WO2009081715A1 - Gas barrier film, gas barrier multilayer film, and packaging material using the same - Google Patents

Gas barrier film, gas barrier multilayer film, and packaging material using the same Download PDF

Info

Publication number
WO2009081715A1
WO2009081715A1 PCT/JP2008/072154 JP2008072154W WO2009081715A1 WO 2009081715 A1 WO2009081715 A1 WO 2009081715A1 JP 2008072154 W JP2008072154 W JP 2008072154W WO 2009081715 A1 WO2009081715 A1 WO 2009081715A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
resin
layer
mass
film
Prior art date
Application number
PCT/JP2008/072154
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Kashimura
Chisato Fujimura
Original Assignee
Kureha Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corporation filed Critical Kureha Corporation
Priority to JP2009547016A priority Critical patent/JPWO2009081715A1/en
Publication of WO2009081715A1 publication Critical patent/WO2009081715A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for

Definitions

  • the present invention relates to a gas barrier film and a gas barrier laminated film useful as packaging materials for foods, beverages, medicines, pharmaceuticals, and the like.
  • a polymer containing a highly hydrogen-bonding group having high hydrophilicity in a molecule represented by poly (meth) acrylic acid or polyvinyl alcohol has been used as a gas barrier polymer.
  • films made of only these polymers have excellent gas barrier properties such as oxygen under dry conditions, while gas barriers such as oxygen due to their hydrophilicity under high humidity conditions. There is a problem that the property is greatly reduced and a film is inferior in resistance to humidity and hot water.
  • a gas barrier film obtained by laminating a film as described in Document 1 on a support has excellent gas barrier properties such as oxygen even in a high humidity atmosphere.
  • gas barrier properties such as oxygen even in a high humidity atmosphere.
  • the boil treatment or the retort treatment it is not always sufficient in that peeling may occur between the film and the support.
  • the present invention has been made in view of the above-described problems of the prior art, and has excellent gas barrier properties and sufficient water resistance in a high humidity atmosphere, and also so-called delamination (film after boil treatment or retort treatment). It is an object of the present invention to provide a gas barrier film and a gas barrier laminated film that can sufficiently prevent occurrence of delamination of the film, and a packaging material using them.
  • the present inventors have developed a gas barrier layer containing a polycarboxylic acid-based polymer via an anchor coat layer containing a carbodiimide group-containing resin on a polymer film substrate. Surprisingly, it has been found that by laminating, it is possible to sufficiently prevent the occurrence of delamination by improving water resistance while maintaining excellent gas barrier properties in a high humidity atmosphere. It came to complete.
  • the gas barrier film of the present invention has a gas barrier layer containing a polycarboxylic acid polymer on at least one surface of a polymer film substrate via an anchor coat layer containing a carbodiimide group-containing resin and an adhesive resin.
  • the content ratio of the carbodiimide group-containing resin (in terms of solid content) is in the range of 5 to 50% by mass with respect to the total amount of resin solid content in the anchor coat layer.
  • the content ratio of the carbodiimide group-containing resin (in terms of solid content) is in the range of 5 to 35% by mass with respect to the total amount of resin solid content in the anchor coat layer. preferable.
  • the gas barrier layer is preferably a laminate comprising a layer (A) containing the polycarboxylic acid polymer and a layer (B) containing a polyvalent metal compound.
  • a layer (A) containing the polycarboxylic acid polymer and a layer (B) containing a polyvalent metal compound.
  • the anchor coat layer and the layer (A) containing the polycarboxylic acid polymer are adjacent to each other.
  • the layer (A) containing the polycarboxylic acid polymer preferably further contains a hydrolysis condensate, and the layer containing the polycarboxylic acid polymer.
  • the thickness of (A) is preferably in the range of 0.01 to 10 ⁇ m.
  • the adhesive resin is preferably at least one resin selected from the group consisting of a polyester polyurethane resin, a polyether polyurethane resin, an acrylic resin, and an epoxy resin.
  • the anchor coat layer preferably has a thickness in the range of 0.01 to 5 ⁇ m.
  • the gas barrier laminated film of the present invention comprises the gas barrier film and a thermoplastic resin film laminated on at least one side of the gas barrier film.
  • the packaging material which has gas barrier property of this invention performs high temperature sterilization treatment to the packaging material provided with the said gas barrier property laminated film.
  • the oxygen permeability in temperature 20 degreeC and relative humidity 80% is 100 cm ⁇ 3 > (STP) / (m ⁇ 2 > * day * MPa) or less.
  • the reason why it is possible to sufficiently prevent the occurrence of delamination by improving the water resistance while maintaining excellent gas barrier properties in a high humidity atmosphere is not necessarily clear.
  • the present inventors speculate as follows.
  • a gas barrier layer containing a polycarboxylic acid polymer is laminated on a polymer film substrate through an anchor coat layer containing a carbodiimide group-containing resin.
  • the carboxyl group of the polycarboxylic acid polymer and the carbodiimide group of the carbodiimide group-containing resin form an excellent acylurea bond having water resistance.
  • the polycarboxylic acid polymer in which an acylurea bond is formed in this way has a lower gas barrier property than the polycarboxylic acid polymer in which a crosslink derived from a polyvalent metal compound is formed.
  • the carbodiimide group-containing resin does not move in the gas barrier layer when exposed to warm water like the polyvalent metal compound (metal ion), an acyl urea bond is formed in the anchor coat layer in the gas barrier layer. It is limited to the vicinity of the interface. Therefore, there is almost no influence on the gas barrier properties of the gas barrier layer after the boil treatment or retort treatment. Therefore, according to the gas barrier film of the present invention, the present inventor can sufficiently prevent the occurrence of delamination by improving water resistance while maintaining excellent gas barrier properties particularly in a high humidity atmosphere. Et al.
  • the present invention has excellent gas barrier properties and sufficient water resistance in a high humidity atmosphere, and can sufficiently prevent the occurrence of so-called delamination (film delamination after boil treatment or retort treatment). It becomes possible to provide a gas barrier film and a gas barrier laminated film that can be provided, and a packaging material using them.
  • the gas barrier film of the present invention has a gas barrier layer containing a polycarboxylic acid polymer on at least one surface of a polymer film substrate via an anchor coat layer containing a carbodiimide group-containing resin and an adhesive resin.
  • the content ratio of the carbodiimide group-containing resin (in terms of solid content) is in the range of 5 to 50% by mass with respect to the total amount of resin solid content in the anchor coat layer.
  • the polymer film substrate according to the present invention serves as a support for sequentially laminating an anchor coat layer described later and a gas barrier layer described later.
  • Such a polymer film substrate is not particularly limited, and examples thereof include polyolefin polymers such as low density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, poly-4-methylpentene, and cyclic polyolefin.
  • polyolefin polymers such as low density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, poly-4-methylpentene, and cyclic polyolefin.
  • Copolymers and acid-modified products thereof polyvinyl acetate, ethylene-vinyl acetate copolymer, saponified ethylene-vinyl acetate copolymer, vinyl alcohol copolymer such as polyvinyl alcohol, polyethylene terephthalate, polybutylene terephthalate , Aromatic polyester polymers such as polyethylene naphthalate and copolymers thereof; aliphatic polyester polymers such as poly ⁇ -caprolactone, polyhydroxybutyrate, polyhydroxyvalerate and copolymers thereof; nylon 6, Nylon 66, nylon 2.
  • Polyamide polymers such as nylon 6,66 copolymer, nylon 6,12 copolymer, metaxylene adipamide / nylon 6 copolymer and copolymers thereof; polyethylene glycol, polyether sulfone, polyphenylene sulfide Polyether polymers such as polyphenylene oxide; chlorinated and fluorinated polymers such as polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride and copolymers thereof; polymethyl acrylate, polyethyl acrylate, poly Acrylic polymers such as methyl methacrylate, polyethyl methacrylate, polyacrylonitrile and their copolymers; polyimide polymers and their copolymers; alkyd resins, melamine resins, acrylic resins, nitrified cotton, urethane resins, polyester resins, phenols Tree Examples include resins for coatings such as fats, amino resins, fluororesins, and
  • the form of such a polymer film substrate is not particularly limited, but can be used in the form of an unstretched sheet, a stretched sheet, an unstretched film, a stretched film, or the like.
  • the thickness of such a polymer film substrate is not particularly limited, but the thickness is preferably in the range of 5 to 500 ⁇ m, and more preferably in the range of 10 to 200 ⁇ m.
  • the thickness of the polymer film substrate is less than the above lower limit, there is a tendency that a coating problem such as the polymer film substrate is likely to be cut easily.
  • the thickness exceeds the above upper limit, Since the rigidity is too high, there is a tendency that a problem occurs in handling properties in secondary processing and filling of contents.
  • such a polymer film substrate is formed by depositing a thin film made of an inorganic compound such as silicon oxide, aluminum oxide, aluminum, or silicon nitride on the surface of a sheet, a film, or the like by a vapor deposition method, a sputtering method, an ion plating method, or the like.
  • the thin film forming method may be used.
  • the anchor coat layer according to the present invention is a layer containing a carbodiimide group-containing resin and an adhesive resin.
  • the diisocyanate compound which is a starting material for such a carbodiimide group-containing resin include aromatic, aliphatic or alicyclic diisocyanates, such as tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, cyclohexane. Examples thereof include diisocyanate, isophorone diisocyanate, and dicyclohexyl diisocyanate.
  • a commercially available resin may be used as such a carbodiimide group-containing resin.
  • a commercially available resin may be used as a solvent-free resin.
  • the content ratio (in terms of solid content) of such a carbodiimide group-containing resin needs to be in the range of 5 to 50% by mass with respect to the total amount of resin solid content in the anchor coat layer according to the present invention.
  • the content ratio is less than 5% by mass, the water resistance of the obtained gas barrier layer cannot be sufficiently improved.
  • the content ratio (solid content conversion) of such a carbodiimide group-containing resin is the resin solid content in the anchor coat layer according to the present invention. It is preferably in the range of 5 to 35% by mass with respect to the total amount.
  • the anchor coat layer according to the present invention is a layer containing an adhesive resin in addition to the carbodiimide group-containing resin.
  • adhesive resins include polyester polyurethane resins, polyether polyurethane resins, acrylic resins, and epoxy resins.
  • polyester-based polyurethane resins and acrylic resins are preferable, and polyester-based polyurethane resins are particularly preferable from the viewpoints of water resistance, heat resistance, and interlayer adhesive strength.
  • the thickness of the anchor coat layer according to the present invention is not particularly limited, but the thickness is preferably in the range of 0.01 to 5 ⁇ m, more preferably in the range of 0.05 to 1 ⁇ m. If the thickness of the anchor coat layer is less than the lower limit, delamination tends to occur. On the other hand, if the thickness exceeds the upper limit, a desired gas barrier property tends to be hardly exhibited.
  • the average surface roughness of the surface of such an anchor coat layer is preferably 10 nm or less, more preferably 5 nm or less, and particularly preferably 1 nm or less. When the average surface roughness of the surface exceeds the upper limit, it tends to be difficult to uniformly apply the gas barrier layer.
  • the maximum height difference on the surface of such an anchor coat layer is preferably 50 nm or less, more preferably 20 nm or less, and particularly preferably 10 nm or less. When the maximum height difference of the surface exceeds the upper limit, it tends to be difficult to uniformly apply the gas barrier layer.
  • the average surface roughness and the maximum height difference of the surface can be measured by image analysis of the surface of the anchor coat layer using an atomic force microscope.
  • the gas barrier layer according to the present invention is a layer containing a polycarboxylic acid polymer described below.
  • a gas barrier layer preferably further contains a polyvalent metal compound described later.
  • a gas barrier layer comprises a layer (A) containing a polycarboxylic acid polymer and a polyvalent metal compound. It is preferable that it is a laminated body provided with the layer (B) to contain. In such a case, it is necessary that the anchor coat layer and the layer (A) containing the polycarboxylic acid polymer are adjacent to each other.
  • the anchor coat layer is thus composed of a gas barrier layer containing a polycarboxylic acid polymer (the gas barrier layer is a polyvalent polymer and a layer (A) containing a polycarboxylic acid polymer).
  • the gas barrier layer is a polyvalent polymer and a layer (A) containing a polycarboxylic acid polymer.
  • the anchor coat layer is adjacent to the gas barrier layer, whereby the carboxyl group of the polycarboxylic acid polymer and the carbodiimide group of the carbodiimide group-containing resin form an excellent acylurea bond having water resistance. Therefore, in the gas barrier film of the present invention, the water resistance of the gas barrier layer, particularly in the vicinity of the interface with the anchor coat layer, is improved.
  • the polycarboxylic acid polymer according to the present invention is a polymer in which a polycarboxylic acid-based polymerizable monomer is polymerized, and is a polymer having two or more carboxyl groups in the molecule.
  • polycarboxylic acid polymers include (co) polymers of ⁇ , ⁇ -monoethylenically unsaturated carboxylic acids; ⁇ , ⁇ -monoethylenically unsaturated carboxylic acids and other ethylenically unsaturated polymers. Copolymers with monomers; acidic polysaccharides having a carboxyl group in the molecule such as alginic acid, carboxymethylcellulose, and pectin. These polycarboxylic acid polymers may be used alone or in combination of two or more.
  • Examples of such ⁇ , ⁇ -monoethylenically unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, and crotonic acid.
  • examples of the ethylenically unsaturated monomer copolymerizable with these ⁇ , ⁇ -monoethylenically unsaturated carboxylic acids include saturated carboxylic acid vinyl esters such as ethylene, propylene and vinyl acetate, and alkyl acrylates. Alkyl methacrylates, alkyl itaconates, vinyl chloride, vinylidene chloride, styrene, acrylamide, and acrylonitrile.
  • the polycarboxylic acid polymer according to the present invention is a copolymer of an ⁇ , ⁇ -monoethylenically unsaturated carboxylic acid and another ethylenically unsaturated monomer
  • the resulting gas barrier layer From the viewpoint of improving gas barrier properties and resistance to high-temperature steam and hot water, in such a copolymer, the ⁇ , ⁇ -monoethylenically unsaturated carboxylic acid relative to the total amount of monomers used as a raw material for the copolymer is used.
  • the content of is preferably 60 mol% or more, more preferably 80 mol% or more, and particularly preferably 90 mol% or more.
  • the polycarboxylic acid polymer according to the present invention is at least one selected from the group consisting of the ⁇ , ⁇ -monoethylenically unsaturated carboxylic acids from the viewpoint that the gas barrier property of the resulting gas barrier film is particularly excellent.
  • a (co) polymer of a polymerizable monomer and a mixture thereof are preferable, and a (co) polymer of at least one polymerizable monomer selected from the group consisting of acrylic acid, methacrylic acid, and maleic acid. ) Polymers and mixtures thereof are more preferred, and polyacrylic acid, polymethacrylic acid, polymaleic acid, and mixtures thereof are particularly preferred.
  • the number average molecular weight of such a polycarboxylic acid polymer is not particularly limited, but is preferably in the range of 2,000 to 10,000,000 from the viewpoint of easy formation of an organic thin film. More preferably, it is 5,000 to 1,000,000.
  • the gas barrier layer according to the present invention in addition to the polycarboxylic acid polymer, other polymers can be mixed and used as long as the gas barrier property and moisture resistance of the gas barrier layer are not impaired. And when mixing and using another polymer in this way, the content ratio (solid content conversion) of the said polycarboxylic acid type polymer is 80 with respect to the total amount of the resin solid content in the said gas barrier layer. The content is preferably at least mass%, more preferably at least 90 mass%. In the gas barrier layer according to the present invention, it is particularly preferable to use only the polycarboxylic acid polymer alone.
  • the gas barrier layer of the present invention preferably further contains a polyvalent metal compound described below in addition to the polycarboxylic acid polymer described above.
  • the polyvalent metal compound according to the present invention is for forming a salt with the polycarboxylic acid polymer.
  • Examples of the metal contained in such a polyvalent metal compound include alkaline earth metals such as beryllium, magnesium and calcium; transition metals such as titanium, zirconium, chromium, manganese, iron, cobalt, nickel, copper and zinc Mention may be made of aluminum.
  • Examples of such polyvalent metal compounds include oxides, hydroxides, organic acid salts, inorganic acid salts of the metals; ammonium complexes of the metals, secondary to quaternary amine complexes, inorganic acid salts of these complexes, Organic acid salt; alkyl alkoxide and the like.
  • Examples of the organic acid salt include acetate, oxalate, citrate, lactate, stearate, monoethylenically unsaturated carboxylate and the like.
  • Examples of inorganic acid salts include chlorides, sulfates, nitrates, carbonates, inorganic phosphates, phosphites, and hypophosphites.
  • Such polyvalent metal compounds may be used alone or in combination of two or more.
  • divalent metal compounds are preferably used from the viewpoint of improving gas barrier properties, moisture resistance and manufacturability of the obtained gas barrier film.
  • alkaline earth metals oxides such as zirconium, cobalt, nickel, copper, zinc, hydroxides, or carbonates; alkaline earth metals, zirconium, cobalt, nickel, copper, It is preferable to use an ammonium complex such as zinc or a carbonate of the above complex, an oxide, hydroxide or carbonate such as magnesium, calcium, zirconium, copper or zinc; an ammonium complex such as zirconium, copper, nickel or zinc; More preferably, a carbonate of the complex is used.
  • the polyvalent metal compound is preferably granular from the viewpoint of the transparency of the gas barrier layer. A smaller diameter is more preferable.
  • the polyvalent metal compound may be granular.
  • the particle diameter is smaller.
  • the average particle size of such a polyvalent metal compound is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less, and particularly preferably 0.1 ⁇ m or less.
  • the gas barrier layer according to the present invention is preferably a laminate including a layer (A) containing a polycarboxylic acid polymer and a layer (B) containing a polyvalent metal compound.
  • a layer (A) containing a polycarboxylic acid polymer and a layer (B) containing a polyvalent metal compound, compared with the case where it is set as a single layer
  • the content of the polyvalent metal compound in the gas barrier layer can be increased.
  • the packaging material having such a gas barrier layer is subjected to boil treatment or retort treatment, the polyvalent metal compound moves to the layer (A), and the polycarboxylic acid polymer is converted to the polyvalent polymer. It is ion-crosslinked with a metal compound, and tends to improve the water resistance and gas barrier properties of the packaging material.
  • the thickness of the layer (A) is preferably in the range of 0.01 to 10 ⁇ m, more preferably in the range of 0.05 to 5 ⁇ m. A range of 0.1 to 1 ⁇ m is particularly preferable.
  • the thickness of the layer (A) is less than the lower limit, film formation tends to be difficult.
  • the thickness exceeds the upper limit the ion-bonding reaction with the polyvalent metal ions hardly proceeds uniformly in the thickness direction.
  • the gas barrier property of the packaging material after high-temperature sterilization tends to be difficult to obtain.
  • the thickness of the layer (B) is preferably in the range of 0.01 to 10 ⁇ m, more preferably in the range of 0.05 to 5 ⁇ m, and in the range of 0.1 to 3 ⁇ m. It is particularly preferred that If the thickness of the layer (B) is less than the lower limit, the gas barrier property of the packaging material after high-temperature sterilization tends to be difficult to be obtained. It tends to cause a decrease in peel strength in the conductive laminated film.
  • such a layer (A) further contains a hydrolysis condensate.
  • a hydrolysis condensate the water resistance of the layer (A) tends to be improved, and the occurrence of delamination tends to be suppressed.
  • hydrolysis condensates examples include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, tetramethoxy
  • hydrolysis condensates of compounds such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane and the like are preferable.
  • the compound used as the raw material of these hydrolysis-condensation products may be used individually by 1 type, or may mix and use 2 or more types.
  • examples of such a combination of compounds include a combination of ⁇ -glycidoxypropyltrimethoxysilane and tetramethoxysilane.
  • the polyvalent metal compound and the hydrolysis condensate in addition to the polycarboxylic acid polymer, the polyvalent metal compound and the hydrolysis condensate, a known arbitrary addition is added to the layer (A) and the layer (B).
  • the component may be contained in a range not impairing the above-described action.
  • the gas barrier layer is disposed on at least one surface of the polymer film substrate via the anchor coat layer.
  • the gas barrier laminate film of the present invention comprises the gas barrier film and a thermoplastic resin film laminated on at least one surface of the gas barrier film.
  • thermoplastic resin film is appropriately laminated for the purpose of imparting abrasion resistance, glossiness, heat sealability, strength and moisture resistance to the gas barrier laminate film.
  • a material of such a thermoplastic resin film the thing similar to the material of the said polymer film base material can be mentioned.
  • the material of such a thermoplastic resin film can be appropriately selected and used in accordance with the above purpose.
  • the gas barrier laminate film of the present invention may include two or more thermoplastic resin films in accordance with the above purpose.
  • the thickness of such a thermoplastic resin film is preferably 1 to 1000 ⁇ m, more preferably 5 to 500 ⁇ m, particularly preferably 5 to 300 ⁇ m, and 5 to 200 ⁇ m. Most preferably it is.
  • the packaging material provided with such a gas barrier laminate film becomes a packaging material having excellent gas barrier properties even in a high humidity atmosphere by performing high-temperature sterilization treatment such as boil treatment and retort treatment. Therefore, the gas barrier film and the gas barrier laminated film of the present invention are particularly preferably used as a packaging material for articles that require treatment under high-temperature hot water conditions such as boil treatment and retort treatment (high-temperature sterilization treatment). it can.
  • the method for producing the gas barrier film of the present invention includes a step of preparing a coating liquid for forming the anchor coat layer and the gas barrier layer, and the anchor coat layer on at least one surface of the polymer film substrate. And a step of coating and drying the coating liquid prepared sequentially on the polymer film base so that the gas barrier layer is formed.
  • the gas barrier layer is preferably a laminate comprising a layer (A) containing a polycarboxylic acid polymer and a layer (B) containing a polyvalent metal compound. Therefore, the case where the layer (A) and the layer (B) are formed will be described below as an example.
  • the coating liquid for forming an anchor coat layer according to the present invention contains the carbodiimide group-containing resin and the adhesive resin.
  • the carbodiimide group-containing resin and the adhesive resin are as described above.
  • Such a coating solution is preferably a two-component type from the viewpoint of storage stability.
  • a coating liquid contains a solvent other than the said carbodiimide group containing resin and the said adhesive resin from a viewpoint of coating property.
  • a solvent include ethyl acetate, butyl acetate, isopropyl alcohol, toluene, methyl ethyl ketone, and water.
  • ethyl acetate, isopropyl alcohol, and water from the viewpoint of working environment, versatility, and toxicity.
  • one kind may be used alone, or two or more kinds may be mixed and used.
  • the solid content concentration in such a coating liquid is preferably in the range of 2 to 30% by mass from the viewpoint of coating suitability.
  • the coating liquid (a) for forming the layer (A) according to the present invention contains the polycarboxylic acid polymer.
  • the polycarboxylic acid polymer is as described above.
  • Such a coating liquid (a) preferably contains a solvent in addition to the polycarboxylic acid polymer from the viewpoint of coating properties.
  • solvents include water, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-propyl alcohol, n-butyl alcohol, n-pentyl alcohol, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, toluene, hexane. , Heptane, cyclohexane, acetone, methyl ethyl ketone, diethyl ether, dioxane, tetrahydrofuran, ethyl acetate, butyl acetate and the like.
  • water and isopropyl alcohol are preferably used from the viewpoints of solubility and coatability.
  • these solvents one kind may be used alone, or two or more kinds may be mixed and used.
  • the polyvalent metal compound, the hydrolysis condensate, the softening agent, the stabilizer, the film forming agent, the anti-blocking agent, the pressure-sensitive adhesive, and the like can be appropriately added to such a coating liquid (a).
  • the solid content concentration in the coating liquid (a) is preferably in the range of 2 to 30% by mass from the viewpoint of coating suitability.
  • the coating liquid (b) for forming the layer (B) according to the present invention contains the polyvalent metal compound.
  • the polyvalent metal compound is as described above.
  • Such a coating liquid (b) preferably contains a solvent in addition to the polyvalent metal compound from the viewpoint of coating properties.
  • a solvent include the same solvents as those used in the coating liquid (a) described above.
  • a resin, a dispersant, a softener, a stabilizer, a film forming agent, an antiblocking agent, an adhesive, and the like can be appropriately added to such a coating liquid (b).
  • the solid content concentration in the coating liquid (b) is preferably in the range of 2 to 30% by mass from the viewpoint of coating suitability.
  • a known coating method can be used without particular limitation, and dipping (dipping), spraying, coater, Examples thereof include a method using a coating machine such as a printing machine or a brush.
  • the types of coaters and printing presses used in these methods and their coating methods include gravure coaters (direct gravure method, reverse gravure method, kiss reverse gravure method, offset gravure method, etc.), reverse roll coater, micro Examples include a gravure coater, an air knife coater, a dip coater, a bar coater, a comma coater, and a die coater.
  • the coating amount of these coating liquids varies depending on the desired layer thickness, and is not particularly limited, but the mass per 1 m 2 after coating and drying the coating liquid is 0.01 to 5 g / m 2 . It is preferably 0.03 to 3 g / m 2 . If the mass per 1 m 2 after coating and drying the coating liquid is less than the lower limit, it tends to be difficult to form a coating film. On the other hand, if the upper limit is exceeded, drying is insufficient and the solvent remains. It tends to be easier.
  • the method for drying these coating liquids is not particularly limited, but is a method of natural drying, a method of drying in an oven set to a predetermined temperature, a dryer attached to the coater, such as an arch dryer, a floating Examples thereof include a method using a dryer, a drum dryer, an infrared dryer, or the like.
  • the drying conditions can be appropriately selected depending on the drying method. For example, in the method of drying in an oven, it is preferable to dry at a temperature of 60 to 200 ° C. for about 1 second to 5 minutes.
  • thermoplastic resin films can be further laminated to obtain the gas barrier laminate film of the present invention.
  • the method for laminating the thermoplastic resin film on the gas barrier film of the present invention is not particularly limited, and a known method can be used as appropriate. A dry laminating method, an extrusion laminating method, a hot melt laminating method can be used. It is possible to use a law or the like.
  • the packaging material having a gas barrier property of the present invention is obtained by subjecting a packaging material including the gas barrier laminated film of the present invention to a high-temperature sterilization treatment.
  • Such high-temperature sterilization treatment refers to a treatment in which an object to be treated is exposed to a high-temperature and high-humidity atmosphere or hot water, and specifically refers to boil treatment, retort treatment, and the like.
  • the treatment temperature is preferably 80 ° C. or higher (more preferably 90 ° C. or higher).
  • the treatment time is preferably 10 minutes or more (more preferably 20 minutes or more) although it depends on the treatment temperature.
  • the gas barrier property of the packaging material is further improved, and a packaging material having a gas barrier property is obtained.
  • the oxygen permeability at a temperature of 20 ° C. and a relative humidity of 80% is preferably 100 cm 3 (STP) / (m 2 ⁇ day ⁇ MPa) or less, and 50 cm 3 (STP). ) / (M 2 ⁇ day ⁇ MPa) or less, more preferably 30 cm 3 (STP) / (m 2 ⁇ day ⁇ MPa) or less.
  • (Preparation Example 2) Carbodiimide group-containing resin 1 (manufactured by Elastogran, trade name “Elastostab H01”, solid content concentration: 100 mass%, NCO group content: 0 mass%, sometimes referred to as “CDI-1” in some cases) solidified with ethyl acetate It diluted so that a partial concentration might be 5 mass%, and obtained the diluted liquid of carbodiimide group containing resin. Then, 90 parts by mass of the coating liquid (Ac-1) obtained in Preparation Example 1 and 10 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-2) for an anchor coat layer. . The solid content concentration in the obtained coating liquid (Ac-2) was 5% by mass. The obtained coating liquid (Ac-2) contained polyester-based polyurethane resin 1 as a base adhesive resin. Further, the content ratio of CDI-1 was 10% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-2).
  • CDI-1 was diluted with ethyl acetate to a solid content concentration of 5% by mass to obtain a diluted solution of carbodiimide group-containing resin. Then, 80 parts by mass of the coating liquid (Ac-1) obtained in Preparation Example 1 and 20 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-3) for an anchor coat layer. . The solid content concentration in the obtained coating liquid (Ac-3) was 5% by mass. Further, the obtained coating liquid (Ac-3) contained polyester-based polyurethane resin 1 as a base adhesive resin. Furthermore, the content ratio of CDI-1 was 20% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-3).
  • CDI-1 was diluted with ethyl acetate to a solid content concentration of 5% by mass to obtain a diluted solution of carbodiimide group-containing resin. Then, 60 parts by mass of the coating liquid (Ac-1) obtained in Preparation Example 1 and 40 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-4) for an anchor coat layer. . The solid content concentration in the obtained coating liquid (Ac-4) was 5% by mass. Further, the obtained coating liquid (Ac-4) contained the polyester-based polyurethane resin 1 as a base adhesive resin. Further, the content ratio of CDI-1 was 40% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-4).
  • Preparation Example 7 After mixing CDI-1 and CDI-3 so that the mass ratio (CDI-1 / CDI-3) is 1/2, the mixture is diluted with ethyl acetate to a solid content concentration of 5% by mass. A diluted solution of a carbodiimide group-containing resin was obtained. Then, 85 parts by mass of the coating liquid (Ac-1) obtained in Preparation Example 1 and 15 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-7) for an anchor coat layer. . The solid content concentration in the obtained coating liquid (Ac-7) was 5% by mass. Further, the obtained coating liquid (Ac-7) contained polyester-based polyurethane resin 1 as a base adhesive resin. Further, the content ratio of CDI-1 was 5% by mass and the content ratio of CDI-3 was 10% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-7). It was.
  • CDI-1 was diluted with ethyl acetate to a solid content concentration of 5% by mass to obtain a diluted solution of carbodiimide group-containing resin. Then, 98 parts by mass of the coating liquid (Ac-1) obtained in Preparation Example 1 and 2 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-8) for an anchor coat layer. . The solid concentration in the obtained coating liquid (Ac-8) was 5% by mass.
  • the obtained coating liquid (Ac-8) contained polyester-based polyurethane resin 1 as a base adhesive resin. Furthermore, the content ratio of CDI-1 was 2% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-8).
  • CDI-1 was diluted with ethyl acetate to a solid content concentration of 5% by mass to obtain a diluted solution of carbodiimide group-containing resin. Then, 40 parts by mass of the coating liquid (Ac-1) obtained in Preparation Example 1 and 60 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-9) for the anchor coat layer. . The solid content concentration in the obtained coating liquid (Ac-9) was 5% by mass.
  • the obtained coating liquid (Ac-9) contained polyester-based polyurethane resin 1 as a base adhesive resin. Furthermore, the content ratio of CDI-1 was 60% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-9).
  • the anchor coating layer was prepared in the same manner as in Preparation Example 3 except that the coating solution (Ac-10) obtained in Preparation Example 10 was used instead of the coating solution (Ac-1) obtained in Preparation Example 1.
  • a coating solution (Ac-11) was prepared.
  • the solid concentration in the obtained coating liquid (Ac-11) was 5% by mass.
  • the obtained coating liquid (Ac-11) contained polyester-based polyurethane resin 2 as a base adhesive resin.
  • the content ratio of CDI-1 was 20% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-11).
  • (Preparation Example 12) Main component of acrylic adhesive (trade name “EA-W151A”, manufactured by Toyo Morton Co., Ltd., solid content concentration: 45 mass%) and its curing agent (trade name “EA-W151B” manufactured by Toyo Morton Co., Ltd.) , Solid content concentration: 100% by mass) is dissolved in a solvent (distilled water) so that the mass ratio thereof (main agent / curing agent) is 5/1, and the coating liquid (Ac -12) was prepared. The solid content concentration in the obtained coating liquid (Ac-12) was 5% by mass.
  • the obtained coating liquid (Ac-12) contained an acrylic resin as a base adhesive resin.
  • Preparation Example 13 For the anchor coat layer in the same manner as in Preparation Example 3, except that the coating liquid (Ac-12) obtained in Preparation Example 12 was used instead of the coating liquid (Ac-1) obtained in Preparation Example 1.
  • a coating solution (Ac-13) was prepared.
  • the solid concentration in the obtained coating liquid (Ac-13) was 5% by mass.
  • the obtained coating solution (Ac-13) contained an acrylic resin as a base adhesive resin. Further, the content ratio of CDI-1 was 20% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-13).
  • oxazoline group-containing resin (trade name “Epocross WS-500”, manufactured by Nippon Shokubai Co., Ltd., solid content concentration: 40% by mass) is diluted with distilled water to a solid content concentration of 5% by mass to obtain an oxazoline group. A diluted solution of the containing resin was obtained. Then, 80 parts by mass of the coating liquid (Ac-12) obtained in Preparation Example 12 and 20 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-14) for an anchor coat layer. . The solid concentration in the obtained coating liquid (Ac-14) was 5% by mass. The obtained coating liquid (Ac-14) contained an acrylic resin as a base adhesive resin. Furthermore, the content ratio of the oxazoline group-containing resin was 20% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-14).
  • Preparation Example 15 Polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., trade name “Epomin P-1000”, solid content concentration: 30% by mass) is diluted with distilled water to a solid content concentration of 5% by mass to dilute polyethyleneimine A liquid was obtained. Then, 80 parts by mass of the coating liquid (Ac-12) obtained in Preparation Example 12 and 20 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-15) for an anchor coat layer. . The solid content concentration in the obtained coating liquid (Ac-15) was 5% by mass. The obtained coating solution (Ac-15) contained an acrylic resin as a base adhesive resin. Furthermore, the content ratio of polyethyleneimine was 20% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-15).
  • the same procedure as in Preparation Example 3 was used except that the mixed solution containing the polyether-based polyurethane resin obtained instead of the coating solution (Ac-1) obtained in Preparation Example 1 was used.
  • a coating solution (Ac-16) was prepared.
  • the solid content concentration in the obtained coating liquid (Ac-16) was 5% by mass.
  • the obtained coating liquid (Ac-16) contained a polyether-based polyurethane resin as a base adhesive resin.
  • the content ratio of CDI-1 was 20% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-16).
  • Example 1 First, a bar coater (trade name “K303 PROFER” manufactured by RK Print-Coat Instruments) is used on the surface of a 12 ⁇ m thick polyester film (trade name “Lumirror P60” manufactured by Toray Industries, Inc.), and an anchor coat layer is used. Coating solution (Ac-2) was applied and dried at 70 ° C. for 1 minute to form an anchor coat layer. The thickness of the obtained anchor coat layer was 0.2 ⁇ m.
  • K303 PROFER manufactured by RK Print-Coat Instruments
  • a polyacrylic acid polymer having a number average molecular weight of 200,000 (manufactured by Toagosei Co., Ltd., trade name “Aron A-10H”, 25% by mass aqueous solution) was dissolved in 117.7 parts by mass of distilled water. Thereafter, 2.3 parts by mass of zinc oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was added to neutralize 20% of the carboxyl groups of the polyacrylic acid polymer, and then the solid content concentration was 10% by mass with distilled water.
  • the coating liquid (a-1) for the layer (A) containing the polyacrylic acid polymer was prepared by dilution.
  • the obtained coating liquid (a-1) is applied using the above bar coater and dried at 100 ° C. for 1 minute to contain a polyacrylic acid polymer layer (A-1) was formed.
  • the thickness of the obtained layer (A-1) was 0.3 ⁇ m.
  • a zinc oxide-containing polyester resin manufactured by Sumitomo Osaka Cement Co., Ltd., trade name “ZR-133”, solid content concentration: 30% by mass, main Solvent: toluene
  • ZR-133 solid content concentration: 30% by mass
  • main Solvent: toluene toluene
  • the thickness of the obtained layer (B-1) was 0.3 ⁇ m. In this way, a gas barrier film in which the anchor coat layer and the gas barrier layer (A-1 / B-1) were laminated on the polyester film was obtained.
  • Example 2 instead of the coating liquid (Ac-2) for the anchor coat layer, the coating liquid (Ac-3: Example 2), the coating liquid (Ac-4: Example 3), and the coating liquid (Ac-5: Example 4), coating solution (Ac-6: Example 5), coating solution (Ac-7: Example 6), coating solution (Ac-11: Example 7), coating solution (Ac- 13: A gas barrier film was obtained in the same manner as in Example 1 except that Example 8) or the coating solution (Ac-16: Example 9) was used.
  • the coating liquid (Ac-2) for the anchor coat layer instead of the coating liquid (Ac-3: Example 2), the coating liquid (Ac-4: Example 3), and the coating liquid (Ac-5: Example 4), coating solution (Ac-6: Example 5), coating solution (Ac-7: Example 6), coating solution (Ac-11: Example 7), coating solution (Ac- 13: A gas barrier film was obtained in the same manner as in Example 1 except that Example 8) or the coating solution (Ac-16: Example 9) was used.
  • Example 10 First, in the same manner as in Example 1, an anchor coat layer having a thickness of 0.2 ⁇ m was formed on the surface of a polyester film having a thickness of 12 ⁇ m (trade name “Lumirror P60” manufactured by Toray Industries, Inc.).
  • TMOS tetramethoxysilane
  • GTMS ⁇ -glycidoxypropyltrimethoxysilane
  • the obtained hydrolysis condensate was diluted with 18.5 parts by mass of distilled water, and then a diluted solution of the hydrolysis condensate was obtained in the same manner as in Example 1, but the coating solution (a-1) 63 was obtained.
  • a coating solution (a-2) for layer (A) containing 4 parts by mass and containing a polyacrylic acid polymer was prepared.
  • the obtained coating liquid (a-2) is applied using the above bar coater and dried at 100 ° C. for 1 minute to contain a polyacrylic acid polymer layer (A-2) was formed.
  • the thickness of the obtained layer (A-2) was 0.3 ⁇ m.
  • a zinc oxide-containing polyester resin manufactured by Sumitomo Osaka Cement Co., Ltd., trade name “ZR-133”, solid content concentration: 30% by mass, main Solvent: toluene
  • ZR-133 solid content concentration: 30% by mass
  • main Solvent: toluene toluene
  • the thickness of the obtained layer (B-1) was 0.3 ⁇ m. In this way, a gas barrier film in which the anchor coat layer and the gas barrier layer (A-2 / B-1) were laminated on the polyester film was obtained.
  • a zinc oxide-containing polyester resin manufactured by Sumitomo Osaka Cement Co., Ltd., trade name “ZR-133”, solid content concentration: 30% by mass, main solvent: Toluene
  • ZR-133 solid content concentration: 30% by mass
  • main solvent Toluene
  • the surface of the layer (B-1) was coated with the coating liquid (a-1) obtained in the same manner as in Example 1 using the above bar coater, and dried at 100 ° C. for 1 minute.
  • a layer (A-1) containing a polyacrylic acid polymer was formed.
  • the thickness of the obtained layer (A-1) was 0.3 ⁇ m. In this way, a gas barrier film in which the anchor coat layer and the gas barrier layer (B-1 / A-1) were laminated on the polyester film was obtained.
  • a polyvinylidene chloride copolymer latex (solid content concentration: 50% by mass) was applied as a coating liquid (c-1) and heated to 100 ° C. And dried for 1 minute to form a gas barrier layer (C-1) comprising a polyvinylidene chloride copolymer.
  • the thickness of the obtained gas barrier layer (C-1) was 2.0 ⁇ m. In this way, a gas barrier film in which the anchor coat layer and the gas barrier layer (C-1) were laminated on the polyester film was obtained.
  • a gas barrier layer (C-2) made of an inorganic thin film was formed on the surface of the anchor coat layer by vapor-depositing silicon oxide (SiO x ) by a high frequency induction heating method using a vacuum vapor deposition apparatus.
  • the thickness of the obtained gas barrier layer (C-2) was 70 nm. In this way, a gas barrier film in which the anchor coat layer and the gas barrier layer (C-2) were laminated on the polyester film was obtained.
  • TRAN 2/20 under the conditions of a temperature of 20 ° C, a sample area of 50 cm 2 and a relative humidity of 80% (both sides), the oxygen permeability of the gas barrier laminate film [unit: cm 3 (STP) / (m 2 ⁇ day ⁇ MPa)].
  • the inside size of the package is 80 mm ⁇ 80 mm while deaeration using the desktop degassing sealer.
  • a vacuum package (sample) for water resistance evaluation was obtained.
  • 20 such vacuum packaging bodies were produced for each gas barrier laminate film.
  • Table 1 shows the resin composition of the anchor coat layer and the configuration of the gas barrier layer in Examples 1 to 10. Further, the gas barrier films obtained in Comparative Examples 1 to 10 were evaluated for oxygen permeability, water resistance and peel strength by the above methods. The obtained results are shown in Table 2. Table 2 shows the resin composition of the anchor coat layer and the configuration of the gas barrier layer in Comparative Examples 1 to 10.
  • the present invention has excellent gas barrier properties and sufficient water resistance in a high humidity atmosphere, and furthermore, the occurrence of so-called delamination (delamination of the film after boil treatment or retort treatment) occurs. It becomes possible to provide a gas barrier film and a gas barrier laminated film that can be sufficiently prevented, and a packaging material using them.
  • the present invention requires food, beverage, medicine, pharmaceutical packaging materials that are susceptible to deterioration due to the influence of oxygen, etc., and treatment under high-temperature hot water conditions such as boil treatment and retort treatment (high-temperature sterilization treatment). It is useful as a technique related to packaging materials for articles, and is particularly useful as a technique related to packaging materials for high-temperature sterilization packaging applications.

Abstract

Disclosed is a gas barrier film wherein a gas barrier layer containing a polycarboxylic acid polymer is arranged on at least one side of a polymer film base through an anchor coat layer containing a carbodiimide group-containing resin and an adhesive resin. In this gas barrier film, the carbodiimide group-containing resin content ratio (in terms of solid content) relative to the total resin solid content in the anchor coat layer is within the range of 5-50% by mass.

Description

ガスバリア性フィルム、ガスバリア性積層フィルム及びそれらを用いた包装材料Gas barrier film, gas barrier laminated film, and packaging material using them
 本発明は、食品、飲料、薬品、医薬品の包装材料等として有用なガスバリア性フィルム及びガスバリア性積層フィルムに関する。 The present invention relates to a gas barrier film and a gas barrier laminated film useful as packaging materials for foods, beverages, medicines, pharmaceuticals, and the like.
 従来、ガスバリア性重合体としてポリ(メタ)アクリル酸やポリビニルアルコールに代表される分子内に高い親水性を有する高水素結合性基を含有する重合体が用いられていた。しかしながら、これらの重合体のみからなるフィルムは、乾燥条件下においては、非常に優れた酸素等のガスバリア性を有する一方で、高湿度条件下においては、その親水性に起因して酸素等のガスバリア性が大きく低下するという問題やフィルムの湿度や熱水に対する耐性が劣るという問題があった。 Conventionally, a polymer containing a highly hydrogen-bonding group having high hydrophilicity in a molecule represented by poly (meth) acrylic acid or polyvinyl alcohol has been used as a gas barrier polymer. However, films made of only these polymers have excellent gas barrier properties such as oxygen under dry conditions, while gas barriers such as oxygen due to their hydrophilicity under high humidity conditions. There is a problem that the property is greatly reduced and a film is inferior in resistance to humidity and hot water.
 これらの問題を解決するために、例えば、国際公開第WO03/091317号パンフレット(文献1)には、ポリカルボン酸系重合体と多価金属化合物を原料とするフィルムであって、該フィルムの赤外線吸収スペクトルのピーク比(A1560/A1700)が0.25以上であるフィルムが開示されている。 In order to solve these problems, for example, International Publication No. WO03 / 091317 pamphlet (Document 1) is a film using a polycarboxylic acid polymer and a polyvalent metal compound as raw materials. A film having an absorption spectrum peak ratio (A1560 / A1700) of 0.25 or more is disclosed.
 しかしながら、文献1に記載されているようなフィルムを支持体(高分子フィルム基材)に積層して得られたガスバリア性フィルムは、高湿度雰囲気下においても酸素等のガスバリア性に優れているものの、ボイル処理やレトルト処理を施した場合にフィルムと支持体との層間に剥離が発生する場合があるという点で未だ必ずしも十分なものではなかった。 However, a gas barrier film obtained by laminating a film as described in Document 1 on a support (polymer film substrate) has excellent gas barrier properties such as oxygen even in a high humidity atmosphere. However, when the boil treatment or the retort treatment is performed, it is not always sufficient in that peeling may occur between the film and the support.
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、高湿度雰囲気下における優れたガスバリア性及び十分な耐水性を有し、しかもいわゆるデラミネーション(ボイル処理やレトルト処理後におけるフィルムの層間剥離)の発生を十分に防止することが可能となるガスバリア性フィルム及びガスバリア性積層フィルム、並びにそれらを用いた包装材料を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and has excellent gas barrier properties and sufficient water resistance in a high humidity atmosphere, and also so-called delamination (film after boil treatment or retort treatment). It is an object of the present invention to provide a gas barrier film and a gas barrier laminated film that can sufficiently prevent occurrence of delamination of the film, and a packaging material using them.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、高分子フィルム基材にカルボジイミド基含有樹脂を含有するアンカーコート層を介してポリカルボン酸系重合体を含有するガスバリア層を積層させることによって、驚くべきことに、高湿度雰囲気下における優れたガスバリア性を維持しつつ、耐水性を向上させてデラミネーションの発生を十分に防止することが可能となることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have developed a gas barrier layer containing a polycarboxylic acid-based polymer via an anchor coat layer containing a carbodiimide group-containing resin on a polymer film substrate. Surprisingly, it has been found that by laminating, it is possible to sufficiently prevent the occurrence of delamination by improving water resistance while maintaining excellent gas barrier properties in a high humidity atmosphere. It came to complete.
 すなわち、本発明のガスバリア性フィルムは、高分子フィルム基材の少なくとも片面に、カルボジイミド基含有樹脂及び接着性樹脂を含有するアンカーコート層を介して、ポリカルボン酸系重合体を含有するガスバリア層が配置されており、前記カルボジイミド基含有樹脂の含有比率(固形分換算)が、前記アンカーコート層中における樹脂固形分の合計量に対して5~50質量%の範囲であるものである。 That is, the gas barrier film of the present invention has a gas barrier layer containing a polycarboxylic acid polymer on at least one surface of a polymer film substrate via an anchor coat layer containing a carbodiimide group-containing resin and an adhesive resin. The content ratio of the carbodiimide group-containing resin (in terms of solid content) is in the range of 5 to 50% by mass with respect to the total amount of resin solid content in the anchor coat layer.
 本発明のガスバリア性フィルムにおいては、前記カルボジイミド基含有樹脂の含有比率(固形分換算)が、前記アンカーコート層中における樹脂固形分の合計量に対して5~35質量%の範囲であることが好ましい。 In the gas barrier film of the present invention, the content ratio of the carbodiimide group-containing resin (in terms of solid content) is in the range of 5 to 35% by mass with respect to the total amount of resin solid content in the anchor coat layer. preferable.
 本発明のガスバリア性フィルムにおいては、前記ガスバリア層が、前記ポリカルボン酸系重合体を含有する層(A)と多価金属化合物を含有する層(B)とを備える積層体であることが好ましいが、このような場合には、前記アンカーコート層と前記ポリカルボン酸系重合体を含有する層(A)とが隣接していることが必要である。 In the gas barrier film of the present invention, the gas barrier layer is preferably a laminate comprising a layer (A) containing the polycarboxylic acid polymer and a layer (B) containing a polyvalent metal compound. However, in such a case, it is necessary that the anchor coat layer and the layer (A) containing the polycarboxylic acid polymer are adjacent to each other.
 また、このような場合においては、前記ポリカルボン酸系重合体を含有する層(A)が、加水分解縮合物を更に含有することが好ましく、また、前記ポリカルボン酸系重合体を含有する層(A)の厚みが0.01~10μmの範囲であることが好ましい。 In such a case, the layer (A) containing the polycarboxylic acid polymer preferably further contains a hydrolysis condensate, and the layer containing the polycarboxylic acid polymer. The thickness of (A) is preferably in the range of 0.01 to 10 μm.
 本発明のガスバリア性フィルムにおいては、前記接着性樹脂が、ポリエステル系ポリウレタン樹脂、ポリエーテル系ポリウレタン樹脂、アクリル樹脂及びエポキシ樹脂からなる群から選択される少なくとも一つの樹脂であることが好ましい。 In the gas barrier film of the present invention, the adhesive resin is preferably at least one resin selected from the group consisting of a polyester polyurethane resin, a polyether polyurethane resin, an acrylic resin, and an epoxy resin.
 本発明のガスバリア性フィルムにおいては、前記アンカーコート層の厚みが0.01~5μmの範囲であることが好ましい。 In the gas barrier film of the present invention, the anchor coat layer preferably has a thickness in the range of 0.01 to 5 μm.
 本発明のガスバリア性積層フィルムは、前記ガスバリア性フィルムと、前記ガスバリア性フィルムの少なくとも片面に積層された熱可塑性樹脂フィルムとを備えるものである。 The gas barrier laminated film of the present invention comprises the gas barrier film and a thermoplastic resin film laminated on at least one side of the gas barrier film.
 また、本発明のガスバリア性を有する包装材料は、前記ガスバリア性積層フィルムを備える包装材料に高温殺菌処理を施してなるものである。そして、本発明のガスバリア性を有する包装材料においては、温度20℃、相対湿度80%における酸素透過度が100cm(STP)/(m・day・MPa)以下であることが好ましい。 Moreover, the packaging material which has gas barrier property of this invention performs high temperature sterilization treatment to the packaging material provided with the said gas barrier property laminated film. And in the packaging material which has the gas barrier property of this invention, it is preferable that the oxygen permeability in temperature 20 degreeC and relative humidity 80% is 100 cm < 3 > (STP) / (m < 2 > * day * MPa) or less.
 なお、本発明のガスバリア性フィルムによれば、高湿度雰囲気下における優れたガスバリア性を維持しつつ、耐水性を向上させてデラミネーションの発生を十分に防止することが可能となる理由は必ずしも定かではないが、本発明者らは以下のように推察する。 According to the gas barrier film of the present invention, the reason why it is possible to sufficiently prevent the occurrence of delamination by improving the water resistance while maintaining excellent gas barrier properties in a high humidity atmosphere is not necessarily clear. However, the present inventors speculate as follows.
 すなわち、ポリカルボン酸系重合体を含有するガスバリア層を備える、従来の包装材料にボイル処理やレトルト処理を施した場合には、前記ガスバリア層が温水に曝されるため、ポリカルボン酸系重合体の膨潤と多価金属化合物に由来する架橋が同時に進行する。そして、このような多価金属化合物に由来する架橋が不十分な箇所において、前記ポリカルボン酸系重合体の膨潤が進行した場合にデラミネーションが発生し易くなる。そのため、前記ガスバリア層のうち多価金属化合物(金属イオン)が移動しにくく、多価金属化合物に由来する架橋の進行しにくいアンカーコート層との界面近傍においてデラミネーションが発生し易くなるものと本発明者らは推察する。なお、実際にデラミネーションが発生している箇所の断面形状を観察したところ、ポリカルボン酸系重合体を含有するガスバリア層におけるアンカーコート層との界面近傍においてデラミネーションが発生し易いことが確認されている。 That is, when a conventional packaging material including a gas barrier layer containing a polycarboxylic acid polymer is subjected to a boil treatment or a retort treatment, the gas barrier layer is exposed to warm water. And the crosslinking derived from the polyvalent metal compound proceed simultaneously. And in the location where the bridge | crosslinking derived from such a polyvalent metal compound is inadequate, when the swelling of the said polycarboxylic acid type polymer advances, it will become easy to generate | occur | produce a delamination. Therefore, in the gas barrier layer, the polyvalent metal compound (metal ion) is less likely to move, and delamination is likely to occur in the vicinity of the interface with the anchor coat layer that is difficult to crosslink derived from the polyvalent metal compound. The inventors speculate. In addition, when the cross-sectional shape of the location where delamination actually occurs was observed, it was confirmed that delamination is likely to occur near the interface with the anchor coat layer in the gas barrier layer containing the polycarboxylic acid polymer. ing.
 これに対し、本発明のガスバリア性フィルムにおいては、高分子フィルム基材にカルボジイミド基含有樹脂を含有するアンカーコート層を介してポリカルボン酸系重合体を含有するガスバリア層を積層させている。そして、本発明のガスバリア性フィルムにおいては、ポリカルボン酸系重合体のカルボキシル基とカルボジイミド基含有樹脂のカルボジイミド基とが優れた耐水性を有するアシルウレア結合を形成する。一方、このようにアシルウレア結合が形成されたポリカルボン酸系重合体は多価金属化合物に由来する架橋が形成されたポリカルボン酸系重合体と比較してガスバリア性が低いものであるが、前記カルボジイミド基含有樹脂は前記多価金属化合物(金属イオン)のように温水に曝された際にガスバリア層中を移動するものではないため、アシルウレア結合が形成されるのはガスバリア層のうちアンカーコート層との界面近傍に限定される。そのため、ボイル処理やレトルト処理後におけるガスバリア層のガスバリア性にはほとんど影響がない。したがって、本発明のガスバリア性フィルムによれば、特に高湿度雰囲気下における優れたガスバリア性を維持しつつ、耐水性を向上させてデラミネーションの発生を十分に防止することができるものと本発明者らは推察する。 On the other hand, in the gas barrier film of the present invention, a gas barrier layer containing a polycarboxylic acid polymer is laminated on a polymer film substrate through an anchor coat layer containing a carbodiimide group-containing resin. In the gas barrier film of the present invention, the carboxyl group of the polycarboxylic acid polymer and the carbodiimide group of the carbodiimide group-containing resin form an excellent acylurea bond having water resistance. On the other hand, the polycarboxylic acid polymer in which an acylurea bond is formed in this way has a lower gas barrier property than the polycarboxylic acid polymer in which a crosslink derived from a polyvalent metal compound is formed. Since the carbodiimide group-containing resin does not move in the gas barrier layer when exposed to warm water like the polyvalent metal compound (metal ion), an acyl urea bond is formed in the anchor coat layer in the gas barrier layer. It is limited to the vicinity of the interface. Therefore, there is almost no influence on the gas barrier properties of the gas barrier layer after the boil treatment or retort treatment. Therefore, according to the gas barrier film of the present invention, the present inventor can sufficiently prevent the occurrence of delamination by improving water resistance while maintaining excellent gas barrier properties particularly in a high humidity atmosphere. Et al.
 本発明によれば、高湿度雰囲気下における優れたガスバリア性及び十分な耐水性を有し、しかもいわゆるデラミネーション(ボイル処理やレトルト処理後におけるフィルムの層間剥離)の発生を十分に防止することが可能となるガスバリア性フィルム及びガスバリア性積層フィルム、並びにそれらを用いた包装材料を提供することが可能となる。 According to the present invention, it has excellent gas barrier properties and sufficient water resistance in a high humidity atmosphere, and can sufficiently prevent the occurrence of so-called delamination (film delamination after boil treatment or retort treatment). It becomes possible to provide a gas barrier film and a gas barrier laminated film that can be provided, and a packaging material using them.
以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.
 先ず、本発明のガスバリア性フィルムについて説明する。すなわち、本発明のガスバリア性フィルムは、高分子フィルム基材の少なくとも片面に、カルボジイミド基含有樹脂及び接着性樹脂を含有するアンカーコート層を介して、ポリカルボン酸系重合体を含有するガスバリア層が配置されており、前記カルボジイミド基含有樹脂の含有比率(固形分換算)が、前記アンカーコート層中における樹脂固形分の合計量に対して5~50質量%の範囲であるものである。 First, the gas barrier film of the present invention will be described. That is, the gas barrier film of the present invention has a gas barrier layer containing a polycarboxylic acid polymer on at least one surface of a polymer film substrate via an anchor coat layer containing a carbodiimide group-containing resin and an adhesive resin. The content ratio of the carbodiimide group-containing resin (in terms of solid content) is in the range of 5 to 50% by mass with respect to the total amount of resin solid content in the anchor coat layer.
 <高分子フィルム基材>
 本発明にかかる高分子フィルム基材は、後述するアンカーコート層や後述するガスバリア層を順次積層させるための支持体となるものである。
<Polymer film substrate>
The polymer film substrate according to the present invention serves as a support for sequentially laminating an anchor coat layer described later and a gas barrier layer described later.
 このような高分子フィルム基材としては、特に限定されないが、例えば、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、ポリ4-メチルペンテン、環状ポリオレフィン等のポリオレフィン系重合体やそれらの共重合体及びその酸変性物;ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、エチレン-酢酸ビニル共重合体ケン化物、ポリビニルアルコール等の酢酸ビニル系共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等の芳香族ポリエステル系重合体やその共重合体;ポリε-カプロラクトン、ポリヒドロキシブチレート、ポリヒドロキシバリレート等の脂肪族系ポリエステル系重合体やその共重合体;ナイロン6、ナイロン66、ナイロン12、ナイロン6,66共重合体、ナイロン6,12共重合体、メタキシレンアジパミド・ナイロン6共重合体等のポリアミド系重合体やその共重合体;ポリエチレングリコール、ポリエーテルスルフォン、ポリフェニレンサルファイド、ポリフェニレンオキサイド等のポリエーテル系重合体;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニル、ポリフッ化ビニリデン等の塩素系及びフッ素系重合体やその共重合体;ポリメチルアクリレート、ポリエチルアクリレート、ポリメチルメタクリレート、ポリエチルメタクリレート、ポリアクリロニトリル等のアクリル系重合体やその共重合体;ポリイミド系重合体やその共重合体;アルキッド樹脂、メラミン樹脂、アクリル樹脂、硝化綿、ウレタン樹脂、ポリエステル樹脂、フェノール樹脂、アミノ樹脂、フッ素樹脂、エポキシ樹脂等の塗料用樹脂;セルロース、澱粉、プルラン、キチン、キトサン、グルコマンナン、アガロース、ゼラチン等の天然高分子化合物が挙げられる。これらの中でも、包装材料として使用するために特に適しているという観点から、ポリエステル系重合体、ポリアミド系重合体、ポリオレフィン系重合体が好ましい。 Such a polymer film substrate is not particularly limited, and examples thereof include polyolefin polymers such as low density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, poly-4-methylpentene, and cyclic polyolefin. Copolymers and acid-modified products thereof; polyvinyl acetate, ethylene-vinyl acetate copolymer, saponified ethylene-vinyl acetate copolymer, vinyl alcohol copolymer such as polyvinyl alcohol, polyethylene terephthalate, polybutylene terephthalate , Aromatic polyester polymers such as polyethylene naphthalate and copolymers thereof; aliphatic polyester polymers such as polyε-caprolactone, polyhydroxybutyrate, polyhydroxyvalerate and copolymers thereof; nylon 6, Nylon 66, nylon 2. Polyamide polymers such as nylon 6,66 copolymer, nylon 6,12 copolymer, metaxylene adipamide / nylon 6 copolymer and copolymers thereof; polyethylene glycol, polyether sulfone, polyphenylene sulfide Polyether polymers such as polyphenylene oxide; chlorinated and fluorinated polymers such as polyvinyl chloride, polyvinylidene chloride, polyvinyl fluoride, polyvinylidene fluoride and copolymers thereof; polymethyl acrylate, polyethyl acrylate, poly Acrylic polymers such as methyl methacrylate, polyethyl methacrylate, polyacrylonitrile and their copolymers; polyimide polymers and their copolymers; alkyd resins, melamine resins, acrylic resins, nitrified cotton, urethane resins, polyester resins, phenols Tree Examples include resins for coatings such as fats, amino resins, fluororesins, and epoxy resins; natural polymer compounds such as cellulose, starch, pullulan, chitin, chitosan, glucomannan, agarose, and gelatin. Among these, a polyester polymer, a polyamide polymer, and a polyolefin polymer are preferable from the viewpoint of being particularly suitable for use as a packaging material.
 このような高分子フィルム基材の形態としては、特に限定されないが、未延伸シート、延伸シート、未延伸フィルム、延伸フィルム等の形態で用いることができる。さらに、このような高分子フィルム基材の厚さは特に限定されないが、この厚みが5~500μmの範囲であることが好ましく、10~200μmの範囲であることがより好ましい。高分子フィルム基材の厚みが前記下限未満では、高分子フィルム基材が切れ易くなる等の塗工性の問題が生じ易くなる傾向にあり、他方、前記上限を超えると高分子フィルム基材の剛性が高すぎるために二次加工や内容物の充填におけるハンドリング性に問題が生じ易くなる傾向にある。 The form of such a polymer film substrate is not particularly limited, but can be used in the form of an unstretched sheet, a stretched sheet, an unstretched film, a stretched film, or the like. Further, the thickness of such a polymer film substrate is not particularly limited, but the thickness is preferably in the range of 5 to 500 μm, and more preferably in the range of 10 to 200 μm. When the thickness of the polymer film substrate is less than the above lower limit, there is a tendency that a coating problem such as the polymer film substrate is likely to be cut easily. On the other hand, when the thickness exceeds the above upper limit, Since the rigidity is too high, there is a tendency that a problem occurs in handling properties in secondary processing and filling of contents.
 また、このような高分子フィルム基材は、シート、フィルム等の表面上に酸化珪素、酸化アルミニウム、アルミニウム、窒化珪素等の無機化合物からなる薄膜が、蒸着法、スパッタリング法、イオンプレーディング法等の薄膜形成法により形成されたものであってもよい。 In addition, such a polymer film substrate is formed by depositing a thin film made of an inorganic compound such as silicon oxide, aluminum oxide, aluminum, or silicon nitride on the surface of a sheet, a film, or the like by a vapor deposition method, a sputtering method, an ion plating method, or the like. The thin film forming method may be used.
 <アンカーコート層>
 本発明にかかるアンカーコート層は、カルボジイミド基含有樹脂及び接着性樹脂を含有する層である。本発明にかかるカルボジイミド基含有樹脂は、下記一般式(1):
-N=C=N-   (1)
で表されるいわゆるカルボジイミド構造を有する樹脂の総称であり、一般的にジイソシアネート化合物を触媒存在下で重縮合することにより得られるものである。
<Anchor coat layer>
The anchor coat layer according to the present invention is a layer containing a carbodiimide group-containing resin and an adhesive resin. The carbodiimide group-containing resin according to the present invention is represented by the following general formula (1):
-N = C = N- (1)
And is generally obtained by polycondensation of a diisocyanate compound in the presence of a catalyst.
 このようなカルボジイミド基含有樹脂の製造方法としては公知の技術を採用することができ、例えば特公昭47-33279号公報、特開平09-235508号公報に記載されている方法を採用することができる。このようなカルボジイミド基含有樹脂の出発原料であるジイソシアネート化合物としては、芳香族、脂肪族又は脂環式のジイソシアネートが挙げられ、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルジイソシアネートが挙げられる。 As a method for producing such a carbodiimide group-containing resin, a known technique can be employed. For example, methods described in Japanese Patent Publication Nos. 47-33279 and 09-235508 can be employed. . Examples of the diisocyanate compound which is a starting material for such a carbodiimide group-containing resin include aromatic, aliphatic or alicyclic diisocyanates, such as tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, cyclohexane. Examples thereof include diisocyanate, isophorone diisocyanate, and dicyclohexyl diisocyanate.
 このようなカルボジイミド基含有樹脂としては、市販されているものを用いてもよく、例えば、無溶媒のものとして、日清紡績(株)製の「カルボジライト V-05」、Elastogran社製の「Elastostab H01」;有機溶媒系のものとして、日清紡績(株)製の「カルボジライト V-03」や「カルボジライト V-09」;水性のものとして、日清紡績(株)製の「カルボジライト V-02」や「カルボジライト V-04」が挙げられる。 As such a carbodiimide group-containing resin, a commercially available resin may be used. For example, as a solvent-free resin, “Carbodilite V-05” manufactured by Nisshinbo Co., Ltd., “Elastostab H01” manufactured by Elastogran Co., Ltd. "Carbodilite V-03" and "Carbodilite V-09" manufactured by Nisshinbo Co., Ltd. as organic solvents; "Carbodilite V-02" and "Carbodilite V-02" manufactured by Nisshinbo Co., Ltd. Carbodilite V-04 ”.
 このようなカルボジイミド基含有樹脂の含有比率(固形分換算)は、本発明にかかるアンカーコート層中における樹脂固形分の合計量に対して5~50質量%の範囲であることが必要である。含有比率が5質量%未満では、得られるガスバリア層の耐水性を十分に向上させることができず、他方、前記50質量%を超えると得られるガスバリア層のガスバリア性が不十分となる。また、得られるガスバリア層の耐水性とガスバリア性とのバランスをとるという観点から、このようなカルボジイミド基含有樹脂の含有比率(固形分換算)は、本発明にかかるアンカーコート層中における樹脂固形分の合計量に対して5~35質量%の範囲であることが好ましい。 The content ratio (in terms of solid content) of such a carbodiimide group-containing resin needs to be in the range of 5 to 50% by mass with respect to the total amount of resin solid content in the anchor coat layer according to the present invention. When the content ratio is less than 5% by mass, the water resistance of the obtained gas barrier layer cannot be sufficiently improved. On the other hand, when it exceeds 50% by mass, the gas barrier property of the obtained gas barrier layer becomes insufficient. Further, from the viewpoint of balancing the water resistance and gas barrier properties of the obtained gas barrier layer, the content ratio (solid content conversion) of such a carbodiimide group-containing resin is the resin solid content in the anchor coat layer according to the present invention. It is preferably in the range of 5 to 35% by mass with respect to the total amount.
 本発明にかかるアンカーコート層は、前記カルボジイミド基含有樹脂以外に接着性樹脂を含有する層である。このような接着性樹脂としては、例えば、ポリエステル系ポリウレタン樹脂、ポリエーテル系ポリウレタン樹脂、アクリル樹脂、エポキシ樹脂が挙げられる。これらの接着性樹脂の中でも、耐水性、耐熱性及び層間接着強度の観点から、ポリエステル系ポリウレタン樹脂、アクリル樹脂が好ましく、ポリエステル系ポリウレタン樹脂が特に好ましい。 The anchor coat layer according to the present invention is a layer containing an adhesive resin in addition to the carbodiimide group-containing resin. Examples of such adhesive resins include polyester polyurethane resins, polyether polyurethane resins, acrylic resins, and epoxy resins. Among these adhesive resins, polyester-based polyurethane resins and acrylic resins are preferable, and polyester-based polyurethane resins are particularly preferable from the viewpoints of water resistance, heat resistance, and interlayer adhesive strength.
 さらに、本発明にかかるアンカーコート層の厚さは特に限定されないが、この厚みが0.01~5μmの範囲であることが好ましく、0.05~1μmの範囲であることがより好ましい。アンカーコート層の厚みが前記下限未満ではデラミネーションが発生し易くなる傾向にあり、他方、前記上限を超えると所望のガスバリア性が発現しにくくなる傾向にある。 Furthermore, the thickness of the anchor coat layer according to the present invention is not particularly limited, but the thickness is preferably in the range of 0.01 to 5 μm, more preferably in the range of 0.05 to 1 μm. If the thickness of the anchor coat layer is less than the lower limit, delamination tends to occur. On the other hand, if the thickness exceeds the upper limit, a desired gas barrier property tends to be hardly exhibited.
 また、このようなアンカーコート層の表面の平均面粗さは10nm以下であることが好ましく、5nm以下であることがより好ましく、1nm以下であることが特に好ましい。表面の平均面粗さが前記上限を超えると、ガスバリア層を均一に塗工しにくくなる傾向にある。さらに、このようなアンカーコート層の表面の最大高低差は50nm以下であることが好ましく、20nm以下であることがより好ましく、10nm以下であることが特に好ましい。表面の最大高低差が前記上限を超えると、ガスバリア層を均一に塗工しにくくなる傾向にある。なお、前記表面の平均面粗さ及び最大高低差は、原子間力顕微鏡を用いて前記アンカーコート層の表面を画像解析することにより測定することができる。 Further, the average surface roughness of the surface of such an anchor coat layer is preferably 10 nm or less, more preferably 5 nm or less, and particularly preferably 1 nm or less. When the average surface roughness of the surface exceeds the upper limit, it tends to be difficult to uniformly apply the gas barrier layer. Furthermore, the maximum height difference on the surface of such an anchor coat layer is preferably 50 nm or less, more preferably 20 nm or less, and particularly preferably 10 nm or less. When the maximum height difference of the surface exceeds the upper limit, it tends to be difficult to uniformly apply the gas barrier layer. The average surface roughness and the maximum height difference of the surface can be measured by image analysis of the surface of the anchor coat layer using an atomic force microscope.
 <ガスバリア層>
 本発明にかかるガスバリア層は、以下に説明するポリカルボン酸系重合体を含有する層である。また、このようなガスバリア層は後述する多価金属化合物をさらに含有することが好ましい。さらに、得られるガスバリア性フィルムのガスバリア性及び高温水蒸気や熱水に対する耐性の向上という観点から、このようなガスバリア層は、ポリカルボン酸系重合体を含有する層(A)と多価金属化合物を含有する層(B)とを備える積層体であることが好ましい。なお、このような場合には、前記アンカーコート層と前記ポリカルボン酸系重合体を含有する層(A)とが隣接していることが必要である。
<Gas barrier layer>
The gas barrier layer according to the present invention is a layer containing a polycarboxylic acid polymer described below. Such a gas barrier layer preferably further contains a polyvalent metal compound described later. Furthermore, from the viewpoint of improving the gas barrier properties of the resulting gas barrier film and the resistance to high-temperature steam and hot water, such a gas barrier layer comprises a layer (A) containing a polycarboxylic acid polymer and a polyvalent metal compound. It is preferable that it is a laminated body provided with the layer (B) to contain. In such a case, it is necessary that the anchor coat layer and the layer (A) containing the polycarboxylic acid polymer are adjacent to each other.
 本発明のガスバリア性フィルムにおいては、このように前記アンカーコート層が、ポリカルボン酸系重合体を含有するガスバリア層(前記ガスバリア層がポリカルボン酸系重合体を含有する層(A)と多価金属化合物を含有する層(B)とを備える積層体である場合には、前記層(A))と隣接していることが必要である。そして、前記アンカーコート層が前記ガスバリア層と隣接していることにより、ポリカルボン酸系重合体のカルボキシル基とカルボジイミド基含有樹脂のカルボジイミド基とが優れた耐水性を有するアシルウレア結合を形成する。そのため、本発明のガスバリア性フィルムにおいては、前記ガスバリア層における特にアンカーコート層との界面近傍の耐水性が向上する。 In the gas barrier film of the present invention, the anchor coat layer is thus composed of a gas barrier layer containing a polycarboxylic acid polymer (the gas barrier layer is a polyvalent polymer and a layer (A) containing a polycarboxylic acid polymer). In the case of a laminate comprising a layer (B) containing a metal compound, it is necessary to be adjacent to the layer (A)). The anchor coat layer is adjacent to the gas barrier layer, whereby the carboxyl group of the polycarboxylic acid polymer and the carbodiimide group of the carbodiimide group-containing resin form an excellent acylurea bond having water resistance. Therefore, in the gas barrier film of the present invention, the water resistance of the gas barrier layer, particularly in the vicinity of the interface with the anchor coat layer, is improved.
 本発明にかかるポリカルボン酸系重合体は、ポリカルボン酸系の重合性単量体が重合したものであり、分子内に2個以上のカルボキシル基を有する重合体である。このようなポリカルボン酸系重合体としては、例えば、α,β-モノエチレン性不飽和カルボン酸の(共)重合体;α,β-モノエチレン性不飽和カルボン酸と他のエチレン性不飽和単量体との共重合体;アルギン酸、カルボキシメチルセルロース、ペクチン等の分子内にカルボキシル基を有する酸性多糖類が挙げられる。これらのポリカルボン酸系重合体は1種のものを単独で用いても、2種以上のものを混合して用いてもよい。 The polycarboxylic acid polymer according to the present invention is a polymer in which a polycarboxylic acid-based polymerizable monomer is polymerized, and is a polymer having two or more carboxyl groups in the molecule. Examples of such polycarboxylic acid polymers include (co) polymers of α, β-monoethylenically unsaturated carboxylic acids; α, β-monoethylenically unsaturated carboxylic acids and other ethylenically unsaturated polymers. Copolymers with monomers; acidic polysaccharides having a carboxyl group in the molecule such as alginic acid, carboxymethylcellulose, and pectin. These polycarboxylic acid polymers may be used alone or in combination of two or more.
 このようなα,β-モノエチレン性不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸が挙げられる。さらに、これらのα,β-モノエチレン性不飽和カルボン酸と共重合可能なエチレン性不飽和単量体としては、例えば、エチレン、プロピレン、酢酸ビニル等の飽和カルボン酸ビニルエステル類、アルキルアクリレート類、アルキルメタクリレート類、アルキルイタコネート類、塩化ビニル、塩化ビニリデン、スチレン、アクリルアミド、アクリロニトリルが挙げられる。 Examples of such α, β-monoethylenically unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, and crotonic acid. Furthermore, examples of the ethylenically unsaturated monomer copolymerizable with these α, β-monoethylenically unsaturated carboxylic acids include saturated carboxylic acid vinyl esters such as ethylene, propylene and vinyl acetate, and alkyl acrylates. Alkyl methacrylates, alkyl itaconates, vinyl chloride, vinylidene chloride, styrene, acrylamide, and acrylonitrile.
 また、本発明にかかるポリカルボン酸系重合体がα,β-モノエチレン性不飽和カルボン酸とその他のエチレン性不飽和単量体との共重合体である場合には、得られるガスバリア層のガスバリア性及び高温水蒸気や熱水に対する耐性の向上という観点から、このような共重合体においては、共重合体の原料となる単量体の総量に対する前記α,β-モノエチレン性不飽和カルボン酸の含有量が60モル%以上であることが好ましく、80モル%以上であることがより好ましく、90モル%以上であること特に好ましい。さらに、本発明にかかるポリカルボン酸系重合体は、得られるガスバリア性フィルムのガスバリア性が特に優れるという観点から、前記α,β-モノエチレン性不飽和カルボン酸からなる群から選択される少なくとも1種の重合性単量体の(共)重合体及びそれらの混合物であることが好ましく、アクリル酸、メタクリル酸、マレイン酸からなる群から選択される少なくとも1種の重合性単量体の(共)重合体及びそれらの混合物であることがより好ましく、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸、及びそれらの混合物であることが特に好ましい。 When the polycarboxylic acid polymer according to the present invention is a copolymer of an α, β-monoethylenically unsaturated carboxylic acid and another ethylenically unsaturated monomer, the resulting gas barrier layer From the viewpoint of improving gas barrier properties and resistance to high-temperature steam and hot water, in such a copolymer, the α, β-monoethylenically unsaturated carboxylic acid relative to the total amount of monomers used as a raw material for the copolymer is used. The content of is preferably 60 mol% or more, more preferably 80 mol% or more, and particularly preferably 90 mol% or more. Furthermore, the polycarboxylic acid polymer according to the present invention is at least one selected from the group consisting of the α, β-monoethylenically unsaturated carboxylic acids from the viewpoint that the gas barrier property of the resulting gas barrier film is particularly excellent. A (co) polymer of a polymerizable monomer and a mixture thereof are preferable, and a (co) polymer of at least one polymerizable monomer selected from the group consisting of acrylic acid, methacrylic acid, and maleic acid. ) Polymers and mixtures thereof are more preferred, and polyacrylic acid, polymethacrylic acid, polymaleic acid, and mixtures thereof are particularly preferred.
 さらに、このようなポリカルボン酸系重合体の数平均分子量については特に限定されないが、有機薄膜を形成し易いという観点から、2,000~10,000,000の範囲であることが好ましく、更に5,000~1,000,000であることがより好ましい。 Further, the number average molecular weight of such a polycarboxylic acid polymer is not particularly limited, but is preferably in the range of 2,000 to 10,000,000 from the viewpoint of easy formation of an organic thin film. More preferably, it is 5,000 to 1,000,000.
 なお、本発明にかかるガスバリア層には、ポリカルボン酸系重合体以外にもガスバリア層のガスバリア性及び防湿性を損なわない範囲で他の重合体を混合して用いることが可能である。そして、このように他の重合体を混合して用いる場合には、前記ポリカルボン酸系重合体の含有比率(固形分換算)が、前記ガスバリア層中における樹脂固形分の合計量に対して80質量%以上であることが好ましく、90質量%以上であることがより好ましい。なお、本発明にかかるガスバリア層においては、ポリカルボン酸系重合体のみを単独で用いることが特に好ましい。 In addition, in the gas barrier layer according to the present invention, in addition to the polycarboxylic acid polymer, other polymers can be mixed and used as long as the gas barrier property and moisture resistance of the gas barrier layer are not impaired. And when mixing and using another polymer in this way, the content ratio (solid content conversion) of the said polycarboxylic acid type polymer is 80 with respect to the total amount of the resin solid content in the said gas barrier layer. The content is preferably at least mass%, more preferably at least 90 mass%. In the gas barrier layer according to the present invention, it is particularly preferable to use only the polycarboxylic acid polymer alone.
 本発明のガスバリア層は、前述したポリカルボン酸系重合体以外に、以下に説明する多価金属化合物をさらに含有することが好ましい。本発明にかかる多価金属化合物は、前記ポリカルボン酸系重合体と塩を構成させるためのものである。このような多価金属化合物に含有される金属としては、例えば、ベリリウム、マグネシウム、カルシウム等のアルカリ土類金属;チタン、ジルコニウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛等の遷移金属;アルミニウムを挙げることができる。 The gas barrier layer of the present invention preferably further contains a polyvalent metal compound described below in addition to the polycarboxylic acid polymer described above. The polyvalent metal compound according to the present invention is for forming a salt with the polycarboxylic acid polymer. Examples of the metal contained in such a polyvalent metal compound include alkaline earth metals such as beryllium, magnesium and calcium; transition metals such as titanium, zirconium, chromium, manganese, iron, cobalt, nickel, copper and zinc Mention may be made of aluminum.
 このような多価金属化合物の例としては、前記金属の酸化物、水酸化物、有機酸塩、無機酸塩;前記金属のアンモニウム錯体、2~4級アミン錯体、それら錯体の無機酸塩、有機酸塩;アルキルアルコキシド等が挙げられる。有機酸塩としては、酢酸塩、シュウ酸塩、クエン酸塩、乳酸塩、ステアリン酸塩、モノエチレン性不飽和カルボン酸塩等が挙げられる。また、無機酸塩としては、塩化物、硫酸塩、硝酸塩、炭酸塩、無機リン酸塩、亜リン酸塩、次亜リン酸塩等を挙げることができる。 Examples of such polyvalent metal compounds include oxides, hydroxides, organic acid salts, inorganic acid salts of the metals; ammonium complexes of the metals, secondary to quaternary amine complexes, inorganic acid salts of these complexes, Organic acid salt; alkyl alkoxide and the like. Examples of the organic acid salt include acetate, oxalate, citrate, lactate, stearate, monoethylenically unsaturated carboxylate and the like. Examples of inorganic acid salts include chlorides, sulfates, nitrates, carbonates, inorganic phosphates, phosphites, and hypophosphites.
 このような多価金属化合物は1種のものを単独で用いても、2種以上のものを混合して用いてもよい。また、前記多価金属化合物の中でも、得られるガスバリア性フィルムのガスバリア性、防湿性及び製造性の向上という観点から、2価の金属化合物が好ましく用いられる。更に、前記多価金属化合物の中でも、アルカリ土類金属、ジルコニウム、コバルト、ニッケル、銅、亜鉛等の酸化物、水酸化物、又は炭酸塩;アルカリ土類金属、ジルコニウム、コバルト、ニッケル、銅、亜鉛等のアンモニウム錯体或いは前記錯体の炭酸塩を用いることが好ましく、マグネシウム、カルシウム、ジルコニウム、銅、亜鉛等の酸化物、水酸化物又は炭酸塩;ジルコニウム、銅、ニッケル、亜鉛等のアンモニウム錯体或いは前記錯体の炭酸塩を用いることがより好ましい。 Such polyvalent metal compounds may be used alone or in combination of two or more. Among the polyvalent metal compounds, divalent metal compounds are preferably used from the viewpoint of improving gas barrier properties, moisture resistance and manufacturability of the obtained gas barrier film. Furthermore, among the polyvalent metal compounds, alkaline earth metals, oxides such as zirconium, cobalt, nickel, copper, zinc, hydroxides, or carbonates; alkaline earth metals, zirconium, cobalt, nickel, copper, It is preferable to use an ammonium complex such as zinc or a carbonate of the above complex, an oxide, hydroxide or carbonate such as magnesium, calcium, zirconium, copper or zinc; an ammonium complex such as zirconium, copper, nickel or zinc; More preferably, a carbonate of the complex is used.
 なお、本発明にかかるガスバリア層にカルボン酸塩形成に関与しない多価金属化合物が存在する場合には、ガスバリア層の透明性の観点から、多価金属化合物は粒状であることが好ましく、その粒径は小さい方がより好ましい。また、後述する本発明にかかるガスバリア層を製造するための溶液又は分散液を調製する時の効率化及びより均一な溶液又は分散液を得るという観点から、多価金属化合物は粒状であることが好ましく、その粒径は小さい方がより好ましい。このような多価金属化合物の平均粒径は、5μm以下であることが好ましく、1μm以下であることがより好ましく、0.1μm以下であることが特に好ましい。 When the gas barrier layer according to the present invention contains a polyvalent metal compound that does not participate in carboxylate formation, the polyvalent metal compound is preferably granular from the viewpoint of the transparency of the gas barrier layer. A smaller diameter is more preferable. In addition, from the viewpoint of improving efficiency when preparing a solution or dispersion for producing a gas barrier layer according to the present invention, which will be described later, and obtaining a more uniform solution or dispersion, the polyvalent metal compound may be granular. Preferably, the particle diameter is smaller. The average particle size of such a polyvalent metal compound is preferably 5 μm or less, more preferably 1 μm or less, and particularly preferably 0.1 μm or less.
 本発明にかかるガスバリア層は、前述したように、ポリカルボン酸系重合体を含有する層(A)と多価金属化合物を含有する層(B)とを備える積層体であることが好ましい。このようにポリカルボン酸系重合体を含有する層(A)と多価金属化合物を含有する層(B)とを備える積層体とした場合には、単一の層とした場合と比較してガスバリア層中の多価金属化合物の含有量をより多くすることができる。そして、このようなガスバリア層を備える包装材料にボイル処理やレトルト処理を施した際には、前記多価金属化合物が前記層(A)に移動し、前記ポリカルボン酸系重合体が前記多価金属化合物によりイオン架橋され、包装材料の耐水性やガスバリア性が向上する傾向にある。 As described above, the gas barrier layer according to the present invention is preferably a laminate including a layer (A) containing a polycarboxylic acid polymer and a layer (B) containing a polyvalent metal compound. Thus, when it is set as the laminated body provided with the layer (A) containing a polycarboxylic acid-type polymer, and the layer (B) containing a polyvalent metal compound, compared with the case where it is set as a single layer The content of the polyvalent metal compound in the gas barrier layer can be increased. When the packaging material having such a gas barrier layer is subjected to boil treatment or retort treatment, the polyvalent metal compound moves to the layer (A), and the polycarboxylic acid polymer is converted to the polyvalent polymer. It is ion-crosslinked with a metal compound, and tends to improve the water resistance and gas barrier properties of the packaging material.
 また、上記のような場合においては、このような層(A)の厚さは、厚みが0.01~10μmの範囲であることが好ましく、0.05~5μmの範囲であることがより好ましく、0.1~1μmの範囲であることが特に好ましい。層(A)の厚みが前記下限未満では成膜が困難となる傾向にあり、他方、前記上限を超えると、多価金属イオンとのイオン結合反応が厚み方向に均一に進行しにくくなるために、高温殺菌処理後の包装材料のガスバリア性が得られにくくなる傾向にある。また、このような層(B)の厚さは、厚みが0.01~10μmの範囲であることが好ましく、0.05~5μmの範囲であることがより好ましく、0.1~3μmの範囲であることが特に好ましい。層(B)の厚みが前記下限未満では、高温殺菌処理後の包装材料のガスバリア性が得られにくくなる傾向にあり、他方、前記上限を超えると得られるガスバリア性フィルムの透明性の悪化やガスバリア性積層フィルムにおける剥離強度の低下を招きやすくなる傾向にある。 In the above case, the thickness of the layer (A) is preferably in the range of 0.01 to 10 μm, more preferably in the range of 0.05 to 5 μm. A range of 0.1 to 1 μm is particularly preferable. When the thickness of the layer (A) is less than the lower limit, film formation tends to be difficult. On the other hand, when the thickness exceeds the upper limit, the ion-bonding reaction with the polyvalent metal ions hardly proceeds uniformly in the thickness direction. The gas barrier property of the packaging material after high-temperature sterilization tends to be difficult to obtain. The thickness of the layer (B) is preferably in the range of 0.01 to 10 μm, more preferably in the range of 0.05 to 5 μm, and in the range of 0.1 to 3 μm. It is particularly preferred that If the thickness of the layer (B) is less than the lower limit, the gas barrier property of the packaging material after high-temperature sterilization tends to be difficult to be obtained. It tends to cause a decrease in peel strength in the conductive laminated film.
 さらに、上記のような場合においては、このような層(A)が加水分解縮合物を更に含有することが好ましい。このような層(A)が加水分解縮合物を含有することにより、層(A)の耐水性が向上する傾向にあり、デラミネーションの発生を抑制できる傾向にある。このような加水分解縮合物としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルトリエトキシシラン等の化合物の加水分解縮合物が挙げられる。これらの中でも、γ-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン等の化合物の加水分解縮合物が好ましい。また、これら加水分解縮合物の原料となる化合物は、1種のものを単独で用いても、2種以上のものを混合して用いてもよい。さらに、このような化合物の組合せとしては、例えば、γ-グリシドキシプロピルトリメトキシシランとテトラメトキシシランとの組合せが挙げられる。 Furthermore, in the above case, it is preferable that such a layer (A) further contains a hydrolysis condensate. When such a layer (A) contains a hydrolysis condensate, the water resistance of the layer (A) tends to be improved, and the occurrence of delamination tends to be suppressed. Examples of such hydrolysis condensates include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, tetramethoxy Examples include hydrolysis condensates of compounds such as silane, tetraethoxysilane, methacryloxypropyltrimethoxysilane, and methacryloxypropyltriethoxysilane. Among these, hydrolysis condensates of compounds such as γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane and the like are preferable. Moreover, the compound used as the raw material of these hydrolysis-condensation products may be used individually by 1 type, or may mix and use 2 or more types. Further, examples of such a combination of compounds include a combination of γ-glycidoxypropyltrimethoxysilane and tetramethoxysilane.
 また、上記のような場合においては、このような層(A)及び層(B)に前記ポリカルボン酸系重合体、前記多価金属化合物及び前記加水分解縮合物の他に、公知の任意添加成分が、前述したような作用を損なわない範囲で含まれていてもよい。 Moreover, in the above cases, in addition to the polycarboxylic acid polymer, the polyvalent metal compound and the hydrolysis condensate, a known arbitrary addition is added to the layer (A) and the layer (B). The component may be contained in a range not impairing the above-described action.
 <ガスバリア性フィルム及びガスバリア性積層フィルム>
 本発明のガスバリア性フィルムは、前記高分子フィルム基材の少なくとも片面に前記アンカーコート層を介して前記ガスバリア層が配置されているものである。また、本発明のガスバリア性積層フィルムは、前記ガスバリア性フィルムと、前記ガスバリア性フィルムの少なくとも片面に積層された熱可塑性樹脂フィルムとを備えるものである。
<Gas barrier film and gas barrier laminated film>
In the gas barrier film of the present invention, the gas barrier layer is disposed on at least one surface of the polymer film substrate via the anchor coat layer. Moreover, the gas barrier laminate film of the present invention comprises the gas barrier film and a thermoplastic resin film laminated on at least one surface of the gas barrier film.
 このような熱可塑性樹脂フィルムは、ガスバリア性積層フィルムへの耐磨耗性付与、光沢性付与、ヒートシール性付与、強度付与、防湿性付与等の目的に併せて適宜積層されるものである。また、このような熱可塑性樹脂フィルムの材料としては、前記高分子フィルム基材の材料と同様のものを挙げることができる。さらに、このような熱可塑性樹脂フィルムの材料は、上記の目的に併せて適宜選択して用いることができる。なお、本発明のガスバリア性積層フィルムは、上記の目的に併せて2層以上の熱可塑性樹脂フィルムを備えていてもよい。 Such a thermoplastic resin film is appropriately laminated for the purpose of imparting abrasion resistance, glossiness, heat sealability, strength and moisture resistance to the gas barrier laminate film. Moreover, as a material of such a thermoplastic resin film, the thing similar to the material of the said polymer film base material can be mentioned. Furthermore, the material of such a thermoplastic resin film can be appropriately selected and used in accordance with the above purpose. In addition, the gas barrier laminate film of the present invention may include two or more thermoplastic resin films in accordance with the above purpose.
 また、このような熱可塑性樹脂フィルムの厚さとしては、厚みが1~1000μmであることが好ましく、5~500μmであることがより好ましく、5~300μmであることが特に好ましく、5~200μmであることが最も好ましい。 The thickness of such a thermoplastic resin film is preferably 1 to 1000 μm, more preferably 5 to 500 μm, particularly preferably 5 to 300 μm, and 5 to 200 μm. Most preferably it is.
 このようなガスバリア性積層フィルムを備える包装材料は、ボイル処理、レトルト処理等の高温殺菌処理を施すことによって、高湿度雰囲気下においても優れたガスバリア性を有する包装材料となる。したがって、本発明のガスバリア性フィルム及びガスバリア性積層フィルムは、ボイル処理、レトルト処理等の高温熱水条件下での処理(高温殺菌処理)を必要とする物品の包装材料として特に好適に用いることができる。 The packaging material provided with such a gas barrier laminate film becomes a packaging material having excellent gas barrier properties even in a high humidity atmosphere by performing high-temperature sterilization treatment such as boil treatment and retort treatment. Therefore, the gas barrier film and the gas barrier laminated film of the present invention are particularly preferably used as a packaging material for articles that require treatment under high-temperature hot water conditions such as boil treatment and retort treatment (high-temperature sterilization treatment). it can.
 <ガスバリア性フィルム及びガスバリア性積層フィルムの製造方法>
 次に、本発明のガスバリア性フィルムの製造方法について説明する。
<Method for producing gas barrier film and gas barrier laminated film>
Next, the manufacturing method of the gas barrier film of this invention is demonstrated.
 本発明のガスバリア性フィルムを製造する方法としては、前記アンカーコート層及び前記ガスバリア層を形成するための塗工液を調製する工程と、前記高分子フィルム基材の少なくとも片面に前記アンカーコート層を介して前記ガスバリア層が形成されるように、前記高分子フィルム基材に順次調製した塗工液を塗工及び乾燥する工程とを含む方法が挙げられる。なお、本発明のガスバリア性フィルムにおいては、前記ガスバリア層がポリカルボン酸系重合体を含有する層(A)と多価金属化合物を含有する層(B)とを備える積層体であることが好ましいことから、以下前記層(A)及び層(B)を形成する場合を例に挙げて説明する。 The method for producing the gas barrier film of the present invention includes a step of preparing a coating liquid for forming the anchor coat layer and the gas barrier layer, and the anchor coat layer on at least one surface of the polymer film substrate. And a step of coating and drying the coating liquid prepared sequentially on the polymer film base so that the gas barrier layer is formed. In the gas barrier film of the present invention, the gas barrier layer is preferably a laminate comprising a layer (A) containing a polycarboxylic acid polymer and a layer (B) containing a polyvalent metal compound. Therefore, the case where the layer (A) and the layer (B) are formed will be described below as an example.
 本発明にかかるアンカーコート層形成用の塗工液は、前記カルボジイミド基含有樹脂及び前記接着性樹脂を含有するものである。ここで、カルボジイミド基含有樹脂及び接着性樹脂については、前記説明した通りである。 The coating liquid for forming an anchor coat layer according to the present invention contains the carbodiimide group-containing resin and the adhesive resin. Here, the carbodiimide group-containing resin and the adhesive resin are as described above.
 このような塗工液は、貯蔵安定性の観点から2液型としておくことが好ましい。また、このような塗工液は、塗工性の観点から、前記カルボジイミド基含有樹脂及び前記接着性樹脂の他に溶媒を含有することが好ましい。このような溶媒としては、例えば、酢酸エチル、酢酸ブチル、イソプロピルアルコール、トルエン、メチルエチルケトン、水が挙げられる。これらの溶媒の中でも、作業環境への配慮や、汎用性及び毒性という観点から、酢酸エチル、イソプロピルアルコール、水を用いることが好ましい。また、これらの溶媒としては、1種のものを単独で用いても、2種以上のものを混合して用いてもよい。さらに、このような塗工液中の固形分濃度は、塗工適性の観点から2~30質量%の範囲であることが好ましい。 Such a coating solution is preferably a two-component type from the viewpoint of storage stability. Moreover, it is preferable that such a coating liquid contains a solvent other than the said carbodiimide group containing resin and the said adhesive resin from a viewpoint of coating property. Examples of such a solvent include ethyl acetate, butyl acetate, isopropyl alcohol, toluene, methyl ethyl ketone, and water. Among these solvents, it is preferable to use ethyl acetate, isopropyl alcohol, and water from the viewpoint of working environment, versatility, and toxicity. Further, as these solvents, one kind may be used alone, or two or more kinds may be mixed and used. Further, the solid content concentration in such a coating liquid is preferably in the range of 2 to 30% by mass from the viewpoint of coating suitability.
 本発明にかかる層(A)形成用の塗工液(a)は、前記ポリカルボン酸重合体を含有するものである。ここで、ポリカルボン酸系重合体については、前記説明した通りである。 The coating liquid (a) for forming the layer (A) according to the present invention contains the polycarboxylic acid polymer. Here, the polycarboxylic acid polymer is as described above.
 このような塗工液(a)は、塗工性の観点から、前記ポリカルボン酸系重合体の他に溶媒を含有することが好ましい。このような溶媒としては、例えば、水、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-プロピルアルコール、n-ブチルアルコール、n-ペンチルアルコール、ジメチルスルフォキシド、ジメチルフォルムアミド、ジメチルアセトアミド、トルエン、ヘキサン、ヘプタン、シクロヘキサン、アセトン、メチルエチルケトン、ジエチルエーテル、ジオキサン、テトラヒドロフラン、酢酸エチル、酢酸ブチル等を挙げることができる。これらの溶媒の中でも、溶解性及び塗工性の観点から、水、イソプロピルアルコールを用いることが好ましい。また、これらの溶媒としては、1種のものを単独で用いても、2種以上のものを混合して用いてもよい。さらに、このような塗工液(a)には、前記多価金属化合物、前記加水分解縮合物、柔軟剤、安定剤、膜形成剤、アンチブロッキング剤、粘着剤等を適宜添加することができる。さらに、このような塗工液(a)中の固形分濃度は、塗工適性の観点から2~30質量%の範囲であることが好ましい。 Such a coating liquid (a) preferably contains a solvent in addition to the polycarboxylic acid polymer from the viewpoint of coating properties. Examples of such solvents include water, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-propyl alcohol, n-butyl alcohol, n-pentyl alcohol, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, toluene, hexane. , Heptane, cyclohexane, acetone, methyl ethyl ketone, diethyl ether, dioxane, tetrahydrofuran, ethyl acetate, butyl acetate and the like. Among these solvents, water and isopropyl alcohol are preferably used from the viewpoints of solubility and coatability. Further, as these solvents, one kind may be used alone, or two or more kinds may be mixed and used. Furthermore, the polyvalent metal compound, the hydrolysis condensate, the softening agent, the stabilizer, the film forming agent, the anti-blocking agent, the pressure-sensitive adhesive, and the like can be appropriately added to such a coating liquid (a). . Further, the solid content concentration in the coating liquid (a) is preferably in the range of 2 to 30% by mass from the viewpoint of coating suitability.
 本発明にかかる層(B)形成用の塗工液(b)は、前記多価金属化合物を含有するものである。ここで、多価金属化合物については、前記説明した通りである。 The coating liquid (b) for forming the layer (B) according to the present invention contains the polyvalent metal compound. Here, the polyvalent metal compound is as described above.
 このような塗工液(b)は、塗工性の観点から、前記多価金属化合物の他に溶媒を含有することが好ましい。このような溶媒としては、前述した塗工液(a)において用いられる溶媒と同様のものが挙げられる。さらに、このような塗工液(b)には、前記成分の他に樹脂、分散剤、柔軟剤、安定剤、膜形成剤、アンチブロッキング剤、粘着剤等を適宜添加することができる。また、このような塗工液(b)中の固形分濃度は、塗工適性の観点から2~30質量%の範囲であることが好ましい。 Such a coating liquid (b) preferably contains a solvent in addition to the polyvalent metal compound from the viewpoint of coating properties. Examples of such a solvent include the same solvents as those used in the coating liquid (a) described above. Furthermore, in addition to the components described above, a resin, a dispersant, a softener, a stabilizer, a film forming agent, an antiblocking agent, an adhesive, and the like can be appropriately added to such a coating liquid (b). Further, the solid content concentration in the coating liquid (b) is preferably in the range of 2 to 30% by mass from the viewpoint of coating suitability.
 これらの塗工液を前記高分子フィルム基材等の表面上に塗工する方法としては、公知の塗工方法が特に制限なく使用可能であり、浸漬法(ディッピング法)や、スプレー、コーター、印刷機、刷毛等の塗工器具を用いる方法が挙げられる。また、これらの方法に用いられるコーター及び印刷機の種類並びにそれらの塗工方式としては、グラビアコーター(ダイレクトグラビア方式、リバースグラビア方式、キスリバースグラビア方式、オフセットグラビア方式等)、リバースロールコーター、マイクログラビアコーター、エアナイフコーター、ディップコーター、バーコーター、コンマコーター、ダイコーター等を挙げることができる。 As a method of coating these coating liquids on the surface of the polymer film substrate or the like, a known coating method can be used without particular limitation, and dipping (dipping), spraying, coater, Examples thereof include a method using a coating machine such as a printing machine or a brush. In addition, the types of coaters and printing presses used in these methods and their coating methods include gravure coaters (direct gravure method, reverse gravure method, kiss reverse gravure method, offset gravure method, etc.), reverse roll coater, micro Examples include a gravure coater, an air knife coater, a dip coater, a bar coater, a comma coater, and a die coater.
 これらの塗工液の塗布量としては、所望する層の厚みにより異なり特に限定されないが、塗工液を塗工して乾燥した後の1mあたりの質量が0.01~5g/mであることが好ましく、0.03~3g/mであることがより好ましい。塗工液を塗工して乾燥した後の1mあたりの質量が前記下限未満では塗膜を成膜しにくくなる傾向にあり、他方、前記上限を超えると乾燥が不十分で溶媒が残留しやすくなる傾向にある。 The coating amount of these coating liquids varies depending on the desired layer thickness, and is not particularly limited, but the mass per 1 m 2 after coating and drying the coating liquid is 0.01 to 5 g / m 2 . It is preferably 0.03 to 3 g / m 2 . If the mass per 1 m 2 after coating and drying the coating liquid is less than the lower limit, it tends to be difficult to form a coating film. On the other hand, if the upper limit is exceeded, drying is insufficient and the solvent remains. It tends to be easier.
 また、これらの塗工液を乾燥させる方法としては、特に限定されないが、自然乾燥による方法や、所定の温度に設定したオーブン中で乾燥させる方法、前記コーター付属の乾燥機、例えばアーチドライヤー、フローティングドライヤー、ドラムドライヤー、赤外線ドライヤー等を用いる方法を挙げることができる。さらに、乾燥の条件としては、乾燥させる方法により適宜選択することできるが、例えばオーブン中で乾燥させる方法においては、温度60~200℃にて、1秒間~5分間程度乾燥することが好ましい。 In addition, the method for drying these coating liquids is not particularly limited, but is a method of natural drying, a method of drying in an oven set to a predetermined temperature, a dryer attached to the coater, such as an arch dryer, a floating Examples thereof include a method using a dryer, a drum dryer, an infrared dryer, or the like. Furthermore, the drying conditions can be appropriately selected depending on the drying method. For example, in the method of drying in an oven, it is preferable to dry at a temperature of 60 to 200 ° C. for about 1 second to 5 minutes.
 以上説明したようにして得られる本発明のガスバリア性フィルムに、ガスバリア性フィルムへの耐磨耗性付与、光沢性付与、ヒートシール性付与、強度付与又は更なる防湿性付与等の目的に併せて、1種以上の前記熱可塑性樹脂フィルムを更に積層させて本発明のガスバリア性積層フィルムを得ることができる。このように本発明のガスバリア性フィルムに前記熱可塑性樹脂フィルムを積層させる方法としては特に制限されず、適宜公知の方法を用いることが可能であり、ドライラミネート法、エクストルージョンラミネート法、ホットメルトラミネート法等を用いることが可能である。 To the gas barrier film of the present invention obtained as described above, in addition to the purpose of imparting wear resistance, glossiness, heat sealability, strength or further moisture resistance to the gas barrier film. One or more thermoplastic resin films can be further laminated to obtain the gas barrier laminate film of the present invention. As described above, the method for laminating the thermoplastic resin film on the gas barrier film of the present invention is not particularly limited, and a known method can be used as appropriate. A dry laminating method, an extrusion laminating method, a hot melt laminating method can be used. It is possible to use a law or the like.
 <包装材料>
 本発明のガスバリア性を有する包装材料は、前記本発明のガスバリア性積層フィルムを備える包装材料に高温殺菌処理を施してなるものである。
<Packaging materials>
The packaging material having a gas barrier property of the present invention is obtained by subjecting a packaging material including the gas barrier laminated film of the present invention to a high-temperature sterilization treatment.
 このような高温殺菌処理とは、被処理物を高温高湿の雰囲気下や熱水に曝す処理のことをいい、具体的には、ボイル処理、レトルト処理等のことをいう。このような高温殺菌処理において、処理温度としては80℃以上(より好ましくは90℃以上)であることが好ましい。また、処理時間としては、処理温度にもよるが10分以上(より好ましくは20分以上)であることが好ましい。 Such high-temperature sterilization treatment refers to a treatment in which an object to be treated is exposed to a high-temperature and high-humidity atmosphere or hot water, and specifically refers to boil treatment, retort treatment, and the like. In such a high-temperature sterilization treatment, the treatment temperature is preferably 80 ° C. or higher (more preferably 90 ° C. or higher). Further, the treatment time is preferably 10 minutes or more (more preferably 20 minutes or more) although it depends on the treatment temperature.
 このように、前記本発明のガスバリア性積層フィルムを備える包装材料に高温殺菌処理を施すことにより、前記包装材料のガスバリア性が更に向上し、ガスバリア性を有する包装材料が得られる。このようなガスバリア性を有する包装材料においては、温度20℃、相対湿度80%における酸素透過度が100cm(STP)/(m・day・MPa)以下であることが好ましく、50cm(STP)/(m・day・MPa)以下であることがより好ましく、30cm(STP)/(m・day・MPa)以下であることが特に好ましい。 Thus, by subjecting the packaging material provided with the gas barrier laminate film of the present invention to a high-temperature sterilization treatment, the gas barrier property of the packaging material is further improved, and a packaging material having a gas barrier property is obtained. In such a packaging material having gas barrier properties, the oxygen permeability at a temperature of 20 ° C. and a relative humidity of 80% is preferably 100 cm 3 (STP) / (m 2 · day · MPa) or less, and 50 cm 3 (STP). ) / (M 2 · day · MPa) or less, more preferably 30 cm 3 (STP) / (m 2 · day · MPa) or less.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples and comparative examples, but the present invention is not limited to the following examples.
 (調製例1)
 ポリエステル系ポリオール1(三井化学ポリウレタン(株)製、商品名「タケラックA525」、固形分濃度:50質量%)を主剤とし、ポリイソシアネート1(三井化学ポリウレタン(株)製、商品名「タケネートA52」、固形分濃度:75質量%)を硬化剤として用いた。そして、それらの質量比(主剤/硬化剤)が9/1となるようにして溶媒(酢酸エチル)に溶解させてアンカーコート層用の塗工液(Ac-1)を調製した。得られた塗工液(Ac-1)における固形分濃度は5質量%であった。また、得られた塗工液(Ac-1)はポリエステル系ポリウレタン樹脂1をベース接着性樹脂として含有するものであった。
(Preparation Example 1)
Polyisocyanate 1 (made by Mitsui Chemicals Polyurethanes Co., Ltd., trade name “Takelac A525”, solid content concentration: 50 mass%) as a main agent, polyisocyanate 1 (Mitsui Chemicals Polyurethanes Co., Ltd., trade name “Takenate A52”) , Solid content concentration: 75% by mass) was used as a curing agent. Then, an anchor coating layer coating solution (Ac-1) was prepared by dissolving in a solvent (ethyl acetate) such that the mass ratio (main agent / curing agent) was 9/1. The solid content concentration in the obtained coating liquid (Ac-1) was 5% by mass. Further, the obtained coating liquid (Ac-1) contained polyester-based polyurethane resin 1 as a base adhesive resin.
 (調製例2)
 カルボジイミド基含有樹脂1(Elastogran社製、商品名「Elastostab H01」、固形分濃度:100質量%、NCO基含有量:0質量%、以下場合により「CDI-1」という)を酢酸エチルにて固形分濃度が5質量%となるように希釈してカルボジイミド基含有樹脂の希釈液を得た。そして、調製例1で得られた塗工液(Ac-1)90質量部と得られた希釈液10質量部とを混合してアンカーコート層用の塗工液(Ac-2)を調製した。得られた塗工液(Ac-2)における固形分濃度は5質量%であった。また、得られた塗工液(Ac-2)はポリエステル系ポリウレタン樹脂1をベース接着性樹脂として含有するものであった。さらに、得られた塗工液(Ac-2)中における樹脂固形分の合計量に対して、CDI-1の含有比率は10質量%であった。
(Preparation Example 2)
Carbodiimide group-containing resin 1 (manufactured by Elastogran, trade name “Elastostab H01”, solid content concentration: 100 mass%, NCO group content: 0 mass%, sometimes referred to as “CDI-1” in some cases) solidified with ethyl acetate It diluted so that a partial concentration might be 5 mass%, and obtained the diluted liquid of carbodiimide group containing resin. Then, 90 parts by mass of the coating liquid (Ac-1) obtained in Preparation Example 1 and 10 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-2) for an anchor coat layer. . The solid content concentration in the obtained coating liquid (Ac-2) was 5% by mass. The obtained coating liquid (Ac-2) contained polyester-based polyurethane resin 1 as a base adhesive resin. Further, the content ratio of CDI-1 was 10% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-2).
 (調製例3)
 CDI-1を酢酸エチルにて固形分濃度が5質量%となるように希釈してカルボジイミド基含有樹脂の希釈液を得た。そして、調製例1で得られた塗工液(Ac-1)80質量部と得られた希釈液20質量部とを混合してアンカーコート層用の塗工液(Ac-3)を調製した。得られた塗工液(Ac-3)における固形分濃度は5質量%であった。また、得られた塗工液(Ac-3)はポリエステル系ポリウレタン樹脂1をベース接着性樹脂として含有するものであった。さらに、得られた塗工液(Ac-3)中における樹脂固形分の合計量に対して、CDI-1の含有比率は20質量%であった。
(Preparation Example 3)
CDI-1 was diluted with ethyl acetate to a solid content concentration of 5% by mass to obtain a diluted solution of carbodiimide group-containing resin. Then, 80 parts by mass of the coating liquid (Ac-1) obtained in Preparation Example 1 and 20 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-3) for an anchor coat layer. . The solid content concentration in the obtained coating liquid (Ac-3) was 5% by mass. Further, the obtained coating liquid (Ac-3) contained polyester-based polyurethane resin 1 as a base adhesive resin. Furthermore, the content ratio of CDI-1 was 20% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-3).
 (調製例4)
 CDI-1を酢酸エチルにて固形分濃度が5質量%となるように希釈してカルボジイミド基含有樹脂の希釈液を得た。そして、調製例1で得られた塗工液(Ac-1)60質量部と得られた希釈液40質量部とを混合してアンカーコート層用の塗工液(Ac-4)を調製した。得られた塗工液(Ac-4)における固形分濃度は5質量%であった。また、得られた塗工液(Ac-4)はポリエステル系ポリウレタン樹脂1をベース接着性樹脂として含有するものであった。さらに、得られた塗工液(Ac-4)中における樹脂固形分の合計量に対して、CDI-1の含有比率は40質量%であった。
(Preparation Example 4)
CDI-1 was diluted with ethyl acetate to a solid content concentration of 5% by mass to obtain a diluted solution of carbodiimide group-containing resin. Then, 60 parts by mass of the coating liquid (Ac-1) obtained in Preparation Example 1 and 40 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-4) for an anchor coat layer. . The solid content concentration in the obtained coating liquid (Ac-4) was 5% by mass. Further, the obtained coating liquid (Ac-4) contained the polyester-based polyurethane resin 1 as a base adhesive resin. Further, the content ratio of CDI-1 was 40% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-4).
 (調製例5)
 カルボジイミド基含有樹脂2(日清紡績(株)製、商品名「カルボジライトV-09」、溶媒:DMF、固形分濃度:50質量%、NCO基含有量:0質量%、以下場合により「CDI-2」という)を酢酸エチルにて固形分濃度が5質量%となるように希釈してカルボジイミド基含有樹脂の希釈液を得た。そして、調製例1で得られた塗工液(Ac-1)80質量部と得られた希釈液20質量部とを混合してアンカーコート層用の塗工液(Ac-5)を調製した。得られた塗工液(Ac-5)における固形分濃度は5質量%であった。また、得られた塗工液(Ac-5)はポリエステル系ポリウレタン樹脂1をベース接着性樹脂として含有するものであった。さらに、得られた塗工液(Ac-5)中における樹脂固形分の合計量に対して、CDI-2の含有比率は20質量%であった。
(Preparation Example 5)
Carbodiimide group-containing resin 2 (manufactured by Nisshinbo Co., Ltd., trade name “Carbodilite V-09”, solvent: DMF, solid content concentration: 50% by mass, NCO group content: 0% by mass, sometimes “CDI-2” Was diluted with ethyl acetate to a solid content concentration of 5% by mass to obtain a diluted solution of carbodiimide group-containing resin. Then, 80 parts by mass of the coating liquid (Ac-1) obtained in Preparation Example 1 and 20 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-5) for an anchor coat layer. . The solid concentration in the obtained coating liquid (Ac-5) was 5% by mass. The obtained coating liquid (Ac-5) contained polyester-based polyurethane resin 1 as a base adhesive resin. Furthermore, the content ratio of CDI-2 was 20% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-5).
 (調製例6)
 カルボジイミド基含有樹脂3(日清紡績(株)製、商品名「カルボジライトV-05」、固形分濃度:100質量%、NCO基含有量:8.2質量%、以下場合により「CDI-3」という)を酢酸エチルにて固形分濃度が5質量%となるように希釈してカルボジイミド基含有樹脂の希釈液を得た。そして、調製例1で得られた塗工液(Ac-1)80質量部と得られた希釈液20質量部とを混合してアンカーコート層用の塗工液(Ac-6)を調製した。得られた塗工液(Ac-6)における固形分濃度は5質量%であった。また、得られた塗工液(Ac-6)はポリエステル系ポリウレタン樹脂1をベース接着性樹脂として含有するものであった。さらに、得られた塗工液(Ac-6)中における樹脂固形分の合計量に対して、CDI-3の含有比率は20質量%であった。
(Preparation Example 6)
Carbodiimide group-containing resin 3 (manufactured by Nisshinbo Industries, Inc., trade name “Carbodilite V-05”, solid content concentration: 100% by mass, NCO group content: 8.2% by mass, sometimes referred to as “CDI-3”. ) Was diluted with ethyl acetate to a solid content concentration of 5% by mass to obtain a diluted solution of carbodiimide group-containing resin. Then, 80 parts by mass of the coating liquid (Ac-1) obtained in Preparation Example 1 and 20 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-6) for the anchor coat layer. . The solid concentration in the obtained coating liquid (Ac-6) was 5% by mass. The obtained coating liquid (Ac-6) contained polyester-based polyurethane resin 1 as a base adhesive resin. Further, the content ratio of CDI-3 was 20% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-6).
 (調製例7)
 CDI-1とCDI-3とを質量比(CDI-1/CDI-3)が1/2となるように混合した後に、酢酸エチルにて固形分濃度が5質量%となるように希釈してカルボジイミド基含有樹脂の希釈液を得た。そして、調製例1で得られた塗工液(Ac-1)85質量部と得られた希釈液15質量部とを混合してアンカーコート層用の塗工液(Ac-7)を調製した。得られた塗工液(Ac-7)における固形分濃度は5質量%であった。また、得られた塗工液(Ac-7)はポリエステル系ポリウレタン樹脂1をベース接着性樹脂として含有するものであった。さらに、得られた塗工液(Ac-7)中における樹脂固形分の合計量に対して、CDI-1の含有比率は5質量%であり、CDI-3の含有比率は10質量%であった。
(Preparation Example 7)
After mixing CDI-1 and CDI-3 so that the mass ratio (CDI-1 / CDI-3) is 1/2, the mixture is diluted with ethyl acetate to a solid content concentration of 5% by mass. A diluted solution of a carbodiimide group-containing resin was obtained. Then, 85 parts by mass of the coating liquid (Ac-1) obtained in Preparation Example 1 and 15 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-7) for an anchor coat layer. . The solid content concentration in the obtained coating liquid (Ac-7) was 5% by mass. Further, the obtained coating liquid (Ac-7) contained polyester-based polyurethane resin 1 as a base adhesive resin. Further, the content ratio of CDI-1 was 5% by mass and the content ratio of CDI-3 was 10% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-7). It was.
 (調製例8)
 CDI-1を酢酸エチルにて固形分濃度が5質量%となるように希釈してカルボジイミド基含有樹脂の希釈液を得た。そして、調製例1で得られた塗工液(Ac-1)98質量部と得られた希釈液2質量部とを混合してアンカーコート層用の塗工液(Ac-8)を調製した。得られた塗工液(Ac-8)における固形分濃度は5質量%であった。また、得られた塗工液(Ac-8)はポリエステル系ポリウレタン樹脂1をベース接着性樹脂として含有するものであった。さらに、得られた塗工液(Ac-8)中における樹脂固形分の合計量に対して、CDI-1の含有比率は2質量%であった。
(Preparation Example 8)
CDI-1 was diluted with ethyl acetate to a solid content concentration of 5% by mass to obtain a diluted solution of carbodiimide group-containing resin. Then, 98 parts by mass of the coating liquid (Ac-1) obtained in Preparation Example 1 and 2 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-8) for an anchor coat layer. . The solid concentration in the obtained coating liquid (Ac-8) was 5% by mass. The obtained coating liquid (Ac-8) contained polyester-based polyurethane resin 1 as a base adhesive resin. Furthermore, the content ratio of CDI-1 was 2% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-8).
 (調製例9)
 CDI-1を酢酸エチルにて固形分濃度が5質量%となるように希釈してカルボジイミド基含有樹脂の希釈液を得た。そして、調製例1で得られた塗工液(Ac-1)40質量部と得られた希釈液60質量部とを混合してアンカーコート層用の塗工液(Ac-9)を調製した。得られた塗工液(Ac-9)における固形分濃度は5質量%であった。また、得られた塗工液(Ac-9)はポリエステル系ポリウレタン樹脂1をベース接着性樹脂として含有するものであった。さらに、得られた塗工液(Ac-9)中における樹脂固形分の合計量に対して、CDI-1の含有比率は60質量%であった。
(Preparation Example 9)
CDI-1 was diluted with ethyl acetate to a solid content concentration of 5% by mass to obtain a diluted solution of carbodiimide group-containing resin. Then, 40 parts by mass of the coating liquid (Ac-1) obtained in Preparation Example 1 and 60 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-9) for the anchor coat layer. . The solid content concentration in the obtained coating liquid (Ac-9) was 5% by mass. The obtained coating liquid (Ac-9) contained polyester-based polyurethane resin 1 as a base adhesive resin. Furthermore, the content ratio of CDI-1 was 60% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-9).
 (調製例10)
 ポリエステル系ポリオール2(三井化学ポリウレタン(株)製、商品名「タケラックA3210」、固形分濃度:50質量%)を主剤とし、ポリイソシアネート2(三井化学ポリウレタン(株)製、商品名「タケネートA3072」、固形分濃度:75質量%)を硬化剤とした。そして、それらの質量比(主剤/硬化剤)が3/1となるようにして溶媒(酢酸エチル)に溶解させてアンカーコート層用の塗工液(Ac-10)を調製した。得られた塗工液(Ac-10)における固形分濃度は5質量%であった。また、得られた塗工液(Ac-10)はポリエステル系ポリウレタン樹脂2をベース接着性樹脂として含有するものであった。
(Preparation Example 10)
Polyisocyanate 2 (manufactured by Mitsui Chemicals Polyurethanes Co., Ltd., trade name “Takelac A3210”, solid content concentration: 50 mass%) as the main agent, Polyisocyanate 2 (Mitsui Chemicals Polyurethanes Co., Ltd., trade name “Takenate A3072”) , Solid content concentration: 75% by mass) was used as a curing agent. Then, an anchor coating layer coating solution (Ac-10) was prepared by dissolving in a solvent (ethyl acetate) such that the mass ratio (main agent / curing agent) was 3/1. The solid content concentration in the obtained coating liquid (Ac-10) was 5% by mass. The obtained coating liquid (Ac-10) contained polyester-based polyurethane resin 2 as a base adhesive resin.
 (調製例11)
 調製例1で得られた塗工液(Ac-1)に代えて調製例10で得られた塗工液(Ac-10)を用いた以外は調製例3と同様にしてアンカーコート層用の塗工液(Ac-11)を調製した。得られた塗工液(Ac-11)における固形分濃度は5質量%であった。また、得られた塗工液(Ac-11)はポリエステル系ポリウレタン樹脂2をベース接着性樹脂として含有するものであった。さらに、得られた塗工液(Ac-11)中における樹脂固形分の合計量に対して、CDI-1の含有比率は20質量%であった。
(Preparation Example 11)
The anchor coating layer was prepared in the same manner as in Preparation Example 3 except that the coating solution (Ac-10) obtained in Preparation Example 10 was used instead of the coating solution (Ac-1) obtained in Preparation Example 1. A coating solution (Ac-11) was prepared. The solid concentration in the obtained coating liquid (Ac-11) was 5% by mass. The obtained coating liquid (Ac-11) contained polyester-based polyurethane resin 2 as a base adhesive resin. Furthermore, the content ratio of CDI-1 was 20% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-11).
 (調製例12)
 アクリル系接着剤の主剤(東洋モートン(株)製、商品名「EA-W151A」、固形分濃度:45質量%)と、その硬化剤(東洋モートン(株)製、商品名「EA-W151B」、固形分濃度:100質量%)とを、それらの質量比(主剤/硬化剤)が5/1となるようにして溶媒(蒸留水)に溶解させてアンカーコート層用の塗工液(Ac-12)を調製した。得られた塗工液(Ac-12)における固形分濃度は5質量%であった。また、得られた塗工液(Ac-12)はアクリル樹脂をベース接着性樹脂として含有するものであった。
(Preparation Example 12)
Main component of acrylic adhesive (trade name “EA-W151A”, manufactured by Toyo Morton Co., Ltd., solid content concentration: 45 mass%) and its curing agent (trade name “EA-W151B” manufactured by Toyo Morton Co., Ltd.) , Solid content concentration: 100% by mass) is dissolved in a solvent (distilled water) so that the mass ratio thereof (main agent / curing agent) is 5/1, and the coating liquid (Ac -12) was prepared. The solid content concentration in the obtained coating liquid (Ac-12) was 5% by mass. The obtained coating liquid (Ac-12) contained an acrylic resin as a base adhesive resin.
 (調製例13)
 調製例1で得られた塗工液(Ac-1)に代えて調製例12で得られた塗工液(Ac-12)を用いた以外は調製例3と同様にしてアンカーコート層用の塗工液(Ac-13)を調製した。得られた塗工液(Ac-13)における固形分濃度は5質量%であった。また、得られた塗工液(Ac-13)はアクリル樹脂をベース接着性樹脂として含有するものであった。さらに、得られた塗工液(Ac-13)中における樹脂固形分の合計量に対して、CDI-1の含有比率は20質量%であった。
(Preparation Example 13)
For the anchor coat layer in the same manner as in Preparation Example 3, except that the coating liquid (Ac-12) obtained in Preparation Example 12 was used instead of the coating liquid (Ac-1) obtained in Preparation Example 1. A coating solution (Ac-13) was prepared. The solid concentration in the obtained coating liquid (Ac-13) was 5% by mass. The obtained coating solution (Ac-13) contained an acrylic resin as a base adhesive resin. Further, the content ratio of CDI-1 was 20% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-13).
 (調製例14)
 オキサゾリン基含有樹脂((株)日本触媒製、商品名「エポクロスWS-500」、固形分濃度:40質量%)を蒸留水にて固形分濃度が5質量%となるように希釈してオキサゾリン基含有樹脂の希釈液を得た。そして、調製例12で得られた塗工液(Ac-12)80質量部と得られた希釈液20質量部とを混合してアンカーコート層用の塗工液(Ac-14)を調製した。得られた塗工液(Ac-14)における固形分濃度は5質量%であった。また、得られた塗工液(Ac-14)はアクリル樹脂をベース接着性樹脂として含有するものであった。さらに、得られた塗工液(Ac-14)中における樹脂固形分の合計量に対して、オキサゾリン基含有樹脂の含有比率は20質量%であった。
(Preparation Example 14)
An oxazoline group-containing resin (trade name “Epocross WS-500”, manufactured by Nippon Shokubai Co., Ltd., solid content concentration: 40% by mass) is diluted with distilled water to a solid content concentration of 5% by mass to obtain an oxazoline group. A diluted solution of the containing resin was obtained. Then, 80 parts by mass of the coating liquid (Ac-12) obtained in Preparation Example 12 and 20 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-14) for an anchor coat layer. . The solid concentration in the obtained coating liquid (Ac-14) was 5% by mass. The obtained coating liquid (Ac-14) contained an acrylic resin as a base adhesive resin. Furthermore, the content ratio of the oxazoline group-containing resin was 20% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-14).
 (調製例15)
 ポリエチレンイミン((株)日本触媒製、商品名「エポミンP-1000」、固形分濃度:30質量%)を蒸留水にて固形分濃度が5質量%となるように希釈してポリエチレンイミンの希釈液を得た。そして、調製例12で得られた塗工液(Ac-12)80質量部と得られた希釈液20質量部とを混合してアンカーコート層用の塗工液(Ac-15)を調製した。得られた塗工液(Ac-15)における固形分濃度は5質量%であった。また、得られた塗工液(Ac-15)はアクリル樹脂をベース接着性樹脂として含有するものであった。さらに、得られた塗工液(Ac-15)中における樹脂固形分の合計量に対して、ポリエチレンイミンの含有比率は20質量%であった。
(Preparation Example 15)
Polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., trade name “Epomin P-1000”, solid content concentration: 30% by mass) is diluted with distilled water to a solid content concentration of 5% by mass to dilute polyethyleneimine A liquid was obtained. Then, 80 parts by mass of the coating liquid (Ac-12) obtained in Preparation Example 12 and 20 parts by mass of the obtained diluted liquid were mixed to prepare a coating liquid (Ac-15) for an anchor coat layer. . The solid content concentration in the obtained coating liquid (Ac-15) was 5% by mass. The obtained coating solution (Ac-15) contained an acrylic resin as a base adhesive resin. Furthermore, the content ratio of polyethyleneimine was 20% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-15).
 (調製例16)
 主剤としてポリエーテル系ポリオール(東洋モートン(株)製、商品名「TM-329」、固形分濃度:70質量%)と、その硬化剤(東洋モートン(株)製、商品名「CAT-8B」、固形分濃度:75質量%)とを、それらの質量比(主剤/硬化剤)が1/1となるようにして溶媒(酢酸エチル)に溶解させてポリエーテル系ポリウレタン樹脂を含有する混合溶液を調製した。得られたポリエーテル系ポリウレタン樹脂を含有する混合溶液における固形分濃度は5質量%であった。
(Preparation Example 16)
Polyether-based polyol (trade name “TM-329” manufactured by Toyo Morton Co., Ltd., solid content concentration: 70 mass%) as a main agent and its curing agent (trade name “CAT-8B” manufactured by Toyo Morton Co., Ltd.) , Solid content concentration: 75% by mass) and a mixture solution containing a polyether-based polyurethane resin dissolved in a solvent (ethyl acetate) so that the mass ratio (main agent / curing agent) is 1/1. Was prepared. The solid content concentration in the mixed solution containing the obtained polyether-based polyurethane resin was 5% by mass.
 そして、調製例1で得られた塗工液(Ac-1)に代えて得られたポリエーテル系ポリウレタン樹脂を含有する混合溶液を用いた以外は調製例3と同様にしてアンカーコート層用の塗工液(Ac-16)を調製した。得られた塗工液(Ac-16)における固形分濃度は5質量%であった。また、得られた塗工液(Ac-16)はポリエーテル系ポリウレタン樹脂をベース接着性樹脂として含有するものであった。さらに、得られた塗工液(Ac-16)中における樹脂固形分の合計量に対して、CDI-1の含有比率は20質量%であった。 Then, for the anchor coat layer, the same procedure as in Preparation Example 3 was used except that the mixed solution containing the polyether-based polyurethane resin obtained instead of the coating solution (Ac-1) obtained in Preparation Example 1 was used. A coating solution (Ac-16) was prepared. The solid content concentration in the obtained coating liquid (Ac-16) was 5% by mass. The obtained coating liquid (Ac-16) contained a polyether-based polyurethane resin as a base adhesive resin. Furthermore, the content ratio of CDI-1 was 20% by mass with respect to the total amount of resin solids in the obtained coating liquid (Ac-16).
 (実施例1)
 先ず、厚み12μmのポリエステルフィルム(東レ(株)製、商品名「ルミラーP60」)の表面に、バーコーター(RK Print-Coat Instruments社製、商品名「K303 PROOFER」)を用いて、アンカーコート層用の塗工液(Ac-2)を塗工し、70℃にて1分間乾燥させてアンカーコート層を形成させた。得られたアンカーコート層の厚みは0.2μmであった。
Example 1
First, a bar coater (trade name “K303 PROFER” manufactured by RK Print-Coat Instruments) is used on the surface of a 12 μm thick polyester film (trade name “Lumirror P60” manufactured by Toray Industries, Inc.), and an anchor coat layer is used. Coating solution (Ac-2) was applied and dried at 70 ° C. for 1 minute to form an anchor coat layer. The thickness of the obtained anchor coat layer was 0.2 μm.
 次に、数平均分子量200000のポリアクリル酸重合体(東亞合成(株)製、商品名「アロンA-10H」、25質量%水溶液)80質量部を蒸留水117.7質量部に溶解せしめた後、酸化亜鉛(和光純薬社製)2.3質量部を添加してポリアクリル酸重合体のカルボキシル基の20%を中和し、その後、蒸留水にて固形分濃度が10質量%となるように希釈してポリアクリル酸重合体を含有する層(A)用の塗工液(a-1)を調製した。そして、アンカーコート層の表面に、上記バーコーターを用いて、得られた塗工液(a-1)を塗工し、100℃にて1分間乾燥させてポリアクリル酸重合体を含有する層(A-1)を形成させた。得られた層(A-1)の厚みは0.3μmであった。 Next, 80 parts by mass of a polyacrylic acid polymer having a number average molecular weight of 200,000 (manufactured by Toagosei Co., Ltd., trade name “Aron A-10H”, 25% by mass aqueous solution) was dissolved in 117.7 parts by mass of distilled water. Thereafter, 2.3 parts by mass of zinc oxide (manufactured by Wako Pure Chemical Industries, Ltd.) was added to neutralize 20% of the carboxyl groups of the polyacrylic acid polymer, and then the solid content concentration was 10% by mass with distilled water. The coating liquid (a-1) for the layer (A) containing the polyacrylic acid polymer was prepared by dilution. Then, on the surface of the anchor coat layer, the obtained coating liquid (a-1) is applied using the above bar coater and dried at 100 ° C. for 1 minute to contain a polyacrylic acid polymer layer (A-1) was formed. The thickness of the obtained layer (A-1) was 0.3 μm.
 次いで、層(A-1)の表面に、上記バーコーターを用いて、酸化亜鉛含有ポリエステル樹脂(住友大阪セメント(株)製、商品名「ZR-133」、固形分濃度:30質量%、主溶媒:トルエン)を塗工液(b-1)として塗工し、100℃にて1分間乾燥させて多価金属化合物(酸化亜鉛)を含有する層(B-1)を形成させた。得られた層(B-1)の厚みは0.3μmであった。このようにしてポリエステルフィルム上にアンカーコート層とガスバリア層(A-1/B-1)が積層されたガスバリア性フィルムを得た。 Next, on the surface of the layer (A-1), using the above bar coater, a zinc oxide-containing polyester resin (manufactured by Sumitomo Osaka Cement Co., Ltd., trade name “ZR-133”, solid content concentration: 30% by mass, main Solvent: toluene) was applied as a coating liquid (b-1) and dried at 100 ° C. for 1 minute to form a layer (B-1) containing a polyvalent metal compound (zinc oxide). The thickness of the obtained layer (B-1) was 0.3 μm. In this way, a gas barrier film in which the anchor coat layer and the gas barrier layer (A-1 / B-1) were laminated on the polyester film was obtained.
 (実施例2~9)
 アンカーコート層用の塗工液(Ac-2)に代えて塗工液(Ac-3:実施例2)、塗工液(Ac-4:実施例3)、塗工液(Ac-5:実施例4)、塗工液(Ac-6:実施例5)、塗工液(Ac-7:実施例6)、塗工液(Ac-11:実施例7)、塗工液(Ac-13:実施例8)又は塗工液(Ac-16:実施例9)を用いた以外は実施例1と同様にして、ガスバリア性フィルムを得た。
(Examples 2 to 9)
Instead of the coating liquid (Ac-2) for the anchor coat layer, the coating liquid (Ac-3: Example 2), the coating liquid (Ac-4: Example 3), and the coating liquid (Ac-5: Example 4), coating solution (Ac-6: Example 5), coating solution (Ac-7: Example 6), coating solution (Ac-11: Example 7), coating solution (Ac- 13: A gas barrier film was obtained in the same manner as in Example 1 except that Example 8) or the coating solution (Ac-16: Example 9) was used.
 (実施例10)
 先ず、実施例1と同様にして厚み12μmのポリエステルフィルム(東レ(株)製、商品名「ルミラーP60」)の表面に、厚み0.2μmのアンカーコート層を形成させた。
(Example 10)
First, in the same manner as in Example 1, an anchor coat layer having a thickness of 0.2 μm was formed on the surface of a polyester film having a thickness of 12 μm (trade name “Lumirror P60” manufactured by Toray Industries, Inc.).
 次に、テトラメトキシシラン(アルドリッチ社製、商品名「TMOS」)6.84質量部をメタノール8.2質量部に溶解せしめた後に、γ-グリシドキシプロピルトリメトキシシラン(信越シリコーン社製、商品名「GPTMS」)1.36質量部を更に溶解せしめ、その後、更に蒸留水0.51質量部及び0.1Nの塩酸1.27質量部を添加してゾルを得た。得られたゾルを温度10℃にて1時間攪拌することにより、加水分解及び縮合反応を進行させて加水分解縮合物を得た。次いで、得られた加水分解縮合物を蒸留水18.5質量部にて希釈した後に、加水分解縮合物の希釈液を実施例1と同様にして得られた塗工液(a-1)63.4質量部に添加してポリアクリル酸重合体を含有する層(A)用の塗工液(a-2)を調製した。そして、アンカーコート層の表面に、上記バーコーターを用いて、得られた塗工液(a-2)を塗工し、100℃にて1分間乾燥させてポリアクリル酸重合体を含有する層(A-2)を形成させた。得られた層(A-2)の厚みは0.3μmであった。 Next, after dissolving 6.84 parts by mass of tetramethoxysilane (trade name “TMOS”, manufactured by Aldrich) in 8.2 parts by mass of methanol, γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone, 1.36 parts by mass of a trade name “GPTMS”) was further dissolved, and then 0.51 part by mass of distilled water and 1.27 parts by mass of 0.1N hydrochloric acid were further added to obtain a sol. The obtained sol was stirred at a temperature of 10 ° C. for 1 hour, so that hydrolysis and condensation reaction proceeded to obtain a hydrolysis-condensation product. Next, the obtained hydrolysis condensate was diluted with 18.5 parts by mass of distilled water, and then a diluted solution of the hydrolysis condensate was obtained in the same manner as in Example 1, but the coating solution (a-1) 63 was obtained. A coating solution (a-2) for layer (A) containing 4 parts by mass and containing a polyacrylic acid polymer was prepared. Then, on the surface of the anchor coat layer, the obtained coating liquid (a-2) is applied using the above bar coater and dried at 100 ° C. for 1 minute to contain a polyacrylic acid polymer layer (A-2) was formed. The thickness of the obtained layer (A-2) was 0.3 μm.
 次いで、層(A-2)の表面に、上記バーコーターを用いて、酸化亜鉛含有ポリエステル樹脂(住友大阪セメント(株)製、商品名「ZR-133」、固形分濃度:30質量%、主溶媒:トルエン)を塗工液(b-1)として塗工し、100℃にて1分間乾燥させて多価金属化合物(酸化亜鉛)を含有する層(B-1)を形成させた。得られた層(B-1)の厚みは0.3μmであった。このようにしてポリエステルフィルム上にアンカーコート層とガスバリア層(A-2/B-1)が積層されたガスバリア性フィルムを得た。 Next, on the surface of the layer (A-2), using the above bar coater, a zinc oxide-containing polyester resin (manufactured by Sumitomo Osaka Cement Co., Ltd., trade name “ZR-133”, solid content concentration: 30% by mass, main Solvent: toluene) was applied as a coating liquid (b-1) and dried at 100 ° C. for 1 minute to form a layer (B-1) containing a polyvalent metal compound (zinc oxide). The thickness of the obtained layer (B-1) was 0.3 μm. In this way, a gas barrier film in which the anchor coat layer and the gas barrier layer (A-2 / B-1) were laminated on the polyester film was obtained.
 (比較例1~7)
 アンカーコート層用の塗工液(Ac-2)に代えて塗工液(Ac-1:比較例1)、塗工液(Ac-8:比較例2)、塗工液(Ac-9:比較例3)、塗工液(Ac-10:比較例4)、塗工液(Ac-12:比較例5)、塗工液(Ac-14:比較例6)、又は塗工液(Ac-15:比較例7)を用いた以外は実施例1と同様にして、ガスバリア性フィルムを得た。
(Comparative Examples 1 to 7)
Instead of the coating liquid (Ac-2) for the anchor coat layer, the coating liquid (Ac-1: Comparative Example 1), the coating liquid (Ac-8: Comparative Example 2), and the coating liquid (Ac-9: Comparative Example 3), coating liquid (Ac-10: Comparative Example 4), coating liquid (Ac-12: Comparative Example 5), coating liquid (Ac-14: Comparative Example 6), or coating liquid (Ac −15: A gas barrier film was obtained in the same manner as in Example 1 except that Comparative Example 7) was used.
 (比較例8)
 先ず、実施例1と同様にして厚み12μmのポリエステルフィルム(東レ(株)製、商品名「ルミラーP60」)の表面に、厚み0.2μmのアンカーコート層を形成させた。
(Comparative Example 8)
First, in the same manner as in Example 1, an anchor coat layer having a thickness of 0.2 μm was formed on the surface of a polyester film having a thickness of 12 μm (trade name “Lumirror P60” manufactured by Toray Industries, Inc.).
 次に、アンカーコート層の表面に、上記バーコーターを用いて、酸化亜鉛含有ポリエステル樹脂(住友大阪セメント(株)製、商品名「ZR-133」、固形分濃度:30質量%、主溶媒:トルエン)を塗工液(b-1)として塗工し、100℃にて1分間乾燥させて多価金属化合物(酸化亜鉛)を含有する層(B-1)を形成させた。得られた層(B-1)の厚みは0.3μmであった。 Next, on the surface of the anchor coat layer, a zinc oxide-containing polyester resin (manufactured by Sumitomo Osaka Cement Co., Ltd., trade name “ZR-133”, solid content concentration: 30% by mass, main solvent: Toluene) was applied as a coating liquid (b-1) and dried at 100 ° C. for 1 minute to form a layer (B-1) containing a polyvalent metal compound (zinc oxide). The thickness of the obtained layer (B-1) was 0.3 μm.
 次いで、層(B-1)の表面に、上記バーコーターを用いて、実施例1と同様にして得られた塗工液(a-1)を塗工し、100℃にて1分間乾燥させてポリアクリル酸重合体を含有する層(A-1)を形成させた。得られた層(A-1)の厚みは0.3μmであった。このようにしてポリエステルフィルム上にアンカーコート層とガスバリア層(B-1/A-1)が積層されたガスバリア性フィルムを得た。 Next, the surface of the layer (B-1) was coated with the coating liquid (a-1) obtained in the same manner as in Example 1 using the above bar coater, and dried at 100 ° C. for 1 minute. Thus, a layer (A-1) containing a polyacrylic acid polymer was formed. The thickness of the obtained layer (A-1) was 0.3 μm. In this way, a gas barrier film in which the anchor coat layer and the gas barrier layer (B-1 / A-1) were laminated on the polyester film was obtained.
 (比較例9)
 先ず、実施例1と同様にして厚み12μmのポリエステルフィルム(東レ(株)製、商品名「ルミラーP60」)の表面に、厚み0.2μmのアンカーコート層を形成させた。
(Comparative Example 9)
First, in the same manner as in Example 1, an anchor coat layer having a thickness of 0.2 μm was formed on the surface of a polyester film having a thickness of 12 μm (trade name “Lumirror P60” manufactured by Toray Industries, Inc.).
 次に、アンカーコート層の表面に、上記バーコーターを用いて、ポリ塩化ビニリデン共重合体ラテックス(固形分濃度:50質量%)を塗工液(c-1)として塗工し、100℃にて1分間乾燥させてポリ塩化ビニリデン共重合体からなるガスバリア層(C-1)を形成させた。得られたガスバリア層(C-1)の厚みは2.0μmであった。このようにしてポリエステルフィルム上にアンカーコート層とガスバリア層(C-1)が積層されたガスバリア性フィルムを得た。 Next, on the surface of the anchor coat layer, using the above bar coater, a polyvinylidene chloride copolymer latex (solid content concentration: 50% by mass) was applied as a coating liquid (c-1) and heated to 100 ° C. And dried for 1 minute to form a gas barrier layer (C-1) comprising a polyvinylidene chloride copolymer. The thickness of the obtained gas barrier layer (C-1) was 2.0 μm. In this way, a gas barrier film in which the anchor coat layer and the gas barrier layer (C-1) were laminated on the polyester film was obtained.
 (比較例10)
 先ず、実施例1と同様にして厚み12μmのポリエステルフィルム(東レ(株)製、商品名「ルミラーP60」)の表面に、厚み0.2μmのアンカーコート層を形成させた。
(Comparative Example 10)
First, in the same manner as in Example 1, an anchor coat layer having a thickness of 0.2 μm was formed on the surface of a polyester film having a thickness of 12 μm (trade name “Lumirror P60” manufactured by Toray Industries, Inc.).
 次に、アンカーコート層の表面に、真空蒸着装置を用いて、ケイ素酸化物(SiO)を高周波誘導加熱方式で蒸着せしめて無機薄膜からなるガスバリア層(C-2)を形成させた。得られたガスバリア層(C-2)の厚みは70nmであった。このようにしてポリエステルフィルム上にアンカーコート層とガスバリア層(C-2)が積層されたガスバリア性フィルムを得た。 Next, a gas barrier layer (C-2) made of an inorganic thin film was formed on the surface of the anchor coat layer by vapor-depositing silicon oxide (SiO x ) by a high frequency induction heating method using a vacuum vapor deposition apparatus. The thickness of the obtained gas barrier layer (C-2) was 70 nm. In this way, a gas barrier film in which the anchor coat layer and the gas barrier layer (C-2) were laminated on the polyester film was obtained.
 <酸素透過度、耐水性及び剥離強度の評価>
 (i)評価用のガスバリア性積層フィルムの作製
 実施例及び比較例で得られたガスバリア性フィルムのガスバリア層上にポリエステル系接着剤〔(主剤:タケラックA620、硬化剤:タケネート65、溶媒:酢酸エチル):三井化学ポリウレタン(株)製〕を介して、LLDPEフィルム(東セロ(株)製、商品名「TUX-TCS」、厚み:60μm)をドライラミネート法により接着せしめて評価用のガスバリア性積層フィルムを得た。
<Evaluation of oxygen permeability, water resistance and peel strength>
(I) Preparation of gas barrier laminate film for evaluation Polyester adhesive [(main agent: Takelac A620, curing agent: Takenate 65, solvent: ethyl acetate on the gas barrier layer of the gas barrier film obtained in Examples and Comparative Examples] ): Mitsui Chemicals Polyurethane Co., Ltd.] through which the LLDPE film (manufactured by Tosero Co., Ltd., trade name “TUX-TCS”, thickness: 60 μm) is adhered by the dry laminating method, and the gas barrier laminate film for evaluation Got.
 (ii)酸素透過度の測定方法
 得られた各積層フィルムについて、それぞれレトルト処理機(RCS-60:日阪製作所社製)を用いて、温度120℃にて40分間のレトルト処理を行って試料を得た。そして、得られた各試料について、JIS K-7126-2(等圧法)、及びASTM D 3985に記載された方法に準拠して、酸素透過試験器(Modern Control社製、商品名「TMOX-TRAN2/20」)を用いて、温度20℃、試料面積50cm、相対湿度80%(両側)の条件で、ガスバリア性積層フィルムの酸素透過度〔単位:cm(STP)/(m・day・MPa)〕を測定した。
(Ii) Oxygen permeability measurement method Each of the obtained laminated films was subjected to a retort treatment at a temperature of 120 ° C. for 40 minutes using a retort processor (RCS-60: manufactured by Nisaka Manufacturing Co., Ltd.). Got. Then, for each of the obtained samples, an oxygen permeation tester (manufactured by Modern Control Co., Ltd., trade name “ TM OX-” in accordance with JIS K-7126-2 (isobaric method) and the method described in ASTM D 3985. TRAN 2/20 ") under the conditions of a temperature of 20 ° C, a sample area of 50 cm 2 and a relative humidity of 80% (both sides), the oxygen permeability of the gas barrier laminate film [unit: cm 3 (STP) / (m 2 · day · MPa)].
 (iii)耐水性評価用の試料の作製
 先ず、得られたガスバリア性積層フィルムを縦150mm×横110mmの大きさに切断した。そして、このように切断したものを2枚準備して、それぞれLLDPEフィルムが内側で向かい合うように重ね合わせて、卓上脱気シーラー(富士インパルス(株)製、商品名「V-300」)を用いてフィルムの横の一端をシールした。なお、シール部の幅は約10mmであった。次に、上記卓上脱気シーラーを用いて、フィルムの縦の両端を横の内寸が80mmとなるようにしてシールした後に、シール部の幅をそれぞれ8mmの長さとなるように切断し、袋状の成形物を得た。その後、得られた袋状の成形物にビー玉(直径:15.6mm)を10個投入した後に、上記卓上脱気シーラーを用いて、脱気をしつつ、包装体の内寸が80mm×80mmとなるようにシールして耐水性評価用の真空包装体(試料)を得た。なお、このような真空包装体はそれぞれのガスバリア性積層フィルム毎に20個ずつ作製した。
(Iii) Preparation of Sample for Water Resistance Evaluation First, the obtained gas barrier laminate film was cut into a size of 150 mm length × 110 mm width. Then, two sheets cut in this way were prepared, and the LLDPE films were stacked so that each faced inward, and a desktop degassing sealer (trade name “V-300” manufactured by Fuji Impulse Co., Ltd.) was used. The side edge of the film was sealed. The width of the seal part was about 10 mm. Next, after sealing the vertical ends of the film so that the horizontal inner dimension is 80 mm using the tabletop degassing sealer, the width of the seal portion is cut to a length of 8 mm, and the bag is cut. A shaped molding was obtained. Then, after putting 10 marbles (diameter: 15.6 mm) into the obtained bag-like molded product, the inside size of the package is 80 mm × 80 mm while deaeration using the desktop degassing sealer. A vacuum package (sample) for water resistance evaluation was obtained. In addition, 20 such vacuum packaging bodies were produced for each gas barrier laminate film.
 (iv)耐水性の評価方法
 得られた試料を温度60℃に調整された水槽に60分間浸漬した後、試料の外観を目視にて評価した。なお、外観評価はビー玉を投入する前にシールした三辺のシール部において、シール部端面からのデラミネーションが発生したか否かを評価した。また、それぞれのガスバリア性積層フィルム毎に20個ずつ評価した試料のうち、デラミネーションの発生した試料の数を以下の基準に基づいて判定した。
A:デラミネーションの発生した試料の数が0である。
B:デラミネーションの発生した試料の数が5以下である。
C:デラミネーションの発生した試料の数が6以上であり且つ10未満である。
D:デラミネーションの発生した試料の数が10以上である。
(Iv) Method for evaluating water resistance The obtained sample was immersed in a water bath adjusted to a temperature of 60 ° C. for 60 minutes, and then the appearance of the sample was visually evaluated. The appearance evaluation evaluated whether delamination from the end face of the seal portion occurred in the three-side seal portion sealed before the marbles were inserted. Moreover, the number of samples in which delamination occurred among 20 samples evaluated for each gas barrier laminate film was determined based on the following criteria.
A: The number of samples with delamination is zero.
B: The number of samples with delamination is 5 or less.
C: The number of samples with delamination is 6 or more and less than 10.
D: The number of samples with delamination is 10 or more.
 (v)剥離強度の測定方法
 得られた各積層フィルムについて、それぞれレトルト処理機(RCS-60:日阪製作所社製)を用いて、温度120℃にて40分間のレトルト処理を行って試料を得た。そして、得られた各試料について、JIS K-6854-3に記載された方法に準拠して剥離強度の測定を行った。すなわち、試料を温度23℃、相対湿度60%の条件下に1日間放置した後に、引張試験機((株)オリエンテック製、商品名「TENSILON RC-1210A」)を使用して、T型剥離により試料の剥離強度(単位:N)の測定を行った。なお、試験条件としては、試料の幅を15mmとし、剥離速度を200mm/分とした。
(V) Method for measuring peel strength Each of the obtained laminated films was subjected to a retort treatment at a temperature of 120 ° C. for 40 minutes using a retort treatment machine (RCS-60: manufactured by Nisaka Manufacturing Co., Ltd.). Obtained. For each of the obtained samples, peel strength was measured in accordance with the method described in JIS K-6854-3. That is, after leaving the sample at a temperature of 23 ° C. and a relative humidity of 60% for 1 day, a tensile tester (manufactured by Orientec Co., Ltd., trade name “TENSILON RC-1210A”) was used for T-type peeling. Was used to measure the peel strength (unit: N) of the sample. As test conditions, the width of the sample was 15 mm, and the peeling speed was 200 mm / min.
 <評価結果>
 実施例1~10で得られたガスバリア性フィルムについて、上記の方法により酸素透過度、耐水性及び剥離強度を評価した。得られた結果を表1に示す。また、実施例1~10におけるアンカーコート層の樹脂組成及びガスバリア層の構成を表1に示す。さらに、比較例1~10で得られたガスバリア性フィルムについて、上記の方法により酸素透過度、耐水性及び剥離強度を評価した。得られた結果を表2に示す。また、比較例1~10におけるアンカーコート層の樹脂組成及びガスバリア層の構成を表2に示す。
<Evaluation results>
The gas barrier films obtained in Examples 1 to 10 were evaluated for oxygen permeability, water resistance and peel strength by the above methods. The obtained results are shown in Table 1. Table 1 shows the resin composition of the anchor coat layer and the configuration of the gas barrier layer in Examples 1 to 10. Further, the gas barrier films obtained in Comparative Examples 1 to 10 were evaluated for oxygen permeability, water resistance and peel strength by the above methods. The obtained results are shown in Table 2. Table 2 shows the resin composition of the anchor coat layer and the configuration of the gas barrier layer in Comparative Examples 1 to 10.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示した結果から明らかなように、本発明のガスバリア性フィルム(実施例1~10)を用いた包装材料は、高湿度雰囲気下においても酸素等のガスバリア性に優れていることが確認された。また、本発明のガスバリア性フィルム(実施例1~10)を用いた包装材料は、レトルト処理後におけるデラミネーションの発生が十分に抑制されていることが確認された。 As is apparent from the results shown in Table 1, it was confirmed that the packaging material using the gas barrier film of the present invention (Examples 1 to 10) was excellent in oxygen and other gas barrier properties even in a high humidity atmosphere. It was done. Further, it was confirmed that the delamination after the retort treatment was sufficiently suppressed in the packaging material using the gas barrier film of the present invention (Examples 1 to 10).
 一方、表2に示した結果から明らかなように、アンカーコート層用の塗工液としてカルボジイミド基含有樹脂を含有しないものを用いた場合(比較例1、4及び5)には、レトルト処理後におけるデラミネーションの発生を十分に抑制することができないことが確認された。また、アンカーコート層用の塗工液としてオキサゾリン基含有樹脂やポリエチレンイミンを含有するものを用いた場合(比較例6及び7)には、従来のアンカーコート剤を用いた場合と比較してフィルムの剥離強度の向上は見られるものの、レトルト処理後におけるデラミネーションの発生を十分に抑制することができないことが確認された。さらに、アンカーコート層とポリアクリル酸重合体を含有する層とが隣接していない場合(比較例8)には、レトルト処理後におけるデラミネーションの発生を十分に抑制することができないことが確認された。また、ポリアクリル酸重合体を含有していないガスバリア層を本発明にかかるアンカーコート層を介して高分子フィルム基材と積層した場合(比較例9及び10)には、レトルト処理後におけるデラミネーションの発生を十分に抑制することができないことが確認された。 On the other hand, as is clear from the results shown in Table 2, when the coating liquid for the anchor coat layer does not contain a carbodiimide group-containing resin (Comparative Examples 1, 4 and 5), after retorting It was confirmed that the occurrence of delamination cannot be sufficiently suppressed. In addition, when an oxazoline group-containing resin or polyethyleneimine-containing liquid is used as the coating liquid for the anchor coat layer (Comparative Examples 6 and 7), the film is compared with the case where a conventional anchor coat agent is used. Although an improvement in the peel strength was observed, it was confirmed that the occurrence of delamination after the retort treatment could not be sufficiently suppressed. Furthermore, when the anchor coat layer and the layer containing the polyacrylic acid polymer are not adjacent to each other (Comparative Example 8), it was confirmed that the occurrence of delamination after the retort treatment cannot be sufficiently suppressed. It was. Further, when a gas barrier layer not containing a polyacrylic acid polymer is laminated with a polymer film substrate through the anchor coat layer according to the present invention (Comparative Examples 9 and 10), delamination after retorting is performed. It has been confirmed that the occurrence of water cannot be sufficiently suppressed.
 以上説明したように、本発明によれば、高湿度雰囲気下における優れたガスバリア性及び十分な耐水性を有し、しかもいわゆるデラミネーション(ボイル処理やレトルト処理後におけるフィルムの層間剥離)の発生を十分に防止することが可能となるガスバリア性フィルム及びガスバリア性積層フィルム、並びにそれらを用いた包装材料を提供することが可能となる。 As described above, according to the present invention, it has excellent gas barrier properties and sufficient water resistance in a high humidity atmosphere, and furthermore, the occurrence of so-called delamination (delamination of the film after boil treatment or retort treatment) occurs. It becomes possible to provide a gas barrier film and a gas barrier laminated film that can be sufficiently prevented, and a packaging material using them.
 したがって、本発明は、酸素等の影響により劣化を受けやすい、食品、飲料、薬品、医薬品の包装材料や、ボイル処理、レトルト処理等の高温熱水条件下での処理(高温殺菌処理)を必要とする物品の包装材料に関する技術として有用であり、高温殺菌包装用途の包装材料に関する技術として特に有用である。 Therefore, the present invention requires food, beverage, medicine, pharmaceutical packaging materials that are susceptible to deterioration due to the influence of oxygen, etc., and treatment under high-temperature hot water conditions such as boil treatment and retort treatment (high-temperature sterilization treatment). It is useful as a technique related to packaging materials for articles, and is particularly useful as a technique related to packaging materials for high-temperature sterilization packaging applications.

Claims (10)

  1. 高分子フィルム基材の少なくとも片面に、カルボジイミド基含有樹脂及び接着性樹脂を含有するアンカーコート層を介して、ポリカルボン酸系重合体を含有するガスバリア層が配置されており、前記カルボジイミド基含有樹脂の含有比率(固形分換算)が、前記アンカーコート層中における樹脂固形分の合計量に対して5~50質量%の範囲である、ガスバリア性フィルム。 A gas barrier layer containing a polycarboxylic acid polymer is disposed on at least one surface of the polymer film substrate via an anchor coat layer containing a carbodiimide group-containing resin and an adhesive resin, and the carbodiimide group-containing resin A gas barrier film having a content ratio (in terms of solid content) of 5 to 50% by mass relative to the total amount of resin solids in the anchor coat layer.
  2. 前記カルボジイミド基含有樹脂の含有比率(固形分換算)が、前記アンカーコート層中における樹脂固形分の合計量に対して5~35質量%の範囲である、請求項1に記載のガスバリア性フィルム。 The gas barrier film according to claim 1, wherein a content ratio (in terms of solid content) of the carbodiimide group-containing resin is in a range of 5 to 35 mass% with respect to a total amount of the resin solid content in the anchor coat layer.
  3. 前記ガスバリア層が、前記ポリカルボン酸系重合体を含有する層(A)と多価金属化合物を含有する層(B)とを備える積層体であり、前記アンカーコート層と前記ポリカルボン酸系重合体を含有する層(A)とが隣接している、請求項1に記載のガスバリア性フィルム。 The gas barrier layer is a laminate comprising a layer (A) containing the polycarboxylic acid polymer and a layer (B) containing a polyvalent metal compound, the anchor coat layer and the polycarboxylic acid heavy layer. The gas barrier film according to claim 1, wherein the layer (A) containing the coalescence is adjacent.
  4. 前記ポリカルボン酸系重合体を含有する層(A)が、加水分解縮合物を更に含有する、請求項3に記載のガスバリア性フィルム。 The gas barrier film according to claim 3, wherein the layer (A) containing the polycarboxylic acid polymer further contains a hydrolysis condensate.
  5. 前記ポリカルボン酸系重合体を含有する層(A)の厚みが0.01~10μmの範囲である、請求項3に記載のガスバリア性フィルム。 The gas barrier film according to claim 3, wherein the thickness of the layer (A) containing the polycarboxylic acid polymer is in the range of 0.01 to 10 µm.
  6. 前記接着性樹脂が、ポリエステル系ポリウレタン樹脂、ポリエーテル系ポリウレタン樹脂、アクリル樹脂及びエポキシ樹脂からなる群から選択される少なくとも一つの樹脂である、請求項1に記載のガスバリア性フィルム。 The gas barrier film according to claim 1, wherein the adhesive resin is at least one resin selected from the group consisting of a polyester-based polyurethane resin, a polyether-based polyurethane resin, an acrylic resin, and an epoxy resin.
  7. 前記アンカーコート層の厚みが0.01~5μmの範囲である、請求項1に記載のガスバリア性フィルム。 The gas barrier film according to claim 1, wherein the anchor coat layer has a thickness of 0.01 to 5 µm.
  8. 請求項1~7のうちのいずれか一項に記載のガスバリア性フィルムと、前記ガスバリア性フィルムの少なくとも片面に積層された熱可塑性樹脂フィルムとを備える、ガスバリア性積層フィルム。 A gas barrier laminate film comprising the gas barrier film according to any one of claims 1 to 7 and a thermoplastic resin film laminated on at least one surface of the gas barrier film.
  9. 請求項8に記載のガスバリア性積層フィルムを備える包装材料に高温殺菌処理を施してなる、ガスバリア性を有する包装材料。 A packaging material having gas barrier properties, which is obtained by subjecting a packaging material comprising the gas barrier laminated film according to claim 8 to high-temperature sterilization treatment.
  10. 温度20℃、相対湿度80%における酸素透過度が100cm(STP)/(m・day・MPa)以下である、請求項9に記載のガスバリア性を有する包装材料。 The packaging material having gas barrier properties according to claim 9, wherein the oxygen permeability at a temperature of 20 ° C. and a relative humidity of 80% is 100 cm 3 (STP) / (m 2 · day · MPa) or less.
PCT/JP2008/072154 2007-12-21 2008-12-05 Gas barrier film, gas barrier multilayer film, and packaging material using the same WO2009081715A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009547016A JPWO2009081715A1 (en) 2007-12-21 2008-12-05 Gas barrier film, gas barrier laminated film, and packaging material using them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007329797 2007-12-21
JP2007-329797 2007-12-21

Publications (1)

Publication Number Publication Date
WO2009081715A1 true WO2009081715A1 (en) 2009-07-02

Family

ID=40801026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072154 WO2009081715A1 (en) 2007-12-21 2008-12-05 Gas barrier film, gas barrier multilayer film, and packaging material using the same

Country Status (2)

Country Link
JP (1) JPWO2009081715A1 (en)
WO (1) WO2009081715A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128377A (en) * 2016-01-21 2017-07-27 株式会社エムエーパッケージング Laminated film for sealing chlorine dioxide generating agent and chlorine dioxide generating agent storage bag using the same
EP3741560B1 (en) * 2018-01-19 2023-07-12 Toppan Printing Co., Ltd. Gas barrier laminate and package provided with same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017013880A (en) * 2015-07-06 2017-01-19 凸版印刷株式会社 Individually packaged cigarette

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087949A (en) * 1996-09-19 1998-04-07 Mitsubishi Chem Corp Resin composition and laminated material by using the same
JP2000117912A (en) * 1998-10-12 2000-04-25 Dainippon Printing Co Ltd Barrier film and laminated material using the same
JP2004217767A (en) * 2003-01-14 2004-08-05 Rengo Co Ltd Gas-barrier composition and gas-barrier film using the same
JP2005280111A (en) * 2004-03-30 2005-10-13 Mitsubishi Plastics Ind Ltd Gas barrier film and gas barrier laminated body using the same
JP2007056084A (en) * 2005-08-23 2007-03-08 Kureha Corp Polymerizable monomer composition, gas barrier film, and method for producing the gas barrier film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087949A (en) * 1996-09-19 1998-04-07 Mitsubishi Chem Corp Resin composition and laminated material by using the same
JP2000117912A (en) * 1998-10-12 2000-04-25 Dainippon Printing Co Ltd Barrier film and laminated material using the same
JP2004217767A (en) * 2003-01-14 2004-08-05 Rengo Co Ltd Gas-barrier composition and gas-barrier film using the same
JP2005280111A (en) * 2004-03-30 2005-10-13 Mitsubishi Plastics Ind Ltd Gas barrier film and gas barrier laminated body using the same
JP2007056084A (en) * 2005-08-23 2007-03-08 Kureha Corp Polymerizable monomer composition, gas barrier film, and method for producing the gas barrier film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128377A (en) * 2016-01-21 2017-07-27 株式会社エムエーパッケージング Laminated film for sealing chlorine dioxide generating agent and chlorine dioxide generating agent storage bag using the same
EP3741560B1 (en) * 2018-01-19 2023-07-12 Toppan Printing Co., Ltd. Gas barrier laminate and package provided with same

Also Published As

Publication number Publication date
JPWO2009081715A1 (en) 2011-05-06

Similar Documents

Publication Publication Date Title
JP5282445B2 (en) Gas barrier precursor laminate, gas barrier laminate and methods for producing the same
JP5115010B2 (en) Primer composition and gas barrier film using the same
KR101563950B1 (en) Gas barrier film
JP5278802B2 (en) COATING LIQUID, GAS BARRIER FILM USING SAME, GAS BARRIER LAMINATE, GAS BARRIER MULTILAYER FILM, AND METHOD FOR PRODUCING THEM
JP2014231365A (en) Gas barrier packaging material
EP3299166A1 (en) Gas barrier laminate
EP2100932B1 (en) Coating solution, gas barrier laminate and gas barrier molded article each produced by using the coating solution, and method for production of gas barrier laminate
JP4915097B2 (en) Gas barrier laminate and method for producing the same
WO2009081715A1 (en) Gas barrier film, gas barrier multilayer film, and packaging material using the same
JP4684891B2 (en) Gas barrier multilayer film
JP4962180B2 (en) Method for producing gas barrier molding laminate and gas barrier molding laminate
JP5051609B2 (en) Draw-molded laminate and draw-molded container using the same
WO2007125742A1 (en) Coating liquid, gas barrier film using same, gas barrier laminate, gas barrier multilayer film, and their production methods
JP4765089B2 (en) Stretched laminate, stretched laminate and stretched multilayer film using the same
JP5056933B2 (en) Method for improving gas barrier property of laminate
JP2022107930A (en) Gas barrier film, laminate, and packaging material
JP2023049126A (en) Gas barrier film, laminate and packaging material
JP2022155604A (en) Laminated film and method for manufacturing the same
JP2023086487A (en) Gas barrier film, laminate and packaging material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08863976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009547016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08863976

Country of ref document: EP

Kind code of ref document: A1