6%)을 얻는다. 1H-NMR (400MHz, CDCl3) : δ = 8.64 (d, J = 8.8Hz, 2H), 8.49 (s, 2H), 7.33 (m, 8H), 7.14 (m, 4H), 6.99~6.83 (m, 8H), 3.85 (t, 4H), 1.82 (m, 4H), 1.44 (m, 4H), 1.32 (m, 8H), 0.88 (t, 6H).
화합물 110: 무수 DMF (3ml) 에 디-u-클로로비스(p-시민)클로로루테늄(di-u-chlorobis(p-cymene)chlororuthenium(Ⅱ)) (60mg, 0.099mmol), 화합물 57 (152mg, 0.197mmol)을 넣고, 빛 차단 후 150 ℃에서 4시간 동안 교반한다. 반응용액에 화합물 14 (49mg, 0.197mmol)을 넣고 4시간 동안 교반한 후, NH4NCS (112mg, 1.478mmol)을 넣고 4시간 동안 교반한다. 반응용액을 실온으로 식힌 후, 감압하여 용매를 제거하고, pH ~3의 질산수용액으로 생성물을 산성화 시킨 후, 생성된 고체를 거른다. 과량의 물과 디클로로메탄(Dichloromethane)으로 생성된 고체를 여러 번 씻어 준 다음, 테트라뷰틸암모늄 하이드록사이드(tetrabutylammonium hydroxide) (1M in methanol, 0.1ml) 및 소량의 메탄올을 가해 생성된 고체를 완전히 녹인다. 메탄올을 전개용매로 하여 액체 크로마토그래피(Sephadex LH 20 gel)하여 첫번째 띠를 분리하는 과정을 2~3회 반복한 후, 감압하여 용매를 제거하고 pH ~3의 질산수용액, 증류수로 생성된 고체를 씻어주면 검붉은색 고체화합물 (0.20g, 82.3%)을 얻는다. 1H-NMR (400MHz, DMSO, d6) : δ = 9.34 (s, 1H), 9.06~8.60 (m, 5H), 8.50 (br, s, 1H), 8.12 (br, s, 1H), 8.06 (br, s, 1H), 7.87~7.40 (m, 10H), 7.30~6.90 (m, 10H), 3.88 (m, 4H), 3.16 (m, 4H), 1.56 (m, 4H), 1.30 (m, 8H), 0.93 (t, 6H).
화합물 110의 자외선-가시광선 영역의 흡광도를 확인하기 위하여 DMF 를 용매로, 1.25x10-5M 의 농도로 측정하고 결과를 도 11에 나타내었다. 도 10을 참조하면,
화합물 110은 약 740 nm (band edge)까지 흡수를 가지며, 307 nm 에서 최대흡수파장을, 434 nm 에서 페노티아진 구조체의 흡수파장 및 545 nm 에서 MLCT (Metal to ligand charge transfer) band 를 보였으며, 몰흡광계수 (ε, M-1cm-1) 는 각각 100,000 (307 nm), 59,000 (434 nm), 28,000 (545 nm) 으로 계산된다. 하기 표 2에 나타낸 바와 같이 기존의 루테늄 착염계 염료 N719 와 비교하면, N719 에 비해 월등히 높은 흡광도를 가지는 동시에 MLCT 밴드(band)가 약 30 nm 정도 장파장으로 이동하였다. 이러한 높은 흡광도는 태양전지에 적용 시 보다 효율적으로 빛을 흡수하게 하며, 따라서 태양전지의 광전변환 효율을 더욱 향상시킬 수 있다.
[표 2]
Figure PCTKR2009000561-appb-I000049
상기 합성예 1 내지 10의 염료 감응 태양전지용 염료들은 기존의 염료 (N719) 에 비해 5배 이상의 높은 흡광도를 가지며, 따라서 이를 염료 감응 태양전지에 적용 시 광전변환 효율을 향상 시킬 수 있다.
실시예 1: 염료 감응 태양전지의 제조
태양전지 소자의 제조 및 특성확인 방법
(1) 작업 전극 제작
FTO 글라스(Fluorine-doped tin oxide coated conduction glass, Pilkington, TEC7)를 1.5 cm X 1.5 cm 크기로 잘라 비눗물로 초음파(sonication) 세척을 5분간 한 후 비눗물을 완전히 제거를 한다. 그 후에 에탄올로 초음파(sonication) 세척을 5분간 3회 반복한다. 그 후에는 무수에탄올(Anhydrous ethanol)로 완전히 헹군 후에 오븐에서 건조시킨다. 이렇게 준비한 FTO 글라스 위에 TiO2와의 접촉력을 향상시키기 위하여 0.2M 티타늄(Ⅳ) 부톡사이드(Titanium (Ⅳ) butoxide) 용액을 스핀 코팅 방법으로 입히고, 오븐에서 용매를 완전히 건조시킨다.
그 후에 다이졸 티타니아(Dyesol titania, TiO2)를 FTO 글라스 위에 닥터 블레이드 법으로 코팅한다. 코팅된 필름을 100 ℃ 오븐에서 10분 동안 말린 다음, 450 ℃로 30분간 열처리함으로써 10 마이크로미터 두께의 TiO2 필름을 얻는다. 열처리 과정이 끝난 TiO2 필름을 0.5mM 농도의 합성한 염료의 무수에탄올(anhydrous ethanol) 용액에 24시간 담궈 놓음으로써 염료를 흡착시킬 수 있다(anhydrous ethanol에 염료가 녹지 않을 경우에는 녹일 수 있는 solvent를 사용). 흡착이 끝난 후에 무수에탄올(anhydrous ethanol)로 흡착되지 않은 염료를 완전히 세척한 후 건조시킨다. 염료가 흡착된 필름을 4 mm X 4 mm 크기만 남기고 나머지는 긁어낸다.
(2) 상대 전극 제작
1.5 cm X 1.5 cm 크기의 FTO 글라스에 다이아몬드 드릴(Bosch, Dremel multipro395)을 이용해서 전해질을 들어갈 구멍 두 개를 뚫는다. 그 후에는 위에서 제시했던 세척 방법과 동일한 방법으로 세척한 후 건조시킨다. 그 후, H2PtCl6(hydrogen hexachloroplatinate/2-propanol) 용액을 FTO 글라스에 입힌 후 450 ℃에서 30분간 열처리 한다.
(3) 샌드위치 셀(Sandwich cell) 제작
작업전극과 상대전극 사이에 사각형 띠 모양으로 자른 설린(Surlyn, Solaronix, SX1170-25 Hot Melt)을 놓고 핫 프레스기를 이용하여 두 전극을 서로 붙인 후에 상대전극에 있는 2개의 작은 구멍을 통해 전해질을 주입한 후 설린 스트립(Surlyn strip)과 커버 글라스(cover glass)로 실링(sealing)하여 샌드위치 셀(sandwich cell)을 제작한다. 전해질 용액으로는 0.1 M LiI, 0.05 M I2, 0.6 M 1-헥실-2,3-디메틸이미다졸륨 아이오다이드(1-hexyl-2,3-dimethylimidazolium iodide)와 0.5 M 4-t-뷰틸피리딘(4-tert-butylpyridine)을3-메톡시프로피온니트릴(3-methoxypropionitrile) 용매로 하여 제조하였다.
(4) 광전류-전압(Photocurrent-voltage) 측정
앞에서 제작한 샌드위치 셀(sandwich cell)에 AM 1.5 솔라 시뮬레이팅 필터(solar simulating filter)를 장착한 Xe 램프(Oriel, 300 W Xe arc lamp)로 빛을 조사하면 M236 소스 측정 유닛(source measure unit) (SMU, Keithley)을 사용하여 전류-전압 곡선을 얻었다. 전위의 범위는 -0.8 V에서 0.2 V까지 이고, 빛의 세기는 100 mW/cm2으로 하였다.
염료의 종류에 따른 태양전지 소자의 특성확인
상기 합성예 1 내지 10에서 제조한 염료의 종류에 따라 위에서 기재한 방법으로 태양전지 소자를 제작하여 그 특성을 확인하였으며, 사용 염료 및 제조된 태양전지 소자로부터 측정된 개방전압(Voc), 단락전류 (Jsc), fill factor (FF), 광전변환효율(%)을 하기 표 3에 나타냈으며, 하기 실시예에 의한 효율은 소자구조, 티타늄 옥사이드의 크기, 공흡착제(co-adsorbant)의 농도 및 종류, 전해질의 농도 및 종류 등에 따라 변화하며 따라서 아래의 예시값에 한정되는 것은 아님을 밝힌다.
[표 3]
Figure PCTKR2009000561-appb-I000050
본 발명에 따른 염료는 높은 광 흡수도를 나타내며, 상기 염료를 포함하는 염료 감응 태양 전지는 우수한 광전 변환효율을 가진다.

Claims (8)

  1. 하기 화학식 1의 화합물 또는 하기 화학식 2의 화합물로부터 선택되는 염료 감응 태양전지용 염료.
    [화학식 1]
    Figure PCTKR2009000561-appb-I000051
    [화학식 2]
    Figure PCTKR2009000561-appb-I000052
    [상기 화학식 1 내지 화학식 2에서,
    X1 및 X2는 독립적으로 (C6~C60)아릴기, (C3~C60)헤테로아릴기, 또는 이들의 조합으로 이루어진 치환기이며, 이때 X1 및 X2 중 적어도 하나는 포피리닐기, 페노티아지닐기, 쿠마리닐기 또는 프탈로시아닐기를 포함하고;
    Y1 및 Y2는 독립적으로 (C6~C60)방향족 탄화수소기, (C3~C60)방향족 헤테로고리기, 이들의 조합으로 이루어진 치환기, 또는
    Figure PCTKR2009000561-appb-I000053
    로부터 선택되고, 상기 Y3 및 Y4는 독립적으로 (C6~C60)아릴기, (C3~C60)헤테로아릴기 또는 이들의 조합으로 이루어진 치환기로부터 선택되며, 상기 Y1 내지 Y4 중 적어도 하나는 포피리닐기, 페노티아지닐기, 쿠마리닐기 또는 프탈로시아닐기를 포함하고;
    Z1 및 Z2는 독립적으로 화학결합이거나, (C6~C30)아릴렌, 1이상의 (C3~C30)헤테로아릴렌, 1이상의 비닐렌, 또는 이들의 조합으로부터 선택되고;
    A1 및 A2는 산성작용기이며;
    상기 아릴, 헤테로아릴, 아릴렌, 헤테로아릴 또는 비닐렌기는 (C1~20)알킬, (C1~20)알콕시, 할로겐원소, 아미노기, 니트로기 및 시아노기(CN)로부터 선택되는 1 이상의 치환기로 더 치환될 수 있다.]
  2. 제 1항에 있어서,
    상기 A1 및 A2는 카르복시기, 아인산기, 술폰산기, 포스핀산기, 히드록시기, 옥시카르복시산, 산아미드 및 이들의 조합으로 이루어진 군에서 선택되는 염료 감응 태양 전지용 염료.
  3. 제 1항에 있어서,
    Z1 및 Z2는 독립적으로 화학결합이거나, 비닐렌, 폴리비닐렌, 페닐렌, 나프틸렌, 안트라세닐렌, 플루오레닐렌, 비페닐렌, 피란일렌, 피롤렌, 티오펜일렌, 카바졸일렌기 또는 이들의 조합으로 이루어진 군에서 선택되는 염료 감응 태양 전지용 염료.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 화학식 1의 화합물은 하기 화학식 3의 화합물로부터 선택되고, 상기 화학식 2의 화합물은 하기 화학식 4 또는 화학식 5의 화합물로부터 선택되는 염료 감응 태양전지용 염료.
    [화학식 3]
    Figure PCTKR2009000561-appb-I000054
    [화학식 4]
    Figure PCTKR2009000561-appb-I000055
    [화학식 5]
    Figure PCTKR2009000561-appb-I000056
    [상기 화학식 3 내지 화학식 5에서 X11 및 Y11 내지 Y13은 독립적으로 하기 구조로부터 선택되고
    Figure PCTKR2009000561-appb-I000057
    X12는 하기 구조로부터 선택되며
    Figure PCTKR2009000561-appb-I000058
    Z11 및 Z12는 독립적으로
    Figure PCTKR2009000561-appb-I000059
    로부터 선택되고,
    Z21 내지 Z24는 독립적으로
    Figure PCTKR2009000561-appb-I000060
    로부터 선택되며,
    m은 0 내지 2의 정수이고, n은 0 내지 4의 정수이고,
    j은 0 내지 2의 정수이고, k는 0 내지 4의 정수이며,
    p은 0 내지 2의 정수이고, q는 0 내지 4의 정수이다.
    R11 내지 R22 및 R30 내지 R31은 독립적으로 수소이거나, (C1~C20)알킬, (C1~C20)알콕시, 할로겐원소, 아미노기, 니트로기 또는 시아노기(CN)로부터 선택된다.]
  5. 제 4 항에 있어서,
    상기 화학식 3의 화합물은 하기 구조의 화합물로부터 선택되는 염료 감응 태양전지용 염료.
    Figure PCTKR2009000561-appb-I000061
    Figure PCTKR2009000561-appb-I000062
    Figure PCTKR2009000561-appb-I000063
    Figure PCTKR2009000561-appb-I000064
    Figure PCTKR2009000561-appb-I000065
    Figure PCTKR2009000561-appb-I000066
    Figure PCTKR2009000561-appb-I000067
    [상기 구조에서 R11 내지 R22 및 R30은 독립적으로 수소 또는 (C1~C20)알킬로부터 선택되고, n은 0 내지 4의 정수이다]
  6. 제 4 항에 있어서,
    상기 화학식 4의 화합물은 하기 구조의 화합물로부터 선택되는 염료 감응 태양전지용 염료.
    Figure PCTKR2009000561-appb-I000068
    Figure PCTKR2009000561-appb-I000069
    [상기 구조에서 R12 내지 R22 및 R31은 독립적으로 수소 또는 (C1~C20)알킬로부터 선택되고, a는 0 또는 1이고, b는 0 내지 2의 정수이다.]
  7. 제 4 항에 있어서,
    상기 화학식 5의 화합물은 하기 구조의 화합물로부터 선택되는 염료 감응 태양전지용 염료.
    Figure PCTKR2009000561-appb-I000070
    Figure PCTKR2009000561-appb-I000071
    Figure PCTKR2009000561-appb-I000072
    Figure PCTKR2009000561-appb-I000073
    Figure PCTKR2009000561-appb-I000074
    Figure PCTKR2009000561-appb-I000075
    Figure PCTKR2009000561-appb-I000076
    Figure PCTKR2009000561-appb-I000077
    [상기 구조에서 R12 내지 R22, R31내지 R32 R40은 독립적으로 수소 또는 (C1~C20)알킬로부터 선택되고, a 는 0 또는 1이고, b는 0 내지 2의 정수이며, c 는 0 또는 1이고, d는 0 내지 2의 정수이다.]
  8. 제 1 항 내지 제 7 항 중 어느 한 항의 염료를 광흡수층에 포함하는 태양전지 소자.
PCT/KR2009/000561 2008-02-05 2009-02-05 염료 감응 태양전지용 염료 및 이를 함유하는 태양전지 WO2009099302A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/866,347 US8629269B2 (en) 2008-02-05 2009-02-05 Dye for a dye-sensitised solar cell, and a solar cell comprising the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020080011757A KR20080018238A (ko) 2008-02-05 2008-02-05 쿠마린 함유 염료 감응 태양전지용 염료
KR10-2008-0011757 2008-02-05
KR10-2008-0012929 2008-02-13
KR1020080012929A KR20080019669A (ko) 2008-02-13 2008-02-13 페노티아진 함유 염료 감응 태양전지용 염료
KR1020080035194A KR20080039863A (ko) 2008-04-16 2008-04-16 포피린 함유 염료 감응 태양전지용 염료
KR10-2008-0035194 2008-04-16
KR1020090008472A KR101082086B1 (ko) 2008-02-05 2009-02-03 염료 감응 태양전지용 염료 및 이를 함유하는 태양전지
KR10-2009-0008472 2009-02-03

Publications (2)

Publication Number Publication Date
WO2009099302A2 true WO2009099302A2 (ko) 2009-08-13
WO2009099302A3 WO2009099302A3 (ko) 2009-10-29

Family

ID=40952569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/000561 WO2009099302A2 (ko) 2008-02-05 2009-02-05 염료 감응 태양전지용 염료 및 이를 함유하는 태양전지

Country Status (1)

Country Link
WO (1) WO2009099302A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102093740A (zh) * 2011-01-21 2011-06-15 电子科技大学 一种用于染料敏化太阳能电池的有机染料及其制备方法
US20110155237A1 (en) * 2009-12-24 2011-06-30 Noh-Jin Myung Dye-sensitized solar cell
CN111100099A (zh) * 2019-12-03 2020-05-05 西安近代化学研究所 一种苯基为末端桥链的三苯胺共敏剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526705A (en) * 1980-01-19 1985-07-02 Bayer Aktiengesellschaft Light-collecting systems and the use of coumarin derivatives as energy converters in them
US6084176A (en) * 1997-09-05 2000-07-04 Fuji Photo Film Co., Ltd. Photoelectric conversion device and solar cell
US20070191600A1 (en) * 2003-06-06 2007-08-16 North Carolina State University Methods and intermediates for the synthesis of dipyrrin-substituted porphyrinic macrocycles
JP2008021496A (ja) * 2006-07-12 2008-01-31 Nippon Kayaku Co Ltd 色素増感光電変換素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526705A (en) * 1980-01-19 1985-07-02 Bayer Aktiengesellschaft Light-collecting systems and the use of coumarin derivatives as energy converters in them
US6084176A (en) * 1997-09-05 2000-07-04 Fuji Photo Film Co., Ltd. Photoelectric conversion device and solar cell
US20070191600A1 (en) * 2003-06-06 2007-08-16 North Carolina State University Methods and intermediates for the synthesis of dipyrrin-substituted porphyrinic macrocycles
JP2008021496A (ja) * 2006-07-12 2008-01-31 Nippon Kayaku Co Ltd 色素増感光電変換素子

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110155237A1 (en) * 2009-12-24 2011-06-30 Noh-Jin Myung Dye-sensitized solar cell
CN102093740A (zh) * 2011-01-21 2011-06-15 电子科技大学 一种用于染料敏化太阳能电池的有机染料及其制备方法
CN102093740B (zh) * 2011-01-21 2013-06-12 电子科技大学 一种用于染料敏化太阳能电池的有机染料及其制备方法
CN111100099A (zh) * 2019-12-03 2020-05-05 西安近代化学研究所 一种苯基为末端桥链的三苯胺共敏剂及其制备方法
CN111100099B (zh) * 2019-12-03 2023-04-18 西安近代化学研究所 一种苯基为末端桥链的三苯胺共敏剂及其制备方法

Also Published As

Publication number Publication date
WO2009099302A3 (ko) 2009-10-29

Similar Documents

Publication Publication Date Title
WO2013085285A1 (ko) 정공전도특성을 갖는 염료감응 태양전지용 공흡착체 및 그를 포함하는 염료감응 태양전지
WO2011068346A2 (ko) 유기금속염료 및 이를 이용한 광전소자, 염료감응 태양전지
WO2012173370A2 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2015163614A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
WO2011081431A2 (ko) 유기발광 화합물 및 이를 포함한 유기 전계 발광 소자
WO2016133368A2 (ko) 헤테로환 화합물 및 이를 포함하는 유기 태양 전지
KR20130132534A (ko) 나프탈렌 모노이미드 유도체 및 태양전지 및 광검출기에서 감광제로서 이의 용도
WO2010062015A1 (ko) 벤조티아다이아졸 발색부-함유 신규 유기염료 및 이의 제조방법
KR101082086B1 (ko) 염료 감응 태양전지용 염료 및 이를 함유하는 태양전지
WO2010005268A2 (ko) 신규한 안트라센 유도체 및 이를 이용한 유기 전자 소자
WO2010002154A2 (ko) 신규한 유기염료 및 이의 제조방법
WO2018088797A1 (ko) 스피로비플루오렌 화합물 및 이를 포함하는 페로브스카이트 태양전지
WO2021167214A1 (ko) 태양 전지용 정공 수송 재료 및 이를 포함하는 태양 전지
WO2010058946A2 (ko) 신규한 크라이센 유도체 및 이를 이용한 유기 전기 소자
WO2014061867A1 (ko) 신규한 유기 반도체 화합물 및 이의 제조방법
WO2022186439A1 (ko) 전도성기판, 이를 이용한 페로브스카이트 기판 및 이를 이용한 태양전지
WO2009099302A2 (ko) 염료 감응 태양전지용 염료 및 이를 함유하는 태양전지
EP3609976B1 (en) Organic photochromic dye and uses thereof for dye sensitized solar cells
WO2018225999A1 (ko) 화합물 및 이를 포함하는 유기 태양 전지
WO2010085087A2 (ko) 신규한 시클로알켄 유도체 및 이를 이용한 유기전자소자
Lee et al. Synthesis of Organic Dyes with Linkers Between 9, 9-Dimethylfluorenyl Terminal and α-Cyanoacrylic Acid Anchor, Effect of the Linkers on UV-Vis Absorption Spectra, and Photovoltaic Properties in Dye-Sensitized Solar Cells.
JP7497941B2 (ja) シクロブタンベースの正孔輸送材料を含む光起電デバイス
KR101469504B1 (ko) 염료감응 태양전지, 이를 이용한 온실 및 이에 사용되는 염료
WO2017099460A1 (ko) 블록 중합체, 이를 포함하는 준고체 고분자 전해질 및 이를 채용한 염료감응 태양전지
WO2015147598A1 (ko) 공중합체 및 이를 포함하는 유기 태양 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709411

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12866347

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09709411

Country of ref document: EP

Kind code of ref document: A2