WO2009095515A1 - Robotic system for characterisation of the angular response in radiometric instruments - Google Patents

Robotic system for characterisation of the angular response in radiometric instruments Download PDF

Info

Publication number
WO2009095515A1
WO2009095515A1 PCT/ES2009/000042 ES2009000042W WO2009095515A1 WO 2009095515 A1 WO2009095515 A1 WO 2009095515A1 ES 2009000042 W ES2009000042 W ES 2009000042W WO 2009095515 A1 WO2009095515 A1 WO 2009095515A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular response
module
instrument
robotic system
robotic arm
Prior art date
Application number
PCT/ES2009/000042
Other languages
Spanish (es)
French (fr)
Inventor
José Manuel ANDUJAR MARQUEZ
Miguel Ángel MARTINEZ BOHORQUEZ
Francisco José AGUILAR NIETO
Jonathan Medina Garcia
Original Assignee
Universidad De Huelva
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Huelva filed Critical Universidad De Huelva
Publication of WO2009095515A1 publication Critical patent/WO2009095515A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0242Control or determination of height or angle information of sensors or receivers; Goniophotometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0266Field-of-view determination; Aiming or pointing of a photometer; Adjusting alignment; Encoding angular position; Size of the measurement area; Position tracking; Photodetection involving different fields of view for a single detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/08Arrangements of light sources specially adapted for photometry standard sources, also using luminescent or radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry

Definitions

  • the present invention relates to a fully robotic system for the characterization of the angular response in radiometric instruments, specifically for pyranometers, which are illuminated by a calibrated lamp.
  • the object of the invention is to provide a device that allows the said pyranometer to be automatically rotated from + 90 ° to - 90 ° (with respect to the vertical to the ground plane), automatically obtaining all the measurements of the instrument, said instrument being said device capable of self-leveling horizontally automatically.
  • the object of the invention is to provide a device by which quite better results are obtained in Ability, resolution and precision, as well as in speed to determine the angular response of the instrument and in the capacity to immunize electromagnetic and light noise of the experiments.
  • pyranometers are used primarily among other devices. The most used they are those that make measurements within the visible and ultraviolet radiation spectrum.
  • the input optics of the pyranometer must have a good angular response, also called the cosine response.
  • the angular response of the instruments deviates from the previous relationship, with the majority tending to underestimate true solar irradiance. This fact is what is called the cosine effect.
  • the magnitude of this error varies from units to several tens of percentage depending on the angle of incidence.
  • the angular response mainly affects the direct component of global radiation. Diffuse radiation is less affected due mainly to two factors: diffuse radiation generated at angles near the horizon is a small portion of the total diffuse radiation measured and in the UV zone this radiation is even smaller as a result of increased absorption by part of the ozone due to the greater optical path. In most broadband pyranometers and spectrometers the cosine effect begins to be important from about 70 ° zenith angle.
  • the cosine error is attenuated or decreased with different physical and / or mechanical procedures improving the behavior of the instrument.
  • it is necessary to know exactly the angular response of the instrument to be able to analyze the characterization of it.
  • different tests can be performed both in the laboratory and in the field.
  • the device that is recommended is materialized in a robotic arm that automatically rotates the pyranometer that is attached to it, which is illuminated by a calibrated lamp, a rotation that goes from
  • the device of the invention is capable of self-leveling horizontally automatically. This is managed through a PC, so that the measurements are acquired by a high precision digital multimeter that is also controlled by the computer through an RS 232 serial digital bus.
  • Figure 1. It shows a block diagram in which it is observed where the object of the invention is integrated into the automatic control and data acquisition system for the characterization of the angular response in radiometric instruments.
  • FIGS 2 and 3.- They show both front and profile views of the device object of the present invention.
  • Figure 4.- Shows a rear view of the device of figures 2 and 3.
  • Figure 5. Shows a block diagram of the elements that participate in the robotic arm of the device.
  • Figure 6. Shows a perspective and schematic view of the different elements that participate jointly to the servomotor for displacement of the robotic arm.
  • Figure 7. Shows a perspective and detailed view of the assembly represented in the previous figure.
  • Figure 8 shows, finally, an exploded view of the assembly of the previous figure.
  • the entire system is controlled by a PC, in which a data acquisition software is run, developed specifically for this invention.
  • a data acquisition software is run, developed specifically for this invention.
  • a resolution close to 1/60 of a degree can be obtained, which guarantees extraordinary precision in all measuring positions of the robotic arm (4).
  • the robotic arm is made up of a series of modules, such as a communication module (6) of the device with the multimeter (2), which includes all The electronic control of the instrument.
  • the signals coming from the multimeter (2) arrive, which are the positioning control signals of a series of elements that will be discussed later, as well as the power supply (7) of the arm itself, module that sends information on the status of the device to the multimeter (2) through a multipolar 6-conductor cable (8).
  • the power supply (7) provides the robotic arm with all the energy necessary for its operation and power of its motors. It is located outside so that it does not affect the measures as it could induce Noises through the transformer, arranged next to the PC (1).
  • the robotic arm is also assisted by a motor controller module (9), responsible for controlling two medium power DC motors, designed to provide more power than controllers based on an integrated circuit.
  • a motor controller module responsible for controlling two medium power DC motors, designed to provide more power than controllers based on an integrated circuit.
  • the operating mode used to control the position of the arm has been the analogue of 0V-2,5V-5V.
  • the motors are independently controlled by two analog signals from 0 to 5 volts at the SCL input for motor 1 and the SDA input for motor 2.
  • 0 volts is the maximum speed in a direction of rotation
  • 2.5 is the central position and at rest and 5 volts corresponds to the maximum in the other direction.
  • This module generates the PWM signal necessary to control the motors.
  • a servomotor module (10) is established, so that the movement of the main shaft (12) that rotates the caliper (11) that holds the pyranometer to be characterized has been or coupled to other reducing relationships (13-14-15 ), as can be seen in the detail in Figure 6.
  • the movement of the pyranometer fixing support (11) is regulated by a DC motor (16), whose output axis is associated with a reducer (17), belonging to the motor block itself, after which it is established an optical barrier (18) of the encoder, which belongs to the standard type of infrared beam cut-off sensor detectors, also called a barrier sensor on the output shaft of the reducer (17), next to which a disc is established slotted encoder (19).
  • the disk used belongs to the family of incremental encoders. These are discrete and are capable of presenting us with digital information of zero or logical levels.
  • the disc used in this invention has been a disc with 120 perforations per revolution. This means that in 2 ⁇ radians or in 360 degrees, we can count up to 120 TTL pulses of resolution. This number of pulses is multiplied by the multiplication ratio that exists until the output of the main axis (12).
  • the axis of the reducer (17) is associated with a homokinetic coupling (20), preferably of aluminum, after which the helical worm reducer (15) is established, a reduction stage that is of vital importance. It corresponds to a type of reduction based on a crown with worm or worm gear. This stage allows the locking of the final shaft when the engine is not running, in this way there is no continuous energy consumption and better stability of the whole assembly itself. Offers zero slack in your settings.
  • a chain pinion (13) is established (14) constituting the last reduction ratio that is integrated with rectified steel pinions to engage in chain gearing.
  • These sprockets belong to a 3 to 1 ratio, and are capable of withstanding pairs of forces much higher than those required by the positioning system, thus avoiding fatigue risks and providing a very robust and oversized system in resistance.
  • the chain (14) is used to minimize possible slacks in the transmissions, so that the breaking tension is unattainable by the system, fully guaranteeing its proper functioning and lifetime warranty. This chain is maintenance free and adjusted to the precise tension to completely eliminate mechanical clearance.
  • the chain (14) moves a crown (21) to which it is in solidarity with the positioning axis (12), which is responsible for transmitting the movement to the clamp system that supports the pyranometer.
  • This shaft is made of stainless steel with special machining to ensure that the conductive wires that feed the clamp can be driven inside, avoiding the existence of external cables linked to a joint, which totally reduces the risk of damage, snagging and deterioration of the cables, providing in turn an advanced and aesthetically correct design.
  • Said control panel serves to govern the positioner manually. You have to switch from PC control to Manual control through a switch (24). This panel also monitors any malfunction or activation of protections in case of loss of control of the device, with a power switch (25) and a led (26) indicating anomalies in the device.
  • said switch (27) To perform a harness of the instrument, said switch (27) must be placed in thickener mode and we use the speed lever and direction of rotation as it is used to position the output shaft, accurately raising or lowering the instrument clamp. You also have the possibility to make a fine manual adjustment using the fine adjustment wheel that is arranged in the lower front part of the caliper.
  • the robotic arm (4) will also be assisted by a protection module (28) that protects the device against software problems and hardware problems. Before the software, it has been protected by placing two limit switches on the rotational turntable, in this way when the software for any reason stops working and the motor is still running, at a certain point the voltage supply is cut off, forcing the arm to stop before taking a full turn.
  • a light indicator (29) indicating said status is included in the control panel (23), as well as a push button (34) at the end of the run.
  • fuses have been used to prevent overheating or overvoltage in the conductors and thus protect the electronic circuitry. Also to avoid the dependence of many of the components with the power and temperature, reference sources have been used in various parts of the circuit.
  • the robotic arm (4) is associated with a pyranometer holding module (30), which can be seen in detail in Figures 2 and 3, so that the radiometric device holding system is composed of a clamp holder ( 11) to accommodate the pyranometer (5) and a gearmotor to whose axle a wheel is attached to make a small fine adjustment (31).
  • This motor is made to coincide with a worm screw (32), with zero clearance so that no movement occurs during the operation of the invention.
  • the adjustment made with this motor is a vertical adjustment, to match the center of rotation with the light of the thickener led (33).
  • a clamp-shaped support 11
  • a fastening flange 366 adjustable to the thickness and length of the devices to be characterized, so that a fast and fully effective fastening is performed.
  • the pyranometer to be characterized will be attached in solidarity to the clamp.
  • DC motors are operated that act on endless screws of the tripod legs (35) that support the invention, until it is fully leveled, through a connection (39) coming from the aforementioned Self-leveling module (34), with the incorporation of a graduated scale (37) that, in combination with an indicator needle (38), allows the angular adjustments made to be controlled.
  • a terminal strip with locks has been developed. These have been introduced in a metal box, in order to isolate the measurements of all kinds of noise that can be introduced by induction from the environment.
  • the noise reduction has been done with two methods, one software and another hardware.
  • the software method is achieved by decreasing the operating range of the measurements, so that we perform more measurements for each integration time.
  • the other option that has been made is to place the mass to the metal box, so we can isolate the connections from external noise by a complete shield.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

The invention relates to a system specially designed to obtain results with high reliability, resolution, precision and rapidity in order to determine the angular response of the instrument in question and to provide immunity to the electromagnetic and light noise generated by the experiments. For this purpose, the system is formed by a robotic arm (4) enabling the automated rotation of the instrument to be characterised from +90° to -90°, said robotic arm being associated with a PC (1), a control panel (3) and a digital multimeter (2) by means of a series of electronic circuits. The robotic arm (4) is provided with means for securing the instrument to be characterised, while the PC includes a programming software package which, with the aid of a digital positioner, enables the positions of the robotic arm (4) to be obtained with high precision, as well as enabling the cosine error of the device to be calculated using the measurements received from the multimeter (2).

Description

SISTEMA ROBOTICO PARA LA CARACTERIZACIÓN DE LA RESPUESTA ANGULAR EN INSTRUMENTOS RADIOMÉTRICOS ROBOTIC SYSTEM FOR THE CHARACTERIZATION OF THE ANGULAR RESPONSE IN RADIOMETRIC INSTRUMENTS
D E S C R I P C I Ó ND E S C R I P C I Ó N
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
La presente invención se refiere a un sistema totalmente robótico para la caracterización de la respuesta angular en instrumentos radióme trieos, concretamente para piranómetros, que son iluminados por una lámpara calibrada.The present invention relates to a fully robotic system for the characterization of the angular response in radiometric instruments, specifically for pyranometers, which are illuminated by a calibrated lamp.
El objeto de la invención es proporcionar un dispositivo que permita girar de forma automatizada el citado piranómetro desde +90° hasta - 90° (respecto de la vertical al plano del suelo), obteniéndose de forma automática, todas las medidas del instrumento, siendo dicho dispositivo capaz de autonivelarse horizontalmente de forma automática.The object of the invention is to provide a device that allows the said pyranometer to be automatically rotated from + 90 ° to - 90 ° (with respect to the vertical to the ground plane), automatically obtaining all the measurements of the instrument, said instrument being said device capable of self-leveling horizontally automatically.
Así pues, el objeto de la invención es proporcionar un dispositivo mediante el que se obtengan unos resultados bastante mejores en Habilidad, resolución y precisión, así como en rapidez para determinar la respuesta angular del instrumento y en capacidad para inmunizar el ruido electromagnético y lumínico de los experimentos.Thus, the object of the invention is to provide a device by which quite better results are obtained in Ability, resolution and precision, as well as in speed to determine the angular response of the instrument and in the capacity to immunize electromagnetic and light noise of the experiments.
ANTECEDENTES DE LA INVENCIÓNBACKGROUND OF THE INVENTION
Para realizar la medición de la radiación solar, se emplean fundamentalmente entre otros dispositivos los piranómetros. Los más utilizados son aquellos que realizan mediciones dentro del espectro de radiación visible y del ultravioleta. Para la medida de la irradiancia solar espectral, la óptica de entrada del piranómetro debe tener una buena respuesta angular, también denominada respuesta coseno. La irradiancia medida por un instrumento ideal, siendo el ángulo cenital solar θ, es proporcional a la irradiancia medida en la vertical Io y al coseno del mencionado ángulo: I = Io eos θ .To perform the measurement of solar radiation, pyranometers are used primarily among other devices. The most used they are those that make measurements within the visible and ultraviolet radiation spectrum. To measure the spectral solar irradiance, the input optics of the pyranometer must have a good angular response, also called the cosine response. The irradiance measured by an ideal instrument, being the solar zenith angle θ, is proportional to the irradiance measured in the vertical Io and to the cosine of said angle: I = Io eos θ.
La respuesta angular de los instrumentos se desvía de la anterior relación, tendiendo la mayoría a subestimar la irradiancia solar verdadera. Este hecho es lo que se denomina efecto coseno. La magnitud de este error varía desde las unidades hasta varias decenas porcentuales dependiendo del ángulo de incidencia. La respuesta angular afecta principalmente a la componente directa de la radiación global. La radiación difusa es menos afectada debido principalmente a dos factores: la radiación difusa generada en ángulos cercanos al horizonte es una pequeña porción de la radiación difusa total medida y en la zona UV esta radiación es aún más pequeña como consecuencia del aumento de la absorción por parte del ozono debido al mayor camino óptico. En la mayoría de los piranómetros de banda ancha y espectrorradiómetros el efecto coseno empieza a ser importante a partir de unos 70° de ángulo cenital.The angular response of the instruments deviates from the previous relationship, with the majority tending to underestimate true solar irradiance. This fact is what is called the cosine effect. The magnitude of this error varies from units to several tens of percentage depending on the angle of incidence. The angular response mainly affects the direct component of global radiation. Diffuse radiation is less affected due mainly to two factors: diffuse radiation generated at angles near the horizon is a small portion of the total diffuse radiation measured and in the UV zone this radiation is even smaller as a result of increased absorption by part of the ozone due to the greater optical path. In most broadband pyranometers and spectrometers the cosine effect begins to be important from about 70 ° zenith angle.
El error coseno se atenúa o disminuye con diferentes procedimientos físicos y /o mecánicos mejorando el comportamiento del instrumento. Para dismunuir este problema a la mínima expresión se necesita conocer con exactitud la respuesta angular del instrumento para poder realizar analíticamente la caracterización del mismo. Para determinar la respuesta angular de este tipo de instrumentos, se pueden realizar diferentes ensayos tanto en el laboratorio como en campo.The cosine error is attenuated or decreased with different physical and / or mechanical procedures improving the behavior of the instrument. In order to reduce this problem to the minimum expression, it is necessary to know exactly the angular response of the instrument to be able to analyze the characterization of it. To determine the angular response of these types of instruments, different tests can be performed both in the laboratory and in the field.
Actualmente, en la mayoría de los centros en los que re realiza el proceso de caracterización de la respuesta angular en instrumentos radiométricos, este proceso se realiza de forma manual, con la consiguiente falta de fiabilidad, resolución y precisión, así como en rapidez para determinar la respuesta angular del instrumento y la capacidad para inmunizar el ruido electromagnético y lumínico de los experimentos.Currently, in most of the centers where the process of characterization of the angular response in instruments is performed radiometric, this process is carried out manually, with the consequent lack of reliability, resolution and precision, as well as in speed to determine the angular response of the instrument and the ability to immunize the electromagnetic and light noise of the experiments.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
El sistema robótico para la caracterización de la respuesta angular en instrumentos radiométricos que la invención propone resuelve de forma plenamente satisfactoria la problemática anteriormente expuesta en los diferentes aspectos comentados.The robotic system for the characterization of the angular response in radiometric instruments that the invention proposes solves in a fully satisfactory way the problem previously stated in the different aspects mentioned.
Para ello, el dispositivo que se preconiza se materializa en un brazo robótico que hace girar de forma automatizada al piranómetro que se acopla al mismo, el cual es iluminado por una lámpara calibrada, giro que va desdeTo do this, the device that is recommended is materialized in a robotic arm that automatically rotates the pyranometer that is attached to it, which is illuminated by a calibrated lamp, a rotation that goes from
+ 90° hasta -90° (respecto de la vertical al plano del suelo), obteniéndose de forma automática, todas las medidas del instrumento.+ 90 ° to -90 ° (with respect to the vertical to the ground plane), obtaining automatically all the measurements of the instrument.
El dispositivo de la invención es capaz de autonivelarse horizontalmente de forma automática. Este es gestionado a través de un PC, de manera que las medidas son adquiridas por un multímetro digital de alta precisión que es también controlado por el ordenador a través de un bus digital serie RS 232.The device of the invention is capable of self-leveling horizontally automatically. This is managed through a PC, so that the measurements are acquired by a high precision digital multimeter that is also controlled by the computer through an RS 232 serial digital bus.
De esta manera se obtienen unos resultados bastante mejores en fiabilidad, resolución y precisión, así como en rapidez para determinar la respuesta angular del instrumento y en capacidad para inmunizar el ruido electromagnético y lumínico de los experimentos, ya que al ser automático se realiza en una sala oscura sin presencia cercana de la manipulación humana. DESCRIPCIÓN DE LOS DIBUJOSIn this way, quite better results are obtained in reliability, resolution and precision, as well as in speed to determine the angular response of the instrument and in capacity to immunize the electromagnetic and light noise of the experiments, since being automatic is performed in a Dark room without close presence of human manipulation. DESCRIPTION OF THE DRAWINGS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical implementation thereof, a set of drawings is attached as an integral part of said description. For illustrative purposes and not limitation, the following has been represented:
La figura 1.- Muestra un diagrama de bloques en el que se observa dónde está integrado el objeto de la invención dentro del sistema automático de control y adquisición de datos para la caracterización de la respuesta angular en instrumentos radiométricos.Figure 1.- It shows a block diagram in which it is observed where the object of the invention is integrated into the automatic control and data acquisition system for the characterization of the angular response in radiometric instruments.
Las figuras 2 y 3.- Muestran sendas vistas frontal y de perfil del dispositivo objeto de la presente invención.Figures 2 and 3.- They show both front and profile views of the device object of the present invention.
La figura 4.- Muestra una vista posterior del dispositivo de las figuras 2 y 3.Figure 4.- Shows a rear view of the device of figures 2 and 3.
La figura 5.- Muestra un diagrama de bloques de los elementos que participan en el brazo robótico del dispositivo.Figure 5.- Shows a block diagram of the elements that participate in the robotic arm of the device.
La figura 6.- Muestra una vista en perspectiva y esquemática de los diferentes elementos que participan conjuntamente al servomotor para desplazamiento del brazo robótico.Figure 6.- Shows a perspective and schematic view of the different elements that participate jointly to the servomotor for displacement of the robotic arm.
La figura 7.- Muestra una vista en perspectiva y en detalle del conjunto representado en la figura anterior.Figure 7.- Shows a perspective and detailed view of the assembly represented in the previous figure.
La figura 8.- Muestra, finalmente, una vista en explosión del conjunto de la figura anterior. REALIZACIÓN PREFERENTE DE LA INVENCIÓNFigure 8 shows, finally, an exploded view of the assembly of the previous figure. PREFERRED EMBODIMENT OF THE INVENTION
A la vista de las figuras reseñadas puede observarse como en el sistema de la invención particia un PC (1), asociado a un multímetro digital (2), asociado igualmente a un panel de conexiones (3) y a un brazo robótico, (4), al que se asocia el piranómetro a caracterizar.In view of the aforementioned figures, it can be seen how in the system of the invention a PC (1), associated with a digital multimeter (2), also associated with a connection panel (3) and a robotic arm, (4) , to which the pyranometer is associated to characterize.
Todo el sistema es controlado por un PC, en el que se ejecuta un software de adquisición de datos, desrrollado especificamente para esta invención. Mediante un posicionador digital se puede obtener una resolución cercana a 1/60 parte de un grado, lo que garantiza una precisión extraordinaria en todas las posiciones de medida del brazo robótico (4). Una vez realizada la caracterización del piranómetro objeto de estudio, el software ejecuta una serie de programas de forma automática y calcula el error coseno del dispositivo en función de todas las medidas recibidas del multímetro (2).The entire system is controlled by a PC, in which a data acquisition software is run, developed specifically for this invention. With a digital positioner, a resolution close to 1/60 of a degree can be obtained, which guarantees extraordinary precision in all measuring positions of the robotic arm (4). Once the characterization of the pyranometer under study has been carried out, the software executes a series of programs automatically and calculates the cosine error of the device based on all the measurements received from the multimeter (2).
De forma más concreta, y tal y como se puede observar en la figura 5, el brazo robótico está consitituido por una serie de módulos, como son un módulo de comunicación (6) del dispositivo con el multímetro (2), el cual incluye todo el control electrónico del instrumento.More specifically, and as can be seen in Figure 5, the robotic arm is made up of a series of modules, such as a communication module (6) of the device with the multimeter (2), which includes all The electronic control of the instrument.
A él llegan las señales provienientes del multímetro (2), que son las señales de control de posicionamiento de una serie de elementos de los que se hablará mas adelante, así como de la fuente de alimentación (7) del propio brazo, módulo que envía la información sobre el estado del dispositivo al multímetro (2) a través de un cable multipolar de 6 conductores (8).The signals coming from the multimeter (2) arrive, which are the positioning control signals of a series of elements that will be discussed later, as well as the power supply (7) of the arm itself, module that sends information on the status of the device to the multimeter (2) through a multipolar 6-conductor cable (8).
La fuente de alimentación (7) proporciona al brazo robótico toda la energía necesaria para su funcionamiento y alimentación de sus motores. Se encuentra en el exterior para que no afecte a las medidas ya que podría inducir ruidos a través del transformador, disponiéndose junto al PC (1).The power supply (7) provides the robotic arm with all the energy necessary for its operation and power of its motors. It is located outside so that it does not affect the measures as it could induce Noises through the transformer, arranged next to the PC (1).
El brazo robótico está igualmente asistido por un módulo controlador de motores (9), encargado de controlar dos motores de corriente continua de mediana potencia, diseñado para proporcionar más potencia que los controladores basados en un circuito integrado.The robotic arm is also assisted by a motor controller module (9), responsible for controlling two medium power DC motors, designed to provide more power than controllers based on an integrated circuit.
El modo de funcionamiento utilizado para el control de la posición del brazo ha sido el analógico de 0V-2,5V-5V. De este modo, los motores son controlados independientemente por dos señales analógicas de 0 a 5 voltios en la entrada SCL para el motor 1 y la entrada SDA para el motor 2. En este modo 0 voltios es la máxima velocidad en un sentido de giro, 2,5 es la posición central y en reposo y 5 voltios corresponde al máximo en el otro sentido. Este módulo genera la señal PWM necesaria para controlar los motores.The operating mode used to control the position of the arm has been the analogue of 0V-2,5V-5V. In this way, the motors are independently controlled by two analog signals from 0 to 5 volts at the SCL input for motor 1 and the SDA input for motor 2. In this mode 0 volts is the maximum speed in a direction of rotation, 2.5 is the central position and at rest and 5 volts corresponds to the maximum in the other direction. This module generates the PWM signal necessary to control the motors.
Complementariamente se establece un módulo del servomotor (10), de manera que el movimiento del eje principal (12) que hace girar la pinza (11) que sostiene al piranómetro a caracterizar ha sido o acoplado a otras relaciones reductoras (13-14-15), tal como se puede observar en el detalle de la figura 6.In addition, a servomotor module (10) is established, so that the movement of the main shaft (12) that rotates the caliper (11) that holds the pyranometer to be characterized has been or coupled to other reducing relationships (13-14-15 ), as can be seen in the detail in Figure 6.
Así pues, el movimiento del soporte (11) de fijación del piranómetro está regulado por un mototorreductor de corriente continua (16), a cuyo eje de salida se asocia un reductor (17), perteneciente al propio bloque motor, tras el que se establece una barrera óptica (18) del encóder, la cual pertenece al tipo estándar de sensores detectores de paso por corte del haz de infrarrojo, también llamada sensor de barrera sobre el eje de salida del reductor (17), junto al que se establece un disco ranurado del encoder (19). El disco utilizado pertenece a la familia de encoders increméntales. Estos son discretos y son capaces de presentarnos información digital de niveles lógicos ceros o unos. El disco utilizado en esta invención ha sido un disco con 120 perforaciones por revolución. Esto quiere decir que en 2π radianes o en 360 grados, podemos contar hasta 120 pulsos TTL de resolución. Este número de pulsos se ve multiplicado por la relación de multiplicación que existe hasta la salida del eje principal (12).Thus, the movement of the pyranometer fixing support (11) is regulated by a DC motor (16), whose output axis is associated with a reducer (17), belonging to the motor block itself, after which it is established an optical barrier (18) of the encoder, which belongs to the standard type of infrared beam cut-off sensor detectors, also called a barrier sensor on the output shaft of the reducer (17), next to which a disc is established slotted encoder (19). The disk used belongs to the family of incremental encoders. These are discrete and are capable of presenting us with digital information of zero or logical levels. The disc used in this invention has been a disc with 120 perforations per revolution. This means that in 2π radians or in 360 degrees, we can count up to 120 TTL pulses of resolution. This number of pulses is multiplied by the multiplication ratio that exists until the output of the main axis (12).
Seguidamente, el eje del reductor (17) se asocia a un acoplamiento homocinético (20), preferentemente de aluminio, tras el que se establece el reductor helicoidal de tornillo sin fin (15), etapa de reducción que es de vital importancia. La misma corresponde a un tipo de reducción basado en una corona con tornillo sin fin o engranaje helicoidal. Esta etapa permite el bloqueo del eje final cuando el motor no esté en funcionamiento, de esta forma no existe un consumo continuo de energía y una mejor estabilidad de todo el conjunto en sí. Ofrece una holgura cero en sus ajustes.Next, the axis of the reducer (17) is associated with a homokinetic coupling (20), preferably of aluminum, after which the helical worm reducer (15) is established, a reduction stage that is of vital importance. It corresponds to a type of reduction based on a crown with worm or worm gear. This stage allows the locking of the final shaft when the engine is not running, in this way there is no continuous energy consumption and better stability of the whole assembly itself. Offers zero slack in your settings.
Por último a la salida de dicho reductor helicoidal se establece un piñón (13) de cadena (14) constituyendo la última relación reductora que se integra con piñones de acero rectificados para engranar en cadena. Estos piñones pertenecen a una relación de 3 a 1 , y son capaces de soportar pares de fuerzas muy superiores a los requeridos por el sistema posicionador, evitando así riesgos de fatiga y proporcionando un sistema muy robusto y sobredimensionado en resistencia.Finally, at the exit of said helical reducer, a chain pinion (13) is established (14) constituting the last reduction ratio that is integrated with rectified steel pinions to engage in chain gearing. These sprockets belong to a 3 to 1 ratio, and are capable of withstanding pairs of forces much higher than those required by the positioning system, thus avoiding fatigue risks and providing a very robust and oversized system in resistance.
La cadena (14) se utiliza para disminuir al máximo las posibles holguras en las transmisiones, de manera que la tensión de rotura es inalcanzable por el sistema, garantizando totalmente su buen funcionamiento y garantía de por vida. Esta cadena está libre de mantenimiento y se encuentra ajustada a la tensión precisa para eliminar totalmente la holgura mecánica.The chain (14) is used to minimize possible slacks in the transmissions, so that the breaking tension is unattainable by the system, fully guaranteeing its proper functioning and lifetime warranty. This chain is maintenance free and adjusted to the precise tension to completely eliminate mechanical clearance.
Por último, la cadena (14) mueve una corona (21) a la que es solidario el eje (12) de posicionamiento, el cual es el responsable de transmitir el movimiento al sistema de pinza que soporta el piranómetro. Este eje es de acero inoxidable con un mecanizado especial para conseguir que los hilos conductores que alimentan la pinza puedan conducirse por su interior, evitando la existencia de cables externos ligados a una articulación, lo cual reduce totalmente el riesgo de daños, enganches y deterioro de los cables, proporcionando a su vez un diseño avanzado y estéticamente correcto.Finally, the chain (14) moves a crown (21) to which it is in solidarity with the positioning axis (12), which is responsible for transmitting the movement to the clamp system that supports the pyranometer. This shaft is made of stainless steel with special machining to ensure that the conductive wires that feed the clamp can be driven inside, avoiding the existence of external cables linked to a joint, which totally reduces the risk of damage, snagging and deterioration of the cables, providing in turn an advanced and aesthetically correct design.
Volviendo nuevamente a la figura 5, puede observarse como el brazo robótico (4) está asociado igualmente a un módulo (22) del panel de mandos, el cual aparece mostrado en detalle en la figura 4.Returning again to Figure 5, it can be seen how the robotic arm (4) is also associated with a module (22) of the control panel, which is shown in detail in Figure 4.
Dicho panel de mandos sirve para gobernar el posicionador de forma manual. Se tiene que conmutar de control por PC a control Manual a través de un conmutador (24). Este panel también monitoriza cualquier defecto de funcionamiento o activación de protecciones en caso de pérdida de control del aparato, contando con un interruptor (25) de encendido y con un led (26) indicativo de anomalías en el dispositivo.Said control panel serves to govern the positioner manually. You have to switch from PC control to Manual control through a switch (24). This panel also monitors any malfunction or activation of protections in case of loss of control of the device, with a power switch (25) and a led (26) indicating anomalies in the device.
En modo manual tenemos una palanca de control de velocidad (27) para gobernar el eje de salida del posicionador y situar la pinza en la posición deseada. Para esto debe estar el conmutador (28) de selección en la posición de eje.In manual mode we have a speed control lever (27) to govern the output shaft of the positioner and position the clamp in the desired position. For this, the selection switch (28) must be in the axis position.
Para realizar un enrrase del instrumento se debe poner dicho conmutador (27) en modo enrrasador y utilizamos la palanca de velocidad y sentido de giro tal y como se utiliza para posicionar el eje de salida, haciendo subir o bajar con precisión la pinza del instrumento. También tiene la posibilidad de hacer un ajuste fino manual mediante la rueda de ajuste fino que se dispone en la parte frontal inferior de la pinza. Volviendo nuevamente al diagrama de la figura 5, el brazo robótico (4) estará igualmente asistido por un módulo de protección (28) que protege el dispositivo frente a problemas de software y problemas de hardware. Ante los de software, se ha protegido colocando dos finales de carrera en el plato de giro rotacional, de esta forma cuando el software por cualquier motivo dejara de funcionar y el motor siguiera en funcionamiento, llegado un cierto momento se corta el suministro de tensión, obligando al brazo a parar antes de dar una vuelta completa. Para volver a realizar cualquier tipo de experimento, tendría que reinicializarse el sistema, colocar en el panel trasero el brazo en posición manual y colocarlo en la posición inicial. En este sentido, en el panel de control (23) se incluye un señalizador luminoso (29) indicador de dicho estado, así como un pulsador (34) de final de carrera.To perform a harness of the instrument, said switch (27) must be placed in thickener mode and we use the speed lever and direction of rotation as it is used to position the output shaft, accurately raising or lowering the instrument clamp. You also have the possibility to make a fine manual adjustment using the fine adjustment wheel that is arranged in the lower front part of the caliper. Returning again to the diagram in Figure 5, the robotic arm (4) will also be assisted by a protection module (28) that protects the device against software problems and hardware problems. Before the software, it has been protected by placing two limit switches on the rotational turntable, in this way when the software for any reason stops working and the motor is still running, at a certain point the voltage supply is cut off, forcing the arm to stop before taking a full turn. To redo any type of experiment, the system would have to be reset, place the arm in the rear panel in the manual position and place it in the initial position. In this sense, a light indicator (29) indicating said status is included in the control panel (23), as well as a push button (34) at the end of the run.
Para proteger ante problemas del hardware, se han utilizado fusibles para evitar sobrecalentamientos o sobretensiones en los conductores y así proteger a la circuitería electrónica. También para evitar la depedencia de muchos de los componentes con la alimentación y la temperatura, se han utilizado fuentes de referencia en diversas partes del circuito.To protect against hardware problems, fuses have been used to prevent overheating or overvoltage in the conductors and thus protect the electronic circuitry. Also to avoid the dependence of many of the components with the power and temperature, reference sources have been used in various parts of the circuit.
Igualmente el brazo robótico (4) está asociado a un módulo (30) de sujección del piranómetro, que puede verse con detalle en las figuras 2 y 3, de manera que el sistema de sujeción de dispositivos radiométricos está compuesto por un soporte de pinza (11) para alojar al piranómetro (5) y un motorreductor a cuyo eje se le acopla una rueda para realizar un pequeño ajuste fino (31). Este motor se hace coincidir con un tornillo sinfín (32), de holgura cero para que no se produzca ningún tipo de movimientos durante el funcionamiento de la invención. El ajuste que se realiza con este motor (en caso de funcionamiento o en caso de utilizar la rueda) es un ajuste vertical, para hacer coincidir el centro de giro con la luz del led enrrasador (33). Para sujetar el piranómetro se utiliza un soporte con forma de pinza (11), en el cual hay una brida (36) de sujección ajustable al grosor y longitud de los dispositivos a caracterizar, de forma que se realice una sujección rápida y totalmente eficaz. Así el piranómetro a caracterizar estará sujetado solidariamente a la pinza de sujección.Likewise, the robotic arm (4) is associated with a pyranometer holding module (30), which can be seen in detail in Figures 2 and 3, so that the radiometric device holding system is composed of a clamp holder ( 11) to accommodate the pyranometer (5) and a gearmotor to whose axle a wheel is attached to make a small fine adjustment (31). This motor is made to coincide with a worm screw (32), with zero clearance so that no movement occurs during the operation of the invention. The adjustment made with this motor (in case of operation or in case of using the wheel) is a vertical adjustment, to match the center of rotation with the light of the thickener led (33). To hold the pyranometer is used a clamp-shaped support (11), in which there is a fastening flange (36) adjustable to the thickness and length of the devices to be characterized, so that a fast and fully effective fastening is performed. Thus the pyranometer to be characterized will be attached in solidarity to the clamp.
Por último cabe destacar la existencia de un módulo del sistema de autonivelado (34) que permite garantizar que las medidas obtenidas por el sistema son totalmente fiables, para lo cual, antes de realizar la caracterización del piranómetro, el brazo robótico ha de ser capaz de autonivelarse horizontalmente. Para ello cuenta con un sistema autónomo, comandado por el software de adquisición de datos desarrollado para esta aplicación. Este sistema consta de unos sensores de posición para determinar con extremada precisión la posición de la invención, y si es necesaria o no su nivelación con respecto a la horizontal. De forma automática, si es preciso, se accionan unos motores DC que actúan sobre tornillos sin fin de las patas del trípode (35) que soportan a la invención, hasta que esté totalmente nivelada, a través de una conexión (39) proviniente del citado módulo de autonivelado (34), habiéndose previsto la incorporación de una escala graduada (37) que en combinación con una aguja indicadora (38) permita controlar los ajustes angulares realizados.Finally, it is worth mentioning the existence of a module of the self-leveling system (34) that guarantees that the measurements obtained by the system are totally reliable, for which, before carrying out the characterization of the pyranometer, the robotic arm must be capable of self-level horizontally. For this, it has an autonomous system, commanded by the data acquisition software developed for this application. This system consists of position sensors to determine with extreme precision the position of the invention, and whether or not its leveling is necessary with respect to the horizontal. Automatically, if necessary, DC motors are operated that act on endless screws of the tripod legs (35) that support the invention, until it is fully leveled, through a connection (39) coming from the aforementioned Self-leveling module (34), with the incorporation of a graduated scale (37) that, in combination with an indicator needle (38), allows the angular adjustments made to be controlled.
Para conseguir la mayor Habilidad en todas las medidas, se ha elaborado una regleta de conexiones con ciernas. Éstas se han introducido en una caja metálica, con el fin de aislar las mediciones de todo tipo de ruidos que se puedan introducir por inducción desde el medio ambiente. La disminución de ruidos se ha efectuado con dos métodos, uno software y otro hardware.To achieve the greatest skill in all measures, a terminal strip with locks has been developed. These have been introduced in a metal box, in order to isolate the measurements of all kinds of noise that can be introduced by induction from the environment. The noise reduction has been done with two methods, one software and another hardware.
El método software se consigue disminuyendo el rango de funcionamiento de las medidas, de forma que realizamos más medidas por cada tiempo de integración. La otra opción que se ha realizado es colocar la masa a la caja de metal, así conseguimos aislar las conexiones de ruidos externos mediante un blindaje completo. The software method is achieved by decreasing the operating range of the measurements, so that we perform more measurements for each integration time. The other option that has been made is to place the mass to the metal box, so we can isolate the connections from external noise by a complete shield.

Claims

R E I V I N D I C A C I O N E SR E I V I N D I C A C I O N E S
Ia.- Sistema robótico para la caracterización de la respuesta angular en instrumentos radiométricos, que estando especialmente concebido para permitir obtener unos resultados de gran fiabilidad, resolución, precisión, y rapidez para determinar la respuesta angular del instrumento de que se trate, así como para inmunizar el ruido electromagnético y lumínico de los experimentos realizados, se caracteriza porque está constituido a partir de un brazo robótico (4), que a través de una serie de circutios electrónicos está asociado a un PC (1), a un panel de control (3) y a un multímetro digital (2), brazo robótico (4) dotado de medios de fijación del instrumento a caracterizar, habiéndose previsto que el citado PC incorpore un software de programación que mediante un posicionador digital permita una alta precisión para las posiciones del brazo robótico (4), así como calcular el error coseno del dispositivo a través de las medidas recibidas del multímetro (2).I a .- Robotic system for the characterization of the angular response in radiometric instruments, which being specially designed to allow results of high reliability, resolution, precision, and speed to determine the angular response of the instrument in question, as well as To immunize the electromagnetic and light noise of the experiments carried out, it is characterized in that it is constituted from a robotic arm (4), which through a series of electronic surgery is associated with a PC (1), a control panel (3) and a digital multimeter (2), robotic arm (4) equipped with means for fixing the instrument to be characterized, it being provided that said PC incorporates programming software that through a digital positioner allows high precision for the positions of the robotic arm (4), as well as calculate the cosine error of the device through the measurements received from the multimeter (2).
2a.- Sistema robótico para la caracterización de la respuesta angular en instrumentos radiométricos, según reivindicación Ia, caracterizado porque en el mismo participan un módulo de comunicación (6) del dispositivo con el multímetro (2), el cual incluye todo el control electrónico del instrumento, un módulo o fuente de alimentación (7), un módulo controlador de motores (9), un módulo controlador de un servomotor (10) para giro de los medios de fijación del instrumento a caracterizar, un módulo (22) de control del panel de mandos (23), un módulo de protección (28), así como un módulo o sistema de autonivelado (34).2 .- Robotic system for characterizing the angular response radiometric instruments according to claim Ia, wherein the same communication module (6) of the device with the multimeter (2) involved, which includes all control instrument electronics, a module or power supply (7), a motor controller module (9), a servo motor controller module (10) for rotation of the instrument fixing means to be characterized, a module (22) of control panel control (23), a protection module (28), as well as a self-leveling module or system (34).
3a .- Sistema robótico para la caracterización de la respuesta angular en instrumentos radiométricos, según reivindicaciones Ia y 2a, caracterizado porque el módulo o fuente de alimentación (7) se establece exteriormente a una distancia suficiente del multímetro digital (2) como para poder asegurar que no afecta a las medidas tomadas por inducción de ruidos a través del transformador.3 .- Robotic system for characterizing the angular response radiometric instruments, according to claims I and 2nd, characterized in that the module or power supply (7) is externally set to a sufficient distance digital multimeter (2) as to ensure that no It affects the measurements taken by induction of noise through the transformer.
4 a.- Sistema robótico para la caracterización de la respuesta angular en instrumentos radiométricos, según reivindicaciones Ia y 2a, caracterizado porque el brazo robótico está asistido por dos motores de corriente continua de mediana potencia.4 .- Robotic system for characterizing the angular response radiometric instruments, according to claims I and 2, characterized in that the robot arm is assisted by two DC motors medium power.
5a.- Sistema robótico para la caracterización de la respuesta angular en instrumentos radiométricos, según reivindicaciones Ia y 2a, caracterizado porque el módulo del servomotor, al que están asociados los medios de fijación del instrumento a caracterizar, materializados en una pinza (11) asociada a un eje (12) cuyo giro está controlado a través de dicho servomotor (10), comprende un mototorreductor de corriente continua (16), a cuyo eje de salida se asocia un reductor (17), tras el que se establece una barrera óptica (18) para un encóder, así como un disco ranurado del encoder (19), estando dicho eje del reductor (17) asociado a un acoplamiento homocinético (20), tras el que se establece un reductor helicoidal de tornillo sin fin (15), disponiéndose a la salida de dicho reductor un piñón (13) de cadena (14) asociada a una corona (21) a la que es solidario el eje (12) de posicionamiento.5 .- Robotic system for characterizing the angular response radiometric instruments, according to claims I and 2nd, characterized in that the module of the servomotor, to which are associated means for fixing the tool to characterize, embodied in a clamp ( 11) associated with an axis (12) whose rotation is controlled through said servomotor (10), comprises a DC motor (16), whose output axis is associated with a reducer (17), after which it is established an optical barrier (18) for an encoder, as well as a grooved disc of the encoder (19), said axis of the reducer (17) associated with a homokinetic coupling (20), after which a helical worm reducer is established (15), a chain pinion (13) being arranged at the exit of said reducer associated with a crown (21) to which the positioning axis (12) is integral.
6a.- Sistema robótico para la caracterización de la respuesta angular en instrumentos radiométricos, según reivindicaciones Ia y 2a, caracterizado porque el panel de mandos (23) cuenta con un conmutador (24) de control manual, un interruptor (25) de encendido, testigos luminosos led (26) indicativos de anomalías en el dispositivo, una palanca de control de velocidad (27), un conmutador (28) de selección de la posición de eje, una rueda de ajuste fino manual, así como un pulsador (34) de final de carrera del brazo robótico.6 .- Robotic system for characterizing the angular response radiometric instruments, according to claims I and 2nd, characterized in that the control panel (23) has a switch (24) manually controlled, a switch (25) ignition, led warning lights (26) indicative of anomalies in the device, a speed control lever (27), a switch (28) for selecting the axis position, a manual fine adjustment wheel, as well as a push button (34) end of career of the robotic arm.
7a.- Sistema robótico para la caracterización de la respuesta angular en instrumentos radiométricos, según reivindicaciones Ia y 2a, caracterizado porque la pinza (11) para alojar al instrumento a caracterizar está asociada a un motorreductor a cuyo eje se le acopla una rueda para realizar un pequeño ajuste fino (31), habiéndose previsto la inclusión de una brida (36) de sujeción ajustable al grosor y longitud de los dispositivos a caracterizar, de forma que se realice una sujección rápida y totalmente eficaz.7 a .- Robotic system for the characterization of the angular response in radiometric instruments, according to claims I a and 2 a , characterized in that the caliper (11) to accommodate the instrument to be characterized is associated with a gearmotor to whose axis a wheel is coupled to make a small fine adjustment (31), having been provided the inclusion of a clamping flange (36) adjustable to the thickness and length of the devices to be characterized, so that a fast and totally effective fastening is carried out.
8a.- Sistema robótico para la caracterización de la respuesta angular en instrumentos radiométricos, según reivindicaciones Ia y 2a, caracterizado porque el módulo de autonivelación (34) incluye sensores de posición, y está asociado a unos motores de DC que actúan sobre tornillos sin fin de las patas del trípode (35) de sustentación del dispositivo, en orden a regular su altura, habiéndose previsto la incorporación de una escala graduada (37) que en combinación con una aguja indicadora (38) permite controlar los ajustes angulares realizados. 8 a. - Robotic system for the characterization of the angular response in radiometric instruments, according to claims I a and 2 a , characterized in that the self-leveling module (34) includes position sensors, and is associated with DC motors acting on Endless screws of the tripod legs (35) of support of the device, in order to regulate its height, with the incorporation of a graduated scale (37) that in combination with an indicator needle (38) allows to control the angular adjustments made .
PCT/ES2009/000042 2008-01-29 2009-01-28 Robotic system for characterisation of the angular response in radiometric instruments WO2009095515A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200800223A ES2327485B1 (en) 2008-01-29 2008-01-29 ROBOTIC SYSTEM FOR THE CHARACTERIZATION OF THE ANGULAR RESPONSE IN RADIOMETRIC INSTRUMENTS.
ESP200800223 2008-01-29

Publications (1)

Publication Number Publication Date
WO2009095515A1 true WO2009095515A1 (en) 2009-08-06

Family

ID=40912310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000042 WO2009095515A1 (en) 2008-01-29 2009-01-28 Robotic system for characterisation of the angular response in radiometric instruments

Country Status (2)

Country Link
ES (1) ES2327485B1 (en)
WO (1) WO2009095515A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636267A (en) * 2012-03-31 2012-08-15 中国科学院安徽光学精密机械研究所 Sky brightness instrument

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1239806B (en) * 1990-02-28 1993-11-15 Consiglio Nazionale Ricerche An automatic-band device for measuring diffused solar radiation
ES2078837A2 (en) * 1992-12-04 1995-12-16 Univ Politecnica De Cataluna A Pyranometer shadow band automatic positioning system.
US20040016865A1 (en) * 2002-06-29 2004-01-29 Rwe Schott Solar, Inc. Rotating shadowband pyranometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1239806B (en) * 1990-02-28 1993-11-15 Consiglio Nazionale Ricerche An automatic-band device for measuring diffused solar radiation
ES2078837A2 (en) * 1992-12-04 1995-12-16 Univ Politecnica De Cataluna A Pyranometer shadow band automatic positioning system.
US20040016865A1 (en) * 2002-06-29 2004-01-29 Rwe Schott Solar, Inc. Rotating shadowband pyranometer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"1991 Solar World Congress Proceedings", vol. 1, PERGAMON PRESS, OXFORD, article HARRISON, L.: "Multi-Spectral Automated Rotating Shadowband Radiometry.", pages: 893 *
"Presented at the National Solar Energy Conference, Cocoa Beach, FL, 13-18 Jun. 1992. Solar Energy.", vol. 54, 1995, ELSEVIER, OXFORD, ISSN: 0038-092X, article MICHALSKY ET AL.: "Cosine response characteristics of radiometric and photometric sensors", pages: 397 - 402 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636267A (en) * 2012-03-31 2012-08-15 中国科学院安徽光学精密机械研究所 Sky brightness instrument
CN102636267B (en) * 2012-03-31 2013-10-30 中国科学院安徽光学精密机械研究所 Sky brightness instrument

Also Published As

Publication number Publication date
ES2327485B1 (en) 2010-07-07
ES2327485A1 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
US8564765B2 (en) Optical measurement system
TW201621145A (en) Window louver control system
KR101300860B1 (en) Performance testing apparatus for led light
US20070028470A1 (en) Laser reference device
KR101169423B1 (en) Gamma irradiation equipment for the calibration of radiation surveymeter
Bernhard et al. New entrance optics for solar spectral UV measurements
US9778100B2 (en) Flame detector coverage verification system having a declination indicator to determine and visually display the tilt angle of a center line of the flame detector
US10557752B2 (en) Flame detector coverage verification system for flame detectors and having a hub structure for temporary attachment to the detectors
ES2327485B1 (en) ROBOTIC SYSTEM FOR THE CHARACTERIZATION OF THE ANGULAR RESPONSE IN RADIOMETRIC INSTRUMENTS.
Driesse et al. Indoor and outdoor evaluation of global irradiance sensors
CN110208881B (en) Full radiation environment calibration device for photoelectric sunshine recorder
CN113474620B (en) Horizontal vertical line detection device and system
CN204882362U (en) Accurate diffused reflection light measuring device who adjusts zenith angle
JP2012112727A (en) Electromagnetic wave intensity distribution measuring device
Schwarzmaier et al. The Radiance Standard RASTA of DLR's calibration facility for airborne imaging spectrometers
JP2017191850A (en) Uv irradiator for uv sensitivity measurement
CN208366465U (en) Multi-channel filter radiator for the detection system that filters
KR200381400Y1 (en) Correcting and Testing Device of Portable Radiation Survey Meter
CN208269953U (en) On-satellite visible light calibration device of space optical telescope
JP4211192B2 (en) X-ray diffractometer
Hrbac et al. Prototype of a low-cost luxmeter with wide measuring range designed for railway stations dynamic lighting systems
Sigernes et al. Absolute calibration of optical devices with a small field of view
ES1285699U (en) Dirt detection device. (Machine-translation by Google Translate, not legally binding)
KR20170130713A (en) Portable astronomical coordinate measuring machine
Monokroussos et al. Effect of glass/EVA/backsheet encapsulation package on the industrial rating of c-Si PV modules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09706068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09706068

Country of ref document: EP

Kind code of ref document: A1