WO2009078490A1 - Method of regulating temperature in reaction vessel, reactor, and process for producing dimethyl ether - Google Patents

Method of regulating temperature in reaction vessel, reactor, and process for producing dimethyl ether Download PDF

Info

Publication number
WO2009078490A1
WO2009078490A1 PCT/JP2008/073496 JP2008073496W WO2009078490A1 WO 2009078490 A1 WO2009078490 A1 WO 2009078490A1 JP 2008073496 W JP2008073496 W JP 2008073496W WO 2009078490 A1 WO2009078490 A1 WO 2009078490A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
reactor
dimethyl ether
temperature
fluid
Prior art date
Application number
PCT/JP2008/073496
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Ooyama
Shuichi Funatsu
Takayuki Takubo
Yoshiyuki Watanabe
Nobuyasu Chikamatsu
Hiroshi Kita
Kohei Uchida
Daigo Hirakawa
Original Assignee
Jgc Corporation
Mitsubishi Gas Chemical Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jgc Corporation, Mitsubishi Gas Chemical Company, Inc. filed Critical Jgc Corporation
Priority to AU2008339360A priority Critical patent/AU2008339360B2/en
Priority to CN200880121793.5A priority patent/CN101903323A/en
Priority to KR1020107013378A priority patent/KR101242251B1/en
Publication of WO2009078490A1 publication Critical patent/WO2009078490A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/09Preparation of ethers by dehydration of compounds containing hydroxy groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0457Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being placed in separate reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0492Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00327Controlling the temperature by direct heat exchange
    • B01J2208/00336Controlling the temperature by direct heat exchange adding a temperature modifying medium to the reactants
    • B01J2208/00353Non-cryogenic fluids
    • B01J2208/00362Liquid

Definitions

  • the present invention relates to a temperature control method and a reaction apparatus inside a reactor, which are performed when an object is produced by an equilibrium reaction accompanied by heat generation by supplying raw materials to an adiabatic reactor, and a method for producing dimethyl ether.
  • a catalyst layer may be provided in a reactor, and raw materials may be passed through the reactor to react to obtain a product that is a reaction product.
  • One of the important operating conditions for allowing the reaction to proceed properly in the reactor is temperature control in the reactor.
  • the raw material is adjusted to a preset temperature and then supplied to the reactor.
  • the temperature of the raw material increases as the raw material flows downstream through the reactor, that is, as the reaction proceeds. If the temperature of the raw material becomes higher than the temperature range suitable for the main reaction, undesirable by-products (impurities) are generated, which results in loss of the raw material or deterioration of the catalyst due to promotion of coking. Since the yield decreases when the temperature of the raw material falls below the above temperature range, various methods for maintaining the temperature in the catalyst layer within the target temperature range have been proposed. The following method is known as a typical example for maintaining the temperature in such a reactor.
  • Fig. 14 shows a multi-tubular reactor 100, in which a raw material is supplied into a tube 1 0 1, which is installed in a large number in the multi-tube reactor 1 0 0, and the reaction in this tube 1 0 1 Do
  • the tube 10 1 is configured to be cooled by a refrigerant from the outside.
  • the raw material can be reliably and quickly cooled, but a large amount of refrigerant is required, and the structure of the reactor 100 is complicated, so that the cost of the apparatus is reduced. Is unsuitable for further enlargement.
  • Fig. 15 shows an apparatus in which a plurality of reactors 1 0 2 are connected and a heat exchanger (intermediate heat exchanger) 1 0 3 is interposed between the reactors 1 0 2 and 1 0 2 ing.
  • the raw material supplied into the first-stage reactor 100 2 generates heat due to the reaction in the first-stage reactor 10 2, and then is cooled by the heat exchanger 10 3.
  • the second stage reactor 10 2 is supplied, and the reaction proceeds in the second stage reactor 1 0 2. Thereafter, the raw material is supplied to the third and subsequent reactors through a heat exchanger, although not shown.
  • Patent Document 1 divides a catalyst layer in a fixed bed flow-type adiabatic reactor into a plurality of layers, and provides a quench zone for cooling the raw material between the layers, and a raw material as a quench fluid in the quench zone.
  • a method has been proposed in which the reactor is supplied in liquid form and the reactor is cooled.
  • the reactor is supplied in liquid form and the reactor is cooled.
  • an exothermic reaction proceeds in the upstream catalyst layer, and the temperature of the raw material rises.
  • the raw material is cooled by the quench fluid in the quench zone, and then flows to the downstream catalyst layer.
  • the flow rate of the Taenti fluid is adjusted so that the temperature of the raw material is measured in the lower part of the quench zone after the Taenti fluid is supplied, and the temperature of this part falls within the temperature range suitable for the main reaction.
  • This equipment consists of a single reactor and does not require a heat exchanger, so costs can be reduced.
  • an inert component is used as the Taenti fluid, it is necessary to purify and separate the inert component, but since the raw materials are used, when such an operation becomes unnecessary, there is a need for the benefits. is there.
  • the supply amount of quench fluid is adjusted based on the temperature on the inlet side of the downstream catalyst layer, and the internal temperature of the reactor is controlled. Therefore, it is difficult to keep the temperature on the inlet side constant, and the temperature change on the inlet side cannot be avoided due to factors such as the temperature change of the raw material.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2 0 0 4-2 9 8 7 6 8 (paragraphs 0 0 1 4, 0 0 2 0, 0 0 2 1) Disclosure of the Invention
  • the present invention has been made under such circumstances.
  • the purpose of the present invention is to supply raw materials to an adiabatic reactor and produce the target product by an equilibrium reaction with exotherm in the reactor.
  • the purpose is to provide a technology to improve the controllability of the temperature in the reactor to suppress the production of by-products due to temperature rise and the reduction in yield due to temperature drop.
  • the temperature control method inside the reactor of the present invention is as follows.
  • the quench fluid is obtained except for a part of the reaction product obtained in the reaction region downstream of the quench fluid supply region and the adiabatic reactor. And at least one of the same compounds as the object.
  • the Taenti fluid may contain a part of the reaction product after cooling the reaction product obtained in the final reaction zone.
  • each of the plurality of reaction regions is constituted by a catalyst layer.
  • the divided reaction regions are preferably three.
  • the cooling step is preferably performed by adjusting at least one of the supply amount, composition, and temperature of the Taenti fluid.
  • the equilibrium reaction with exotherm may be a reaction that uses methanol as a raw material to obtain a reaction product composed of water and the target dimethyl ether.
  • the Taenti fluid includes any one of dimethyl ether, a mixed fluid of dimethyl ether and water.
  • the reaction apparatus of the present invention comprises:
  • One or two or more adiabatic reactors each of which is divided into a plurality of reaction zones and assigned with a plurality of divided reaction zones;
  • a fluid containing a part of the reaction product obtained in the reaction zone downstream from the quench zone and at least one of the same compounds as the target product other than the adiabatic reactor is used as a quench fluid.
  • the reactor is
  • a cooling means is provided to cool the reaction product obtained in the final stage reaction zone,
  • the Taenti fluid is preferably a fluid containing a part of the reaction product after being cooled by the cooling means.
  • each of the plurality of reaction regions is constituted by a catalyst layer.
  • the divided reaction regions are preferably three.
  • reaction apparatus of the present invention preferably includes a control unit that adjusts at least one of the supply amount, composition, and temperature of the quench fluid and supplies the taenti fluid to the quench zone. .
  • the equilibrium reaction with exotherm may be a reaction that uses methanol as a raw material to obtain a reaction product composed of water and the target dimethyl ether.
  • the Taenti fluid includes any one of dimethyl ether, a mixed fluid of dimethyl ether and water.
  • the method for producing dimethyl ether of the present invention comprises:
  • the Taenti fluid includes at least one of dimethyl ether and water obtained in a reaction region downstream of the Taenchi fluid supply region, and dimethyl ether obtained outside the adiabatic reactor. It is characterized by.
  • the cooling step is preferably performed by adjusting at least one of the supply amount, composition, and temperature of the quench fluid.
  • the quench fluid is preferably obtained in the final reaction zone and contains either dimethyl ether or water after cooling.
  • each of the plurality of reaction regions is constituted by a catalyst layer.
  • the divided reaction regions are preferably three.
  • the quench fluid is preferably a part of dimethyl ether after removing water and unreacted methanol which are by-products mixed in dimethyl ether.
  • the reaction region is divided into a plurality of regions, and the divided reaction regions are assigned to one or two or more adiabatic reactors, and the raw materials are supplied into the adiabatic reactors to generate heat.
  • a mixture comprising the reaction product containing the target product obtained by supplying the raw material to the first stage reaction zone, and the unreacted raw material
  • the reaction product containing the target product is obtained by sequentially supplying the reaction region from the first stage to the reaction region on the downstream side, and is obtained at the downstream side of the reaction region at least at one power point between the reaction regions.
  • a part of the reaction product and the object obtained outside the adiabatic reactor are supplied with at least one of the same compounds as a quench fluid to cool the mixture. For this reason, the amount of reaction products in the mixture increases, the equilibrium is biased toward the raw material side, and the reaction progresses gently. Therefore, there is little change in the reaction rate due to temperature change at the inlet side of the reaction zone. As a result, the temperature in the reactor Controllability is improved, and by-product generation due to temperature rise and yield reduction due to temperature drop can be easily suppressed.
  • FIG. 1 is a schematic configuration diagram showing an example of a reaction apparatus for carrying out the production method of the present invention.
  • FIG. 2 is a schematic view showing an example of a temperature change of the raw material in the reactor in the above reaction apparatus.
  • FIG. 3 is a longitudinal sectional view showing another example of the reaction apparatus.
  • FIG. 4 is a longitudinal sectional view showing another example of the reaction apparatus.
  • FIG. 5 is a longitudinal sectional view showing another example of the reaction apparatus.
  • FIG. 6 is a longitudinal sectional view showing another example of the above reaction apparatus.
  • FIG. 7 is a longitudinal sectional view showing another example of the above reaction apparatus.
  • FIG. 8 is a longitudinal sectional view showing another example of the reaction apparatus.
  • FIG. 9 is a longitudinal sectional view showing another example of the reaction apparatus.
  • FIG. 10 is a longitudinal sectional view showing another example of the above reaction apparatus.
  • FIG. 11 is a longitudinal sectional view showing another example of the reaction apparatus.
  • FIG. 12 is a schematic view showing an apparatus used in a comparative example in the example of the present invention.
  • FIG. 13 is a schematic diagram showing an apparatus used in a comparative example in the example of the present invention.
  • FIG. 14 is a schematic diagram showing a conventional apparatus used for the synthesis reaction.
  • FIG. 15 is a schematic diagram showing a conventional apparatus used for the synthesis reaction.
  • FIG. 1 shows an overview of the entire production blunt including the reactor 2 for producing the target product.
  • Reactor 2 Is equipped with a vertical reactor 20 which is, for example, a fixed bed flow-type adiabatic reactor.
  • a raw material gas supply pipe 20 a which is a means for supplying the raw material is connected to the top of the reactor 20, and heat exchange is performed on the other end side of the raw material gas supply pipe 20 a.
  • a raw material storage source 4 in which a liquid raw material is stored is connected via a vessel 2a and an evaporator 2b.
  • the evaporator 2b is for vaporizing a liquid raw material to obtain a raw material gas.
  • One end of the product gas outflow pipe 20 b is connected to the bottom of the reactor 20, and the heat exchanger 2 a is connected to the product gas outflow pipe 20 b.
  • the raw material is heated between the raw material in the raw material gas supply pipe 20a and the mixture of the reaction product and raw material in the generated gas outflow pipe 20b, The mixture is cooled so that heat exchange takes place.
  • the other end side of the product gas outflow pipe 20 b is connected to a side wall of a first distillation column 30 described later.
  • a reaction region necessary for obtaining a desired reaction yield for example, a catalyst layer 22 is divided into an upstream side and a downstream side, and the upstream reaction region is
  • the first catalyst layer 2 2a is formed as a first reaction region
  • the downstream reaction region is formed by the second catalyst layer 2 2b as a second reaction region.
  • These catalyst layers 2 2 (2 2 a, 2 2 b) are supported by a support 23 having a large number of gas supply holes (not shown).
  • a quench fluid supply pipe 24 which is a means for supplying a part of the reaction product as a quench fluid to the quench zone, is connected to the side surface of the reactor 20 in the quench zone Q.
  • the quench fluid supply pipe 2 4 uniformly distributes and supplies the quench fluid at a portion close to the first catalyst layer 2 2 a above the Taenti zone Q in the reactor 20.
  • a temperature detector 29 is provided on the side surface of the reactor 20, and one end side thereof protrudes into the reactor 20, and the temperature of the mixture cooled in the Taenti zone Q is set, for example, as the second catalyst layer 2. It is configured to detect near the upper side of 2b.
  • a controller 3 is connected to the temperature detector 29, and the controller 3 detects the temperature of the raw material gas by a flow rate adjusting valve 27 described later based on the temperature detected by the temperature detector 29. Is configured to control the flow rate of the quench fluid so that the temperature range is suitable for the reaction.
  • equipment for taking out the target reaction product from the mixture obtained from the reactor 20 and supplying a part of it as a quench fluid to the reactor 20 is provided.
  • 1 includes equipment including two distillation columns 30 and 40 for obtaining dimethyl ether as a target product.
  • the first distillation column 30 is for separating and purifying a target product from a mixture comprising unreacted raw materials and reaction products, and a target product take-out pipe 3 1 which is a cooling means at the top of the column. And one end of the discharge pipe 32 is connected to the lower end.
  • the target discharged from the target take-out pipe 3 1 is taken out of the system as a product, but a part of it is branched from this target take-out pipe 31 and the above-mentioned quench fluid supply pipe 2 4 It is configured to be returned to the quench zone Q described above.
  • a flow rate adjusting valve 2 7 is interposed in the quench fluid supply pipe 2 4.
  • the other end of the above-described discharge pipe 32 is connected to the side wall of the second distillation column 40.
  • This second distillation column 40 is for separating and purifying unreacted raw material from the mixture from which the target product has been removed in the first distillation column 30 described above, and at the top of the column is a raw material discharge pipe 4 One end of 1 is connected, and a discharge pipe 4 2 is connected to the lower end.
  • the other end of the raw material discharge pipe 4 1 is the upstream side of the previously described evaporator 2 b.
  • the raw material gas supply pipe 20a is connected to the unreacted raw material for reuse.
  • the discharge pipe 42 is for discarding by-products and impurities remaining after the target product and unreacted raw materials are removed from the mixture, and these are discharged outside the system.
  • the liquid raw material composed of one substance or a plurality of substances is vaporized in the evaporator 2 b provided in the preceding stage, and unreacted raw material taken out from the reactor 20 in the heat exchanger 2 a. And a mixture of the reaction product and heat exchange is performed, and the mixture is heated to a temperature T1.
  • the raw material gas is supplied to the reactor 20 through the raw material gas supply pipe 20a, and flows through the reactor 20 from the top to the bottom. Then, a reaction product containing the target product is produced in the first catalyst layer 2 2 a by the equilibrium reaction of the following formula (1), and a mixture containing this reaction product and the unreacted raw material gas. It becomes a gas.
  • Source gas reaction product (target product (+ by-product)) + reaction heat ⁇ (1)
  • the reaction heat generated at this time raises the temperature of the gas in the mixture to a temperature T2.
  • This Taenchi fluid is a fluid consisting of a part of the reaction product obtained in the reactor 2, and is supplied in liquid or gaseous form.
  • dimethyl ether which is a gas is used as the Taenti fluid.
  • the gas of the mixture thus cooled is supplied to the second catalyst layer 2 2 b and reacts gently by the same reaction in the second catalyst layer 2 2 b.
  • a product is produced.
  • the mixture of the reaction product and the unreacted raw material rises to a temperature T 4 due to the reaction heat generated by the reaction in the second catalyst layer 22 b.
  • the mixture is taken out from the reactor 20 through the product gas outlet pipe 20 b, and heat exchange is performed with the raw material in the heat exchanger 2 a.
  • the dimethyl ether separated and purified from the mixture is taken out from the target take-out pipe 31 and dissipates heat to the pipe wall of the target take-out pipe 31 and becomes the temperature T 2 or less, and part of it is a quench fluid. It is returned to the reactor 20 through the supply pipe 24 as a quench fluid.
  • the remaining dimethyl ether is taken out of the system as a product. [0 0 3 3]
  • the mixture from which dimethyl ether has been removed is discharged from the lower side of the first distillation column 30 and supplied to the second distillation column 40, and is an unreacted raw material in the second distillation column 40. Methanol is separated and purified. As described above, the unreacted raw material is returned to the raw material gas supply pipe 20 a and supplied again to the reactor 20 together with the raw material supplied from the raw material storage source 4. In addition, waste, which is a by-product from which the target product and unreacted raw materials have been removed, in this example, water is discharged out of the system.
  • the temperature T 3 at the inlet of the catalyst layer 2 2 b is detected by the temperature detection unit 29, and the supply flow rate of the quench fluid is controlled via the control unit 3 and the flow rate adjusting valve 2 7 according to the detected temperature value. Therefore, although the inlet temperature T 3 of the catalyst layer 2 2 b is stabilized, it is inevitable that the inlet temperature T 3 fluctuates within a certain fluctuation range. However, in the present invention, since the reaction product is used as the quench fluid, as described above, the equilibrium reaction is biased toward the raw material side, and the reaction in which the target product is generated is suppressed. The influence of the inlet temperature T 1 of the catalyst layer 2 2 a on the outlet temperature T 4 of b is reduced.
  • the first reaction zone for reacting the raw materials when the raw materials are supplied into the adiabatic reactor 20 and the target product is produced by the equilibrium reaction with heat generation.
  • a quench zone Q is provided between the first reaction zone and the second reaction zone, and a part of the reaction product taken out from the second reaction zone is cooled to the quench zone Q and supplied as a quench fluid.
  • the mixture consisting of is cooled.
  • the quench fluid may be a gas or a liquid.
  • a gaseous quench fluid the latent heat of vaporization cannot be used, so it is necessary to increase the amount of supply compared to the case of using liquid, but the amount of reaction products in the reactor 20 increases. The effect of suppressing the reaction rate is great.
  • a liquid quench fluid the temperature of the mixture can be lowered with a smaller supply amount than when gas is used.
  • the reaction product may be supplied as a Taenti fluid without cooling. Even in such a case, the reaction rate can be suppressed because the amount of reaction products in the reactor 20 increases.
  • Fig. 3 shows three catalyst layers (2 2 a, 2 2 b, 2 2 c), and Fig. 4 shows five catalyst layers (2 2 a, 2 2 b, 2 2 c, 2 2 d, 2 2 e ) Is shown.
  • Fig. 3 and Fig. 4 shows five catalyst layers (2 2 a, 2 2 b, 2 2 c, 2 2 d, 2 2 e ) Is shown.
  • the temperature of the mixture is detected by the temperature detector 2 9 and the flow rate of the quench fluid supplied from the spray 2 4 a Is adjusted.
  • the reaction proceeds in a state where the reaction rate is suppressed by the quench fluid as in the above example. In this way, by making the catalyst layer 2 2 into a plurality of layers, the same effect as the above example can be obtained. [0 0 3 8]
  • a reactor 20 provided with one catalyst layer 22 In addition to the case where a plurality of catalyst layers 22 are provided in one reactor 20, as shown in FIGS. 5 and 6, for example, a reactor 20 provided with one catalyst layer 22. Multiple units may be connected. Fig. 5 and Fig. 6 show examples in which three and five such reactors 20 are connected, respectively, and the product gas outlet pipe 20b connecting the reactors 20 has a quench Fluid supply pipe 24 is connected. Further, in addition to such a reactor 20, for example, as shown in FIGS. 7 and 8, a plurality of reactors 20 provided with at least one catalyst layer 22 may be connected in combination. . Fig. 7 shows an example in which a reactor 20 provided with one catalyst layer 22 and a reactor 20 provided with two catalyst layers (22a, 22b) are connected in series. Yes.
  • Figure 8 shows a reactor 20 with two catalyst layers (2 2 a, 2 2 b) and a reactor 2 with three catalyst layers (2 2 a, 2 2 b, 2 2 c) An example in which 0 is connected in series is shown. Similarly, between these catalyst layers 22, the Taenti fluid is also supplied in the quench zone Q. Even in such a configuration, the same effect as the above example can be obtained.
  • a quench zone Q between the catalyst layers 2 2 and 2 2.
  • the number of quench zones Q may be reduced.
  • Fig. 9 shows an example in which the quench zone Q between the second catalyst layer 2 2 b and the third catalyst layer 2 2 c from the upstream side is omitted in the reactor 20 shown in Fig. 4 described above. Is shown. The same effect can be obtained even in such a reactor 20.
  • the object in the system is used as the quench fluid, but the same compound as the object outside the system can be used as the quench fluid.
  • a plurality of reaction apparatuses 2 may be provided, and the Taenchi fluid may be supplied from one reaction apparatus 2 to the other reaction apparatus 2.
  • the target object take-out pipe 3 1 of one reactor 2 Further, the quench fluid supply pipe 24 of the other reactor 2 is connected. 3 to 10 described above, the same components as those in FIG. 1 are denoted by the same reference numerals. Unreacted raw materials may be mixed in the target object, which is a Taenchi fluid.
  • the reaction product may be used as a Taenti fluid.
  • a reaction product (by-product) other than the target substance is generated from the raw material (in addition to the target substance, a substance generated on the right side of the formula (1))
  • the reaction product may be used as a Taenti fluid.
  • water may be used as the Taenti fluid.
  • the entire amount of the object is taken out from the object take-out pipe 31, and a part of the waste is returned to the quench zone Q as a Taenchi fluid.
  • the reaction is suppressed by increasing the reaction product on the right side of the equations (1) and (2) in the same manner as in the above example.
  • the fluctuation of the temperature of the mixture at the outlet is reduced.
  • the same components as those in Fig. 1 are given the same reference numerals.
  • the target product may be used as a quench fluid together with this by-product.
  • dimethyl ether and water may be used as the quench fluid.
  • dimethyl ether from outside the system may be used as a Taenti fluid.
  • this quench fluid may contain unreacted raw materials.
  • one end of a branch pipe (both not shown) provided with a valve is connected to the raw material discharge pipe 41, and the other end of this branch pipe is connected to the quench fluid supply pipe. 2 Connect to 4 and adjust the opening of this valve to actively unreacted raw materials It may be used as a part of the fluid.
  • the control unit 3 controls the flow rate of the Taenti fluid to stabilize the inlet temperature T3 of the reactor 20.
  • the control unit For example, by adjusting the opening degree of the aforementioned branch pipe valve and flow rate adjustment valve 27 through 3, the reaction product contained in the quench fluid and the ratio of compounds outside the same system as the target product, that is, the Taenti fluid
  • the inlet temperature T 3 may be stabilized by adjusting the composition.
  • a cooling mechanism (not shown) is provided in the quench fluid supply pipe 24, the flow rate of the quench fluid is kept constant, and the temperature of the quench fluid is adjusted via the control unit 3.
  • the temperature T3 may be stabilized.
  • the inlet temperature T 3 of the reactor 20 is stabilized by adjusting the flow rate of the Taench fluid, the composition of the Quench fluid, and the temperature of the Taench fluid in combination through the control unit 3. You may do it.
  • the temperature control method and the reaction apparatus for the target product of the present invention when producing the target product by an equilibrium reaction with exotherm, for example, synthesis reaction of dimethyl ether by dehydration from methanol in the examples described later, It may also be applied to ammonia synthesis reaction from hydrogen and nitrogen. In addition to the synthesis reaction, the reaction may be applied to an equilibrium reaction with exotherm such as an oxidation reaction, a hydrogenation reaction, or other reactions, or to these reactions in a liquid phase.
  • exotherm for example, synthesis reaction of dimethyl ether by dehydration from methanol in the examples described later
  • standard conditions are set in each of the following experiments. These standard conditions are based on the methanol conversion at the final catalyst layer outlet and the temperature at the outlet of each catalyst layer. This is a condition in which the degree is set to be equal in each standard condition.
  • thermometers are installed at the inlet of the reactor 20 and the inlets and outlets of the catalyst layers 22a and 22b, respectively. Provided.
  • each flow rate F1-F3 represents the mass flow rate of each fluid.
  • the experimental conditions were determined as follows so that the methanol conversion and temperature at the outlet of the reactor 20 were 75% and 340, respectively, and these conditions were used as standard conditions.
  • the temperature of the raw material at the inlet of the reactor 20 was changed up and down by 1 from the above standard conditions, and the other conditions were the same as the standard conditions.
  • the temperature at the outlet of the reactor 20 (temperature at the outlet side of the second catalyst layer 22b) and the methanol conversion rate at the outlet of the reactor 20 were compared under each condition.
  • the flow rate of the dimethyl ether flow rate F 2 as the quench fluid and the flow rate of the methanol flow rate F 3 as the unreacted raw material returned from the raw material discharge pipe 41 were the same as the standard conditions.
  • the temperature in the reactor 20 also changed according to the change in the temperature at the inlet of the reactor 20 (temperature on the inlet side of the first catalyst layer 2 2a). It was also found that the change in the temperature at the outlet of the reactor 20 was larger than the change in the temperature at the inlet of the reactor 20.
  • the conversion rate increased as the temperature in the reactor 20 increased, and the conversion rate decreased as the temperature in the reactor 20 decreased.
  • Comparative Example 1-1 an experiment was conducted by connecting a distillation column 30 40 to an apparatus in which a heat exchanger 103 was interposed between the plurality of reactors 1 02 1 0 2 in FIG. 15 described above. went.
  • This device is shown in Fig. 12.
  • the parts having the same configuration as in FIG. Also in this apparatus, the temperatures of the raw materials at the inlet and outlet of the upstream reactor (first reactor) 10 2 and the downstream reactor (second reactor) 10 2 were measured.
  • the raw material gas after being vaporized in the evaporator 2 b is supplied to the supply path 2.
  • a mixture of the raw material gas and the raw material and reaction product that have become high temperature due to the reaction in the upstream reactor 1 0 2 It was configured to perform heat exchange between and (to cool the mixture).
  • the raw material gas after the heat exchange (heated) in the heat exchanger 10 3 was returned to the raw material gas supply pipe 20a on the front side of the upstream reactor 10 2.
  • the flow of raw materials and reaction products other than the fluid supplied to the heat exchanger 103 was the same as that of the reactor 2 shown in FIG.
  • Example 2 the following conditions were determined so that the methanol conversion rate and the raw material temperature at the outlet of the downstream reactor 102 were 75% and 340, respectively.
  • This condition was set as a standard condition.
  • the temperature of the raw material at the inlet of the upstream reactor 102 was changed 1 t up and down from the standard conditions, and the other conditions were the same as the standard conditions.
  • the temperature at the outlet of the downstream reactor 102 was measured, and the conversion rate was compared.
  • the amount of methanol returned from the raw material discharge pipe 41 was the same as the standard flow rate.
  • the heat exchange amount (heat transfer amount) between the quench fluid and the mixture in the heat exchanger 103 is assumed not to change even if the temperature at the inlet of the upstream reactor 102 is changed.
  • Example 1 As a result, as in Example 1, the temperature and conversion rate of each part changed according to the temperature change on the upstream side, but the amount of change was larger than the amount of change in Example 1. . Therefore, in Example 1, the reaction was suppressed by using dimethyl ether, which is a reaction product, as the quench fluid, and the controllability of the temperature and conversion rate inside the reactor 20 was improved. I understand.
  • FIG. 13 an apparatus having the same configuration as the apparatus described in Patent Document 1 described above.
  • This apparatus is generally provided with a reactor 300 having substantially the same configuration as the reactor 20 shown in FIG. 1, but a liquid raw material is supplied as a Taenchi fluid from the raw material quench supply passage 20 0. It is configured to In FIG. 13 as well, parts having the same configuration as in FIG.
  • the following conditions were determined so that the methanol conversion rate and the raw material temperature at the outlet side of the reactor 300 would be 75% and 34 ° C, respectively.
  • the experiment was conducted by changing the temperature on the inlet side of the reactor 300 up and down by 1 ° C in the same manner with this condition as the standard condition.
  • the unreacted methanol flow rate and the quench fluid flow rate returned from the raw material discharge pipe 41 were constant.
  • F 1 is the methanol supply
  • F 2 is the supply amount of quench methanol
  • F 3 is the methanol flow rate for recycling.
  • Reactor 30 0 inlet temperature: 2 7 9 ° C
  • Reactor 30 0 inlet pressure: 1.5 5 MPa (gauge pressure) Ratio of Taenti to raw material flow rate (F 2 Z (F 1 + F 3)): 0
  • Quenchy methanol conditions 1.6 MPa (gauge pressure), liquid at boiling point
  • the conditions were determined as follows so that the methanol conversion rate and temperature at the outlet of the reactor 20 were 75% and 340, respectively.
  • the temperature of the raw material at the inlet of the reactor 20 was changed one by one up and down, and the other conditions were the same as the standard conditions.
  • the temperature at the inlet and the temperature at the outlet of each catalyst layer 22 of the reactor 20 were measured under the respective conditions, and the methanol conversion rate at the outlet of the reactor 20 was compared.
  • the flow rate of the dimethyl ether flow rate F 2 as the quench fluid and the flow rate of the methanol flow rate F 3 as the unreacted raw material returned from the raw material discharge pipe 41 were the same as the standard conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

The method aims to improve the controllability of temperature and conversion in a reaction vessel in synthesizing, e.g., dimethyl ether from methanol through equilibrium reactions accompanied by an endothermic reaction. Catalyst layers are disposed in a reaction vessel, and a quench zone for cooling a mixture comprising methanol and dimethyl ether is formed between the catalyst layers. A fluid comprising at least either of dimethyl ether and the water which has generated together with the dimethyl ether is supplied as a quench fluid to the quench zone.

Description

明細書  Specification
反応器内部の温度制御方法、 反応装置及びジメチルエーテルの製造方法。 技術分野 A method for controlling the temperature inside the reactor, a reactor, and a method for producing dimethyl ether. Technical field
[ 0 0 0 1 ]  [0 0 0 1]
本発明は、 原料を断熱型反応器に供給し、 発熱を伴う平衡反応により目 的物を製造するときに行う反応器内部の温度制御方法と反応装置、 及びジ メチルエーテルの製造方法に関する。 背景技術  The present invention relates to a temperature control method and a reaction apparatus inside a reactor, which are performed when an object is produced by an equilibrium reaction accompanied by heat generation by supplying raw materials to an adiabatic reactor, and a method for producing dimethyl ether. Background art
[ 0 0 0 2 ]  [0 0 0 2]
製造プラントにおいては、 反応器内に触媒層を設け、 この中に原料を通 流させて反応させ、 その反応生成物である製品を得る場合がある。 反応器 内において適切に反応を進行させるための重要な運転条件の一つとして、 反応器内の温度管理が挙げられる。 一般に、 反応器内の温度を反応に適し た温度となるように調整するためには、 原料を予め設定した温度に調整し た後、 反応器に供給するようにしている。  In a production plant, a catalyst layer may be provided in a reactor, and raw materials may be passed through the reactor to react to obtain a product that is a reaction product. One of the important operating conditions for allowing the reaction to proceed properly in the reactor is temperature control in the reactor. In general, in order to adjust the temperature in the reactor so as to be suitable for the reaction, the raw material is adjusted to a preset temperature and then supplied to the reactor.
[ 0 0 0 3 ]  [0 0 0 3]
上記の反応が発熱反応である場合には、 原料が反応器内を下流側に向か つて通流するに従って、 即ち反応が進行するにつれて、 原料の温度が上昇 していく。 原料の温度が主反応に適した温度範囲よりも高くなってしまう と、 好ましくない副生成物 (不純物) が生成し、 原料のロスとなったり、 あるいはコーキングの促進によって触媒が劣化したりする一方、 原料の温 度が前記温度範囲を下回ると収率が低下するため、 触媒層内の温度を目的 とする温度範囲内に維持する種々の方法が提案されている。 そのような反 応器内の温度を維持するための代表的な例として、 以下の手法が知られて いる。  When the above reaction is an exothermic reaction, the temperature of the raw material increases as the raw material flows downstream through the reactor, that is, as the reaction proceeds. If the temperature of the raw material becomes higher than the temperature range suitable for the main reaction, undesirable by-products (impurities) are generated, which results in loss of the raw material or deterioration of the catalyst due to promotion of coking. Since the yield decreases when the temperature of the raw material falls below the above temperature range, various methods for maintaining the temperature in the catalyst layer within the target temperature range have been proposed. The following method is known as a typical example for maintaining the temperature in such a reactor.
[ 0 0 0 4 ]  [0 0 0 4]
図 1 4は、 多管式反応器 1 0 0であり、 多管式反応器 1 0 0内に多数垂 設された管 1 0 1内に原料を供給し、 この管 1 0 1内において反応を行い 、 その管 1 0 1を外部から冷媒により冷却するように構成されている。 こ の多管式反応器 1 0 0では、 原料を確実に且つ速やかに冷却できるが、 多 量の冷媒が必要であり、 また反応器 1 0 0の構造が複雑になるので、 装置 のコス トが高くなつてしまい、 更に大型化には不向きである。 Fig. 14 shows a multi-tubular reactor 100, in which a raw material is supplied into a tube 1 0 1, which is installed in a large number in the multi-tube reactor 1 0 0, and the reaction in this tube 1 0 1 Do The tube 10 1 is configured to be cooled by a refrigerant from the outside. In this multitubular reactor 100, the raw material can be reliably and quickly cooled, but a large amount of refrigerant is required, and the structure of the reactor 100 is complicated, so that the cost of the apparatus is reduced. Is unsuitable for further enlargement.
[ 0 0 0 5 ]  [0 0 0 5]
図 1 5は、 複数基の反応器 1 0 2を接続して、 この反応器 1 0 2、 1 0 2の間に熱交換器 (中間熱交換器) 1 0 3を介設した装置を示している。 この装置では、 1段目の反応器 1 0 2内に供給された原料は、 この 1段目 の反応器 1 0 2内で反応により発熱し、 次いで熱交換器 1 0 3により冷却 された後に 2段目の反応器 1 0 2に供給され、 そしてこの 2段目の反応器 1 0 2において反応が進行していく。 その後、 原料は、 図示を省略するが 、 更に熱交換器を介して 3段目以降の反応器に供給されていく。 このよう な構成では、 反応器 1 0 2内での温度の制御性を高めるためには、 反応器 1 0 2及び熱交換器 1 0 3の基数を増やす必要があると共に、 接続配管な ども必要になるので、 装置のコス トが高くなり、 また装置構成が複雑にな つてしまう。 また、 このような熱交換器 1 0 3では、 熱交換用の冷媒とし て、 1段目の反応器 1 0 2に供給する前の反応前の原料を用いることが多 く、 反応生成物との間で熱交換した後の原料を 1段目の反応器 1 0 2に供 給するようにしている。 そのような場合には、 反応器 1 0 2の出口の温度 が反応器 1 0 2の入口の温度に影響を及ぼし、 反応器 1 0 2内の温度制御 が難しくなるといつた問題がある。  Fig. 15 shows an apparatus in which a plurality of reactors 1 0 2 are connected and a heat exchanger (intermediate heat exchanger) 1 0 3 is interposed between the reactors 1 0 2 and 1 0 2 ing. In this apparatus, the raw material supplied into the first-stage reactor 100 2 generates heat due to the reaction in the first-stage reactor 10 2, and then is cooled by the heat exchanger 10 3. The second stage reactor 10 2 is supplied, and the reaction proceeds in the second stage reactor 1 0 2. Thereafter, the raw material is supplied to the third and subsequent reactors through a heat exchanger, although not shown. In such a configuration, in order to improve the controllability of the temperature in the reactor 102, it is necessary to increase the number of the reactors 10 2 and the heat exchanger 10 3 as well as connecting piping and the like. As a result, the cost of the equipment becomes high and the equipment configuration becomes complicated. Further, in such a heat exchanger 103, the raw material before the reaction before being supplied to the first stage reactor 1002 is often used as a refrigerant for heat exchange, and the reaction product and The raw material after heat exchange between the two is supplied to the first-stage reactor 10 2. In such a case, the temperature at the outlet of the reactor 10 2 affects the temperature at the inlet of the reactor 10 2, and there is a problem when temperature control in the reactor 10 2 becomes difficult.
[ 0 0 0 6 ]  [0 0 0 6]
そこで、 特許文献 1は、 固定床流通式の断熱型反応器内の触媒層を複数 の層に分割し、 この各層間に原料を冷却するためのクェンチゾーンを設け て、 このクェンチゾーンにおいてクェンチ流体として原料を液体状で供給 し、 反応器内を冷却する手法が提案されている。 この装置では、 加熱され た原料が上側から供給されると、 上流側の触媒層において発熱反応が進行 して、 原料の温度が上昇する。 そして、 原料は、 クェンチゾーンにおいて クェンチ流体により冷却され、 その後下流側の触媒層に流れていき、 同様 に反応する。 タエンチ流体の流量は、 タエンチ流体を供給した後のクェン チゾーンの下側において原料の温度を測定して、 この部位の温度が主反応 に適した温度範囲となるように調整される。 Therefore, Patent Document 1 divides a catalyst layer in a fixed bed flow-type adiabatic reactor into a plurality of layers, and provides a quench zone for cooling the raw material between the layers, and a raw material as a quench fluid in the quench zone. A method has been proposed in which the reactor is supplied in liquid form and the reactor is cooled. In this apparatus, when the heated raw material is supplied from the upper side, an exothermic reaction proceeds in the upstream catalyst layer, and the temperature of the raw material rises. The raw material is cooled by the quench fluid in the quench zone, and then flows to the downstream catalyst layer. To react. The flow rate of the Taenti fluid is adjusted so that the temperature of the raw material is measured in the lower part of the quench zone after the Taenti fluid is supplied, and the temperature of this part falls within the temperature range suitable for the main reaction.
[ 0 0 0 7 ]  [0 0 0 7]
この装置は、 1基の反応器により構成されており、 また熱交換器が不要 なので、 コス トを抑えることができる。 また、 タエンチ流体として不活性 成分を用いた場合には、 不活性成分の精製や分離が必要になるが、 原料を 利用しているので、 こう した操作が不要となるといつたメ リ ッ 卜がある。  This equipment consists of a single reactor and does not require a heat exchanger, so costs can be reduced. In addition, when an inert component is used as the Taenti fluid, it is necessary to purify and separate the inert component, but since the raw materials are used, when such an operation becomes unnecessary, there is a need for the benefits. is there.
[ 0 0 0 8 ]  [0 0 0 8]
ところで、 上記の発熱を伴う平衡反応の一例として、 例えばメタノール からジメチルエーテルを製造する反応器では、 反応器の出口温度が通常運 転時の温度よりも僅かに上昇した場合、 好ましくない副反応により副生成 物が生成してしまう。 そのために、 反応器内の温度を安定化させる必要が ある。  By the way, as an example of the above-described equilibrium reaction with exotherm, for example, in a reactor for producing dimethyl ether from methanol, when the outlet temperature of the reactor rises slightly higher than the temperature during normal operation, a side reaction due to an undesirable side reaction occurs. The product is generated. Therefore, it is necessary to stabilize the temperature in the reactor.
上記の特許文献 1に記載の反応器では、 下流側の触媒層の入口側の温度 に基づいて、 クェンチ流体の供給量を調整し、 反応器の内部温度を制御し てはいるが、 制御系の特性上、 前記入口側の温度を一定化することは困難 であり、 原料の温度変化などの要因も加わって当該入口側の温度変化を避 けることができない。  In the reactor described in Patent Document 1 above, the supply amount of quench fluid is adjusted based on the temperature on the inlet side of the downstream catalyst layer, and the internal temperature of the reactor is controlled. Therefore, it is difficult to keep the temperature on the inlet side constant, and the temperature change on the inlet side cannot be avoided due to factors such as the temperature change of the raw material.
[ 0 0 0 9 ]  [0 0 0 9]
このような状況下において、 特許文献 1のように原料をクェンチ流体と して供給すると、 原料が多くなるので、 平衡が反応生成物側に偏る。 この ため触媒層の入口側の温度変化に対し、 反応速度が敏感に変わるので、 反 応器の出口側の温度に対する触媒層の入口側の温度の影響が大きくなり、 結果として反応器の出口の温度の振れ幅が大きくなって、 転化率の変化も 大きくなる。 このため反応器の出口の温度が高くなりすぎて、 好ましくな い副反応による副生成物が生成し、 製品の純度が低下したり、 また、 反応 器の出口の温度が低くなりすぎて、 目的とする収率が得られなくなったり する。 そのため、 大型化が可能な単純な構成の反応器にて、 簡便な方法にて反 応器内の温度を制御できる技術が求められている。 Under such circumstances, when the raw material is supplied as a quench fluid as in Patent Document 1, the raw material increases, and the equilibrium is biased toward the reaction product. For this reason, since the reaction rate changes sensitively to the temperature change at the inlet side of the catalyst layer, the influence of the temperature at the inlet side of the catalyst layer on the temperature at the outlet side of the reactor becomes large, and as a result, the temperature at the outlet of the reactor becomes larger. As the temperature swing increases, the change in conversion also increases. For this reason, the temperature at the outlet of the reactor becomes too high, and by-products due to undesirable side reactions are generated, the purity of the product is lowered, and the temperature at the outlet of the reactor becomes too low. The yield may not be obtained. Therefore, there is a need for technology that can control the temperature in the reactor by a simple method using a reactor with a simple structure that can be increased in size.
[ 0 0 1 0 ]  [0 0 1 0]
特許文献 1 特開 2 0 0 4— 2 9 8 7 6 8 (段落 0 0 1 4、 0 0 2 0、 0 0 2 1 ) 発明の開示 Patent Document 1 Japanese Unexamined Patent Publication No. 2 0 0 4-2 9 8 7 6 8 (paragraphs 0 0 1 4, 0 0 2 0, 0 0 2 1) Disclosure of the Invention
[ 0 0 1 1 ]  [0 0 1 1]
本発明はこのような事情の下になされたものであり、 その目的は、 原料 を断熱型の反応器に供給し、 この反 器内において発熱を伴う平衡反応に より 目的物を製造するにあたり、 反応器内の温度の制御性を向上させて、 温度上昇による副生成物の生成や、 温度低下による収率の低減を抑えるた めの技術を提供することにある。  The present invention has been made under such circumstances. The purpose of the present invention is to supply raw materials to an adiabatic reactor and produce the target product by an equilibrium reaction with exotherm in the reactor. The purpose is to provide a technology to improve the controllability of the temperature in the reactor to suppress the production of by-products due to temperature rise and the reduction in yield due to temperature drop.
[ 0 0 1 2 ]  [0 0 1 2]
本発明の反応器内部の温度制御方法は、  The temperature control method inside the reactor of the present invention is as follows.
反応領域を複数に分割し、 分割された複数の反応領域が一つまたは二つ 以上の断熱型反応器に割り当てられ、 原料を断熱型反応器内に供給し、 発 熱を伴う平衡反応により 目的物を製造するときに行う温度制御方法におい て、  Dividing the reaction area into multiple parts, and assigning the divided reaction areas to one or more adiabatic reactors, supplying the raw materials into the adiabatic reactors, and achieving the target by equilibrium reaction with heat generation In the temperature control method that is performed when manufacturing products,
原料を 1段目の反応領域に供給して、 目的物を含む反応生成物を得るェ 程と、  Supplying raw materials to the first-stage reaction zone to obtain a reaction product containing the target product;
次いで、 前段側の反応領域から取り出された反応生成物と未反応の原料 とからなる混合物を順次後段側の反応領域に供給し、 目的物を含む反応生 成物を得る工程と、  Next, a step of sequentially supplying a mixture of the reaction product extracted from the reaction zone on the front stage side and the unreacted raw material to the reaction zone on the rear stage side to obtain a reaction product containing the target product;
前記反応領域同士の間の少なく とも 1力所において、 前記混合物にクェ ンチ流体を供給して、 混合することにより当該混合物を冷却する工程と、 を含み、  Supplying a quench fluid to the mixture and cooling the mixture by mixing at at least one force between the reaction zones; and
前記クェンチ流体は、 前記クェンチ流体の供給領域よりも後段側の反応 領域で得られた前記反応生成物の一部及び前記断熱型反応器以外で得られ た前記目的物と同じ化合物の少なく とも一方を含むことを特徴とする。 The quench fluid is obtained except for a part of the reaction product obtained in the reaction region downstream of the quench fluid supply region and the adiabatic reactor. And at least one of the same compounds as the object.
[ 0 0 1 3 ]  [0 0 1 3]
前記タエンチ流体は、 最終段の反応領域にて得られた反応生成物を冷却 した後の反応生成物の一部を含んでいても良い。  The Taenti fluid may contain a part of the reaction product after cooling the reaction product obtained in the final reaction zone.
前記複数の反応領域は、 各々触媒層により構成されていることが好まし レ、。  Preferably, each of the plurality of reaction regions is constituted by a catalyst layer.
分割された前記反応領域は 3個であることが好ましい。  The divided reaction regions are preferably three.
前記冷却する工程は、 前記タエンチ流体の供給量と組成と温度との少な く とも一つを調整して行うことが好ましい。  The cooling step is preferably performed by adjusting at least one of the supply amount, composition, and temperature of the Taenti fluid.
[ 0 0 1 4 ]  [0 0 1 4]
前記発熱を伴う平衡反応は、 メタノールを原料として、 水と目的物であ るジメチルエーテルとからなる反応生成物を得る反応であっても良い。 そ の場合には、 前記タエンチ流体は、 ジメチルエーテルとジメチルエーテル 及び水の混合流体とのいずれかを含むことが好ましい。  The equilibrium reaction with exotherm may be a reaction that uses methanol as a raw material to obtain a reaction product composed of water and the target dimethyl ether. In that case, it is preferable that the Taenti fluid includes any one of dimethyl ether, a mixed fluid of dimethyl ether and water.
[ 0 0 1 5 ]  [0 0 1 5]
本発明の反応装置は、  The reaction apparatus of the present invention comprises:
原料を断熱型反応器内に供給し、 発熱を伴う平衡 応により 目的物を製 造する反応装置において、  In a reactor that feeds raw materials into an adiabatic reactor and produces the target product by equilibrium with heat generation,
反応領域を複数に分割し、 分割された複数の反応領域が割り当てられる 一つまたは二つ以上の断熱型反応器と、  One or two or more adiabatic reactors, each of which is divided into a plurality of reaction zones and assigned with a plurality of divided reaction zones;
1段目の反応領域に原料を供給する手段と、  Means for supplying the raw material to the first stage reaction zone;
前記反応領域同士の間の少なく とも 1力所に介在し、 前段側の反応領域 から取り出された前記反応生成物と未反応の原料とからなる混合物にクェ ンチ流体を供給し、 混合することにより当該混合物を冷却するためのクェ ンチゾーンと、  By supplying and mixing a quench fluid to a mixture of the reaction product and unreacted raw material that is interposed in at least one power point between the reaction regions and taken out from the reaction region on the front side. A quench zone for cooling the mixture;
前記クェンチゾーンよりも後段側の反応領域で得られた前記反応生成物 の一部及び前記断熱型反応器以外で得られた前記目的物と同じ化合物の少 なく とも一方を含む流体をタエンチ流体としてクェンチゾーンに供給する 手段と、 を備えたことを特徴とする。 [ 0 0 1 6 ] A fluid containing a part of the reaction product obtained in the reaction zone downstream from the quench zone and at least one of the same compounds as the target product other than the adiabatic reactor is used as a quench fluid. And means for supplying to the apparatus. [0 0 1 6]
前記反応装置は、  The reactor is
最終段の反応領域において得られた反応生成物を冷却するための冷却手 段を備え、  A cooling means is provided to cool the reaction product obtained in the final stage reaction zone,
前記タエンチ流体は、 前記冷却手段により冷却された後の前記反応生成 物の一部を含む流体であることが好ましい。  The Taenti fluid is preferably a fluid containing a part of the reaction product after being cooled by the cooling means.
前記複数の反応領域は、 各々触媒層により構成されていることが好まし レ、。  Preferably, each of the plurality of reaction regions is constituted by a catalyst layer.
分割された前記反応領域は 3個であることが好ましい。  The divided reaction regions are preferably three.
また、 本発明の反応装置は、 前記クェンチ流体の供給量と組成と温度と の少なく とも一つを調整して、 前記タエンチ流体を前記クェンチゾーンに 供給するような制御部を備えていることが好ましい。  In addition, the reaction apparatus of the present invention preferably includes a control unit that adjusts at least one of the supply amount, composition, and temperature of the quench fluid and supplies the taenti fluid to the quench zone. .
[ 0 0 1 7 ]  [0 0 1 7]
前記発熱を伴う平衡反応は、 メタノールを原料として、 水と目的物であ るジメチルエーテルとからなる反応生成物を得る反応であっても良い。 そ の場合には、 前記タエンチ流体は、 ジメチルエーテルとジメチルエーテル 及び水の混合流体とのいずれかを含むことが好ましい。  The equilibrium reaction with exotherm may be a reaction that uses methanol as a raw material to obtain a reaction product composed of water and the target dimethyl ether. In that case, it is preferable that the Taenti fluid includes any one of dimethyl ether, a mixed fluid of dimethyl ether and water.
[ 0 0 1 8 ]  [0 0 1 8]
本発明のジメチルエーテルの製造方法は、  The method for producing dimethyl ether of the present invention comprises:
反応領域を複数に分割し、 分割された複数の反応領域が一つまたは二つ 以上の断熱型反応器に割り当てられ、 メタノールを断熱型反応器内に供給 し、 脱水縮合反応によりジメチルエーテルを製造する方法において、 メタノールを 1段目の反応領域に供給して、 ジメチルエーテルと水とか らなる反応生成物を得る工程と、  Dividing the reaction area into multiple parts, the divided reaction areas are assigned to one or more adiabatic reactors, supplying methanol into the adiabatic reactors, and producing dimethyl ether by dehydration condensation reaction In the method, supplying methanol to the first stage reaction zone to obtain a reaction product comprising dimethyl ether and water;
次いで、 前段側の反応領域から取り出された反応生成物と未反応のメタ ノールとからなる混合物を順次後段側の反応領域に供給し、 ジメチルエー テルと水とからなる反応生成物を得る工程と、  Next, a step of sequentially supplying a mixture of the reaction product taken out from the reaction zone on the front stage side and unreacted methanol to the reaction zone on the rear stage side to obtain a reaction product consisting of dimethyl ether and water; ,
前記反応領域同士の間の少なく とも 1力所において、 前記混合物にクェ ンチ流体を供給して、 混合することにより当該混合物を冷却する工程と、 を含み、 Supplying a quench fluid to the mixture and mixing the mixture at at least one force between the reaction zones; and cooling the mixture; Including
前記タエンチ流体は、 前記タエンチ流体の供給領域よりも後段側の反応 領域で得られたジメチルエーテル及び水の少なく とも一方と、 前記断熱型 反応器以外で得られたジメチルエーテルと、 のいずれかを含むことを特徴 とする。  The Taenti fluid includes at least one of dimethyl ether and water obtained in a reaction region downstream of the Taenchi fluid supply region, and dimethyl ether obtained outside the adiabatic reactor. It is characterized by.
[ 0 0 1 9 ]  [0 0 1 9]
前記冷却する工程は、 前記クェンチ流体の供給量と組成と温度との少な く とも一つを調整して行うことが好ましい。  The cooling step is preferably performed by adjusting at least one of the supply amount, composition, and temperature of the quench fluid.
前記クェンチ流体は、 最終段の反応領域にて得られ、 冷却した後のジメ チルエーテル及び水のいずれかを含むことが好ましい。  The quench fluid is preferably obtained in the final reaction zone and contains either dimethyl ether or water after cooling.
前記複数の反応領域は、 各々触媒層により構成されていることが好まし レ、。  Preferably, each of the plurality of reaction regions is constituted by a catalyst layer.
分割された前記反応領域は 3個であることが好ましい。  The divided reaction regions are preferably three.
前記クェンチ流体は、 ジメチルエーテルに混在している副生成物である 水と未反応のメタノールとを除去した後のジメチルエーテルの一部である ことが好ましい。  The quench fluid is preferably a part of dimethyl ether after removing water and unreacted methanol which are by-products mixed in dimethyl ether.
[ 0 0 2 0 ]  [0 0 2 0]
本発明によれば、 反応領域を複数に分割し、 分割された複数の反応領域 がーつまたは二つ以上の断熱型反応器に割り当てられ、 原料を断熱型反応 器内に供給し、 発熱を伴う平衡反応により 目的物を製造するにあたり、 原 料を 1段目の反応領域に供給することにより得られた目的物を含む反応生 成物と、 未反応の原料と、 からなる混合物を、 この 1段目の反応領域から 順次後段側の反応領域に供給して目的物を含む反応生成物を得て、 反応領 域同士の少なく とも 1力所において、 当該反応領域よりも後段側で得られ た反応生成物の一部及び前記断熱型反応器以外で得られた前記目的物を同 じ化合物の少なく とも一方をクェンチ流体として供給して当該混合物を冷 却するようにしている。 そのため、 混合物中の反応生成物の量が増えて、 平衡が原料側に偏り、 反応が穏やかに進んでいくので、 反応領域の入口側 の温度変化による反応速度の変化が少ない。 この結果、 反応器内の温度の 制御性が向上し、 温度上昇による予定しない副生成物の生成や、 温度低下 による収率の低減を簡便に抑えることができる。 図面の簡単な説明 According to the present invention, the reaction region is divided into a plurality of regions, and the divided reaction regions are assigned to one or two or more adiabatic reactors, and the raw materials are supplied into the adiabatic reactors to generate heat. In producing the target product by the accompanying equilibrium reaction, a mixture comprising the reaction product containing the target product obtained by supplying the raw material to the first stage reaction zone, and the unreacted raw material The reaction product containing the target product is obtained by sequentially supplying the reaction region from the first stage to the reaction region on the downstream side, and is obtained at the downstream side of the reaction region at least at one power point between the reaction regions. A part of the reaction product and the object obtained outside the adiabatic reactor are supplied with at least one of the same compounds as a quench fluid to cool the mixture. For this reason, the amount of reaction products in the mixture increases, the equilibrium is biased toward the raw material side, and the reaction progresses gently. Therefore, there is little change in the reaction rate due to temperature change at the inlet side of the reaction zone. As a result, the temperature in the reactor Controllability is improved, and by-product generation due to temperature rise and yield reduction due to temperature drop can be easily suppressed. Brief Description of Drawings
図 1は、 本発明の製造方法を実施するための反応装置の一例を示す概略的 な構成図である。 FIG. 1 is a schematic configuration diagram showing an example of a reaction apparatus for carrying out the production method of the present invention.
図 2は、 上記の反応装置における反応器内の原料の温度変化の一例を示す 概略図である。 FIG. 2 is a schematic view showing an example of a temperature change of the raw material in the reactor in the above reaction apparatus.
図 3は、 上記の反応装置の他の例を示す縦断面図である。 FIG. 3 is a longitudinal sectional view showing another example of the reaction apparatus.
図 4は、 上記の反応装置の他の例を示す縦断面図である。 FIG. 4 is a longitudinal sectional view showing another example of the reaction apparatus.
図 5は、 上記の反応装置の他の例を示す縦断面図である。 FIG. 5 is a longitudinal sectional view showing another example of the reaction apparatus.
図 6は、 上記の反応装置の他の例を示す縦断面図である。 FIG. 6 is a longitudinal sectional view showing another example of the above reaction apparatus.
図 7は、 上記の反応装置の他の例を示す縦断面図である。 FIG. 7 is a longitudinal sectional view showing another example of the above reaction apparatus.
図 8は、 上記の反応装置の他の例を示す縦断面図である。 FIG. 8 is a longitudinal sectional view showing another example of the reaction apparatus.
図 9は、 上記の反応装置の他の例を示す縦断面図である。 FIG. 9 is a longitudinal sectional view showing another example of the reaction apparatus.
図 1 0は、 上記の反応装置の他の例を示す縦断面図である。 FIG. 10 is a longitudinal sectional view showing another example of the above reaction apparatus.
図 1 1は、 上記の反応装置の他の例を示す縦断面図である。 FIG. 11 is a longitudinal sectional view showing another example of the reaction apparatus.
図 1 2は、 本発明の実施例における比較例に用いた装置を示す概略図であ る。 FIG. 12 is a schematic view showing an apparatus used in a comparative example in the example of the present invention.
図 1 3は、 本発明の実施例における比較例に用いた装置を示す概略図であ る。 FIG. 13 is a schematic diagram showing an apparatus used in a comparative example in the example of the present invention.
図 1 4は、 合成反応に用いられている従来の装置を示す概略図である。 図 1 5は、 合成反応に用いられている従来の装置を示す概略図である。 発明を実施するための最良の形態 FIG. 14 is a schematic diagram showing a conventional apparatus used for the synthesis reaction. FIG. 15 is a schematic diagram showing a conventional apparatus used for the synthesis reaction. BEST MODE FOR CARRYING OUT THE INVENTION
[ 0 0 2 1 ]  [0 0 2 1]
本発明の反応装置及びこの装置を用いた温度制御方法の実施の形態につ いて、 図 1及び図 2を参照して説明する。 図 1は、 目的物を製造するため の反応装置 2を含む製造ブラントの全体の概要を示している。 反応装置 2 は、 例えば固定床流通式の断熱型反応器である縦型の反応器 2 0を備えて いる。 この反応器 2 0の塔頂部には、 原料を供給する手段である原料ガス 供給管 2 0 aの一端側が接続されており、 この原料ガス供給管 2 0 aの他 端側には、 熱交換器 2 a及び蒸発器 2 bを介して、 液体原料が貯留された 原料貯留源 4が接続されている。 蒸発器 2 bは、 液体原料を気化させて原 料ガスを得るためのものである。 An embodiment of a reaction apparatus of the present invention and a temperature control method using this apparatus will be described with reference to FIG. 1 and FIG. Fig. 1 shows an overview of the entire production blunt including the reactor 2 for producing the target product. Reactor 2 Is equipped with a vertical reactor 20 which is, for example, a fixed bed flow-type adiabatic reactor. One end side of a raw material gas supply pipe 20 a which is a means for supplying the raw material is connected to the top of the reactor 20, and heat exchange is performed on the other end side of the raw material gas supply pipe 20 a. A raw material storage source 4 in which a liquid raw material is stored is connected via a vessel 2a and an evaporator 2b. The evaporator 2b is for vaporizing a liquid raw material to obtain a raw material gas.
[ 0 0 2 2 ]  [0 0 2 2]
反応器 2 0の底部には、 生成ガス流出管 2 0 bの一端側が接続されてお り、 この生成ガス流出管 2 0 bには、 上記の熱交換器 2 aが接続されてい る。 この熱交換器 2 aにおいて、 原料ガス供給管 2 0 a内の原料と、 生成 ガス流出管 2 0 b内の反応生成物と原料とからなる混合物と、 の間におい て、 原料は加熱され、 混合物は冷却されて熱交換が行われるように構成さ れている。 この生成ガス流出管 2 0 bの他端側は、 後述の第 1の蒸留塔 3 0の側壁に接続されている。  One end of the product gas outflow pipe 20 b is connected to the bottom of the reactor 20, and the heat exchanger 2 a is connected to the product gas outflow pipe 20 b. In this heat exchanger 2a, the raw material is heated between the raw material in the raw material gas supply pipe 20a and the mixture of the reaction product and raw material in the generated gas outflow pipe 20b, The mixture is cooled so that heat exchange takes place. The other end side of the product gas outflow pipe 20 b is connected to a side wall of a first distillation column 30 described later.
[ 0 0 2 3 ]  [0 0 2 3]
反応器 2 0の内部には、 目的とする反応収率を得るのに必要な反応領域 例えば触媒層 2 2が上流側と下流側とに分割して設けられており、 上流側 の反応領域は、 第 1の触媒層 2 2 aにより第 1の反応領域として形成され 、 下流側の反応領域は、 第 2の触媒層 2 2 bにより第 2の反応領域として 形成されている。 これら触媒層 2 2 ( 2 2 a , 2 2 b ) は、 多数の図示し ないガス供給孔が形成されたサポート 2 3により支持されている。  In the reactor 20, a reaction region necessary for obtaining a desired reaction yield, for example, a catalyst layer 22 is divided into an upstream side and a downstream side, and the upstream reaction region is The first catalyst layer 2 2a is formed as a first reaction region, and the downstream reaction region is formed by the second catalyst layer 2 2b as a second reaction region. These catalyst layers 2 2 (2 2 a, 2 2 b) are supported by a support 23 having a large number of gas supply holes (not shown).
[ 0 0 2 4 ]  [0 0 2 4]
反応器 2 0内の第 1の触媒層 2 2 a と第 2の触媒層 2 2 bとの間の領域 には、 反応器 2 0内の混合物をクェンチ流体により冷却するためのクェン チゾーン Qが設けられている。 このクェンチゾーン Qにおける反応器 2 0 の側面には、 反応生成物の一部をクェンチ流体としてクェンチゾーンに供 給する手段であるクェンチ流体供給管 2 4が接続されており、 このクェン チ流体供給管 2 4は、 反応器 2 0内のタエンチゾーン Qの上方側の第 1の 触媒層 2 2 aに近接する部位において、 クェンチ流体を均一に分散供給す るための複数の吐出孔 2 4 bが形成されたスプレー部 2 4 aに接続されて いる。 In the region between the first catalyst layer 2 2 a and the second catalyst layer 2 2 b in the reactor 20, there is a quench zone Q for cooling the mixture in the reactor 20 with the quench fluid. Is provided. A quench fluid supply pipe 24, which is a means for supplying a part of the reaction product as a quench fluid to the quench zone, is connected to the side surface of the reactor 20 in the quench zone Q. The quench fluid supply pipe 2 4 uniformly distributes and supplies the quench fluid at a portion close to the first catalyst layer 2 2 a above the Taenti zone Q in the reactor 20. Are connected to a spray section 2 4 a in which a plurality of discharge holes 24 4 b are formed.
[ 0 0 2 5 ]  [0 0 2 5]
また、 反応器 2 0の側面には温度検出部 2 9が設けられており、 反応器 2 0内にその一端側が突出して、 タエンチゾーン Qで冷却された混合物の 温度を例えば第 2の触媒層 2 2 bの上部側付近において検出するように構 成されている。 この温度検出部 2 9には、 制御部 3が接続されており、 こ の制御部 3は、 温度検出部 2 9の検出温度に基づいて、 後述の流量調整バ ルブ 2 7により原料ガスの温度が反応に適した温度範囲となるように、 ク ェンチ流体の流量を制御するように構成されている。  Further, a temperature detector 29 is provided on the side surface of the reactor 20, and one end side thereof protrudes into the reactor 20, and the temperature of the mixture cooled in the Taenti zone Q is set, for example, as the second catalyst layer 2. It is configured to detect near the upper side of 2b. A controller 3 is connected to the temperature detector 29, and the controller 3 detects the temperature of the raw material gas by a flow rate adjusting valve 27 described later based on the temperature detected by the temperature detector 29. Is configured to control the flow rate of the quench fluid so that the temperature range is suitable for the reaction.
反応器 2 0の後段には、 反応器 2 0から得られた混合物から目的とする 反応生成物を取り出し、 その一部をクェンチ流体として反応器 2 0に供給 するための設備が設けられ、 図 1には例えばジメチルエーテルを目的物と して得るための 2本の蒸留塔 3 0、 4 0を含む設備が設けられている。  In the subsequent stage of the reactor 20, equipment for taking out the target reaction product from the mixture obtained from the reactor 20 and supplying a part of it as a quench fluid to the reactor 20 is provided. For example, 1 includes equipment including two distillation columns 30 and 40 for obtaining dimethyl ether as a target product.
[ 0 0 2 6 ]  [0 0 2 6]
第 1の蒸留塔 3 0は、 未反応の原料と反応生成物とからなる混合物から 、 目的物を分離精製するためのものであり、 塔頂部には冷却手段である目 的物取り出し管 3 1が接続され、 下端部には排出管 3 2の一端側が接続さ れている。 目的物取り出し管 3 1から排出された目的物は、 製品として系 外に取り出されるが、 その一部がこの目的物取り出し管 3 1から分岐した 既述のクェンチ流体供給管 2 4により、 クェンチ流体として既述のクェン チゾーン Qに戻されるように構成されている。 クェンチ流体供給管 2 4に は、 流量調整バルブ 2 7が介設されている。  The first distillation column 30 is for separating and purifying a target product from a mixture comprising unreacted raw materials and reaction products, and a target product take-out pipe 3 1 which is a cooling means at the top of the column. And one end of the discharge pipe 32 is connected to the lower end. The target discharged from the target take-out pipe 3 1 is taken out of the system as a product, but a part of it is branched from this target take-out pipe 31 and the above-mentioned quench fluid supply pipe 2 4 It is configured to be returned to the quench zone Q described above. A flow rate adjusting valve 2 7 is interposed in the quench fluid supply pipe 2 4.
[ 0 0 2 7 ]  [0 0 2 7]
既述の排出管 3 2の他端側は、 第 2の蒸留塔 4 0の側壁に接続されてい る。 この第 2の蒸留塔 4 0は、 上記の第 1の蒸留塔 3 0において目的物が 取り除かれた混合物から未反応の原料を分離精製するためのものであり、 塔頂部には原料排出管 4 1の一端側が接続され、 下端部には排出管 4 2が 接続されている。 原料排出管 4 1の他端側は、 既述の蒸発器 2 bの上流側 の原料ガス供給管 20 aに接続されており、 未反応の原料を戻して再使用 するように構成されている。 排出管 4 2は、 混合物から目的物及び未反応 の原料が取り除かれた後に残った副生成物や不純物などを廃棄するための ものであり、 これらは、 系外に排出される。 The other end of the above-described discharge pipe 32 is connected to the side wall of the second distillation column 40. This second distillation column 40 is for separating and purifying unreacted raw material from the mixture from which the target product has been removed in the first distillation column 30 described above, and at the top of the column is a raw material discharge pipe 4 One end of 1 is connected, and a discharge pipe 4 2 is connected to the lower end. The other end of the raw material discharge pipe 4 1 is the upstream side of the previously described evaporator 2 b. The raw material gas supply pipe 20a is connected to the unreacted raw material for reuse. The discharge pipe 42 is for discarding by-products and impurities remaining after the target product and unreacted raw materials are removed from the mixture, and these are discharged outside the system.
[0028]  [0028]
続いて、 上述の反応装置 2を運転する方法について、 図 1及び図 2を参 照して説明する。  Subsequently, a method of operating the above-described reaction apparatus 2 will be described with reference to FIGS.
一つの物質あるいは複数の物質で構成される液体原料は、 前段に設けら れた蒸発器 2 bで気化され、 また、 熱交換器 2 aにおいて、 反応器 20か ら取り出された未反応の原料と反応生成物とからなる混合物との間で熱交 換が行われて、 温度 T 1に加熱される。  The liquid raw material composed of one substance or a plurality of substances is vaporized in the evaporator 2 b provided in the preceding stage, and unreacted raw material taken out from the reactor 20 in the heat exchanger 2 a. And a mixture of the reaction product and heat exchange is performed, and the mixture is heated to a temperature T1.
しかる後、 原料ガスは、 原料ガス供給管 20 aを介して反応器 20に供 給され、 この反応器 20内を上から下方向に流れていく。 そして、 第 1の 触媒層 2 2 a内で以下の式 ( 1 ) の平衡反応により、 目的物を含む反応生 成物が生成し、 この反応生成物と未反応の原料ガスとを含んだ混合物のガ スとなる。  Thereafter, the raw material gas is supplied to the reactor 20 through the raw material gas supply pipe 20a, and flows through the reactor 20 from the top to the bottom. Then, a reaction product containing the target product is produced in the first catalyst layer 2 2 a by the equilibrium reaction of the following formula (1), and a mixture containing this reaction product and the unreacted raw material gas. It becomes a gas.
原料ガス = 反応生成物 (目的物 (+副生成物) ) + 反応熱 · ( 1)  Source gas = reaction product (target product (+ by-product)) + reaction heat · (1)
[00 29]  [00 29]
この時生じる反応熱により、 混合物のガスの温度が上昇して温度 T 2に なる。  The reaction heat generated at this time raises the temperature of the gas in the mixture to a temperature T2.
ジメチルエーテルを製造する場合には、 液体原料であるメタノールが気 化し、 第 1の触媒層 2 2 a内にて下記 (2) 式の平衡反応によりジメチル エーテルと水とが生成される。  In the case of producing dimethyl ether, methanol, which is a liquid raw material, is vaporized, and dimethyl ether and water are generated in the first catalyst layer 22a by an equilibrium reaction of the following equation (2).
2 CH30H = CH30CH3 +H20 + ΔΗ · · 2 CH30H = CH30CH3 + H20 + ΔΗ
(2) (2)
厶 H =— 2 3. 4 k J /m o 1  厶 H = — 2 3.4 k J / m o 1
[00 30]  [00 30]
続いて、 クェンチゾーン Qにおいて、 スプレー部 24 aからタエンチ流 体を供給すると、 このタエンチ流体と前段の触媒層 2 2 aの発熱反応によ り高温 (T 2 ) になった混合物のガスとが混ざり合い、 混合物の温度が T 3になる。 このタエンチ流体は、 当該反応装置 2で得られた反応生成物の 一部からなる流体であり、 液体状あるいは気体状で供給される。 ジメチル エーテルを製造する場合には、 タエンチ流体は例えば気体であるジメチル エーテルが用いられる。 Next, in Quench Zone Q, Taenti flow from spray section 24a When the body is supplied, the Taenchi fluid and the gas of the mixture that has become high temperature (T 2) due to the exothermic reaction of the previous catalyst layer 2 2 a mix, and the temperature of the mixture becomes T 3. This Taenchi fluid is a fluid consisting of a part of the reaction product obtained in the reactor 2, and is supplied in liquid or gaseous form. When producing dimethyl ether, for example, dimethyl ether which is a gas is used as the Taenti fluid.
このように反応生成物の一部をクェンチ流体として供給することにより 、 第 2の触媒層 2 2 b内において、 上記の式 ( 1 ) 、 (2 ) の右側の反応 生成物の量が多くなるので、 式 ( 1 ) 、 (2 ) の平衡反応が原料側に偏り 、 目的物が生成する反応が抑えられるので、 上記の反応が穏やかに進んで いくこととなる。  By supplying a part of the reaction product as a quench fluid in this way, the amount of the reaction product on the right side of the above formulas (1) and (2) increases in the second catalyst layer 2 2 b. Therefore, the equilibrium reaction of the formulas (1) and (2) is biased toward the raw material side, and the reaction for generating the target product is suppressed, so that the above reaction proceeds gently.
[ 0 0 3 1 ]  [0 0 3 1]
こう して冷却された混合物のガス、 より詳しくはクェンチ流体を含んだ 混合物は、 第 2の触媒層 2 2 bに供給され、 第 2の触媒層 2 2 bにおいて 同様の反応により、 穏やかに反応生成物が生成していく。 この反応生成物 と未反応の原料とからなる混合物は、 この第 2の触媒層 2 2 bにおける反 応で生じる反応熱により温度 T 4に上昇する。  The gas of the mixture thus cooled, more specifically the mixture containing the quench fluid, is supplied to the second catalyst layer 2 2 b and reacts gently by the same reaction in the second catalyst layer 2 2 b. A product is produced. The mixture of the reaction product and the unreacted raw material rises to a temperature T 4 due to the reaction heat generated by the reaction in the second catalyst layer 22 b.
その後、 混合物は、 生成ガス流出管 2 0 bを介して反応器 2 0から取り 出されて、 熱交換器 2 aにおいて原料との間で熱交換が行われる。  Thereafter, the mixture is taken out from the reactor 20 through the product gas outlet pipe 20 b, and heat exchange is performed with the raw material in the heat exchanger 2 a.
[ 0 0 3 2 ]  [0 0 3 2]
そして、 ジメチルエーテルを製造する場合を例にとってこれ以降のフロ 一を説明すると、 反応器 2 0から排出された反応生成物であるジメチルェ 一テル及び水と未反応原料であるメタノールとからなる混合物は、 第 1の 蒸留塔 3 0に供給されて、 目的物であるジメチルエーテルが分離精製され る。 混合物から分離精製されたジメチルエーテルは、 目的物取り出し管 3 1から取り出されて、 目的物取り出し管 3 1の管壁などに放熱し、 既述の 温度 T 2以下の温度となり、 一部がクェンチ流体供給管 2 4を介してクェ ンチ流体として反応器 2 0に戻される。 残りのジメチルエーテルは、 製品 として系外に取り出される。 [ 0 0 3 3 ] Then, the flow after this will be explained by taking the case of producing dimethyl ether as an example. The mixture of dimethyl ether, which is a reaction product discharged from the reactor 20 and water, and methanol, which is an unreacted raw material, is It is supplied to the first distillation column 30 to separate and purify the target dimethyl ether. The dimethyl ether separated and purified from the mixture is taken out from the target take-out pipe 31 and dissipates heat to the pipe wall of the target take-out pipe 31 and becomes the temperature T 2 or less, and part of it is a quench fluid. It is returned to the reactor 20 through the supply pipe 24 as a quench fluid. The remaining dimethyl ether is taken out of the system as a product. [0 0 3 3]
ジメチルエーテルが取り除かれた混合物は、 第 1の蒸留塔 3 0の下方側 から排出されて第 2の蒸留塔 4 0に供給され、 この第 2の蒸留塔 4 0にお いて未反応の原料であるメタノールが分離精製される。 既述のように、 未 反応の原料は、 原料ガス供給管 2 0 aに戻されて、 原料貯留源 4から供給 される原料と共に再度反応器 2 0に供給される。 また、 目的物及び未反応 の原料が取り除かれた副生成物である廃棄物、 この例では水は系外に排出 される。  The mixture from which dimethyl ether has been removed is discharged from the lower side of the first distillation column 30 and supplied to the second distillation column 40, and is an unreacted raw material in the second distillation column 40. Methanol is separated and purified. As described above, the unreacted raw material is returned to the raw material gas supply pipe 20 a and supplied again to the reactor 20 together with the raw material supplied from the raw material storage source 4. In addition, waste, which is a by-product from which the target product and unreacted raw materials have been removed, in this example, water is discharged out of the system.
[ 0 0 3 4 ]  [0 0 3 4]
ここで、 触媒層 2 2 bの入り口の温度 T 3が温度検出部 2 9により検出 され、 その温度検出値に応じて制御部 3及び流量調整バルブ 2 7を介して クェンチ流体の供給流量が制御され、 以つて触媒層 2 2 bの入口温度 T 3 の安定化が図られているが、 この入口温度 T 3がある変動幅で変動するこ とは避けられない。 しカゝし、 本発明では、 クェンチ流体として反応生成物 を用いているので、 既述のように、 平衡反応が原料側に偏り 目的物が生成 する反応が抑えられることから、 触媒層 2 2 bの出口温度 T 4に対する触 媒層 2 2 aの入口温度 T 1の影響が小さくなる。 即ち触媒層 2 2 aの入口 温度 T 1の変化に対し、 目的生成物への反応速度の変化が小さくなるので 、 触媒層 2 2 bの出口温度 T 4の変化が鈍感になり、 転化率の振れ幅が小 さくなる。  Here, the temperature T 3 at the inlet of the catalyst layer 2 2 b is detected by the temperature detection unit 29, and the supply flow rate of the quench fluid is controlled via the control unit 3 and the flow rate adjusting valve 2 7 according to the detected temperature value. Therefore, although the inlet temperature T 3 of the catalyst layer 2 2 b is stabilized, it is inevitable that the inlet temperature T 3 fluctuates within a certain fluctuation range. However, in the present invention, since the reaction product is used as the quench fluid, as described above, the equilibrium reaction is biased toward the raw material side, and the reaction in which the target product is generated is suppressed. The influence of the inlet temperature T 1 of the catalyst layer 2 2 a on the outlet temperature T 4 of b is reduced. That is, since the change in the reaction rate to the target product becomes smaller with respect to the change in the inlet temperature T1 of the catalyst layer 2 2a, the change in the outlet temperature T4 of the catalyst layer 2 2b becomes insensitive, and the conversion rate The swing width becomes smaller.
[ 0 0 3 5 ]  [0 0 3 5]
上述の実施の形態によれば、 原料を断熱型の反応器 2 0内に供給し、 発 熱を伴う平衡反応により 目的物を製造するにあたり、 原料の反応を行うた めの第 1の反応領域と第 2の反応領域との間にクェンチゾーン Qを設けて 、 このクェンチゾーン Qに第 2の反応領域から取り出した反応生成物の一 部を冷却してクェンチ流体として供給し、 原料と反応生成物とからなる混 合物を冷却するようにしている。 そのために、 既に詳述したように、 混合 物中の反応生成物の量が増えて、 平衡が原料側に偏り、 反応が穏やかに進 んでいくので、 反応器 2 0内の温度制御が容易になり、 結果として、 温度 上昇による予定しない副生成物の生成を抑えることができると共に、 温度 低下による収率の低減を抑えることができる。 更に触媒のコーキングを抑 えて、 触媒の寿命を長くすることができる。 更にまた反応装置 2における 急激な温度上昇 (暴走反応) を抑制することができ、 安全に反応装置 2を 運転することができる。 従って、 既存の方法に比べて反応器 2 0の構成を 簡略化することができ、 大型化が容易となり、 また反応器 2 0を構成する 部品数が少なくてすむ。 According to the above-described embodiment, the first reaction zone for reacting the raw materials when the raw materials are supplied into the adiabatic reactor 20 and the target product is produced by the equilibrium reaction with heat generation. A quench zone Q is provided between the first reaction zone and the second reaction zone, and a part of the reaction product taken out from the second reaction zone is cooled to the quench zone Q and supplied as a quench fluid. The mixture consisting of is cooled. For this reason, as already described in detail, the amount of reaction products in the mixture increases, the equilibrium is biased toward the raw material side, and the reaction proceeds moderately, making it easy to control the temperature in the reactor 20. As a result, temperature The generation of unintended by-products due to the rise can be suppressed, and the yield reduction due to the temperature decrease can be suppressed. Furthermore, catalyst coking can be suppressed and the life of the catalyst can be extended. Furthermore, rapid temperature rise (runaway reaction) in the reactor 2 can be suppressed, and the reactor 2 can be operated safely. Therefore, the configuration of the reactor 20 can be simplified as compared with the existing method, the size can be easily increased, and the number of parts constituting the reactor 20 can be reduced.
[ 0 0 3 6 ]  [0 0 3 6]
上記のクェンチ流体としては、 気体であっても良いし、 液体であっても 良い。 気体のクェンチ流体を用いる場合には、 蒸発潜熱を利用できないの で、 液体を用いる場合に比べて供給量を多くする必要があるが、 反応器 2 0内における反応生成物の量が多くなるので、 反応速度を抑える効果は大 きい。 一方、 液体のクェンチ流体を用いる場合には、 気体を用いる場合よ りも少ない供給量で混合物の温度を下げることができる。 尚、 例えば原料 の供給量が少なく、 反応による混合物の温度上昇が小さい場合には、 反応 生成物を冷却せずにタエンチ流体として供給しても良い。 そのような場合 であっても、 反応器 2 0内における反応生成物の量が多くなるので、 反応 速度が抑えられる。  The quench fluid may be a gas or a liquid. When using a gaseous quench fluid, the latent heat of vaporization cannot be used, so it is necessary to increase the amount of supply compared to the case of using liquid, but the amount of reaction products in the reactor 20 increases. The effect of suppressing the reaction rate is great. On the other hand, when a liquid quench fluid is used, the temperature of the mixture can be lowered with a smaller supply amount than when gas is used. For example, when the supply amount of the raw material is small and the temperature rise of the mixture due to the reaction is small, the reaction product may be supplied as a Taenti fluid without cooling. Even in such a case, the reaction rate can be suppressed because the amount of reaction products in the reactor 20 increases.
[ 0 0 3 7 ]  [0 0 3 7]
尚、 上記の例では、 触媒層 2 2を 2層としたが、 例えば図 3及び図 4に 示すように、 それ以上の触媒層があっても良い。 図 3は 3層の触媒層 (2 2 a、 2 2 b、 2 2 c ) 、 図 4は 5層の触媒層 (2 2 a、 2 2 b、 2 2 c 、 2 2 d、 2 2 e ) を備えた反応器 2 0を示している。 図 3、 図 4におい ても、 各触媒層 2 2間のクェンチゾーン Qにて、 温度検出部 2 9により混 合物の温度が検出されて、 スプレー部 2 4 aから供給されるクェンチ流体 の流量が調整される。 このような反応器 2 0でも、 上記の例と同様にクェ ンチ流体により反応速度が抑えられた状態で反応が進行していく。 このよ うに触媒層 2 2を複数層とすることで、 上記の例と同様の効果が得られる [ 0 0 3 8 ] In the above example, two catalyst layers 22 are used. However, for example, as shown in FIGS. 3 and 4, there may be more catalyst layers. Fig. 3 shows three catalyst layers (2 2 a, 2 2 b, 2 2 c), and Fig. 4 shows five catalyst layers (2 2 a, 2 2 b, 2 2 c, 2 2 d, 2 2 e ) Is shown. Also in Fig. 3 and Fig. 4, in the quench zone Q between each catalyst layer 2 2, the temperature of the mixture is detected by the temperature detector 2 9 and the flow rate of the quench fluid supplied from the spray 2 4 a Is adjusted. In such a reactor 20 as well, the reaction proceeds in a state where the reaction rate is suppressed by the quench fluid as in the above example. In this way, by making the catalyst layer 2 2 into a plurality of layers, the same effect as the above example can be obtained. [0 0 3 8]
また、 1基の反応器 2 0内に複数層の触媒層 2 2を設ける場合の他、 例 えば図 5、 図 6に示すように、 1層の触媒層 2 2を設けた反応器 2 0を複 数基接続するようにしても良い。 図 5、 図 6は、 このような反応器 2 0を それぞれ 3基、 5基接続した例を示しており、 各々の反応器 2 0間を接続 する生成ガス流出管 2 0 bには、 クェンチ流体供給管 2 4が接続されてい る。 更に、 このような反応器 2 0以外にも、 例えば図 7、 図 8に示すよう に、 少なく とも 1層の触媒層 2 2を設けた反応器 2 0を複数基組み合わせ て接続しても良い。 図 7は 1層の触媒層 2 2を設けた反応器 2 0と 2層の 触媒層 (2 2 a、 2 2 b ) を設けた反応器 2 0とを直列に接続した例を示 している。 図 8は、 2層の触媒層 (2 2 a、 2 2 b ) を設けた反応器 2 0 と 3層の触媒層 (2 2 a、 2 2 b、 2 2 c ) を設けた反応器 2 0とを直列 に接続した例を示している。 これらの触媒層 2 2間においても、 同様にク ェンチゾーン Qにてタエンチ流体が供給されるように構成されている。 こ のような構成においても、 上記の例と同様の効果が得られる。  In addition to the case where a plurality of catalyst layers 22 are provided in one reactor 20, as shown in FIGS. 5 and 6, for example, a reactor 20 provided with one catalyst layer 22. Multiple units may be connected. Fig. 5 and Fig. 6 show examples in which three and five such reactors 20 are connected, respectively, and the product gas outlet pipe 20b connecting the reactors 20 has a quench Fluid supply pipe 24 is connected. Further, in addition to such a reactor 20, for example, as shown in FIGS. 7 and 8, a plurality of reactors 20 provided with at least one catalyst layer 22 may be connected in combination. . Fig. 7 shows an example in which a reactor 20 provided with one catalyst layer 22 and a reactor 20 provided with two catalyst layers (22a, 22b) are connected in series. Yes. Figure 8 shows a reactor 20 with two catalyst layers (2 2 a, 2 2 b) and a reactor 2 with three catalyst layers (2 2 a, 2 2 b, 2 2 c) An example in which 0 is connected in series is shown. Similarly, between these catalyst layers 22, the Taenti fluid is also supplied in the quench zone Q. Even in such a configuration, the same effect as the above example can be obtained.
[ 0 0 3 9 ] .  [0 0 3 9].
上記の各例において、 各触媒層 2 2、 2 2間の全てにクェンチゾーン Q を設けることが好ましいが、 例えば温度の振れ幅が小さい場合などには、 クェンチゾーン Qの数を減らしても良く、 つまり少なく とも 1以上のクェ ンチゾーン Qがあれば良い。 図 9は、 既述の図 4に示した反応器 2 0にお いて、 上流側から 2番目の触媒層 2 2 bと 3番目の触媒層 2 2 c との間の クェンチゾーン Qを省いた例を示している。 このような反応器 2 0におい ても、 同様の効果が得られる。  In each of the above examples, it is preferable to provide a quench zone Q between the catalyst layers 2 2 and 2 2. However, for example, when the temperature fluctuation is small, the number of quench zones Q may be reduced. There should be at least one quench zone Q. Fig. 9 shows an example in which the quench zone Q between the second catalyst layer 2 2 b and the third catalyst layer 2 2 c from the upstream side is omitted in the reactor 20 shown in Fig. 4 described above. Is shown. The same effect can be obtained even in such a reactor 20.
[ 0 0 4 0 ]  [0 0 4 0]
また、 上記の例では、 クェンチ流体として系内の目的物を利用したが、 系外の目的物と同じ化合物をクェンチ流体として利用することもできる。 このような例として、 例えば図 1 0に示すように、 複数の反応装置 2を設 けて、 一方の反応装置 2から他方の反応装置 2にタエンチ流体を供給して も良い。 このような場合には、 一方の反応装置 2の目的物取り出し管 3 1 に、 他方の反応装置 2のクェンチ流体供給管 2 4が接続される。 尚、 以上 の図 3〜図 1 0においては、 図 1 と同じ構成については、 同じ符号を付し てある。 これらタエンチ流体である目的物には未反応の原料が混入してい ても良い。 In the above example, the object in the system is used as the quench fluid, but the same compound as the object outside the system can be used as the quench fluid. As such an example, as shown in FIG. 10, for example, a plurality of reaction apparatuses 2 may be provided, and the Taenchi fluid may be supplied from one reaction apparatus 2 to the other reaction apparatus 2. In such a case, the target object take-out pipe 3 1 of one reactor 2 Further, the quench fluid supply pipe 24 of the other reactor 2 is connected. 3 to 10 described above, the same components as those in FIG. 1 are denoted by the same reference numerals. Unreacted raw materials may be mixed in the target object, which is a Taenchi fluid.
[ 0 0 4 1 ]  [0 0 4 1]
更にクェンチ流体として目的物を利用する以外にも、 例えば原料から目 的物以外の反応生成物 (副生成物) が生成する場合 (目的物以外にも式 ( 1 ) の右辺側において生成する物質がある場合) には、 その反応生成物を タエンチ流体として利用しても良く、 例えばジメチルエーテルを得る反応 においては、 タエンチ流体として水を用いても良い。 その場合には、 図 1 1に示すように、 目的物の全量が目的物取り出し管 3 1から取り出されて 、 廃棄物の一部がタエンチ流体としてクェンチゾーン Qに戻されることと なる。 この場合においても、 上記の例と同様に式 (1 ) 、 (2 ) の右辺側 の反応生成物が増えることによって反応が抑制されるので、 反応が穏やか に進んでいき、 反応器 2 0の出口における混合物の温度の振れ幅が小さく なる。 また、 図 1 1では、 既述の図 1 と同じ構成については、 同じ符号を 付してある。  In addition to using the target substance as a quench fluid, for example, when a reaction product (by-product) other than the target substance is generated from the raw material (in addition to the target substance, a substance generated on the right side of the formula (1)) The reaction product may be used as a Taenti fluid. For example, in the reaction to obtain dimethyl ether, water may be used as the Taenti fluid. In that case, as shown in FIG. 11, the entire amount of the object is taken out from the object take-out pipe 31, and a part of the waste is returned to the quench zone Q as a Taenchi fluid. Even in this case, the reaction is suppressed by increasing the reaction product on the right side of the equations (1) and (2) in the same manner as in the above example. The fluctuation of the temperature of the mixture at the outlet is reduced. In Fig. 11, the same components as those in Fig. 1 are given the same reference numerals.
尚、 この副生成物と共に、 目的物をクェンチ流体として用いても良く、 例えばメタノールからジメチルエーテルを得る反応においては、 ジメチル エーテルと水とをクェンチ流体として用いても良い。 更に系外からのジメ チルエーテルをタエンチ流体として利用しても良い。  The target product may be used as a quench fluid together with this by-product. For example, in a reaction for obtaining dimethyl ether from methanol, dimethyl ether and water may be used as the quench fluid. Further, dimethyl ether from outside the system may be used as a Taenti fluid.
[ 0 0 4 2 ]  [0 0 4 2]
また、 上記の各例では、 クェンチ流体として反応生成物や目的物と同じ 系外の化合物を用いたが、 反応速度が抑えられる程度に反応生成物や目的 物と同じ系外の化合物を含んでいるのであれば、 このクェンチ流体には、 未反応の原料が含まれていても良い。 その場合には、 例えば図 1において 、 バルブが介設された分岐管 (いずれも図示せず) の一端側を原料排出管 4 1に接続し、 この分岐管の他端側をクェンチ流体供給管 2 4に接続して 、 このバルブの開度を調整することにより未反応の原料を積極的にクェン チ流体の一部として用いても良い。 In each of the above examples, the same out-of-system compound as the reaction product and target product was used as the quench fluid, but the reaction product and the same out-of-system compound as the target product were included to the extent that the reaction rate was suppressed. If so, this quench fluid may contain unreacted raw materials. In that case, for example, in FIG. 1, one end of a branch pipe (both not shown) provided with a valve is connected to the raw material discharge pipe 41, and the other end of this branch pipe is connected to the quench fluid supply pipe. 2 Connect to 4 and adjust the opening of this valve to actively unreacted raw materials It may be used as a part of the fluid.
[ 0 0 4 3 ]  [0 0 4 3]
更に、 上記の各例においては、 制御部 3によりタエンチ流体の流量を制 御して、 反応器 2 0の入口温度 T 3を安定化させているが、 タエンチ流体 の流量を一定にし、 制御部 3を介して例えば前述の分岐管のバルブ及び流 量調整バルブ 2 7の開度を調整して、 クェンチ流体に含まれる反応生成物 や目的物と同じ系外の化合物の割合、 つまりタエンチ流体の組成を調整す ることにより入口温度 T 3を安定化させるようにしても良い。 また、 クェ ンチ流体供給管 2 4に図示しない冷却機構を設けて、 クェンチ流体の流量 を一定にして、 制御部 3を介してこのクェンチ流体の温度を調整すること により、 反応器 2 0の入口温度 T 3を安定化させるようにしても良い。 更 にまた、 制御部 3を介してタエンチ流体の流量と、 クェンチ流体の組成と 、 タエンチ流体の温度と、 の複数を組み合わせて調整することにより反応 器 2 0の入口温度 T 3を安定化させるようにしても良い。  Further, in each of the above examples, the control unit 3 controls the flow rate of the Taenti fluid to stabilize the inlet temperature T3 of the reactor 20. However, the control unit For example, by adjusting the opening degree of the aforementioned branch pipe valve and flow rate adjustment valve 27 through 3, the reaction product contained in the quench fluid and the ratio of compounds outside the same system as the target product, that is, the Taenti fluid The inlet temperature T 3 may be stabilized by adjusting the composition. In addition, a cooling mechanism (not shown) is provided in the quench fluid supply pipe 24, the flow rate of the quench fluid is kept constant, and the temperature of the quench fluid is adjusted via the control unit 3. The temperature T3 may be stabilized. Furthermore, the inlet temperature T 3 of the reactor 20 is stabilized by adjusting the flow rate of the Taench fluid, the composition of the Quench fluid, and the temperature of the Taench fluid in combination through the control unit 3. You may do it.
[ 0 0 4 4 ]  [0 0 4 4]
本発明の目的物の温度制御方法および反応装置は、 上記のように、 発熱 を伴う平衡反応により 目的物を生成する場合、 例えば後述の実施例におけ るメタノールからの脱水によるジメチルエーテルの合成反応や、 水素と窒 素とからのアンモニアの合成反応などに適用してもよい。 また、 前記合成 反応の他にも、 発熱を伴う平衡反応例えば酸化反応、 水素化反応その他の 反応に適用しても良いし、 液相におけるこれらの反応に適用しても良い。 実施例  As described above, the temperature control method and the reaction apparatus for the target product of the present invention, when producing the target product by an equilibrium reaction with exotherm, for example, synthesis reaction of dimethyl ether by dehydration from methanol in the examples described later, It may also be applied to ammonia synthesis reaction from hydrogen and nitrogen. In addition to the synthesis reaction, the reaction may be applied to an equilibrium reaction with exotherm such as an oxidation reaction, a hydrogenation reaction, or other reactions, or to these reactions in a liquid phase. Example
[ 0 Ό 4 5 ]  [0 Ό 4 5]
本発明の方法の効果を確かめるために行った実験について、 以下に説明 する。 この実施例では、 上記の原料としてメタノールを用いて、 既述の ( 2 ) 式における発熱を伴う平衡反応により 目的物としてジメチルエーテル を得る実験を行った。  Experiments conducted to confirm the effect of the method of the present invention will be described below. In this example, an experiment was conducted in which methanol was used as the raw material, and dimethyl ether was obtained as a target product by an equilibrium reaction accompanied by heat generation in the above-described equation (2).
また、 以下の各実験において標準条件を設定しているが、 この標準条件 は、 最終触媒層出口におけるメタノールの転化率及び各触媒層の出口の温 度をそれぞれの標準条件において等しくなるように設定した条件である。 In addition, standard conditions are set in each of the following experiments. These standard conditions are based on the methanol conversion at the final catalyst layer outlet and the temperature at the outlet of each catalyst layer. This is a condition in which the degree is set to be equal in each standard condition.
[0046]  [0046]
(実施例 1)  (Example 1)
上記の反応を行うための装置としては、 既述の図 1に示した反応装置 2 を用いて、 反応器 20の入口及び触媒層 22 a、 22 bのそれぞれの入口 と出口とに温度計を設けた。  As an apparatus for performing the above reaction, using the reaction apparatus 2 shown in FIG. 1 described above, thermometers are installed at the inlet of the reactor 20 and the inlets and outlets of the catalyst layers 22a and 22b, respectively. Provided.
この反応装置 2において、 流量 F 1のメタノールを供給し、 タエンチ流 体としてジメチルエーテルをタエンチゾーン Qに流量 F 2で供給し、 また 未反応のメタノールを流量 F 3で戻した。 副生成物である水については、 既述の排出管 42から排出した。 尚、 各流量 F 1〜F 3は、 それぞれの流 体の質量流量を表している。  In this reactor 2, methanol at a flow rate F 1 was supplied, dimethyl ether was supplied as a Taenti fluid to the Taenti zone Q at a flow rate F2, and unreacted methanol was returned at a flow rate F3. By-product water was discharged from the discharge pipe 42 described above. In addition, each flow rate F1-F3 represents the mass flow rate of each fluid.
[0047]  [0047]
実験条件としては、 反応器 20の出口におけるメタノールの転化率及び 温度がそれぞれ 75%、 340 となるように以下のように各条件を決定 して、 この条件を標準条件とした。 また、 反応器 20の入口の原料の温度 を上記の標準条件から上下に 1でずつ変えて、 それ以外の条件については 標準条件と同じ条件にて実験を行った。 そして、 それぞれの条件において 反応器 20の出口の温度 (第 2の触媒層 22 bの出口側の温度) および、 また反応器 20の出口におけるメタノールの転化率を比較した。 尚、 クェ ンチ流体であるジメチルエーテルの流量 F 2及び原料排出管 4 1から戻さ れる未反応の原料であるメタノールの流量 F 3の流量については標準条件 と同じ流量とした。  The experimental conditions were determined as follows so that the methanol conversion and temperature at the outlet of the reactor 20 were 75% and 340, respectively, and these conditions were used as standard conditions. In addition, the temperature of the raw material at the inlet of the reactor 20 was changed up and down by 1 from the above standard conditions, and the other conditions were the same as the standard conditions. Then, the temperature at the outlet of the reactor 20 (temperature at the outlet side of the second catalyst layer 22b) and the methanol conversion rate at the outlet of the reactor 20 were compared under each condition. The flow rate of the dimethyl ether flow rate F 2 as the quench fluid and the flow rate of the methanol flow rate F 3 as the unreacted raw material returned from the raw material discharge pipe 41 were the same as the standard conditions.
[0048]  [0048]
(標準条件)  (Standard conditions)
反応器 20の入口温度 : 279  Reactor 20 inlet temperature: 279
反応器 20の入口の圧力 : 1. 55MP a (ゲージ圧)  Pressure at reactor 20 inlet: 1. 55 MPa (gauge pressure)
原料の流量に対するクェンチ量の比 (F 2/ (F 1 +F 3) ) : 0 Quench ratio to raw material flow (F 2 / (F 1 + F 3)): 0
. 1 8 . 1 8
クェンチジメチルエーテル条件: 1. 5MP a (ゲージ圧) ジメチルエーテル飽和蒸気 ( 1 0Quenchy dimethyl ether condition: 1.5MPa (gauge pressure) Dimethyl ether saturated vapor (1 0
0%) 0%)
[004 9]  [004 9]
(実験結果)  (Experimental result)
実験結果を表 1に示す  The experimental results are shown in Table 1.
(表 1 )  (table 1 )
Figure imgf000021_0001
Figure imgf000021_0001
[00 50]  [00 50]
その結果、 反応器 20の入口の温度 (第 1の触媒層 2 2 aの入口側の温 度) の変化に応じて、 反応器 20内の温度も変化していた。 また、 反応器 20の入口の温度の変化よりも、 反応器 20の出口の温度の変化の方が大 きくなることが分かった。 反応器 20内の温度が高くなると転化率が増加 し、 また反応器 20内の温度が低くなると転化率が減少していた。  As a result, the temperature in the reactor 20 also changed according to the change in the temperature at the inlet of the reactor 20 (temperature on the inlet side of the first catalyst layer 2 2a). It was also found that the change in the temperature at the outlet of the reactor 20 was larger than the change in the temperature at the inlet of the reactor 20. The conversion rate increased as the temperature in the reactor 20 increased, and the conversion rate decreased as the temperature in the reactor 20 decreased.
[00 5 1 ]  [00 5 1]
(比較例 1— 1 )  (Comparative Example 1-1)
続いて、 比較例 1― 1 として、 既述の図 1 5の複数の反応器 1 02 1 0 2間に熱交換器 1 03を介設した装置に蒸留塔 30 40を接続して実 験を行った。 この装置を図 1 2に示す。 尚、 既述の図 1 と同じ構成の部位 には同じ符号を付している。 この装置においても、 上流側の反応器 (第 1 反応器) 1 0 2及び下流側の反応器 (第 2反応器) 1 0 2.のそれぞれの入 口及び出口の原料の温度を測定した。  Subsequently, as Comparative Example 1-1, an experiment was conducted by connecting a distillation column 30 40 to an apparatus in which a heat exchanger 103 was interposed between the plurality of reactors 1 02 1 0 2 in FIG. 15 described above. went. This device is shown in Fig. 12. The parts having the same configuration as in FIG. Also in this apparatus, the temperatures of the raw materials at the inlet and outlet of the upstream reactor (first reactor) 10 2 and the downstream reactor (second reactor) 10 2 were measured.
この装置では、 蒸発器 2 bにおいて気化させた後の原料ガスを供給路 2 00から熱交換器 1 03に供給し、 この熱交換器 1 03において、 この原 料ガスと、 上流側の反応器 1 0 2における反応により高温となった原料と 反応生成物とからなる混合物と、 の間で熱交換を行うように (混合物を冷 却するように) 構成した。 尚、 この熱交換器 1 0 3において熱交換した ( 加熱された) 後の原料ガスを、 上流側の反応器 1 0 2の手前側において、 原料ガス供給管 20 aに戻すようにした。 また、 この熱交換器 1 03へ供 給される流体以外の原料や反応生成物などの流れについては、 既述の図 1 の反応装置 2と同様にした。 In this apparatus, the raw material gas after being vaporized in the evaporator 2 b is supplied to the supply path 2. 00 to the heat exchanger 1 03, and in this heat exchanger 1 03, a mixture of the raw material gas and the raw material and reaction product that have become high temperature due to the reaction in the upstream reactor 1 0 2 It was configured to perform heat exchange between and (to cool the mixture). The raw material gas after the heat exchange (heated) in the heat exchanger 10 3 was returned to the raw material gas supply pipe 20a on the front side of the upstream reactor 10 2. The flow of raw materials and reaction products other than the fluid supplied to the heat exchanger 103 was the same as that of the reactor 2 shown in FIG.
[00 5 2]  [00 5 2]
そして、 上記の実施例 1 と同様に、 下流側の反応器 1 02の出口におけ るメタノールの転化率及び原料の温度がそれぞれ 7 5%、 340 となる ように以下の各条件を決定して、 この条件を標準条件とした。 また、 同様 に上流側の反応器 1 0 2の入口の原料の温度を標準条件から上下に 1 tず つ変えて、 それ以外の条件については標準条件と同じ条件で実験を行った  Then, similarly to Example 1 above, the following conditions were determined so that the methanol conversion rate and the raw material temperature at the outlet of the downstream reactor 102 were 75% and 340, respectively. This condition was set as a standard condition. Similarly, the temperature of the raw material at the inlet of the upstream reactor 102 was changed 1 t up and down from the standard conditions, and the other conditions were the same as the standard conditions.
[00 5 3] [00 5 3]
そして、 同様に下流側の反応器 1 0 2の出口の温度を測定し、 また転化 率を比較した。 尚、 原料排出管 4 1から戻されるメタノールの量は、 標準 条件と同じ流量とした。 また、 熱交換器 1 03におけるクェンチ流体と混 合物との間の熱交換量 (伝熱量) については、 上流側の反応器 1 02の入 口の温度を変えても変化しないものとした。  Similarly, the temperature at the outlet of the downstream reactor 102 was measured, and the conversion rate was compared. The amount of methanol returned from the raw material discharge pipe 41 was the same as the standard flow rate. In addition, the heat exchange amount (heat transfer amount) between the quench fluid and the mixture in the heat exchanger 103 is assumed not to change even if the temperature at the inlet of the upstream reactor 102 is changed.
[00 54]  [00 54]
(標準条件)  (Standard conditions)
反応器 1 0 2の入口温度: 2 7 9  Reactor 1 0 2 inlet temperature: 2 7 9
反応器 20の入口の圧力 : 1. 5 5MP a (ゲージ圧)  Pressure at the inlet of reactor 20: 1.5 5 MPa (gauge pressure)
[00 5 5]  [00 5 5]
(実験結果)  (Experimental result)
実験結果を表 2に示す。  Table 2 shows the experimental results.
(表 2) (Table 2)
Figure imgf000023_0001
Figure imgf000023_0001
[ 0 0 5 6 ]  [0 0 5 6]
その結果、 実施例 1 と同様に、 上流側の温度変化に応じて、 各部の温度 及び転化率が変化していたが、 その変化量は、 実施例 1の変化量よりも多 くなつていた。 このことから、 実施例 1では、 クェンチ流体として反応生 成物であるジメチルエーテルを用いることにより、 反応が抑制され、 反応 器 2 0の内部の温度や転化率の制御性が向上していることが分かる。  As a result, as in Example 1, the temperature and conversion rate of each part changed according to the temperature change on the upstream side, but the amount of change was larger than the amount of change in Example 1. . Therefore, in Example 1, the reaction was suppressed by using dimethyl ether, which is a reaction product, as the quench fluid, and the controllability of the temperature and conversion rate inside the reactor 20 was improved. I understand.
[ 0 0 5 7 ]  [0 0 5 7]
(比較例 1— 2 )  (Comparative Example 1-2)
次に、 既述の特許文献 1に記載の装置と同様の構成の装置として、 図 1 3に記載の装置を用いて実験を行った。 この装置は、 概略的には図 1の反 応器 2 0とほぼ同様の構成の反応器 3 0 0を備えているが、 原料クェンチ 供給路 2 0 0からタエンチ流体として液体状の原料を供給するように構成 されている。 尚、 この図 1 3においても、 図 1 と同様の構成の部位につい ては同じ符号を付している。  Next, an experiment was performed using the apparatus shown in FIG. 13 as an apparatus having the same configuration as the apparatus described in Patent Document 1 described above. This apparatus is generally provided with a reactor 300 having substantially the same configuration as the reactor 20 shown in FIG. 1, but a liquid raw material is supplied as a Taenchi fluid from the raw material quench supply passage 20 0. It is configured to In FIG. 13 as well, parts having the same configuration as in FIG.
[ 0 0 5 8 ]  [0 0 5 8]
また、 上記の実験と同様に、 反応器 3 0 0の出口側におけるメタノール の転化率及び原料の温度がそれぞれ 7 5 %、 3 4 0 °Cとなるように以下の 各条件を決定して、 この条件を標準条件とし、 同様に反応器 3 0 0の入口 側の温度を上下に 1 °Cずつ変えて実験を行った。 尚、 この場合においても 、 原料排出管 4 1から戻される未反応のメタノールの流量及びクェンチ流 体の流量は一定とした。 この例においても、 F 1はメタノール供給量、 F 2はクェンチメタノールの供給量、 F 3はリサイクルのメタノール流量で ある。 Similarly to the above experiment, the following conditions were determined so that the methanol conversion rate and the raw material temperature at the outlet side of the reactor 300 would be 75% and 34 ° C, respectively. The experiment was conducted by changing the temperature on the inlet side of the reactor 300 up and down by 1 ° C in the same manner with this condition as the standard condition. In this case as well, the unreacted methanol flow rate and the quench fluid flow rate returned from the raw material discharge pipe 41 were constant. Also in this example, F 1 is the methanol supply, F 2 is the supply amount of quench methanol, and F 3 is the methanol flow rate for recycling.
[ 0 0 5 9 ]  [0 0 5 9]
(標準条件)  (Standard conditions)
反応器 3 0 0の入口温度: 2 7 9 °C  Reactor 30 0 inlet temperature: 2 7 9 ° C
反応器 3 0 0の入口の圧力 : 1. 5 5 MP a (ゲージ圧) 原料の流量に対するタエンチ量の比 (F 2 Z (F 1 + F 3 ) ) : 0 Reactor 30 0 inlet pressure: 1.5 5 MPa (gauge pressure) Ratio of Taenti to raw material flow rate (F 2 Z (F 1 + F 3)): 0
. 0 9 . 0 9
クェンチメタノール条件: 1 . 6 MP a (ゲージ圧) 、 沸点におけ る液体  Quenchy methanol conditions: 1.6 MPa (gauge pressure), liquid at boiling point
[ 0 0 6 0 ]  [0 0 6 0]
(実験結果)  (Experimental result)
実験結果を表 3に示す。  Table 3 shows the experimental results.
(表 3 )  (Table 3)
Figure imgf000024_0001
Figure imgf000024_0001
[ 0 0 6 1 ]  [0 0 6 1]
この結果においても、 反応器 3 0 0の入口の温度により、 反応器 3 0 0 の内部の各部の温度及び転化率が変化していたが、 比較例 1 一 1 と同様に 、 その変化量は、 実施例 1よりも大きくなつていた。  Also in this result, the temperature and the conversion rate of each part inside the reactor 300 were changed by the temperature at the inlet of the reactor 300, but the amount of change was the same as in Comparative Example 1-11. It was larger than Example 1.
[ 0 0 6 2 ]  [0 0 6 2]
以上の結果から、 タエンチ流体として原料を用いる場合には、 平衡反応 が反応生成物側に偏り、 目的生成物への反応速度が高くなってしまうので 、 発熱量が多くなり、 結果として反応器 20の出口における混合物の温度 のばらつきが大きくなつてしまうが、 反応生成物の一部をクェンチ流体と して用いることで、 目的生成物への反応を抑えて、 反応器 20の出口にお ける混合物の温度の振れ幅を小さくすることができることが分かった。 From the above results, when raw materials are used as Taenti fluid, the equilibrium reaction is biased toward the reaction product, and the reaction rate to the target product is increased. As a result, the calorific value increases, and as a result, the temperature variation of the mixture at the outlet of the reactor 20 becomes large. By using a part of the reaction product as a quench fluid, the reaction to the target product is performed. It was found that the temperature fluctuation of the mixture at the outlet of the reactor 20 can be reduced.
[0063]  [0063]
(実施例 2)  (Example 2)
次に、 既述の図 3に示したように、 触媒層 22を 3層とした場合、 反応 器 20の出口の温度と転化率とがどのように変化するか確認するための実 験を行った。  Next, as shown in FIG. 3 described above, an experiment was conducted to confirm how the temperature at the outlet of the reactor 20 and the conversion rate change when the catalyst layer 22 has three layers. It was.
実験には、 図 3の反応器 20を用いて、 反応器 20の出口におけるメタ ノールの転化率及び温度がそれぞれ 75%、 340 となるように以下の ように各条件を決定して、 この条件を標準条件とした。 また、 反応器 20 の入口の原料の温度を同様に上下に 1 ずつ変えて、 それ以外の条件につ いては標準条件と同じ条件にて実験を行った。 そして、 それぞれの条件に おいて反応器 20の各触媒層 22の入口の温度と出口の温度とを測定し、 また反応器 20の出口におけるメタノールの転化率を比較した。 尚、 クェ ンチ流体であるジメチルエーテルの流量 F 2及び原料排出管 4 1から戻さ れる未反応の原料であるメタノールの流量 F 3の流量については標準条件 と同じ流量とした。  In the experiment, using the reactor 20 in FIG. 3, the conditions were determined as follows so that the methanol conversion rate and temperature at the outlet of the reactor 20 were 75% and 340, respectively. Was the standard condition. Similarly, the temperature of the raw material at the inlet of the reactor 20 was changed one by one up and down, and the other conditions were the same as the standard conditions. Then, the temperature at the inlet and the temperature at the outlet of each catalyst layer 22 of the reactor 20 were measured under the respective conditions, and the methanol conversion rate at the outlet of the reactor 20 was compared. The flow rate of the dimethyl ether flow rate F 2 as the quench fluid and the flow rate of the methanol flow rate F 3 as the unreacted raw material returned from the raw material discharge pipe 41 were the same as the standard conditions.
[0064]  [0064]
(標準条件)  (Standard conditions)
反応器 20の入口温度: 279  Reactor 20 inlet temperature: 279
反応器 20の入口の圧力 : 1. 55MP a (ゲージ圧)  Pressure at reactor 20 inlet: 1. 55 MPa (gauge pressure)
原料の流量に対するタエンチ量の比 (F 2/ (F 1 +F 3) ) : 0 Ratio of Taenti amount to raw material flow rate (F 2 / (F 1 + F 3)): 0
. 18 . 18
クェンチジメチルエーテル条件: 1. 5MP a (ゲージ圧)  Quenchy dimethyl ether condition: 1.5MPa (gauge pressure)
ジメチルエーテル飽和蒸気 (10 Dimethyl ether saturated steam (10
0%) 0%)
[0065] (実験結果) [0065] (Experimental result)
実験結果を表 4に示す。  Table 4 shows the experimental results.
(表 4 )  (Table 4)
Figure imgf000026_0001
Figure imgf000026_0001
[ 0 0 6 6 ]  [0 0 6 6]
その結果、 生成物をクェンチ流体として用いることで、 実験例 1の結果 と同様に、 反応器 2 0の入口側の温度が変化しても、 反応器 2 0の出口側 の温度と転化率との変化を抑えることができることが分かった。  As a result, by using the product as a quench fluid, even if the temperature on the inlet side of the reactor 20 changes, the temperature and the conversion rate on the outlet side of the reactor 20 are similar to those in Experimental Example 1. It was found that this change can be suppressed.

Claims

請求の範囲 The scope of the claims
1 . 反応領域を複数に分割し、 分割された複数の反応領域が一つまたは 二つ以上の断熱型反応器に割り当てられ、 原料を断熱型反応器内に供給し 、 発熱を伴う平衡反応により 目的物を製造するときに行う温度制御方法に おいて、  1. Divide the reaction area into multiple parts, and the divided reaction areas are assigned to one or more adiabatic reactors, feed the raw materials into the adiabatic reactors, and generate an equilibrium reaction with exotherm. In the temperature control method performed when manufacturing the target object,
原料を 1段目の反応領域に供給して、 目的物を含む反応生成物を得るェ 程と、  Supplying raw materials to the first-stage reaction zone to obtain a reaction product containing the target product;
次いで、 前段側の反応領域から取り出された反応生成物と未反応の原料 とからなる混合物を順次後段側の反応領域に供給し、 目的物を含む反応生 成物を得る工程と、  Next, a step of sequentially supplying a mixture of the reaction product extracted from the reaction zone on the front stage side and the unreacted raw material to the reaction zone on the rear stage side to obtain a reaction product containing the target product;
前記反応領域同士の間の少なく とも 1力所において、 前記混合物にクェ ンチ流体を供給して、 混合することにより当該混合物を冷却する工程と、 を含み、  Supplying a quench fluid to the mixture and cooling the mixture by mixing at at least one force between the reaction zones; and
前記クェンチ流体は、 前記クェンチ流体の供給領域よりも後段側の反応 領域で得られた前記反応生成物の一部及び前記断熱型反応器以外で得られ た前記目的物と同じ化合物の少なく とも一方を含むことを特徴とする反応 器内部の温度制御方法。  The quench fluid is at least one of a part of the reaction product obtained in the reaction zone downstream of the quench fluid supply zone and the same compound as the target obtained in other than the adiabatic reactor. A method of controlling the temperature inside the reactor characterized by comprising:
2 . 前記クェンチ流体は、 最終段の反応領域にて得られた反応生成物を 冷却した後の反応生成物の一部を含むことを特徴とする請求項 1に記載の 反応器内部の温度制御方法。  2. The temperature control inside the reactor according to claim 1, wherein the quench fluid includes a part of the reaction product after cooling the reaction product obtained in the reaction region of the final stage. Method.
3 . 前記複数の反応領域は、 各々触媒層により構成されていることを特 徴とする請求項 1に記載の反応器内部の温度制御方法。  3. The temperature control method inside a reactor according to claim 1, wherein each of the plurality of reaction regions is constituted by a catalyst layer.
4 . 分割された前記反応領域は 3個であることを特徴とする請求項 1に 記載の反応器内部の温度制御方法。  4. The method for controlling the temperature inside the reactor according to claim 1, wherein the number of the divided reaction regions is three.
5 . 前記冷却する工程は、 前記クェンチ流体の供給量と組成と温度との 少なく とも一つを調整して行うことを特徴とする請求項 1に記載の反応器 内部の温度制御方法。  5. The method for controlling the temperature inside the reactor according to claim 1, wherein the cooling is performed by adjusting at least one of a supply amount, a composition, and a temperature of the quench fluid.
6 . 前記発熱を伴う平衡反応は、 メタノールを原料として、 水と目的物 であるジメチルエーテルとからなる反応生成物を得る反応である請求項 1 に記載の反応器内部の温度制御方法。 6. The equilibrium reaction accompanied by heat generation is a reaction for obtaining a reaction product comprising water and a target dimethyl ether using methanol as a raw material. The temperature control method inside the reactor as described in 1.
7 . 前記タエンチ流体は、 ジメチルエーテルとジメチルエーテル及び水 の混合流体とのいずれかを含むことを特徴とする請求項 1に記載の反応器 内部の温度制御方法。  7. The method for controlling the temperature inside the reactor according to claim 1, wherein the Taenchi fluid includes any one of dimethyl ether and a mixed fluid of dimethyl ether and water.
8 . 原料を断熱型反応器内に供給し、 発熱を伴う平衡反応により 目的物 を製造する反応装置において、  8. In a reactor that feeds raw materials into an adiabatic reactor and produces the target product by an equilibrium reaction with exotherm,
反応領域を複数に分割し、 分割された複数の反応領域が割り当てられる 一つまたは二つ以上の断熱型反応器と、  One or two or more adiabatic reactors, each of which is divided into a plurality of reaction zones and assigned with a plurality of divided reaction zones;
1段目の反応領域に原料を供給する手段と、  Means for supplying the raw material to the first stage reaction zone;
前記反応領域同士の間の少なく とも 1力所に介在し、 前段側の反応領域 から取り出された前記反応生成物と未反応の原料とからなる混合物にクェ ンチ流体を供給し、 混合することにより当該混合物を冷却するためのタエ ンチゾーンと、  By supplying and mixing a quench fluid to a mixture of the reaction product and unreacted raw material that is interposed in at least one power point between the reaction regions and taken out from the reaction region on the front side. A tenth zone for cooling the mixture;
前記タエンチゾーンよりも後段側の反応領域で得られた前記反応生成物 の一部及び前記断熱型反応器以外で得られた前記目的物と同じ化合物の少 なく とも一方を含む流体をクェンチ流体としてクェンチゾーンに供給する 手段と、 を備えたことを特徴とする反応装置。  A fluid containing at least one of a part of the reaction product obtained in the reaction zone downstream of the Taenchi zone and at least one of the same compounds as the object obtained outside the adiabatic reactor is used as a quench fluid. And a means for supplying to the reactor.
9 . 最終段の反応領域において得られた反応生成物を冷却するための冷 却手段を備え、  9. A cooling means is provided for cooling the reaction product obtained in the reaction zone of the final stage,
前記タエンチ流体は、 前記冷却手段により冷却された後の前記反応生成 物の一部を含む流体であることを特徴とする請求項 8に記載の反応装置。 9. The reaction apparatus according to claim 8, wherein the Taenchi fluid is a fluid containing a part of the reaction product after being cooled by the cooling means.
1 0 . 前記複数の反応領域は、 各々触媒層により構成されていることを 特徴とする請求項 8に記載の反応装置。 10. The reaction apparatus according to claim 8, wherein each of the plurality of reaction regions includes a catalyst layer.
1 1 . 分割された前記反応領域は 3個であることを特徴とする請求項 8 に記載の反応装置。  1 1. The reaction apparatus according to claim 8, wherein the number of the divided reaction regions is three.
1 2 . 前記タエンチ流体の供給量と組成と温度との少なく とも一つを調 整して、 前記クェンチ流体を前記クェンチゾーンに供給するような制御部 を備えたことを特徴とする請求項 8に記載の反応装置。  12. The apparatus according to claim 8, further comprising a control unit that adjusts at least one of a supply amount, a composition, and a temperature of the Taenchi fluid and supplies the Quench fluid to the Quench zone. The reactor described.
,  ,
1 3 . 前記発熱を伴う平衡反応は、 メタノールを原料として、 水 と目的物であるジメチルエーテルとからなる反応生成物を得る反応である 請求項 8に記載の反応装置。 1 3. The equilibrium reaction with exotherm is carried out using methanol as a raw material and water. 9. The reaction apparatus according to claim 8, wherein the reaction apparatus is a reaction for obtaining a reaction product comprising dimethyl ether as a target product.
1 4 . 前記クェンチ流体は、 ジメチルエーテルとジメチルエーテル及び 水の混合流体とのいずれかを含むことを特徴とする請求項 8に記載の反応 装置。  14. The reaction apparatus according to claim 8, wherein the quench fluid includes any one of dimethyl ether and a mixed fluid of dimethyl ether and water.
1 5 . 反応領域を複数に分割し、 分割された複数の反応領域が一つまた は二つ以上の断熱型反応器に割り当てられ、 メタノールを断熱型反応器内 に供給し、 脱水縮合反応によりジメチルエーテルを製造する方法において メタノールを 1段目の反応領域に供給して、 ジメチルエーテルと水とか らなる反応生成物を得る工程と、  1 5. Divide the reaction area into multiple parts, and the divided reaction areas are assigned to one or more adiabatic reactors. Methanol is fed into the adiabatic reactors and dehydration condensation reaction is performed. In the method for producing dimethyl ether, methanol is supplied to the first stage reaction zone to obtain a reaction product consisting of dimethyl ether and water;
次いで、 前段側の反応領域から取り出された反応生成物と未反応のメタ ノールとからなる混合物を順次後段側の反応領域に供給し、 ジメチルエー テルと水とからなる反応生成物を得る工程と、  Next, a step of sequentially supplying a mixture of the reaction product taken out from the reaction zone on the front stage side and unreacted methanol to the reaction zone on the rear stage side to obtain a reaction product consisting of dimethyl ether and water; ,
前記反応領域同士の間の少なく とも 1力所において、 前記混合物にクェ ンチ流体を供給して、 混合することにより当該混合物を冷却する工程と、 を含み、  Supplying a quench fluid to the mixture and cooling the mixture by mixing at at least one force between the reaction zones; and
前記クェンチ流体は、 前記タエンチ流体の供給領域よりも後段側の反応 領域で得られたジメチルエーテル及び水の少なく とも一方と、 前記断熱型 反応器以外で得られたジメチルエーテルと、 のいずれかを含むことを特徴 とするジメチルエーテルの製造方法。  The quench fluid includes at least one of dimethyl ether and water obtained in a reaction region downstream from the supply region of the taenchi fluid, and dimethyl ether obtained outside the adiabatic reactor. A process for producing dimethyl ether, characterized in that
1 6 . 前記冷却する工程は、 前記クェンチ流体の供給量と組成と温度と の少なく とも一つを調整して行うことを特徴とする請求項 1 5に記載のジ メチルエーテルの製造方法。  16. The method for producing dimethyl ether according to claim 15, wherein the cooling step is performed by adjusting at least one of a supply amount, a composition, and a temperature of the quench fluid.
1 7 . 前記クェンチ流体は、 最終段の反応領域にて得られ、 冷却した後 のジメチルエーテル及び水のいずれかを含むことを特徴とする請求項 1 5 に記載のジメチルエーテルの製造方法。  17. The method for producing dimethyl ether according to claim 15, wherein the quench fluid includes either dimethyl ether or water after being obtained in the reaction zone in the final stage and cooled.
1 8 . 前記複数の反応領域は、 各々触媒層により構成されていることを 特徴とする請求項 1 5に記載のジメチルエーテルの製造方法。 16. The method for producing dimethyl ether according to claim 15, wherein each of the plurality of reaction regions is constituted by a catalyst layer.
1 9 . 分割された前記反応領域は 3個であることを特徴とする請求項 1 5に記載のジメチルエーテルの製造方法。 16. The method for producing dimethyl ether according to claim 15, wherein the number of the divided reaction regions is three.
2 0 . 前記クェンチ流体は、 ジメチルエーテルに混在している副生成物 である水と未反応のメタノールとを除去した後のジメチルエーテルの一部 であることを特徴とする請求項 1 5に記載のジメチルエーテルの製造方法  20. The dimethyl ether according to claim 15, wherein the quench fluid is a part of dimethyl ether after removing water and unreacted methanol which are by-products mixed in dimethyl ether. Manufacturing method
PCT/JP2008/073496 2007-12-18 2008-12-17 Method of regulating temperature in reaction vessel, reactor, and process for producing dimethyl ether WO2009078490A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2008339360A AU2008339360B2 (en) 2007-12-18 2008-12-17 Method of regulating temperature in reaction vessel, reactor, and process for producing dimethyl ether
CN200880121793.5A CN101903323A (en) 2007-12-18 2008-12-17 The manufacture method of the temperature-controlled process of inside reactor, reaction unit and dme
KR1020107013378A KR101242251B1 (en) 2007-12-18 2008-12-17 Temperature controlling method of the inside of reactor, reaction apparatus and method for manufacturing dimethyl ether

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007326460A JP5512083B2 (en) 2007-12-18 2007-12-18 A method for controlling a reaction rate inside a reactor, a reaction apparatus, and a method for producing dimethyl ether.
JP2007-326460 2007-12-18

Publications (1)

Publication Number Publication Date
WO2009078490A1 true WO2009078490A1 (en) 2009-06-25

Family

ID=40795600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073496 WO2009078490A1 (en) 2007-12-18 2008-12-17 Method of regulating temperature in reaction vessel, reactor, and process for producing dimethyl ether

Country Status (7)

Country Link
JP (1) JP5512083B2 (en)
KR (1) KR101242251B1 (en)
CN (1) CN101903323A (en)
AU (1) AU2008339360B2 (en)
MY (1) MY159603A (en)
TW (1) TWI421125B (en)
WO (1) WO2009078490A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9187393B2 (en) 2010-02-04 2015-11-17 Haldor Topsoe A/S Process for the preparation of dimethyl ether
WO2019101505A1 (en) * 2017-11-21 2019-05-31 Casale Sa Chemical reactor with adiabatic catalytic beds and axial flow
RU2775262C2 (en) * 2017-11-21 2022-06-28 Касале Sa Chemical reactor with adiabatic catalyst layers and axial flow
CN114939390A (en) * 2022-06-15 2022-08-26 詹海敏 Multi-functional reation kettle for chemical production

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2311554A1 (en) * 2009-10-07 2011-04-20 Linde Aktiengesellschaft Method for reaction control of exothermic reaction and apparatus therefore
US8617385B2 (en) 2011-06-06 2013-12-31 Jeffrey N. Daily Controlling temperature within a catalyst bed in a reactor vessel
DE102011114228A1 (en) * 2011-09-23 2013-03-28 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Cooled reactor for the production of dimethyl ether from methanol
DE102012018341A1 (en) * 2012-09-15 2014-05-15 Thyssenkrupp Uhde Gmbh Process for the preparation of dimethyl ether and apparatus suitable therefor
CN106478383B (en) * 2015-08-28 2019-07-09 中国石油化工股份有限公司 The method and consersion unit of preparing dimethyl ether from methanol and the method and system of methanol-to-olefins
CN108786664A (en) * 2018-05-21 2018-11-13 合肥嘉科工贸有限公司 A kind of multistage thermostatic type cold shocking type methanol synthesis reactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5082048A (en) * 1973-10-31 1975-07-03
JPS51101963A (en) * 1975-03-06 1976-09-08 Teijin Ltd
JP2004298768A (en) * 2003-03-31 2004-10-28 Jgc Corp Method for operating gas-phase reaction apparatus
JP2004298769A (en) * 2003-03-31 2004-10-28 Jgc Corp Gas phase reaction apparatus
JP2007505734A (en) * 2003-09-20 2007-03-15 エスケイ コーポレイション Catalyst for synthesis of dimethyl ether and process for producing the catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5082048A (en) * 1973-10-31 1975-07-03
JPS51101963A (en) * 1975-03-06 1976-09-08 Teijin Ltd
JP2004298768A (en) * 2003-03-31 2004-10-28 Jgc Corp Method for operating gas-phase reaction apparatus
JP2004298769A (en) * 2003-03-31 2004-10-28 Jgc Corp Gas phase reaction apparatus
JP2007505734A (en) * 2003-09-20 2007-03-15 エスケイ コーポレイション Catalyst for synthesis of dimethyl ether and process for producing the catalyst

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9187393B2 (en) 2010-02-04 2015-11-17 Haldor Topsoe A/S Process for the preparation of dimethyl ether
RU2572557C2 (en) * 2010-02-04 2016-01-20 Хальдор Топсеэ А/С Method for obtaining dimethyl ether
WO2019101505A1 (en) * 2017-11-21 2019-05-31 Casale Sa Chemical reactor with adiabatic catalytic beds and axial flow
US10960374B2 (en) 2017-11-21 2021-03-30 Casale Sa Chemical reactor with adiabatic catalytic beds and axial flow
RU2775262C2 (en) * 2017-11-21 2022-06-28 Касале Sa Chemical reactor with adiabatic catalyst layers and axial flow
CN114939390A (en) * 2022-06-15 2022-08-26 詹海敏 Multi-functional reation kettle for chemical production

Also Published As

Publication number Publication date
CN101903323A (en) 2010-12-01
AU2008339360A1 (en) 2009-06-25
AU2008339360B2 (en) 2013-01-31
JP5512083B2 (en) 2014-06-04
TW200936236A (en) 2009-09-01
KR101242251B1 (en) 2013-03-11
TWI421125B (en) 2014-01-01
MY159603A (en) 2017-01-13
JP2009149531A (en) 2009-07-09
KR20100087388A (en) 2010-08-04

Similar Documents

Publication Publication Date Title
WO2009078490A1 (en) Method of regulating temperature in reaction vessel, reactor, and process for producing dimethyl ether
KR101356318B1 (en) Method for Controlling Hydrogenation
JP5605921B2 (en) Purification method of acrylonitrile
JP5605922B2 (en) Purification method of acrylonitrile
CN209138593U (en) For carrying out the reactor of exothermic equilibrium reaction
KR101902952B1 (en) Method and reaction equipment for preparing dimethyl ether and olefin from methanol
EP3490961B1 (en) Oxidative dehydrogenation (odh) of ethane
CN106732201B (en) Catalyst for Oxidative Coupling of Methane reactor
RU2732570C2 (en) Control of ammoxidation reactor
EP0994091B1 (en) Production process for methanol
CN100391913C (en) Method and apparatus for reducing decomposition byproducts in a methanol to olefin reactor system
JP5717280B2 (en) Purification method of acrylonitrile
MX2012009393A (en) Reactor.
JP2004298768A (en) Method for operating gas-phase reaction apparatus
US3106581A (en) Conversion of ethyl alcohol to acetaldehyde
CN105732252A (en) Method for producing a product containing c3h6 and c2h4
US20160008784A1 (en) Temperature management in chlorination processes and systems related thereto
EP1444184B1 (en) Process for the hydrogenation of acetone
JPH0925248A (en) Production of 1,2-dichloroethane
JP5785728B2 (en) Unsaturated nitrile distillation method and distillation apparatus, and unsaturated nitrile production method
KR20210045980A (en) Method for producing methanol in a reactor with a bypass
JP2003286233A (en) Method for producing methylamines
CN112661606A (en) Method for producing methanol by multistage synthesis
KR20040094699A (en) Reactor System and Method For Highly Exothermic Reactions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880121793.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08861985

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008339360

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20107013378

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008339360

Country of ref document: AU

Date of ref document: 20081217

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PI 2010002825

Country of ref document: MY

122 Ep: pct application non-entry in european phase

Ref document number: 08861985

Country of ref document: EP

Kind code of ref document: A1