WO2009084536A1 - Semiconductor substrate bonding apparatus and semiconductor substrate bonding method - Google Patents

Semiconductor substrate bonding apparatus and semiconductor substrate bonding method Download PDF

Info

Publication number
WO2009084536A1
WO2009084536A1 PCT/JP2008/073437 JP2008073437W WO2009084536A1 WO 2009084536 A1 WO2009084536 A1 WO 2009084536A1 JP 2008073437 W JP2008073437 W JP 2008073437W WO 2009084536 A1 WO2009084536 A1 WO 2009084536A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor substrate
holding table
substrate
semiconductor
substrate holding
Prior art date
Application number
PCT/JP2008/073437
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Yoshihashi
Hidehiro Maeda
Takashi Shibukawa
Kazutoshi Sakaki
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2009548043A priority Critical patent/JP5365525B2/en
Publication of WO2009084536A1 publication Critical patent/WO2009084536A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment

Definitions

  • the present invention relates to a semiconductor substrate bonding apparatus and a semiconductor substrate bonding method for bonding one semiconductor substrate to another semiconductor substrate.
  • the present invention relates to a semiconductor substrate bonding apparatus and a semiconductor substrate bonding method in which the inclination of a substrate holding table that holds at least one semiconductor substrate is adjusted.
  • a semiconductor substrate bonding apparatus is used for bonding substrates such as semiconductor substrates.
  • This semiconductor substrate bonding apparatus includes two substrate holding tables, and the inclination of at least one of the substrate holding tables is adjusted by a stage device.
  • the stage device is generally mounted on an XY stage for positioning in the XY direction in a horizontal plane, and after the semiconductor substrate is positioned in the XY direction by the XY stage, the rotation ( ⁇ ) direction and the vertical (Z) direction Positioning and adjusting the inclination.
  • Patent Document 1 As a technique for obtaining such parallelism between semiconductor substrates, for example, there is one disclosed in Patent Document 1 (Note that the technique disclosed in Patent Document 1 is not related to bonding between semiconductor substrates. , Relating to bonding of semiconductor chip and TAB tape).
  • a chip is mounted by measuring the tilt of the lower surface of the bonding tool through a measuring member 33 using a laser displacement meter, a dial gauge, or the like, and adjusting the tilt of the tilt table (plate 16) based on the measured value.
  • the stage 20 is made to follow the parallelism of the lower surface of the bonding tool. JP-A-9-64094
  • the present invention has been made in view of the above circumstances, and a semiconductor substrate bonding apparatus and a semiconductor capable of bonding both semiconductor substrates by increasing the parallelism of another semiconductor substrate with respect to one semiconductor substrate. It aims at providing the board
  • a semiconductor substrate bonding apparatus is a semiconductor substrate bonding apparatus for bonding a first semiconductor substrate and a second semiconductor substrate to each other, and a driving unit for tilting the second semiconductor substrate, and a driving unit And a controller that controls at least one of the first and second semiconductor substrates when the first and second semiconductor substrates partially contact each other.
  • the load is calculated, and in accordance with the load, operation control of the drive unit is performed so that non-contact parts other than a part of the first and second semiconductor substrates are close to each other, and the first and second semiconductor substrates are mutually connected.
  • the operation control is repeatedly executed until they become parallel.
  • the control unit calculates a load acting on at least one of the semiconductor substrates, and according to the load, The operation of the drive unit is controlled so that non-contact parts other than a part of the first and second semiconductor substrates are close to each other, and the operation control is repeatedly executed until the first and second semiconductor substrates are parallel to each other. I have to. For this reason, the minute inclination of the other semiconductor substrate with respect to one semiconductor substrate is gradually reduced, the two semiconductor substrates become substantially parallel, and the two semiconductor substrates can be bonded together after increasing the parallelism of the two semiconductor substrates. It becomes possible.
  • the part where the first and second semiconductor substrates are in contact with each other is a part of the periphery of at least one of the first and second semiconductor substrates. It is preferable.
  • a semiconductor substrate bonding apparatus includes a first substrate holding table for holding a first semiconductor substrate, and a first substrate for holding a second semiconductor substrate so as to face the first semiconductor substrate.
  • the first substrate holding unit for tilting the second substrate holding table about one of two axes intersecting each other in plan view of the second substrate holding table.
  • a driving mechanism and a second driving mechanism for tilting the second substrate holding table around the other axis different from the one axis, and the control unit is held by the first substrate holding table One of the forces acting on the second substrate holding table from the second semiconductor substrate when the first semiconductor substrate contacts a part of the periphery of the second semiconductor substrate held on the second substrate holding table.
  • Force component around the axis and the other axis Of the force component is calculated as a load acting on the second semiconductor substrate, it is preferable to repeatedly perform the operation control for driving the first driving mechanism and the second driving mechanism based on the respective force component.
  • the minute inclination of the second semiconductor substrate with respect to the first semiconductor substrate is used as a force component around one and the other axes of the force acting on the second substrate holding table from the second semiconductor substrate.
  • the first and second drive mechanisms are driven to adjust the inclination of the second substrate holding table, thereby increasing the parallelism of both semiconductor substrates and increasing both of them.
  • the semiconductor substrates can be bonded together.
  • the two axes cross each other at angles other than 0 degrees and 180 degrees centering on the origin through the origin that is the holding center in the plan view of the second substrate holding table. It is preferable.
  • the first and second drive mechanisms for tilting the second substrate holding table about each axis can operate independently, and the second substrate holding table (that is, the second substrate holding table)
  • the semiconductor substrate can be inclined at various inclination angles with respect to the horizontal plane.
  • such a three-dimensional tilt angle adjustment of the second semiconductor substrate can be realized with a simple structure.
  • the two axes pass through the origin, which is the holding center in the plan view of the second substrate holding table, and are orthogonal to each other about the origin.
  • the center of gravity position of the force acting on the second semiconductor substrate from the first semiconductor substrate is calculated, and when the center of gravity position is not on the origin, the center of gravity position is used to calculate the first drive mechanism and It is preferable to calculate the driving amount of the second driving mechanism. In this way, since the driving amount can be calculated based on the position of the center of gravity calculated from each force component that does not require complicated measurement, the second substrate holding table by the first driving mechanism and the second driving mechanism. Can be easily controlled.
  • the holding center means a point on the second substrate holding table and corresponding to the center of gravity of the second semiconductor substrate.
  • the first driving mechanism tilts the second substrate holding table on the other axis
  • the second driving mechanism is the second substrate holding table on the one axis. Is tilted.
  • the controller preferably calculates each reaction force generated in the first drive mechanism and the second drive mechanism as each force component when the first semiconductor substrate and the second semiconductor substrate contact each other. . In this way, each reaction force generated in the mechanisms is applied to the first and second drive mechanisms necessary for tilting the second substrate holding table so that the two semiconductor substrates are parallel to each other. Since it can calculate as a component, it can be set as the semiconductor substrate bonding apparatus of a simple structure.
  • the first drive mechanism and the second drive mechanism are drive mechanisms using fluid pressure
  • the control unit calculates each reaction force based on the change in the fluid pressure. Is preferred. In this way, each reaction force can be calculated based on a change in fluid pressure at which a minute change can be easily detected, and calculation accuracy is improved.
  • the inclination of the second substrate holding table can be adjusted based on the reaction force with high calculation accuracy in this way, minute inclination adjustment can be performed.
  • the semiconductor substrate bonding apparatus preferably further includes a moving mechanism for moving the first substrate holding table and the second substrate holding table in a relatively approaching direction and a separating direction.
  • the control unit calculates a force component generated in the moving mechanism when the first semiconductor substrate and the second semiconductor substrate are in contact with each other, and the force component and each force acting on the second substrate holding table. It is preferable to calculate the position of the center of gravity based on the component and the position at which the second substrate holding table is tilted by the first drive mechanism and the second drive mechanism. In this case, the position of the center of gravity based on the force component generated in the moving mechanism, the force components acting on the second substrate holding table, and the position at which the second substrate holding table is tilted by the first and second drive mechanisms. Can be calculated to calculate the drive amounts of the first and second drive mechanisms, so that the calculation accuracy can be improved and the position of the center of gravity can be easily calculated.
  • the control unit calculates a reaction force generated in the moving mechanism as a force component when the first semiconductor substrate and the second semiconductor substrate are in contact with each other. .
  • the reaction force generated in this mechanism can be calculated as a force component using a moving mechanism that is necessary to move both semiconductor substrates in a relatively approaching direction and a separating direction.
  • a semiconductor substrate bonding apparatus having a simple structure can be obtained.
  • the moving mechanism is a driving mechanism using fluid pressure
  • the control unit calculates a reaction force generated in the moving mechanism based on a change in fluid pressure.
  • the reaction force can be calculated based on the change in the fluid pressure at which a minute change is easily detected, and the calculation accuracy is improved.
  • the inclination of the second substrate holding table can be adjusted based on the reaction force with high calculation accuracy in this way, minute inclination adjustment can be performed.
  • the control unit when the load acting on the second semiconductor substrate from the first semiconductor substrate exceeds the upper limit value, the control unit includes the first substrate holding table and the second substrate holding table. It is preferable to drive the movement mechanism so that the movement mechanism moves away from each other. This makes it possible to prevent a load from damaging the semiconductor substrates from being applied to both the semiconductor substrates when the two semiconductor substrates are copied and controlled. As a result, damage to the semiconductor substrate can be prevented and yield can be improved.
  • the control unit is a first substrate when the position of the center of gravity is on the origin and the load on the second semiconductor substrate does not exceed the lower limit value. It is preferable to drive the moving mechanism so that the holding table and the second substrate holding table move in a relatively approaching direction. In this way, when the two semiconductor substrates are copied and controlled, a load necessary for bonding the semiconductor substrates can be appropriately applied to both the semiconductor substrates. As a result, bonding failure due to insufficient load can be avoided, and yield can be improved.
  • the semiconductor substrate bonding method according to the present invention is a semiconductor substrate bonding method for bonding the first and second semiconductor substrates to each other, and the first and second semiconductor substrates are partially in contact with each other.
  • a calculation step of calculating a load acting on at least one of the first and second semiconductor substrates, and a portion other than a part of the first and second semiconductor substrates according to the load calculated in the calculation step A tilting step of tilting the second semiconductor substrate so that the non-contact portions of each other are close to each other, and a repeating step of repeatedly executing the calculation step and the tilting step until the first and second semiconductor substrates are parallel to each other It is characterized by including.
  • a load acting on at least one semiconductor substrate is calculated in the calculation step, and in the tilting step, non-contact other than a part of the first and second semiconductor substrates according to the load.
  • the second semiconductor substrate is tilted so that the portions are close to each other, and in the repeating process, the calculation process and the tilting process are repeated until the first and second semiconductor substrates are parallel to each other. For this reason, the minute inclination of the other semiconductor substrate with respect to one semiconductor substrate is gradually reduced, the two semiconductor substrates become substantially parallel, and the two semiconductor substrates can be bonded together after increasing the parallelism of the two semiconductor substrates. It becomes possible.
  • the second semiconductor substrate is tilted so that a non-contact portion other than a part of the peripheral edge of the second semiconductor substrate is close to the non-contact portion of the first semiconductor substrate.
  • the minute inclination of the second semiconductor substrate with respect to the first semiconductor substrate is used as a force component around one and the other axes of the force acting on the second substrate holding table from the second semiconductor substrate. It becomes possible to calculate, and by adjusting based on each of these force components, it becomes possible to increase the parallelism of both semiconductor substrates and bond the two semiconductor substrates together.
  • the present invention it is possible to provide a semiconductor substrate bonding apparatus and a semiconductor substrate bonding method capable of bonding both semiconductor substrates by increasing the parallelism of another semiconductor substrate with respect to one semiconductor substrate.
  • FIG. 5 is a sectional view taken along line VV in FIG. 3.
  • FIG. 6 is a partially enlarged view of the first drive mechanism of FIG. 5. It is a figure which shows the arrangement
  • SYMBOLS 1 Semiconductor substrate bonding apparatus, 24 ... 1st board
  • FIG. 1 is a schematic view schematically showing a configuration of a semiconductor substrate bonding apparatus according to the present embodiment.
  • the semiconductor substrate bonding apparatus 1 includes a vibration isolator 12, a surface plate 14, a body 16, an upper stage 20, a lower stage 30, and a control device (control unit) 90.
  • the vibration isolator 12 removes vibration transmitted to the semiconductor substrate bonding apparatus 1.
  • a surface plate 14 is provided on the vibration isolator 12.
  • the body 16 has a side wall portion and an upper wall portion, and forms a sealed space on the surface plate 14.
  • the upper stage 20 is mounted on the inner surface of the upper wall portion of the body 16.
  • the upper stage 20 has an XY ⁇ stage 22 and a first substrate holding table 24.
  • the first substrate holding table 24 holds the first semiconductor substrate Wu to be bonded by electrostatic chucking or vacuum chucking.
  • the XY ⁇ stage 22 performs positioning in the XY ⁇ direction of the first semiconductor substrate Wu held by the first substrate holding table 24 in a horizontal plane.
  • the lower stage 30 is mounted on the surface plate 14.
  • the lower stage 30 has an XY stage 32 and a stage device 34.
  • the stage device 34 includes a second substrate holding table 36, a tilt table 38, a support table 45, a first driving mechanism (driving unit) 46, a second driving mechanism (driving unit) 48, a ⁇ driving mechanism 50, and a moving mechanism 52. It has.
  • the tilt table 38 is driven by the first and second drive mechanisms 46, 48, and the support table 45 is driven by the ⁇ drive mechanism 50, whereby the placement surface 38a (ie, on the placement surface 38a).
  • the inclination angle adjustment and the rotation angle adjustment of the second semiconductor substrate Wd) held by the second substrate holding table 36 mounted on the substrate are performed.
  • the height position is also adjusted by the moving mechanism 52 that is an air cylinder.
  • the X axis and the Y axis are set so as to be 90 degrees in the horizontal plane
  • the Z axis is set in the vertical direction
  • a three-dimensional orthogonal coordinate system is set. The case will be described using the XYZ coordinate system.
  • the second substrate holding table 36 holds the second semiconductor substrate Wd to be bonded.
  • the second substrate holding table 36 includes an electrostatic chuck ESC that sucks a wafer by electrostatic force and a vacuum chuck VAC that vacuum-sucks the electrostatic chuck ESC.
  • the tilt table 38 is a disk-shaped table, and has a flat mounting surface 38 a on the upper surface side for mounting the second substrate holding table 36.
  • a convex spherical bearing surface 38b is provided on the lower surface side.
  • the central axis L in the vertical direction of the bearing surface 38 b coincides with the central axis of the tilt table 38.
  • an operation portion 60 having an L-shaped cross section is provided at a position in the X-axis direction when viewed from the central axis L.
  • the operating unit 60 includes a first operating piece 60 c that protrudes in the X-axis direction at a position lower than the support table 45, and an end on the central axis L side of the first operating piece 60 c.
  • a connecting portion 60d extending in the vertical direction for connecting the portion and the side surface 38c.
  • the side surface 38c is provided with an operation section 62 having an L-shaped cross section at a position in the Y-axis direction when viewed from the central axis L. As shown in FIG.
  • the operating portion 62 includes a second operating piece 62 c that protrudes in the Y-axis direction at a position lower than the support table 45, and an end portion and a side surface on the central axis L side of the second operating piece 62 c. And a connecting portion 62d extending in the vertical direction for connecting 38c.
  • the first and second operating pieces 60c and 62c are rectangular plates that extend on the XY plane.
  • the rectangular support table 45 is formed at the upper end of a rod 53 provided in a moving mechanism 52 that is an air cylinder. As shown in FIG. 5, a bearing surface 45 b having a concave spherical surface is formed at a substantially central portion of the upper surface of the support table 45 to support the bearing surface 38 b of the tilt table 38.
  • the support table 45 is embedded with a porous portion 45c so as to form a bearing surface 45b, and a large number of minute holes are formed in the bearing surface 45b.
  • a pipe P45 is led out from the porous portion 45c and connected to an external air pressure source (not shown).
  • the air pressure source supplies compressed air to the porous portion 45c, and the compressed air is blown against the bearing surface 38b from a large number of holes in the bearing surface 45b.
  • an air film is formed between the bearing surface 38b and the bearing surface 45b, and the bearing surface 38b is supported in a non-contact state without receiving resistance from the bearing surface 45b.
  • an operating portion 64 having an L-shaped cross section is provided on the side surface 45d of the support table at a position opposite to the Y axis when viewed from the central axis L.
  • the operating part 64 has a connecting part 64d that protrudes in the negative direction of the Y-axis, and a third operating piece 64c that protrudes downward from the free end of the connecting part 64d.
  • the third operating piece 64c is a rectangular plate extending on the YZ plane.
  • the first drive mechanism 46 includes a support member 66 having a support piece 66 a disposed above the first operating piece 60 c and a support piece 66 b disposed below, and a support member 66. It consists of a bellows actuator 68 extending between the piece 66a and the first operating piece 60c, and a bellows actuator 70 extending between the support piece 66b and the first operating piece 60c. The first operating piece 60 c is sandwiched between the tip of the bellows actuator 68 and the tip of the bellows actuator 70. Further, the support member 66 has a rectangular plate-like connection portion 66c for connecting the support pieces 66a and 66b, and the side surface of the connection portion 66c on the support table 45 side is fixed to the support table 45.
  • the bellows actuator 68 includes a bellows 68 a that can be expanded and contracted in the vertical direction, and a disk-shaped operation plate 68 b that seals the opening on the lower end side of the bellows 68 a.
  • the opening on the upper end side of the bellows 68a is sealed by being fixed to the support piece 66a.
  • the internal space 68c of the bellows actuator 68 is sealed by the bellows 68a, the support piece 66a, and the operation plate 68b, and the airtightness thereof is maintained.
  • a shaft 68d extending upward is formed at the central portion of the operating plate 68b.
  • the shaft 68d is movable in the vertical direction by being inserted into a guide hole of a boss 66d provided in the support piece 66a.
  • a hemispherical pressing portion 68e that protrudes toward the first operating piece 60c is formed at the center of the operating plate 68b, and the pressing portion 68e contacts the upper surface 60a of the first operating piece 60c. By contacting, the force generated when the bellows actuator 68 is driven in the vertical direction can be transmitted to the first operating piece 60c. Since the pressing portion 68e of the bellows actuator 68 is spherical, the pressing portion 68e makes point contact with the first operating piece 60c of the operating portion 60.
  • a pipe P68 is led out from the internal space 68c of the bellows actuator 68 and is connected to a servo valve 68f provided outside. Then, by controlling the servo valve 68f, the air in the internal space 68c can be supplied and discharged, and the amount of movement of the operating plate 68b in the vertical direction can be arbitrarily controlled in accordance with the change in the atmospheric pressure in the internal space 68c. can do.
  • the bellows actuator 68 is provided with a pressure gauge 68g that continuously measures the atmospheric pressure in the internal space 68c.
  • the measured atmospheric pressure information is sent to the control device 90. Accordingly, a change in atmospheric pressure in the internal space 68c when the first operating piece 60c is raised by a load generated when the first semiconductor substrate Wu and the second semiconductor substrate Wd described later are bonded to each other. It can be calculated by the control device 90.
  • the pressure gauge 68g functions as a detection unit that detects an external force that is a source of a load, and the control device 90 can calculate a reaction force generated in the bellows actuator 68 based on the change in atmospheric pressure.
  • Various pressure gauges described later also function as a detection unit.
  • the bellows actuator 70 has the same configuration as the bellows actuator 68 described above, and the amount of movement of the operation plate 70b in the vertical direction can be arbitrarily controlled by controlling the servo valve 70f.
  • the pressing portion 70e has a hemispherical shape like the pressing portion 68e, and makes point contact with the lower surface 60b of the operating portion 60. When the pressing portion 70e comes into contact with the lower surface 60b of the first operating piece 60c, the force generated when the bellows actuator 70 is driven in the vertical direction can be transmitted to the first operating piece 60c.
  • the bellows actuator 70 includes a bellows 70a, an internal space 70c, and a shaft 70d, and the internal space 70c and the servo valve 70f are connected by a pipe P70.
  • the bellows actuator 70 is provided with a pressure gauge 70g that continuously measures the atmospheric pressure in the internal space 70c.
  • the measured atmospheric pressure information is sent to the control device 90. Accordingly, a change in atmospheric pressure in the internal space 70c when the first operating piece 60c is lowered by a load generated when the first semiconductor substrate Wu and the second semiconductor substrate Wd, which will be described later, are bonded together. It can be calculated by the control device 90. Further, based on this change in atmospheric pressure, the reaction force generated in the bellows actuator 70 can be calculated by the control device 90.
  • the second drive mechanism 48 has a U-shaped support member 72 having a support piece 72 a disposed above the second operating piece 62 c and a support piece 72 b disposed below.
  • the bellows actuator 74 extends between the support piece 72a and the second operation piece 62c, and the bellows actuator 76 extends between the support piece 72b and the second operation piece 62c.
  • the second operating piece 62 c is sandwiched between the tip of the bellows actuator 74 and the tip of the bellows actuator 76.
  • the support member 72 has a rectangular plate-like connecting portion 72c that connects the support piece 72a and the support piece 72b, and the side surface of the connecting portion 72c on the support table 45 side is fixed to the support table 45.
  • the bellows actuators 74 and 76 have the same configuration as the bellows actuators 68 and 70, and are each provided with a pressure gauge that measures the atmospheric pressure in the internal space of the bellows actuators 74 and 76. The atmospheric pressure information is sent from these pressure gauges to the control device 90, and the atmospheric pressure change and reaction force generated in the bellows actuators 74 and 76 can be calculated.
  • the ⁇ drive mechanism 50 has a U-shaped support having a support piece 56 a and a support piece 56 b that are spaced apart in the X-axis direction so as to sandwich the third operating piece 64 c therebetween.
  • the member 56 includes a bellows actuator 78 extending between the support piece 56a and the third operating piece 64c, and a bellows actuator 80 extending between the support piece 56b and the third operating piece 64c.
  • the third operating piece 64 c is sandwiched between the tip of the bellows actuator 78 and the tip of the bellows actuator 80.
  • the support member 56 has a rectangular plate-like connection portion 56 c that connects the support piece 56 a and the support piece 56 b, and the connection portion 56 c is fixed to the upper surface 82 a of the base plate 82.
  • the bellows actuators 78 and 80 have the same configuration as the bellows actuators 68 and 70.
  • the rod 53 of the moving mechanism 52 which is an air cylinder, has a disc-shaped piston 53a having a diameter substantially the same as the inner periphery of the cylindrical body 52a at the lower end.
  • pipes P84 and P86 are led out from the internal space 52b above the piston 53a and the internal space 52c below.
  • the pipe P86 is provided with a pressure gauge 52d that continuously measures the atmospheric pressure in the lower internal space 52c.
  • the measured atmospheric pressure information is sent to the control device 90. Therefore, the control device 90 controls the change in atmospheric pressure in the internal space 52c when the support table 45 is lowered by a load generated when the first semiconductor substrate Wu and the second semiconductor substrate Wd described later are bonded to each other. It can be calculated by. Further, based on this change in atmospheric pressure, the control device 90 can calculate the reaction force generated in the moving mechanism 52.
  • the first drive mechanism 46 and the second drive mechanism 48 are arranged at an angle of approximately 90 degrees.
  • the first drive mechanism 46 is disposed on the X axis and performs tilt adjustment around the Y axis
  • the second drive mechanism 48 is disposed on the Y axis and performs tilt adjustment around the X axis.
  • the two axes, the X axis and the Y axis pass through the origin O, which is the holding center in the plan view of the tilt table 38 (the second substrate holding table 36 placed on the tilt table 38), and are centered on the origin O.
  • the center of the moving mechanism 52 coincides with the central axis L, and is at the same position as the origin O in the XY coordinate system of the tilt table 38.
  • the two axes on which the first and second drive mechanisms 46 and 48 are disposed need only intersect with each other at angles other than 0 degrees and 180 degrees with the origin O as the center, and not at an angle of about 90 degrees. May be.
  • the configuration below the base plate 82 is not shown, but the stage device 34 having such a configuration is mounted on the XY stage 32 via the base plate 82.
  • the control device 90 controls the semiconductor substrate bonding apparatus 1 including the control of the stage device 34 and the upper stage 20. Details of the control of the stage device 34 by the control device 90 will be described later.
  • the first semiconductor substrate Wu to be bonded is held by the first substrate holding table 24 of the upper stage 20, and the first semiconductor substrate Wu is positioned in the XY ⁇ direction by the XY ⁇ stage 22.
  • the second semiconductor substrate Wd to be bonded is held by the second substrate holding table 36 of the lower stage 30, and the second semiconductor substrate Wd is positioned in the XY direction by the XY stage 32.
  • the support table 45 is driven by the ⁇ drive mechanism 50 to position the rotational position of the second semiconductor substrate Wd around the central axis L (Z axis).
  • the support table 45 is raised by a predetermined amount by the moving mechanism 52,
  • the substrate holding table 36 is moved in a direction approaching the first substrate holding table 24 (step S1).
  • This rise is performed by pressurizing the air pressure in the internal space 52c of the moving mechanism 52 from the first air pressure to the second air pressure via the pipe P86 and maintaining the second air pressure that is a constant pressure.
  • the atmospheric pressure in the internal space 52c is higher than the second atmospheric pressure. It becomes the 3rd atmospheric pressure which is a pressure.
  • Each atmospheric pressure is measured by the pressure gauge 52d, and the atmospheric pressure information is sent to the control device 90 as an external force acting on the semiconductor substrates Wu and Wd.
  • the first semiconductor substrate Wu is in contact with a part of the periphery of the second semiconductor substrate Wd, and the parts other than the part in which both the semiconductor substrates Wu and Wd are in contact are both semiconductor substrates. It becomes a non-contact part in Wu and Wd.
  • the control device 90 calculates the atmospheric pressure change (differential pressure) ⁇ Pz in the internal space 52c of the moving mechanism 52 as the support table 45 is raised, and determines whether or not this differential pressure is greater than zero (step S2). ). Result of the determination, if the middle of the rise, since pressure change [Delta] P Z is the difference between the second pressure becomes zero, the process returns to step S1, and continues to rise in the support table 45 by the moving mechanism 52. On the other hand, if both the semiconductor substrate is in contact, it becomes larger than zero since the pressure change [Delta] P Z is the difference between the third pressure and a second pressure, and proceeds to step S3.
  • the controller 90 calculates the load F when the first semiconductor substrate Wu and the second semiconductor substrate Wd are in contact with each other.
  • the load F is represented by the following formula (1).
  • [Delta] F z is the reaction force in the moving mechanism 52, a value obtained by integrating the surface area SA of the piston 53a in the pressure change [Delta] P Z in the internal space 52c.
  • ⁇ F B is a reaction force on the bearing surface 45b, and is, for example, a value obtained by adding the surface area SB of the bearing surface 45b to the atmospheric pressure change ⁇ P B between the bearing surface 38b and the bearing surface 45b.
  • [Delta] F AX is a reaction force in the first driving mechanism 46, for example, the atmospheric pressure change [Delta] P X in the interior space 68c or in 70c, which is a value obtained by integrating the surface area SC of the actuating plate 68b or 70b of the bellows.
  • ⁇ F AY is a reaction force in the second drive mechanism 48.
  • ⁇ F z it is preferable to use ⁇ F z in consideration of calculation accuracy and ease of calculation. However, if necessary, the total value of ⁇ F B , ⁇ F Ax and ⁇ F Ay is used. If ⁇ F B is small enough to be ignored, the total value of ⁇ F Ax and ⁇ F Ay may be used.
  • step S3 it is determined whether or not the load F is smaller than an upper limit value A determined in consideration of a value that may damage the first semiconductor substrate Wu or the second semiconductor substrate Wd (step S3).
  • the process proceeds to step S4, where the support table 45 is placed by the moving mechanism 52.
  • the second substrate holding table 36 is moved in a direction away from the first substrate holding table 24 after being fixed and lowered.
  • the process proceeds to the next step S5.
  • the upper limit value A for example, 1 [N] is preferably set.
  • step S ⁇ b> 5 the contact position T (X F , Y F ) where the first semiconductor substrate Wu and the second semiconductor substrate Wd are in contact is determined by the first drive mechanism 46, the second drive mechanism 48, and the moving mechanism 52. Based on the positional relationship, the reaction force in each drive mechanism, and the load on the semiconductor substrate, the following calculation is performed.
  • the contact position T an XY coordinate system with the center as the origin O in the plan view of the tilt table 38 is set.
  • the first semiconductor substrate Wu and the second semiconductor substrate Wd are in contact at one point T (X F , Y F ) in the XY plane, and a load F is applied to the contact portion.
  • a load F is applied to this contact position.
  • this contact position corresponds to the center of gravity position.
  • the center of gravity position is calculated from the plurality of contact positions, this center of gravity position is set as a virtual contact position, and this virtual contact position is set as the contact position T (X F , Y F ))
  • T X F , Y F
  • step S6 it is determined whether or not the contact position T (X F , Y F ) calculated above is on the origin O (step S6).
  • the contact position T (X F , Y F ) is not on the origin O, the first semiconductor substrate Wu and the second semiconductor substrate Wd are not parallel (that is, a non-contact portion between the two semiconductor substrates Wu, Wd). Therefore, in order to make both semiconductor substrates parallel, the process proceeds to steps S7 and S8.
  • step S7 the drive amount ( ⁇ AX ) of the rotation angle ⁇ X around the X axis for adjusting the second semiconductor substrate Wd in parallel with the first semiconductor substrate Wu and the rotation angle ⁇ Y around the Y axis
  • a driving amount ( ⁇ AY ) is calculated.
  • each driving amount first, as shown in FIGS. 10A and 10B, the inclination of the first semiconductor substrate Wu and the second semiconductor substrate Wd around the X axis is expressed by ⁇ X and around the Y axis. Assume the slope is ⁇ Y. Assuming that both slopes are very small, both slopes are expressed by the following equations.
  • Z max is the largest value among the values assumed as the amount of deviation in the Z-axis direction in the inclination of the semiconductor substrate that is usually generated when the semiconductor substrates are bonded together.
  • the rotational drive amount ⁇ AX is driven by the second drive mechanism 48 to adjust the tilt around the X axis
  • the rotational drive amount ⁇ AY is driven by the first drive mechanism 46 to tilt around the Y axis. Is adjusted (step S8).
  • the second semiconductor substrate is tilted, and a non-contact portion of the second semiconductor substrate other than a part of the peripheral edge in contact with the first semiconductor substrate approaches the non-contact portion of the first semiconductor substrate. It becomes like this.
  • the second drive mechanism 48 is driven, that is, when the tilt table 38 tilts around the X axis, the first operating piece 60c of the operating unit 60 rotates around the X axis.
  • the pressing portions 68e and 70e of the bellows actuators 68 and 70 of the first drive mechanism 46 are in point contact with the upper surface 60a and the lower surface 60b of the operating piece 60c, respectively, as described above.
  • the contact points of the pressing portions 68e and 70e and the operating piece 60c and the first contact points are compared with the case where the pressing portions 68e and 70e are in surface contact with the first operating piece 60c, respectively.
  • the distance from the rotation center of the operating piece 60c becomes smaller.
  • each press part 68e and 70e When the 1st action piece 60c rotates, compared with the case where each press part 68e and 70e surface-contacts with the 1st action piece 60c, respectively, each press part 68e, The magnitude of the moment force acting on 70e is reduced. Accordingly, each of the pressing portions 68e and 70e can be reliably suppressed from moving in the direction in which the interval between the pressing portions is increased by the moment force. Therefore, the first driving mechanism 48 is driven when the second driving mechanism 48 is driven. The influence on the drive mechanism 46 can be reliably suppressed.
  • the second drive is performed when the first drive mechanism 46 is driven.
  • the influence on the mechanism 48 can also be reliably suppressed.
  • step S7 Step S8 for driving the drive mechanism based on the calculated drive amount
  • the second semiconductor substrate Wd is gradually parallel to the first semiconductor substrate Wu based on the reaction forces generated in the first drive mechanism 46, the second drive mechanism 48, and the moving mechanism 52. It is trying to become. That is, based on each reaction force, a contact position corresponding to the position of the center of gravity is calculated, and based on this contact position, it is calculated whether or not both semiconductor substrates are parallel, so that the contact position approaches the origin.
  • step S6 If it is determined in step S6 that the contact position (X F , Y F ) is on the origin O, both semiconductor substrates are parallel, and the process proceeds to step S9. Then, it is determined whether or not the load F is larger than a lower limit B determined in consideration of a value sufficient for bonding the first semiconductor substrate Wu and the second semiconductor substrate Wd (step). S9). For example, 0.5 [N] is preferably set as the lower limit value B. If the load F is smaller than the lower limit B, the process returns to step S1. On the other hand, if the load F is larger than the lower limit B, the bonding is continued in this state, and the bonding process is completed after a predetermined time has elapsed.
  • a lower limit B determined in consideration of a value sufficient for bonding the first semiconductor substrate Wu and the second semiconductor substrate Wd
  • the control device 90 of the semiconductor substrate bonding apparatus 1 has the first drive mechanism 46.
  • the reaction forces generated in the second drive mechanism 48 and the moving mechanism 52 are calculated, and the first and second drive mechanisms 46 and 48 are repeatedly driven based on the drive amounts calculated from the reaction forces.
  • the inclination of the second substrate holding table 36 can be adjusted so that the parallelism of the second semiconductor substrate Wd with respect to the semiconductor substrate Wu becomes equal.
  • the control device 90 also includes a load F acting on a contact position between the first semiconductor substrate Wu and the second semiconductor substrate Wd, each reaction force generated in the first drive mechanism 46 and the second drive mechanism 48, Based on the position on the X-axis of the first drive mechanism 46 and the position on the Y-axis of the second drive mechanism 48, the contact position between the first semiconductor substrate Wu and the second semiconductor substrate Wd is calculated.
  • the first and second drive mechanisms 46 and 48 are repeatedly driven using the contact position so that the second semiconductor substrate Wd is parallel to the first semiconductor substrate Wu. ing. Thereby, control of the 1st and 2nd drive mechanisms 46 and 48 for inclination adjustment by control device 90 becomes easy.
  • the control device 90 lowers the tilt table 38 and causes the second substrate holding table 36 to move to the first substrate.
  • the moving mechanism 52 is driven so as to move in a direction away from the holding table 24. For this reason, it is possible to prevent the semiconductor substrates from being damaged by applying an excessive force between the semiconductor substrates to be bonded to each other.
  • control device 90 raises the tilt table 38 so that the second substrate holding table 36 moves in a direction approaching the first substrate holding table 24. Further, the moving mechanism 52 is driven. For this reason, bonding of the semiconductor substrates with an insufficient force can be avoided.
  • the stage device 34 is a drive mechanism in which the first drive mechanism 46, the second drive mechanism 48, and the moving mechanism 52 utilize fluid pressure, for example, air pressure, and controls the reaction force based on the change in the fluid pressure.
  • the calculation is performed by the device 90. For this reason, it is possible to detect a subtle inclination based on a change in fluid pressure at which a minute change is easy to detect, and to perform advanced inclination adjustment.
  • the two axes for tilting the second substrate holding table 36 around the respective axes by the first and second drive mechanisms 46 and 48 are origins which are the holding centers in the plan view of the second substrate holding table 36. And intersecting each other at an angle excluding 0 degrees and 180 degrees, for example, approximately 90 degrees, centering on the origin. Therefore, the first and second drive mechanisms 46 and 48 for tilting the second substrate holding table about each axis can operate independently, and the second substrate holding table 36 (that is, the second substrate holding table 36)
  • the semiconductor substrate Wd) can be inclined at various inclination angles with respect to the horizontal plane. Moreover, such a three-dimensional tilt angle adjustment of the second semiconductor substrate Wd can be realized with a simple structure.
  • the contact position between the first semiconductor substrate Wu and the second semiconductor substrate Wd is calculated based on the reaction forces generated by the first drive mechanism 46, the second drive mechanism 48, and the moving mechanism 52.
  • the contact position may be calculated using a force component other than the reaction force.
  • the load acting on the second semiconductor substrate Wd is calculated to calculate the contact position.
  • the detecting unit detects an external force acting on the first semiconductor substrate Wu on the upper stage 20 side.
  • the contact position may be calculated by calculating a load acting on the first semiconductor substrate Wu.
  • the pressure gauge 52d is provided on the pipe P86 as shown in FIG. 5 in calculating the reaction force against the moving mechanism 52.
  • the reaction force against the moving mechanism 52 can be calculated, It is good also as a structure which provides the pressure gauge 52d in a part.
  • the pressure gauges are provided in the pipes P68, P70, etc., but the first drive mechanism 46 and As long as the reaction force with respect to the second drive mechanism 48 can be calculated, a configuration may be adopted in which a pressure gauge is provided in another portion.
  • the first drive mechanism 46, the second drive mechanism 48, and the moving mechanism 52 are configured to detect the reaction force based on the fluctuation of the air pressure.
  • a driving mechanism using another fluid may be used, and the reaction force may be detected by the fluctuation of the fluid pressure.
  • the second semiconductor substrate Wd held on the lower stage 30 is raised and brought into contact with the first semiconductor substrate Wu held on the upper stage 20.
  • the first semiconductor substrate Wu held on the upper stage 20 may be lowered and brought into contact with the second semiconductor substrate Wd held on the lower stage 30. Even in this case, advanced tilt adjustment based on the reaction force is possible.
  • a weight having a weight equal to the weight of the operating portion is provided at a position opposite to the position where the operating portion 60 of the side surface 38c of the tilt table 38 is provided, and the operating portion 62 of the side surface 38c is provided.
  • a weight having a weight equal to the weight of the operating portion can be provided at a position opposite to the provided position. In this case, the balance of the weight of the tilt table 38 in the X-axis direction and the Y-axis direction is maintained.
  • the tilt table 38 can be held in a posture where the mounting surface 38a of the tilt table is horizontal. Therefore, for example, compared with the case where the tilt of the tilt table 38 is adjusted by adjusting the amount of air supplied to the bellows actuators 68, 70, 74, 76, the posture of the tilt table 38 is easily returned to the initial posture. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

A semiconductor substrate bonding apparatus (1) is provided with a first substrate holding table (24) for holding a first semiconductor substrate (Wu); a second substrate holding table (36) for holding a second semiconductor substrate (Wd); a first driving mechanism (46) for tilting and turning the second substrate holding table (36) in one direction about the shaft; a second driving mechanism (48), which tilts and turns the second substrate holding table (36) in the other direction about the shaft; and a control apparatus (90) for controlling drive of the first and the second drive mechanisms (46, 48). When the two substrates abut to each other, the control apparatus (90) calculates components of one and the other forces operating from the second semiconductor substrate (Wd) to the second substrate holding table (36), and based on each force component, the first and the second driving mechanisms (46, 48) are repeatedly driven, and the two substrates are bonded to each other with high parallelism.

Description

半導体基板貼り合わせ装置及び半導体基板貼り合わせ方法Semiconductor substrate bonding apparatus and semiconductor substrate bonding method
 本発明は、一の半導体基板を他の半導体基板に貼り合わせる半導体基板貼り合わせ装置及び半導体基板貼り合わせ方法に関する。特に、少なくとも一方の半導体基板を保持する基板保持テーブルの傾斜が調整される半導体基板貼り合わせ装置及び半導体基板貼り合わせ方法に関する。 The present invention relates to a semiconductor substrate bonding apparatus and a semiconductor substrate bonding method for bonding one semiconductor substrate to another semiconductor substrate. In particular, the present invention relates to a semiconductor substrate bonding apparatus and a semiconductor substrate bonding method in which the inclination of a substrate holding table that holds at least one semiconductor substrate is adjusted.
 半導体基板などの基板同士の貼り合わせにおいて、半導体基板貼り合わせ装置が用いられる。この半導体基板貼り合わせ装置は、2つの基板保持テーブルを備え、少なくとも一方の基板保持テーブルの傾斜はステージ装置によって調整される。ステージ装置は、一般的に、水平面内におけるXY方向の位置決めを行うXYステージ上に搭載され、XYステージによりXY方向について半導体基板の位置決めがなされた後、回転(θ)方向及び鉛直(Z)方向の位置決めを行うと共に、傾斜の調整を行うものである。 A semiconductor substrate bonding apparatus is used for bonding substrates such as semiconductor substrates. This semiconductor substrate bonding apparatus includes two substrate holding tables, and the inclination of at least one of the substrate holding tables is adjusted by a stage device. The stage device is generally mounted on an XY stage for positioning in the XY direction in a horizontal plane, and after the semiconductor substrate is positioned in the XY direction by the XY stage, the rotation (θ) direction and the vertical (Z) direction Positioning and adjusting the inclination.
 ここで、半導体基板同士を貼り合わせる際には、貼り合わせ不良や破損を防ぐため、半導体基板の高い平行度が要求される。従来、このような半導体基板同士の平行度を出す技術として、例えば特許文献1に開示されたものがある(なお、この特許文献1に開示の技術は、半導体基板同士の貼り合わせに関するものではなく、半導体チップとTABテープとのボンディングに関するものである)。この装置では、レーザ変位計やダイヤルゲージなどにより計測用部材33を介してボンディングツール下面の傾斜を計測し、この計測値に基づいてチルトテーブル(プレート16)の傾斜を調整することで、チップ搭載ステージ20をボンディングツールの下面の平行度に倣い合わせている。
特開平9-64094号公報
Here, when the semiconductor substrates are bonded together, high parallelism of the semiconductor substrates is required in order to prevent bonding failure and damage. Conventionally, as a technique for obtaining such parallelism between semiconductor substrates, for example, there is one disclosed in Patent Document 1 (Note that the technique disclosed in Patent Document 1 is not related to bonding between semiconductor substrates. , Relating to bonding of semiconductor chip and TAB tape). In this apparatus, a chip is mounted by measuring the tilt of the lower surface of the bonding tool through a measuring member 33 using a laser displacement meter, a dial gauge, or the like, and adjusting the tilt of the tilt table (plate 16) based on the measured value. The stage 20 is made to follow the parallelism of the lower surface of the bonding tool.
JP-A-9-64094
 しかしながら、上記した従来の技術を半導体基板の貼り合わせに利用したのでは、ある程度の平行度まで倣い合わせることはできるものの、達成できる平行度に限界があるため、残った微小な傾斜により過度な反力が作用して半導体基板を破損させたり、貼り合わせ不良が生じたりするおそれがあった。 However, if the above-described conventional technique is used for bonding the semiconductor substrates, it can be traced to a certain degree of parallelism, but there is a limit to the parallelism that can be achieved. There is a possibility that the semiconductor substrate may be damaged or a bonding failure may occur due to the force.
 本発明は、上記した事情に鑑みて為されたものであり、一の半導体基板に対する他の半導体基板の平行度を高くして両半導体基板を貼り合わせることが可能な半導体基板貼り合わせ装置及び半導体基板貼り合わせ方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a semiconductor substrate bonding apparatus and a semiconductor capable of bonding both semiconductor substrates by increasing the parallelism of another semiconductor substrate with respect to one semiconductor substrate. It aims at providing the board | substrate bonding method.
 本発明に係る半導体基板貼り合わせ装置は、第1及び第2の半導体基板を互いに貼り合わせるための半導体基板貼り合わせ装置であって、第2の半導体基板を傾動させるための駆動部と、駆動部の作動を制御する制御部とを備え、制御部は、第1及び第2の半導体基板が一部で互いに接触した際、第1及び第2の半導体基板のうち少なくとも一方の半導体基板に作用する荷重を算出し、荷重に応じて、第1及び第2の半導体基板における一部以外の非接触部分が互いに近接するように駆動部の作動制御を行い、第1及び第2の半導体基板が互いに平行になるまで作動制御を繰り返し実行することを特徴とする。 A semiconductor substrate bonding apparatus according to the present invention is a semiconductor substrate bonding apparatus for bonding a first semiconductor substrate and a second semiconductor substrate to each other, and a driving unit for tilting the second semiconductor substrate, and a driving unit And a controller that controls at least one of the first and second semiconductor substrates when the first and second semiconductor substrates partially contact each other. The load is calculated, and in accordance with the load, operation control of the drive unit is performed so that non-contact parts other than a part of the first and second semiconductor substrates are close to each other, and the first and second semiconductor substrates are mutually connected. The operation control is repeatedly executed until they become parallel.
 この半導体基板貼り合わせ装置では、第1及び第2の半導体基板が一部で互いに接触した際、制御部は、少なくとも一方の半導体基板に作用する荷重を算出すると共に、その荷重に応じて、第1及び第2の半導体基板における一部以外の非接触部分が互いに近接するように駆動部の作動制御を行い、第1及び第2の半導体基板が互いに平行になるまで作動制御を繰り返し実行するようにしている。このため、一方の半導体基板に対する他方の半導体基板の微小な傾斜が徐々に減少して、両半導体基板が略平行となり、両半導体基板の平行度を高くした上で両半導体基板を貼り合わせることが可能となる。 In this semiconductor substrate bonding apparatus, when the first and second semiconductor substrates partially contact each other, the control unit calculates a load acting on at least one of the semiconductor substrates, and according to the load, The operation of the drive unit is controlled so that non-contact parts other than a part of the first and second semiconductor substrates are close to each other, and the operation control is repeatedly executed until the first and second semiconductor substrates are parallel to each other. I have to. For this reason, the minute inclination of the other semiconductor substrate with respect to one semiconductor substrate is gradually reduced, the two semiconductor substrates become substantially parallel, and the two semiconductor substrates can be bonded together after increasing the parallelism of the two semiconductor substrates. It becomes possible.
 本発明に係る半導体基板貼り合わせ装置において、第1及び第2の半導体基板が互いに接触する一部は、第1及び第2の半導体基板のうち少なくとも一方の半導体基板において、周縁の一部であることが好ましい。 In the semiconductor substrate bonding apparatus according to the present invention, the part where the first and second semiconductor substrates are in contact with each other is a part of the periphery of at least one of the first and second semiconductor substrates. It is preferable.
 本発明に係る半導体基板貼り合わせ装置は、第1の半導体基板を保持するための第1の基板保持テーブルと、第2の半導体基板を第1の半導体基板に対向するように保持するための第2の基板保持テーブルとを備え、駆動部は、第2の基板保持テーブルの平面視において互いに交差する二つの軸のうち一方の軸の周りに第2の基板保持テーブルを傾動させるための第1駆動機構と、一方の軸とは異なる他方の軸の周りに第2の基板保持テーブルを傾動させるための第2駆動機構とを有し、制御部は、第1の基板保持テーブルに保持された第1の半導体基板が第2の基板保持テーブルに保持された第2の半導体基板の周縁の一部に接触した際、第2の半導体基板から第2の基板保持テーブルに作用する力の一方の軸周りの力成分と他方の軸周りの力成分とを第2の半導体基板に作用する荷重として算出し、該各力成分に基づいて第1駆動機構及び第2駆動機構を駆動する作動制御を繰り返し実行することが好ましい。このようにすれば、第1の半導体基板に対する第2の半導体基板の微小な傾斜を、第2の半導体基板から第2の基板保持テーブルに作用する力の一方及び他方の軸周りの力成分として算出することが可能となり、これら各力成分に基づいて第1及び第2駆動機構を駆動して第2の基板保持テーブルの傾斜を調整することで、両半導体基板の平行度を高くして両半導体基板を貼り合わせることが可能となる。 A semiconductor substrate bonding apparatus according to the present invention includes a first substrate holding table for holding a first semiconductor substrate, and a first substrate for holding a second semiconductor substrate so as to face the first semiconductor substrate. The first substrate holding unit for tilting the second substrate holding table about one of two axes intersecting each other in plan view of the second substrate holding table. A driving mechanism and a second driving mechanism for tilting the second substrate holding table around the other axis different from the one axis, and the control unit is held by the first substrate holding table One of the forces acting on the second substrate holding table from the second semiconductor substrate when the first semiconductor substrate contacts a part of the periphery of the second semiconductor substrate held on the second substrate holding table. Force component around the axis and the other axis Of the force component is calculated as a load acting on the second semiconductor substrate, it is preferable to repeatedly perform the operation control for driving the first driving mechanism and the second driving mechanism based on the respective force component. According to this configuration, the minute inclination of the second semiconductor substrate with respect to the first semiconductor substrate is used as a force component around one and the other axes of the force acting on the second substrate holding table from the second semiconductor substrate. Based on these force components, the first and second drive mechanisms are driven to adjust the inclination of the second substrate holding table, thereby increasing the parallelism of both semiconductor substrates and increasing both of them. The semiconductor substrates can be bonded together.
 本発明に係る半導体基板貼り合わせ装置において、二つの軸は、第2の基板保持テーブルの平面視における保持中心である原点を通り且つ原点を中心として0度及び180度を除く角度で互いに交差していることが好ましい。このようにすれば、第2の基板保持テーブルを各軸回りに傾動させるための第1及び第2駆動機構は、それぞれ独立して作動することができ、第2の基板保持テーブル(つまり第2の半導体基板)を水平面に対して様々な傾斜角度へ傾斜させることができる。しかも、このような第2の半導体基板の三次元的な傾斜角度調整を簡単な構造で実現させることが可能となる。 In the semiconductor substrate bonding apparatus according to the present invention, the two axes cross each other at angles other than 0 degrees and 180 degrees centering on the origin through the origin that is the holding center in the plan view of the second substrate holding table. It is preferable. In this way, the first and second drive mechanisms for tilting the second substrate holding table about each axis can operate independently, and the second substrate holding table (that is, the second substrate holding table) The semiconductor substrate) can be inclined at various inclination angles with respect to the horizontal plane. Moreover, such a three-dimensional tilt angle adjustment of the second semiconductor substrate can be realized with a simple structure.
 本発明に係る半導体基板貼り合わせ装置において、二つの軸は、第2の基板保持テーブルの平面視における保持中心である原点を通り且つ原点を中心として互いに直交しており、制御部は、各力成分に基づいて、第2の半導体基板に対して第1の半導体基板から作用する力の重心位置を算出し、この重心位置が原点上でない場合、重心位置を利用して、第1駆動機構及び第2駆動機構の駆動量を算出することが好ましい。このようにすれば、複雑な測定が不要な各力成分から算出される重心位置に基づいて駆動量を算出することができるため、第1駆動機構及び第2駆動機構による第2の基板保持テーブルの傾斜調整を容易に制御することができる。なお、保持中心とは、第2の基板保持テーブル上の点であって、第2の半導体基板における重心に対応する点を意味する。 In the semiconductor substrate bonding apparatus according to the present invention, the two axes pass through the origin, which is the holding center in the plan view of the second substrate holding table, and are orthogonal to each other about the origin. Based on the component, the center of gravity position of the force acting on the second semiconductor substrate from the first semiconductor substrate is calculated, and when the center of gravity position is not on the origin, the center of gravity position is used to calculate the first drive mechanism and It is preferable to calculate the driving amount of the second driving mechanism. In this way, since the driving amount can be calculated based on the position of the center of gravity calculated from each force component that does not require complicated measurement, the second substrate holding table by the first driving mechanism and the second driving mechanism. Can be easily controlled. The holding center means a point on the second substrate holding table and corresponding to the center of gravity of the second semiconductor substrate.
 本発明に係る半導体基板貼り合わせ装置において、第1駆動機構は他方の軸上で第2の基板保持テーブルを傾動させるものであり、第2駆動機構は一方の軸上で第2の基板保持テーブルを傾動させるものである。そして、制御部は、第1の半導体基板と第2の半導体基板とが互いに当接した際、第1駆動機構及び第2駆動機構に生じる各反力をそれぞれ各力成分として算出することが好ましい。このようにすれば、両半導体基板が平行になるよう第2の基板保持テーブルを傾動させるために必要である第1駆動機構及び第2駆動機構を用いて、それら機構に生じる各反力を力成分として算出することができるため、簡易な構成の半導体基板貼り合わせ装置とすることができる。 In the semiconductor substrate bonding apparatus according to the present invention, the first driving mechanism tilts the second substrate holding table on the other axis, and the second driving mechanism is the second substrate holding table on the one axis. Is tilted. The controller preferably calculates each reaction force generated in the first drive mechanism and the second drive mechanism as each force component when the first semiconductor substrate and the second semiconductor substrate contact each other. . In this way, each reaction force generated in the mechanisms is applied to the first and second drive mechanisms necessary for tilting the second substrate holding table so that the two semiconductor substrates are parallel to each other. Since it can calculate as a component, it can be set as the semiconductor substrate bonding apparatus of a simple structure.
 本発明に係る半導体基板貼り合わせ装置において、第1駆動機構及び第2駆動機構は流体圧を利用した駆動機構であり、制御部は、この流体圧の変化に基づいて各反力を算出することが好ましい。このようにすれば、微小な変化が検出し易い流体圧の変化に基づいて各反力を算出することができ、算出精度が向上する。しかも、このように算出精度が高い反力に基づいて第2の基板保持テーブルの傾斜を調整することができるため、微小な傾斜調整を行なうことができる。 In the semiconductor substrate bonding apparatus according to the present invention, the first drive mechanism and the second drive mechanism are drive mechanisms using fluid pressure, and the control unit calculates each reaction force based on the change in the fluid pressure. Is preferred. In this way, each reaction force can be calculated based on a change in fluid pressure at which a minute change can be easily detected, and calculation accuracy is improved. In addition, since the inclination of the second substrate holding table can be adjusted based on the reaction force with high calculation accuracy in this way, minute inclination adjustment can be performed.
 本発明に係る半導体基板貼り合わせ装置は、第1の基板保持テーブルと第2の基板保持テーブルとを相対的に近づく方向及び離れる方向へ移動させるための移動機構を更に備えていることが好ましい。そして、制御部は、第1の半導体基板と第2の半導体基板とが互いに当接した際、移動機構に生じる力成分を算出し、この力成分と第2の基板保持テーブルに作用する各力成分と第1駆動機構及び第2駆動機構による第2の基板保持テーブルを傾動させる位置とに基づいて、重心位置を算出することが好ましい。このようにすれば、移動機構に生じる力成分と第2の基板保持テーブルに作用する各力成分と第1,第2駆動機構による第2の基板保持テーブルを傾動させる位置とに基づいて重心位置を算出して、第1,第2駆動機構の駆動量を算出することができるため、算出精度を向上させることができ、しかも、重心位置の算出を容易に行うことができる。 The semiconductor substrate bonding apparatus according to the present invention preferably further includes a moving mechanism for moving the first substrate holding table and the second substrate holding table in a relatively approaching direction and a separating direction. The control unit calculates a force component generated in the moving mechanism when the first semiconductor substrate and the second semiconductor substrate are in contact with each other, and the force component and each force acting on the second substrate holding table. It is preferable to calculate the position of the center of gravity based on the component and the position at which the second substrate holding table is tilted by the first drive mechanism and the second drive mechanism. In this case, the position of the center of gravity based on the force component generated in the moving mechanism, the force components acting on the second substrate holding table, and the position at which the second substrate holding table is tilted by the first and second drive mechanisms. Can be calculated to calculate the drive amounts of the first and second drive mechanisms, so that the calculation accuracy can be improved and the position of the center of gravity can be easily calculated.
 本発明に係る半導体基板貼り合わせ装置において、制御部は、第1の半導体基板と第2の半導体基板とが互いに当接した際、移動機構に生じる反力を力成分として算出することが更に好ましい。このようにすれば、両半導体基板を相対的に近づく方向及び離れる方向に移動させるために必要である移動機構を用いて、この機構に生じる反力を力成分として算出することができるため、簡易な構成の半導体基板貼り合わせ装置とすることができる。 In the semiconductor substrate bonding apparatus according to the present invention, it is further preferable that the control unit calculates a reaction force generated in the moving mechanism as a force component when the first semiconductor substrate and the second semiconductor substrate are in contact with each other. . In this way, the reaction force generated in this mechanism can be calculated as a force component using a moving mechanism that is necessary to move both semiconductor substrates in a relatively approaching direction and a separating direction. A semiconductor substrate bonding apparatus having a simple structure can be obtained.
 本発明に係る半導体基板貼り合わせ装置において、移動機構は流体圧を利用した駆動機構であって、制御部は、流体圧の変化に基づいて移動機構に生じる反力を算出することが好ましい。このようにすれば、微小な変化が検出し易い流体圧の変化に基づいて反力を算出することができ、算出精度が向上する。しかも、このように算出精度が高い反力に基づいて第2の基板保持テーブルの傾斜を調整することができるため、微小な傾斜調整を行なうことができる。 In the semiconductor substrate bonding apparatus according to the present invention, it is preferable that the moving mechanism is a driving mechanism using fluid pressure, and the control unit calculates a reaction force generated in the moving mechanism based on a change in fluid pressure. In this way, the reaction force can be calculated based on the change in the fluid pressure at which a minute change is easily detected, and the calculation accuracy is improved. In addition, since the inclination of the second substrate holding table can be adjusted based on the reaction force with high calculation accuracy in this way, minute inclination adjustment can be performed.
 本発明に係る半導体基板貼り合わせ装置において、制御部は、第1の半導体基板から第2の半導体基板に作用する荷重が上限値を超える場合、第1の基板保持テーブルと第2の基板保持テーブルとが相対的に離れる方向に移動するように移動機構を駆動することが好ましい。このようにすれば、両半導体基板を倣い制御させる際、半導体基板を破損させるような荷重が両半導体基板にかからないようにすることができる。その結果、半導体基板の破損を防止でき、歩留まりを向上させることができる。 In the semiconductor substrate bonding apparatus according to the present invention, when the load acting on the second semiconductor substrate from the first semiconductor substrate exceeds the upper limit value, the control unit includes the first substrate holding table and the second substrate holding table. It is preferable to drive the movement mechanism so that the movement mechanism moves away from each other. This makes it possible to prevent a load from damaging the semiconductor substrates from being applied to both the semiconductor substrates when the two semiconductor substrates are copied and controlled. As a result, damage to the semiconductor substrate can be prevented and yield can be improved.
 本発明に係る半導体基板貼り合わせ装置において、制御部は、重心位置が原点上である場合であって、且つ、第2の半導体基板への荷重が下限値を超えていない場合、第1の基板保持テーブルと第2の基板保持テーブルとが相対的に近づく方向に移動するように移動機構を駆動することが好ましい。このようにすれば、両半導体基板を倣い制御させる際、半導体基板の貼り合わせに必要な荷重が両半導体基板に適切にかかるようにすることができる。その結果、不十分な荷重による貼り合わせ不良を避けることができ、歩留まりを向上させることができる。 In the semiconductor substrate bonding apparatus according to the present invention, the control unit is a first substrate when the position of the center of gravity is on the origin and the load on the second semiconductor substrate does not exceed the lower limit value. It is preferable to drive the moving mechanism so that the holding table and the second substrate holding table move in a relatively approaching direction. In this way, when the two semiconductor substrates are copied and controlled, a load necessary for bonding the semiconductor substrates can be appropriately applied to both the semiconductor substrates. As a result, bonding failure due to insufficient load can be avoided, and yield can be improved.
 本発明に係る半導体基板貼り合わせ方法は、第1及び第2の半導体基板を互いに貼り合わせるための半導体基板貼り合わせ方法であって、第1及び第2の半導体基板が一部で互いに接触した際、第1及び第2の半導体基板のうち少なくとも一方の半導体基板に作用する荷重を算出する算出工程と、算出工程で算出された荷重に応じて、第1及び第2の半導体基板における一部以外の非接触部分が互いに近接するように、第2の半導体基板を傾動させる傾動工程と、第1及び第2の半導体基板が互いに平行になるまで算出工程及び傾動工程を繰り返し実行する繰返工程とを含むことを特徴とする。 The semiconductor substrate bonding method according to the present invention is a semiconductor substrate bonding method for bonding the first and second semiconductor substrates to each other, and the first and second semiconductor substrates are partially in contact with each other. A calculation step of calculating a load acting on at least one of the first and second semiconductor substrates, and a portion other than a part of the first and second semiconductor substrates according to the load calculated in the calculation step A tilting step of tilting the second semiconductor substrate so that the non-contact portions of each other are close to each other, and a repeating step of repeatedly executing the calculation step and the tilting step until the first and second semiconductor substrates are parallel to each other It is characterized by including.
 この半導体基板貼り合わせ方法では、算出工程において少なくとも一方の半導体基板に作用する荷重を算出すると共に、傾動工程において、その荷重に応じて、第1及び第2の半導体基板における一部以外の非接触部分が互いに近接するように第2の半導体基板を傾動させ、繰返工程において、第1及び第2の半導体基板が互いに平行になるまで算出工程及び傾動工程を繰り返すようにしている。このため、一方の半導体基板に対する他方の半導体基板の微小な傾斜が徐々に減少して、両半導体基板が略平行となり、両半導体基板の平行度を高くした上で両半導体基板を貼り合わせることが可能となる。 In this semiconductor substrate bonding method, a load acting on at least one semiconductor substrate is calculated in the calculation step, and in the tilting step, non-contact other than a part of the first and second semiconductor substrates according to the load. The second semiconductor substrate is tilted so that the portions are close to each other, and in the repeating process, the calculation process and the tilting process are repeated until the first and second semiconductor substrates are parallel to each other. For this reason, the minute inclination of the other semiconductor substrate with respect to one semiconductor substrate is gradually reduced, the two semiconductor substrates become substantially parallel, and the two semiconductor substrates can be bonded together after increasing the parallelism of the two semiconductor substrates. It becomes possible.
 本発明に係る半導体基板貼り合わせ方法において、算出工程では、第1の半導体基板が第2の半導体基板の周縁の一部に接触した際、第2の半導体基板の平面視において互いに交差する二つの軸のうち一方の軸の周りの力成分と一方の軸とは異なる他方の軸周りの力成分とを第2の半導体基板に作用する荷重として算出し、傾動工程では、各力成分に基づいて、第2の半導体基板の周縁の一部以外の非接触部分が、第1の半導体基板における非接触部分に近接するように第2の半導体基板を傾動させることが好ましい。このようにすれば、第1の半導体基板に対する第2の半導体基板の微小な傾斜を、第2の半導体基板から第2の基板保持テーブルに作用する力の一方及び他方の軸周りの力成分として算出することが可能となり、これら各力成分に基づいて調整することで、両半導体基板の平行度を高くして両半導体基板を貼り合わせることが可能となる。 In the semiconductor substrate bonding method according to the present invention, in the calculation step, when the first semiconductor substrate contacts a part of the periphery of the second semiconductor substrate, the two crossing each other in a plan view of the second semiconductor substrate. A force component around one of the axes and a force component around the other axis different from the one axis are calculated as loads acting on the second semiconductor substrate, and in the tilting step, based on each force component Preferably, the second semiconductor substrate is tilted so that a non-contact portion other than a part of the peripheral edge of the second semiconductor substrate is close to the non-contact portion of the first semiconductor substrate. According to this configuration, the minute inclination of the second semiconductor substrate with respect to the first semiconductor substrate is used as a force component around one and the other axes of the force acting on the second substrate holding table from the second semiconductor substrate. It becomes possible to calculate, and by adjusting based on each of these force components, it becomes possible to increase the parallelism of both semiconductor substrates and bond the two semiconductor substrates together.
 本発明によれば、一の半導体基板に対する他の半導体基板の平行度を高くして両半導体基板を貼り合わせることが可能な半導体基板貼り合わせ装置及び半導体基板貼り合わせ方法を提供することができる。 According to the present invention, it is possible to provide a semiconductor substrate bonding apparatus and a semiconductor substrate bonding method capable of bonding both semiconductor substrates by increasing the parallelism of another semiconductor substrate with respect to one semiconductor substrate.
半導体基板貼り合わせ装置の構成を模式的に示す概略図である。It is the schematic which shows the structure of a semiconductor substrate bonding apparatus typically. 第2の基板保持テーブルとチルトテーブルの構成を示す部分拡大図である。It is the elements on larger scale which show the structure of the 2nd board | substrate holding table and a tilt table. ステージ装置(チルトテーブルより上部の構成を図示略)の斜視図である。It is a perspective view of a stage device (the configuration above the tilt table is not shown). ステージ装置(チルトテーブルより上部の構成を図示略)を別の角度から見た斜視図である。It is the perspective view which looked at the stage apparatus (The structure above a tilt table is abbreviate | omitting illustration) from another angle. 図3のV-V線に沿う断面図である。FIG. 5 is a sectional view taken along line VV in FIG. 3. 図5の第1駆動機構の部分拡大図である。FIG. 6 is a partially enlarged view of the first drive mechanism of FIG. 5. 第1駆動機構、第2駆動機構、及び移動機構のXY座標系における配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship in the XY coordinate system of a 1st drive mechanism, a 2nd drive mechanism, and a moving mechanism. 図1の半導体基板貼り合わせ装置により半導体基板を貼り合わせるときのステージ装置の制御方法を示すフローチャートである。It is a flowchart which shows the control method of a stage apparatus when bonding a semiconductor substrate with the semiconductor substrate bonding apparatus of FIG. 両半導体基板の接触位置T(重心位置)を示した図である。It is the figure which showed the contact position T (gravity center position) of both semiconductor substrates. X、Y軸周りの第2の半導体基板の傾斜角度を示した図である。It is the figure which showed the inclination-angle of the 2nd semiconductor substrate around an X-axis and a Y-axis.
符号の説明Explanation of symbols
 1…半導体基板貼り合わせ装置、24・・・第1の基板保持テーブル、36…第2の基板保持テーブル、46…第1駆動機構、48…第2駆動機構、52…移動機構、52d,68g,70g…圧力計、90…制御装置、O…原点、T…接触位置(重心位置)、Wu…第1の半導体基板、Wd…第2の半導体基板。 DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate bonding apparatus, 24 ... 1st board | substrate holding table, 36 ... 2nd board | substrate holding table, 46 ... 1st drive mechanism, 48 ... 2nd drive mechanism, 52 ... Moving mechanism, 52d, 68g , 70 g ... pressure gauge, 90 ... control device, O ... origin, T ... contact position (center of gravity position), Wu ... first semiconductor substrate, Wd ... second semiconductor substrate.
 以下、図面を参照しつつ本発明の好適な実施形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 図1は、本実施形態に係る半導体基板貼り合わせ装置の構成を模式的に示す概略図である。図1に示すように、半導体基板貼り合わせ装置1は、除振器12、定盤14、ボディー16、上部ステージ20、下部ステージ30、及び制御装置(制御部)90を備えている。 FIG. 1 is a schematic view schematically showing a configuration of a semiconductor substrate bonding apparatus according to the present embodiment. As shown in FIG. 1, the semiconductor substrate bonding apparatus 1 includes a vibration isolator 12, a surface plate 14, a body 16, an upper stage 20, a lower stage 30, and a control device (control unit) 90.
 除振器12は、半導体基板貼り合わせ装置1へ伝わる振動を取り除く。この除振器12の上に、定盤14が設けられている。ボディー16は、側壁部と上壁部とを有し、定盤14上で密閉空間を形成する。 The vibration isolator 12 removes vibration transmitted to the semiconductor substrate bonding apparatus 1. A surface plate 14 is provided on the vibration isolator 12. The body 16 has a side wall portion and an upper wall portion, and forms a sealed space on the surface plate 14.
 上部ステージ20は、ボディー16の上壁部の内面に搭載されている。上部ステージ20は、XYθステージ22と第1の基板保持テーブル24とを有している。第1の基板保持テーブル24は、貼り合わせの対象である第1の半導体基板Wuを、静電吸着や真空吸着により保持する。XYθステージ22は、水平面内で第1の基板保持テーブル24に保持された第1の半導体基板WuのXYθ方向の位置決めを行う。 The upper stage 20 is mounted on the inner surface of the upper wall portion of the body 16. The upper stage 20 has an XYθ stage 22 and a first substrate holding table 24. The first substrate holding table 24 holds the first semiconductor substrate Wu to be bonded by electrostatic chucking or vacuum chucking. The XYθ stage 22 performs positioning in the XYθ direction of the first semiconductor substrate Wu held by the first substrate holding table 24 in a horizontal plane.
 下部ステージ30は、定盤14上に搭載されている。下部ステージ30は、XYステージ32とステージ装置34とを有している。ステージ装置34は、第2の基板保持テーブル36、チルトテーブル38、支持テーブル45、第1駆動機構(駆動部)46、第2駆動機構(駆動部)48、θ駆動機構50、及び移動機構52を備えている。 The lower stage 30 is mounted on the surface plate 14. The lower stage 30 has an XY stage 32 and a stage device 34. The stage device 34 includes a second substrate holding table 36, a tilt table 38, a support table 45, a first driving mechanism (driving unit) 46, a second driving mechanism (driving unit) 48, a θ driving mechanism 50, and a moving mechanism 52. It has.
 このステージ装置34は、チルトテーブル38を第1及び第2駆動機構46,48で駆動し、支持テーブル45をθ駆動機構50で駆動することによって、載置面38a(すなわち、載置面38a上に搭載された第2の基板保持テーブル36に保持される第2の半導体基板Wd)の傾斜角度調整及び回動角度調整が行われる。また、エアシリンダである移動機構52によって、高さ位置の調整も行われる。なお、図3及び図4に示すように、水平面内で互いに90度をなすようにX軸及びY軸を設定し、鉛直方向にZ軸を定めて3次元直交座標系を設定し、以下必要な場合にXYZ座標系を用いて説明する。 In this stage device 34, the tilt table 38 is driven by the first and second drive mechanisms 46, 48, and the support table 45 is driven by the θ drive mechanism 50, whereby the placement surface 38a (ie, on the placement surface 38a). The inclination angle adjustment and the rotation angle adjustment of the second semiconductor substrate Wd) held by the second substrate holding table 36 mounted on the substrate are performed. The height position is also adjusted by the moving mechanism 52 that is an air cylinder. As shown in FIGS. 3 and 4, the X axis and the Y axis are set so as to be 90 degrees in the horizontal plane, the Z axis is set in the vertical direction, and a three-dimensional orthogonal coordinate system is set. The case will be described using the XYZ coordinate system.
 第2の基板保持テーブル36は、図1及び図2に示すように、貼り合わせの対象である第2の半導体基板Wdを保持する。この第2の基板保持テーブル36は、静電力によりウェハを吸着する静電チャックESCと、静電チャックESCを真空吸着する真空チャックVACとを有している。 As shown in FIGS. 1 and 2, the second substrate holding table 36 holds the second semiconductor substrate Wd to be bonded. The second substrate holding table 36 includes an electrostatic chuck ESC that sucks a wafer by electrostatic force and a vacuum chuck VAC that vacuum-sucks the electrostatic chuck ESC.
 チルトテーブル38は、図3から図5に示すように、円板状のテーブルであり、第2の基板保持テーブル36を載置するための平面状の載置面38aを上面側に有し、凸球面状の軸受面38bを下面側に有する。この軸受面38bの鉛直方向の中心軸線Lはチルトテーブル38の中心軸線と一致する。 As shown in FIGS. 3 to 5, the tilt table 38 is a disk-shaped table, and has a flat mounting surface 38 a on the upper surface side for mounting the second substrate holding table 36. A convex spherical bearing surface 38b is provided on the lower surface side. The central axis L in the vertical direction of the bearing surface 38 b coincides with the central axis of the tilt table 38.
 チルトテーブル38の側面38cには、中心軸線Lから見てX軸方向の位置に、断面L字型の作動部60が設けられる。図3から図5に示すように、作動部60は、支持テーブル45よりも低い位置でX軸方向に突出する第1の作動片60cと、第1の作動片60cの中心軸線L側の端部と側面38cとを連結させるための鉛直方向に延びる連結部60dとを有している。また、側面38cには、中心軸線Lから見てY軸方向の位置に、断面L字型の作動部62が設けられている。図4に示すように、作動部62は、支持テーブル45よりも低い位置でY軸方向に突出する第2の作動片62cと、第2の作動片62cの中心軸線L側の端部と側面38cとを連結させるための鉛直方向に延びる連結部62dとを有している。なお、第1の及び第2の作動片60c,62cはXY平面上に広がる矩形板とされている。 On the side surface 38c of the tilt table 38, an operation portion 60 having an L-shaped cross section is provided at a position in the X-axis direction when viewed from the central axis L. As shown in FIGS. 3 to 5, the operating unit 60 includes a first operating piece 60 c that protrudes in the X-axis direction at a position lower than the support table 45, and an end on the central axis L side of the first operating piece 60 c. And a connecting portion 60d extending in the vertical direction for connecting the portion and the side surface 38c. Further, the side surface 38c is provided with an operation section 62 having an L-shaped cross section at a position in the Y-axis direction when viewed from the central axis L. As shown in FIG. 4, the operating portion 62 includes a second operating piece 62 c that protrudes in the Y-axis direction at a position lower than the support table 45, and an end portion and a side surface on the central axis L side of the second operating piece 62 c. And a connecting portion 62d extending in the vertical direction for connecting 38c. The first and second operating pieces 60c and 62c are rectangular plates that extend on the XY plane.
 矩形状の支持テーブル45は、エアシリンダである移動機構52に設けられたロッド53の上端に形成されている。図5に示すように、支持テーブル45の上面の略中央部には、チルトテーブル38の軸受面38bを支持するために凹球面状とされた軸受面45bが形成されている。 The rectangular support table 45 is formed at the upper end of a rod 53 provided in a moving mechanism 52 that is an air cylinder. As shown in FIG. 5, a bearing surface 45 b having a concave spherical surface is formed at a substantially central portion of the upper surface of the support table 45 to support the bearing surface 38 b of the tilt table 38.
 また、支持テーブル45には、軸受面45bを形成するように多孔部45cが埋設され、軸受面45bには多数の微小な孔が形成されている。この多孔部45cからは、パイプP45が導出されて外部の空気圧源(図示せず)と接続されている。空気圧源は、多孔部45cへ圧縮空気を供給し、その圧縮空気が軸受面45bの多数の孔から軸受面38bに対して吹きつけられる。これによって、軸受面38bと軸受面45bの間に空気膜が形成され、軸受面38bは、軸受面45bから抵抗を受けることなく非接触状態で支持されることとなる。 Further, the support table 45 is embedded with a porous portion 45c so as to form a bearing surface 45b, and a large number of minute holes are formed in the bearing surface 45b. A pipe P45 is led out from the porous portion 45c and connected to an external air pressure source (not shown). The air pressure source supplies compressed air to the porous portion 45c, and the compressed air is blown against the bearing surface 38b from a large number of holes in the bearing surface 45b. As a result, an air film is formed between the bearing surface 38b and the bearing surface 45b, and the bearing surface 38b is supported in a non-contact state without receiving resistance from the bearing surface 45b.
 支持テーブルの側面45dには、図3に示すように、中心軸線Lから見てY軸の反対方向の位置に、断面L字型の作動部64が設けられる。作動部64は、Y軸の負の方向へ突出する連結部64dと、連結部64dの自由端部から下方へ突出する第3の作動片64cを有している。なお、第3の作動片64cは、YZ平面上に広がる矩形板とされている。 As shown in FIG. 3, an operating portion 64 having an L-shaped cross section is provided on the side surface 45d of the support table at a position opposite to the Y axis when viewed from the central axis L. The operating part 64 has a connecting part 64d that protrudes in the negative direction of the Y-axis, and a third operating piece 64c that protrudes downward from the free end of the connecting part 64d. The third operating piece 64c is a rectangular plate extending on the YZ plane.
 第1駆動機構46は、図3から図5に示すように、第1の作動片60cの上方に配置された支持片66a及び下方に配置された支持片66bとを有する支持部材66と、支持片66aと第1の作動片60cとの間に延在するベローズアクチュエータ68と、支持片66bと第1の作動片60cとの間に延在するベローズアクチュエータ70とからなる。そして、第1の作動片60cは、ベローズアクチュエータ68の先端とベローズアクチュエータ70の先端とで挟み込まれる。また、支持部材66は、支持片66a,66bを連結させる矩形板状の連結部66cを有しており、連結部66cの支持テーブル45側の側面は、支持テーブル45に固定されている。 As shown in FIGS. 3 to 5, the first drive mechanism 46 includes a support member 66 having a support piece 66 a disposed above the first operating piece 60 c and a support piece 66 b disposed below, and a support member 66. It consists of a bellows actuator 68 extending between the piece 66a and the first operating piece 60c, and a bellows actuator 70 extending between the support piece 66b and the first operating piece 60c. The first operating piece 60 c is sandwiched between the tip of the bellows actuator 68 and the tip of the bellows actuator 70. Further, the support member 66 has a rectangular plate-like connection portion 66c for connecting the support pieces 66a and 66b, and the side surface of the connection portion 66c on the support table 45 side is fixed to the support table 45.
 ベローズアクチュエータ68は、図6に示すように、鉛直方向に伸縮可能なベローズ68aと、ベローズ68aの下端側の開口部を封止する円板状の作動板68bとを備える。ベローズ68aの上端側の開口部は支持片66aに固定されることにより封止される。これによって、ベローズアクチュエータ68の内部空間68cは、ベローズ68aと支持片66aと作動板68bとによって密閉され、その気密性は保たれている。 As shown in FIG. 6, the bellows actuator 68 includes a bellows 68 a that can be expanded and contracted in the vertical direction, and a disk-shaped operation plate 68 b that seals the opening on the lower end side of the bellows 68 a. The opening on the upper end side of the bellows 68a is sealed by being fixed to the support piece 66a. Thus, the internal space 68c of the bellows actuator 68 is sealed by the bellows 68a, the support piece 66a, and the operation plate 68b, and the airtightness thereof is maintained.
 作動板68bの中央部には、上方へ延びるシャフト68dが形成され、このシャフト68dは、支持片66aに設けられたボス66dのガイド穴に挿入されることによって鉛直方向に移動可能とされている。また、作動板68bの中央部には、第1の作動片60cへ向かって突出する半球面状の押圧部68eが形成され、この押圧部68eは、第1の作動片60cの上面60aと当接することによってベローズアクチュエータ68の鉛直方向の駆動に伴い発生する力を第1の作動片60cに伝達することができる。ベローズアクチュエータ68の押圧部68eが球状をなしていることから、押圧部68eは作動部60の第1の作動片60cに点接触する。 A shaft 68d extending upward is formed at the central portion of the operating plate 68b. The shaft 68d is movable in the vertical direction by being inserted into a guide hole of a boss 66d provided in the support piece 66a. . A hemispherical pressing portion 68e that protrudes toward the first operating piece 60c is formed at the center of the operating plate 68b, and the pressing portion 68e contacts the upper surface 60a of the first operating piece 60c. By contacting, the force generated when the bellows actuator 68 is driven in the vertical direction can be transmitted to the first operating piece 60c. Since the pressing portion 68e of the bellows actuator 68 is spherical, the pressing portion 68e makes point contact with the first operating piece 60c of the operating portion 60.
 ベローズアクチュエータ68の内部空間68cからは、パイプP68が導出され、外部に設けられたサーボ弁68fと接続されている。そして、サーボ弁68fを制御することで、内部空間68c内の空気を供給及び排出することができ、内部空間68cの気圧の変化に伴って、作動板68bの鉛直方向の移動量を任意に制御することができる。 A pipe P68 is led out from the internal space 68c of the bellows actuator 68 and is connected to a servo valve 68f provided outside. Then, by controlling the servo valve 68f, the air in the internal space 68c can be supplied and discharged, and the amount of movement of the operating plate 68b in the vertical direction can be arbitrarily controlled in accordance with the change in the atmospheric pressure in the internal space 68c. can do.
 また、ベローズアクチュエータ68には、内部空間68c内の気圧を継続的に計測する圧力計68gが備えられている。そして、計測された気圧情報は、制御装置90へ送られる。従って、後述する第1の半導体基板Wuと第2の半導体基板Wdとの貼り合わせの際に発生する荷重によって第1の作動片60cが上昇等させられた場合における内部空間68c内の気圧変化を制御装置90で算出できるようになっている。圧力計68gは、荷重の元となる外力を検出する検出部として機能し、制御装置90は、この気圧変化に基づき、ベローズアクチュエータ68に生じる反力を算出できるようになっている。なお、後述する各種の圧力計も、検出部として機能する。 The bellows actuator 68 is provided with a pressure gauge 68g that continuously measures the atmospheric pressure in the internal space 68c. The measured atmospheric pressure information is sent to the control device 90. Accordingly, a change in atmospheric pressure in the internal space 68c when the first operating piece 60c is raised by a load generated when the first semiconductor substrate Wu and the second semiconductor substrate Wd described later are bonded to each other. It can be calculated by the control device 90. The pressure gauge 68g functions as a detection unit that detects an external force that is a source of a load, and the control device 90 can calculate a reaction force generated in the bellows actuator 68 based on the change in atmospheric pressure. Various pressure gauges described later also function as a detection unit.
 ベローズアクチュエータ70も、上述のベローズアクチュエータ68と同様の構成を有し、サーボ弁70fを制御することで作動板70bの鉛直方向の移動量を任意に制御することができる。また、押圧部70eは、押圧部68eと同様に半球面状をなしており、作動部60の下面60bに点接触する。押圧部70eが第1の作動片60cの下面60bと当接することによって、ベローズアクチュエータ70の鉛直方向の駆動に伴い発生する力を第1の作動片60cに伝達することができる。なお、ベローズアクチュエータ70は、ベローズ70a、内部空間70c、シャフト70dを備え、内部空間70cとサーボ弁70fとはパイプP70で連結されている。 The bellows actuator 70 has the same configuration as the bellows actuator 68 described above, and the amount of movement of the operation plate 70b in the vertical direction can be arbitrarily controlled by controlling the servo valve 70f. The pressing portion 70e has a hemispherical shape like the pressing portion 68e, and makes point contact with the lower surface 60b of the operating portion 60. When the pressing portion 70e comes into contact with the lower surface 60b of the first operating piece 60c, the force generated when the bellows actuator 70 is driven in the vertical direction can be transmitted to the first operating piece 60c. The bellows actuator 70 includes a bellows 70a, an internal space 70c, and a shaft 70d, and the internal space 70c and the servo valve 70f are connected by a pipe P70.
 また、ベローズアクチュエータ70には、内部空間70c内の気圧を継続的に計測する圧力計70gが備えられている。そして、計測された気圧情報は、制御装置90へ送られる。従って、後述する第1の半導体基板Wuと第2の半導体基板Wdとの貼り合わせの際に発生する荷重によって第1の作動片60cが下降等させられた場合における内部空間70c内の気圧変化を制御装置90で算出できるようになっている。また、この気圧変化に基づき、ベローズアクチュエータ70に生じる反力を制御装置90で算出できるようになっている。 The bellows actuator 70 is provided with a pressure gauge 70g that continuously measures the atmospheric pressure in the internal space 70c. The measured atmospheric pressure information is sent to the control device 90. Accordingly, a change in atmospheric pressure in the internal space 70c when the first operating piece 60c is lowered by a load generated when the first semiconductor substrate Wu and the second semiconductor substrate Wd, which will be described later, are bonded together. It can be calculated by the control device 90. Further, based on this change in atmospheric pressure, the reaction force generated in the bellows actuator 70 can be calculated by the control device 90.
 第2駆動機構48は、図4に示すように、第2の作動片62cの上方に配置された支持片72a及び下方に配置された支持片72bを有する断面コ字型の支持部材72と、支持片72aと第2の作動片62cとの間に延在するベローズアクチュエータ74と、支持片72bと第2の作動片62cとの間に延在するベローズアクチュエータ76とからなる。そして、第2の作動片62cは、ベローズアクチュエータ74の先端とベローズアクチュエータ76の先端とで挟み込まれる。また、支持部材72は、支持片72aと支持片72bとを連結させる矩形板状の連結部72cを有し、連結部72cの支持テーブル45側の側面は、支持テーブル45に固定されている。また、ベローズアクチュエータ74,76は、ベローズアクチュエータ68,70と同様の構成を有しており、ベローズアクチュエータ74,76の内部空間内の気圧を計測する圧力計をそれぞれ備えている。そして、これらの圧力計から制御装置90へ気圧情報を送り、ベローズアクチュエータ74,76に生じる気圧変化及び反力を算出できるようになっている。 As shown in FIG. 4, the second drive mechanism 48 has a U-shaped support member 72 having a support piece 72 a disposed above the second operating piece 62 c and a support piece 72 b disposed below. The bellows actuator 74 extends between the support piece 72a and the second operation piece 62c, and the bellows actuator 76 extends between the support piece 72b and the second operation piece 62c. The second operating piece 62 c is sandwiched between the tip of the bellows actuator 74 and the tip of the bellows actuator 76. The support member 72 has a rectangular plate-like connecting portion 72c that connects the support piece 72a and the support piece 72b, and the side surface of the connecting portion 72c on the support table 45 side is fixed to the support table 45. Moreover, the bellows actuators 74 and 76 have the same configuration as the bellows actuators 68 and 70, and are each provided with a pressure gauge that measures the atmospheric pressure in the internal space of the bellows actuators 74 and 76. The atmospheric pressure information is sent from these pressure gauges to the control device 90, and the atmospheric pressure change and reaction force generated in the bellows actuators 74 and 76 can be calculated.
 θ駆動機構50は、図3に示すように、第3の作動片64cを間に挟むようにX軸方向に離間して配置された支持片56a及び支持片56bを有する断面コ字型の支持部材56と、支持片56aと第3の作動片64cとの間に延在するベローズアクチュエータ78と、支持片56bと第3の作動片64cとの間に延在するベローズアクチュエータ80とからなる。そして、第3の作動片64cは、ベローズアクチュエータ78の先端とベローズアクチュエータ80の先端とで挟み込まれている。また、支持部材56は、支持片56aと支持片56bとを連結する矩形板状の連結部56cを有し、連結部56cは、ベースプレート82の上面82aに固定されている。なお、ベローズアクチュエータ78,80の構成は、ベローズアクチュエータ68,70と同様の構成を有している。 As shown in FIG. 3, the θ drive mechanism 50 has a U-shaped support having a support piece 56 a and a support piece 56 b that are spaced apart in the X-axis direction so as to sandwich the third operating piece 64 c therebetween. The member 56 includes a bellows actuator 78 extending between the support piece 56a and the third operating piece 64c, and a bellows actuator 80 extending between the support piece 56b and the third operating piece 64c. The third operating piece 64 c is sandwiched between the tip of the bellows actuator 78 and the tip of the bellows actuator 80. The support member 56 has a rectangular plate-like connection portion 56 c that connects the support piece 56 a and the support piece 56 b, and the connection portion 56 c is fixed to the upper surface 82 a of the base plate 82. The bellows actuators 78 and 80 have the same configuration as the bellows actuators 68 and 70.
 エアシリンダである移動機構52のロッド53は、図5に示すように、下端に円筒体52aの内周と略同一の径を有する円板状のピストン53aを有する。円筒体52aの内部空間において、ピストン53aよりも上側の内部空間52b及び下側の内部空間52cからは、それぞれパイプP84,P86が導出されている。このパイプP86には、下側の内部空間52cの気圧を継続的に計測する圧力計52dが備えられている。そして、計測された気圧情報は、制御装置90へ送られる。従って、後述する第1の半導体基板Wuと第2の半導体基板Wdとの貼り合わせの際に発生する荷重によって支持テーブル45が下降等させられた場合における内部空間52c内の気圧変化を制御装置90で算出できるようになっている。また、この気圧変化に基づき、移動機構52に生じる反力を制御装置90で算出できるようになっている。 As shown in FIG. 5, the rod 53 of the moving mechanism 52, which is an air cylinder, has a disc-shaped piston 53a having a diameter substantially the same as the inner periphery of the cylindrical body 52a at the lower end. In the internal space of the cylindrical body 52a, pipes P84 and P86 are led out from the internal space 52b above the piston 53a and the internal space 52c below. The pipe P86 is provided with a pressure gauge 52d that continuously measures the atmospheric pressure in the lower internal space 52c. The measured atmospheric pressure information is sent to the control device 90. Therefore, the control device 90 controls the change in atmospheric pressure in the internal space 52c when the support table 45 is lowered by a load generated when the first semiconductor substrate Wu and the second semiconductor substrate Wd described later are bonded to each other. It can be calculated by. Further, based on this change in atmospheric pressure, the control device 90 can calculate the reaction force generated in the moving mechanism 52.
 次に、第1駆動機構46、第2駆動機構48、移動機構52のXY座標系における配置関係について説明する。図7等に示すように、第1駆動機構46及び第2駆動機構48は互いに略90度の角度をなして配置されている。そして、第1駆動機構46はX軸上に配置されてY軸周りの傾斜調整を行い、第2駆動機構48はY軸上に配置されてX軸周りの傾斜調整を行うようになっている。X軸及びY軸の二つの軸は、チルトテーブル38(チルトテーブル38上に載置される第2の基板保持テーブル36)の平面視における保持中心である原点Oを通り且つ原点Oを中心として互いに直交している。また、移動機構52は、その中心が中心軸線Lと一致しており、チルトテーブル38のXY座標系における原点Oと同じ位置となっている。なお、第1及び第2駆動機構46,48が配置される二つの軸は、原点Oを中心として0度及び180度を除く角度で互いに交差していればよく、略90度の角度でなくてもよい。 Next, the arrangement relationship of the first drive mechanism 46, the second drive mechanism 48, and the moving mechanism 52 in the XY coordinate system will be described. As shown in FIG. 7 and the like, the first drive mechanism 46 and the second drive mechanism 48 are arranged at an angle of approximately 90 degrees. The first drive mechanism 46 is disposed on the X axis and performs tilt adjustment around the Y axis, and the second drive mechanism 48 is disposed on the Y axis and performs tilt adjustment around the X axis. . The two axes, the X axis and the Y axis, pass through the origin O, which is the holding center in the plan view of the tilt table 38 (the second substrate holding table 36 placed on the tilt table 38), and are centered on the origin O. They are orthogonal to each other. Further, the center of the moving mechanism 52 coincides with the central axis L, and is at the same position as the origin O in the XY coordinate system of the tilt table 38. Note that the two axes on which the first and second drive mechanisms 46 and 48 are disposed need only intersect with each other at angles other than 0 degrees and 180 degrees with the origin O as the center, and not at an angle of about 90 degrees. May be.
 なお、図3から図5では、ベースプレート82より下部の構成の図示を省略しているが、かかる構成のステージ装置34が、ベースプレート82を介してXYステージ32に搭載されている。 3 to 5, the configuration below the base plate 82 is not shown, but the stage device 34 having such a configuration is mounted on the XY stage 32 via the base plate 82.
 制御装置90は、ステージ装置34や上部ステージ20の制御も含めて、半導体基板貼り合わせ装置1の制御を行う。この制御装置90による、ステージ装置34の制御の詳細は後述する。 The control device 90 controls the semiconductor substrate bonding apparatus 1 including the control of the stage device 34 and the upper stage 20. Details of the control of the stage device 34 by the control device 90 will be described later.
 次に、半導体基板貼り合わせ装置1による半導体基板貼り合わせ方法について説明する。 Next, a semiconductor substrate bonding method using the semiconductor substrate bonding apparatus 1 will be described.
 まず、上部ステージ20の第1の基板保持テーブル24で貼り合わせの対象である第1の半導体基板Wuを保持し、XYθステージ22により第1の半導体基板WuのXYθ方向の位置決めを行う。次に、下部ステージ30の第2の基板保持テーブル36で貼り合わせの対象である第2の半導体基板Wdを保持し、XYステージ32により第2の半導体基板WdのXY方向の位置決めを行う。次に、θ駆動機構50により支持テーブル45を駆動し、中心軸線L(Z軸)周りの第2の半導体基板Wdの回転位置の位置決めを行う。これらの位置決めは、レーザ干渉計や顕微鏡など、図示しない光学系からの検出信号に基づいて、制御装置90により自動制御される。 First, the first semiconductor substrate Wu to be bonded is held by the first substrate holding table 24 of the upper stage 20, and the first semiconductor substrate Wu is positioned in the XYθ direction by the XYθ stage 22. Next, the second semiconductor substrate Wd to be bonded is held by the second substrate holding table 36 of the lower stage 30, and the second semiconductor substrate Wd is positioned in the XY direction by the XY stage 32. Next, the support table 45 is driven by the θ drive mechanism 50 to position the rotational position of the second semiconductor substrate Wd around the central axis L (Z axis). These positionings are automatically controlled by the control device 90 based on detection signals from an optical system (not shown) such as a laser interferometer and a microscope.
 この状態から、第2の半導体基板Wdが保持される第2の基板保持テーブル36の傾斜調整に移る。この傾斜調整におけるステージ装置34の制御方法について、図8のフローチャートを参照して説明する。 From this state, the process proceeds to the tilt adjustment of the second substrate holding table 36 on which the second semiconductor substrate Wd is held. A control method of the stage device 34 in this tilt adjustment will be described with reference to the flowchart of FIG.
 まず、第2の基板保持テーブル36に保持された第2の半導体基板Wdを第1の半導体基板Wuに当接させるため、移動機構52により、支持テーブル45を所定量、上昇させ、第2の基板保持テーブル36を第1の基板保持テーブル24に近づく方向に移動させる(ステップS1)。この上昇は、移動機構52の内部空間52c内の気圧を第1の気圧から第2の気圧へパイプP86を介して加圧し、そして、一定圧である第2の気圧を維持することによって行われる。そして、この上昇によって第2の基板保持テーブル36に保持された第2の半導体基板Wdと第1の半導体基板Wuとが当接すると、内部空間52c内の気圧は、第2の気圧より更に高い圧力である第3の気圧になる。各気圧は圧力計52dで計測され、半導体基板Wu,Wdに作用した外力として、その気圧情報が制御装置90へ送られる。なお、上記当接の際、第1の半導体基板Wuは、第2の半導体基板Wdの周縁の一部に接触し、両半導体基板Wu,Wdが接触した一部以外の部分は、両半導体基板Wu,Wdにおいて非接触部分となる。 First, in order to bring the second semiconductor substrate Wd held on the second substrate holding table 36 into contact with the first semiconductor substrate Wu, the support table 45 is raised by a predetermined amount by the moving mechanism 52, The substrate holding table 36 is moved in a direction approaching the first substrate holding table 24 (step S1). This rise is performed by pressurizing the air pressure in the internal space 52c of the moving mechanism 52 from the first air pressure to the second air pressure via the pipe P86 and maintaining the second air pressure that is a constant pressure. . When the second semiconductor substrate Wd held on the second substrate holding table 36 and the first semiconductor substrate Wu come into contact with each other due to this rise, the atmospheric pressure in the internal space 52c is higher than the second atmospheric pressure. It becomes the 3rd atmospheric pressure which is a pressure. Each atmospheric pressure is measured by the pressure gauge 52d, and the atmospheric pressure information is sent to the control device 90 as an external force acting on the semiconductor substrates Wu and Wd. At the time of the contact, the first semiconductor substrate Wu is in contact with a part of the periphery of the second semiconductor substrate Wd, and the parts other than the part in which both the semiconductor substrates Wu and Wd are in contact are both semiconductor substrates. It becomes a non-contact part in Wu and Wd.
 次に、上述した支持テーブル45の上昇に伴う移動機構52の内部空間52cの気圧変化(差圧)ΔPzを制御装置90で算出し、この差圧が零より大きいか否か判定する(ステップS2)。判定の結果、上昇の途中であれば、気圧変化ΔPが第2の気圧同士の差分になるので零となり、ステップS1に戻って、移動機構52による支持テーブル45の上昇を継続する。一方、両半導体基板が当接していれば、気圧変化ΔPが第3の気圧と第2の気圧の差分になるので零より大きくなり、次のステップS3に移る。 Next, the control device 90 calculates the atmospheric pressure change (differential pressure) ΔPz in the internal space 52c of the moving mechanism 52 as the support table 45 is raised, and determines whether or not this differential pressure is greater than zero (step S2). ). Result of the determination, if the middle of the rise, since pressure change [Delta] P Z is the difference between the second pressure becomes zero, the process returns to step S1, and continues to rise in the support table 45 by the moving mechanism 52. On the other hand, if both the semiconductor substrate is in contact, it becomes larger than zero since the pressure change [Delta] P Z is the difference between the third pressure and a second pressure, and proceeds to step S3.
 次に、第1の半導体基板Wuと第2の半導体基板Wdとが当接した際の荷重Fを制御装置90で算出する。荷重Fは、次の式(1)により表される。
 荷重F=ΔF=ΔF+ΔFAx+ΔFAy・・・(1)
ここで、ΔFは、移動機構52における反力であり、内部空間52c内の気圧変化ΔPにピストン53aの表面積SAを積算した値である。ΔFは、軸受面45bにおける反力であり、たとえば、軸受面38bと軸受面45bとの間の気圧変化ΔPに、軸受面45bの表面積SBを積算した値である。ΔFAXは、第1駆動機構46における反力であり、たとえば、内部空間68c又は70c内の気圧変化ΔPに、ベローズの作動板68b又は70bの表面積SCを積算した値である。また、ΔFAYは、第2駆動機構48における反力であり、たとえば、ベローズアクチュエータ74,76の内部空間内の気圧変化ΔPに、ベローズアクチュエータ74,76の作動板の表面積SDを積算した値である。なお、荷重Fの算出にあたっては、算出精度及び算出の容易性を考慮して、ΔFを用いることが好ましいが、必要に応じて、ΔFとΔFAxとΔFAyとの合計値を用いてもよく、ΔFが無視できるほど小さい場合にあっては、ΔFAxとΔFAyとの合計値を用いてもよい。
Next, the controller 90 calculates the load F when the first semiconductor substrate Wu and the second semiconductor substrate Wd are in contact with each other. The load F is represented by the following formula (1).
Load F = ΔF z = ΔF B + ΔF Ax + ΔF Ay (1)
Here, [Delta] F z is the reaction force in the moving mechanism 52, a value obtained by integrating the surface area SA of the piston 53a in the pressure change [Delta] P Z in the internal space 52c. ΔF B is a reaction force on the bearing surface 45b, and is, for example, a value obtained by adding the surface area SB of the bearing surface 45b to the atmospheric pressure change ΔP B between the bearing surface 38b and the bearing surface 45b. [Delta] F AX is a reaction force in the first driving mechanism 46, for example, the atmospheric pressure change [Delta] P X in the interior space 68c or in 70c, which is a value obtained by integrating the surface area SC of the actuating plate 68b or 70b of the bellows. ΔF AY is a reaction force in the second drive mechanism 48. For example, a value obtained by adding the surface area SD of the operating plate of the bellows actuators 74 and 76 to the atmospheric pressure change ΔP Y in the internal space of the bellows actuators 74 and 76. It is. In calculating the load F, it is preferable to use ΔF z in consideration of calculation accuracy and ease of calculation. However, if necessary, the total value of ΔF B , ΔF Ax and ΔF Ay is used. If ΔF B is small enough to be ignored, the total value of ΔF Ax and ΔF Ay may be used.
 そして、この荷重Fが、第1の半導体基板Wu又は第2の半導体基板Wdを破損する可能性のある値を考慮して決められる上限値Aより小さいか否かを判断する(ステップS3)。その結果、荷重Fが上限値Aより大きければ、第1の半導体基板Wu又は第2の半導体基板Wdが破損してしまうおそれがあるので、ステップS4に移り、移動機構52により支持テーブル45を所定量、下降させ、第2の基板保持テーブル36を第1の基板保持テーブル24から離れる方向に移動させる。一方、荷重Fが上限値Aより小さければ次のステップS5に進む。なお、上限値Aとしては、例えば、1[N]を設定することが好ましい。 Then, it is determined whether or not the load F is smaller than an upper limit value A determined in consideration of a value that may damage the first semiconductor substrate Wu or the second semiconductor substrate Wd (step S3). As a result, if the load F is larger than the upper limit value A, the first semiconductor substrate Wu or the second semiconductor substrate Wd may be damaged. Therefore, the process proceeds to step S4, where the support table 45 is placed by the moving mechanism 52. The second substrate holding table 36 is moved in a direction away from the first substrate holding table 24 after being fixed and lowered. On the other hand, if the load F is smaller than the upper limit A, the process proceeds to the next step S5. As the upper limit value A, for example, 1 [N] is preferably set.
 ステップS5では、第1の半導体基板Wuと第2の半導体基板Wdとが当接した接触位置T(X,Y)を、第1駆動機構46、第2駆動機構48及び移動機構52の位置関係、各駆動機構における反力、並びに半導体基板への荷重に基づいて、次のとおり算出する。なお、接触位置Tを算出するにあたり、チルトテーブル38の平面視において中心を原点OとしたXY座標系を設定している。 In step S <b> 5, the contact position T (X F , Y F ) where the first semiconductor substrate Wu and the second semiconductor substrate Wd are in contact is determined by the first drive mechanism 46, the second drive mechanism 48, and the moving mechanism 52. Based on the positional relationship, the reaction force in each drive mechanism, and the load on the semiconductor substrate, the following calculation is performed. In calculating the contact position T, an XY coordinate system with the center as the origin O in the plan view of the tilt table 38 is set.
 まず、図9に示すように、第1の半導体基板Wuと第2の半導体基板Wdとは、XY平面内の1点T(X,Y)で接触し、その接触部に荷重Fが加わっているとして、次のようなモーメントの釣り合い式(2)(3)を考える。この接触位置には、すべての荷重Fが加わっており、このような接触位置が1つの場合は、この接触位置は重心位置に相当する。なお、接触位置が複数ある場合は、それら複数の接触位置から重心位置を算出して、この重心位置を仮想上の接触位置とし、この仮想上の接触位置を接触位置T(X,Y))として以下の算出を行う。
 -F・X+ΔFAX・XAY=0(Y軸周りのモーメント)・・・(2)
 -F・Y+ΔFAY・YAX=0(X軸周りのモーメント)・・・(3)
First, as shown in FIG. 9, the first semiconductor substrate Wu and the second semiconductor substrate Wd are in contact at one point T (X F , Y F ) in the XY plane, and a load F is applied to the contact portion. Considering the following moment balance equations (2) and (3): All loads F are applied to this contact position. When there is one such contact position, this contact position corresponds to the center of gravity position. When there are a plurality of contact positions, the center of gravity position is calculated from the plurality of contact positions, this center of gravity position is set as a virtual contact position, and this virtual contact position is set as the contact position T (X F , Y F )) As follows.
−F · X F + ΔF AX · X AY = 0 (moment about Y axis) (2)
-F · Y F + ΔF AY · Y AX = 0 (moment about X axis) (3)
 そして、この釣り合い式(2)(3)を、X及びYを基準としてまとめると、荷重Fが作用している接触位置T(X,Y)は次のような式として導き出され、各値を算出することが可能となる。
 X=ΔFAX・XAY/F・・・(4)
 Y=ΔFAY・YAX/F・・・(5)
Then, the balance equation (2) (3) are summarized based on the X F and Y F, the contact position T (X F, Y F) that the load F is acting is derived as such the following formula Each value can be calculated.
X F = ΔF AX · X AY / F (4)
Y F = ΔF AY · Y AX / F (5)
 次に、上記で算出された接触位置T(X,Y)が原点O上であるか否かを判断する(ステップS6)。なお、ステップS6における「X=Y=0」とは、完全同一だけではなく、位置整定範囲(E>0)を設定し、誤差範囲(±E)内にある実質的に等しい場合も含むものである。その結果、接触位置T(X,Y)が原点O上でない場合、第1の半導体基板Wuと第2の半導体基板Wdとは平行でない(すなわち両半導体基板Wu,Wdには非接触部分が存在する)ので、両半導体基板を平行にするため、ステップS7、S8に進む。 Next, it is determined whether or not the contact position T (X F , Y F ) calculated above is on the origin O (step S6). It should be noted that “X F = Y F = 0” in step S6 is not only completely identical, but also a position settling range (E> 0) is set and may be substantially equal within the error range (± E). Is included. As a result, when the contact position T (X F , Y F ) is not on the origin O, the first semiconductor substrate Wu and the second semiconductor substrate Wd are not parallel (that is, a non-contact portion between the two semiconductor substrates Wu, Wd). Therefore, in order to make both semiconductor substrates parallel, the process proceeds to steps S7 and S8.
 ステップS7では、第2の半導体基板Wdを第1の半導体基板Wuと平行に調整するためのX軸周りの回転角θの駆動量(ΔθAX)と、Y軸周りの回転角θの駆動量(ΔθAY)を算出する。各駆動量を算出するにあたり、まず、図10(a)(b)のように、第1の半導体基板Wuと第2の半導体基板WdとのX軸周りの傾きをΔθ、Y軸周りの傾きをΔθと仮定する。どちらの傾きも極めて微小であると仮定すると、両者の傾きは次の式により表される。
 Δθ=Zmax/Y・・・(6)
 Δθ=-Zmax/X・・・(7)
ここで、Zmaxとは、半導体基板を貼り合わせる際に通常、発生する半導体基板の傾きにおけるZ軸方向のずれ量として想定される値の内、最も大きい数値である。
In step S7, the drive amount (Δθ AX ) of the rotation angle θ X around the X axis for adjusting the second semiconductor substrate Wd in parallel with the first semiconductor substrate Wu and the rotation angle θ Y around the Y axis A driving amount (Δθ AY ) is calculated. In calculating each driving amount, first, as shown in FIGS. 10A and 10B, the inclination of the first semiconductor substrate Wu and the second semiconductor substrate Wd around the X axis is expressed by Δθ X and around the Y axis. Assume the slope is Δθ Y. Assuming that both slopes are very small, both slopes are expressed by the following equations.
Δθ X = Z max / Y F (6)
Δθ Y = -Z max / X F (7)
Here, Z max is the largest value among the values assumed as the amount of deviation in the Z-axis direction in the inclination of the semiconductor substrate that is usually generated when the semiconductor substrates are bonded together.
 そして、この傾きと逆向きになるように、X軸周りの回転駆動量ΔθAX及びY軸周りの回転駆動量ΔθAYを算出すると、次の式(8)(9)として表される。
 ΔθAX=-Z/Y・・・(8)
 ΔθAY=Z/X・・・(9)
ここで、Zとは、Zmaxより小さい値であり、かつ、半導体基板を貼り合わせる際に発生する半導体基板の傾きにおけるZ方向のずれ量として問題ない範囲の数値であり、例えば、Zmaxの10分の1程度の数値である。
When the rotational drive amount Δθ AX around the X axis and the rotational drive amount Δθ AY around the Y axis are calculated so as to be opposite to the inclination, they are expressed as the following equations (8) and (9).
Δθ AX = −Z / Y F (8)
Δθ AY = Z / X F (9)
Here, the Z, a Z max value smaller than, and a number in the range no problem as displacement amount in the Z direction in the tilt of the semiconductor substrate which is generated when bonding the semiconductor substrate, for example, the Z max It is a numerical value about 1/10.
 次に、上記の回転駆動量ΔθAXを第2駆動機構48によって駆動し、X軸周りの傾斜を調整するとともに、回転駆動量ΔθAYを第1駆動機構46によって駆動し、Y軸周りの傾斜を調整する(ステップS8)。これにより、第2の半導体基板が傾動され、第2の半導体基板における、第1の半導体基板と接触した周縁の一部以外の非接触部分が、第1の半導体基板における非接触部分に近接するようになる。第2駆動機構48が駆動したときすなわちチルトテーブル38がX軸周りに傾動したとき、作動部60の第1の作動片60cがX軸周りに回動する。このとき、第1駆動機構46の各ベローズアクチュエータ68,70の各押圧部68e,70eが、前記したように、それぞれ作動片60cの上面60a及び下面60bに点接触していることから、第1の作動片60cが回動したとき、各押圧部68e,70eがそれぞれ第1の作動片60cに面接触する場合に比べて、各押圧部68e,70e及び作動片60cの各接触点と第1の作動片60cの回動中心との距離が小さくなる。これにより、第1の作動片60cが回動したとき、各押圧部68e,70eがそれぞれ第1の作動片60cに面接触する場合に比べて、第1の作動片60cから各押圧部68e,70eに作用するモーメント力の大きさが小さくなる。従って、各押圧部68e,70eがそれぞれ前記モーメント力によって該各押圧部間の間隔が大きくなる方向へ移動することを、確実に抑制することができるので、第2駆動機構48の駆動時に第1駆動機構46に影響が及ぶことを確実に抑制することができる。他方、第2駆動機構48のベローズアクチュエータ74,76の構成が第1駆動機構46のベローズアクチュエータ68,70と同様の構成を有していることから、第1駆動機構46の駆動時に第2駆動機構48に影響が及ぶことも確実に抑制することができる。第1駆動機構46及び第2駆動機構48のそれぞれの駆動によってX軸周り及びY軸周りのチルトテーブル38の傾斜を調整した後、ステップS2に戻る。 Next, the rotational drive amount Δθ AX is driven by the second drive mechanism 48 to adjust the tilt around the X axis, and the rotational drive amount Δθ AY is driven by the first drive mechanism 46 to tilt around the Y axis. Is adjusted (step S8). As a result, the second semiconductor substrate is tilted, and a non-contact portion of the second semiconductor substrate other than a part of the peripheral edge in contact with the first semiconductor substrate approaches the non-contact portion of the first semiconductor substrate. It becomes like this. When the second drive mechanism 48 is driven, that is, when the tilt table 38 tilts around the X axis, the first operating piece 60c of the operating unit 60 rotates around the X axis. At this time, the pressing portions 68e and 70e of the bellows actuators 68 and 70 of the first drive mechanism 46 are in point contact with the upper surface 60a and the lower surface 60b of the operating piece 60c, respectively, as described above. When the operating piece 60c is rotated, the contact points of the pressing portions 68e and 70e and the operating piece 60c and the first contact points are compared with the case where the pressing portions 68e and 70e are in surface contact with the first operating piece 60c, respectively. The distance from the rotation center of the operating piece 60c becomes smaller. Thereby, when the 1st action piece 60c rotates, compared with the case where each press part 68e and 70e surface-contacts with the 1st action piece 60c, respectively, each press part 68e, The magnitude of the moment force acting on 70e is reduced. Accordingly, each of the pressing portions 68e and 70e can be reliably suppressed from moving in the direction in which the interval between the pressing portions is increased by the moment force. Therefore, the first driving mechanism 48 is driven when the second driving mechanism 48 is driven. The influence on the drive mechanism 46 can be reliably suppressed. On the other hand, since the configuration of the bellows actuators 74 and 76 of the second drive mechanism 48 is the same as that of the bellows actuators 68 and 70 of the first drive mechanism 46, the second drive is performed when the first drive mechanism 46 is driven. The influence on the mechanism 48 can also be reliably suppressed. After the tilt of the tilt table 38 around the X axis and the Y axis is adjusted by driving the first drive mechanism 46 and the second drive mechanism 48, the process returns to step S2.
 そして、再度、ステップS3、ステップS5、ステップS6と進み、ステップS6でX=Y=0となるまで、つまり、第1及び第2の半導体基板が互いに平行になるまで、駆動量を算出するステップS7、算出された駆動量に基づき駆動機構を駆動させるステップS8、ステップS2,ステップS3、半導体基板の接触位置を算出するステップS5、及びステップS6を繰り返し行う。このような制御により、第1駆動機構46、第2駆動機構48及び移動機構52に生じる各反力に基づいて、第2の半導体基板Wdが第1の半導体基板Wuに対して徐々に平行になるようにしている。つまり、各反力に基づいて、重心位置に相当する接触位置を算出し、この接触位置によって両半導体基板が平行であるか否かを算出し、接触位置が原点に近づくようにしている。 Then, the process proceeds to step S3, step S5, and step S6 again, and the drive amount is calculated until X F = Y F = 0 in step S6, that is, until the first and second semiconductor substrates are parallel to each other. Step S7, Step S8 for driving the drive mechanism based on the calculated drive amount, Step S2, Step S3, Step S5 for calculating the contact position of the semiconductor substrate, and Step S6 are repeated. Through such control, the second semiconductor substrate Wd is gradually parallel to the first semiconductor substrate Wu based on the reaction forces generated in the first drive mechanism 46, the second drive mechanism 48, and the moving mechanism 52. It is trying to become. That is, based on each reaction force, a contact position corresponding to the position of the center of gravity is calculated, and based on this contact position, it is calculated whether or not both semiconductor substrates are parallel, so that the contact position approaches the origin.
 そして、ステップS6の判定において、接触位置(X,Y)が原点O上であれば、両半導体基板は平行であり、ステップS9に進む。そして、荷重Fが、第1の半導体基板Wuと第2の半導体基板Wdとが貼り合わせされるのに十分な値を考慮して定められた下限値Bより大きいか否かを判断する(ステップS9)。下限値Bとしては、例えば、0.5[N]を設定することが好ましい。荷重Fが下限値Bより小さければ、ステップS1に戻る。一方、荷重Fが下限値Bより大きければ、この状態で貼り合わせを継続し、所定時間経過後、貼り合わせ加工を完了させる。 If it is determined in step S6 that the contact position (X F , Y F ) is on the origin O, both semiconductor substrates are parallel, and the process proceeds to step S9. Then, it is determined whether or not the load F is larger than a lower limit B determined in consideration of a value sufficient for bonding the first semiconductor substrate Wu and the second semiconductor substrate Wd (step). S9). For example, 0.5 [N] is preferably set as the lower limit value B. If the load F is smaller than the lower limit B, the process returns to step S1. On the other hand, if the load F is larger than the lower limit B, the bonding is continued in this state, and the bonding process is completed after a predetermined time has elapsed.
 以上詳述したように、本実施形態に係る半導体基板貼り合わせ装置1の制御装置90は、第1の半導体基板Wuと第2の半導体基板Wdとが互いに当接した際、第1駆動機構46、第2駆動機構48、及び移動機構52に生じる各反力を算出し、この各反力から算出した駆動量に基づき、第1及び第2駆動機構46,48を繰り返し駆動して、第1の半導体基板Wuに対する第2の半導体基板Wdの平行度が等しくなるように第2の基板保持テーブル36の傾斜を調整することができる。 As described above in detail, when the first semiconductor substrate Wu and the second semiconductor substrate Wd are in contact with each other, the control device 90 of the semiconductor substrate bonding apparatus 1 according to the present embodiment has the first drive mechanism 46. The reaction forces generated in the second drive mechanism 48 and the moving mechanism 52 are calculated, and the first and second drive mechanisms 46 and 48 are repeatedly driven based on the drive amounts calculated from the reaction forces. The inclination of the second substrate holding table 36 can be adjusted so that the parallelism of the second semiconductor substrate Wd with respect to the semiconductor substrate Wu becomes equal.
 また、制御装置90は、第1の半導体基板Wuと第2の半導体基板Wdとの接触位置に作用する荷重Fと、第1駆動機構46及び第2駆動機構48に生じる各反力と、第1駆動機構46のX軸上の位置と第2駆動機構48のY軸上の位置とに基づき、第1の半導体基板Wuと第2の半導体基板Wdとの接触位置を算出し、接触位置が原点上でない場合、この接触位置を利用して、第2の半導体基板Wdが第1の半導体基板Wuと平行になるように、第1及び第2駆動機構46,48を繰り返し駆動するようになっている。これにより、制御装置90による、傾斜調整のための第1及び第2駆動機構46,48の制御が容易になる。 The control device 90 also includes a load F acting on a contact position between the first semiconductor substrate Wu and the second semiconductor substrate Wd, each reaction force generated in the first drive mechanism 46 and the second drive mechanism 48, Based on the position on the X-axis of the first drive mechanism 46 and the position on the Y-axis of the second drive mechanism 48, the contact position between the first semiconductor substrate Wu and the second semiconductor substrate Wd is calculated. When not on the origin, the first and second drive mechanisms 46 and 48 are repeatedly driven using the contact position so that the second semiconductor substrate Wd is parallel to the first semiconductor substrate Wu. ing. Thereby, control of the 1st and 2nd drive mechanisms 46 and 48 for inclination adjustment by control device 90 becomes easy.
 また、制御装置90は、第1の半導体基板Wuから第2の半導体基板Wdに作用する荷重が上限値を超える場合、チルトテーブル38を下降させて第2の基板保持テーブル36が第1の基板保持テーブル24から離れる方向に移動するように、移動機構52を駆動させるようになっている。このため、貼り合わせされる半導体基板同士に過度の力が加わって半導体基板が破損してしまうことを防止できる。 In addition, when the load acting on the second semiconductor substrate Wd from the first semiconductor substrate Wu exceeds the upper limit value, the control device 90 lowers the tilt table 38 and causes the second substrate holding table 36 to move to the first substrate. The moving mechanism 52 is driven so as to move in a direction away from the holding table 24. For this reason, it is possible to prevent the semiconductor substrates from being damaged by applying an excessive force between the semiconductor substrates to be bonded to each other.
 また、制御装置90は、半導体基板への荷重が下限値を超えていない場合、チルトテーブル38を上昇させて第2の基板保持テーブル36が第1の基板保持テーブル24に近づく方向に移動するように、移動機構52を駆動させるようになっている。このため、不十分な力での半導体基板の貼り合わせを避けることができる。 Further, when the load on the semiconductor substrate does not exceed the lower limit value, the control device 90 raises the tilt table 38 so that the second substrate holding table 36 moves in a direction approaching the first substrate holding table 24. Further, the moving mechanism 52 is driven. For this reason, bonding of the semiconductor substrates with an insufficient force can be avoided.
 また、ステージ装置34は、第1駆動機構46、第2駆動機構48、及び移動機構52が流体圧、例えば、空気圧を利用した駆動機構であり、この流体圧の変化に基づいて反力を制御装置90で算出するようになっている。このため、微小な変化が検出しやすい流体圧の変化に基づいて微妙な傾斜を検出でき、高度な傾斜調整を行うことができる。 The stage device 34 is a drive mechanism in which the first drive mechanism 46, the second drive mechanism 48, and the moving mechanism 52 utilize fluid pressure, for example, air pressure, and controls the reaction force based on the change in the fluid pressure. The calculation is performed by the device 90. For this reason, it is possible to detect a subtle inclination based on a change in fluid pressure at which a minute change is easy to detect, and to perform advanced inclination adjustment.
 また、第2の基板保持テーブル36を第1及び第2駆動機構46,48で各軸回りに傾動させるための二つの軸は、第2の基板保持テーブル36の平面視における保持中心である原点を通り且つ原点を中心として0度及び180度を除く角度、例えば略90度で互いに交差している。このため、第2の基板保持テーブルを各軸回りに傾動させるための第1及び第2駆動機構46,48がそれぞれ独立して作動することができ、第2の基板保持テーブル36(つまり第2の半導体基板Wd)を水平面に対して様々な傾斜角度へ傾斜させることができる。しかも、このような第2の半導体基板Wdの三次元的な傾斜角度調整を簡単な構造で実現させることが可能となる。 Further, the two axes for tilting the second substrate holding table 36 around the respective axes by the first and second drive mechanisms 46 and 48 are origins which are the holding centers in the plan view of the second substrate holding table 36. And intersecting each other at an angle excluding 0 degrees and 180 degrees, for example, approximately 90 degrees, centering on the origin. Therefore, the first and second drive mechanisms 46 and 48 for tilting the second substrate holding table about each axis can operate independently, and the second substrate holding table 36 (that is, the second substrate holding table 36) The semiconductor substrate Wd) can be inclined at various inclination angles with respect to the horizontal plane. Moreover, such a three-dimensional tilt angle adjustment of the second semiconductor substrate Wd can be realized with a simple structure.
 なお、本発明は上記した実施形態に限定されることなく、種々の変形が可能である。例えば、上記実施形態では、第1駆動機構46、第2駆動機構48及び移動機構52で生じる各反力に基づいて、第1の半導体基板Wuと第2の半導体基板Wdとの接触位置を算出していたが、この接触位置を算出できるようであれば、反力以外の力成分を用いて接触位置を算出してもよい。また、上記実施形態では、第2の半導体基板Wdに作用する荷重を算出して接触位置を算出していたが、上部ステージ20側に第1の半導体基板Wuに作用する外力を検出する検出部を設け、第1の半導体基板Wuに作用する荷重を算出して接触位置を算出するようにしてもよい。 Note that the present invention is not limited to the above-described embodiment, and various modifications are possible. For example, in the above embodiment, the contact position between the first semiconductor substrate Wu and the second semiconductor substrate Wd is calculated based on the reaction forces generated by the first drive mechanism 46, the second drive mechanism 48, and the moving mechanism 52. However, if this contact position can be calculated, the contact position may be calculated using a force component other than the reaction force. In the above embodiment, the load acting on the second semiconductor substrate Wd is calculated to calculate the contact position. However, the detecting unit detects an external force acting on the first semiconductor substrate Wu on the upper stage 20 side. And the contact position may be calculated by calculating a load acting on the first semiconductor substrate Wu.
 また、上記実施形態では、移動機構52に対する反力を算出するにあたり、図5に示すように、圧力計52dをパイプP86に設ける構成としたが、移動機構52に対する反力が算出できれば、他の部分に圧力計52dを設ける構成としてもよい。また、第1駆動機構46及び第2駆動機構48に対する反力を算出するにあたり、図6等に示すように、圧力計をパイプP68,P70等に設ける構成としたが、第1駆動機構46及び第2駆動機構48に対する反力が算出できれば、他の部分に圧力計を設ける構成としてもよい。 In the above embodiment, the pressure gauge 52d is provided on the pipe P86 as shown in FIG. 5 in calculating the reaction force against the moving mechanism 52. However, if the reaction force against the moving mechanism 52 can be calculated, It is good also as a structure which provides the pressure gauge 52d in a part. Further, in calculating the reaction force against the first drive mechanism 46 and the second drive mechanism 48, as shown in FIG. 6 and the like, the pressure gauges are provided in the pipes P68, P70, etc., but the first drive mechanism 46 and As long as the reaction force with respect to the second drive mechanism 48 can be calculated, a configuration may be adopted in which a pressure gauge is provided in another portion.
 また、上記実施形態では、第1駆動機構46、第2駆動機構48、及び移動機構52は空気圧を使った駆動機構とし、空気圧の変動により反力を検出する構成としたが、これらを油圧など他の流体を使った駆動機構とし、その流体圧の変動により反力を検出する構成としてもよい。 In the above-described embodiment, the first drive mechanism 46, the second drive mechanism 48, and the moving mechanism 52 are configured to detect the reaction force based on the fluctuation of the air pressure. A driving mechanism using another fluid may be used, and the reaction force may be detected by the fluctuation of the fluid pressure.
 また、上記実施形態では、下部ステージ30に保持される第2の半導体基板Wdを上昇させて上部ステージ20に保持される第1の半導体基板Wuに当接させていたが、上部ステージ20に別の移動機構を設けて上部ステージ20に保持される第1の半導体基板Wuを下降させて下部ステージ30に保持される第2の半導体基板Wdに当接させるようにしてもよい。この場合でも、反力に基づく高度な傾斜調整が可能である。 In the above embodiment, the second semiconductor substrate Wd held on the lower stage 30 is raised and brought into contact with the first semiconductor substrate Wu held on the upper stage 20. The first semiconductor substrate Wu held on the upper stage 20 may be lowered and brought into contact with the second semiconductor substrate Wd held on the lower stage 30. Even in this case, advanced tilt adjustment based on the reaction force is possible.
 また、上記実施形態において、チルトテーブル38の側面38cの作動部60が設けられた位置と反対側の位置に、該作動部の重量と等しい重量を有する錘を設け、側面38cの作動部62が設けられた位置の反対側の位置に、該作動部の重量と等しい重量を有する錘を設けることができる。この場合、チルトテーブル38のX軸方向及びY軸方向の重さのつり合いが保たれる。これにより、第1駆動機構46の各ベローズアクチュエータ68,70の各ベローズ68a、70a及び第2駆動機構48の各ベローズアクチュエータ74,76の各ベローズがそれぞれ無負荷な状態におかれたとき、チルトテーブル38がいずれかの方向に傾くことなく、チルトテーブル38の姿勢を、該チルトテーブルの載置面38aが水平になる姿勢に保持することができる。従って、例えば各ベローズアクチュエータ68,70,74,76への空気の供給量を調整することによりチルトテーブル38の傾きを調節する場合に比べて、チルトテーブル38の姿勢を前記初期姿勢に容易に戻すことができる。 In the above embodiment, a weight having a weight equal to the weight of the operating portion is provided at a position opposite to the position where the operating portion 60 of the side surface 38c of the tilt table 38 is provided, and the operating portion 62 of the side surface 38c is provided. A weight having a weight equal to the weight of the operating portion can be provided at a position opposite to the provided position. In this case, the balance of the weight of the tilt table 38 in the X-axis direction and the Y-axis direction is maintained. As a result, when the bellows 68a and 70a of the bellows actuators 68 and 70 of the first drive mechanism 46 and the bellows of the bellows actuators 74 and 76 of the second drive mechanism 48 are left unloaded, the tilt Without tilting the table 38 in any direction, the tilt table 38 can be held in a posture where the mounting surface 38a of the tilt table is horizontal. Therefore, for example, compared with the case where the tilt of the tilt table 38 is adjusted by adjusting the amount of air supplied to the bellows actuators 68, 70, 74, 76, the posture of the tilt table 38 is easily returned to the initial posture. be able to.

Claims (15)

  1.  第1及び第2の半導体基板を互いに貼り合わせるための半導体基板貼り合わせ装置であって、
     前記第2の半導体基板を傾動させるための駆動部と、
     前記駆動部の作動を制御する制御部とを備え、
     前記制御部は、前記第1及び第2の半導体基板が一部で互いに接触した際、前記第1及び第2の半導体基板のうち少なくとも一方の半導体基板に作用する荷重を算出し、前記荷重に応じて、前記第1及び第2の半導体基板における前記一部以外の非接触部分が互いに近接するように前記駆動部の作動制御を行い、前記第1及び第2の半導体基板が互いに平行になるまで前記作動制御を繰り返し実行することを特徴とする半導体基板貼り合わせ装置。
    A semiconductor substrate bonding apparatus for bonding first and second semiconductor substrates together,
    A drive unit for tilting the second semiconductor substrate;
    A control unit for controlling the operation of the drive unit,
    The controller calculates a load acting on at least one of the first and second semiconductor substrates when the first and second semiconductor substrates partially contact each other, and calculates the load Accordingly, the operation of the driving unit is controlled so that non-contact parts other than the part of the first and second semiconductor substrates are close to each other, and the first and second semiconductor substrates are parallel to each other. The semiconductor substrate laminating apparatus, wherein the operation control is repeatedly executed.
  2.  前記第1及び第2の半導体基板が互いに接触する前記一部は、前記第1及び前記第2の半導体基板のうち少なくとも一方の半導体基板において、周縁の一部であることを特徴とする請求項1に記載の半導体基板貼り合わせ装置。 The part of the first and second semiconductor substrates in contact with each other is a part of the periphery of at least one of the first and second semiconductor substrates. 2. The semiconductor substrate bonding apparatus according to 1.
  3.  前記第1の半導体基板を保持するための第1の基板保持テーブルと、
     前記第2の半導体基板を前記第1の半導体基板に対向するように保持するための第2の基板保持テーブルとを備え、
     前記駆動部は、
     前記第2の基板保持テーブルの平面視において互いに交差する二つの軸のうち一方の軸の周りに前記第2の基板保持テーブルを傾動させるための第1駆動機構と、
     前記一方の軸とは異なる他方の軸の周りに前記第2の基板保持テーブルを傾動させるための第2駆動機構とを有し、
     前記制御部は、前記第1の基板保持テーブルに保持された前記第1の半導体基板が前記第2の基板保持テーブルに保持された前記第2の半導体基板の周縁の一部に接触した際、前記第2の半導体基板から前記第2の基板保持テーブルに作用する力の前記一方の軸周りの力成分と前記他方の軸周りの力成分とを前記第2の半導体基板に作用する前記荷重として算出し、該各力成分に基づいて前記第1駆動機構及び前記第2駆動機構を駆動する前記作動制御を繰り返し実行することを特徴とする請求項2に記載の半導体基板貼り合わせ装置。
    A first substrate holding table for holding the first semiconductor substrate;
    A second substrate holding table for holding the second semiconductor substrate so as to face the first semiconductor substrate;
    The drive unit is
    A first drive mechanism for tilting the second substrate holding table around one of two axes intersecting each other in plan view of the second substrate holding table;
    A second drive mechanism for tilting the second substrate holding table around the other axis different from the one axis;
    When the first semiconductor substrate held on the first substrate holding table comes into contact with a part of the periphery of the second semiconductor substrate held on the second substrate holding table, The force component around the one axis and the force component around the other axis of the force acting on the second substrate holding table from the second semiconductor substrate are used as the load acting on the second semiconductor substrate. 3. The semiconductor substrate bonding apparatus according to claim 2, wherein the operation control for calculating and driving the first drive mechanism and the second drive mechanism based on the force components is repeatedly executed.
  4.  前記二つの軸は、前記第2の基板保持テーブルの平面視における保持中心である原点を通り且つ前記原点を中心として0度及び180度を除く角度で互いに交差していることを特徴とする請求項3に記載の半導体基板貼り合わせ装置。 The two axes pass through an origin which is a holding center in a plan view of the second substrate holding table, and intersect each other at angles other than 0 degrees and 180 degrees around the origin. Item 4. A semiconductor substrate bonding apparatus according to Item 3.
  5.  前記二つの軸は、前記第2の基板保持テーブルの平面視における保持中心である原点を通り且つ前記原点を中心として互いに直交しており、
     前記制御部は、前記各力成分に基づいて、前記第2の半導体基板に対して前記第1の半導体基板から作用する力の重心位置を算出し、該重心位置が前記原点上でない場合、前記重心位置を利用して、前記第1駆動機構及び前記第2駆動機構の駆動量を算出することを特徴とする請求項3又は4に記載の半導体基板貼り合わせ装置。
    The two axes pass through an origin that is a holding center in plan view of the second substrate holding table and are orthogonal to each other with the origin as a center,
    The control unit calculates a gravity center position of a force acting on the second semiconductor substrate from the first semiconductor substrate based on the force components, and when the gravity center position is not on the origin, 5. The semiconductor substrate bonding apparatus according to claim 3, wherein a driving amount of the first driving mechanism and the second driving mechanism is calculated using a position of the center of gravity.
  6.  前記第1駆動機構は、前記他方の軸上で前記第2の基板保持テーブルを傾動させるものであり、前記第2駆動機構は、前記一方の軸上で前記第2の基板保持テーブルを傾動させるものであり、
     前記制御部は、前記第1の半導体基板と前記第2の半導体基板とが互いに当接した際、前記第1駆動機構及び前記第2駆動機構に生じる各反力をそれぞれ前記各力成分として算出することを特徴とする請求項3乃至5のいずれか一項に記載の半導体基板貼り合わせ装置。
    The first driving mechanism tilts the second substrate holding table on the other axis, and the second driving mechanism tilts the second substrate holding table on the one axis. Is,
    The control unit calculates each reaction force generated in the first drive mechanism and the second drive mechanism as each force component when the first semiconductor substrate and the second semiconductor substrate contact each other. The semiconductor substrate bonding apparatus according to claim 3, wherein the bonding apparatus is a semiconductor substrate bonding apparatus.
  7.  前記第1駆動機構及び前記第2駆動機構は流体圧を利用した駆動機構であって、
     前記制御部は、前記流体圧の変化に基づいて前記各反力を算出することを特徴とする請求項6に記載の半導体基板貼り合わせ装置。
    The first drive mechanism and the second drive mechanism are drive mechanisms using fluid pressure,
    The semiconductor substrate bonding apparatus according to claim 6, wherein the control unit calculates each reaction force based on a change in the fluid pressure.
  8.  前記第1の基板保持テーブルと前記第2の基板保持テーブルとを相対的に近づく方向及び離れる方向へ移動させるための移動機構を更に備え、
     前記制御部は、前記第1の半導体基板と前記第2の半導体基板とが互いに当接した際、前記移動機構に生じる力成分を算出し、該力成分と前記第2の基板保持テーブルに作用する前記各力成分と前記第1駆動機構及び前記第2駆動機構による前記第2の基板保持テーブルを傾動させる位置とに基づいて、前記重心位置を算出することを特徴とする請求項5乃至7のいずれか一項に記載の半導体基板貼り合わせ装置。
    A moving mechanism for moving the first substrate holding table and the second substrate holding table in a relatively approaching direction and a separating direction;
    The controller calculates a force component generated in the moving mechanism when the first semiconductor substrate and the second semiconductor substrate contact each other, and acts on the force component and the second substrate holding table. The gravity center position is calculated on the basis of each of the force components to be performed and a position at which the second substrate holding table is tilted by the first drive mechanism and the second drive mechanism. The semiconductor substrate bonding apparatus as described in any one of these.
  9.  前記制御部は、前記第1の半導体基板と前記第2の半導体基板とが互いに当接した際、前記移動機構に生じる反力を前記力成分として算出することを特徴とする請求項8に記載の半導体基板貼り合わせ装置。 9. The control unit according to claim 8, wherein the control unit calculates a reaction force generated in the moving mechanism as the force component when the first semiconductor substrate and the second semiconductor substrate are in contact with each other. Semiconductor substrate bonding apparatus.
  10.  前記移動機構は流体圧を利用した駆動機構であって、
     前記制御部は、前記流体圧の変化に基づいて前記移動機構に生じる前記反力を算出することを特徴とする請求項9に記載の半導体基板貼り合わせ装置。
    The moving mechanism is a driving mechanism using fluid pressure,
    The semiconductor substrate bonding apparatus according to claim 9, wherein the control unit calculates the reaction force generated in the moving mechanism based on a change in the fluid pressure.
  11.  前記制御部は、前記第1の半導体基板から前記第2の半導体基板に作用する荷重が上限値を超える場合、前記第1の基板保持テーブルと前記第2の基板保持テーブルとが相対的に離れる方向に移動するように前記移動機構を駆動することを特徴とする請求項8乃至10のいずれか一項に記載の半導体基板貼り合わせ装置。 When the load acting on the second semiconductor substrate from the first semiconductor substrate exceeds an upper limit value, the control unit relatively separates the first substrate holding table and the second substrate holding table. The semiconductor substrate bonding apparatus according to claim 8, wherein the moving mechanism is driven so as to move in a direction.
  12.  前記制御部は、前記重心位置が前記原点上である場合であって、且つ、前記第2の半導体基板への荷重が下限値を超えていない場合、前記第1の基板保持テーブルと前記第2の基板保持テーブルとが相対的に近づく方向に移動するように前記移動機構を駆動することを特徴とする請求項8乃至11のいずれか一項に記載の半導体基板貼り合わせ装置。 In the case where the position of the center of gravity is on the origin, and the load on the second semiconductor substrate does not exceed a lower limit value, the control unit is configured so that the first substrate holding table and the second substrate The semiconductor substrate bonding apparatus according to claim 8, wherein the moving mechanism is driven so as to move in a direction relatively approaching the substrate holding table.
  13.  前記第1駆動機構及び前記第2駆動機構は、それぞれ前記第2の基板保持テーブルを傾動させるべく押圧力を作用させるために該第2の基板保持テーブルに当接する押圧部を有し、該各押圧部は、それぞれ前記第2の基板保持テーブルへ向けて突出する半球状をなしていることを特徴とする請求項3乃至12のいずれか一項に記載の半導体基板貼り合わせ装置。 Each of the first drive mechanism and the second drive mechanism has a pressing portion that comes into contact with the second substrate holding table in order to apply a pressing force to tilt the second substrate holding table. The semiconductor substrate bonding apparatus according to any one of claims 3 to 12, wherein each of the pressing portions has a hemispherical shape protruding toward the second substrate holding table.
  14.  第1及び第2の半導体基板を互いに貼り合わせるための半導体基板貼り合わせ方法であって、
     前記第1及び第2の半導体基板が一部で互いに接触した際、前記第1及び第2の半導体基板のうち少なくとも一方の半導体基板に作用する荷重を算出する算出工程と、
     前記算出工程で算出された前記荷重に応じて、前記第1及び第2の半導体基板における前記一部以外の非接触部分が互いに近接するように、前記第2の半導体基板を傾動させる傾動工程と、
     前記第1及び第2の半導体基板が互いに平行になるまで前記算出工程及び前記傾動工程を繰り返し実行する繰返工程と、
    を含むことを特徴とする半導体基板貼り合わせ方法。
    A semiconductor substrate bonding method for bonding first and second semiconductor substrates together,
    A calculation step of calculating a load acting on at least one of the first and second semiconductor substrates when the first and second semiconductor substrates partially contact each other;
    A tilting step of tilting the second semiconductor substrate so that non-contact portions other than the portions of the first and second semiconductor substrates are close to each other according to the load calculated in the calculating step; ,
    A repeating step of repeatedly executing the calculating step and the tilting step until the first and second semiconductor substrates are parallel to each other;
    A method for laminating a semiconductor substrate, comprising:
  15.  前記算出工程では、前記第1の半導体基板が前記第2の半導体基板の周縁の一部に接触した際、前記第2の半導体基板の平面視において互いに交差する二つの軸のうち一方の軸の周りの力成分と前記一方の軸とは異なる他方の軸周りの力成分とを前記第2の半導体基板に作用する前記荷重として算出し、
     前記傾動工程では、前記各力成分に基づいて、前記第2の半導体基板の前記周縁の一部以外の前記非接触部分が、前記第1の半導体基板における前記非接触部分に近接するように前記第2の半導体基板を傾動させることを特徴とする請求項14に記載の半導体基板貼り合わせ方法。
    In the calculating step, when the first semiconductor substrate contacts a part of the periphery of the second semiconductor substrate, one of the two axes intersecting each other in plan view of the second semiconductor substrate. A force component around the other axis different from the one axis is calculated as the load acting on the second semiconductor substrate,
    In the tilting step, based on the force components, the non-contact portion other than a part of the peripheral edge of the second semiconductor substrate is close to the non-contact portion of the first semiconductor substrate. The semiconductor substrate bonding method according to claim 14, wherein the second semiconductor substrate is tilted.
PCT/JP2008/073437 2007-12-28 2008-12-24 Semiconductor substrate bonding apparatus and semiconductor substrate bonding method WO2009084536A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009548043A JP5365525B2 (en) 2007-12-28 2008-12-24 Semiconductor substrate bonding apparatus and semiconductor substrate bonding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-340437 2007-12-28
JP2007340437 2007-12-28

Publications (1)

Publication Number Publication Date
WO2009084536A1 true WO2009084536A1 (en) 2009-07-09

Family

ID=40824250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073437 WO2009084536A1 (en) 2007-12-28 2008-12-24 Semiconductor substrate bonding apparatus and semiconductor substrate bonding method

Country Status (2)

Country Link
JP (2) JP5365525B2 (en)
WO (1) WO2009084536A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050096A1 (en) * 2010-10-13 2012-04-19 東レエンジニアリング株式会社 Parallelism adjustment method and parallelism adjustment apparatus for mounting apparatus
WO2013084509A1 (en) * 2011-12-08 2013-06-13 株式会社ニコン Pressurizing apparatus, substrate bonding apparatus, and bonded substrates
KR101317167B1 (en) 2012-03-13 2013-10-11 한국과학기술원 Jig assembly for ultrasonic welding machine
US10438919B1 (en) 2016-06-28 2019-10-08 Northrop Grumman Systems Corporation Passive hydraulic load leveler for thermal compression bonding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6596288B2 (en) * 2014-11-25 2019-10-23 東京エレクトロン株式会社 Joining method, program, computer storage medium, joining apparatus and joining system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160340A (en) * 1991-12-06 1993-06-25 Mitsumasa Koyanagi Three-dimensional lsi stacked apparatus
JP2001223244A (en) * 1999-11-29 2001-08-17 Matsushita Electric Ind Co Ltd Pressuring device and bump bonding device using the same, sticking device, and compression bonding device and pressuring method
JP2003224154A (en) * 2002-01-31 2003-08-08 Toray Eng Co Ltd Joining device
JP2004268113A (en) * 2003-03-11 2004-09-30 Fujitsu Ltd Device and method for laminating substrates
JP2005294824A (en) * 2004-03-12 2005-10-20 Bondotekku:Kk Ultrasonic joining method and ultrasonic joining device in vacuum
JP2006186325A (en) * 2004-12-02 2006-07-13 Seiko Instruments Inc Ultrasonic vibration bonding device
JP2007035669A (en) * 2005-07-22 2007-02-08 Nikon Corp Wafer transport device, wafer lamination transport device, and method for manufacturing stacked semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5491696B2 (en) * 2007-12-28 2014-05-14 住友重機械工業株式会社 Stage device and control method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160340A (en) * 1991-12-06 1993-06-25 Mitsumasa Koyanagi Three-dimensional lsi stacked apparatus
JP2001223244A (en) * 1999-11-29 2001-08-17 Matsushita Electric Ind Co Ltd Pressuring device and bump bonding device using the same, sticking device, and compression bonding device and pressuring method
JP2003224154A (en) * 2002-01-31 2003-08-08 Toray Eng Co Ltd Joining device
JP2004268113A (en) * 2003-03-11 2004-09-30 Fujitsu Ltd Device and method for laminating substrates
JP2005294824A (en) * 2004-03-12 2005-10-20 Bondotekku:Kk Ultrasonic joining method and ultrasonic joining device in vacuum
JP2006186325A (en) * 2004-12-02 2006-07-13 Seiko Instruments Inc Ultrasonic vibration bonding device
JP2007035669A (en) * 2005-07-22 2007-02-08 Nikon Corp Wafer transport device, wafer lamination transport device, and method for manufacturing stacked semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050096A1 (en) * 2010-10-13 2012-04-19 東レエンジニアリング株式会社 Parallelism adjustment method and parallelism adjustment apparatus for mounting apparatus
JP2012084740A (en) * 2010-10-13 2012-04-26 Toray Eng Co Ltd Method of adjusting parallelism and device of adjusting parallelism for mounting device
WO2013084509A1 (en) * 2011-12-08 2013-06-13 株式会社ニコン Pressurizing apparatus, substrate bonding apparatus, and bonded substrates
JPWO2013084509A1 (en) * 2011-12-08 2015-04-27 株式会社ニコン Pressurizing device, substrate laminating device, and overlapping substrate
US9978616B2 (en) 2011-12-08 2018-05-22 Nikon Corporation Pressing apparatus, substrate bonding apparatus and stacked substrate
KR101317167B1 (en) 2012-03-13 2013-10-11 한국과학기술원 Jig assembly for ultrasonic welding machine
US10438919B1 (en) 2016-06-28 2019-10-08 Northrop Grumman Systems Corporation Passive hydraulic load leveler for thermal compression bonding

Also Published As

Publication number Publication date
JPWO2009084536A1 (en) 2011-05-19
JP2014030035A (en) 2014-02-13
JP5365525B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5319154B2 (en) Stage equipment
JP6952853B2 (en) Joining system and joining method
JP2014030035A (en) Semiconductor substrate bonding device and semiconductor substrate bonding method
JP4384664B2 (en) High-precision dynamic alignment mechanism for sample inspection and processing
JP5434910B2 (en) Joining apparatus and joining method
JP4626160B2 (en) Wafer overlay method and wafer overlay apparatus
US20100264679A1 (en) Suction hold hand, suction hold method, and carrying device
JP2022002336A (en) Lamination device and lamination method
WO2016024364A1 (en) Mounting device and measurement method
JP5491696B2 (en) Stage device and control method thereof
TWI588917B (en) Method and apparatus for mounting electronic or optical components on a substrate
CN107665847B (en) Bonding alignment equipment and method
JP5319152B2 (en) Stage device and control method thereof
JP5463729B2 (en) Semiconductor processing equipment
JPS62107935A (en) Automatic correcting mechanism for surface grinder
JP6275632B2 (en) Room temperature bonding apparatus and room temperature bonding method
JP5531508B2 (en) Substrate overlay apparatus, substrate overlay method, and device manufacturing method
JP4606956B2 (en) Stage equipment
JP5359009B2 (en) Semiconductor substrate bonding equipment
JP7182703B2 (en) Joining device, joining system and joining method
JP2009260038A (en) Semiconductor substrate bonding device and its control method
JP2009239095A (en) Bonding method and device
JP3963805B2 (en) Fine movement device
JP2009267043A (en) Joining apparatus and joining method
JP5338114B2 (en) Semiconductor substrate bonding apparatus and semiconductor device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08869044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009548043

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08869044

Country of ref document: EP

Kind code of ref document: A1