WO2009070938A1 - Cellule électrolytique à membrane ionique de type à électrodes multiples avec cathodes à oxygène - Google Patents

Cellule électrolytique à membrane ionique de type à électrodes multiples avec cathodes à oxygène Download PDF

Info

Publication number
WO2009070938A1
WO2009070938A1 PCT/CN2007/071152 CN2007071152W WO2009070938A1 WO 2009070938 A1 WO2009070938 A1 WO 2009070938A1 CN 2007071152 W CN2007071152 W CN 2007071152W WO 2009070938 A1 WO2009070938 A1 WO 2009070938A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
anode
chamber
square tube
plate
Prior art date
Application number
PCT/CN2007/071152
Other languages
English (en)
Chinese (zh)
Inventor
Lianghu Zhang
Jianjun Wang
Feng Wang
Haiyao Li
Lide Guo
Pai Zhang
Original Assignee
Bluestar (Beijing) Chemical Machinery Co., Ltd.
Beijing University Of Chemical Technology
China National Bluestar (Group) Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bluestar (Beijing) Chemical Machinery Co., Ltd., Beijing University Of Chemical Technology, China National Bluestar (Group) Co., Ltd filed Critical Bluestar (Beijing) Chemical Machinery Co., Ltd.
Priority to PCT/CN2007/071152 priority Critical patent/WO2009070938A1/fr
Priority to CN2007801005890A priority patent/CN101849037B/zh
Publication of WO2009070938A1 publication Critical patent/WO2009070938A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections

Definitions

  • the invention belongs to the chlor-alkali industrial technology, and particularly relates to a bipolar ion membrane electrolysis unit tank.
  • the electrodes at both ends of the bipolar cell are connected to the positive and negative terminals of the DC power source to form an anode or a cathode.
  • a current flows through the electrolytic cell through the series connected electrodes, one side of the intermediate electrode is an anode and the other side is a cathode, so that it has bipolarity.
  • the total area of the electrodes is the same, the current of the bipolar type electrolytic cell is smaller and the voltage is higher, and the investment of the required DC power source is saved compared to the single pole type.
  • the repolarization type generally adopts a filter press structure and is relatively compact.
  • the cell consists of a cell, an anode and a cathode, and most of the separator separates the anode and cathode compartments. According to the different electrolytes, it is divided into three types: aqueous solution electrolysis tank, molten salt electrolysis tank and non-aqueous solution electrolysis tank.
  • aqueous solution electrolysis tank molten salt electrolysis tank
  • non-aqueous solution electrolysis tank When direct current passes through the electrolytic cell, an oxidation reaction occurs at the interface between the anode and the solution, and a reduction reaction occurs at the interface between the cathode and the solution to obtain a desired product.
  • Optimal design of the cell structure and reasonable selection of electrodes and separator materials are key factors in improving current efficiency, reducing cell voltage, and saving energy.
  • the residence time of the electrolyte in the electrolytic cell not only affects the production capacity of the equipment, but also affects the current efficiency of the electrolysis process in some cases, such as electrolysis of sodium chlorate, intermediate product hypochlorous acid (HC10).
  • the chemical reaction rate with the hypochlorite ion (C103) is very slow, such as staying in the electrolytic cell for a long time, not only reducing the utilization rate of the electrolytic cell, but also the hypochlorite ion is oxidized on the surface of the anode or reduced on the surface of the cathode. Reduce current efficiency. Therefore, modern cell designs seek to reduce volume and allow electrolyte to flow rapidly along the electrode.
  • the object of the present invention is to provide a bipolar oxygen cathode ion membrane electrolysis cell tank whose cathode side electrode structure is designed by using a gas diffusion cathode, which can reduce the DC power consumption per ton of alkali.
  • the bipolar oxygen cathode ion membrane electrolysis cell slot comprises a slot frame formed by an upper frame square tube, a lower frame square tube and side frame square tubes.
  • An anode chamber disk plate, a plurality of anode rib plates and an anode electrode are formed on the anode side of the groove frame to form an anode chamber, and an anode inlet nozzle is connected with the anode liquid separation tube, and a titanium-carbon steel composite is arranged on the cathode side of the unit groove.
  • the cathode chamber disk The plate is welded to the anode chamber disk plate through a titanium-carbon steel composite plate, and the electrode support mesh is welded to the cathode chamber disk plate through a plurality of cathode rib plates to form a gas chamber, and the gas diffusion cathode is welded and connected to the electrode support mesh and the gas diffusion cathode
  • the periphery of the square frame is sealed and connected to the slot; the lower corner of the upper frame square tube faces the cathode chamber, and a plurality of holes are formed along the length of the upper frame square tube a uniform distribution of the degree direction; the upper corner of the lower frame square tube facing the cathode chamber has a plurality of holes are formed along the length of the upper frame square tube a uniform distribution of the degree direction; the upper corner of the lower frame square tube facing the cathode chamber has a plurality of holes are formed along the length of the upper frame square tube a uniform distribution of the degree direction; the upper corner of the lower frame square tube facing the ca
  • each of the cathode ribs is provided with a plurality of through holes, and the plurality of through holes are evenly distributed along the upper and lower directions of the cathode ribs.
  • a vapor-liquid separation device is disposed between the anode chamber disk plate and the plurality of anode rib plates at the upper portion of the anode chamber, and the vapor-liquid separation device includes a bending plate and a screen, and the folding
  • the cross-sectional shape of the curved plate is shaped, and the side of the plate is welded and sealed to the pan chamber, and a channel is disposed between the upper side and the side wall of the anode chamber disk; the screen is disposed at the periphery of the channel
  • the bottom of the vapor-liquid separation device is provided with an anode outlet box connected to the anode and an anode outlet tube connected to the anode outlet box.
  • the anode electrolysis chamber, the cathode electrolysis chamber and the gas chamber are separately arranged, and the metal conductors are directly connected to each other;
  • the upper and lower frame square tubes serve not only as the support of the unit tank, but also as the cathode liquid inlet and outlet collecting pipe, the gas collecting pipe and the liquid dividing pipe;
  • a support net for conducting and supporting a gas diffusion cathode is disposed in the cathode chamber;
  • the anode sealing surface is made of titanium-palladium alloy or titanium-rhenium alloy with good crevice corrosion resistance, or coated with crevice corrosion resistance to improve the service life of the whole machine;
  • the screen structure of the vapor-liquid separation device separates the vapor and liquid of the vapor-liquid mixture generated by the electrolysis of the anode chamber to facilitate the discharge of the vapor-liquid mixture.
  • the chlor-alkali industry produces 1 ton of caustic soda with a DC power consumption of about 2200 degrees.
  • the DC power consumption per ton of alkali can be reduced to about 1600 degrees, and the energy saving is 20% to 30%, and the effect is very remarkable.
  • the invention has the advantages of reasonable structure and low running cost, and has good promotion and application.
  • FIG. 1 is a schematic view showing the overall structure of a bipolar oxygen cathode ion membrane electrolysis unit cell according to the present invention
  • FIG. 2 is a cross-sectional view taken along line A-A of FIG.
  • Figure 3 is a cross-sectional view taken along line B-B of Figure 2;
  • Figure 4 is a cross-sectional view taken along line C-C of Figure 1;
  • Figure 5 is a schematic view showing the structure of the left, right and upper sides of the screen 31 in the embodiment
  • Figure 6 is a schematic view showing the structure of the four sides of the screen 31 being a folded structure in the embodiment;
  • Figure 7 is a partial view of the D direction of Figure 5;
  • Figure 8 is a partial view taken along line E of Figure 6;
  • Figure 9 is a schematic diagram of an electrolytic cell composed of two repolarized oxygen cathode ion membrane electrolysis cell tanks.
  • the bipolar oxygen cathode ion membrane electrolysis unit tank of the embodiment includes a groove formed by an upper frame square tube 8 , a lower frame square tube 7 and side frame square tubes.
  • a frame, an anode chamber disk plate 18, a plurality of anode rib plates 19 and an anode electrode 20 are formed on the anode side of the groove frame to form an anode chamber, and the anode inlet nozzle 1 is in communication with the anode liquid separation tube 2, and the groove frame content on the cathode side of the unit groove
  • a titanium-carbon steel composite plate 13, a plate-shaped cathode chamber disk plate 14, a plurality of cathode ribs 15, an electrode support mesh 16, and a gas diffusion cathode 17 are disposed, and the titanium layer of the titanium-carbon steel composite plate 13 faces the anode side.
  • the carbon steel layer may be 0. 5 ⁇ 3 ⁇ , preferably 1 ⁇ ; the carbon steel layer may be 2 ⁇ 4mm, preferably
  • the cathode chamber disk plate 14 is welded to the anode chamber disk plate 18 through the titanium-carbon steel composite plate 13 , and the electrode support mesh 16 is welded to the cathode chamber disk plate 18 through a plurality of cathode rib plates 15 to form a gas chamber.
  • the gas diffusion cathode 17 is welded to the electrode support net 16 , and the periphery of the gas diffusion cathode 17 is sealedly connected to the groove frame;
  • the lower corner portion of the upper frame square tube 8 facing the cathode chamber is provided with a plurality of holes 81 having a diameter of ⁇ 3 ⁇ ⁇ 5TM and the plurality of holes 81 are evenly distributed along the length direction of the upper frame square tube 8;
  • the upper corner portion of the lower frame square tube 7 facing the cathode chamber is provided with a plurality of holes 71 having a diameter of ⁇ 1 ⁇ ⁇ 3TM and the plurality of holes 71 are evenly distributed along the length direction of the lower frame square tube 7;
  • the cathode inlet nozzle 6 communicates with the lower frame square tube 7, and the cathode outlet nozzle 10 communicates with the upper frame square tube 8; the gas inlet nozzle 11 communicates with the gas chamber through the upper frame square tube 8, the water outlet The nozzle 12 communicates with the gas chamber through the lower frame square tube 7.
  • each of the cathode ribs 15 has a plurality of through holes 151 formed therein, and the plurality of through holes 151 are evenly distributed along the upper and lower directions of the cathode ribs 15.
  • a vapor-liquid separation device 3 is disposed between the anode chamber disk plate 18 and the plurality of anode rib plates 19 at the upper portion of the anode chamber, and the vapor-liquid separation device includes a bending plate 30 and a screen 31.
  • the cross-sectional shape of the bending plate 30 is shaped, and the side edges thereof are welded and sealed to the male and female chamber disk plates 18, and a passage 33 is left between the upper side and the side wall of the anode chamber disk plate 18; the screen 31 It is disposed at the channel 33 and its periphery is sealedly connected to the periphery of the channel 33; at one end of the vapor-liquid separation device 3, an anode outlet case 4 connected thereto and an anode outlet port 5 communicating with the anode outlet case 4 are disposed.
  • the sieve mesh may be a 2X4 or 3X5 pull net plate, or a ⁇ 0. 8 ⁇ ⁇ 1 titanium wire woven 8 ⁇ 10 mesh woven mesh may be used.
  • the left, right and upper sides of the screen 31 are a folded structure, and the screen 31 is disposed on the outer side of the bent plate 30 and the left, right and upper folded portions thereof. They are fixedly connected to the left, right and upper side walls of the pan chamber panel 18, respectively.
  • the screen 31 may also be different from the above structure, and the four sides are folded, and the screen 31 is disposed on the inner side of the bending plate 30 and the opening faces the bending plate 30 .
  • the left, right and upper folded portions of the screen 31 are fixedly coupled to the left, right and upper side walls of the male and female chamber trays 18, respectively, and the lower folded edges thereof are fixedly coupled to the bent plate 30.
  • the material of the anode sealing surface is selected from a titanium palladium alloy or a titanium niobium alloy. It is also possible to apply a corrosion-resistant coating to the anode sealing surface, for example, a palladium coating or a ruthenium coating.
  • a plurality of unit slots of the present invention are selected according to the requirements of different devices, and the anode side and the cathode side between adjacent unit slots are sandwiched with ion membranes 41 through respective anode pads 42 and cathode pads 40. , forming an electrolytic cell.
  • the anolyte enters the anode liquid separation tube 2 in the electrolytic cell from the anode inlet nozzle 1 and then uniformly distributes a plurality of ⁇ 1 ⁇ ⁇ 3 mm small holes through the anode liquid separation tube 2 into the anode electrolysis chamber to generate chlorine gas by electrolysis.
  • the anolyte containing chlorine gas enters the vapor-liquid separation device 3 built in the electrolytic cell for preliminary separation, as shown in FIG. 5 and FIG. 7, the vapor-liquid equilibrium phase enters the anode outlet box 4 through the vapor-liquid equilibrium phase.
  • the anode outlet nozzle 5 discharges the electrolysis unit tank.
  • the catholyte enters the lower frame square tube of the electrolytic cell from the cathode inlet connecting pipe 6, and enters the cathode of the electrolytic cell through a plurality of ⁇ 1 ⁇ 3mm small holes 71 uniformly distributed on the upper corner of the cathode casing toward the upper corner of the cathode chamber.
  • the cathode liquid is evenly distributed in the cathode chamber of the electrolytic cell, and the catholyte after electrolysis enters the upper frame of the electrolytic cell through a plurality of ⁇ 3 ⁇ 5 mm small holes 81 uniformly distributed on the upper corner of the cathode chamber 8 toward the lower corner of the cathode chamber.
  • the electrolytic cell tank is discharged from the cathode outlet connecting tube 10.
  • the gas participating in the reaction enters the gas chamber of the electrolytic cell through the gas inlet nozzle 11 and ensures uniform distribution of the medium through the through hole 151 in the cathode rib 15 , and the water electrode combines with the hydrogen ions generated during the electrolysis to generate water, and the electrolysis product water is Water outlet 12 Deriving the electrolysis cell, unreacted oxygen and gas are led out of the electrolysis cell from the gas outlet nozzle 9.
  • the gas outlet nozzle 9 may not be separately set, and the electrolysis product water and the unreacted gas may be taken over. 12 mixing and deriving the electrolytic cell; as long as the needs of use are met, it is within the scope of protection of this patent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

L'invention a pour objet une cellule électrolytique à membrane ionique de type à électrodes multiples, comportant des cathodes à oxygène, qui est utilisée en électrolyse chloro-alcaline. L'essentiel de la présente invention concerne l'amélioration du côté de la cathode à oxygène, où le panneau de cathode dans la chambre à cathode est connecté au panneau d'anode dans la chambre à anode par soudage de plusieurs plaques composites titane-acier, et un porte-électrode poreux est connecté au panneau de cathode dans la chambre à cathode par soudage de plusieurs anneaux de cathodes entre eux pour former une chambre à gaz. L'électrode de diffusion dugaz est soudée sur le porte-électrode poreux et la périphérie de l'électrode de diffusion du gaz est connectée au cadre pour assurer l'étanchéité et la fixation. Plusieurs orifices sont disposés sur la partie inférieure du côté haut du cadre de type tube carré vers la chambre de cathode et les orifices sont répartis uniformément le long de la direction longitudinale du côté haut du cadre de type tube carré. En outre, plusieurs orifices sont disposés sur la partie supérieure du côté bas du cadre de type tube carré vers la chambre de cathode et les orifices sont répartis uniformément le long de la direction longitudinale du côté bas du cadre de type tube carré. La présente invention présente une structure adéquate et un coût d'exploitation réduit.
PCT/CN2007/071152 2007-12-03 2007-12-03 Cellule électrolytique à membrane ionique de type à électrodes multiples avec cathodes à oxygène WO2009070938A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2007/071152 WO2009070938A1 (fr) 2007-12-03 2007-12-03 Cellule électrolytique à membrane ionique de type à électrodes multiples avec cathodes à oxygène
CN2007801005890A CN101849037B (zh) 2007-12-03 2007-12-03 复极式氧阴极离子膜电解单元槽

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/071152 WO2009070938A1 (fr) 2007-12-03 2007-12-03 Cellule électrolytique à membrane ionique de type à électrodes multiples avec cathodes à oxygène

Publications (1)

Publication Number Publication Date
WO2009070938A1 true WO2009070938A1 (fr) 2009-06-11

Family

ID=40717269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/071152 WO2009070938A1 (fr) 2007-12-03 2007-12-03 Cellule électrolytique à membrane ionique de type à électrodes multiples avec cathodes à oxygène

Country Status (2)

Country Link
CN (1) CN101849037B (fr)
WO (1) WO2009070938A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102031535A (zh) * 2010-12-28 2011-04-27 蓝星(北京)化工机械有限公司 一种扩散电极制碱装置
CN110184618A (zh) * 2019-07-12 2019-08-30 福建浩达智能科技股份有限公司 一种电解槽***及其微型复极式离子膜电解槽组
CN111155144A (zh) * 2018-11-08 2020-05-15 蓝星(北京)化工机械有限公司 一种膜极距离子膜电解槽阴极及电解槽
CN111304682A (zh) * 2018-12-11 2020-06-19 蓝星(北京)化工机械有限公司 一种氯碱工业用氧阴极离子膜电解槽
CN113430550A (zh) * 2021-02-24 2021-09-24 中国地质科学院水文地质环境地质研究所 一种采用不锈钢毛细管排气的电解池
CN114395774A (zh) * 2022-03-02 2022-04-26 盐城工学院 一种增强电解液横向混合的筋板及其在电解槽中的应用
CN115007989A (zh) * 2022-06-23 2022-09-06 宝鸡市钛程金属复合材料有限公司 船用超薄大规格钛钢金属复合板及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925917B (zh) * 2012-08-06 2015-05-20 蓝星(北京)化工机械有限公司 氧阴极电解槽和制碱装置及方法
CN112442703B (zh) * 2019-08-27 2024-05-17 梁尚安 塔式无膜动态电解槽

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1090893A (zh) * 1993-02-12 1994-08-17 德·诺拉·帕尔梅利有限公司 用于氯碱电解槽的活化阴极及其制造方法
JP2003041388A (ja) * 2001-07-31 2003-02-13 Association For The Progress Of New Chemistry イオン交換膜電解槽および電解方法
CN1407137A (zh) * 2001-09-06 2003-04-02 北京化工机械厂 复极式自然循环离子膜电解槽
CN1511974A (zh) * 2002-12-27 2004-07-14 北京化工机械厂 外部自然循环复极式离子膜电解装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1044394C (zh) * 1994-01-20 1999-07-28 北京化工机械厂 复极式离子膜电解装置
CN1090893C (zh) * 1998-10-15 2002-09-18 中国农业科学院作物育种栽培研究所 提高或降低异黄酮含量大豆种子的培育方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1090893A (zh) * 1993-02-12 1994-08-17 德·诺拉·帕尔梅利有限公司 用于氯碱电解槽的活化阴极及其制造方法
JP2003041388A (ja) * 2001-07-31 2003-02-13 Association For The Progress Of New Chemistry イオン交換膜電解槽および電解方法
CN1407137A (zh) * 2001-09-06 2003-04-02 北京化工机械厂 复极式自然循环离子膜电解槽
CN1511974A (zh) * 2002-12-27 2004-07-14 北京化工机械厂 外部自然循环复极式离子膜电解装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102031535A (zh) * 2010-12-28 2011-04-27 蓝星(北京)化工机械有限公司 一种扩散电极制碱装置
CN111155144A (zh) * 2018-11-08 2020-05-15 蓝星(北京)化工机械有限公司 一种膜极距离子膜电解槽阴极及电解槽
CN111304682A (zh) * 2018-12-11 2020-06-19 蓝星(北京)化工机械有限公司 一种氯碱工业用氧阴极离子膜电解槽
CN110184618A (zh) * 2019-07-12 2019-08-30 福建浩达智能科技股份有限公司 一种电解槽***及其微型复极式离子膜电解槽组
CN113430550A (zh) * 2021-02-24 2021-09-24 中国地质科学院水文地质环境地质研究所 一种采用不锈钢毛细管排气的电解池
CN114395774A (zh) * 2022-03-02 2022-04-26 盐城工学院 一种增强电解液横向混合的筋板及其在电解槽中的应用
CN115007989A (zh) * 2022-06-23 2022-09-06 宝鸡市钛程金属复合材料有限公司 船用超薄大规格钛钢金属复合板及其制备方法
CN115007989B (zh) * 2022-06-23 2024-05-17 宝鸡市钛程金属复合材料有限公司 船用超薄大规格钛钢金属复合板及其制备方法

Also Published As

Publication number Publication date
CN101849037A (zh) 2010-09-29
CN101849037B (zh) 2011-12-21

Similar Documents

Publication Publication Date Title
WO2009070938A1 (fr) Cellule électrolytique à membrane ionique de type à électrodes multiples avec cathodes à oxygène
JP5869440B2 (ja) 電解セル及び電解槽
JPS6315354B2 (fr)
RU2709541C2 (ru) Электродное устройство, электродные узлы и электролизеры
JPH03173789A (ja) ペルオキシ‐又は過ハロゲン化化合物を製造するためのフイルター型の電解槽
NL2023775B1 (en) Compact electrochemical stack using corrugated electrodes
JP3555197B2 (ja) 複極型イオン交換膜電解槽
JPS6041717B2 (ja) 隔膜型電解槽用陽極−膜装置
WO2016169330A1 (fr) Dispositif d'électrolyse de solution saline multipolaire
US9045837B2 (en) Electrolyser with coiled inlet hose
US3930980A (en) Electrolysis cell
JPS59133384A (ja) 電解槽
US4059495A (en) Method of electrolyte feeding and recirculation in an electrolysis cell
JP6543277B2 (ja) 狭い間隙の非分割電解槽
CA1117473A (fr) Pile electrolytique
CA1175780A (fr) Trop-plein interne de refoulement d'electrolyte
US4161438A (en) Electrolysis cell
JP3229266B2 (ja) 複極式フィルタープレス型電解槽
JPS6342710B2 (fr)
US4654135A (en) Electrolytic cell for sea water
JPH1171693A (ja) イオン交換膜電解槽における気液分離方法
CN219195151U (zh) 一种内置电极多排管隔离膜电解设备
CN207699683U (zh) 一种复极式自然循环电解槽
CN2457174Y (zh) 单极式离子膜电解槽
JPS599186A (ja) 縦型電解槽及び電解方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780100589.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07817342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07817342

Country of ref document: EP

Kind code of ref document: A1