WO2009092309A1 - 一种量化噪声泄漏控制方法及装置 - Google Patents

一种量化噪声泄漏控制方法及装置 Download PDF

Info

Publication number
WO2009092309A1
WO2009092309A1 PCT/CN2009/070074 CN2009070074W WO2009092309A1 WO 2009092309 A1 WO2009092309 A1 WO 2009092309A1 CN 2009070074 W CN2009070074 W CN 2009070074W WO 2009092309 A1 WO2009092309 A1 WO 2009092309A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transient signal
transient
time domain
decoding
Prior art date
Application number
PCT/CN2009/070074
Other languages
English (en)
French (fr)
Inventor
Deming Zhang
Qi Zhang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009092309A1 publication Critical patent/WO2009092309A1/zh

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/24Variable rate codecs, e.g. for generating different qualities using a scalable representation such as hierarchical encoding or layered encoding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/022Blocking, i.e. grouping of samples in time; Choice of analysis windows; Overlap factoring
    • G10L19/025Detection of transients or attacks for time/frequency resolution switching

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a quantization noise leakage control method and apparatus.
  • the transform domain coding based on MDCT Mode Discrete Cosine Transform
  • MDCT Modified Discrete Cosine Transform
  • the core idea is to transform a signal of a certain length into a transform domain by some transformation, and then quantize the coefficients of the transform domain according to a specific quantization strategy. Since there is a masking effect in the human ear, this feature can be utilized when considering the quantization strategy, and a large quantization error is allowed when the signal energy is large.
  • Window length switching technology is a typical algorithm for solving quantization noise leakage caused by pre-echo based on MDCT transform algorithm, in MPEG (Moving Picture This technology is used in the Experts Group, Motion Picture Experts Group, PAC (Programmable Automation Controller), and ATARC (Adaptive Transform Acoustic Coding).
  • MPEG Motion Picture Experts Group
  • PAC Motion Picture Experts Group
  • ATARC Adaptive Transform Acoustic Coding
  • a longer analysis window is used when the signal is relatively stable, and a shorter analysis window is used when the signal suddenly appears transient.
  • the masking effect makes the leakage noise have no effect on the hearing; secondly, using a shorter analysis window can limit the number of bits required for the transient signal to the shortest time range.
  • the prior art 1 has at least the following disadvantages:
  • the perceptual model and the lossless coding part in the encoder need to support multiple time resolutions. Secondly, when using a shorter analysis window, the frequency domain resolution will be low and the coding efficiency will be reduced. And the switching of the analysis window itself will bring more delay to the encoder. The calculation process of perceptual entropy is very complicated, and there are many misjudgments, which will lead to erroneous window switching.
  • a signal is a pulse in the time domain, it is a predictable periodic signal in the frequency domain, and a larger coding gain can be obtained by LPC (Linear Prediction Coding) in the frequency domain.
  • TNS Temporal Noise Shaping
  • the residual signal after the LPC analysis is coded based on the perceptual coding principle, and the LPC analysis obtains the synthesis filter coefficient as the side signal for transmission; otherwise, it is considered that no transient signal is detected and is encoded according to the normal state.
  • the prior art 2 has at least the following disadvantages:
  • the prior art method for solving the problem of quantization noise caused by pre-echo in the time domain leakage problem has the following problems: high computational complexity, large delay, low coding efficiency, occupation of system resources, and accuracy.
  • Embodiments of the present invention provide a quantization noise leakage control method and apparatus, which have low delay, low complexity, high efficiency and the like.
  • An embodiment of the present invention provides an encoding apparatus, including: a transient signal detecting unit and a selection control unit; the transient signal detecting unit is configured to perform transient analysis on a currently input frame signal to detect whether a transient signal is present. And transmitting a transient signal detection result;
  • the selection control unit is configured to receive the transient signal detection result, and perform different coding methods for different signals.
  • An embodiment of the present invention provides a decoding apparatus, including: a transform decoding unit, configured to decode the received code stream to obtain an inverse transformed signal;
  • a transient signal flag detecting unit configured to detect a transient signal flag bit, determine whether a transient signal exists in the current frame signal according to the transient signal flag bit, and send the detection result;
  • the selection control unit is connected to the transform decoding unit and the transient signal flag detecting unit for receiving the detection result of the transient signal flag detecting unit, and selecting different manners for decoding different detection results.
  • Embodiments of the present invention provide a quantization noise leakage control method, including:
  • Embodiments of the present invention provide a quantization noise leakage control method, including:
  • the decoding process is performed by selecting a corresponding manner according to the judgment result.
  • the transient analysis of the input signal is based on each input frame, that is, the analysis of the fixed frame length signal, without considering different analysis frame lengths.
  • the problem of switching and convergence is solved, so the problem of time extension is solved;
  • the algorithm for transient analysis of the input signal is a low-complexity algorithm, only some comparison operations are needed, the calculation amount is quite small, and since only the detection is instantaneous
  • the time domain envelope of the signal is encoded and transmitted, which improves the coding efficiency and saves system resources.
  • the transient signal can be detected according to the transient signal flag, thereby performing a decoding process different from the non-transient signal, and the operation is simple, and the decoding accuracy is ensured.
  • Figure la is a schematic diagram of a prior art uncoded signal
  • Figure lb is a schematic diagram of a signal after transform coding in the prior art
  • FIG. 2 is a schematic diagram of an encoding apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a transient signal detecting unit according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a decoding apparatus according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of an operation method of an encoding method according to Embodiment 2 of the present invention.
  • FIG. 6 is a flowchart of operations of a decoding method according to Embodiment 2 of the present invention.
  • the current frame signal is detected at the encoding end, and the detected transient signal and the non-transient signal are respectively subjected to different encoding processing, and the transient signal is normalized by using the time domain envelope, and then performed.
  • the transform coding based on the perceptual coding principle directly performs transform coding based on the perceptual coding principle for the non-transient signal, and then transmits all the encoded content and the transient signal detection result.
  • Transient signal flag detection is performed at the decoding end, and different decoding processes are performed on the transient signal and the non-transient signal.
  • a transient time signal is decoded to obtain a set of time domain envelopes, and the inversely transformed signal is decoded and utilized.
  • the decoded time domain envelope shapes the inverse transformed signal to obtain a final decoded signal.
  • the non-transient signal the inverse transformed signal is not processed to obtain a final decoded signal.
  • an embodiment of the present invention provides an encoding apparatus, as shown in FIG. 2, including: a transient signal detecting unit, a selecting control unit, a transient signal encoding processing unit, a transform coding unit, and an encoding register. . among them,
  • the transient signal detecting unit is configured to perform transient analysis on a frame signal of the current input, detect whether a transient signal occurs, and send the detection result;
  • the transient signal detecting unit may further include:
  • the maximum value calculation sub-unit is configured to divide a frame signal into a plurality of sub-frames, and calculate a maximum amplitude value of each sub-frame;
  • the transient detection function calculates a sub-unit, and calculates a maximum amplitude value of each sub-frame adjacent to the sub-frame The ratio of the sum of the maximum amplitude values of the first few subframes, to obtain a transient detection function;
  • a detecting subunit configured to determine whether the ratio is greater than a certain threshold, if the ratio is greater than a certain threshold, it is considered that a transient signal is detected, otherwise it is considered that no transient signal is detected;
  • the transient analysis process may be: first dividing a frame signal into a plurality of subframes, calculating a maximum amplitude value of each subframe, and using a maximum amplitude value of each subframe and a maximum amplitude of the first few subframes adjacent to the subframe.
  • the ratio of the sum of the values is used as a transient detection function. If the ratio is greater than a certain threshold, it is considered that a sudden change of the signal occurs, that is, a transient signal appears; otherwise, no transient signal is detected.
  • the number of adjacent sub-frames of the selected subframe is not limited as long as the validity of the transient detection function is ensured.
  • a selection control unit configured to receive the detection result, and select different manners for encoding different signals
  • the transient signal encoding processing unit is connected to the selection control unit, and is configured to obtain a set of time domain envelopes of the current transient signal, and normalize the transient signal; and a structural embodiment may further include:
  • a time domain envelope acquisition subunit connected to the selection control unit, for acquiring a set of current transient signals Domain envelope
  • a normalization processing sub-unit configured to perform normalization processing on the transient signal by using the acquired time domain envelope
  • encoding a sub-unit configured to perform encoding processing on the acquired time domain envelope
  • a transform coding unit coupled to the selection control unit and the transient signal encoding processing unit, for transforming and encoding the non-transient signal or the normalized transient signal;
  • the coding register is connected to the transform coding unit, the transient signal coding processing unit and the transient signal detection unit, and is configured to save and transmit the coding result of the coding end and the transient signal detection result.
  • the transient signal detection result indicates whether the signal is a transient signal, and can be implemented by setting a transient signal flag bit. For example, the flag bit can be set to
  • a time of 1 indicates that there is a transient signal, and a value of 0 indicates that there is no non-transient signal.
  • the encoded result includes the transformed encoded transient signal and the encoded time domain envelope, or the transform encoded non-transient signal.
  • the first embodiment of the present invention further provides a decoding apparatus, as shown in FIG. 4, including: a transient signal flag bit detecting unit, a selection control unit, a transform decoding unit, a transient signal processing unit, and Decode the register. among them,
  • the transient signal flag detecting unit is configured to detect a transient signal flag bit, determine whether a transient signal exists in the current frame signal according to the transient signal flag bit, and send the detection result.
  • a selection control unit connected to the transform decoding unit and the transient signal flag detecting unit, configured to receive the detection result of the transient signal flag detecting unit, and select different manners for decoding different detection results; a unit, configured to decode the received code stream to obtain an inverse transformed signal;
  • the transient signal processing unit is connected to the selection control unit and the transform decoding unit, and is configured to perform decoding processing on the received inverse-transformed transient signal.
  • the structural embodiment may further include:
  • a time domain envelope decoding subunit connected to the selection control unit, for decoding a time domain envelope in the encoded code stream to obtain a set of time domain envelopes
  • the transient signal shaping sub-unit is configured to perform shaping of the inverse transformed signal obtained by transform decoding by using the decoded time domain envelope to obtain a final decoded signal.
  • the decode register is coupled to the time domain envelope decoding subunit in the transient signal processing unit for storing the decoded time domain envelope.
  • the encoding apparatus and the decoding apparatus according to the first embodiment of the present invention solve the problems of high computational complexity, large delay, low coding efficiency, large occupied system resources, and low accuracy in the current quantization noise leakage control scheme.
  • a second embodiment of the present invention provides a quantization noise leakage control method, which includes a coding operation and a decoding operation.
  • the flowchart of the coding operation of the method according to the embodiment includes the following steps:
  • Step 51 Perform transient analysis on the current frame input signal to determine whether the current signal has a transient signal;
  • the transient analysis process may be: first dividing a frame signal into a plurality of subframes, calculating a maximum amplitude value of each subframe, and using a maximum amplitude value of each subframe and a maximum amplitude of the first few subframes adjacent to the subframe.
  • the ratio of the sum of the values is used as a transient detection function. If the ratio is greater than a certain threshold, it is considered that a sudden change of the signal occurs, that is, a transient signal appears; otherwise, no transient signal is detected.
  • the number of adjacent sub-frames of the selected subframe is not limited as long as the validity of the transient detection function is ensured.
  • the transient signal flag is set to a specific value. For example, the transient signal flag is set to 1 for the transient signal and 0 for the non-transient signal.
  • Step 52 If a transient signal occurs, calculate a set of time domain envelopes of the frame signal;
  • the maximum amplitude value of each subframe is quantized, and the quantized value is a set of time domain envelopes.
  • the method of extracting the time domain envelope may not be unique.
  • the logarithmic energy value of each subframe may also be calculated and quantized as a time domain envelope.
  • the time domain envelope is encoded, and the encoding timing of the time domain envelope is not limited.
  • the sending has been performed. Any time before the encoded content, for example, may be before or after the input signal is subjected to transform coding based on the perceptual coding principle.
  • Step 53 Normalize the frame signal by using the calculated time domain envelope to remove the transient signal.
  • the normalization process is: dividing the signal of each subframe by the time domain packet corresponding to the subframe. Network, get the normalized signal.
  • Step 54 Perform transform coding based on the perceptual coding principle on the input signal
  • step 54 is directly performed, that is, the non-transient signal is subjected to transform coding based on the perceptual coding principle; if a transient signal is present, the normalized transient signal is subjected to perceptual sensing. Transform coding of coding principles;
  • Step 55 Send the transient signal detection result and all the encoded content
  • the detection result of the transient signal indicates whether it is a transient signal flag. For example, if it is a transient signal, the flag is 1, and if it is not a transient signal, the flag is 0.
  • the encoded content includes: a transform encoded transient signal and an encoded time domain envelope, or a transform encoded non-transient signal.
  • the flow of the decoding part described in the second embodiment of the present invention is as shown in FIG. 6, and includes the following processes:
  • Step 61 Perform transform decoding on the received code stream to obtain an inverse transformed signal.
  • Step 62 Decode the transient signal flag bit, and determine whether the current frame signal has a transient signal according to the transient signal flag bit;
  • the flag bit obtained after decoding it can be judged whether there is a transient signal currently, for example, if the flag bit is 1, it means There is a transient signal, and the process goes to step 63. If the flag bit is 0, it means that there is no transient signal, then the signal after the inverse transform is not processed, and the operation is ended, and finally the decoded signal is obtained;
  • the step 62 and the step 61 can be performed synchronously, and the two steps have no sequence sequence, that is, the received code stream is transformed and decoded while decoding the transient signal flag, but the transient is received before outputting the inverse transformed signal.
  • the signal flag detection result is determined according to the result, whether it is direct output or processing such as shaping.
  • Step 63 If there is a transient signal, the code stream is decoded to obtain a set of time domain envelopes;
  • the encoded code stream contains a time domain envelope, which is decoded to obtain a set of time domain envelopes;
  • Step 63 The inverse-transformed signal obtained by the decoding is shaped by using the time domain envelope obtained by the decoding to obtain a final decoded signal.
  • the shaping process includes: multiplying each inversely transformed sub-frame signal by The corresponding time domain envelope.
  • the transient analysis of the input signal is based on each input frame, that is, the analysis of the fixed frame length signal, without considering the switching and convergence problems caused by different analysis frame lengths. Therefore, the problem of large delay is solved; the algorithm for transient analysis of the input signal is a low-complexity algorithm, which only needs to perform some comparison operations, the calculation amount is quite small, and only because the transient signal is detected.
  • the time domain envelope of the signal is encoded and transmitted, and more bits can be used in the transform coding without transient peaks, which improves the quantization precision and coding efficiency, and saves system resources.
  • the transient signal can be detected according to the transient signal flag bit, thereby performing a decoding process different from the non-transient signal, and the operation is simple, and the decoding accuracy is ensured.
  • the method described in the second embodiment of the present invention is described in detail below by using a specific example.
  • the present example is applied to an ultra-wideband speech codec system. In this system, only transient decisions and transient signal flag bits need to be set, and no specific identification is needed. The time when the transient signal appears can be.
  • the MDCT-based transform coding technique is usually adopted for the 7 ⁇ 14KHz ultra-wideband portion.
  • the transient signal is A continuous large energy signal is not processed as a transient signal.
  • transient signal flag is set to 1; otherwise, it is considered that there is no transient signal, and 1 ⁇ is set to 0;
  • Quantify 4 ' to obtain b normalize the signal in the frame by using the inverse quantized time domain envelope. That is, the time domain envelope is first inverse quantized, and then smoothed, and the smoothed time is obtained.
  • the domain envelope 4 is then normalized using the smoothed time domain envelope, ie '; c, encoding 4
  • the transient analysis of the input signal is based on each input frame, that is, the analysis of the fixed frame long signal, the switching and convergence problems caused by different analysis frame lengths are not considered, and the solution is solved.
  • the problem of extended time; the algorithm for transient analysis of the input signal is a low-complexity algorithm, which only needs to perform some comparison operations, the calculation amount is quite small, and the signal is only due to the detection of the transient signal.
  • the time domain envelope is encoded and transmitted, and more bits can be used in transform coding without transient peaks, which improves quantization accuracy and coding efficiency, and saves system resources.
  • the transient signal can be detected according to the transient signal flag, so that the decoding process is different from the non-transient signal, and the operation is simple, and the decoding accuracy is ensured.
  • the readable storage medium is, for example, a read only memory (ROM), a random access memory (RAM), a magnetic disk, an optical disk, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Quality & Reliability (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

一种量化噪声泄漏控制方法及装置 本申请要求于 2008年 1月 16日提交中国专利局、 申请号为 200810056312.9、 发明 名称为 "一种量化噪声泄漏控制方法及装置"的中国专利申请的优先权, 其全部内容通 过引用结合在本申请中。
技术领域
本发明涉及通信技术领域, 尤其涉及一种量化噪声泄漏控制方法及装置。
发明背景
在音频以及宽带、 超宽带语音编解码中, 以 MDCT ( Modified Discrete Cosine Transform,修正的离散余弦变换)为基础的变换域编码具有很好的能量压缩及频率分辨 性能, 因此得到了广泛运用。其核心思想是将一定长度的信号通过某种变换变换到变换 域, 然后根据特定的量化策略对变换域的系数进行量化编码。 由于人耳听觉中存在着掩 蔽效应, 因此考虑量化策略的时候可以利用这一特性, 当信号能量较大时允许有较大的 量化误差。
对于音频或语音信号来说, 经常存在这样的场景: 信号从相对很小的能量突然过渡 到很大的能量, 这会导致基于 MDCT等的变换编解码器出现预回声 (pre-echo)效应, 即后一较大能量的帧的量化误差在解码端通过 MDCT的重叠相加泄露到了前面能量相 对较小的帧中。如图 la所示为未编码的信号示意图;图 lb为变换编码后的信号示意图。 一般这种 Pre-Echo 超过 2 毫秒的人耳前掩蔽时间就会被人耳察觉。 相应的也会有 Post-Echo (后回声)效应, 然而 Post-Echo—般会被长达几十毫秒的人耳后掩蔽效应掩 盖。 所以在语音音频编解码中通常需要关注的是 Pre-Echo效应。
与本发明相关的现有技术一解决上述技术问题的技术方案为: 窗长切换技术 窗长切换技术是基于 MDCT变换的算法解决由预回声引起的量化噪声泄漏的典型 算法, 在 MPEG ( Moving Picture Experts Group, 运动图像专家组)、 PAC ( Programmable Automation Controller, 可编程自动化控制器)、 ATARC ( Adaptive Transform Acoustic Coding, 自适应音频变换编码)中都采用了这种技术。在信号比较平 稳的时候采用较长的分析窗, 在信号突然出现瞬态信号的时候采用较短的分析窗。针对 不同的信号特性采用不同的分析窗长主要有两个优点: 首先, 对瞬态信号采用较短的分 析窗可以减小量化噪声在时域上的泄漏, 同时也可以由这个瞬态信号产生的掩蔽效应使 得泄漏的噪声对听觉不产生影响;其次采用较短的分析窗可以将瞬态信号所需的较多的 比特数限制在最短的时间范围内。本方案中判断是否产生瞬态信号主要通过计算感知熵 (PE)这一参数进行判断。
现有技术一至少存在如下缺点:
由于采用了长度不同的分析窗,所以编码器中的感知模型和无损编码部分都需要支 持多种时间分辨率; 其次在采用较短的分析窗时, 频域分辨率会很低, 编码效率降低; 而且分析窗的切换本身就会给编码器带来更多的时延。感知熵的计算过程非常复杂, 而 且存在着较多的误判, 会导致错误的窗切换。
与本发明相关的现有技术二的技术方案为: 时域噪声整形技术
如果某个信号在时域是一个脉冲, 那么它在频域则是一个可预测的周期性信号, 可 以在频域通过 LPC (Linear Prediction Coding, 线形预测编码)来得到较大的编码增益。 TNS (Temporal Noise Shaping, 时域噪声整形)就是基于这一想法在频域对每一帧输入 信号的频谱进行 LPC分析, 当 LPC的预测增益大于一定门限的时候, 即认为出现了瞬 态信号, 然后对 LPC分析之后的残差信号进行基于感知编码原则的编码, 将 LPC分析 得到合成滤波器系数作为边信号进行传输; 否则就认为没有检测到瞬态信号, 按照正常 状态编码。
现有技术二至少存在如下缺点:
利用 TNS进行瞬态信号检测的准确率较低, 会出现很多误判, 由此会导致整个编 码效率的降低。
综上所述,现有技术解决预回声引起的量化噪声在时域泄漏问题的方法存在如下诸 多问题: 计算复杂度高、 时延较大、 编码效率不高、 占用***资源较多、 准确率低等。 发明内容 本发明实施例提供一种量化噪声泄漏控制方法及装置, 具有低时延、低复杂度、 高 效准确等特性。
本发明实施例是通过以下技术方案实现的:
本发明实施例提供一种编码装置, 包括: 瞬态信号检测单元及选择控制单元; 所述瞬态信号检测单元, 用于对当前输入的一帧信号进行瞬态分析, 检测是否出现 瞬态信号, 并发送瞬态信号检测结果;
所述选择控制单元, 用于接收所述瞬态信号检测结果, 对于不同的信号选择不同的 方式进行编码处理。
本发明实施例提供一种解码装置, 包括: 变换解码单元, 用于对接收的码流进行解码, 得到反变换后的信号;
瞬态信号标志位检测单元, 用于检测瞬态信号标志位, 根据该瞬态信号标志位判断 当前帧信号是否存在瞬态信号, 并发送检测结果;
选择控制单元, 与所述变换解码单元及瞬态信号标志位检测单元相连, 用于接收所 述瞬态信号标志位检测单元的检测结果, 对不同的检测结果选择不同的方式进行解码。
本发明实施例提供一种量化噪声泄漏控制方法, 包括:
对当前输入的一帧信号进行瞬态分析, 检测当前信号是否出现瞬态信号; 根据上述瞬态信号检测结果, 对于不同的信号选择不同的方式进行编码处理。 本发明实施例提供一种量化噪声泄漏控制方法, 包括:
解码瞬态信号标志位, 根据该瞬态信号标志位判断当前帧信号是否存在瞬态信号, 并对接收到的码流进行变换解码, 得到反变换后的信号;
根据所述判断结果选择相应的方式进行解码处理。
由上述本发明实施例提供的技术方案可以看出,本发明实施例由于对输入信号进行 瞬态分析是基于每一输入帧, 也就是对固定帧长信号进行分析, 不用考虑不同的分析帧 长引起的切换、衔接问题, 因此解决了时延长的问题; 对输入信号进行瞬态分析的算法 是个低复杂度的算法, 仅需要进行一些比较操作, 计算量相当小, 且由于仅在检测到了 瞬态信号的情况下才会对信号的时域包络进行编码传输, 提高了编码效率, 节省了*** 资源。且在解码处理中可以根据瞬态信号标志位检测出瞬态信号, 从而进行与非瞬态信 号不同的解码处理, 其操作简便, 保证了解码的准确性。
附图简要说明 图 la为现有技术未编码的信号示意图;
图 lb为现有技术变换编码后的信号示意图;
图 2为本发明实施例一编码装置示意图;
图 3为本发明实施例一瞬态信号检测单元结构示意图;
图 4为本发明实施例一解码装置示意图;
图 5为本发明实施例二编码方法操作流程图;
图 6为本发明实施例二解码方法操作流程图。
实施本发明的方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、完整 地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基 于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有 其他实施例, 都属于本发明保护的范围。
本发明实施例在编码端对当前帧信号进行检测,对检测出的瞬态信号及非瞬态信号 分别进行不同的编码处理, 对于瞬态信号利用时域包络进行归一化处理, 之后进行基于 感知编码原则的变换编码, 对于非瞬态信号则直接进行基于感知编码原则的变换编码, 之后将编码后的所有内容以及瞬态信号检测结果发送出去。在解码端进行瞬态信号标志 位检测, 对瞬态信号及非瞬态信号进行不同的解码过程, 对于瞬态信号首先解码得到一 组时域包络, 以及解码得到反变换后的信号, 利用该解码得到的时域包络对所述反变换 后的信号进行整形, 得到最终的解码信号, 对于非瞬态信号, 对反变换后的信号不进行 处理, 得到最终的解码信号。
为实现本发明的编码过程,本发明实施例一提供一种编码装置,如图 2所示,包括: 瞬态信号检测单元, 选择控制单元, 瞬态信号编码处理单元, 变换编码单元和编码寄存 器。 其中,
瞬态信号检测单元, 用于对当前输入的一帧信号进行瞬态分析, 检测是否出现瞬态 信号, 并发送检测结果;
如图 3所示, 为该瞬态信号检测单元一种实施例结构示意图, 所述瞬态信号检测单 元可以进一步包括:
最大幅值计算子单元,用于将一帧信号分为多个子帧,计算每个子帧的最大幅度值; 瞬态检测函数计算子单元,计算每个子帧的最大幅度值与该子帧相邻前几个子帧的 最大幅度值之和的比值, 得到瞬态检测函数;
检测子单元, 用于判断所述比值是否大于一定阈值, 如果比值大于一定的阈值, 则 认为检测到了瞬态信号, 否则就认为没有检测到瞬态信号;
所述瞬态分析过程可以为: 首先将一帧信号分为多个子帧, 计算每个子帧的最大幅 度值,利用每个子帧的最大幅度值与该子帧相邻前几个子帧的最大幅度值之和的比值作 为瞬态检测函数, 如果比值大于一定的阈值, 则认为出现了信号的突变, 即出现了瞬态 信号; 否则就认为没有检测到瞬态信号。 所选取的该子帧相邻前子帧的个数不做限定, 只要能够满足确保瞬态检测函数的有效性。
选择控制单元, 用于接收所述检测结果, 对于不同的信号选择不同的方式进行编码 处理;
瞬态信号编码处理单元, 与所述选择控制单元相连, 用于获取当前瞬态信号的一组 时域包络, 对瞬态信号进行归一化处理; 其一种结构实施例可以进一步包括:
时域包络获取子单元, 与所述选择控制单元相连, 用于获取当前瞬态信号的一组时 域包络;
归一化处理子单元, 用于利用所述获取的时域包络对该瞬态信号进行归一化处理; 编码子单元, 用于对所述获取的时域包络进行编码处理。
变换编码单元, 与选择控制单元及瞬态信号编码处理单元相连, 用于对非瞬态信号 或归一化处理后的瞬态信号进行变换编码;
编码寄存器, 与变换编码单元、 瞬态信号编码处理单元及瞬态信号检测单元相连, 用于保存编码端的编码结果及瞬态信号检测结果并发送。所述瞬态信号检测结果即表明 该信号是否为瞬态信号, 可通过设置瞬态信号标志位来实现, 例如可以设置该标志位为
1时表示存在瞬态信号, 为 0时表示不存在非瞬态信号。 所述编码结果包括经过变换编 码后的瞬态信号及编码后的时域包络、 或变换编码后的非瞬态信号。
为完成本发明的解码过程, 本发明实施例一还提供一种解码装置, 如图 4所示, 包 括: 瞬态信号标志位检测单元, 选择控制单元, 变换解码单元, 瞬态信号处理单元和解 码寄存器。 其中,
瞬态信号标志位检测单元, 用于检测瞬态信号标志位, 根据该瞬态信号标志位判断 当前帧信号是否存在瞬态信号, 并发送检测结果。
选择控制单元, 与所述变换解码单元及瞬态信号标志位检测单元相连, 用于接收所 述瞬态信号标志位检测单元的检测结果, 对不同的检测结果选择不同的方式进行解码; 变换解码单元, 用于对接收的码流进行解码, 得到反变换后的信号;
瞬态信号处理单元, 与所述选择控制单元及变换解码单元相连, 用于对接收的反变 换后的瞬态信号进行解码处理, 其一种结构实施例可以进一步包括:
时域包络解码子单元,与所述选择控制单元相连,用于解码编码码流中的时域包络, 得到一组时域包络;
瞬态信号整形子单元,用于利用所述解码得到的一组时域包络对变换解码后得到的 反变换后的信号进行整形, 得到最终的解码信号。
解码寄存器, 与瞬态信号处理单元中的时域包络解码子单元相连, 用于保存解码后 的时域包络。
本发明实施例一所述的编码装置及解码装置解决了目前的量化噪声泄漏控制方案 中计算复杂度高、 时延较大、 编码效率不高、 占用***资源较多以及准确率低等问题。
本发明实施例二提供一种量化噪声泄漏控制方法,其包括编码操作和解码操作两部 分, 如图 5所示, 为本实施例所述方法的编码操作流程图, 具体包括如下步骤:
步骤 51 : 对当前一帧输入信号进行瞬态分析, 判断当前信号是否出现瞬态信号; 所述瞬态分析过程可以为: 首先将一帧信号分为多个子帧, 计算每个子帧的最大幅 度值,利用每个子帧的最大幅度值与该子帧相邻前几个子帧的最大幅度值之和的比值作 为瞬态检测函数, 如果比值大于一定的阈值, 则认为出现了信号的突变, 即出现了瞬态 信号; 否则就认为没有检测到瞬态信号。 所选取的该子帧相邻前子帧的个数不做限定, 只要能够满足确保瞬态检测函数的有效性。
如果检测到有瞬态信号, 则将瞬态信号标志位设置为特定值, 例如瞬态信号标志位 设置为 1表示为瞬态信号, 为 0表示为非瞬态信号。
步骤 52: 如果出现瞬态信号, 则计算该帧信号的一组时域包络;
将每个子帧的最大幅度值进行量化, 量化后的值就是一组时域包络。提取时域包络 的方法可以不唯一, 例如, 也可以通过计算每一个子帧的对数能量值, 量化之后作为时 域包络。
在计算该帧信号的一组时域包络后, 对所述时域包络进行编码, 对该时域包络的编 码时机并不作限定, 可以在计算得到该时域包络后, 发送已编码的内容前的任意时刻, 例如可以在对输入信号进行基于感知编码原则的变换编码前, 也可以在其后。
步骤 53:利用所述计算得到的时域包络对本帧信号进行归一化处理,去除瞬态信号; 所述归一化处理即: 将每个子帧的信号除以本子帧对应的时域包络, 得到归一化后 的信号。
步骤 54: 对输入信号进行基于感知编码原则的变换编码;
如果没有出现瞬态信号,则直接执行该步骤 54,即对非瞬态信号进行基于感知编码 原则的变换编码; 如果出现瞬态信号, 则对上述归一化处理后的瞬态信号进行基于感知 编码原则的变换编码;
步骤 55: 发送瞬态信号检测结果和所有已编码的内容;
所述瞬态信号的检测结果即表示是否为瞬态信号标志位, 例如若是瞬态信号, 则标 志位为 1, 若不是瞬态信号, 则标志位为 0。
所述所有已编码的内容包括: 经过变换编码后的瞬态信号及编码后的时域包络、或 变换编码后的非瞬态信号。
本发明实施例二所述的解码部分的流程如图 6所示, 包括如下流程:
步骤 61 : 对接收到的码流进行变换解码, 得到反变换后的信号;
步骤 62:解码瞬态信号标志位,根据该瞬态信号标志位判断当前帧信号是否存在瞬 态信号;
根据解码后得到的标志位可判断当前是否有瞬态信号, 例如, 若标志位为 1, 表示 存在瞬态信号, 转至执行步骤 63, 若标志位为 0, 表示不存在瞬态信号, 则对反变换之 后的信号不进行处理, 结束操作, 最终得到的即为解码信号;
该步骤 62与步骤 61可以同步执行, 两个步骤无时序先后, 也就是在解码瞬态信号 标志位的同时对接收的码流进行变换解码,只是在输出反变换后的信号前要接收瞬态信 号标志位检测结果, 根据该结果决定是直接输出, 还是进行整形等处理。
步骤 63: 如果有瞬态信号, 则解码码流, 得到一组时域包络;
如果当前有瞬态信号, 则编码码流中包含了时域包络, 对其解码后会得到一组时域 包络;
在有瞬态信号的情况下,该步骤 63也可以与步骤 61同步执行,并无时序先后限制。 步骤 64: 利用上述解码后得到的时域包络对解码后得到的反变换后的信号进行整 形, 得到最终的解码信号; 所述整形过程包括: 将反变换后的每一子帧信号乘以相应的 时域包络。
上述本发明实施例所述的编码方法中由于对输入信号进行瞬态分析是基于每一输 入帧, 也就是对固定帧长信号进行分析, 不用考虑不同的分析帧长引起的切换、衔接问 题, 因此解决了时延大的问题; 对输入信号进行瞬态分析的算法是个低复杂度的算法, 仅需要进行一些比较操作, 计算量相当小, 且由于仅在检测到了瞬态信号的情况下才会 对信号的时域包络进行编码传输,而在没有瞬态峰值的时候可以将更多的比特用于变换 编码中, 提高量化精度和编码效率, 且节省了***资源。且所述的解码方法中可以根据 瞬态信号标志位检测出瞬态信号,从而进行与非瞬态信号不同的解码处理,其操作简便, 保证了解码的准确性。 下面以具体实例对本发明实施例二所述方法进行详细介绍,本实例运用于超宽带语 音编解码***中, 在本***中只需要进行瞬态判决并设置瞬态信号标志位, 无需标识具 体的瞬态信号出现的时间即可。在目前的超宽带语音编解码***中对于 7~14KHz超宽带 部分通常采用基于 MDCT的变换编码技术。
编码端具体实现过程:
( 1 )对分析窗内的 M (M=640)点信号中的当前帧 Μ' (Μ' =320)点信号 ^Λ ¾ 进行瞬态分析, 分析的详细过程如下:
a、 将该帧信号分为 N个子帧 , 每个子帧持续时间为 lms, 其中 = 0,Λ,N _1 ; b、 计算每一子帧中的最大绝对幅度值 4', 即 4' = max(k'|)' e , 将其保存在编 码状态器中, 用于下一个包含瞬态信号帧的时域包络平滑; A,.
D;
C、 计算检测函数 ''-l + " + " + 4-4 + A-5 ,
通过当前子帧的最大幅值和前五个子帧的最大幅值之和做比较,判断是否是在一段 小能量信号后有一个突变的大能量信号, 这样的情况下才是瞬态信号, 如果是连续的大 能量信号是不作为瞬态信号处理的。
d、 一旦检测到 A超过一定阈值, 则可确定出现瞬态信号, 将瞬态信号标志位 置为 1; 否则, 认为没有瞬态信号, 将1^^置为 0;
(2)根据 的状态进行不同的处理:
如果^¾=1, 即在本帧信号中检测到了瞬态信号, 则
a、 对4'进行量化, 得到 b、 对本帧内的信号利用反量化的时域包络进行归一化处理。 即首先对时域包络进行反量化, 得到 , 然后对 进行平滑处理, 得到平滑后的时
Xj s
域包络 4, 再利用平滑后的时域包络进行归一化处理, 即 '; c、 对 4 进行编码
如果 D g =(), 即在本帧信号中没有检测到了瞬态信号, 则不对本帧信号进行其它 处理。
(3)对
Figure imgf000010_0001
(4)将 和所有已编码的信息一起打包, 进行传输。
解码端的具体操作流程为:
(1)对接收的码流解码, 得到 ^^g;
(2)解码得到反变换编码的信号 Λ¾
(3)根据 的状态进行不同的处理, 得到最终的解码信号;
如果 ¾=1, 即在本帧信号中出现了瞬态信号, 贝 IJ
a、 解码得到^ , 将 ^保存在解 寄存器中, 用于后续时域包络的平滑。
b、对4 反量化得到 ^, 然后对 ^进行与编码端一致的平滑处理, 得到平滑后的时 域包络 。 ~利用平滑后的时域包络对解码得到的反变换编码的信号 { Λ 进行整形, 即 = x4' e &, 得到最终的解码信号 χΜ}ο
如果
Figure imgf000010_0002
进行任何处理, 得 到最终的解码信号 {ΧΙΛΧΜ 综上所述, 本发明实施例由于对输入信号进行瞬态分析是基于每一输入帧, 也就是 对固定帧长信号进行分析, 不用考虑不同的分析帧长引起的切换、 衔接问题, 解决了时 延长的问题; 对输入信号进行瞬态分析的算法是个低复杂度的算法, 仅需要进行一些比 较操作, 计算量相当小, 且由于仅在检测到了瞬态信号的情况下才会对信号的时域包络 进行编码传输, 而在没有瞬态峰值的时候可以将更多的比特用于变换编码中, 提高量化 精度和编码效率, 且节省了***资源。且所述的解码方法中可以根据瞬态信号标志位检 测出瞬态信号, 从而进行与非瞬态信号不同的解码处理, 其操作简便, 保证了解码的准 确性。
本领域普通技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通 过程序来指令相关的硬件完成, 所述的程序可以存储于一计算机可读存储介质中。该可 读存储介质例如只读存储器(简称 R0M)、 随机存取存储器(简称 RAM)、 磁盘、 光盘等。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到的变化或替 换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权利要求的保 护范围为准。

Claims

权利要求
1、 一种编码装置, 其特征在于, 包括: 瞬态信号检测单元及选择控制单元; 所述瞬态信号检测单元, 用于对当前输入的一帧信号进行瞬态分析, 检测是否出现 瞬态信号, 并发送瞬态信号检测结果;
所述选择控制单元, 用于接收所述瞬态信号检测结果, 对于不同的信号选择不同的 方式进行编码处理。
2、 如权利要求 1所述的装置, 其特征在于, 所述瞬态信号检测单元进一步包括: 最大幅值计算子单元,用于将一帧信号分为多个子帧,计算每个子帧的最大幅度值; 瞬态检测函数计算子单元,计算每个子帧的最大幅度值与该子帧相邻前若干个子帧 的最大幅度值之和的比值, 得到瞬态检测函数;
检测子单元, 用于判断所述比值是否大于一定阈值, 如果比值大于一定的阈值, 则 认为检测到了瞬态信号, 否则就认为没有检测到瞬态信号。
3、 如权利要求 1所述的装置, 其特征在于, 还包括:
瞬态信号编码处理单元, 与所述选择控制单元相连, 用于获取当前瞬态信号的一组 时域包络, 利用所述获取的时域包络对瞬态信号进行归一化处理;
变换编码单元, 与选择控制单元及瞬态信号编码处理单元相连, 用于对非瞬态信号 或归一化处理后的瞬态信号进行变换编码。
4、 如权利要求 3所述的编码装置, 其特征在于, 所述瞬态信号编码处理单元进一 步包括:
时域包络获取子单元, 与所述选择控制单元相连, 用于获取当前瞬态信号的一组时 域包络;
归一化处理子单元, 用于利用所述获取的时域包络对该瞬态信号进行归一化处理; 编码子单元, 用于对所述时域包络进行编码处理。
5、 如权利要求 3所述的编码装置, 其特征在于, 所述编码装置还包括:
编码寄存器, 与变换编码单元、 瞬态信号编码处理单元及瞬态信号检测单元相连, 用于保存编码端的编码结果及瞬态信号检测结果并发送。
6、 一种解码装置, 其特征在于, 包括:
变换解码单元, 用于对接收的码流进行解码, 得到反变换后的信号;
瞬态信号标志位检测单元, 用于检测瞬态信号标志位, 根据该瞬态信号标志位判断 当前帧信号是否存在瞬态信号, 并发送检测结果;
选择控制单元, 与所述变换解码单元及瞬态信号标志位检测单元相连, 用于接收所 述瞬态信号标志位检测单元的检测结果, 对不同的检测结果选择不同的方式进行解码。
7、 如权利要求 6所述的装置, 其特征在于, 还包括:
瞬态信号处理单元, 与所述选择控制单元及变换解码单元相连, 用于对所述反变换 后的瞬态信号进行整形处理。
8、 如权利要求 7所述的解码装置, 其特征在于, 所述瞬态信号处理单元进一步包 括:
时域包络解码子单元,与所述选择控制单元相连,用于解码编码码流中的时域包络, 得到一组时域包络;
瞬态信号整形子单元, 与所述时域包络解码子单元及变换解码单元相连, 用于利用 所述解码得到的一组时域包络对变换解码后得到的反变换后的信号进行整形,得到最终 的解码信号。
9、 如权利要求 8所述的解码装置, 其特征在于, 还包括:
解码寄存器, 与所述时域包络解码子单元相连, 用于保存所述解码后的到的时域包 络。
10、 一种量化噪声泄漏控制方法, 其特征在于, 包括:
对当前输入的一帧信号进行瞬态分析, 检测当前信号是否出现瞬态信号; 根据上述瞬态信号检测结果, 对于不同的信号选择不同的方式进行编码处理。
11、 如权利要求 10所述的方法, 其特征在于, 所述瞬态分析过程包括:
将当前输入的一帧信号分为多个子帧, 计算每个子帧的最大幅度值, 利用每个子帧 的最大幅度值与该子帧相邻前若干个子帧的最大幅度值之和的比值作为瞬态检测函数, 如果比值大于一定的阈值, 则认为出现了瞬态信号; 否则就认为没有检测到瞬态信号。
12、 如权利要求 10所述的方法, 其特征在于, 所述根据上述瞬态信号检测结果, 对于不同的信号选择不同的方式进行编码处理的步骤包括:
如果出现瞬态信号, 则计算该帧信号的一组时域包络, 利用所述计算得到的时域包 络对本帧信号进行归一化处理, 对输入信号进行基于感知编码原则的变换编码;
如果没有出现瞬态信号, 则对输入信号进行基于感知编码原则的变换编码。
13、 如权利要求 12所述的方法, 其特征在于, 如果出现瞬态信号, 则在计算该帧 信号的一组时域包络后还包括:
对所述时域包络进行编码处理。
14、 如权利要求 13所述的方法, 其特征在于, 所述方法还包括:
保存并发送瞬态信号检测结果和已编码的内容,所述已编码的内容包括经过变换编 码后的瞬态信号及编码后的时域包络、 或变换编码后的非瞬态信号。
15、 如权利要求 10所述的方法, 其特征在于, 所述方法还包括:
在检测当前信号是否出现瞬态信号后,根据检测结果设置瞬态信号标志位为相应的 值。
16、 一种量化噪声泄漏控制方法, 其特征在于, 包括:
解码瞬态信号标志位, 根据该瞬态信号标志位判断当前帧信号是否存在瞬态信号, 并对接收到的码流进行变换解码, 得到反变换后的信号;
根据所述判断结果选择相应的方式进行解码处理。
17、 如权利要求 16所述的方法, 其特征在于, 所述根据所述判断结果选择相应的 方式进行解码处理的步骤包括:
如果判断有瞬态信号, 则解码码流, 得到一组时域包络, 利用该时域包络对解码后 得到的反变换后的信号进行整形, 得到最终的解码信号;
如果判断没有瞬态信号, 则反变换后的信号即为最终的解码信号。
18、 如权利要求 17所述的方法, 其特征在于, 如果判断有瞬态信号, 则得到一组 时域包络后, 还包括:
保存所述时域包络。
PCT/CN2009/070074 2008-01-16 2009-01-08 一种量化噪声泄漏控制方法及装置 WO2009092309A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200810056312 CN101488344B (zh) 2008-01-16 2008-01-16 一种量化噪声泄漏控制方法及装置
CN200810056312.9 2008-01-16

Publications (1)

Publication Number Publication Date
WO2009092309A1 true WO2009092309A1 (zh) 2009-07-30

Family

ID=40891197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070074 WO2009092309A1 (zh) 2008-01-16 2009-01-08 一种量化噪声泄漏控制方法及装置

Country Status (2)

Country Link
CN (1) CN101488344B (zh)
WO (1) WO2009092309A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237753A (ja) * 2010-04-14 2011-11-24 Sony Corp 信号処理装置および方法、並びにプログラム
CN102419977B (zh) * 2011-01-14 2013-10-02 展讯通信(上海)有限公司 瞬态音频信号的判别方法
CN103620672B (zh) 2011-02-14 2016-04-27 弗劳恩霍夫应用研究促进协会 用于低延迟联合语音及音频编码(usac)中的错误隐藏的装置和方法
MY159444A (en) 2011-02-14 2017-01-13 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E V Encoding and decoding of pulse positions of tracks of an audio signal
PT2676267T (pt) 2011-02-14 2017-09-26 Fraunhofer Ges Forschung Codificação e descodificação de posições de pulso de faixas de um sinal de áudio
MY164797A (en) 2011-02-14 2018-01-30 Fraunhofer Ges Zur Foederung Der Angewandten Forschung E V Apparatus and method for processing a decoded audio signal in a spectral domain
BR112012029132B1 (pt) 2011-02-14 2021-10-05 Fraunhofer - Gesellschaft Zur Förderung Der Angewandten Forschung E.V Representação de sinal de informações utilizando transformada sobreposta
EP2676266B1 (en) 2011-02-14 2015-03-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Linear prediction based coding scheme using spectral domain noise shaping
AU2012217216B2 (en) 2011-02-14 2015-09-17 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for coding a portion of an audio signal using a transient detection and a quality result
EP4243017A3 (en) 2011-02-14 2023-11-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method decoding an audio signal using an aligned look-ahead portion
CA2903681C (en) 2011-02-14 2017-03-28 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Audio codec using noise synthesis during inactive phases

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003216188A (ja) * 2002-01-25 2003-07-30 Matsushita Electric Ind Co Ltd オーディオ信号符号化方法、符号化装置、及び記憶媒体
CN1465044A (zh) * 2001-06-15 2003-12-31 索尼公司 声信号编码方法和设备、解码方法和设备及记录介质
CN1552060A (zh) * 2001-05-10 2004-12-01 ʵ 通过降低前噪声改善低比特速率音频编码***的瞬时性能
CN1930607A (zh) * 2004-03-05 2007-03-14 松下电器产业株式会社 差错隐藏装置以及差错隐藏方法
WO2007028280A1 (fr) * 2005-09-08 2007-03-15 Beijing E-World Technology Co., Ltd. Codeur et decodeur pour commande de pre echo et son procede
CN101046964A (zh) * 2007-04-13 2007-10-03 清华大学 基于重叠变换压缩编码的错误隐藏帧重建方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1552060A (zh) * 2001-05-10 2004-12-01 ʵ 通过降低前噪声改善低比特速率音频编码***的瞬时性能
CN1465044A (zh) * 2001-06-15 2003-12-31 索尼公司 声信号编码方法和设备、解码方法和设备及记录介质
JP2003216188A (ja) * 2002-01-25 2003-07-30 Matsushita Electric Ind Co Ltd オーディオ信号符号化方法、符号化装置、及び記憶媒体
CN1930607A (zh) * 2004-03-05 2007-03-14 松下电器产业株式会社 差错隐藏装置以及差错隐藏方法
WO2007028280A1 (fr) * 2005-09-08 2007-03-15 Beijing E-World Technology Co., Ltd. Codeur et decodeur pour commande de pre echo et son procede
CN101046964A (zh) * 2007-04-13 2007-10-03 清华大学 基于重叠变换压缩编码的错误隐藏帧重建方法

Also Published As

Publication number Publication date
CN101488344B (zh) 2011-09-21
CN101488344A (zh) 2009-07-22

Similar Documents

Publication Publication Date Title
WO2009092309A1 (zh) 一种量化噪声泄漏控制方法及装置
JP4810335B2 (ja) 広帯域オーディオ信号符号化装置および広帯域オーディオ信号復号装置
US8862463B2 (en) Adaptive time/frequency-based audio encoding and decoding apparatuses and methods
US9269366B2 (en) Hybrid instantaneous/differential pitch period coding
US9293143B2 (en) Bandwidth extension mode selection
CN112489665B (zh) 语音处理方法、装置以及电子设备
WO2023197809A1 (zh) 一种高频音频信号的编解码方法和相关装置
JP7008756B2 (ja) デジタルオーディオ信号におけるプレエコーを識別し、減衰させる方法及び装置
JP6730391B2 (ja) オーディオ信号内の雑音を推定するための方法、雑音推定器、オーディオ符号化器、オーディオ復号器、およびオーディオ信号を送信するためのシステム
CN106169297B (zh) 信号编码方法及设备
WO2009109120A1 (zh) 一种音频信号的编解码方法和装置
WO2010085566A1 (en) Method and apparatus for compression or decompression of digital signals
CN101783142B (zh) 转码方法、装置和通信设备
EP1831871A1 (en) System and method for determining the pitch lag in an ltp encoding system
WO2010111876A1 (zh) 一种信号去噪的方法和装置及音频解码***
WO2008141579A1 (fr) Procédé de codage et de décodage de signal audio transitoire
WO2007028280A1 (fr) Codeur et decodeur pour commande de pre echo et son procede
JP2008261999A (ja) オーディオ復号装置
KR102380642B1 (ko) 스테레오 신호 인코딩 방법 및 인코딩 장치
WO2010102446A1 (zh) 一种线性预测分析方法、装置及***
CN107077856B (zh) 音频参数量化
KR102353050B1 (ko) 스테레오 신호 인코딩에서의 신호 재구성 방법 및 디바이스
KR102592670B1 (ko) 스테레오 오디오 신호에 대한 인코딩 및 디코딩 방법, 인코딩 디바이스, 및 디코딩 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09704630

Country of ref document: EP

Kind code of ref document: A1