WO2009075611A2 - Тепловая панель - Google Patents

Тепловая панель Download PDF

Info

Publication number
WO2009075611A2
WO2009075611A2 PCT/RU2008/000764 RU2008000764W WO2009075611A2 WO 2009075611 A2 WO2009075611 A2 WO 2009075611A2 RU 2008000764 W RU2008000764 W RU 2008000764W WO 2009075611 A2 WO2009075611 A2 WO 2009075611A2
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
longitudinal axis
elements
fins
finning
Prior art date
Application number
PCT/RU2008/000764
Other languages
English (en)
French (fr)
Other versions
WO2009075611A3 (ru
Inventor
Aleksandr Andreevich Khamitov
Original Assignee
Aleksandr Andreevich Khamitov
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aleksandr Andreevich Khamitov filed Critical Aleksandr Andreevich Khamitov
Publication of WO2009075611A2 publication Critical patent/WO2009075611A2/ru
Publication of WO2009075611A3 publication Critical patent/WO2009075611A3/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • F24S2010/751Special fins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Definitions

  • the invention relates to solar technology and can be used in solar collectors, as well as in heating and cooling devices for domestic and industrial use.
  • thermal panel of the solar collector made in the form of a stationary heat-absorbing plate in thermal contact with the coolant, the working surface of which is made in the form of alternating triangular protrusions and depressions (patent RU No. 2032861, publ. 1995).
  • the disadvantage of this design is the low strength and low durability of the structure, due to the use of the plate as a housing for the coolant. Another disadvantage is the small heat-absorbing surface.
  • the closest in technical essence to the claimed one is the solar panel thermal panel containing channels for the coolant in the form of a series of finned tubes, tube finning elements in the form of a tightly covering shell pipe with two longitudinal ribs located in the same plane.
  • the pipe fin element is made of two sheet plates with half-cylindrical recesses tightly covering the pipe around the perimeter. The flat parts of the sheet plates are connected by welding and form two longitudinal ribs (patent RU M.23489, publ. 2002).
  • the disadvantage of this design is the low ability to heat absorption of dissipated energy due to the small area of the absorbing surface and low efficiency with lateral irradiation.
  • the aim of the invention is to increase the efficiency of the thermal panel by increasing the surface absorbing radiation and dissipated energy during daylight hours, increasing the uniformity of heating of the coolant in the pipes during daylight hours when using a thermal panel in solar collectors, by improving heat transfer conditions when using a thermal panel in heating and cooling appliances.
  • finning elements made in the form of a shell, tightly covering the pipe for the coolant, and having longitudinal ribs placed around the circumference of the shell symmetrically to the plane passing through the longitudinal axis of the pipe, the finning elements are located on the pipe relative to the finning elements on adjacent pipes with an offset in the direction of the longitudinal axis of the pipe, are made with ends beveled at an angle to the longitudinal axis of the pipe, and contain at least three longitudinal ribs.
  • the fins installed on one pipe are located relative to the fins on an adjacent pipe with an offset along the longitudinal axis of the pipe and additionally around the longitudinal axis of the pipe, while the longitudinal ribs of the fins are placed around the circumference of the shell symmetrically to two planes passing through the longitudinal axis of the pipe .
  • the claimed combination of features namely, the location of the fins on the pipe relative to the fins on adjacent pipes with an offset in the direction of the longitudinal axis of the pipe, the implementation of the fins with ends, beveled at an angle to the longitudinal axis of the pipe, if there are at least fins on the shells , three longitudinal ribs placed around the circumference of the shell symmetrically to the plane passing through the longitudinal axis of the pipe, allows you to:
  • the location of the finning elements on one pipe relative to the heat-absorbing elements on the adjacent pipe with an offset around their longitudinal axis allows even more to minimize shadows from lateral irradiation, makes the heat-exchange surfaces of the finning elements more open for absorbing scattered energy, for accessing air convecting along the ribs, and for transferring infrared radiation.
  • the distance between adjacent pipes thereby increasing the number of finning elements per unit area, and, therefore, increasing the total area of heat exchange surfaces and efficiency.
  • the implementation of the elements of the fins with ribs symmetrical to two planes allows to increase the number of ribs, that is, to increase the area of the heat exchange surface, which also increases the efficiency.
  • Figure l shows a thermal panel with fin elements having one plane of symmetry.
  • FIG. Figure 2 shows a finning element with seven edges symmetrical to one plane of symmetry (cross section).
  • FIG. Figure 3 shows a rib element with three ribs symmetrical to one plane of symmetry (cross section).
  • FIG. 4 shows a thermal panel with fin elements having three ribs (side view).
  • FIG. 5 shows a thermal panel with fins located on adjacent pipes with a 180 ° turn (side view).
  • FIG. Figure 6 shows a finning element with ribs symmetrical to two planes of symmetry (cross section).
  • the thermal panel contains channels for the coolant in the form of a series of pipes 1, on which are located the elements of the fins 2, placed on adjacent pipes with an offset along the longitudinal axis of the pipe (Fig. L).
  • the elements of the fins 2 are made in the form of a shell 3, tightly covering the pipe 1 for the coolant and having longitudinal ribs 4, 5, 6, 7.
  • the ends of the elements of the fins 2 are made at an angle ⁇ and ⁇ to the longitudinal axis of the pipe 1 (Fig.
  • the ribs of the fins elements can be located around the circumference of the shell 3 symmetrically to one (Fig. 2, 3) or two (Fig. 6) planes passing through the longitudinal axis of the pipe 1.
  • the implementation of the fins with one plane of symmetry is necessary for uniform heating of the coolant during light days and preferably when used in flat collectors, as well as in heating and cooling appliances.
  • the implementation of the finning elements with two planes of symmetry allows, without reducing the uniformity of radiation and heat transfer of the heat exchange surfaces, to increase the number of ribs, to install finning elements on one pipe with a turn around the longitudinal axis of the pipe relative to the finning elements on adjacent pipes. This reduces the distance between the pipes 1 and, accordingly, increases the density of heat-absorbing elements.
  • a thermal panel is preferable when used in solar collectors with concentrators providing comprehensive irradiation of the heat transfer panel, as well as in heating and cooling devices.
  • the magnitude of the displacement of the finning elements on adjacent pipes the values of the angles ⁇ and ⁇ depend on the angle of inclination of the collector plane to the horizontal, on the orientation of the collector to the cardinal points.
  • the optimal values of the angles ⁇ and ⁇ are 45 °, and the displacement of the finning elements in adjacent rows is half their length.
  • the fins on the pipes can be deployed around the longitudinal axis of the pipe with the direction of the plane of symmetry of the fin element toward the maximum zenithal position of the sun.
  • Thermal panels can be made in various ways.
  • the fins 2 made of an aluminum profile are glued to the surface of the steel pipe 1 by means of heat-conducting glue. Due to the fact that the inner diameter of the shell 3 is slightly smaller than the diameter of the pipe 1, elastic thermal contact is provided, which is necessary to compensate for the difference in thermal expansion. The fixation of the fin element 2 in the direction of the transverse axis of the pipe 1 is ensured by the implementation of the contact surface with a length greater than half the circumference of the pipe.
  • the shell of the fin element is formed by the end sections 8 of the upper plate and the central recess 9 of the lower plates.
  • the ribs of the fin element are formed by the end sections 10 of the lower plate and the central part 11 of the upper plate.
  • a tightly pressed lower plate is welded or soldered to the pipe.
  • the end sections of the upper plate are welded along line 12 to the lower plate and pipe. After this, compression is made in the transverse direction of the rib formed by the central part of the upper plate, which ensures close thermal contact with the pipe.
  • the aluminum profile is cut at an angle.
  • a pipe is inserted into the fins and a pipe is burned with a diameter distribution of the pipe to tight elastic contact with the inner surface of the shell.
  • the fins can also be used casting of aluminum alloy.
  • fins can be assembled with the pipe by simultaneous injection molding onto the pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Photovoltaic Devices (AREA)
  • Central Heating Systems (AREA)

Abstract

В тепловой панели, выполненной в виде ряда оребренных труб для теплоносителя, элементы оребрения (2) расположены на трубе (1) относительно элементов оребрения на соседних трубах со смещением в направлении продольной оси трубы. Торцы элементов оребрения выполнены скошенными под углом углом (α и β) к продольной оси трубы. При этом элементы оребрения выполнены в виде обечайки (3), плотно охватывающей трубу, и имеющей, по меньшей мере, три продольных ребра (4, 5), расположенных по окружности обечайки симметрично плоскости, проходящей через продольную ось трубы. При использовании тепловой панели в солнечном коллекторе увеличивается площадь теплопоглощающей поверхности, открытая для доступа лучевой и рассеянной энергии, особенно при боковом облучении с любой стороны, что повышает КПД. При использовании тепловой панели в приборах отопления и охлаждения коммунально-бытовогого и промышленного назначения улучшаются условия теплообмена как конвекцией, так и радиацией инфракрасных излучений. Элементы оребрения могут быть дополнительно смещены вокруг продольной оси трубы. При этом продольные ребра размещены на обечайке симметрично двум плоскостям, проходящим через продольную ось трубы. Дополнительно увеличивается КПД.

Description

Тепловая панель
Изобретение относится к гелиотехнике и может быть использовано в солнечных коллекторах, а также в приборах отопления и охлаждения коммунально-бытового и промышленного назначения.
Известна тепловая панель солнечного коллектора, выполненная в виде находящейся в тепловом контакте с теплоносителем неподвижной теплопоглощающей пластины, рабочая поверхность которой выполнена в форме чередующихся треугольных выступов и впадин (патент RU No 2032861, публ. 1995г.).
Недостатком этой конструкции является низкая прочность и невысокая долговечность конструкции, обусловленная применением пластины в качестве корпуса для теплоносителя. Другим недостатком является небольшая теплопоглощающая поверхность.
Наиболее близкой по технической сути к заявляемой является тепловая панель солнечного коллектора, содержащая каналы для теплоносителя в виде ряда оребренных труб, элементы оребрения труб в форме плотно охватывающей трубу обечайки с двумя продольными ребрами, расположенными в одной плоскости. Элемент оребрения трубы выполнен из двух листовых пластин с выемками полуцилиндрической формы, плотно охватывающих трубу по периметру. Плоские части листовых пластин соединены сваркой и образуют два продольных ребра (патент RU M.23489, публ. 2002 г.).
Недостатком данной конструкции является низкая способность к теплопоглощению рассеянной энергии из-за малой площади поглощающей поверхности и невысокая эффективность при боковом облучении.
Целью изобретения является повышение КПД тепловой панели за счет увеличения поверхности, поглощающей лучевую и рассеянную энергию в течение светового дня, повышения равномерности нагрева теплоносителя в трубах в течение светового дня при использовании тепловой панели в солнечных коллекторах, за счет улучшения условий теплообмена при использовании тепловой панели в приборах отопления и охлаждения.
Для достижения цели в тепловой панели, содержащей каналы для теплоносителя в виде ряда оребренных труб, элементы оребрения, выполненные в виде обечайки, плотно охватывающей трубу для теплоносителя, и имеющей продольные ребра, размещенные по окружности обечайки симметрично плоскости, проходящей через продольную ось трубы, элементы оребрения расположены на трубе относительно элементов оребрения на соседних трубах со смещением в направлении продольной оси трубы, выполнены с торцами, скошенными под углом к продольной оси трубы, и содержат, по меньшей мере, три продольных ребра.
В частном случае элементы оребрения, установленные на одной трубе, расположены относительно элементов оребрения на соседней трубе со смещением вдоль продольной оси трубы и дополнительно вокруг продольной оси трубы, при этом продольные ребра элементов оребрения размещены по окружности обечайки симметрично двух плоскостей, проходящих через продольную ось трубы.
Заявленная совокупность признаков, а именно, расположение элементов оребрения на трубе относительно элементов оребрения на соседних трубах со смещением в направлении продольной оси трубы, выполнение элементов оребрения с торцами, скошенными под углом к продольной оси трубы, при наличии на обечайках элементов оребрения, по меньшей мере, трех продольных ребер, размещенных по окружности обечайки симметрично плоскости, проходящей через продольную ось трубы, позволяет:
- при использовании в солнечных коллекторах открыть теплопоглощающие поверхности элементов оребрения большей площади для одновременного доступа солнечных лучей и рассеянной энергии для бокового облучения с любой стороны, благодаря тому, что теплопередающая панель имеет симметричную развитую пространственную структуру, минимизирующую тени, накладываемые элементами оребрения друг на друга, что повышает эффективность поглощения как лучевой, так и рассеянной энергии, повышает равномерность нагрева труб для теплоносителя в течение светового дня и, таким образом, повышает КПД;
- при использовании в приборах отопления и охлаждения открыть теплообменные поверхности элементов оребрения для доступа конвективных потоков воздуха и для передачи инфракрасных излучений, что улучшает условия теплообмена на поверхностях элементов оребрения и, соответственно, повышает КПД.
Расположение элементов оребрения на одной трубе относительно теплопоглощающих элементов на соседней трубе со смещением вокруг их продольной оси позволяет еще более минимизировать тени от бокового облучения, делает более открытыми теплообменные поверхности элементов оребрения для поглощения рассеянной энергии, для доступа воздуха, конвектирующего вдоль ребер, и для передачи инфракрасных излучений. При этом можно сократить расстояние между соседними трубами, тем самым увеличить количество элементов оребрения на единице площади, и, следовательно, увеличить суммарную площадь теплообменных поверхностей и КПД. Выполнение элементов оребрения с ребрами, симметричными двум плоскостям, позволяет увеличить количество ребер, то есть увеличить площадь теплообменной поверхности, что также повышает КПД.
На фиг.l представлена тепловая панель с элементами оребрения, имеющими одну плоскость симметрии. На фиг. 2 представлен элемент оребрения с семью ребрами, симметричными одной плоскости симметрии (поперечное сечение). На фиг. 3 представлен элемент оребрения с тремя ребрами, симметричными одной плоскости симметрии (поперечное сечение). На фиг. 4 показана тепловая панель с элементами оребрения, имеющими три ребра (вид сбоку). На фиг. 5 показана тепловая панель с элементами оребрения, расположенными на соседних трубах с разворотом на 180° (вид сбоку). На фиг. 6 представлен элемент оребрения с ребрами, симметричными двум плоскостям симметрии (поперечное сечение).
Тепловая панель содержит каналы для теплоносителя в виде ряда труб 1, на которых расположены элементы оребрения 2, размещенные на соседних трубах со смещением вдоль продольной оси трубы (фиг.l). Элементы оребрения 2 выполнены в виде обечайки 3, плотно охватывающей трубу 1 для теплоносителя и имеющей продольные ребра 4, 5, 6, 7. Торцы элементов оребрения 2 выполнены под углом α и β к продольной оси трубы 1 (фиг. 1, 4, 5). Такое выполнение торцов элементов оребрения, размещенных на одной трубе, в совокупности со смещением элементов оребрения относительно элементов оребрения, расположенных на соседних трубах, при использовании в солнечных коллекторах открывает пространство для прямого и рассеянного облучения поверхности нижних ребер 7, средних ребер 5, 6 и верхних ребер 4 элементов оребрения 2 и открывает пространство для бокового облучения ребер элементов оребрения, размещенных на соседних трубах; при использовании в отопительных и охлаждающих приборах открывает теплообменные поверхности элементов оребрения для доступа конвективных потоков воздуха и для передачи инфракрасных излучений. '
Ребра элементов оребрения могут быть расположены по окружности оболочки 3 симметрично одной (фиг 2, 3) или двум (фиг. 6) плоскостям, проходящим через продольную ось трубы 1. Выполнение элементов оребрения с одной плоскостью симметрии необходимо для равномерности нагрева теплоносителя в течение светового дня и предпочтительно при использовании в плоских коллекторах, а также в отопительных и охлаждающих приборах.
Выполнение элементов оребрения с двумя плоскостями симметрии (фиг. 5, 6) позволяет без снижения равномерности облучения и теплопередачи теплообменных поверхностей увеличить количество ребер, устанавливать элементы оребрения на одной трубе с разворотом вокруг продольной оси трубы относительно элементов оребрения на соседних трубах. При этом уменьшается расстояние между трубами 1 и, соответственно, увеличивается плотность размещения теплопоглощающих элементов. Такая тепловая панель предпочтительна при использовании в солнечных коллекторах с концентраторами, обеспечивающими всестороннее облучение теплопередающей панели, а также в отопительных и охлаждающих приборах.
При использовании1 тепловай панели в солнечных коллекторах величина смещения элементов оребрения на соседних трубах, значения углов α и β зависят от угла наклона плоскости коллектора к горизонту, от ориентации коллектора к сторонам света. При оптимальном наклоне плоскости коллектора к горизонту и южной его ориентации оптимальное значение углов α и β составляет 45°, а смещение элементов оребрения в соседних рядах - половину их длины. В том случае, когда плоскость коллектора установлена с ориентацией, отличной от оптимального положения, соответствующего максимальному зенитальному положению солнца, элементы оребрения на трубах могут быть развернуты вокруг продольной оси трубы с направлением плоскости симметрии элемента оребрения в сторону максимального зенитального положения солнца.
Тепловые панели могут быть изготовлены различными способами.
Монтаж тепловых панелей, изображенных на фиг. 1, 2, осуществляется следующим образом. Элементы оребрения 2, изготовленные из алюминиевого профиля, наклеивают на поверхность стальной трубы 1 посредством теплопроводного клея. Благодаря тому, что внутренний диаметр обечайки 3 немного меныпе.диаметра трубы 1, обеспечивается упругий тепловой контакт, который необходим для компенсации разницы в тепловом расширении. Фиксацию элемента оребрения 2 в направлении поперечном оси трубы 1 обеспечивают выполнением поверхности контакта длиной, большей половины окружности трубы.
Для изготовления сборных элементов оребрения (фиг. 3) тепловой панели (фиг. 4) используют две гнутые пластины. Обечайка элемента оребрения образована концевыми участками 8 верхней пластины и центральной выемкой 9 нижней пластины. Ребра элемента оребрения образованы концевыми участками 10 нижней пластины и центральной частью 11 верхней пластины. При монтаже приваривают или припаивают к трубе плотно прижатую нижнюю пластину. Затем концевые участки верхней пластины приваривают по линии 12 к нижней пластине и трубе. После этого производят сжатие в поперечном направлении ребра, образованного центральной частью верхней пластины, чем достигают плотный тепловой контакт с трубой.
При изготовлении элементов оребрения тепловой панели (фиг.5, 6) алюминиевый профиль разрезают под углом. В элементы оребрения вставляют трубу и производят дорнование трубы с раздачей трубы по диаметру до плотного упругого контакта с внутренней поверхностью обечайки.
В качестве элемента оребрения может быть использована также отливка из алюминиевого сплава.
При небольшой длине труб, например, при изготовлении радиаторов отопления, элементы оребрения могут быть получены в сборе с трубой одновременной заливкой на трубу литьем под давлением.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Тепловая панель, содержащая каналы для теплоносителя в виде ряда оребренных труб, элементы оребрения труб, выполненные в виде обечайки, плотно охватывающей трубу для теплоносителя, и имеющей продольные ребра, размещенные по окружности обечайки симметрично плоскости, проходящей через продольную ось трубы, отличающаяся тем, что элементы оребрения расположены на трубе относительно элементов оребрения на соседних трубах со смещением в направлении продольной оси трубы, выполнены с торцами, скошенными под углом к продольной оси трубы, и содержат, по меньшей мере, три продольных ребра.
2. Тепловая панель по пункту 1, отличающаяся тем, что элементы оребрения, установленные на одной трубе, расположены относительно элементов оребрения на соседней трубе со смещением вокруг продольной оси трубы, при этом продольные ребра элементов оребрения размещены по окружности обечайки симметрично двух плоскостей, проходящих через продольную ось трубы.
PCT/RU2008/000764 2007-12-12 2008-12-12 Тепловая панель WO2009075611A2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2007146546 2007-12-12
RU2007146546/06A RU2355954C1 (ru) 2007-12-12 2007-12-12 Тепловая панель

Publications (2)

Publication Number Publication Date
WO2009075611A2 true WO2009075611A2 (ru) 2009-06-18
WO2009075611A3 WO2009075611A3 (ru) 2009-07-30

Family

ID=40756014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2008/000764 WO2009075611A2 (ru) 2007-12-12 2008-12-12 Тепловая панель

Country Status (2)

Country Link
RU (1) RU2355954C1 (ru)
WO (1) WO2009075611A2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706159B (zh) * 2009-11-10 2012-06-13 广东工业大学 太阳能/空气能双源一体式集热器
WO2013071691A1 (zh) * 2011-11-14 2013-05-23 Wang Bin 一种叶片式太阳能-空气能双能集热器
WO2023132746A1 (es) * 2022-01-06 2023-07-13 Bricio Arzubide Alvaro Fabian Colector solar polimérico

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT403844B (de) * 1993-12-23 1998-05-25 Goedl Albin Absorber für sonnenkollektoren
US6082535A (en) * 1999-01-20 2000-07-04 Mitchell; Burke H. Protective covering for a cell phone or a pager
RU23489U1 (ru) * 2001-09-05 2002-06-20 Открытое акционерное общество "Ковровский механический завод" Элемент поглощающей панели плоского солнечного коллектора

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT403844B (de) * 1993-12-23 1998-05-25 Goedl Albin Absorber für sonnenkollektoren
US6082535A (en) * 1999-01-20 2000-07-04 Mitchell; Burke H. Protective covering for a cell phone or a pager
RU23489U1 (ru) * 2001-09-05 2002-06-20 Открытое акционерное общество "Ковровский механический завод" Элемент поглощающей панели плоского солнечного коллектора

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706159B (zh) * 2009-11-10 2012-06-13 广东工业大学 太阳能/空气能双源一体式集热器
WO2013071691A1 (zh) * 2011-11-14 2013-05-23 Wang Bin 一种叶片式太阳能-空气能双能集热器
WO2023132746A1 (es) * 2022-01-06 2023-07-13 Bricio Arzubide Alvaro Fabian Colector solar polimérico

Also Published As

Publication number Publication date
WO2009075611A3 (ru) 2009-07-30
RU2355954C1 (ru) 2009-05-20

Similar Documents

Publication Publication Date Title
US6619283B2 (en) Solar collector pipe
US3990430A (en) Solar energy collector system
ES2425996B1 (es) Receptor solar de placas
US4867134A (en) Fluid-heating solar collector
RU2355954C1 (ru) Тепловая панель
KR101036261B1 (ko) 휨방지 장치를 구비한 평판형 태양열 집열기
RU2258874C2 (ru) Солнечный коллектор
KR101308074B1 (ko) 설치위치에 제약을 받지 않는 히트파이프식 단일 진공관형 태양열 집열기
KR20120113632A (ko) 요철타입 반사판을 가지는 내집광 진공관식 태양열 집열기
KR101205410B1 (ko) 히트파이프식 진공관형 태양열 집열기
KR101308072B1 (ko) 수평설치가 가능한 히트파이프식 단일진공관형 태양열 집열기
KR200457082Y1 (ko) 난방수 및 온수 공급이 가능한 열교환식 태양열 보일러
KR101030691B1 (ko) 진공관을 이용한 태양열 집열기의 전열판
RU2194928C1 (ru) Солнечный коллектор
CN216080444U (zh) 一种凸透镜聚光组件及太阳能聚光集热器
KR20180013320A (ko) 평판형 태양열 집열기
WO2012059605A1 (es) Colector solar con receptor multitubular, plantas termosolares que contienen dicho colector y método de operación de dichas plantas
RU2197687C2 (ru) Солнечный абсорбер
KR20170130873A (ko) 단일 진공관 집열기의 매니폴더
JP2016023882A (ja) 集熱器
KR102055002B1 (ko) 태양열 흡수 패널
RU172201U1 (ru) Солнечный коллектор
KR200324306Y1 (ko) 태양열 난방장치의 집열판
CN204478893U (zh) 一种热管换热器
KR101280060B1 (ko) 집열량 조절이 가능한 진공관형 태양열 집열기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08858873

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/08/2010)

122 Ep: pct application non-entry in european phase

Ref document number: 08858873

Country of ref document: EP

Kind code of ref document: A2