WO2009084103A1 - 送信制御方法、無線基地局、移動局および制御方法 - Google Patents

送信制御方法、無線基地局、移動局および制御方法 Download PDF

Info

Publication number
WO2009084103A1
WO2009084103A1 PCT/JP2007/075283 JP2007075283W WO2009084103A1 WO 2009084103 A1 WO2009084103 A1 WO 2009084103A1 JP 2007075283 W JP2007075283 W JP 2007075283W WO 2009084103 A1 WO2009084103 A1 WO 2009084103A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet data
base station
radio base
mobile station
voice packet
Prior art date
Application number
PCT/JP2007/075283
Other languages
English (en)
French (fr)
Inventor
Yoshiaki Ohta
Yoshihiro Kawasaki
Yoshiharu Tajima
Kazuhisa Obuchi
Yoshinori Tanaka
Katsumasa Sugiyama
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2007/075283 priority Critical patent/WO2009084103A1/ja
Priority to JP2009547846A priority patent/JP5041007B2/ja
Publication of WO2009084103A1 publication Critical patent/WO2009084103A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off

Definitions

  • the present invention relates to a transmission control method, a radio base station, a mobile station, and a control method, and more particularly to a transmission control method, a radio base station, a mobile station, and a control method for wirelessly transmitting voice packet data.
  • one of the communication services realized on the mobile communication system is voice packet communication that transmits voice as packet data.
  • Voice packet communication is characterized in that packet data is generated intermittently. Therefore, in voice packet communication, it is conceivable to use Persistent Scheduling as a transmission control method.
  • Persistent Scheduling a transmission cycle is first agreed between the radio base station and the mobile station. Then, the radio base station transmits voice packet data to the mobile station at the agreed cycle, and the mobile station decodes and reproduces the voice packet data at the agreed cycle.
  • a buffer memory for absorbing jitter is provided in the mobile station so that voice packet data can be reproduced at a desired cycle even when there is a transmission interval fluctuation (jitter) caused by a change in the congestion state or the like.
  • jitter transmission interval fluctuation
  • Second, there is a method of predicting the occurrence of handover and performing possible setting changes in advance in order to suppress transmission delays caused by transmission path setting changes during handover for example, Patent Documents). 2 and 3).
  • Thirdly, in order to suppress the occurrence of packet loss at the time of handover there is a method of transferring a packet arriving at the handover source radio base station to the handover destination radio base station (see, for example, Patent Document 4). JP 2004-297591 A JP 2002-325275 A JP 2002-335553 A JP 2001-339552 A
  • Patent Documents 1 to 4 still have a problem in that voice reproduction quality may be deteriorated due to delay in arrival of voice packet data to the mobile station at the time of handover.
  • voice reproduction quality may be deteriorated due to delay in arrival of voice packet data to the mobile station at the time of handover.
  • the present invention has been made in view of these points, and an object thereof is to provide a transmission control method, a radio base station, a mobile station, and a control method that can suppress a decrease in voice reproduction quality during handover.
  • a transmission control method for a radio base station that wirelessly transmits voice packet data to a mobile station is provided.
  • the acquired voice packet data addressed to the mobile station is stored in a buffer memory, and the voice packet data in the buffer memory is stored in a predetermined cycle after waiting for the voice packet data in the buffer memory to reach a predetermined amount.
  • all or a plurality of voice packet data in the buffer memory are wirelessly transmitted to the mobile station.
  • the received voice packet data is stored until playback is performed at a predetermined voice playback timing.
  • a transmission control method After the voice packet data in the buffer memory reaches a predetermined amount, a process of wirelessly transmitting the voice packet data to the mobile station at a predetermined cycle is started. Then, when it is determined that the mobile station performs handover to another radio base station, all or a plurality of voice packet data in the buffer memory are wirelessly transmitted to the mobile station.
  • a radio base station that wirelessly transmits voice packet data to a mobile station.
  • This radio base station has a buffer memory and a transmission unit.
  • the buffer memory stores the acquired voice packet data addressed to the mobile station.
  • the transmission unit waits for the voice packet data in the buffer memory to reach a predetermined amount, starts a process of sequentially wirelessly transmitting the voice packet data in the buffer memory to the mobile station at a predetermined cycle, and then the mobile station When it is decided to perform handover to another radio base station, all or a plurality of voice packet data in the buffer memory are transmitted by radio to the mobile station.
  • the transmitter starts processing to wirelessly transmit the voice packet data to the mobile station at a predetermined cycle. Then, when it is determined that the mobile station performs handover to another radio base station, all or a plurality of voice packet data in the buffer memory are wirelessly transmitted to the mobile station.
  • a mobile station that receives voice packet data from a radio base station and plays back voice is provided.
  • This mobile station has a receiving unit and a reproducing unit.
  • the receiving unit performs handover to another radio base station while receiving voice packet data from the radio base station at a predetermined cycle, all or a plurality of radio base stations hold in the buffer memory.
  • Voice packet data is received from the radio base station.
  • the receiving unit when it is decided to perform handover to another radio base station, receives all or a plurality of voice packet data held in the buffer memory of the radio base station. The Then, after the handover is determined by the playback unit, until reception of voice packet data from another radio base station is started, a predetermined amount is determined based on the voice packet data held in the buffer memory of the radio base station. Audio playback is performed at the audio playback timing.
  • FIG. 1 is a diagram showing the present embodiment.
  • the mobile communication system shown in FIG. 1 can transmit voice packet data wirelessly.
  • This mobile communication system includes radio base stations 10 and 10 a and a mobile station 20.
  • the current connection destination of the mobile station 20 is the radio base station 10.
  • the radio base station 10 includes a buffer memory 11 and a transmission unit 12.
  • the buffer memory 11 buffers the acquired voice packet data addressed to the mobile station 20 (step S1).
  • the transmission unit 12 waits for the voice packet data buffered in the buffer memory 11 to reach a predetermined amount (for example, a data amount equal to or greater than the data amount corresponding to N (N is a natural number greater than or equal to 2) voice packet data).
  • a predetermined amount for example, a data amount equal to or greater than the data amount corresponding to N (N is a natural number greater than or equal to 2) voice packet data.
  • wireless transmission of voice packet data to the mobile station 20 is started (step S2).
  • the voice packet data is transmitted by, for example, extracting voice packet data in order from the top of the buffer memory 11 (in the order of arrival) and transmitting the voice packet data at a predetermined cycle.
  • the buffer memory When acquiring the voice packet data in an order different from the order of the voice packet data to be transmitted (reproduced), the buffer memory is used in order using the order information (sequence number, etc.) included in the voice packet data.
  • the voice packet data may be extracted from 11 and transmitted.
  • the transmission unit 12 receives voice packet data addressed to all the mobile stations 20 buffered in the buffer memory 11 or is buffered.
  • the voice packet data addressed to a plurality of N (for example, more than the amount of data of two voice packet data) is wirelessly transmitted to the mobile station 20 (step S3).
  • the wireless transmission of the voice packet data after the handover decision may be performed at a timing according to the transmission schedule before the handover, or may be performed at an arbitrary timing that does not depend on the transmission schedule before the handover.
  • the buffered voice packet data may be transmitted all at once, or may be divided and transmitted multiple times. Furthermore, if it is difficult to transmit all voice packet data due to radio propagation conditions, only the voice packet data that can be transmitted may be transmitted.
  • the mobile station 20 has a receiving unit 21 and a reproducing unit 22.
  • the receiving unit 21 wirelessly receives voice packet data transmitted by the radio base station 10 at a predetermined cycle.
  • the receiving unit 21 wirelessly receives all the voice packet data buffered in the buffer memory 11.
  • the reproduction unit 22 reproduces the voice packet data received by the reception unit 21 based on a predetermined timing.
  • the playback unit 22 does not receive the voice packet data received from the radio base station 10 after the handover decision by the receiving unit 21 until the reception of the voice packet data via the radio base station 10a is started after the handover decision. Playback is performed based on a predetermined timing.
  • the transmission unit 12 starts radio transmission of the voice packet data. Then, the voice packet data is received wirelessly by the receiving unit 21 of the mobile station 20, and voice playback is performed by the playback unit 22. After that, when it is determined that the mobile station 20 performs handover to the radio base station 10a, all (or a plurality of N or two or more data quantities buffered in the buffer memory 11 by the transmission unit 12). Or the maximum possible voice packet data is transmitted wirelessly. Then, the voice packet data is received wirelessly by the receiving unit 21, and the voice reproduction is continuously performed by the reproducing unit 22 based on the voice packet data even before the handover is completed.
  • the mobile station 20 can continuously reproduce the voice packet data at a desired cycle even during the handover, and the deterioration of the voice reproduction quality is suppressed.
  • the radio base station 10 may notify the radio base station 10a of the transmission schedule before the handover after the handover is determined. As a result, the radio base station 10a can smoothly take over the transmission processing of the voice packet data to the mobile station 20. Also, the radio base station 10, when the section where the voice packet data continuously arrives (sound section) and the section where the background noise packet data arrives continuously (silence section) appear alternately, Audio packet data may be buffered at each start. Further, the radio base station 10 may transmit a signal to that effect to the mobile station 20 when the background noise packet data first arrives after the sound period. Thereby, the mobile station 20 can switch the reception mode earlier.
  • FIG. 2 is a diagram showing a system configuration of the mobile communication system.
  • the mobile communication system according to the first embodiment is a communication system that wirelessly transmits packet data.
  • This mobile communication system includes radio base stations 100, 100 a, 100 b, mobile stations 200, 200 a, and an upper station 300.
  • the wireless base stations 100, 100a, and 100b are wireless communication devices that can perform wireless communication with mobile stations that are within respective radio wave reachable ranges (cells).
  • the radio base stations 100, 100a, 100b are connected to the upper station 300 via a wired or wireless network.
  • the radio base station 100 and the radio base station 100a are connected by a wired or wireless network.
  • the radio base stations 100, 100a, and 100b can transfer packet data acquired from the mobile stations in the cell to the upper station 300 and wirelessly transmit packet data acquired from the upper station 300. Further, the radio base stations 100 and 100a can transfer packet data to an appropriate radio base station without passing through the upper station 300 at the time of handover.
  • the mobile stations 200 and 200a are wireless terminal devices that can perform wireless communication with the wireless base stations 100, 100a, and 100b.
  • the mobile stations 200 and 200a are, for example, mobile phones.
  • the mobile stations 200 and 200a can transmit and receive packet data to and from other mobile stations via the radio base station. Examples of packet data transmitted and received by the mobile stations 200 and 200a include VoIP (VoiceVover Internet Protocol) packet data.
  • VoIP VoiceVover Internet Protocol
  • the upper station 300 is a relay device that manages the cell to which the mobile stations 200 and 200a currently belong, and transfers the acquired packet data to an appropriate radio base station according to the destination of the packet.
  • the upper station 300 corresponds to, for example, a packet switch arranged in the core network.
  • another relay device may be installed between the radio base stations 100, 100 a, 100 b and the upper station 300. Further, the radio base station 100 and the radio base station 100a may communicate with each other via the host station 300 instead of directly communicating with each other.
  • the mobile station 200 is currently receiving radio waves from the radio base stations 100 and 100a and has the radio base station 100 as a connection destination, and the mobile station 200a has the radio base station 100b as a connection destination.
  • the radio base stations 100a and 100b can be realized by the same module configuration as the radio base station 100.
  • the mobile station 200a can be realized by the same module configuration as the mobile station 200.
  • FIG. 3 is a block diagram showing functions of the radio base station.
  • the radio base station 100 includes a buffer memory 110, a switch 120, a scheduler 130, a transmission / reception unit 140, a transmission / reception antenna 150, and a control unit 160.
  • the buffer memory 110 is a memory for temporarily storing arrived VoIP packet data.
  • the buffer memory 110 is provided with two storage areas. In one storage area, VoIP packet data received from the upper station 300 is stored. The other storage area stores VoIP packet data received from the radio base station 100a, which is an adjacent radio base station.
  • the two storage areas may be realized by physically providing two memory devices, or may be realized by dividing the storage area of one memory device into two by software.
  • the buffer memory 110 outputs the stored VoIP packet data to the switch 120 under the control of the control unit 160.
  • the switch 120 distributes the VoIP packet data output from the buffer memory 110 according to the transmission destination. If the VoIP packet data is wirelessly transmitted to the mobile station 200, the switch 120 outputs it to the scheduler 130. In the case of VoIP packet data transferred to the radio base station 100a or the upper station 300, the switch 120 outputs it to the corresponding wired or wireless network.
  • the scheduler 130 manages radio resources (transmission timing and transmission frequency band) used for radio communication with the mobile station 200.
  • the scheduler 130 acquires the VoIP packet data and other packet data output from the switch 120, the scheduler 130 specifies a radio resource used for transmission and outputs the packet data to the transmission / reception unit 140.
  • the transmission / reception unit 140 acquires packet data from the scheduler 130, and acquires various control information related to wireless communication from the control unit 160. Then, the transmission / reception unit 140 performs encoding / modulation of the packet data and the control information, and outputs them to the transmission / reception antenna 150. In addition, the transmission / reception unit 140 acquires a reception signal from the transmission / reception antenna 150 and performs demodulation / decoding. The packet data obtained here is taken in for transfer according to the destination, and the obtained control information is output to the control unit 160.
  • the transmission / reception antenna 150 is a transmission / reception antenna.
  • the transmission / reception antenna 150 wirelessly transmits a transmission signal acquired from the transmission / reception unit 140. Further, the transmission / reception antenna 150 outputs a reception signal received from the mobile station 200 to the transmission / reception unit 140.
  • the control unit 160 controls the entire radio base station 100 based on various control information acquired from the mobile station 200, the radio base station 100a, and the upper station 300 and the transmission / reception status of packet data. Further, the control unit 160 outputs various control information to the mobile station 200, the radio base station 100a, and the upper station 300 as necessary.
  • the control unit 160 includes a scheduler management unit 161, a measurement unit 162, a HO processing unit 163, and a buffer management unit 164.
  • the scheduler management unit 161 controls the scheduler 130 to manage the transmission schedule of packet data.
  • the scheduler manager 161 instructs the scheduler 130 to perform Persistent Scheduling when starting VoIP packet communication with the mobile station 200.
  • Persistent Scheduling only voice packet data for voice playback is transmitted continuously (sound zone, Talkspurt zone) and only background noise packet data for playback of background noise is transmitted continuously.
  • For each section silent section, silent section
  • radio resources having a predetermined period are reserved in a lump. The transmission period may be different between the voiced section and the silent section.
  • the scheduler management unit 161 may perform rescheduling as necessary while VoIP packet communication is continued.
  • the measurement unit 162 collects measurement information (Measurement Report) indicating the radio quality of the communication link (downlink) from the radio base stations 100 and 100a to the mobile station 200.
  • the measurement information is received as control information from the mobile station 200.
  • the measurement information includes, for example, CQI (Channel Quality Information).
  • the HO processing unit 163 continuously monitors the measurement information collected by the measurement unit 162 and determines whether or not the mobile station 200 needs a handover (HO: HandOver). For example, the HO processing unit 163 determines that the handover is necessary when the radio quality between the radio base station 100a and the mobile station 200 becomes better than the radio quality between the radio base station 100 and the mobile station 200. To do.
  • the HO processing unit 163 transmits / receives various control information to / from the destination radio base station (for example, the radio base station 100a), the mobile station 200, and the upper station 300, and executes a handover process.
  • the radio base station 100 functions as a destination radio base station
  • the HO processing unit 163 executes various processes necessary for taking over radio communication from the source radio base station.
  • the buffer management unit 164 manages the VoIP packet data stored in the buffer memory 110. Specifically, the buffer management unit 164 causes the buffer memory 110 to buffer a predetermined amount of voice packet data at the start of the sound period. After that, the voice packet data addressed to the mobile station 200 is sequentially output to the switch 120 at a period (for example, a period of 20 ms) corresponding to the voiced section. Further, in the silent period, the background noise packet data addressed to the mobile station 200 is sequentially output to the switch 120 at a period corresponding to the silent period (for example, a period of 160 ms).
  • the buffer management unit 164 stores all (or a plurality of N or two data amounts) stored in the buffer memory 110.
  • the voice packet data addressed to the mobile station 200 (the above amount or the maximum possible transmission) is output to the switch 120. Note that the buffering amount at the start of the voiced section can be changed by setting. It is also possible to prevent the buffering at the beginning of a voiced section from being performed by setting.
  • FIG. 4 is a block diagram showing functions of the mobile station.
  • the mobile station 200 includes a transmission / reception antenna 210, a transmission / reception unit 220, a buffer memory 230, a switch 240, a reproduction unit 250, and a control unit 260.
  • the transmission / reception antenna 210 is a transmission / reception antenna.
  • the transmission / reception antenna 210 outputs a reception signal received from the radio base stations 100 and 100 a to the transmission / reception unit 220.
  • the transmission / reception antenna 210 wirelessly transmits a transmission signal acquired from the transmission / reception unit 220.
  • the transmission / reception unit 220 acquires a reception signal from the transmission / reception antenna 210, performs demodulation / decoding, and extracts packet data and control information addressed to the own station.
  • VoIP packet data is output to the buffer memory 230, and the obtained control information is output to the control unit 260.
  • the transmission / reception unit 220 acquires packet data to be transmitted and also acquires control information to be transmitted from the control unit 260.
  • the transmission / reception unit 220 encodes / modulates the packet data and control information and outputs the encoded data to the transmission / reception antenna 210.
  • the transmission / reception unit 220 acquires VoIP packet data including a bit error from the switch 240, the transmission / reception unit 220 makes a retransmission request according to the acquired VoIP packet data.
  • Retransmission can also be performed before the next VoIP packet data transmission timing (for a voiced section, for example, transmission timing after 20 ms, for a silent section, for example, transmission timing after 160 ms).
  • the buffer memory 230 is a memory that temporarily stores the VoIP packet data output from the transmission / reception unit 220.
  • the VoIP packet data stored in the buffer memory 230 is inspected by the controller 260 for bit errors. Then, under the control of the control unit 260, the VoIP packet data is sequentially output to the switch 240.
  • the switch 240 distributes the VoIP packet data output from the buffer memory 230 according to the presence or absence of a bit error.
  • the VoIP packet data having no bit error is output to the reproducing unit 250.
  • the VoIP packet data having a bit error is output to the transmission / reception unit 220 and subjected to retransmission control.
  • VoIP packet data having a bit error may be left in the buffer memory 230, and may be combined with retransmission packet data (HARQ (Hybrid Automatic Repeat Request) combining).
  • HARQ Hybrid Automatic Repeat Request
  • the playback unit 250 has a buffer memory 251.
  • the buffer memory 251 is a memory that temporarily stores VoIP packet data.
  • the reproducing unit 250 stores the VoIP packet data acquired from the switch 240 in the buffer memory 251.
  • the playback unit 250 sequentially extracts VoIP packets from the buffer memory 251 at a cycle corresponding to a voiced section or a silent section, decodes them, and performs voice playback (playout).
  • the control unit 260 controls the entire mobile station 200 based on various control information acquired from the radio base stations 100 and 100a and the transmission / reception status of packet data. Further, the control unit 260 outputs various control information to the radio base stations 100 and 100a as necessary.
  • the control unit 260 includes a measurement unit 261, a retransmission request unit 262, a reproduction management unit 263, and an HO processing unit 264.
  • the measuring unit 261 continuously measures the radio quality of each downlink from the radio base station 100, 100a to the mobile station 200.
  • the radio quality can be measured, for example, by capturing a pilot signal that the radio base stations 100 and 100a transmit regularly or irregularly.
  • the measurement unit 261 outputs the measurement information as control information to the currently connected radio base station (for example, the radio base station 100).
  • This measurement information includes, for example, CQI.
  • the retransmission request unit 262 controls the retransmission request by the transmission / reception unit 220. Specifically, the retransmission request unit 262 checks whether there is a bit error in the VoIP packet data stored in the buffer memory 230, and controls to return the VoIP packet data to the transmission / reception unit 220 if there is a bit error. . Then, retransmission request section 262 outputs a retransmission request signal to transmission / reception section 220, and controls transmission / reception section 220 to make a retransmission request to the currently connected radio base station.
  • the retransmission control it is also possible to specify a bit range including an error and make a retransmission request, and have the packet data retransmitted limited to the bit range.
  • the playback management unit 263 controls audio playback by the playback unit 250.
  • the reproduction management unit 263 designates the timing for starting decoding / reproduction of VoIP packet data, and the decoding / reproduction period of VoIP packet data in each of the voiced and silent periods. It is also possible to perform control so that buffering is performed until the voice packet data reaches a predetermined amount at the start of the voiced section, and then decoding / playback of the voice packet data is started.
  • the HO processing unit 264 Upon receiving a handover instruction notification as control information from the currently connected radio base station, the HO processing unit 264 disconnects the link with the source radio base station and the link with the destination radio base station. Set up. Then, the HO processing unit 264 controls the transmission / reception unit 220 so as to resume packet communication via the destination wireless base station.
  • the transmitting / receiving unit 220 determines that all (or multiple N or two or more data quantities buffered in the source radio base station) Receive the maximum amount of voice packet data that can be transmitted wirelessly.
  • the voice packet data is stored in the buffer memory 251. Therefore, even if reception of the voice packet data is interrupted from the determination of the handover to the restart of communication via the destination radio base station, the playback unit 250 can continue the voice playback at the originally scheduled period.
  • the mobile station 200 receives VoIP packet data from the mobile station 200a via the radio base station 100 and then performs handover to the radio base station 100a.
  • the mobile station 200 receives VoIP packet data from the mobile station 200a via the radio base station 100 and then performs handover to the radio base station 100a.
  • a description will be given of the order of handover control of each of the radio base stations 100 and 100a and the mobile station 200.
  • FIG. 5 is a diagram illustrating a transmission example of a buffering message.
  • the radio base station 100 wirelessly transmits a buffering message 141 as control information to the mobile station 200 before starting VoIP packet communication.
  • the buffering message 141 includes buffering instruction information (Buffering Indicator) and buffering amount information (Buffering Amount).
  • the buffering instruction information is information indicating the presence / absence of buffering at the start of a voiced section by the radio base station 100 or the mobile station 200, and is represented by 1 bit, for example.
  • the buffering amount information is information indicating how many packets of audio packet data are to be buffered, and is expressed by 2 to 3 bits, for example. For the presence / absence of buffering and the buffering amount, a fixed value may be used, or a value dynamically determined according to the communication status may be used.
  • the meaning of the buffering instruction information can be interpreted in multiple ways.
  • the radio base station 100 and the mobile station 200 agree in advance what the meanings of 0 and 1 in the buffering instruction information are. Three interpretation examples are given below.
  • the first interpretation is that when 0, buffering at the mobile station 200 is indispensable, buffering at the radio base station 100 is optional, and when 1, buffering at the radio base station 100 is indispensable.
  • the interpretation is that buffering is optional.
  • the second interpretation is an interpretation that buffering at the radio base station 100 is essential, and buffering at the mobile station 200 is not performed when 0 and is performed when 1.
  • the third interpretation is that buffering at the mobile station 200 is essential, and buffering at the radio base station 100 is not performed when 0, but is performed when 1.
  • the buffering situation of the radio base station 100 and the mobile station 200 is clarified, and each device follows it, so that excessive buffering is performed and the transmission delay between the mobile station 200 and the mobile station 200a is reduced. It is possible to prevent the sound reproduction quality from deteriorating due to an increase in size or insufficient buffering, and to perform optimization.
  • the presence / absence of buffering and the default value of the buffering amount may be set, and the buffering message may be transmitted / received only when different from the default value. Further, a buffering message including only one of the presence or absence of buffering and the buffering amount may be transmitted and received.
  • the buffering message 141 does not include the buffering instruction information but can include only the buffering amount information.
  • the buffering amount information is information indicating how many packets of voice packet data are to be buffered, and is expressed by 2 to 3 bits, for example. For the presence / absence of buffering and the buffering amount, a fixed value may be used, or a value dynamically determined according to the communication status may be used.
  • the buffering amount information can be interpreted in multiple ways. For example, what the meanings of 2 to 3 bits in the buffering instruction information have in advance is agreed between the radio base station 100 and the mobile station 200. Three interpretation examples are given below.
  • the first interpretation is that when the buffering amount is a specified amount, only the amount of buffering at the mobile station 200 is essential and the buffering at the radio base station 100 is arbitrary, or the buffering at the radio base station 100 is It is interpreted that only the specified amount of the ring is essential and buffering at the mobile station 200 is arbitrary.
  • the second interpretation is an interpretation that the buffering at the radio base station 100 is essential, and the buffering amount at the mobile station 200 is not performed when the buffering amount is 0, and only the specified amount is performed when it is not 0.
  • the third interpretation is that buffering at the mobile station 200 is essential, and buffering at the radio base station 100 is not performed when 0 and only the specified amount is performed when it is not 0.
  • FIG. 6 is a diagram illustrating another transmission example of the buffering message.
  • the radio base station 100 designates the presence / absence of buffering and the buffering amount for the mobile station 200, but conversely, the mobile station 200 The presence / absence of buffering and the buffering amount may be designated for 100.
  • the mobile station 200 wirelessly transmits a buffering message 221 to the radio base station 100 as control information.
  • the meaning of the buffering message 221 is the same as the meaning of the buffering message 141 described above. However, the meanings of 0 and 1 in the buffering instruction information may be reversed. For example, 0 may mean buffering at the radio base station 100, and 1 may mean buffering at the mobile station 200.
  • FIG. 7 is a flowchart showing a procedure of packet transmission control. In the following, the process illustrated in FIG. 7 will be described in order of step number.
  • the control unit 160 performs signaling related to persistent scheduling with the mobile station 200. For example, the control unit 160 performs radio resource setting processing in an RRC (Radio Resource Control) layer, and sets a modulation scheme in L1 (layer 1: physical layer) / L2 (layer 2: MAC (Medium Access Control) layer). Process. Then, the control unit 160 controls the scheduler 130 and the transmission / reception unit 140 so that the VoIP packet data can be transmitted.
  • RRC Radio Resource Control
  • Step S12 The control unit 160 determines whether or not it is the start of a voiced segment, that is, whether or not the head of the voice packet data addressed to the mobile station 200 has arrived at the buffer memory 110. If it is the start of a sound section, the process proceeds to step S13. If it is not the start of the sound section, the process proceeds to step S15.
  • Step S13 The control unit 160 waits for buffering of voice packet data addressed to the mobile station 200 in the buffer memory 110 in an amount (for example, 2 to 3 packets) specified by the buffering message.
  • Step S14 When the buffering in step S13 is completed, the control unit 160 controls the buffer memory 110 to sequentially buffer the voice packet data in a cycle corresponding to a voiced period (for example, a cycle of 20 ms). Output. Thereby, intermittent and periodic wireless transmission of the voice packet data to the mobile station 200 is started. Thereafter, the process proceeds to step S12.
  • the control unit 160 may rearrange the order as necessary instead of outputting the voice packet data in the order of arrival.
  • Step S15 The control unit 160 determines whether or not it is the start of the silent period, that is, whether or not the head of the background noise packet data addressed to the mobile station 200 has arrived at the buffer memory 110. If it is the start of a silent section, the process proceeds to step S16. If it is not the start of the silent section, the process proceeds to step S17.
  • Step S16 When the next order of transmitting background noise packet data is reached, the control unit 160 controls the buffer memory 110 so that the buffered background noise packet data has a period (for example, 160 ms) corresponding to the silent period. Cycle). As a result, intermittent and periodic wireless transmission of background noise packet data to the mobile station 200 is started. Thereafter, the process proceeds to step S12.
  • a period for example, 160 ms
  • Step S17 The control unit 160 determines whether or not the VoIP packet communication between the mobile station 200 and the mobile station 200a is completed. When the communication is finished, the transmission control of the VoIP packet data addressed to the mobile station 200 is finished. If the communication has not ended, the process proceeds to step S12.
  • the radio base station 100 performs Persistent Scheduling for disclosure of VoIP packet communication, and voice packet data is wirelessly transmitted at a period corresponding to a voiced period (for example, a period of 20 ms), and background noise packet data is Wireless transmission is performed at a period (for example, a period of 160 ms) corresponding to the silent period.
  • the radio base station 100 starts radio transmission after buffering a predetermined amount (for example, 2 to 3 packets) of voice packet data at the start of a voiced section.
  • FIG. 8 is a flowchart showing a handover control procedure of the source radio base station. In the following, the process illustrated in FIG. 8 will be described in order of step number.
  • Step S21 The control unit 160 acquires measurement information indicating the radio quality between the radio base stations 100 and 100a and the mobile station 200 from the mobile station 200 as control information.
  • Step S22 The control unit 160 determines whether the mobile station 200 needs to perform handover to another radio base station (for example, the radio base station 100a) based on the measurement information acquired in step S21. If handover is necessary, the process proceeds to step S23. If there is no need for handover, the process proceeds to step S21 and waits for the next acquisition of measurement information. In the following description, it is assumed that the handover from the radio base station 100 to the radio base station 100a is determined.
  • the control unit 160 transmits a handover request to the radio base station 100a.
  • the handover request includes, for example, information related to the mobile station 200 such as identification information of the mobile station 200 and QoS (Quality) of Service) requested by the mobile station 200.
  • QoS Quality of Service
  • Step S24 Upon receiving the permission response to the handover request transmitted in Step S23 from the radio base station 100a, the control unit 160 transmits schedule information about the voice packet data to the radio base station 100a.
  • the schedule information includes, for example, the buffering amount of voice packet data, the time when the previous scheduling was performed, the time when the next rescheduling was scheduled, and the like.
  • the following four methods can be considered as the time notification method, for example.
  • Absolute time designation method The time at which the previous scheduling was performed and the time at which the next scheduling was scheduled are designated by the absolute time provided by the source base station.
  • Relative time designation method The time at which the previous scheduling was performed is designated by the absolute time of the source base station, and the time at which the next rescheduling is scheduled to occur will occur in seconds after the last scheduling. Is specified.
  • Subframe absolute number designation method The subframe number of the source base station is designated as the time when the previous scheduling was performed, and the time when the rescheduling is scheduled to be performed next is also designated by the subframe number. .
  • Subframe relative number designation method The subframe number of the source base station is designated as the previous scheduling time, and the previous scheduling was performed at the time when the next rescheduling was scheduled. Specify the number of subframes after the subframe. In the above case, the movement source base station and the movement destination base station may share the time and subframe deviation.
  • Step S25 The control unit 160 outputs a handover instruction to the mobile station 200.
  • the transmission / reception unit 140 wirelessly transmits the handover instruction output from the control unit 160 to the mobile station 200 as control information.
  • Step S ⁇ b> 26 The control unit 160 stores all the buffered voice packet data addressed to the mobile station 200 (or more than a plurality of N or two data amounts or the maximum amount that can be transmitted). To output. At this time, it is expected that the buffer memory 110 stores voice packet data of about the buffering amount at the start of the voiced section (for example, within the range of the number of packets initially buffered plus or minus one). The transmission / reception unit 140 wirelessly transmits the voice packet data output from the buffer memory 110 to the mobile station 200.
  • the transmitter / receiver 140 wirelessly transmits a signal indicating that voice packet data has been transmitted and the amount of transmitted voice packet data as an L1 / L2 control signal, as necessary.
  • this control signal is not necessarily required when the mobile station 200 performs Blind ⁇ ⁇ ⁇ ⁇ Detection.
  • the control unit 160 transfers the buffered background noise packet data and the VoIP packet data addressed to the mobile station 200 that has arrived after the output processing to the radio base station 100a.
  • Step S27 Upon receiving a resource release instruction from the radio base station 100a, the control unit 160 releases resources reserved for VoIP packet communication among the upper station 300, the radio base station 100, and the mobile station 200. .
  • the radio base station 100 which is the source radio base station, determines whether the handover is necessary and the destination radio base station based on the measurement information continuously acquired from the mobile station 200. .
  • the radio base station 100 transmits schedule information used for taking over the VoIP packet communication to the destination radio base station, and all the buffering for the mobile station 200 is performed. (Or a plurality of N or two or more data amounts or the maximum amount of data that can be transmitted) is wirelessly transmitted. Thereafter, resources for transmitting VoIP packet data via the radio base station 100 are released.
  • the transmission of the schedule information in step S24 can be performed simultaneously with the transmission of the handover request in step S23, and the radio base station 100a starts radio transmission of VoIP packet data after the handover request is transmitted. It can also be performed at any timing up to.
  • the wireless transmission of the voice packet data in step S26 may be performed at an arbitrary timing after the handover response is received from the radio base station 100a until the mobile station 200 establishes synchronization with the radio base station 100a. it can.
  • whether to perform handover is determined based on the downlink radio quality, but the uplink radio quality may also be referred to.
  • FIG. 9 is a flowchart showing a handover control procedure of the movement-destination radio base station.
  • the process illustrated in FIG. 9 will be described in order of step number.
  • the radio base station 100a includes the control unit 160a as a module corresponding to the control unit 160 of the radio base station 100.
  • Step S31 Upon receiving the handover request from the radio base station 100, the control unit 160a determines whether or not to permit the handover of the mobile station 200 based on information included in the handover request. Then, the control unit 160a responds to the radio base station 100 with the determination result.
  • the handover is permitted.
  • the control unit 160a receives schedule information from the radio base station 100. Then, the control unit 160a determines the buffering amount of voice packet data and the transmission start timing based on the scheduling information. For example, the control unit 160a can set the buffering amount notified by the schedule information to a maximum value that can be set, and can determine the actual buffering amount within a range below that.
  • Step S33 In response to a request from the mobile station 200, the control unit 160a establishes synchronization with the mobile station 200 so that the VoIP packet communication is possible. [Step S34] The control unit 160a reports to the upper station 300 that the mobile station 200 has completed handover from the radio base station 100 to the radio base station 100a. Thereby, in the upper station 300, the setting of the transmission path of the packet addressed to the mobile station 200 is changed.
  • Step S35 Upon receiving a response to the handover completion report transmitted in Step S34 from the upper station 300, the control unit 160a performs control so that radio resources used for VoIP packet communication with the mobile station 200 are secured by Persistent Scheduling. To do.
  • Step S36 The control unit 160a instructs the radio base station 100 to release resources for VoIP packet communication of the mobile station 200.
  • the radio base station 100a which is the destination radio base station, sets the buffering amount of voice packet data and the transmission start timing based on the schedule information received from the source radio base station after the handover request. adjust.
  • the radio base station 100a transmits a handover completion report to the upper station 300, and changes the transmission path of VoIP packet data addressed to the mobile station 200. Thereby, the radio base station 100a can smoothly take over VoIP packet communication from the source radio base station.
  • the schedule information may be received at the same time as the handover request, or may be received at any timing after the handover request is received until wireless transmission of VoIP packet data is started.
  • FIG. 10 is a flowchart showing a procedure of mobile station handover control. In the following, the process illustrated in FIG. 10 will be described in order of step number.
  • the control unit 260 measures the radio quality of each downlink based on the received signals from the radio base stations 100 and 100a. The measurement of radio quality is performed, for example, by capturing a pilot signal included in the received signal. And the control part 260 outputs the measurement information which shows a measurement result.
  • the transmission / reception unit 220 wirelessly transmits this measurement information to the radio base station 100 as control information. Note that the transmission of measurement information is continuously performed, for example, at a cycle specified by the radio base station 100.
  • Step S42 The control unit 260 determines whether or not a handover instruction is received as control information from the radio base station 100. If a handover instruction is received, the process proceeds to step S43. If a handover instruction has not been received, the process proceeds to step S41, and the next timing for transmitting measurement information is awaited.
  • Step S43 The control unit 260 determines whether or not an L1 / L2 control signal indicating that voice packet data has been transmitted has been received. If the L1 / L2 control signal is received, the process proceeds to step S45. If the L1 / L2 control signal has not been received, the process proceeds to step S44.
  • the control unit 260 detects a signal corresponding to the voice packet data included in the received signal from the radio base station 100 by Blind Detection.
  • Blind Detection for example, for a received signal from the radio base station 100, voice packet data is extracted in order for a plurality of extraction method candidates from which voice packet data may be extracted, and voice packet data is extracted. If so, it is determined that the extraction method was an appropriate extraction method. Whether or not the voice packet data is extracted can be determined by checking whether or not the voice packet data matches the format of the predetermined voice packet data.
  • Step S45 Based on the L1 / L2 control signal detected in step S43 or the detection result (determined extraction method) in step S44, the control unit 260 determines the voice packet data included in the received signal from the radio base station 100.
  • the transmission / reception unit 220 is instructed to extract all.
  • the voice packet data buffered in the radio base station 100 is stored in the buffer memory 251 of the reproduction unit 250.
  • Step S46 The control unit 260 establishes synchronization with the radio base station 100a, which is the destination radio base station specified by the handover instruction received from the radio base station 100, so that the VoIP packet communication is possible. To do.
  • the mobile station 200 continuously transmits downlink radio quality measurement information to the radio base station 100.
  • all (or more than a plurality of N or two data amounts or maximum transmittable) voice packets buffered in the radio base station 100 Receive data wirelessly.
  • the mobile station 200 can continue the voice reproduction based on the voice packet data buffered in the radio base station 100 even if a handover occurs in a voiced section.
  • the buffered voice packet data may be received before a handover instruction.
  • FIG. 11 is a sequence diagram illustrating the flow of the handover control process. In the following, the process illustrated in FIG. 11 will be described in order of step number.
  • the mobile station 200 measures the radio quality between the radio base stations 100 and 100a and transmits the measurement information to the radio base station 100.
  • Step S52 The radio base station 100 determines a handover based on the measurement information received in step S51, and selects the radio base station 100a as a destination radio base station. Then, the radio base station 100 transmits a handover request to the radio base station 100a.
  • Step S53 The radio base station 100a performs call admission control based on the handover request received in Step S52, and decides to permit the mobile station 200 to be accepted. Then, the radio base station 100a transmits a handover response to the radio base station 100.
  • the radio base station 100 transmits schedule information indicating a transmission schedule of the VoIP packet data of the mobile station 200 to the radio base station 100a.
  • the radio base station 100 instructs the mobile station 200 to perform a handover to the radio base station 100a.
  • the radio base station 100 transmits all the buffered voice packet data to the mobile station 200. At this time, the radio base station 100 also transmits a control signal indicating that the voice packet data has been transmitted and the amount of packets. Note that VoIP packet data arriving at the radio base station 100 thereafter is forwarded to the radio base station 100a according to the judgment of the base station 100, or discarded without being forwarded by the base station 100.
  • Step S57 The mobile station 200 and the radio base station 100a establish a connection for VoIP packet communication.
  • Step S58 The radio base station 100a transmits a handover completion report to the upper station 300.
  • Step S59 The upper station 300 changes the transfer destination of the packet addressed to the mobile station 200 to the radio base station 100a based on the handover completion report received in Step S58. Then, the upper station 300 transmits a handover completion response to the radio base station 100a.
  • Step S60 The radio base station 100a transmits a resource release instruction to the radio base station 100.
  • the radio base station 100 releases resources reserved for transmission paths of the upper station 300, the radio base station 100, and the mobile station 200.
  • the transmission of voice packet data in step S56 may be performed between step S53 and step S57. Further, the transmission of the schedule information in step S54 may be performed from step S52 to when the radio base station 100a starts transmitting VoIP packet data (may be included in step S52 and transmitted).
  • FIG. 12 is a diagram showing a first example of a packet flow.
  • the mobile station 200a transmits a voice packet including voice data (indicated by numerals 1 to 7 in the figure) at intervals of 20 ms, and then a background noise packet including background noise data (indicated as N in the figure). (Notation) is transmitted at intervals of 160 ms.
  • voice data indicated by numerals 1 to 7 in the figure
  • N background noise packet including background noise data
  • N background noise data
  • Voice packets (voice packets # 1 to # 4) transmitted by the mobile station 200a are transferred to the radio base station 100.
  • the arrival interval of voice packets to the radio base station 100 is not strictly 20 ms.
  • the radio base station 100 waits for three voice packets (voice packets # 1 to # 3) to be buffered, and then wirelessly transmits the voice packets to the mobile station 200 at intervals of 20 ms.
  • the arrival interval of voice packets to the mobile station 200 is not exactly 20 ms.
  • the mobile station 200 absorbs fluctuations in the reception interval using the buffer memory, and sequentially decodes and reproduces the data included in the received voice packet at intervals of 20 ms.
  • the radio base station 100 wirelessly transmits the voice packets # 3 and # 4 to the mobile station 200 at the timing that comes first after the handover is determined among the transmission timings of the 20 ms period specified in the schedule before the handover.
  • the mobile station 200 buffers the received voice packet.
  • voice packets (voice packets # 5 to # 7) transmitted from the mobile station 200a are transferred to the radio base station 100a.
  • the radio base station 100a determines that the buffering amount is 3 packets based on the schedule information received from the radio base station 100, and waits for three voice packets (voice packets # 5 to # 7) to be buffered. Thereafter, voice packets are wirelessly transmitted to the mobile station 200 at intervals of 20 ms.
  • the mobile station 200 can continue the audio reproduction based on the audio packets collectively received from the radio base station 100 until the radio base station 100a starts transmitting the audio packet.
  • the background noise packet transmitted after the voice packet # 7 by the mobile station 200a is transferred to the radio base station 100a.
  • the radio base station 100a wirelessly transmits a background noise packet to the mobile station 200 160 ms after transmitting the voice packet # 7.
  • the mobile station 200 reproduces the background noise by decoding the data included in the background noise packet 160 ms after reproducing the data of the voice packet # 7.
  • FIG. 13 is a diagram showing a second example of packet flow.
  • the overall flow of transmission of voice packets and background noise packets is the same as that shown in FIG.
  • the radio base station 100 wirelessly transmits the buffered voice packet data to the mobile station 200 at the earliest possible timing after the handover decision regardless of the original schedule.
  • the earliest possible timing is, for example, the earliest timing among timings at which radio resources for transmission can be secured.
  • the voice packet buffered in the radio base station 100 is wirelessly transmitted at the earliest possible timing regardless of the originally scheduled timing, thereby reproducing the arrival of the voice packet at the mobile station 200. It is possible to further reduce the risk of not meeting the timing.
  • FIG. 14 is a diagram showing a third example of the packet flow.
  • the overall flow of transmission of voice packets and background noise packets is the same as that shown in FIG.
  • the radio base station 100 transmits the buffered voice packet data in a plurality of times without transmitting the buffered voice packet data at a time.
  • the transmission timing of each time may be a timing that is originally scheduled as in the example shown in FIG. 12, or an arbitrary timing that does not depend on the timing that is originally scheduled as in the example shown in FIG. Also good.
  • the mobile communication system according to the second embodiment can be realized by the same system configuration as the mobile communication system according to the first embodiment shown in FIG.
  • the radio base station and mobile station according to the second embodiment can be realized by the same module configuration as the radio base station 100 shown in FIG. 3 and the mobile station 200 shown in FIG.
  • the control at the time of switching from a voiced section to a silent section is different from that in the first embodiment.
  • the second embodiment will be described using the same reference numerals as those used in the first embodiment.
  • FIG. 15 is a flowchart showing another procedure of packet transmission control. In the following, the process illustrated in FIG. 15 will be described in order of step number.
  • the control unit 160 performs signaling (transmission of control signals) related to persistent scheduling with the mobile station 200. Then, the control unit 160 makes it possible to transmit VoIP packet data.
  • Step S62 The control unit 160 determines whether or not it is the start of a sound section. If it is the start of a sound section, the process proceeds to step S63. If it is not the start of the sound section, the process proceeds to step S65.
  • Step S63 The control unit 160 waits for buffering of voice packet data addressed to the mobile station 200 in an amount (for example, 2 to 3 packets) specified in the buffering message in the buffer memory 110.
  • Step S64 When the buffering in Step S63 is completed, the control unit 160 performs control so that the buffered voice packet data is sequentially transmitted in a cycle (for example, a cycle of 20 ms) corresponding to the voiced section. Thereafter, the process proceeds to step S62.
  • a cycle for example, a cycle of 20 ms
  • Step S65 The control unit 160 determines whether or not it is the start of a silent section. If it is the start of a silent section, the process proceeds to step S66. If it is not the start of the silent section, the process proceeds to step S68.
  • Step S ⁇ b> 66 The transmission / reception unit 140 transmits, to the mobile station 200, a control signal indicating a transition from a voiced section to a silent section based on an instruction from the control section 160.
  • Step S67 The control unit 160 performs control so that the buffered background noise packet data is sequentially transmitted in a cycle (for example, 160 ms cycle) corresponding to the silent period. Thereafter, the process proceeds to step S62.
  • Step S68 The control unit 160 determines whether or not the VoIP packet communication between the mobile station 200 and the mobile station 200a is completed. When the communication is finished, the transmission control of the VoIP packet data addressed to the mobile station 200 is finished. If the communication has not ended, the process proceeds to step S62.
  • the radio base station 100 when the radio base station 100 acquires the background noise packet data after acquiring the voice packet data, the radio base station 100 transmits a control signal indicating the transition from the voiced section to the silent section to the mobile station 200. Thereby, the mobile station 200 can recognize the transition to the silent section earlier.
  • the mobile station 200 can turn off the power of the receiving circuit in a time zone other than the timing specified by Persistent Scheduling. At this time, if the transition to the silent period with a long transmission / reception cycle can be recognized quickly, the number of times the receiving circuit is turned on immediately after the end of the voiced period can be reduced, and the power consumption of the mobile station 200 is further suppressed. can do.
  • FIG. 16 is a diagram showing a fourth example of packet flow.
  • the overall flow of transmission of voice packets and background noise packets is the same as that shown in FIG.
  • the radio base station 100a transmits a control signal to the mobile station 200 before transmitting the first background noise packet.
  • the radio base station 100a notifies the control signal of when the transmission order of the background noise packets arrives immediately after the arrival of the first background noise packet. It is also conceivable to notify the control signal that the background noise packet will be transmitted next, at the same time as or immediately after the transmission of the last voice packet (voice packet # 7).
  • the mobile station 200 shifts to the silent period earlier. Can know. Thereby, the mobile station 200 can shift to the intermittent reception mode of 160 ms cycle even if 160 ms has not elapsed since the last voice packet reception.
  • whether the arrived VoIP packet is a voice packet or a background noise packet can be determined based on the packet size, for example. This is because the background noise packet is often shorter in packet length than the voice packet.
  • FIG. 17 is a diagram showing a fifth example of packet flow.
  • the overall flow of transmission of voice packets and background noise packets is the same as that shown in FIG.
  • the radio base station 100a transmits a background noise packet to the mobile station 200 instead of the control signal or together with the control signal. That is, the radio base station 100a transmits the first background noise packet regardless of the originally scheduled background noise packet transmission timing.
  • the mobile station 200 buffers the received background noise packet, decodes it at the originally scheduled timing, and reproduces the background noise.
  • the mobile station 200 can know the transition to the silent period earlier and shift to the intermittent reception mode with a period of 160 ms earlier. be able to.
  • the same effect as that of the first embodiment can be obtained. Furthermore, the power consumption of the mobile station 200 is reduced by using the mobile communication system according to the second embodiment.
  • a radio base station and a mobile station may be provided with a plurality of antennas to perform MIMO (Multiple-Input-Multiple-Output) communication.
  • MIMO Multiple-Input-Multiple-Output
  • the mobile station or a server device in the core network may make the handover decision.
  • various multiplexing schemes such as CDMA and OFDMA (Orthogonal Frequency Division Multiple Access) can be adopted, and various modulation schemes such as QAM (Quadrature Amplitude Modulation) and QPSK (Quadrature Phase Shift Shift Keying) are adopted.
  • various encoding methods such as a convolutional code and a turbo code can be employed.
  • a mobile communication system that wirelessly transmits a data block (voice packet data used for reproduction) used in a predetermined cycle in a mobile station from a radio base station to the mobile station.
  • the data addressed to the mobile station is stored in a storage unit (base station buffer memory), and the data addressed to the mobile station in the storage unit (buffer memory) contains a predetermined amount (for example, a plurality of N voices).
  • Packet data is started, and then a process of sequentially transmitting data in the storage unit to the mobile station in a predetermined cycle (for example, 20 ms) is started, and when handover for the mobile station is determined, before switching the connection to the radio base station, at least N (two or more own data blocks) of the data block among the data stored in the storage unit (buffer memory). Number) the number fraction more data to the mobile station at a time can be said to be wirelessly transmitted.
  • the predetermined amount is equal to or greater than N (natural number of 2 or more) of data blocks (see FIG. 12).
  • the amount of data is greater than or equal to the amount of data corresponding to two data blocks depending on the radio propagation status.
  • the radio base station since transmission of voice packet data is started from the radio base station after waiting for the data addressed to the mobile station to reach a predetermined amount (for example, a plurality of N voice packet data), the radio base station When there is a need for switching, there is a high possibility that data for a plurality of data blocks is stored in the storage unit, and the plurality of data blocks are wirelessly transmitted to the mobile station at one time.
  • a plurality of data blocks can be used for a data block to be used in a predetermined period without receiving a data block from the radio base station for a certain period of time after the reception.
  • a wireless device for example, a base station
  • a partner device for example, a mobile station
  • a predetermined cycle for example, Persistent Scheduling in a voice section
  • Voice packet data is transmitted from a wireless device (for example, a base station) at a timing that does not comply, and the counterpart device (for example, a mobile station) receives voice packet data that is transmitted at a timing that does not conform to a predetermined cycle (see FIG. 13). ).
  • a wireless device for example, a base station
  • the counterpart device for example, a mobile station
  • the voice packet data is transmitted from the wireless device at a timing that does not follow the predetermined cycle, the voice packet data is transmitted before the predetermined cycle arrives, and the switching operation is started early and completed. It is also possible.
  • a control method in a mobile communication system that transmits voice packet data from a radio base station to a mobile station at least one of the radio base station and the mobile station is: On the other hand, predetermined buffering in which the radio base station starts transmitting the voice packet data stored in the buffer memory of the radio base station after a predetermined amount of voice packet data is stored in the buffer memory of the radio base station.
  • the mobile station reproduces the voice packet data stored in the buffer memory of the mobile station after a predetermined amount of voice packet data is stored in the buffer signal of the mobile station or a control signal indicating whether to execute the process
  • the radio base station or mobile station that has transmitted the control signal indicating whether or not to start buffering processing and received the control signal, It can be said to perform the transmission control or playback control based on the signal.
  • the above-described buffering message is an example of this control signal.
  • a mode longer than the first cycle is longer than the mode in which voice packet data is wirelessly transmitted to the partner device in the first cycle (for example, the mode in a voiced section).
  • a control method in a mobile communication system including a radio apparatus and a counterpart apparatus that perform transmission by switching to a mode in which background noise packet data is wirelessly transmitted with a period of 2 for example, a mode in a silent period
  • the signal for switching the mode is transmitted from the wireless communication apparatus to the partner apparatus at a timing earlier than the transmission timing of the transmitted background noise packet data, and the partner apparatus receives the signal and uses it for reception control.
  • the counterpart device can detect the mode change at an early stage and can use it for reception control.
  • the partner apparatus can recognize the switching of the wireless transmission mode due to the second period longer than the first period at an early stage, and can perform switching so as to perform an operation that does not perform the reception process according to the first period. .
  • the power of the receiving unit can be turned off during the period from the reception of the control signal to the first reception of N.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 無線通信システムにおける音声パケット通信で、ハンドオーバ時の音声再生品質の低下を抑制する。  バッファメモリ(11)は、音声パケットデータをバッファリングする(ステップS1)。送信部(12)は、所定量の音声パケットデータがバッファリングされると、移動局(20)へ音声パケットデータの無線送信を開始する(ステップS2)。その後、無線基地局(10a)へのハンドオーバが決定されると、バッファリングされている全てまたは複数の音声パケットデータを移動局(20)に無線送信する(ステップS3)。移動局(20)は、受信した音声パケットデータに基づいてハンドオーバ処理中も所定の音声再生タイミングで音声再生を継続する。

Description

送信制御方法、無線基地局、移動局および制御方法
 本発明は送信制御方法、無線基地局、移動局および制御方法に関し、特に音声パケットデータを無線で伝送する送信制御方法、無線基地局、移動局および制御方法に関する。
 現在、移動通信システムの分野では、多元接続方式としてCDMA(Code Division Multiple Access)を採用した通信システムが運用されている。一方、更に高速で安定した無線通信を実現すべく、次世代移動通信システムの検討が盛んに行われている。例えば、第3世代移動通信システムの仕様策定を行った3GPP(3rd Generation Partnership Project)では、LTE(Long Term Evolution)と呼ばれる新たな移動通信システムの仕様が議論されている。
 ところで、移動通信システム上で実現される通信サービスの1つに、音声をパケットデータとして伝送する音声パケット通信がある。音声パケット通信は、間欠的にパケットデータが発生するという特徴がある。そこで、音声パケット通信では、伝送制御の方法としてPersistent Schedulingを用いることが考えられる。Persistent Schedulingでは、まず無線基地局と移動局との間で送信周期を合意しておく。そして、無線基地局は合意した周期で音声パケットデータを移動局に送信し、移動局は合意した周期で音声パケットデータを復号して再生する。
 このような音声パケット通信では、伝送経路上で伝送遅延やパケットロスが発生すると移動局は所望の周期で音声パケットデータの復号・再生が行えなくなり、音声再生品質が低下するという問題がある。これに対し、伝送遅延やパケットロスの発生を抑制する技術としては以下のものがある。
 第1に、輻輳状況の変化などが原因で生じる伝送間隔の揺らぎ(ジッター)があっても所望の周期で音声パケットデータを再生できるように、移動局にジッターを吸収するためのバッファメモリを設ける方法がある(例えば、特許文献1参照)。第2に、ハンドオーバの際に伝送経路の設定変更が原因で生じる伝送遅延を抑制するために、ハンドオーバの発生を予測して可能な設定変更を事前に行っておく方法がある(例えば、特許文献2,3参照)。第3に、ハンドオーバ時のパケットロスの発生を抑制するために、ハンドオーバ元の無線基地局に到着したパケットをハンドオーバ先の無線基地局に転送する方法がある(例えば、特許文献4参照)。
特開2004-297591号公報 特開2002-325275号公報 特開2002-335553号公報 特開2001-339752号公報
 しかし、上記特許文献1~4に記載の方法では、ハンドオーバ時には依然として、移動局への音声パケットデータの到達が遅れて、音声再生品質が低下する可能性があるという問題がある。例えば、上記特許文献4に記載の方法では、無線基地局間でパケットが転送されるため、パケットロスは抑制されるものの、移動局への到着が所望の再生タイミングに間に合わないことが考えられる。
 本発明はこのような点に鑑みてなされたものであり、ハンドオーバ時の音声再生品質の低下を抑制できる送信制御方法、無線基地局、移動局および制御方法を提供することを目的とする。
 上記課題を解決するために、音声パケットデータを移動局に無線送信する無線基地局の送信制御方法が提供される。この送信制御方法では、取得した移動局宛ての音声パケットデータをバッファメモリに格納し、バッファメモリ内の音声パケットデータが所定量に達するのを待って、所定の周期でバッファメモリ内の音声パケットデータを移動局に順次無線送信する処理を開始する。移動局が他の無線基地局へハンドオーバを行うことが決定されると、バッファメモリ内の全てまたは複数の音声パケットデータを移動局に無線送信する。移動局では、受信した音声パケットデータを、所定の音声再生タイミングで再生がなされるまで蓄積しておく。
 このような送信制御方法によれば、バッファメモリ内の音声パケットデータが所定量に達してから、所定の周期で音声パケットデータを移動局に無線送信する処理が開始される。そして、移動局が他の無線基地局へハンドオーバを行うことが決定されると、バッファメモリ内の全てまたは複数の音声パケットデータが移動局に無線送信される。
 また、上記課題を解決するために、音声パケットデータを移動局に無線送信する無線基地局が提供される。この無線基地局は、バッファメモリおよび送信部を有する。バッファメモリは、取得した移動局宛ての音声パケットデータを格納する。送信部は、バッファメモリ内の音声パケットデータが所定量に達するのを待って、所定の周期でバッファメモリ内の音声パケットデータを移動局に順次無線送信する処理を開始し、その後、移動局が他の無線基地局へハンドオーバを行うことが決定されると、バッファメモリ内の全てまたは複数の音声パケットデータを移動局に無線送信する。
 このような無線基地局によれば、送信部により、バッファメモリ内の音声パケットデータが所定量に達してから、所定の周期で音声パケットデータを移動局に無線送信する処理が開始される。そして、移動局が他の無線基地局へハンドオーバを行うことが決定されると、バッファメモリ内の全てまたは複数の音声パケットデータが移動局に無線送信される。
 また、上記課題を解決するために、音声パケットデータを無線基地局から受信して音声再生を行う移動局が提供される。この移動局は、受信部および再生部を有する。受信部は、無線基地局から所定の周期で音声パケットデータを受信中に他の無線基地局へハンドオーバを行うことが決定されると、無線基地局がバッファメモリに保持している全てまたは複数の音声パケットデータを無線基地局から受信する。再生部は、ハンドオーバの決定後、他の無線基地局から音声パケットデータの受信を開始するまでの間は、受信部で受信した無線基地局がバッファメモリに保持していた音声パケットデータに基づいて所定の音声再生タイミングで音声再生を行う。
 このような移動局によれば、他の無線基地局へハンドオーバを行うことが決定されると、受信部により、無線基地局のバッファメモリに保持されている全てまたは複数の音声パケットデータが受信される。そして、再生部により、ハンドオーバの決定後、他の無線基地局から音声パケットデータの受信が開始されるまでの間は、無線基地局のバッファメモリに保持されていた音声パケットデータに基づいて所定の音声再生タイミングで音声再生が行われる。
 上記方法または装置によれば、ハンドオーバ時の音声再生品質の低下が抑制される。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
本実施の形態を示す図である。 移動通信システムのシステム構成を示す図である。 無線基地局の機能を示すブロック図である。 移動局の機能を示すブロック図である。 バッファリングメッセージの送信例を示す図である。 バッファリングメッセージの他の送信例を示す図である。 パケット送信制御の手順を示すフローチャートである。 移動元無線基地局のハンドオーバ制御の手順を示すフローチャートである。 移動先無線基地局のハンドオーバ制御の手順を示すフローチャートである。 移動局のハンドオーバ制御の手順を示すフローチャートである。 ハンドオーバ制御処理の流れを示すシーケンス図である。 パケットの流れの第1の例を示す図である。 パケットの流れの第2の例を示す図である。 パケットの流れの第3の例を示す図である。 パケット送信制御の他の手順を示すフローチャートである。 パケットの流れの第4の例を示す図である。 パケットの流れの第5の例を示す図である。
 以下、本実施の形態を図面を参照して詳細に説明する。
 図1は、本実施の形態を示す図である。図1に示す移動通信システムは、音声パケットデータを無線で伝送することができる。この移動通信システムは、無線基地局10,10aおよび移動局20を有する。ここで、移動局20の現在の接続先は無線基地局10であるとする。
 無線基地局10は、バッファメモリ11および送信部12を有する。バッファメモリ11は、取得した移動局20宛ての音声パケットデータをバッファリングする(ステップS1)。送信部12は、バッファメモリ11にバッファリングされた音声パケットデータが所定量(例えば、N個(Nは2以上の自然数)の音声パケットデータに対応するデータ量以上のデータ量)に達するのを待って、移動局20への音声パケットデータの無線送信を開始する(ステップS2)。音声パケットデータの送信は、例えば、バッファメモリ11の先頭から順に(先に到着した順に)音声パケットデータを取り出して所定の周期で送信することで行う。送信すべき(再生される)音声パケットデータの順とは異なる順で音声パケットデータを取得する場合には、音声パケットデータ等に含まれる順序情報(シーケンス番号等)を用いて順番通りにバッファメモリ11から音声パケットデータを取り出し、送信すればよい。
 その後、移動局20が無線基地局10aへハンドオーバを行うことが決定されると、送信部12は、バッファメモリ11にバッファリングされている全ての移動局20宛ての音声パケットデータまたはバッファリングされている複数N個(例えば、2個の音声パケットデータのデータ量以上の量)の移動局20宛ての音声パケットデータを移動局20に無線送信する(ステップS3)。ここで、ハンドオーバ決定後の音声パケットデータの無線送信は、ハンドオーバ前の送信スケジュールに従ったタイミングで行ってもよいし、ハンドオーバ前の送信スケジュールに依存しない任意のタイミングで行ってもよい。また、バッファリングされている音声パケットデータを1回に纏めて送信してもよいし、複数回に分割して送信してもよい。更に、無線伝搬状況により全ての音声パケットデータを送信することが困難な場合、送信可能な分の音声パケットデータだけ送信してもよい。
 移動局20は、受信部21および再生部22を有する。受信部21は、無線基地局10が所定の周期で送信する音声パケットデータを無線で受信する。また、受信部21は、ハンドオーバ決定後に、バッファメモリ11にバッファリングされていた全ての音声パケットデータを無線で受信する。再生部22は、受信部21が受信する音声パケットデータを所定のタイミングに基づいて再生する。ここで、再生部22は、ハンドオーバ決定後、無線基地局10a経由での音声パケットデータの受信を開始するまでの間は、受信部21がハンドオーバ決定後に無線基地局10から受信した音声パケットデータを所定のタイミングに基づいて再生する。
 このような移動通信システムによれば、無線基地局10のバッファメモリ11にバッファリングされた音声パケットデータが所定量に達してから、送信部12により音声パケットデータの無線送信が開始される。そして、移動局20の受信部21により音声パケットデータが無線で受信され、再生部22により音声再生が行われる。その後、移動局20が無線基地局10aへハンドオーバを行うことが決定されると、送信部12によりバッファメモリ11にバッファリングされている全ての(または複数N個または2個のデータ量以上の量または送信可能な最大限の)音声パケットデータが無線送信される。そして、受信部21により音声パケットデータが無線で受信され、再生部22によりこの音声パケットデータに基づいてハンドオーバ完了前でも継続して音声再生が行われる。
 これにより、ハンドオーバの際に移動局20に到着する音声パケットデータが遅延することを抑制することができる。従って、移動局20はハンドオーバ実行中も所望の周期で継続して音声パケットデータを再生することができ、音声再生品質の低下が抑制される。
 なお、無線基地局10は、ハンドオーバ決定後、ハンドオーバ前の送信スケジュールを無線基地局10aに通知するようにしてもよい。これにより、無線基地局10aは移動局20への音声パケットデータの送信処理を円滑に引き継ぐことができる。また、無線基地局10は、音声パケットデータが連続的に到着する区間(有音区間)と背景雑音パケットデータが連続的に到着する区間(無音区間)とが交互に現れる場合、有音区間の開始毎に音声パケットデータのバッファリングを行うようにしてもよい。また、無線基地局10は、有音区間後に最初に背景雑音パケットデータが到着した際に、移動局20にその旨の信号を送信するようにしてもよい。これにより、移動局20はより早く受信モードの切り替えを行うことができる。
 [第1の実施の形態]
 以下、第1の実施の形態を図面を参照して詳細に説明する。
 図2は、移動通信システムのシステム構成を示す図である。第1の実施の形態に係る移動通信システムは、パケットデータを無線で伝送する通信システムである。この移動通信システムは、無線基地局100,100a,100b、移動局200,200aおよび上位局300を有する。
 無線基地局100,100a,100bは、それぞれの電波到達範囲(セル)内にいる移動局と無線通信を行うことができる無線通信装置である。無線基地局100,100a,100bは、上位局300と有線または無線のネットワークで接続されている。また、無線基地局100と無線基地局100aとは有線または無線のネットワークで接続されている。無線基地局100,100a,100bは、セル内の移動局から取得するパケットデータを上位局300に転送する共に、上位局300から取得するパケットデータを無線送信することができる。また、無線基地局100,100aは、ハンドオーバの際、上位局300を経由せずにパケットデータを適切な無線基地局に転送することができる。
 移動局200,200aは、無線基地局100,100a,100bと無線通信を行うことができる無線端末装置である。移動局200,200aは、例えば、携帯電話機である。移動局200,200aは、無線基地局経由で他の移動局との間でパケットデータを送受信することができる。移動局200,200aが送受信するパケットデータには、例えば、VoIP(Voice over Internet Protocol)パケットデータがある。
 上位局300は、移動局200,200aが現在属するセルを管理し、取得したパケットデータをパケットの宛先に応じて適切な無線基地局に転送する中継装置である。上位局300は、例えば、コアネットワーク内に配置されたパケット交換機に相当する。
 なお、無線基地局100,100a,100bと上位局300との間に、他の中継装置を設置してもよい。また、無線基地局100と無線基地局100aとが直接通信を行うのではなく、上位局300経由で通信を行うようにしてもよい。ここでは、現在、移動局200は無線基地局100,100aの電波を受信していると共に無線基地局100を接続先としており、移動局200aは無線基地局100bを接続先としているものとする。
 次に、無線基地局100および移動局200のモジュール構成について説明する。なお、無線基地局100a,100bは、無線基地局100と同様のモジュール構成によって実現できる。また、移動局200aは、移動局200と同様のモジュール構成によって実現できる。
 図3は、無線基地局の機能を示すブロック図である。無線基地局100は、バッファメモリ110、スイッチ120、スケジューラ130、送受信部140、送受信アンテナ150および制御部160を有する。
 バッファメモリ110は、到着したVoIPパケットデータを一時的に格納するメモリである。バッファメモリ110には、2つの格納領域が設けられている。一方の格納領域には、上位局300から受信したVoIPパケットデータが格納される。他方の格納領域には、隣接する無線基地局である無線基地局100aから受信したVoIPパケットデータが格納される。2つの格納領域は、物理的に2つのメモリ装置を設けることで実現してもよいし、1つのメモリ装置の記憶領域をソフトウェア的に2つに分割することで実現してもよい。バッファメモリ110は、制御部160の制御に応じて、格納されたVoIPパケットデータをスイッチ120に出力する。
 スイッチ120は、バッファメモリ110から出力されるVoIPパケットデータを、その送信先に応じて振り分ける。移動局200に無線送信するVoIPパケットデータである場合、スイッチ120はそれをスケジューラ130に出力する。無線基地局100aまたは上位局300に転送するVoIPパケットデータである場合、スイッチ120はそれを対応する有線または無線のネットワークに出力する。
 スケジューラ130は、移動局200との無線通信に用いる無線リソース(送信タイミングおよび送信周波数帯域)を管理する。スケジューラ130は、スイッチ120から出力されるVoIPパケットデータおよび他のパケットデータを取得すると、送信に用いる無線リソースを特定して、送受信部140にパケットデータを出力する。
 送受信部140は、スケジューラ130からパケットデータを取得し、制御部160から無線通信に関する各種制御情報を取得する。そして、送受信部140は、パケットデータおよび制御情報の符号化・変調を行い、送受信アンテナ150に出力する。また、送受信部140は、送受信アンテナ150から受信信号を取得し、復調・復号を行う。ここで得られたパケットデータは、その宛先に応じて転送するために内部に取り込まれ、得られた制御情報は、制御部160に出力される。
 送受信アンテナ150は、送信・受信共用のアンテナである。送受信アンテナ150は、送受信部140から取得する送信信号を無線送信する。また、送受信アンテナ150は、移動局200から受信する受信信号を送受信部140に出力する。
 制御部160は、移動局200・無線基地局100a・上位局300から取得する各種制御情報やパケットデータの送受信状況に基づいて、無線基地局100全体を制御する。また、制御部160は、必要に応じて移動局200・無線基地局100a・上位局300に対して各種制御情報を出力する。制御部160は、スケジューラ管理部161、測定部162、HO処理部163およびバッファ管理部164を有する。
 スケジューラ管理部161は、スケジューラ130を制御し、パケットデータの送信スケジュールを管理させる。特に、スケジューラ管理部161は、移動局200とVoIPパケット通信を開始する際に、Persistent Schedulingを行うことをスケジューラ130に指示する。Persistent Schedulingでは、音声を再生するための音声パケットデータが連続的に伝送される区間(有音区間、Talkspurt区間)と、背景雑音を再生するための背景雑音パケットデータのみが連続的に伝送される区間(無音区間、silent区間)それぞれについて、所定の周期の無線リソースが一括で予約される。有音区間と無音区間とでは送信周期は異なってよい。また、スケジューラ管理部161は、VoIPパケット通信の継続中に、必要に応じて再スケジューリングを行ってもよい。
 測定部162は、無線基地局100,100aから移動局200への通信リンク(下りリンク)の無線品質を示す測定情報(Measurement Report)を収集する。測定情報は、移動局200からの制御情報として受信される。測定情報には、例えば、CQI(Channel Quality Information)が含まれている。
 HO処理部163は、測定部162が収集する測定情報を継続的に監視し、移動局200についてハンドオーバ(HO:HandOver)が必要か否か判断する。例えば、HO処理部163は、無線基地局100と移動局200との間の無線品質よりも無線基地局100aと移動局200との間の無線品質の方が良好になると、ハンドオーバが必要と判断する。そして、HO処理部163は、移動先の無線基地局(例えば、無線基地局100a)・移動局200・上位局300との間で各種制御情報を送受信し、ハンドオーバ処理を実行する。一方、もし無線基地局100が移動先の無線基地局として機能する場合、HO処理部163は、移動元の無線基地局からの無線通信の引き継ぎに必要な各種処理を実行する。
 バッファ管理部164は、バッファメモリ110に格納されているVoIPパケットデータを管理する。具体的には、バッファ管理部164は、有音区間の開始時に所定量の音声パケットデータをバッファメモリ110にバッファリングさせる。その後、有音区間に応じた周期(例えば、20ms周期)で、移動局200宛ての音声パケットデータをスイッチ120に順次出力させる。また、無音区間では、無音区間に応じた周期(例えば、160ms周期)で、移動局200宛ての背景雑音パケットデータをスイッチ120に順次出力させる。
 また、バッファ管理部164は、有音区間中にHO処理部163によって移動局200のハンドオーバが決定されると、バッファメモリ110に格納されている全ての(または複数N個または2個のデータ量以上の量または送信可能な最大限の)移動局200宛ての音声パケットデータをスイッチ120に出力させる。なお、設定により有音区間開始時のバッファリング量は変更可能である。また、設定により有音区間開始時のバッファリングを行わないようにすることも可能である。
 図4は、移動局の機能を示すブロック図である。移動局200は、送受信アンテナ210、送受信部220、バッファメモリ230、スイッチ240、再生部250および制御部260を有する。
 送受信アンテナ210は、送信・受信共用のアンテナである。送受信アンテナ210は、無線基地局100,100aから受信する受信信号を送受信部220に出力する。また、送受信アンテナ210は、送受信部220から取得する送信信号を無線送信する。
 送受信部220は、送受信アンテナ210から受信信号を取得し、復調・復号を行って自局宛てのパケットデータおよび制御情報を抽出する。ここで得られたパケットデータのうちVoIPパケットデータはバッファメモリ230に出力され、得られた制御情報は、制御部260に出力される。また、送受信部220は、送信するパケットデータを取得すると共に、制御部260から送信する制御情報を取得する。そして、送受信部220は、パケットデータおよび制御情報の符号化・変調を行い、送受信アンテナ210に出力する。また、送受信部220は、スイッチ240からビット誤りを含むVoIPパケットデータを取得すると、取得したVoIPパケットデータに応じて再送要求を行う。
 再送は、次のVoIPパケットデータの送信タイミング(有音区間であれば、例えば、20ms後の送信タイミング、無音区間であれば、例えば、160ms後の送信タイミング)が訪れる前に行うこともできる。
 バッファメモリ230は、送受信部220から出力されるVoIPパケットデータを一時的に格納するメモリである。バッファメモリ230に格納されたVoIPパケットデータは、制御部260によってビット誤りの有無が検査される。そして、制御部260の制御に応じて、VoIPパケットデータが順次スイッチ240に出力される。
 スイッチ240は、バッファメモリ230から出力されるVoIPパケットデータを、ビット誤りの有無に応じて振り分ける。ビット誤りがないVoIPパケットデータは、再生部250に出力する。ビット誤りがあるVoIPパケットデータは、送受信部220に出力して、再送制御の対象とする。なお、再送処理を効率的に行うために、ビット誤りのあるVoIPパケットデータをバッファメモリ230に残しておき、再送パケットデータと合成(HARQ(Hybrid Automatic Repeat Request)合成)するようにしてもよい。
 再生部250は、バッファメモリ251を有している。バッファメモリ251は、VoIPパケットデータを一時的に格納するメモリである。再生部250は、スイッチ240から取得するVoIPパケットデータをバッファメモリ251に格納する。また、再生部250は、バッファメモリ251から、有音区間または無音区間に応じた周期でVoIPパケットを順次抽出し、復号して音声再生(プレイアウト)を行う。
 制御部260は、無線基地局100,100aから取得する各種制御情報やパケットデータの送受信状況に基づいて、移動局200全体を制御する。また、制御部260は、必要に応じて無線基地局100,100aに対して各種制御情報を出力する。制御部260は、測定部261、再送要求部262、再生管理部263およびHO処理部264を有する。
 測定部261は、無線基地局100,100aから移動局200への下りリンクそれぞれの無線品質を継続的に測定する。無線品質の測定は、例えば、無線基地局100,100aが定期また不定期で送信するパイロット信号を捕捉することで行うことができる。そして、測定部261は、測定情報を現在の接続先の無線基地局(例えば、無線基地局100)宛てに制御情報として出力する。この測定情報には、例えば、CQIが含まれる。
 再送要求部262は、送受信部220による再送要求を制御する。具体的には、再送要求部262は、バッファメモリ230に格納されたVoIPパケットデータのビット誤りの有無を検査し、ビット誤りがある場合にはVoIPパケットデータを送受信部220に戻すように制御する。そして、再送要求部262は、再送要求信号を送受信部220に出力し、送受信部220が現在の接続先の無線基地局に対して再送要求を行うように制御する。ここで、再送制御では、誤りを含むビット範囲を特定して再送要求を行い、そのビット範囲に限定してパケットデータを再送してもらうことも可能である。
 再生管理部263は、再生部250による音声再生を制御する。例えば、再生管理部263は、VoIPパケットデータの復号・再生を開始するタイミングや、有音区間および無音区間それぞれにおけるVoIPパケットデータの復号・再生周期を指定する。なお、有音区間開始時に音声パケットデータが所定量に達するまでバッファリングを行い、それから音声パケットデータの復号・再生を開始するように制御することも可能である。
 HO処理部264は、現在の接続中の無線基地局から制御情報としてハンドオーバ指示の通知を受けると、移動元の無線基地局との間のリンク切断および移動先の無線基地局との間のリンク設定を行う。そして、HO処理部264は、移動先の無線基地局経由でパケット通信を再開するよう送受信部220を制御する。
 ここで、有音区間中にハンドオーバの決定がなされると、送受信部220は、移動元の無線基地局にバッファリングされていた全ての(または複数N個または2個のデータ量以上の量または送信可能な最大限の)音声パケットデータを無線で受信する。この音声パケットデータは、バッファメモリ251に格納される。そのため、ハンドオーバの決定から移動先の無線基地局経由による通信再開までの間、音声パケットデータの受信が中断されても、再生部250は当初スケジューリングされた周期で音声再生を継続することができる。
 次に、以上のような構成を備える移動通信システムにおいて実行される処理の詳細を説明する。以下では、移動局200が、移動局200aからのVoIPパケットデータを無線基地局100経由で受信し、その後、無線基地局100aにハンドオーバを行うというシナリオを考える。具体的には、(1)VoIPパケット通信の開始前に無線基地局100と移動局200との間でなされるメッセージ送受信、(2)無線基地局100におけるVoIPパケットデータの送信制御、(3)無線基地局100,100aおよび移動局200それぞれのハンドオーバ制御の順に説明する。
 図5は、バッファリングメッセージの送信例を示す図である。無線基地局100は、移動局200に対して、VoIPパケット通信の開始前にバッファリングメッセージ141を制御情報として無線送信する。
 バッファリングメッセージ141には、バッファリング指示情報(Buffering Indicator)とバッファリング量情報(Buffering Amount)とが含まれている。バッファリング指示情報は、無線基地局100または移動局200による有音区間開始時のバッファリングの有無を示す情報であり、例えば、1ビットで表現される。バッファリング量情報は、何パケット分の音声パケットデータをバッファリングするかを示す情報であり、例えば、2~3ビットで表現される。バッファリングの有無およびバッファリング量は、固定された値を用いてもよいし、通信状況に応じて動的に決定される値を用いてもよい。
 ここで、バッファリング指示情報の意味は複数通りの解釈が可能である。バッファリング指示情報における0,1それぞれが何の意味を有するかは、無線基地局100と移動局200との間で予め合意しておく。以下、3つの解釈例を挙げる。第1の解釈は、0のとき移動局200でのバッファリングは必須とし無線基地局100でのバッファリングは任意とし、1のとき無線基地局100でのバッファリングは必須とし移動局200でのバッファリングは任意とするという解釈である。第2の解釈は、無線基地局100でのバッファリングは必須とし、移動局200でのバッファリングは0のときは行わず1のときに行うという解釈である。第3の解釈は、移動局200でのバッファリングは必須とし、無線基地局100でのバッファリングは0のときは行わず、1のときは行うという解釈である。
 このように、無線基地局100および移動局200のバッファリング状況を明確にし、各装置がそれに従うことで、過剰なバッファリングが行われて移動局200と移動局200aとの間の伝送遅延が大きくなったり、バッファリングが不十分なために音声再生品質が低下したりすることを防止し、最適化を行うことが可能となる。なお、バッファリングの有無とバッファリング量の既定値を設定しておき、既定値と異なるときのみバッファリングメッセージを送受信するようにしてもよい。また、バッファリングの有無とバッファリング量の何れか一方のみを含むバッファリングメッセージを送受信してもよい。
 この場合、バッファリングメッセージ141には、バッファリング指示情報が含まれず、バッファリング量情報だけ含めることもできる。バファリング量情報は、何パケット分の音声パケットデータをバッファリングするかを示す情報であり、例えば2~3ビットで表現される。バッファリングの有無およびバッファリング量は、固定された値を用いてもよいし、通信状況に応じて動的に決定される値を用いてもよい。
 ここで、バッファリング量情報は複数通りの解釈が可能である。バッファリング指示情報における例えば2~3ビットそれぞれが何の意味を有するかは、無線基地局100と移動局200との間で予め合意しておく。以下、3つの解釈例を挙げる。第1の解釈は、バッファリング量がある指定量のとき移動局200でのバッファリングは該量だけは必須とし無線基地局100でのバッファリングは任意とするか、無線基地局100でのバッファリングは該指定量だけは必須とし移動局200でのバッファリングは任意とするという解釈である。第2の解釈は、無線基地局100でのバッファリングは必須とし、移動局200でのバッファリング量が0のときは行わず0以外のときに該指定量だけは行うという解釈である。第3の解釈は、移動局200でのバッファリングは必須とし、無線基地局100でのバッファリングは0の時は行わず0以外のときに該指定量だけは行うという解釈である。
 図6は、バッファリングメッセージの他の送信例を示す図である。図5に示したバッファリングメッセージの送信例では、無線基地局100が移動局200に対してバッファリングの有無とバッファリング量とを指定するようにしたが、逆に移動局200が無線基地局100に対してバッファリング有無とバッファリング量とを指定するようにしてもよい。ここでは、VoIPパケット通信の開始前に、移動局200が無線基地局100にバッファリングメッセージ221を制御情報として無線送信している。
 バッファリングメッセージ221の意味は、前述のバッファリングメッセージ141の意味と同様である。ただし、バッファリング指示情報の0,1の意味付けを逆にしてもよい。例えば、0は無線基地局100でバッファリングを行うことを意味し、1は移動局200でバッファリングを行うことを意味するようにしてもよい。
 次に、無線基地局100におけるVoIPパケットデータの送信制御について説明する。なお、以下では、無線基地局100でバッファリングを行うものとする。
 図7は、パケット送信制御の手順を示すフローチャートである。以下、図7に示す処理をステップ番号に沿って説明する。
 [ステップS11]制御部160は、移動局200との間でPersistent Schedulingに関するシグナリングを行う。例えば、制御部160は、RRC(Radio Resource Control)層において無線リソースの設定処理を行い、L1(レイヤ1:物理層)/L2(レイヤ2:MAC(Medium Access Control)層)において変調方式の設定処理を行う。そして、制御部160は、スケジューラ130および送受信部140を制御して、VoIPパケットデータを送信できる状態にする。
 [ステップS12]制御部160は、有音区間の開始であるか否か、すなわち、移動局200宛ての音声パケットデータの先頭がバッファメモリ110に到着したか否か判断する。有音区間の開始である場合には、処理がステップS13に進められる。有音区間の開始でない場合には、処理がステップS15に進められる。
 [ステップS13]制御部160は、バッファメモリ110にバッファリングメッセージで指定された量(例えば、2~3パケット分)の移動局200宛ての音声パケットデータがバッファリングされるのを待つ。
 [ステップS14]制御部160は、ステップS13のバッファリングが完了すると、バッファメモリ110を制御して、バッファリングされている音声パケットデータを有音区間に対応する周期(例えば、20ms周期)で順次出力させる。これにより、移動局200への音声パケットデータの間欠的・周期的な無線送信が開始される。その後、処理がステップS12に進められる。なお、制御部160は、音声パケットデータを到着順に出力させるのではなく、必要に応じて順序の並べ替えを行ってもよい。
 [ステップS15]制御部160は、無音区間の開始であるか否か、すなわち、移動局200宛ての背景雑音パケットデータの先頭がバッファメモリ110に到着したか否か判断する。無音区間の開始である場合には、処理がステップS16に進められる。無音区間の開始でない場合には、処理がステップS17に進められる。
 [ステップS16]制御部160は、次に背景雑音パケットデータを送信する順番になると、バッファメモリ110を制御して、バッファリングされている背景雑音パケットデータを無音区間に対応する周期(例えば、160ms周期)で順次出力させる。これにより、移動局200への背景雑音パケットデータの間欠的・周期な無線送信が開始される。その後、処理がステップS12に進められる。
 [ステップS17]制御部160は、移動局200と移動局200aとの間のVoIPパケット通信が終了したか否か判断する。通信が終了した場合には、移動局200宛てのVoIPパケットデータの送信制御を終了する。通信が終了していない場合には、処理がステップS12に進められる。
 このようにして、無線基地局100は、VoIPパケット通信の開示にPersistent Schedulingを行い、音声パケットデータは有音区間に対応する周期(例えば、20ms周期)で無線送信すると共に、背景雑音パケットデータは無音区間に対応する周期(例えば、160ms周期)で無線送信する。また、無線基地局100は、有音区間の開始時は、所定量(例えば、2~3パケット分)の音声パケットデータをバッファリングしてから、無線送信を開始する。
 次に、無線基地局100,100aおよび移動局200それぞれのハンドオーバ制御について説明する。
 図8は、移動元無線基地局のハンドオーバ制御の手順を示すフローチャートである。以下、図8に示す処理をステップ番号に沿って説明する。
 [ステップS21]制御部160は、無線基地局100,100aと移動局200との間の無線品質を示す測定情報を制御情報として移動局200から取得する。
 [ステップS22]制御部160は、ステップS21で取得した測定情報に基づいて、移動局200が他の無線基地局(例えば、無線基地局100a)にハンドオーバを行う必要があるか否か判断する。ハンドオーバの必要がある場合には、処理がステップS23に進められる。ハンドオーバの必要がない場合には、処理がステップS21に進められ、次に測定情報を取得するのを待つ。なお、以下では無線基地局100から無線基地局100aへハンドオーバを行うと決定されたものとして説明する。
 [ステップS23]制御部160は、無線基地局100aに対してハンドオーバ要求を送信する。ハンドオーバ要求には、例えば、移動局200の識別情報や移動局200が要求するQoS(Quality of Service)など移動局200に関する情報が含まれる。なお、以下では無線基地局100aへのハンドオーバが許可されるものとして説明する。
 [ステップS24]制御部160は、ステップS23で送信したハンドオーバ要求に対する許可応答を無線基地局100aから受信すると、無線基地局100aに対して音声パケットデータについてのスケジュール情報を送信する。スケジュール情報には、例えば、音声パケットデータのバッファリング量、前回スケジューリングを行った時刻、次回再スケジューリングを行う予定であった時刻などが含まれる。
 時刻の通知方法は、例えば次の4つの方法が考えられる。(1)絶対時刻指定方法:前回スケジューリングを行った時刻、次回スケジューリングを行う予定であった時刻はそれぞれ移動元基地局が具備している絶対時刻で指定する。(2)相対時刻指定方法:前回スケジューリングを行った時刻は移動元基地局の絶対時刻で指定し、次回再スケジューリングを行う予定であった時刻は、前回スケジューリングを行った時刻から何秒後に生じるかを指定する。(3)サブフレーム絶対番号指定方法:前回スケジューリングを行った時刻として移動元基地局が具備しているサブフレーム番号を指定し、次回再スケジューリングを行う予定であった時刻もサブフレーム番号で指定する。(4)サブフレーム相対番号指定方法:前回スケジューリングを行った時刻として移動元基地局が具備しているサブフレーム番号を指定し、次回再スケジューリングを行う予定であった時刻は、前回スケジューリングを行ったサブフレームから何サブフレーム後かを指定する。以上の場合において、移動元基地局と移動先基地局で時刻やサブフレームのずれを共有しておいてもよい。
 [ステップS25]制御部160は、移動局200に対するハンドオーバ指示を出力する。送受信部140は、制御部160が出力したハンドオーバ指示を制御情報として移動局200に無線送信する。
 [ステップS26]制御部160は、バッファリングされている全ての(または複数N個または2個のデータ量以上の量または送信可能な最大限の)移動局200宛ての音声パケットデータをバッファメモリ110に出力させる。このとき、バッファメモリ110には、有音区間開始時のバッファリング量程度(例えば、当初バッファリングしたパケット数プラスマイナス1個の範囲内)の音声パケットデータが格納されていると期待される。送受信部140は、バッファメモリ110から出力された音声パケットデータを移動局200に無線送信する。
 また、送受信部140は、必要に応じて、音声パケットデータを送信した旨および送信した音声パケットデータ量を示す信号をL1/L2制御信号として無線送信する。ただし、移動局200がBlind Detectionを行う場合は、この制御信号は必ずしも必要でない。
 なお、制御部160は、バッファリングされている背景雑音パケットデータおよび出力処理後に到着した移動局200宛てのVoIPパケットデータについては、無線基地局100aに転送する。
 [ステップS27]制御部160は、無線基地局100aからリソース解放指示を受信すると、上位局300・無線基地局100・移動局200の間のVoIPパケット通信のために予約されているリソースを解放する。
 このようにして、移動元の無線基地局である無線基地局100は、移動局200から継続的に取得する測定情報に基づいて、ハンドオーバが必要か否かと移動先の無線基地局とを決定する。そして、ハンドオーバを決定すると、無線基地局100は、移動先の無線基地局に対してVoIPパケット通信を引き継ぐために用いられるスケジュール情報を送信すると共に、移動局200に対してバッファリングしている全ての(または複数N個または2個のデータ量以上の量または送信可能な最大限の)音声パケットデータを無線送信する。その後、無線基地局100経由でVoIPパケットデータを伝送するためのリソースが解放される。
 なお、上記ステップS24のスケジュール情報の送信は、ステップS23のハンドオーバ要求の送信と同時に行うことも可能であり、また、ハンドオーバ要求の送信後から無線基地局100aがVoIPパケットデータの無線送信を開始するまでの任意のタイミングで行うこともできる。また、上記ステップS26の音声パケットデータの無線送信は、無線基地局100aよりハンドオーバ応答を受信してから移動局200が無線基地局100aと同期確立を行うまでの間の任意のタイミングで行うこともできる。また、上記では下りリンクの無線品質に基づいてハンドオーバを行うか決定したが、上りリンクの無線品質も参照するようにしてもよい。
 図9は、移動先無線基地局のハンドオーバ制御の手順を示すフローチャートである。以下、図9に示す処理をステップ番号に沿って説明する。なお、以下では、無線基地局100の制御部160に相当するモジュールとして、無線基地局100aは制御部160aを備えているものとする。
 [ステップS31]制御部160aは、無線基地局100からハンドオーバ要求を受信すると、ハンドオーバ要求に含まれる情報に基づいて、移動局200のハンドオーバを許可するか否か判断する。そして、制御部160aは、判断結果を無線基地局100に応答する。なお、以下ではハンドオーバを許可する場合について説明する。
 [ステップS32]制御部160aは、無線基地局100からスケジュール情報を受信する。そして、制御部160aは、スケジューリング情報に基づいて、音声パケットデータのバッファリング量や送信開始のタイミングを決定する。例えば、制御部160aは、スケジュール情報によって通知されたバッファリング量を設定可能な最大値とし、それ以下の範囲で実際のバッファリング量を決定することができる。
 [ステップS33]制御部160aは、移動局200からの要求に応じて、移動局200との間で同期確立を行い、VoIPパケット通信可能な状態にする。
 [ステップS34]制御部160aは、移動局200について無線基地局100から無線基地局100aへのハンドオーバが完了したことを上位局300に報告する。これにより、上位局300では移動局200宛てのパケットの伝送経路の設定が変更される。
 [ステップS35]制御部160aは、ステップS34で送信したハンドオーバ完了報告に対する応答を上位局300から受信すると、Persistent Schedulingにより移動局200との間のVoIPパケット通信に用いる無線リソースが確保されるよう制御する。
 [ステップS36]制御部160aは、無線基地局100に対して、移動局200のVoIPパケット通信についてのリソースを解放するよう指示する。
 このようにして、移動先の無線基地局である無線基地局100aは、ハンドオーバ要求後に移動元の無線基地局から受信するスケジュール情報に基づいて、音声パケットデータのバッファリング量や送信開始のタイミングを調整する。そして、無線基地局100aは、上位局300にハンドオーバ完了報告を送信して、移動局200宛てのVoIPパケットデータの伝送経路を変更させる。これにより、無線基地局100aは、移動元の無線基地局からVoIPパケット通信を円滑に引き継ぐことができる。
 なお、スケジュール情報は、ハンドオーバ要求と同時に受信する場合もあり、また、ハンドオーバ要求の受信後からVoIPパケットデータの無線送信を開始するまでの何れかのタイミングで受信する場合もある。
 図10は、移動局のハンドオーバ制御の手順を示すフローチャートである。以下、図10に示す処理をステップ番号に沿って説明する。
 [ステップS41]制御部260は、無線基地局100,100aからの受信信号に基づいて、各下りリンクの無線品質を測定する。無線品質の測定は、例えば、受信信号に含まれるパイロット信号を捕捉することで行われる。そして、制御部260は、測定結果を示す測定情報を出力する。送受信部220は、この測定情報を制御情報として無線基地局100に無線送信する。なお、測定情報の送信は、例えば、無線基地局100が指定した周期で継続的に行われる。
 [ステップS42]制御部260は、無線基地局100から制御情報としてハンドオーバ指示を受信したか否か判断する。ハンドオーバ指示を受信した場合には、処理がステップS43に進められる。ハンドオーバ指示を受信していない場合には、処理がステップS41に進められ、次に測定情報を送信するタイミングを待つ。
 [ステップS43]制御部260は、音声パケットデータを送信したことを示すL1/L2制御信号を受信したか否か判断する。L1/L2制御信号を受信した場合には、処理がステップS45に進められる。L1/L2制御信号を受信していない場合には、処理がステップS44に進められる。
 [ステップS44]制御部260は、Blind Detectionにより、無線基地局100からの受信信号に含まれている音声パケットデータに相当する信号を検出する。
 Blind Detectionにおいては、例えば、無線基地局100からの受信信号について、音声パケットデータが抽出される可能性のある複数の抽出方法の候補について順に音声パケットデータの抽出を試行し、音声パケットデータが抽出された場合に、その抽出方法が適切な抽出方法であったと決定する。なお、音声パケットデータが抽出されたかどうかは、所定の音声パケットデータの形式に合致するか検査したりすることで行うことができる。
 [ステップS45]制御部260は、ステップS43で検出したL1/L2制御信号またはステップS44の検出結果(決定した抽出方法)に基づいて、無線基地局100からの受信信号に含まれる音声パケットデータの全てを抽出するよう送受信部220に指示する。これにより、無線基地局100にバッファリングされていた音声パケットデータが、再生部250のバッファメモリ251に格納される。
 [ステップS46]制御部260は、無線基地局100から受信したハンドオーバ指示で指定される移動先の無線基地局である無線基地局100aとの間で同期確立を行い、VoIPパケット通信可能な状態にする。
 このようにして、移動局200は、下りリンクの無線品質の測定情報を無線基地局100に継続的に送信する。そして、無線基地局100によってハンドオーバが決定されると、無線基地局100にバッファリングされている全ての(または複数N個または2個のデータ量以上の量または送信可能な最大限の)音声パケットデータを無線で受信する。これにより、移動局200は、有音区間でハンドオーバが発生しても、無線基地局100にバッファリングされていた音声パケットデータに基づいて、音声再生を継続することができる。なお、バッファリングされていた音声パケットデータは、ハンドオーバ指示前に受信する場合もある。
 図11は、ハンドオーバ制御処理の流れを示すシーケンス図である。以下、図11に示す処理をステップ番号に沿って説明する。
 [ステップS51]移動局200は、無線基地局100,100aとの間の無線品質を測定し、測定情報を無線基地局100に送信する。
 [ステップS52]無線基地局100は、ステップS51で受信した測定情報に基づいてハンドオーバを決定し、移動先の無線基地局として無線基地局100aを選択する。そして、無線基地局100は、無線基地局100aにハンドオーバ要求を送信する。
 [ステップS53]無線基地局100aは、ステップS52で受信したハンドオーバ要求に基づいて呼受付制御を行い、移動局200の受け入れを許可することを決定する。そして、無線基地局100aは、無線基地局100にハンドオーバ応答を送信する。
 [ステップS54]無線基地局100は、移動局200のVoIPパケットデータの送信スケジュールを示すスケジュール情報を無線基地局100aに送信する。
 [ステップS55]無線基地局100は、移動局200に無線基地局100aへのハンドオーバを行うよう指示する。
 [ステップS56]無線基地局100は、バッファリングされている全ての音声パケットデータを移動局200に送信する。このとき、無線基地局100は、音声パケットデータを送信した旨およびパケット量を示す制御信号も送信する。なお、これ以降に無線基地局100に到着したVoIPパケットデータは、基地局100の判断によって無線基地局100aに回送されるか、回送されずに基地局100により廃棄される。
 [ステップS57]移動局200および無線基地局100aは、VoIPパケット通信のための接続を確立する。
 [ステップS58]無線基地局100aは、上位局300にハンドオーバ完了報告を送信する。
 [ステップS59]上位局300は、ステップS58で受信したハンドオーバ完了報告に基づいて、移動局200宛てのパケットの転送先を無線基地局100aに変更する。そして、上位局300は、無線基地局100aにハンドオーバ完了応答を送信する。
 [ステップS60]無線基地局100aは、無線基地局100にリソース解放指示を送信する。無線基地局100は、上位局300・無線基地局100・移動局200の伝送経路のために確保しているリソースを解放する。
 なお、ステップS56の音声パケットデータの送信は、ステップS53からステップS57までの間に行えばよい。また、ステップS54のスケジュール情報の送信は、ステップS52から無線基地局100aがVoIPパケットデータの送信を開始するまでの間に行えばよい(ステップS52に含ませて送信してもよい)。
 次に、バッファリングされている音声パケットデータを無線送信するタイミングの詳細について説明する。無線送信のタイミングには複数通り考えられる。以下、3つの具体例を挙げる。
 図12は、パケットの流れの第1の例を示す図である。図12の例では、移動局200aが音声データを含む音声パケット(図中では数字1~7で表記)を20ms間隔で送信し、その後、背景雑音データを含む背景雑音パケット(図中ではNと表記)を160ms間隔で送信する。ここでは、音声符号化方式としてAMR(Adaptive Multi-Rate)を用い、符号化レートを12.2kbpsとした場合を想定している。
 移動局200aが送信した音声パケット(音声パケット#1~#4)は無線基地局100に転送される。ここで、伝送時間は輻輳などの影響により一定とならないため、無線基地局100への音声パケットの到着間隔は厳密に20msにはならない。無線基地局100は、3つの音声パケット(音声パケット#1~#3)がバッファリングされるのを待ち、その後、20ms間隔で移動局200に音声パケットを無線送信する。移動局200への音声パケットの到着間隔も厳密に20msにはならない。移動局200は、バッファメモリを用いて受信間隔の揺れを吸収して、受信した音声パケットに含まれるデータを順次20ms間隔で復号・再生する。
 ここで、無線基地局100に音声パケット#3,#4がバッファリングされている状態で、無線基地局100から無線基地局100aへのハンドオーバが決定されたとする。すると、無線基地局100は、ハンドオーバ前のスケジュールで特定される20ms周期の送信タイミングのうちハンドオーバ決定後に最初に到来するタイミングで、音声パケット#3,#4を移動局200に無線送信する。移動局200は、受信した音声パケットをバッファリングしておく。
 その後、移動局200aが送信した音声パケット(音声パケット#5~#7)は無線基地局100aに転送される。無線基地局100aは、無線基地局100から受信したスケジュール情報に基づいて、バッファリング量を3パケットと決定し、3つの音声パケット(音声パケット#5~#7)がバッファリングされるのを待ち、その後、20ms間隔で移動局200に音声パケットを無線送信する。移動局200は、無線基地局100aが音声パケットの送信を開始するまでの間は、無線基地局100から纏めて受信した音声パケットに基づいて音声再生を継続することができる。
 また、移動局200aが音声パケット#7の後に送信した背景雑音パケットは、無線基地局100aに転送される。無線基地局100aは、音声パケット#7を送信してから160ms後に、背景雑音パケットを移動局200へ無線送信する。移動局200は、音声パケット#7のデータを再生してから160ms後に、背景雑音パケットに含まれるデータを復号して背景雑音を再現する。
 このように、無線基地局100にバッファリングされている音声パケットを、元々スケジューリングされているタイミングで無線送信することで、送信のための無線リソースの確保が容易となる。
 図13は、パケットの流れの第2の例を示す図である。音声パケットおよび背景雑音パケットの伝送の全体的な流れは図12に示したものと同様である。ただし、無線基地局100は、元々のスケジュールに拘わらず、ハンドオーバ決定後できる限り早いタイミングで、バッファリングされている音声パケットデータを移動局200に無線送信する。ここで、できる限り早いタイミングとは、例えば、送信のための無線リソースを確保可能なタイミングのうち最も早いタイミングである。
 このように、無線基地局100にバッファリングされている音声パケットを、元々スケジューリングされているタイミングに拘わらず可能な限り早いタイミングで無線送信することで、移動局200への音声パケットの到着が再生のタイミングに間に合わないリスクをより低減することができる。
 図14は、パケットの流れの第3の例を示す図である。音声パケットおよび背景雑音パケットの伝送の全体的な流れは図12に示したものと同様である。ただし、無線基地局100は、バッファリングされている音声パケットデータを1回に送信せずに、複数回に分けて送信する。
 このように、複数回に分けて送信することで、送信のための無線リソースの確保がより容易となる。なお、各回の送信タイミングは、図12に示した例のように元々スケジューリングされているタイミングとしてもよいし、図13に示した例のように元々スケジューリングされているタイミングに依存しない任意のタイミングとしてもよい。
 このような移動通信システムを用いることで、移動局が所定の周期で音声パケットデータを再生中にハンドオーバが生じても、音声パケットデータの到着が再生タイミングに間に合わない危険性を低減できる。また、移動元の無線基地局から移動先の無線基地局にスケジュール情報が送信されるため、音声パケットデータの伝送の引き継ぎが円滑に行われる。従って、ハンドオーバ時の音声再生品質の低下が抑制される。
 [第2の実施の形態]
 次に、第2の実施の形態を図面を参照して詳細に説明する。前述の第1の実施の形態との相違点を中心に説明し、同様の事項については説明を省略する。
 第2の実施の形態に係る移動通信システムは、図2に示した第1の実施の形態に係る移動通信システムと同様のシステム構成によって実現できる。また、第2の実施の形態に係る無線基地局および移動局は、図3に示した無線基地局100および図4に示した移動局200と同様のモジュール構成によって実現できる。ただし、有音区間から無音区間への切り替わり時の制御が、第1の実施の形態と異なる。以下、第1の実施の形態で用いた符号と同様の符号を用いて第2の実施の形態を説明する。
 図15は、パケット送信制御の他の手順を示すフローチャートである。以下、図15に示す処理をステップ番号に沿って説明する。
 [ステップS61]制御部160は、移動局200との間でPersistent Schedulingに関するシグナリング(制御信号の送信)を行う。そして、制御部160は、VoIPパケットデータを送信できる状態にする。
 [ステップS62]制御部160は、有音区間の開始であるか否か判断する。有音区間の開始である場合には、処理がステップS63に進められる。有音区間の開始でない場合には、処理がステップS65に進められる。
 [ステップS63]制御部160は、バッファメモリ110にバッファリングメッセージで指定された量(例えば、2~3パケット分)の移動局200宛ての音声パケットデータがバッファリングされるのを待つ。
 [ステップS64]制御部160は、ステップS63のバッファリングが完了すると、バッファリングされている音声パケットデータを有音区間に対応する周期(例えば、20ms周期)で順次送信するよう制御する。その後、処理がステップS62に進められる。
 [ステップS65]制御部160は、無音区間の開始であるか否か判断する。無音区間の開始である場合には、処理がステップS66に進められる。無音区間の開始でない場合には、処理がステップS68に進められる。
 [ステップS66]送受信部140は、制御部160の指示に基づいて、有音区間から無音区間への移行を示す制御信号を移動局200に送信する。
 [ステップS67]制御部160は、バッファリングされている背景雑音パケットデータを無音区間に対応する周期(例えば、160ms周期)で順次送信するよう制御する。その後、処理がステップS62に進められる。
 [ステップS68]制御部160は、移動局200と移動局200aとの間のVoIPパケット通信が終了したか否か判断する。通信が終了した場合には、移動局200宛てのVoIPパケットデータの送信制御を終了する。通信が終了していない場合には、処理がステップS62に進められる。
 このようにして、無線基地局100は、音声パケットデータの取得後に背景雑音パケットデータを取得すると、有音区間から無音区間への移行を示す制御信号を、移動局200に送信する。これにより、移動局200は無音区間への移行をより早く認識できる。
 そして、移動局200は、Persistent Schedulingにより特定されるタイミング以外の時間帯は受信回路の電源をOFFにすることができる。このとき、送受信周期の長い無音区間への移行をいち早く認識できると、有音区間の終了後即座に受信回路の電源をONにする回数を減らすことができ、移動局200の消費電力をより抑制することができる。
 図16は、パケットの流れの第4の例を示す図である。音声パケットおよび背景雑音パケットの伝送の全体的な流れは図12に示したものと同様である。ただし、無線基地局100aは、最初の背景雑音パケットを送信する前に制御信号を移動局200に送信する。例えば、無線基地局100aは、最初の背景雑音パケットの到着直後に、背景雑音パケットの送信順番がいつ到来するかを制御信号で通知することが考えられる。また、最後の音声パケット(音声パケット#7)の送信と同時またはその直後に、次に背景雑音パケットを送信することを制御信号で通知することも考えられる。
 このように、元々スケジューリングされている背景雑音パケットの送信タイミング(最後の音声パケットを送信してから160ms後)の前に制御信号を送信することで、移動局200はより早く無音区間への移行を知ることができる。これにより、移動局200は、最後の音声パケット受信から160ms経過しなくても、160ms周期の間欠受信モードに移行することができる。
 なお、到着したVoIPパケットが音声パケットであるか背景雑音パケットであるかは、例えば、パケットサイズに基づいて判断することができる。背景雑音パケットは音声パケットよりもパケット長が短いことが多いためである。
 図17は、パケットの流れの第5の例を示す図である。音声パケットおよび背景雑音パケットの伝送の全体的な流れは図16に示したものと同様である。図17では、無線基地局100aは、最後の音声パケットの送信後、制御信号に代えてまたは制御信号と共に背景雑音パケットを移動局200に送信する。すなわち、無線基地局100aは、最初の背景雑音パケットについては、元々スケジューリングされている背景雑音パケットの送信タイミングに拘わらず送信を行う。移動局200は、受信した背景雑音パケットをバッファリングし、元々スケジューリングされているタイミングで復号して背景雑音を再現する。
 このように、制御信号に代えてまたは制御信号と共に背景雑音パケットを送信するによっても、移動局200はより早く無音区間への移行を知ることができ、より早く160ms周期の間欠受信モードに移行することができる。
 このような移動通信システムを用いることで、第1の実施の形態と同様の効果を得られる。更に、第2の実施の形態に係る移動通信システムを用いることで、移動局200の消費電力が低減される。
 なお、上記第1の実施の形態および第2の実施の形態で示した具体的な装置構成を、他の装置構成に変更することも可能である。例えば、無線基地局および移動局に複数のアンテナを設けて、MIMO(Multiple Input Multiple Output)通信を行うようにしてもよい。また、ハンドオーバの決定を無線基地局が行う代わりに、移動局やコアネットワーク内のサーバ装置が行うようにしてもよい。
 また、無線部分については、CDMAやOFDMA(Orthogonal Frequency Division Multiple Access)などの種々の多重化方式を採用でき、QAM(Quadrature Amplitude Modulation)やQPSK(Quadrature Phase Shift Keying)などの種々の変調方式を採用でき、畳み込み符号やターボ符号などの種々の符号化方式を採用することができる。
 上述した実施例を別の側面から表現すると、移動局において所定の周期で利用されるデータブロック(再生に供される音声パケットデータ)を、無線基地局から移動局に無線送信する移動通信システムにおける制御方法において、取得した移動局宛てのデータを記憶部(基地局のバッファメモリ)に格納し、記憶部(バッファメモリ)内の移動局宛てのデータが、所定量(例えば、複数N個の音声パケットデータ)に達するのを待って、その後、所定の周期(例えば20ms)で記憶部内のデータを移動局に順次無線送信する処理を開始し、移動局についてのハンドオーバが決定されると、他の無線基地局へ接続が切替えられる前に、記憶部(バッファメモリ)に記憶されているデータのうち、少なくともデータブロックのN(2以上の自然数)個分以上のデータを一度に移動局に無線送信するともいえる。ここで、所定量は、データブロックのN(2以上の自然数)個分以上であるとする(図12参照)。もしくは、無線伝播状況により、データブロック2個に対応するデータ量以上のデータ量である。
 これによれば、移動局宛てのデータが、所定量(例えば、複数N個の音声パケットデータ)に達するのを待ってから無線基地局から音声パケットデータの送信が開始されるので、無線基地局の切り替えの必要が生じた場合に、記憶部に複数のデータブロック分のデータが格納されている可能性が高まり、その複数のデータブロックを一度に移動局に無線送信するから、移動局は、その受信からある程度の時間、無線基地局からデータブロックを受信しなくとも所定の周期で利用するデータブロックを、その複数のデータブロックでまかなうことができる。
 また、上述した実施例を別の側面から表現すると、相手装置(例えば移動局)に対して、所定の周期で音声パケットデータを無線送信する無線装置(例えば基地局)と相手装置とを備えた移動通信システムにおける制御方法において、相手装置(例えば移動局)の接続先が、その無線装置から他の無線装置に切替えられる場合に、切替え前において、所定の周期(例えば、音声区間におけるPersistent Scheduling)に従っていないタイミングで音声パケットデータを無線装置(例えば基地局)から送信し、相手装置(例えば移動局)は、所定の周期に従っていないタイミングで送信される音声パケットデータを受信するともいえる(図13参照)。
 これによれば、所定の周期に従っていないタイミングで音声パケットデータを無線装置から送信するため、所定の周期が訪れる前に音声パケットデータを送信してしまい、切り替えの作業を早期に開始し、完了することも可能となる。
 また、上述した実施例を別の側面から表現すると、無線基地局から移動局へ音声パケットデータの送信を行う移動通信システムにおける制御方法において、無線基地局と移動局とのうち、少なくとも一方が、他方に対して、無線基地局のバッファメモリに所定量の音声パケットデータが格納されてから、無線基地局のバッファメモリに格納された音声パケットデータの送信を無線基地局が開始する所定のバッファリング処理を実行するか否かを示す制御信号、または、移動局のバッファメモリに所定量の音声パケットデータが格納されてから、移動局のバッファメモリに格納された音声パケットデータの再生を移動局が開始するバッファリング処理をするか否かを示す制御信号を送信し、制御信号を受信した無線基地局または移動局は、制御信号に基づいて送信制御または再生制御を行うともいえる。
 上述したバッファリングメッセージがこの制御信号の1例であるが、このような制御信号を送信し、受信側がそれに従うことで、バッファリング処理をどの装置で実行するか、しないかを円滑に制御することができる。
 また、上述した実施例を別の側面から表現すると、相手装置に対して、第1の周期で音声パケットデータを無線送信するモード(例えば有音区間におけるモード)から、第1の周期より長い第2の周期で背景雑音パケットデータを無線送信するモード(例えば、無音区間におけるモード)に切替えて送信を行う無線装置と相手装置とを備えた移動通信システムにおける制御方法において、モードの切り替えにより最初に送信される背景雑音パケットデータの送信タイミングよりも早いタイミングで、モードの切り替えを通知する信号を無線通信装置から相手装置に送信し、相手装置は、その信号を受信して受信制御に用いるともいえる。
 これによれば、相手装置は、モードの切り替わりを早期に検出し、受信制御に利用することができる。例えば、相手装置は、第1の周期より長い第2の周期による無線送信モードの切り替わりを早期に認識し、第1の周期に従った受信処理を行わない動作を実行するように切替えることもできる。例えば、第2の周期の最初の送信まで受信部の電源をオフとしたり、他の信号の受信を行うようにすることもできる。図17の例では、制御信号の受信からNの最初の受信までの期間、受信部の電源をオフとすることもできる。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
符号の説明
 10,10a 無線基地局
 11 バッファメモリ
 12 送信部
 20 移動局
 21 受信部
 22 再生部

Claims (15)

  1.  音声パケットデータを移動局に無線送信する無線基地局の送信制御方法において、
     取得した前記移動局宛ての音声パケットデータをバッファメモリに格納し、前記バッファメモリ内の音声パケットデータが所定量に達するのを待って、所定の周期で前記バッファメモリ内の音声パケットデータを前記移動局に順次無線送信する処理を開始し、
     前記移動局が他の無線基地局へハンドオーバを行うことが決定されると、前記バッファメモリ内の全てまたは複数の音声パケットデータを前記移動局に無線送信する、
     ことを特徴とする送信制御方法。
  2.  ハンドオーバの決定後、前記移動局への音声パケットデータの送信スケジュールを前記他の無線基地局に通知することを特徴とする請求の範囲第1項記載の送信制御方法。
  3.  前記バッファメモリ内の全ての音声パケットデータの無線送信は、前記所定の周期で特定されるタイミングのうちハンドオーバ決定後の最も早いタイミングで行うことを特徴とする請求の範囲第1項記載の送信制御方法。
  4.  前記バッファメモリ内の全ての音声パケットデータの無線送信は、送信のための無線リソースを確保可能なハンドオーバ決定後の最も早いタイミングで行うことを特徴とする請求の範囲第1項記載の送信制御方法。
  5.  前記バッファメモリ内の全ての音声パケットデータの無線送信は、ハンドオーバ決定後の複数のタイミングに分けて行うことを特徴とする請求の範囲第1項記載の送信制御方法。
  6.  音声パケットデータの送信開始後に前記移動局宛ての背景雑音パケットデータを取得すると、前記背景雑音パケットデータの送信前に送信周期の変更を示す信号を前記移動局に送信することを特徴とする請求の範囲第1項記載の送信制御方法。
  7.  音声パケットデータの送信開始前に、前記無線基地局にてバッファリングを行うことを示す信号を前記移動局に送信することを特徴とする請求の範囲第1項記載の送信制御方法。
  8.  音声パケットデータの送信開始前に前記無線基地局にてバッファリングを行うべきことを示す信号を前記移動局から受信した場合のみ、前記バッファメモリ内の音声パケットデータが前記所定量に達するのを待つことを特徴とする請求の範囲第1項記載の送信制御方法。
  9.  音声パケットデータを移動局に無線送信する無線基地局において、
     取得した前記移動局宛ての音声パケットデータを格納するバッファメモリと、
     前記バッファメモリ内の音声パケットデータが所定量に達するのを待って、所定の周期で前記バッファメモリ内の音声パケットデータを前記移動局に順次無線送信する処理を開始し、その後前記移動局が他の無線基地局へハンドオーバを行うことが決定されると、前記バッファメモリ内の全てのまたは複数の音声パケットデータを前記移動局に無線送信する送信部と、
     を有することを特徴とする無線基地局。
  10.  音声パケットデータを無線基地局から受信して音声再生を行う移動局において、
     前記無線基地局から所定の周期で音声パケットデータを受信中に他の無線基地局へハンドオーバを行うことが決定されると、前記無線基地局がバッファメモリに保持している全てのまたは複数の音声パケットデータを前記無線基地局から受信する受信部と、
     ハンドオーバの決定後、前記他の無線基地局から音声パケットデータの受信を開始するまでの間は、前記受信部で受信した前記無線基地局が前記バッファメモリに保持していた音声パケットデータに基づいて所定の音声再生タイミングで音声再生を行う再生部と、
     を有することを特徴とする移動局。
  11.  移動局において所定の周期で利用されるデータブロックを、無線基地局から前記移動局に無線送信する移動通信システムにおける制御方法において、
     取得した前記移動局宛てのデータを記憶部に格納し、前記記憶部内の前記移動局宛てのデータが、所定量に達するのを待って、その後、所定の周期で前記記憶部内のデータを前記移動局に順次無線送信する処理を開始し、
     前記移動局についてのハンドオーバが決定されると、他の無線基地局へ接続が切替えられる前に、前記記憶部に記憶されているデータのうち、少なくとも前記データブロック2ブロックに対応するデータ量以上の量のデータを一度に前記移動局に無線送信し、
     前記所定量は、前記データブロックの2ブロックに対応するデータ量以上の量のデータである、
     ことを特徴とする移動通信システムにおける制御方法。
  12.  相手装置に対して所定の周期で音声パケットデータを無線送信する無線装置と前記相手装置とを備えた移動通信システムにおける制御方法において、
     前記相手装置の接続先が前記無線装置から他の無線装置に切替えられる場合に、前記切替え前において、前記所定の周期に従っていないタイミングで音声パケットデータを前記無線装置から送信し、
     前記相手装置は、前記所定の周期に従っていないタイミングで送信される音声パケットデータを受信する、
     ことを特徴とする移動通信システムにおける制御方法。
  13.  無線基地局から移動局へ音声パケットデータの送信を行う移動通信システムにおける制御方法において、
     前記無線基地局と前記移動局とのうち、少なくとも一方が、他方に対して、前記無線基地局のバッファメモリに所定量の音声パケットデータが格納されてから前記無線基地局のバッファメモリに格納された音声パケットデータの送信を前記無線基地局が開始する所定のバッファリング処理を実行するか否かを示す制御信号、または、前記移動局のバッファメモリに所定量の音声パケットデータが格納されてから前記移動局のバッファメモリに格納された音声パケットデータの再生を前記移動局が開始するバッファリング処理をするか否かを示す制御信号を送信し、
     前記制御信号を受信した前記無線基地局または前記移動局は、前記制御信号に基づいて送信制御または再生制御を行う、
     ことを特徴とする移動通信システムにおける制御方法。
  14.  相手装置に対して、第1の周期で音声パケットデータを無線送信するモードから、前記第1の周期より長い第2の周期で背景雑音パケットデータを無線送信するモードに切替えて送信を行う無線装置と、前記相手装置とを備えた移動通信システムにおける制御方法において、
     前記モードの切り替えにより最初に送信される背景雑音パケットデータの送信タイミングよりも早いタイミングで、前記モードの切り替えを通知する信号を前記無線通信装置から前記相手装置に送信し、
     前記相手装置は、前記信号を受信して受信制御に用いる、
     ことを特徴とする移動通信システムにおける制御方法。
  15.  ハンドオーバ時に全てまたは複数の音声パケットデータを基地局から移動局に送信し、移動局において所定の音声再生タイミングで音声再生を行う移動通信システムにおいて、
     前記移動通信システムは、ハンドオーバ前に通信する基地局と、移動局とを備え、
     前記基地局は、取得した前記移動局宛ての音声パケットデータを格納するバッファメモリと、前記バッファメモリ内の音声パケットデータが所定量に達するのを待って、所定の周期で前記バッファメモリ内の音声パケットデータを前記移動局に順次無線送信する処理を開始し、その後前記移動局が他の無線基地局へハンドオーバを行うことが決定されると、前記バッファメモリ内の全てのまたは複数の音声パケットデータを前記移動局に無線送信する送信部とを備え、
     前記移動局は、前記無線基地局がバッファメモリに保持している全てまたは複数の音声パケットデータを前記無線基地局から受信する受信部と、ハンドオーバの決定後、前記他の無線基地局から音声パケットデータの受信を開始するまでの間は、前記受信部で受信した前記無線基地局がバッファメモリに保持していた音声パケットデータに基づいて所定の音声再生タイミングで音声再生を行う再生部とを備える、
     ことを特徴とする移動通信システム。
PCT/JP2007/075283 2007-12-28 2007-12-28 送信制御方法、無線基地局、移動局および制御方法 WO2009084103A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2007/075283 WO2009084103A1 (ja) 2007-12-28 2007-12-28 送信制御方法、無線基地局、移動局および制御方法
JP2009547846A JP5041007B2 (ja) 2007-12-28 2007-12-28 送信制御方法、無線基地局、移動局および制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/075283 WO2009084103A1 (ja) 2007-12-28 2007-12-28 送信制御方法、無線基地局、移動局および制御方法

Publications (1)

Publication Number Publication Date
WO2009084103A1 true WO2009084103A1 (ja) 2009-07-09

Family

ID=40823843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/075283 WO2009084103A1 (ja) 2007-12-28 2007-12-28 送信制御方法、無線基地局、移動局および制御方法

Country Status (2)

Country Link
JP (1) JP5041007B2 (ja)
WO (1) WO2009084103A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112477A1 (ja) * 2013-01-18 2014-07-24 株式会社Nttドコモ ユーザ装置、基地局、及び切替え制御方法
WO2014112466A1 (ja) * 2013-01-18 2014-07-24 株式会社Nttドコモ ユーザ装置、基地局、切替え制御方法、及びスケジューリング制御方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531967A (ja) * 2002-06-28 2005-10-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 適応レートマッチング方法
WO2007145340A1 (ja) * 2006-06-16 2007-12-21 Ntt Docomo, Inc. 基地局、ユーザ装置及び方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2713240B2 (ja) * 1995-06-15 1998-02-16 日本電気株式会社 移動通信システム
JP2002238067A (ja) * 2001-02-07 2002-08-23 Mitsubishi Electric Corp 移動体通信システム、ハンドオフ方法およびその方法をコンピュータに実行させるプログラム
JP2003047037A (ja) * 2001-08-01 2003-02-14 Ntt Docomo Inc 通信システム、及び、ハンドオーバ制御方法
JP2006222822A (ja) * 2005-02-14 2006-08-24 Hitachi Ltd ハンドオーバシステム
JP4711835B2 (ja) * 2006-01-17 2011-06-29 株式会社エヌ・ティ・ティ・ドコモ 送信装置および受信装置並びにランダムアクセス制御方法
CN101473579B (zh) * 2006-06-19 2012-09-26 株式会社Ntt都科摩 基站以及通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531967A (ja) * 2002-06-28 2005-10-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 適応レートマッチング方法
WO2007145340A1 (ja) * 2006-06-16 2007-12-21 Ntt Docomo, Inc. 基地局、ユーザ装置及び方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112477A1 (ja) * 2013-01-18 2014-07-24 株式会社Nttドコモ ユーザ装置、基地局、及び切替え制御方法
WO2014112466A1 (ja) * 2013-01-18 2014-07-24 株式会社Nttドコモ ユーザ装置、基地局、切替え制御方法、及びスケジューリング制御方法
JP2014138373A (ja) * 2013-01-18 2014-07-28 Ntt Docomo Inc ユーザ装置、基地局、切替え制御方法、及びスケジューリング制御方法

Also Published As

Publication number Publication date
JP5041007B2 (ja) 2012-10-03
JPWO2009084103A1 (ja) 2011-05-12

Similar Documents

Publication Publication Date Title
AU2007322589B2 (en) Method and apparatus for receiving system information from base station in a mobile communication system
US7808953B2 (en) Communication control method, wireless communication system, mobile station, base station and base station control unit
CN105491621B (zh) 多基站联合上行链路数据处理
JP4952794B2 (ja) 送信装置、受信装置、通信方法、無線通信システムおよび無線通信方法
JP4927866B2 (ja) 逆方向リンクによる他セクタとの通信
EP1887716B1 (en) Communication terminal device and communication method
US8072935B2 (en) Mobile communication system, handover control method, base station, and mobile station
US20060058051A1 (en) Mobile communication system, base station, mobile station, and radio communication method used for them
EP2475125B1 (en) Method, apparatus and computer program product providing slow associated control channel (sacch) repetition
JP2006174273A (ja) 無線通信システム、無線基地局、移動局
KR20130143026A (ko) 반송파 집적 기술을 사용하는 무선통신시스템에서 부차 반송파의 활성화 방법 및 장치
JP2006246089A (ja) 無線基地局、移動局
WO2009157153A1 (ja) パケット送信装置及びパケット送信方法
JP2006174286A (ja) 無線基地局、移動局
US9078182B2 (en) Radio terminal and communication terminal
TW200812275A (en) Base station, user device, and method
JP5041007B2 (ja) 送信制御方法、無線基地局、移動局および制御方法
TW201236407A (en) Method of controlling receive diversity for battery lifetime improvement and related communication device
KR20080086315A (ko) 이동 통신 시스템의 핸드 오버 방법 및 장치
WO2017190566A1 (zh) 一种用户设备、基站中的用于中继传输的方法和装置
JP5348218B2 (ja) 無線通信システム
JP2005072656A (ja) フレーム転送装置、フレーム転送方法
JPWO2023037522A5 (ja) 端末、無線通信方法、基地局及びシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07860486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009547846

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07860486

Country of ref document: EP

Kind code of ref document: A1