WO2009081539A1 - 光送受信モジュール - Google Patents

光送受信モジュール Download PDF

Info

Publication number
WO2009081539A1
WO2009081539A1 PCT/JP2008/003766 JP2008003766W WO2009081539A1 WO 2009081539 A1 WO2009081539 A1 WO 2009081539A1 JP 2008003766 W JP2008003766 W JP 2008003766W WO 2009081539 A1 WO2009081539 A1 WO 2009081539A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wavelength
light
emitting element
mirror
Prior art date
Application number
PCT/JP2008/003766
Other languages
English (en)
French (fr)
Inventor
Koichiro Adachi
Kazuhiko Hosomi
Toshiki Sugawara
Original Assignee
Hitachi Communication Technologies, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Communication Technologies, Ltd. filed Critical Hitachi Communication Technologies, Ltd.
Priority to CN200880120145.8A priority Critical patent/CN101918872B/zh
Priority to US12/810,442 priority patent/US8303195B2/en
Priority to JP2009546933A priority patent/JP5439191B2/ja
Priority to EP08865308A priority patent/EP2226661A1/en
Publication of WO2009081539A1 publication Critical patent/WO2009081539A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/14Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices
    • H01L31/147Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • H01L31/153Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers formed in, or on, a common substrate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0267Integrated focusing lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Definitions

  • the present invention relates to an optical transceiver module, and more particularly, to a structure of a bidirectional optical transceiver module that multiplexes or demultiplexes light having a plurality of wavelengths.
  • Each subscriber side has an ONU (Optical Network Unit) installed as a terminal device, and a downstream signal (wavelength 1.5 ⁇ m) from the accommodation station to the subscriber side and an upstream signal (wavelength from the subscriber side to the accommodation station) 1.3 ⁇ m) is wavelength multiplexed (WDM) to transmit upstream and downstream signals using the same optical fiber.
  • WDM wavelength multiplexed
  • a two-wavelength bidirectional optical module is mounted in the ONU, and a light emitting element for transmitting an upstream signal (LD: Laser Diode) and a light receiving element for receiving a downstream signal (PD: Photo Detect). or), which basically consists of a WDM filter that separates upstream / downstream signals.
  • Fig. 9 shows the conventional module system.
  • a basic configuration of a single-core bidirectional (BIDI: Bi-Directional) module in which optical components of a light emitting element 175, a light receiving element 172, and a wavelength selection filter 177 are spatially arranged in a package 178 is shown.
  • BIDI Bi-Directional
  • the optical elements 175 and 172 mounted on the CAN packages 173 and 176 in which the lenses 171 and 174 are integrated are operated, the optical connection with the optical fiber 170 is performed, so that the optical connection can be performed.
  • the optical coupling efficiency can be obtained.
  • the number of parts and the number of processing steps are large, and it is a disadvantage that it is disadvantageous for reduction in size and cost.
  • FIG. 10 shows the second method of the single-core bidirectional module disclosed in Non-Patent Document 1 (Science Technical Report, vol. 107, no. 7, R2007-2, pp. 7-10). A basic configuration is shown. The light emitting element 182, the light receiving element 186, and the wavelength selection filter 183 are arranged in the CAN package 187 to reduce the size.
  • the light emitting element 182, the light receiving element 186, and the wavelength selection filter 183 need to be arranged three-dimensionally, as in the first example. There is a problem that it is complicated. Furthermore, considering expandability, for example, in the case of a three-wavelength bidirectional optical module, it is necessary to at least double the number of optical components and the mounting area, and it becomes increasingly difficult to reduce the size and cost.
  • an object of the present invention is to provide a low-loss optical characteristic and high performance for an optical module used as a terminal for wavelength division multiplexing optical transmission or single-core bidirectional optical transmission, in which light of a plurality of wavelengths is transmitted through a single optical fiber.
  • An object of the present invention is to provide an optical module that can significantly reduce the number of mounting steps while maintaining reliability, and can achieve a reduction in size and a high yield.
  • an optical element mounting substrate in which one light emitting element and at least one light receiving element are mounted on the same plane, and typically wavelength selection on the front and back surfaces of a transparent substrate
  • a wavelength multiplexer / demultiplexer equipped with a filter and a mirror is prepared, and these two components are mounted in a package such that the optical element mounting surface and the filter surface are at non-parallel angles.
  • optical elements having different working wavelengths are mounted at desired positions.
  • the optical multiplexer / demultiplexer uses a substrate having a desired thickness made of a material transparent to the wavelength of light having a pair of parallel opposing surfaces as a support substrate, and at least one kind of the pair of parallel surfaces is provided on one of the pair of parallel surfaces.
  • the wavelength selection filter is provided with a mirror for reflecting light having a wavelength not selected by the first filter on the other surface.
  • the filters and mirrors are provided with windows for light to enter and exit.
  • the first lens is provided in the vicinity of the light emitting element or monolithically integrated, and the second lens that condenses the light emitted from the optical multiplexer / demultiplexer onto the optical fiber.
  • the diameter of the second lens is It is characterized by being larger than the diameter of one lens.
  • FIG. 2 is a diagram schematically showing functions when the present invention is applied to a module called an optical triplexer.
  • the light of wavelength ⁇ 1 emitted from the light emitting element 11 is connected to an optical fiber (not shown) provided outside the module, and the light of wavelengths ⁇ 2 and ⁇ 3 emitted from the optical fiber is respectively predetermined.
  • the light receiving elements 12 and 13 have a function of being incident. Since the wavelength multiplexer / demultiplexer 2 is mounted at an angle that is not perpendicular to the incident light from the optical fiber and the optical axis of the light emitting element 11, the light is obliquely incident on the wavelength selection filter array and the mirror array. The light of a specific wavelength is removed or added at the intersection of the optical axis.
  • the optical axis of each wavelength is determined by the thickness d of the glass substrate and the angle ⁇ 1 and is aligned on a straight line on the horizontal plane. Therefore, if each element is arranged on this optical axis that is uniquely determined by design, the optical fiber and the optical element can be coupled.
  • the light of wavelength ⁇ 1 emitted from the light emitting element 1 becomes a light beam whose diffusion is suppressed by the lens 1001 provided in the vicinity of the light emitting element 1 or monolithically integrated, and after passing through the wavelength multiplexer / demultiplexer 2, 4 is focused and incident on an optical fiber (not shown). At this time, the diameter of the lens 4 is made larger than the diameter of the lens 1001.
  • the light emitted from the optical fiber (not shown) is condensed by the lens 4 onto one of the light receiving element 12 or the light receiving element 13.
  • the distance from the lens 4 to the light emitting element 11 lens 1001 is shorter than the distance from the lens 4 to the light receiving element 12 or 13 as shown in FIG. That is, the optical system of the present invention is characterized in that the distance from the lens 4 to the light emitting element 11 and the lens 1001 is shorter than the distance from the point where the light emitted from the optical fiber is collected by the lens 4 to the lens 4.
  • the first feature of the present invention is that a plurality of filters are automatically aligned only by aligning the glass substrate once, so that the mounting process is greatly reduced.
  • the second feature is that the LD and PD are mounted in a planar manner on the optical element mounting substrate, so that the mounting is greatly simplified compared to the case of mounting three-dimensionally and high-precision mounting is possible.
  • the number of processes can be reduced as compared with the case where alignment is performed individually for each element.
  • the angle of the substrate is ⁇ 1
  • the incident angle (incident angle) of light from the optical fiber or the optical element 11 with respect to the vertical direction of the substrate surface is ⁇ 1
  • the multiple reflection period y inside the substrate is given by 2dtan ⁇ 2 where d is the thickness of the transparent substrate.
  • the period z is given by 2dtan ⁇ 2 ⁇ cos ⁇ 1 . Since the period z corresponds to the interval between the elements mounted on the element mounting substrate, it is necessary to select d and ⁇ 1 so as to maintain an appropriate element interval. Since the element size never falls below 100 ⁇ m, the value of z needs to be 100 ⁇ m or more.
  • the third feature is that the tolerance of the displacement of the light emitting element 1 can be greatly increased by making the diameter of the lens 4 larger than the diameter of the lens 1001.
  • an optical transmission module that multiplexes and transmits light of a plurality of wavelengths, or an optical reception module that multiplexes and receives combined light for each wavelength, or single-core bidirectional.
  • the optical transceiver module it is possible to provide an optical module that can reduce the number of optical components and the number of mounting steps while maintaining low-loss optical characteristics and high reliability, and that can achieve a reduction in size and a high yield, and a method for manufacturing the same.
  • FIG. 1 is a sectional view of an optical module according to a first embodiment of the present invention.
  • FIG. 1 shows an example in which the present invention is applied to a so-called optical triplexer module of a bidirectional optical transceiver module using three wavelengths.
  • FIG. 1 shows an example of mounting in a CAN package.
  • An optical element mounting substrate 1 in which a light emitting element 11 and light receiving elements 12 and 13 are mounted on a submount 10 is mounted on a CAN stem 14, and an optical multiplexer / demultiplexer 2 is connected to a CAN.
  • the lens 1001 is provided in the vicinity of the light emitting element 1 or by being monolithically integrated.
  • the operating wavelengths of the light emitting element 11 and the light receiving elements 12 and 13 are ⁇ 1 , ⁇ 2 , and ⁇ 3 , respectively, and the wavelength length relationship is ⁇ 1 ⁇ 2 ⁇ 3 .
  • the light emitting element and the light receiving element are arranged from the shortest wavelength to the longest wavelength in FIG. However, in FIG. 1, it is also possible to arrange from the longest wavelength to the shortest wavelength.
  • the optical multiplexer / demultiplexer 2 uses a transparent glass substrate 5 as a supporting substrate, and a first wavelength selection filter 6 and a second wavelength selection filter 7 are mounted adjacent to each other on one surface. A first mirror 8 and a second mirror 9 are mounted. Note that amorphous glass, sapphire crystal, crystalline quartz, or silicon can be used as the transparent glass substrate.
  • the optical multiplexer / demultiplexer was mounted by aligning the outer shape of the CAN cap with the concaves and convexes and bonded with UV curable resin.
  • the glass substrate was made of BK7 and had a thickness of 1136 ⁇ m.
  • the glass substrate is mounted so that the angle with respect to the plane is 20 °, and the projection onto the plane of z in FIG. 2, that is, the pitch of multiple reflection, is 500 ⁇ m.
  • the wavelength selection filter is composed of a dielectric multilayer film or a diffraction grating.
  • the wavelength selective filter is a dielectric multilayer film made of Ta 2 O 5 and SiO 2 .
  • the first wavelength selection filter 6 has a separation wavelength ⁇ th of ⁇ 1 ⁇ th ⁇ 2, a filter having a property of transmitting light having a wavelength shorter than ⁇ th and reflecting light having a longer wavelength (so-called Short pass filter).
  • the second filter 7 was a short-pass filter with a separation wavelength of ⁇ 2 ⁇ th ⁇ 3 .
  • the first wavelength selection filter 6 has a separation wavelength ⁇ th satisfying ⁇ 2 ⁇ th ⁇ 3 , transmits light having a wavelength longer than ⁇ th, and reflects light having a short wavelength
  • the second filter 7 may be a short-pass filter with a separation wavelength of ⁇ 1 ⁇ th ⁇ 2 .
  • the first mirror 8 was the same as the first wavelength selection filter 6, and the second mirror 9 was the same as the second wavelength selection filter 7.
  • a vertical emission LD in which microlenses are integrated is used.
  • an end emission LD can be used for the light emitting element 11
  • a vertical emission type is desirable for ease of mounting
  • a lens integrated type is desirable from the viewpoint of ease of optical coupling and reduction of the number of components.
  • An amplifier and a capacitor are also mounted in the CAN, but they are not shown because they are the same as usual.
  • the material of the transparent substrate 5 is not particularly limited as long as it is transparent to the wavelength used, but is preferably inexpensive and good in processing accuracy.
  • BK7 is used to satisfy this condition, but other glass materials, dielectrics, and semiconductors may be used.
  • the operation of this configuration example will be described.
  • the light having the wavelength ⁇ 1 emitted from the light emitting element 11 reaches the first wavelength selection filter 6.
  • the first wavelength selective filter 6 transmits the wavelength of lambda 1, it is refracted by the transparent substrate by translating the optical path is optically connected to an external optical fiber through the package lens 4.
  • the light combined with the wavelengths ⁇ 2 and ⁇ 3 emitted from the optical fiber enters the transparent glass substrate, undergoes refraction, and reaches the first wavelength selection filter 6.
  • the wavelengths ⁇ 2 and ⁇ 3 are reflected and reach the first mirror 8 facing each other. Since the first mirror 8 is the same as the first wavelength selection filter 6, the wavelengths ⁇ 2 and ⁇ 3 are reflected again.
  • the reason why the mirror 8 is the same as that of the filter 6 is to improve the stopping power with respect to the wavelength ⁇ 1 .
  • the light of wavelength ⁇ 1 emitted from the light emitting element 11 is slightly reflected on the surface of the lens 4, the end face of the optical fiber, and other places, and is incident again as return light. Even this wavelength lambda 1 of the return light is a slight amount of light, the noise made incident on the light receiving elements 12 and 13.
  • the return light of ⁇ 1 is transmitted through the filter 6, but a small amount is reflected. Therefore, the light is transmitted again by the mirror 8 to further reduce the amount of light.
  • the same mirror 6 as the filter 6 is used.
  • the wavelength separation specification is not strict, it is sufficient to use a normal mirror having no wavelength dependency.
  • the light reflected by the mirror 8 is incident on the filter surface again.
  • the light reflected once by the mirror 8 is incident on the second filter, but in this configuration, the reflected light from the mirror 8 is incident on the filter 6 again. It is designed to reciprocate between the mirrors 8. This is to make the interval between the light emitting element 11 and the light receiving element 12 larger than the projection of the multiple reflection pitch. This is because a light emitting element driven at high speed may become a noise source (referred to as electrical crosstalk) for the light receiving element side.
  • electrical crosstalk noise source
  • the light that has reciprocated twice between the filter 6 and the mirror 8 enters the second wavelength selection filter 7.
  • the wavelength ⁇ 2 and the wavelength ⁇ 3 are separated, pass through the wavelength ⁇ 2 filter, undergo refraction, and enter the light receiving element 12 perpendicularly.
  • the wavelength ⁇ 3 is reflected and enters the mirror 9.
  • the same dielectric multilayer filter as the filter 7 is used for the mirror 9 for the same reason as the case of the mirror 8.
  • the light reflected by the mirror 9 passes through an interface without a filter (but with an AR coating) and enters the light receiving element 13.
  • light emitted from an optical fiber (not shown) is condensed by the lens 4 onto one of the light receiving element 12 or the light receiving element 13.
  • FIG. 8 shows the result of calculating the positional deviation of the light emitting element and the coupling efficiency with the optical fiber by optical simulation.
  • FIG. 8A shows the result in the case of the conventional module system shown in FIG.
  • the diameters of the lens 171 and the lens 174 are the same.
  • FIG. 8B shows the result in the case of the modular system according to the present invention.
  • the misalignment tolerance of the light emitting element is only 1.1 ⁇ m in the conventional module, but the misalignment tolerance can be expanded to approximately 11 ⁇ m in the module according to the present invention. Recognize.
  • FIG. 3 is a cross-sectional view of the optical module of the second embodiment of the present invention.
  • the present embodiment is a configuration example in which the present invention is applied to a two-wavelength single-core bidirectional (BIDI) module.
  • the basic configuration and function are the same as in the first embodiment, but only one light receiving element is 30 and the number of wavelengths used is two. Therefore, each of the wavelength separation filter and the mirror is one of 26 and 27. It has become.
  • FIG. 4 is a cross-sectional view of an optical module according to a third embodiment of the present invention.
  • the present embodiment is a diagram showing a module configuration when a CAN package 92 equipped with the optical system shown in the first embodiment of the present invention is joined to a single mode fiber 93.
  • Example 4 5 and 6 are diagrams showing an optical module according to a fourth embodiment of the present invention.
  • a CAN package 101 on which a light emitting element and a light receiving element are mounted, an optical demultiplexer 102, a lens 103, and a single mode fiber 104 are mounted on a planar package 110.
  • the CAN package has an optical element mounting substrate 112 on which a light emitting element 113 and light receiving elements 114 and 115 are mounted.
  • the CAN package 101 is not limited to the form shown in FIG. 6 and can be a CAN package in which other combinations of LD and PD are mounted.
  • FIG. 7 is a diagram showing an optical module according to the fifth embodiment of the present invention.
  • an optical element mounting substrate 126 on which a light receiving element is surface-mounted is mounted in a form that stands vertically from the bottom surface of the planar package.
  • the form shown in FIG. 7 is compatible with three wavelengths, the feature of this mounting form is that it can be handled relatively easily even if the number of wavelengths is further increased.
  • FIG. 11 is a diagram showing a sixth embodiment of the present invention.
  • FIG. 11 shows an example in which the present invention is applied to a three-wavelength bidirectional optical transceiver module for PON (Passive Optical Network).
  • an optical element mounting substrate 1000 on which a light emitting element 191 and light receiving elements 192 and 193 are mounted on a submount 1007 is mounted on a CAN stem 194, and wavelength selection filters 196 and 197, and a mirror 198,
  • An optical multiplexer / demultiplexer 1002 provided with 199 and a package lens 1004 are mounted on a CAN cap 1003.
  • a single mode optical fiber 1006 is connected by a fiber holder 1005 mounted on the upper part of the CAN cap.
  • the CAN cap 1003 is provided with recesses and projections for mounting the optical multiplexer / demultiplexer, and a holder portion for mounting the package lens 1004 is provided.
  • the optical multiplexer / demultiplexer 1002 has a transparent glass substrate 195 as a supporting substrate, and a first wavelength selection filter 196 and a second wavelength selection filter 197 are mounted adjacent to each other on one surface.
  • a first mirror 198 and a second mirror 199 are mounted.
  • As the first wavelength selection filter 196 a filter having a transmittance of 96% for a wavelength of 1310 nm, a reflectance of 99% or more for a wavelength of 1490 nm, and a reflectance of 99% or more for a wavelength of 1555 nm is used.
  • the mirror 198 is the same as the wavelength selection filter 196, and the mirror 199 is the same as the wavelength selection filter 197.
  • the glass substrate was made of transparent glass having a refractive index of 1.5, and the thickness was 697 ⁇ m.
  • the glass substrate is mounted so that the angle with respect to the plane is 30 °.
  • the package lens has a focal length of 1.98 mm, an optical intensity on the multiplexer / demultiplexer side of 0.04 for NA at 1 / e 2 , and an optical intensity on the fiber side of 1 / e 2 for 0.09. A thing was used.
  • the light emitting element 191 on the optical integrated substrate has a oscillation wavelength of 1.3 ⁇ m band produced on an InP substrate, and uses a vertical emission LD in which a lens 1008 is monolithically integrated.
  • the lens 1008 has a laser beam radiation angle of 4 from the LD. The one that gave a ° was used.
  • the wafer With respect to an optical module used as a terminal for wavelength multiplexing optical transmission or single-core bidirectional optical transmission that transmits light of a plurality of wavelengths using a single optical fiber, while maintaining low loss optical characteristics and high reliability, the wafer
  • the number of optical components and the number of mounting processes can be greatly reduced by batch production of processes and the like, and an optical module that can be miniaturized and can achieve a high yield and a manufacturing method thereof can be provided.
  • (A) is a sectional view of a three-wavelength bidirectional optical transceiver module according to the first embodiment of the present invention
  • (B) is a sectional view of an integrated lens mounted in (A)
  • (C ) Is a cross-sectional view of an installation type lens mounted on (A). It is the figure explaining the effect
  • Optical element mounting substrate 2, 22, 102, 122, 1002 ... wavelength multiplexer / demultiplexer, 3,23,1003 ... CAN cap, 4, 24, 103, 111, 123, 171, 174, 181, 1001, 1004, 1008 ... lens, 124 ... Lens holder, 5, 25, 105, 184, 195 ... glass substrate, 185 ... Filter holder, 6, 7, 26, 106, 107, 131, 132, 133, 177, 183, 196, 197 ... Wavelength selection filter, 8,9,27,108,109,135,136,198,199 ... mirror, 10, 28, 112, 126, 1007 ... submount, 11, 29, 113, 175, 182, 191 ...

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 波長多重光伝送や1芯双方向光伝送の端末機として用いられる光モジュールに関して、低損失な光学特性及び高信頼性を保ちつつ、ウェハプロセス等の一括作製によって光部品数、実装工程数を大幅削減し、小型化且つ高い歩留まりを実現可能な光モジュールおよびその製造方法を提供すること。  一つの発光素子と、少なくとも一つの受光素子とが同一平面上に載置された光素子搭載基板1と、透明基板の表裏面に波長選択フィルタ及びミラーを搭載した光合分波器2とを用意し、これらを、光素子実装面とフィルタ表面が互いに非平行な角度となるように、パッケージ3内で実装する。発光素子の近傍に設けられた、あるいは発光素子とモノリシック集積された第一のレンズと、光合分波器から出射した光を光ファイバに集光する第二のレンズとから構成される。

Description

光送受信モジュール
 本発明は、光送受信モジュールに係り、特に、複数の波長の光を合波あるいは分波する双方向光送受信モジュールの構造に関する。
 近年情報通信分野において、光を用いて大容量のデータを高速でやりとりする通信トラフィックの整備が急速に行われつつある。中でも特にインターネットの爆発的な普及に伴うアクセス回線のブロードバンド化が加速しており、FTTH(Fiber To The Home)サービスの顕著な市場立ち上がりが見られる。FTTHの光伝送方式の中で、現在需要が増えてきているのが、複数の加入者で1本の光ファイバを共有するPON (passive optical network)方式である。同方式では収容局から1本の光ファイバで送信されてきたデータを、スプリッタで16本から32本の光ファイバへ分岐し、各加入者宅まで分配することで光ファイバ敷設コストを大幅に削減可能である。
 また、各加入者側には端末装置としてONU(Optical Network Unit)が敷設され、収容局から加入者側への下り信号(波長1.5μm)と、加入者側から収容局への上り信号(波長1.3μm)を波長多重(WDM)することにより、上りと下りの信号を同一の光ファイバを用いて伝送している。さらに、ONU内には2波長双方向光モジュールが載置されており、上り信号送信用の発光素子(LD: Laser Diode)、下り信号受信用の受光素子(PD: Photo Detect
or)、上り/下り信号を分離するWDMフィルタで基本的に構成されている。
 従来のモジュール方式を図9に示す。パッケージ178内に発光素子175、受光素子172、波長選択フィルタ177の各光部品を空間的に配置した一芯双方向(BIDI: Bi-Directional)モジュールの基本構成を示す。本方式では各光部品を独立に作製可能であるため、作製歩留まりを確保し易い。また、レンズ171、174を各々集積したCANパッケージ173、176に搭載された光素子175、172を動作させながら光ファイバ170と光軸調芯する、所謂アクティブアライメントで光接続可能であるため、安定した光結合効率が得られる利点がある。その反面、部品点数及び加工工数が多く、小型・低コスト化に不利な事が難点である。
 図10に示すのは、非特許文献1(信学技報, vol. 107, no. 7, R2007-2, pp. 7-10)に開示された一芯双方向モジュールの第2の方式の基本構成を示したものである。発光素子182、受光素子186、波長選択フィルタ183をCANパッケージ187内に配置し、小型化を図ったという特徴がある。
 しかしながら、発光素子182、受光素子186、波長選択フィルタ183を立体的に配置する必要があるのは第一の例と同様で、小型化したゆえに高精度の実装が必要となり、調芯の工程も複雑なものとなっているという問題がある。さらに、拡張性を考慮した場合、例えば3波長双方向光モジュールとした場合は、光部品数及び実装面積を少なくとも約2倍する必要があり、小型・低コスト化がますます困難となる。
信学技報, vol. 107, no. 7, R2007-2, pp. 7-10
 上述したように、従来の技術では光素子の実装も含めると光部品の実装工程が多い。また、波長分波器の位置精度、特に角度ずれに対しては裕度が小さく、高精度な実装が要求されるとともに、歩留まりの確保が困難である。さらに、拡張性を考慮した場合、光部品数及び実装面積を約2倍にする必要があり、小型化と光部品の更なる高精度実装が要求されるため、歩留まりの確保がますます困難となる。
 したがって、本発明の目的は1本の光ファイバで複数の波長の光を伝送する、波長多重光伝送や1芯双方向光伝送の端末機として用いられる光モジュールに関して、低損失な光学特性及び高信頼性を保ちつつ、実装工程数を大幅削減し、小型化且つ高い歩留まりを実現可能な光モジュールを提供することにある。
 本発明では上記課題を解決するために、一つの発光素子と、少なくとも一つの受光素子とが同一平面上に載置された光素子搭載基板と、典型的には透明基板の表裏面に波長選択フィルタ及びミラーを搭載した波長合分波器を用意し、これら二つの部品を、光素子実装面とフィルタ表面が互いに非平行な角度となるように、パッケージ内で実装する。光素子搭載基板上には互いに使用波長の異なる光素子が所望の位置に実装されている。光合分波器は、平行な一対の対向面を持つ光の波長に対して透明な材料で出来た所望の厚さの基板を支持基板とし、一対の平行な面の一方には少なくとも一種類の波長選択フィルタを、他の面には第一のフィルタで選択されなかった波長の光を反射するためのミラーを設ける。
 この際これらのフィルタ及びミラーには光が入出射する為の窓を設ける。発光素子の近傍あるいはモノリシック集積されて設けられた第一のレンズと、光合分波器から出射した光を光ファイバに集光する第二のレンズとから構成され、第二のレンズの直径は第一のレンズの直径よりも大きいことを特徴としている。
 本発明のモジュールの作用を、図2を参酌して説明する。図2は本発明を光トリプレクサーと呼ばれるモジュールに応用した場合の機能を模式的に示した図である。発光素子11から出射された波長λの光がモジュール外部に設けられた光ファイバ(図示せず)に接続されるとともに、光ファイバから出射された波長λ、λの光が、それぞれ所定の光受光素子12、13に入射される機能を持つ。波長合分波器2が光ファイバからの入射光および発光素子11の光軸と、垂直でない角度で実装されていることにより、波長選択フィルタアレイ及びミラーアレイに光が斜めに入射し、各フィルタと光軸の交点で特定の波長の光が除去あるいは付加される。
 図2に示されるように、各波長の光軸はガラス基板の厚さdと角度θ1によって決定され、水平面の直線上に並ぶ。従って設計によって一意的に定まるこの光軸に各素子を配置すれば、光ファイバと光素子の結合を取ることができる。発光素子1から出射された波長λ1の光は、発光素子1の近傍あるいはモノリシック集積されて設けられたレンズ1001により、拡散を抑えられた光ビームとなり、波長合分波器2を透過後、レンズ4によってフォーカスされて、光ファイバ(図示せず)に入射される。この時、レンズ4の直径はレンズ1001の直径よりも大きくする。また、光ファイバ(図示せず)出射した光はレンズ4により受光素子12、あるいは受光素子13の一つに集光される。この時、図2に示されるようにレンズ4から発光素子11レンズ1001までの距離は、レンズ4から受光素子12あるいは13までの距離より短かくなる。即ち、本発明の光学系はレンズ4から発光素子11およびレンズ1001までの距離が光ファイバから出射する光がレンズ4により集光される点からレンズ4までの距離より短いことを特徴とする。
 このように本発明の第一の特徴はガラス基板を一度アラインメントするだけで複数のフィルタが自動的にアラインメントされるので実装の工程が大幅に削減される。また第二の特徴は、光素子搭載基板上にLD、PDを平面的に実装するので、立体的に実装する場合と比較して実装が大幅に簡略化され高精度実装が可能となる。調芯の際には、光素子搭載基板ごとアラインメントするので、各素子個別に調芯する場合に比べて工程数が削減できる。
 基板の角度がθ1の場合、基板表面の垂直方向に対する光ファイバあるいは光素子11からの光の入射の角度(入射角)はθ1であり、屈折後の基板物質内での角度θ2は、スネルの法則から、外部の屈折率n1、基板の屈折率n2を用い、θ2=sin-1(n1・sinθ1/n2)である。
 このとき、基板内部での多重反射の周期yは、透明基板の厚さをdとすると、2dtanθ2で与えられる。また、この多重反射する光が、前述したような原理でフィルタにより波長分離されて入射時の光軸と垂直な平面へと出射する場合、その周期zは2dtanθ2・cosθ1与えられる。周期zは素子搭載基板上に搭載される素子の間隔に対応するので、適切な素子間隔を保てるようd,θ1を選択する必要がある。素子のサイズは100μmを下回ることはないのでzの値は100μm以上である必要がある。さらに第三の特徴は、レンズ4の直径をレンズ1001の直径よりも大きくすることで、発光素子1の位置ずれトレランスを大幅に拡大することができる。
 本発明の実施例によれば、複数の波長の光を合波して送信する光送信モジュール、あるいは合波された光を波長ごとに分波して受信する光受信モジュール、あるいは一芯双方向光送受信モジュールに関して、低損失な光学特性及び高信頼性を保ちつつ、光部品数、実装工程数を大幅削減し、小型化且つ高い歩留まりを実現可能な光モジュールおよびその製造方法を提供できる。
 以下に、図面を用いて詳細に実施例を説明する。
 (実施例1)
  図1は、本発明の第一の実施例である光モジュールの断面図である。図1は本発明を、三波長を用いた双方向光送受信モジュールのいわゆる光トリプレクサーと呼ばれるモジュールに応用した例である。
 図1は、CANパッケージに実装した例で、発光素子11と受光素子12,13をサブマウント10上に搭載した光素子搭載基板1がCANステム14上に実装され、光合分波器2はCANキャップ3に実装されている。レンズ1001は、発光素子1の近傍あるいはモノリシック集積されることにより設けられる。発光素子11、及び受光素子12、13の使用波長はそれぞれλ、λ、λであり、波長の長短関係はλ<λ<λである。発光素子及び受光素子は、図1上で使用波長の短い方から長い方に並べた。ただし、図1上で使用波長の長い方から短い方に並べることも可能である。
 CANキャップ3内部には光合分波器の実装を可能とするための凹凸が設けられている。光合分波器2は透明ガラス基板5を支持基板とし、一方の面に第一の波長選択フィルタ6と第二の波長選択フィルタ7を隣接して実装され、この面と平行な対向する面に第一のミラー8と第二のミラー9が実装されている。なお、透明ガラス基板としては、非晶質ガラス、サファイア結晶、結晶石英、シリコンを用いることができる。
 光合分波器の実装は、CANキャップの凹凸への外形合わせで行い、UV硬化樹脂で接着した。ガラス基板の材質はBK7で厚みは1136μmとした。ガラス基板は平面に対する角度が20°となるように実装されており、図2中のz、即ち多重反射のピッチの平面上への射影は500μmである。波長選択フィルタは、誘電体多層膜又は回折格子で構成されている。なお、本実施例では、波長選択フィルタはTa2O5とSiO2からなる誘電体多層膜を用いた。
 第一の波長選択フィルタ6は、λ<λth<λの分離波長λthを持ち、このλthより短波長の光を透過し、長波長の光を反射する性質をもつフィルタ(いわゆるショートパスフィルタ)とした。第二のフィルタ7は、分離波長がλ<λth<λのショートパスフィルタとした。また、第一の波長選択フィルタ6が、λ<λth<λの分離波長λthを持ち、このλthより長波長の光を透過し、短波長の光を反射する性質をもつフィルタとし、第二のフィルタ7を、分離波長がλ<λth<λのショートパスフィルタとする構成も可能である。
 第一のミラー8は第一の波長選択フィルタ6と同じものを用い、第二のミラー9には第二の波長選択フィルタ7と同じものを用いた。光素子集積化基板上の光発光素子11にはマイクロレンズを集積した垂直出射型LDを用いた。発光素子11には端面出射型LDを用いることも可能であるが、実装上の簡便さから垂直出射型が望ましく、光結合の容易さや部品点数削減の観点からレンズ集積型が望ましい。同様の理由で受光素子12、13も面入射型が望ましい。アンプやコンデンサもCAN内に実装されるが、それらは通常の場合と同様なので図示していない。
 透明基板5の材質は使用する波長に対して透明であれば良く限定されるものではないが、安価で加工精度の良いものが望ましい。この条件を満たすものとして本例ではBK7を用いたが、他のガラス材料、誘電体、半導体を用いてももちろんよい。
 本構成例の動作を説明する。発光素子11から出射された波長λの光は、第一の波長選択フィルタ6に到達する。第一の波長選択フィルタ6はλの波長を透過し、透明基板で屈折し光路を平行移動し、パッケージレンズ4を介して外部の光ファイバと光接続される。一方光ファイバから出射された波長λ、λが合波した光は、透明ガラス基板に入射し、屈折を受けた後、第一の波長選択フィルタ6に到達する。波長λ、λは反射されて、対向する第一のミラー8に到達する。第一のミラー8は第一の波長選択フィルタ6と同じものなので、波長λ、λは再度反射される。ここで、ミラー8にフィルタ6と同じものを用いたのは波長λに対する阻止能を向上させる為である。発光素子11から出射された波長λの光は、レンズ4の表面や光ファイバ端面その他の場所でわずかに反射され、戻り光となって再び入射する。この波長λの戻り光はわずかな光量であっても、受光素子12、13に入射するとノイズになる。λの戻り光はフィルタ6で透過するが、わずかな量が反射される。そこでミラー8でもう一度透過させ、更に光量を減らしている。
 以上のような理由で本実施形態では、ミラー8にフィルタ6と同じものを用いているが、波長分離の仕様が厳しくない場合は、通常の波長依存性のないミラーを用いて十分である。
ミラー8で反射された光は再びフィルタ面へと入射する。最も素朴な設計では、ミラー8で一回反射された光は第二のフィルタに入射する構成となるが、本構成ではミラー8からの反射光は再びフィルタ6上へと入射し、フィルタ6とミラー8の間をもう一往復させる設計としている。これは、発光素子11と受光素子12の間隔を多重反射のピッチの射影より大きくするためである。高速で駆動する発光素子は、受光素子側に対するノイズ源(これを電気的クロストークと呼ぶ)となる恐れがあるためである。電気的クロストークその他特段の理由がない場合は、ガラス基板内の多重反射のピッチと素子の実装ピッチを一致させて反射回数を最小にする構成が望ましい。
 フィルタ6とミラー8の間を二往復した光は、第二の波長選択フィルタ7に入射する。ここで波長λと波長λが分離され、波長λフィルタを透過し屈折を受けて、光受光素子12に垂直に入射する。一方、波長λは反射されてミラー9へと入射する。ミラー9には、ミラー8の場合と同様の理由で、フィルタ7と同じ誘電体多層フィルタを用いる。ミラー9で反射された光はフィルタのない界面(但しARコート有)を透過し、受光素子13に入射する。このとき、光ファイバ(図示せず)出射した光はレンズ4により受光素子12、あるいは受光素子13の一つに集光される。レンズ4の直径はレンズ1001の直径よりも大きくすることで、発光素子1の位置ずれトレランスを拡大することができる。
 光学シミュレーションにより、発光素子の位置ずれと、光ファイバとの結合効率を計算した結果を図8に示す。図8(A)には、図9に示した従来モジュール方式の場合の結果を示している。ここで、レンズ171とレンズ174の直径は同じとしている。図8(B)に、本発明によるモジュール方式の場合の結果を示した。例えば、ファイバとの結合損失を-2dBまで許容すると、従来モジュールでは発光素子の位置ずれトレランスは1.1μmほどしかないが、本発明によるモジュールでは、およそ11μmまで位置ずれトレランスを拡大できていることがわかる。
 (実施例2)
  図3は、本発明の第二の実施例の光モジュールの断面図である。本実施形態は、本発明を2波長一芯双方向(BIDI: Bi-Directional)モジュールに応用した構成例である。基本的な構成、機能は第一の実施例と同様であるが、受光素子は30の一つのみで、使う波長数は二つなので、波長分離フィルタとミラーは26と27の各一つずつとなっている。
 (実施例3)
  図4は、本発明の第三の実施例の光モジュールの断面図である。本実施形態は、本発明の第一の実施例に示す光学系を搭載したCANパッケージ92をシングルモードファイバ93に接合する場合のモジュール構成を示した図である。
 (実施例4)
  図5、図6は、本発明の第四の実施形態の光モジュールを示す図である。本実施形態に於いては、平面型パッケージ110に、発光素子および受光素子が実装されたCANパッケージ101、光号分波器102、レンズ103、シングルモードファイバ104が実装されている。CANパッケージの構成は図6に示すように、発光素子113、受光素子114,115が搭載された光素子搭載基板112が実装されている。CANパッケージ101は図6の形態に限らず、LD及びPDの他の組合わせを実装したCANパッケージでも可能である。
 (実施例5)
  図7は、本発明の第五の実施形態の光モジュールを示す図である。本実施形態に於いては、平面型パッケージ137に、発光素子11、光受光素子128、129をサブマウント126上に実装した光素子搭載基板121と、波長選択フィルタ131、132、133およびミラー135、136を備えた光号分波器122、レンズ123、シングルモードファイバ125が実装されている。図7に示されるように本実施形態では、光受光素子を表面実装した光素子搭載基板126を、平面型パッケージの底面から垂直に屹立する形態で実装する。図7に示した形態では3波長対応になっているが、更に波長数を増やしても比較的容易に対応できるのが本実装形態の特徴である。
 (実施例6)
  図11は本発明の第六の実施の形態を示す図である。図11は本発明をPON(Passive Optical Network)用三波長双方向光送受信モジュールに応用した例である。本実施形態に於いては、発光素子191と受光素子192、193をサブマウント1007上に搭載した光素子搭載基板1000がCANステム194上に実装され、波長選択フィルタ196、197、およびミラー198、199を備えた光合分波器1002およびパッケージレンズ1004がCANキャップ1003に実装されている。また、シングルモード光ファイバ1006がCANキャップ上部に実装されたファイバホルダ1005により接続されている。CANキャップ1003内部には光合分波器の実装を可能にするための凹凸が設けられており、またパッケージレンズ1004を実装するためのホルダ部が設けられている。光合分波器1002は透明ガラス基板195を支持基板とし、一方の面に第1の波長選択フィルタ196と第2の波長選択フィルタ197が隣接して実装され、この面と平行な対向する面に第1のミラー198と第2のミラー199が実装されている。第1の波長選択フィルタ196には波長1310nmに対する透過率が96%、波長1490nmに対する反射率が99%以上、波長1555nmに対する反射率が99%以上のものを用い、第2の波長選択フィルタ197には波長1310nmに対する透過率が40%、波長1490nmに対する透過率が99%以上、波長1555nmに対する反射率が99%以上のものを用いた。本実施例では、ミラー198は波長選択フィルタ196と同じものを用い、ミラー199には波長選択フィルタ197と同じものを用いた。
 ガラス基板の材質は屈折率1.5の透明ガラスを用い、厚みは697μmとした。ガラス基板は平面に対する角度が30°となるように実装されている。パッケージレンズは焦点距離が1.98mm、合分波器側の光強度が1/e2でのNAが0.04、ファイバ側の光強度が1/e2でのNAが0.09であるものを用いた。光集積基板上の発光素子191はInP基板上に作製した発振波長が1.3μm帯であり、レンズ1008をモノリシック集積した垂直出射型LDを用い、レンズ1008はLDからのレーザ光の放射角度が4°となるものを用いた。
 1本の光ファイバで複数の波長の光を伝送する、波長多重光伝送や1芯双方向光伝送の端末機として用いられる光モジュールに関して、低損失な光学特性及び高信頼性を保ちつつ、ウェハプロセス等の一括作製によって光部品数、実装工程数を大幅削減し、小型化且つ高い歩留まりを実現可能な光モジュールおよびその製造方法を提供できる。
(A)は、本発明の第一の実施例である三波長双方向光送受信モジュールの断面図であり、(B)は(A)に搭載される集積型レンズの断面図であり、(C)は(A)に搭載される設置型レンズの断面図である。 本発明の第一の実施例の光モジュールの作用を説明した図である。 本発明の第二の実施例であるニ波長双方向光送受信モジュールの断面図である。 本発明の第三の実施例の光モジュールの断面図であり、第一から第二の実施例の光モジュールをシングルモードファイバと結合する場合のパッケージの構造例を示した図である。 本発明の第四の実施例の光モジュールの断面図である。 本発明の第四の実施例である光モジュールを構成する光素子パッケージの断面図である。 本発明の第五の実施例の光モジュールの断面図である。 (A)は、従来モジュールによる光ファイバとの結合損失を示した図であり、(B)は、本発明の光モジュールによる光ファイバとの結合損失を示した図である。 従来モジュールのワンパッケージBIDIモジュールの基本構成図である。 従来技術の光合分波器の基本構成である。 本発明の第六の実施例のPON(Passive Optical Network)用三波長双方向光送受信モジュールの断面図である。
符号の説明
1,21,121,1000…光素子搭載基板、
2,22,102,122,1002…波長合分波器、
3,23,1003…CANキャップ、
4,24,103,111,123,171,174、181、1001,1004,1008…レンズ、
124…レンズホルダ、
5,25,105,184,195…ガラス基板、
185…フィルタホルダ、6,7,26,106,107,131,132,133,177,183,196,197…波長選択フィルタ、
8,9,27,108,109,135,136,198,199…ミラー、
10,28,112,126,1007…サブマウント、
11,29, 113, 175,182,191…発光素子、
12,13,30,114,115,128,129,172,186,192,193…受光素子、
14,31,194…CANステム、
91,110,137,178…パッケージ、
92,173,176,187…CANパッケージ、
93,104,125,170,180,1006…シングルモードファイバ、101,141,142…光受信CANモジュール
1005…ファイバホルダ。

Claims (20)

  1.  外部に設けられた光ファイバの光軸と光学的に接続される使用波長がそれぞれ異なる一つの発光素子と、少なくとも一つの受光素子とを備え、
     前記発光素子と前記受光素子のそれぞれが、実装基板表面上の同一方向に搭載された光素子搭載基板と、
     前記発光素子の近傍に設けられた、あるいは前記発光素子と一体化されてモノリシック集積された第1のレンズと、
     少なくとも一種類の波長選択フィルタと、前記波長選択フィルタに対して所定の間隔を保って対向して配置されたミラーとから構成される光合分波器と、
     前記光素子搭載基板と前記光合分波器とを所望の位置に固定し収納するパッケージと、
     前記光合分波器から出射した光を前記光ファイバに集光する第2のレンズと、を有し、
     前記第2のレンズの直径を、前記第1のレンズの直径よりも大きくし、
     前記光合分波器を、前記光ファイバの光軸に対して所定の角度を有するように前記パッケージに固定することにより、
     前記光ファイバから出射された光が、前記第2のレンズにより前記受光素子のいずれか一つに集光され、
     前記光ファイバ、あるいは前記発光素子から出射された光が、前記波長選択フィルタ面に非垂直な角度で入射され、前記非垂直な角度で入射した光が前記波長選択フィルタと前記ミラーとの間を多重反射していく過程で波長の異なる光を分離あるいは重畳し合分波されることを特徴とする光送受信モジュール。
  2.  前記発光素子は、前記光ファイバから出射した光が前記第2のレンズにより結像する焦点位置よりも、前記第2のレンズに近い側に設けられていることを特徴とする請求項1に記載の光送受信モジュール。
  3.  前記光合分波器が、使用波長に対して透明な材質からなる一対の平行面を持つ基板を有し、
     前記一対の平行面の一方に、前記波長選択フィルタの少なくとも一種類が設けられ、
    もう一方の平行面に、前記ミラーが設けられていることを特徴とする請求項1に記載の光送受信モジュール。
  4.  前記光合分波器は、前記光ファイバから出射された光が、前記波長選択フィルタで反射され、前記ミラーで再度反射される過程において、前記ミラーの透過・反射特性が、前記波長選択フィルタの透過帯域の光を透過する特性を有することを特徴とする請求項1に記載の光送受信モジュール。
  5.  前記ミラーが、前記光合分波器内の光路上で前記ミラーの手前に位置する波長選択フィルタと同一の波長選択フィルタであることを特徴とする請求項4に記載の光送受信モジュール。
  6.  前記波長選択フィルタが、誘電体多層膜で構成されることを特徴とする請求項1に記載の光送受信モジュール。
  7.  前記波長選択フィルタが、回折格子で構成されることを特徴とする請求項1に記載の光送受信モジュール。
  8.  前記波長選択フィルタが設けられた基板の部材が、非晶質ガラス、サファイア結晶、結晶石英、シリコンのいずれかであることを特徴とする請求項1に記載の光送受信モジュール。
  9.  前記パッケージが、メタルキャンパッケージであり、
     内壁部分に凹凸形状が設けられたキャンキャップを用いることにより、前記波長選択フィルタが設けられた基板を所望の角度に固定することを特徴とする請求項1に記載の光送受信モジュール。
  10.  前記発光素子から出射される第1の波長の光を前記光ファイバに結合して送信し、
     前記光ファイバから出射される第2の波長の光を前記受光素子に導き受信する二波長双方向光送受信機能を有することを特徴とする請求項1に記載の光送受信モジュール。
  11.  前記発光素子が、前記実装基板に対して垂直に光を出射するレーザーダイオードであることを特徴とする請求項1に記載の光送受信モジュール。
  12.  外部に設けられた光ファイバの光軸と光学的に接続される使用波長がそれぞれ異なる一つの発光素子と、少なくとも二つの受光素子とを備え、
     前記発光素子と前記受光素子のそれぞれが、実装基板表面上の同一方向に搭載された光素子搭載基板と、
     前記発光素子の近傍に設けられた、あるいは前記発光素子と一体化されてモノリシック集積された第1のレンズと、
     少なくとも二種類の波長選択フィルタが、前記波長選択フィルタの表面が同一平面上に並ぶように配置された波長選択フィルタアレイと、前記波長選択フィルタアレイに対して所定の距離を保って対向して配置されたミラーあるいはミラーアレイとから構成される光合分波器と、
     前記光素子搭載基板と前記光合分波器とを所望の位置に固定し収納するパッケージと、
     前記光合分波器から出射した光を前記光ファイバに集光する第2のレンズと、を有し、
     前記第2のレンズの直径を、前記第1のレンズの直径よりも大きくし、
     前記光合分波器を、前記光ファイバの光軸に対して所定の角度を有するように前記パッケージに固定することにより、
     前記光ファイバから出射された光が、前記第2のレンズにより前記受光素子のいずれか一つに集光され、
     前記光ファイバ、あるいは前記発光素子から出射された光が、前記波長選択フィルタアレイ面に非垂直な角度で入射され、前記非垂直な角度で入射した光が、前記波長選択フィルタアレイと前記ミラーあるいはミラーアレイとの間を多重反射していく過程で波長の異なる光を分離あるいは重畳し合分波されることを特徴とする光送受信モジュール。
  13.  前記発光素子は、前記光ファイバから出射した光が前記第2のレンズにより結像する焦点位置よりも、前記第2のレンズに近い側に設けられていることを特徴とする請求項12に記載の光送受信モジュール。
  14.  前記光合分波器が、使用波長に対して透明な材質からなる一対の平行面を持つ筐体を有し、
     前記一対の平行面の一方に、前記波長選択フィルタアレイの少なくとも二種類が設けられ、
    もう一方の平行面に、前記ミラーあるいはミラーアレイが設けられていることを特徴とする請求項12に記載の光送受信モジュール。
  15.  前記光合分波部品は、前記光ファイバから出射された光が、前記波長選択フィルタアレイで反射され、前記ミラーで再度反射される過程において、前記ミラーの透過・反射特性が、前記波長選択フィルタの透過帯域の光を透過する特性を有することを特徴とする請求項12に記載の光送受信モジュール。
  16.  前記ミラーが、前記光合分波器内の光路上で前記ミラーの手前に位置する波長選択フィルタアレイと同一の波長選択フィルタであることを特徴とする請求項15に記載の光送受信モジュール。
  17.  前記発光素子が、前記実装基板に対して垂直に光を出射するレーザーダイオードであることを特徴とする請求項12に記載の光送受信モジュール。
  18.  前記実装基板表面上の同一方向に実装された前記発光素子および少なくとも二つの前記受光素子は、それぞれの素子の使用波長が大きくなる順あるいは小さくなる順に配置されていることを特徴とする請求項12に記載の光送受信モジュール。
  19.  前記合分波器のフィルタアレイを構成する各フィルタが、前記発光素子および前記受光素子のそれぞれの使用波長範囲内で所望の分離波長以上あるいは以下の波長の光のいずれかを透過し、それ以外の光を反射する特性を持つ、所謂エッジフィルタであって、
     前記フィルタアレイ上のエッジフィルタの並び順が、分離波長の昇順あるいは降順に実装されていることを特徴とする請求項12に記載の光送受信モジュール。
  20.  前記発光素子から出射される第1の波長の光を前記光ファイバに結合して送信し、
     前記光ファイバから波長多重されて出射される光から第2の波長の光と第3の波長の光を波長分離し、それぞれに対応した前記受光素子に導き受信する三波長双方向光送受信機能を有することを特徴とする請求項12に記載の光送受信モジュール。
PCT/JP2008/003766 2007-12-26 2008-12-15 光送受信モジュール WO2009081539A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200880120145.8A CN101918872B (zh) 2007-12-26 2008-12-15 光收发模组
US12/810,442 US8303195B2 (en) 2007-12-26 2008-12-15 Optical transceiver module
JP2009546933A JP5439191B2 (ja) 2007-12-26 2008-12-15 光送受信モジュール
EP08865308A EP2226661A1 (en) 2007-12-26 2008-12-15 Optical transmission and reception module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-333988 2007-12-26
JP2007333988 2007-12-26

Publications (1)

Publication Number Publication Date
WO2009081539A1 true WO2009081539A1 (ja) 2009-07-02

Family

ID=40800857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/003766 WO2009081539A1 (ja) 2007-12-26 2008-12-15 光送受信モジュール

Country Status (5)

Country Link
US (1) US8303195B2 (ja)
EP (1) EP2226661A1 (ja)
JP (1) JP5439191B2 (ja)
CN (1) CN101918872B (ja)
WO (1) WO2009081539A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013630A (ja) * 2009-07-06 2011-01-20 Ricoh Co Ltd 撮像装置
JP2011086794A (ja) * 2009-10-16 2011-04-28 Ricoh Co Ltd 光デバイス、光走査装置、画像形成装置、光伝送モジュール及び光伝送システム
CN102854583A (zh) * 2012-09-29 2013-01-02 索尔思光电(成都)有限公司 单纤双向光收发器
JP2014182224A (ja) * 2013-03-18 2014-09-29 Oki Electric Ind Co Ltd 光素子
JP2016161942A (ja) * 2015-02-26 2016-09-05 住友電気工業株式会社 双方向光モジュール
WO2020016932A1 (ja) * 2018-07-17 2020-01-23 三菱電機株式会社 集積光モジュール及び集積光モジュールの製造方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5439191B2 (ja) * 2007-12-26 2014-03-12 株式会社日立製作所 光送受信モジュール
KR101076603B1 (ko) * 2008-07-16 2011-10-26 옵티시스 주식회사 광학적 파장분할다중 방식 광통신모듈
JP2010186090A (ja) * 2009-02-13 2010-08-26 Hitachi Ltd 光送受信モジュール
JP5608455B2 (ja) * 2010-07-16 2014-10-15 株式会社エンプラス 光受信モジュール
WO2012145677A2 (en) * 2011-04-20 2012-10-26 The Regents Of The University Of Michigan Spectrum filtering for visual displays and imaging having minimal angle dependence
US9331782B2 (en) 2011-05-23 2016-05-03 Hewlett Packard Enterprise Development Lp Optical transmission system
KR101632939B1 (ko) * 2011-09-30 2016-06-23 휴렛 팩커드 엔터프라이즈 디벨롭먼트 엘피 지그-재그부를 포함한 광 파워 스플리터
JP5818673B2 (ja) * 2011-12-21 2015-11-18 日本オクラロ株式会社 光モジュール
US9363021B2 (en) 2012-02-21 2016-06-07 Sumitomo Electric Industries, Ltd. Receiver optical module including optical de-multiplexer, lenses, and photodiodes vertically arranged to each other within housing
CN102723996B (zh) * 2012-05-07 2015-05-13 华为技术有限公司 单纤双向光组件、光模块和光网络设备
TWI557457B (zh) * 2012-09-14 2016-11-11 鴻海精密工業股份有限公司 光耦合透鏡及光通訊模組
JP2014095843A (ja) * 2012-11-12 2014-05-22 Sumitomo Electric Ind Ltd 光合分波器およびその製造方法ならびに光通信モジュール
TWI473447B (zh) * 2012-12-25 2015-02-11 Ampak Technology Inc 光收發元件
US9429725B2 (en) * 2013-04-19 2016-08-30 Avago Technologies General Ip (Singapore) Pte. Ltd. Bidirectional parallel optical transceiver module and a method for bidirectionally communicating optical signals over an optical link
US9323013B2 (en) 2013-04-19 2016-04-26 Avago Technologies General Ip (Singapore) Pte. Ltd. Bidirectional optical communications module having an optics system that reduces optical losses and increases tolerance to optical misalignment
US9618708B2 (en) * 2013-11-13 2017-04-11 Finisar Corporation Multiplexer/demultiplexer based on diffractive optical elements
US9348091B2 (en) 2013-12-20 2016-05-24 Finisar Corporation Multiplexer/demultiplexer based on diffraction and reflection
JP2016006479A (ja) * 2014-05-28 2016-01-14 日立金属株式会社 光送信モジュール
US10243661B2 (en) 2014-08-15 2019-03-26 Hewlett Packard Enterprise Development Lp Optical mode matching
CN104516069A (zh) * 2014-11-28 2015-04-15 武汉电信器件有限公司 Qsfp+光模块组件
US9891385B2 (en) * 2015-02-12 2018-02-13 Source Photonics (Chengdu) Co., Ltd. Integrated lens with multiple optical structures and vent hole
US10884216B2 (en) * 2015-03-05 2021-01-05 Mitsubishi Electric Corporation Method of manufacturing an optical multiplexer
US9692522B2 (en) * 2015-04-15 2017-06-27 Cisco Technology, Inc. Multi-channel optical receiver or transmitter with a ball lens
CN106154444B (zh) * 2015-04-28 2018-12-28 华为技术有限公司 光收发器及光通信产品
US9857535B2 (en) 2015-11-03 2018-01-02 Electronics And Telecommunications Research Institute Method of packaging multichannel optical receiver module having a sub-mount with an optical block to guide incident parallel light beams and package of the same
KR102506182B1 (ko) * 2015-11-23 2023-03-06 한국전자통신연구원 다채널 광모듈
JP6651868B2 (ja) * 2016-01-26 2020-02-19 住友電気工業株式会社 光受信モジュール
US10644480B2 (en) 2016-04-25 2020-05-05 Sumitomo Electric Industries, Ltd. Optical module
KR101860847B1 (ko) * 2016-06-28 2018-05-29 주식회사 오이솔루션 광모듈
US20180017735A1 (en) * 2016-07-13 2018-01-18 Futurewei Technologies, Inc. Wavelength Division Multiplexer/Demultiplexer with Flexibility of Optical Adjustment
JP2018017649A (ja) * 2016-07-29 2018-02-01 北日本電線株式会社 光分波器
JP7094683B2 (ja) * 2017-10-06 2022-07-04 住友電気工業株式会社 光受信モジュール
JP7241461B2 (ja) * 2017-12-19 2023-03-17 日本ルメンタム株式会社 光合分波器、光サブアセンブリ及び光モジュール
CN112055272B (zh) 2017-12-27 2023-03-24 北京华为数字技术有限公司 光接收、组合收发组件、组合光模块、olt及pon***
CN108508552A (zh) * 2018-04-09 2018-09-07 青岛海信宽带多媒体技术有限公司 一种光接收次模块及光模块
KR102041589B1 (ko) * 2018-07-26 2019-11-27 (주)코셋 파장다중 양방향 광송수신 장치
US10924185B2 (en) * 2018-08-06 2021-02-16 Hewlett Packard Enterprise Development Lp Systems and methods of dual-side array bi-directional CWDM micro-optics
CN109669250A (zh) * 2019-03-07 2019-04-23 上海葛西光学科技有限公司 紧凑型一体化单纤三向传输用光收发光学组件
JP2022050209A (ja) * 2020-09-17 2022-03-30 住友電気工業株式会社 光モジュール及び光コネクタケーブル
US11493707B2 (en) * 2021-03-31 2022-11-08 Enplas Corporation Optical receptacle and optical module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915442A (ja) * 1995-06-28 1997-01-17 Fujitsu Ltd 光ファイバデバイス
JP2005331602A (ja) * 2004-05-18 2005-12-02 Sony Corp 光学部品、双方向光モジュール並びにその作製方法
JP2005352065A (ja) * 2004-06-09 2005-12-22 Murata Mfg Co Ltd 光分波装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54103055A (en) * 1978-01-31 1979-08-14 Nippon Telegr & Teleph Corp <Ntt> Spectrometer
DE3413703A1 (de) * 1984-04-12 1985-10-24 Standard Elektrik Lorenz Ag, 7000 Stuttgart Optischer multiplexer/demultiplexer
JPS63168407U (ja) * 1987-04-21 1988-11-02
US5119454A (en) * 1988-05-23 1992-06-02 Polaroid Corporation Bulk optic wavelength division multiplexer
US5835517A (en) * 1996-10-04 1998-11-10 W. L. Gore & Associates, Inc. WDM multiplexer-demultiplexer using Fabry-Perot filter array
US5894535A (en) * 1997-05-07 1999-04-13 Hewlett-Packard Company Optical waveguide device for wavelength demultiplexing and waveguide crossing
CA2238606A1 (en) * 1997-06-26 1998-12-26 Michael Anthony Scobey Cascaded optical multiplexing devices
US6008920A (en) * 1998-03-11 1999-12-28 Optical Coating Laboratory, Inc. Multiple channel multiplexer/demultiplexer devices
JP2000028851A (ja) * 1998-07-13 2000-01-28 Mitsubishi Electric Corp 光合分波装置
US6198864B1 (en) * 1998-11-24 2001-03-06 Agilent Technologies, Inc. Optical wavelength demultiplexer
US6201908B1 (en) * 1999-07-02 2001-03-13 Blaze Network Products, Inc. Optical wavelength division multiplexer/demultiplexer having preformed passively aligned optics
US6684010B1 (en) * 2000-03-03 2004-01-27 Digital Optics Corp. Wavelength compensated optical wavelength division coupler and associated methods
DE10043324A1 (de) * 2000-08-23 2002-03-14 Infineon Technologies Ag Opto-elektronische Baugruppe zum Multiplexen und/oder Demultiplexen optischer Signale
JP2002072010A (ja) * 2000-09-05 2002-03-12 Nippon Sheet Glass Co Ltd 波長選択性を有する光学素子
US6751379B2 (en) * 2000-11-01 2004-06-15 Intel Corporation System and method for collimating and redirecting beams in a fiber optic system
KR100388499B1 (ko) * 2000-12-22 2003-06-25 한국전자통신연구원 가변광필터 및 그 가변광필터를 이용한 광통신 소자
US6804429B2 (en) * 2001-02-09 2004-10-12 The Board Of Trustees Of The Leland Stanford Junior University Reconfigurable wavelength multiplexers and filters employing micromirror array in a gires-tournois interferometer
US6870976B2 (en) * 2001-03-13 2005-03-22 Opnext, Inc. Filter based multiplexer/demultiplexer component
US6819871B1 (en) * 2001-03-16 2004-11-16 4 Wave, Inc. Multi-channel optical filter and multiplexer formed from stacks of thin-film layers
DE10312500B4 (de) * 2003-03-14 2007-11-08 Infineon Technologies Ag Anordnung zum Multiplexen und/oder Demultiplexen optischer Signale einer Mehrzahl von Wellenlängen
US6945711B2 (en) * 2003-10-28 2005-09-20 Chang Gung University Multiplexer with a dense wavelength division multiplexing function
EP2057499A2 (en) * 2006-08-07 2009-05-13 Civcom Devices&Systems Ltd. Devices for dispersion compensation, beam displacement, and optical switching
JP5439191B2 (ja) * 2007-12-26 2014-03-12 株式会社日立製作所 光送受信モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915442A (ja) * 1995-06-28 1997-01-17 Fujitsu Ltd 光ファイバデバイス
JP2005331602A (ja) * 2004-05-18 2005-12-02 Sony Corp 光学部品、双方向光モジュール並びにその作製方法
JP2005352065A (ja) * 2004-06-09 2005-12-22 Murata Mfg Co Ltd 光分波装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Proceedings of the 2007 IEICE General Conference, Tsushin 2", 7 March 2007, article YU JUHYUN ET AL.: "CWDM-yo Kogo Bunpa Device no Ichikento", pages: 428, XP008136929 *
IEICE TECHNICAL REPORT, vol. 107, no. 7, February 2007 (2007-02-01), pages 7 - 10

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013630A (ja) * 2009-07-06 2011-01-20 Ricoh Co Ltd 撮像装置
JP2011086794A (ja) * 2009-10-16 2011-04-28 Ricoh Co Ltd 光デバイス、光走査装置、画像形成装置、光伝送モジュール及び光伝送システム
CN102854583A (zh) * 2012-09-29 2013-01-02 索尔思光电(成都)有限公司 单纤双向光收发器
JP2014182224A (ja) * 2013-03-18 2014-09-29 Oki Electric Ind Co Ltd 光素子
JP2016161942A (ja) * 2015-02-26 2016-09-05 住友電気工業株式会社 双方向光モジュール
WO2020016932A1 (ja) * 2018-07-17 2020-01-23 三菱電機株式会社 集積光モジュール及び集積光モジュールの製造方法

Also Published As

Publication number Publication date
JPWO2009081539A1 (ja) 2011-05-06
CN101918872A (zh) 2010-12-15
CN101918872B (zh) 2014-03-26
JP5439191B2 (ja) 2014-03-12
EP2226661A1 (en) 2010-09-08
US20100278482A1 (en) 2010-11-04
US8303195B2 (en) 2012-11-06

Similar Documents

Publication Publication Date Title
JP5439191B2 (ja) 光送受信モジュール
US8380075B2 (en) Optical transceiver module
JP2009093101A (ja) 光モジュール
US7991290B2 (en) Optical prism and optical transceiver module for optical communications
US7184621B1 (en) Multi-wavelength transmitter optical sub assembly with integrated multiplexer
US8540437B2 (en) Multi-wavelength optical transmitting and receiving modules
US8340522B2 (en) Filter assembly and optical module using same
US20140133862A1 (en) Receiver optical module installing optical demultiplexer and method to produce optical demultiplexer
JP6345809B2 (ja) 波長多重化光受信モジュール
CN108885311B (zh) 具有光学调节灵活性的波分复用器/解复用器
WO2017027864A1 (en) Multiplexer/demultiplexer using stamped optical bench with micro mirrors
JP7091600B2 (ja) 光受信モジュール
CN106896447B (zh) 具有高密度光学互连模块的波分复用的光学部件
JPWO2006134675A1 (ja) 光合分波器およびその組み立て装置
JP4338036B2 (ja) 光モジュール
JP2010191231A (ja) 光モジュール
JP4461272B2 (ja) 波長分離素子および光モジュール
JP5390474B2 (ja) 光受信器
JP6527451B2 (ja) 光分波器、光受信モジュールおよびその製造方法
KR20050029083A (ko) 더블유디엠 광커플러가 내장된 트라이플렉서 광모듈
US9671576B1 (en) CWDM transceiver module
KR101687788B1 (ko) 광개구수를 이용한 파장다중 양방향 광송수신모듈
JP2005134803A (ja) 光アイソレータ付きフェルール及びそれを備えた光送受信モジュール
JP3934105B2 (ja) 光合分波器、光送受信モジュール及び光合分波器の調整方法
JP2002296456A (ja) 送受信モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880120145.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08865308

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009546933

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12810442

Country of ref document: US

Ref document number: 2008865308

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE