WO2009066972A1 - Jeringa electrónica con sistema de seguridad para inyección espinal - Google Patents

Jeringa electrónica con sistema de seguridad para inyección espinal Download PDF

Info

Publication number
WO2009066972A1
WO2009066972A1 PCT/MX2008/000158 MX2008000158W WO2009066972A1 WO 2009066972 A1 WO2009066972 A1 WO 2009066972A1 MX 2008000158 W MX2008000158 W MX 2008000158W WO 2009066972 A1 WO2009066972 A1 WO 2009066972A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
air
alarm
pressure
threshold
Prior art date
Application number
PCT/MX2008/000158
Other languages
English (en)
French (fr)
Inventor
Emilio Sacristán Rock
Alejandra Silva Paredes
Miroslava Carolina RODRIGUEZ BERMÚDEZ
Adriana Becerril Alquicira
Lydia ORANDAY MUÑOZ
Julio César SORIA AGUILAR
Original Assignee
Innovamédica S.A.P.I. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovamédica S.A.P.I. De C.V. filed Critical Innovamédica S.A.P.I. De C.V.
Priority to MX2010005507A priority Critical patent/MX2010005507A/es
Priority to EP08852740A priority patent/EP2223662A1/en
Publication of WO2009066972A1 publication Critical patent/WO2009066972A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3401Puncturing needles for the peridural or subarachnoid space or the plexus, e.g. for anaesthesia

Definitions

  • This invention relates to epidural needles, and more particularly to epidural needles used for spinal injections.
  • Epid ⁇ ral anesthesia has been used by doctors for about a century.
  • the radiologist Jean-Anthanase Sicard reported the treatment of patients suffering from severe intractable sciatic pain or lumbago, when injecting diluted solutions of ***e through the sacral hiatus.
  • Doctors began using the lumbar method for anesthesia several decades later, eventually in abdominal surgery with lumbar epidural anesthesia with a simple touch.
  • the epidural space is the part of the vertebral canal not occupied by hard matter and its contents. It is a very narrow space, often referred to as a 'virtual space,' that lies between the hard and periosteal lining within the vertebral canal. The dura and the yellow ligament are closely adjacent to the virtual space. He Epidural space extends from the foramen magnum to the sacral hiatus. The anterior and posterior spinal nerves in its dural sheath pass through this potential space to join the intervertebral foramen to form segmental nerves. The epidural space contains venous plexus and fatty tissue which is continuous with the fat in the paravertebral space.
  • epidural anesthesia can be used as an anesthetic method for procedures involving the lower extremities, pelvis, perineum and lower abdomen. It is possible to perform procedures in the upper abdomen and thoracic under epidural anesthesia.
  • Some of the specific procedures in which epidural anesthesia can be used include: hip and knee surgery, vascular reconstruction or amputation of the lower extremities, obstetrics, low-concentration local anesthesia, opioids, or combination of both, and thoracic trauma with fractures in the rib or sternum.
  • the target population for epidural anesthesia use includes pregnant women undergoing Caesarean section, or full-term women who are planning a vaginal delivery but wish to have an epidural anesthetic available for the management of labor contractions.
  • An additional advantage of the use of epidural anesthesia is the ability to maintain continuous anesthesia after the placement of an epidural catheter, making it suitable for long-term procedures. This feature also encompasses the use of this technique in the postoperative period for analgesia, using lower concentrations of local anesthetic drugs or in combination with different agents.
  • the epidural space When an epidural block is performed, the epidural space is penetrated through the tip of the needle after passing through the flavored ligament.
  • the epidural needle follows an anatomical direction from the skin into the body, through the subcutaneous tissue, interspinous ligament, yellow and then reaches the epidural space. The user identifies the space and penetrates it carefully when the needle bevel leaves the yellow ligament to prevent penetration of the dura if the needle is pushed to the measure.
  • the space Epidural ends in the middle sacral ligament. The longest distance is in the midline and is around 5 mm.
  • anesthesia is injected into the space.
  • Epidural anesthetic molecules surround the spinal nerves and penetrate deep inside the spinal cord tissue, preventing the closure of the sodium channel, thus blocking the transmission of the pain message from the injection site and below.
  • One way to identify the epidural space during an epidural anesthesia procedure involves identifying a negative pressure for the advancing needle.
  • the pressure in the epidural space has been measured to be a high negative epidural pressure of up to ⁇ 60 mm Hg at the time of epidural puncture.
  • the pressure typically becomes positive and stabilizes at +3.7 ⁇ 3.2 mm Hg.
  • negative epidural pressures at the time of epidural puncture may be due to dural membrane bulging.
  • Air and saline are typically placed in syringes attached to epidural needles to determine the loss of resistance during insertion of an epidural.
  • the ability to correctly identify the epidural space can increase the benefits of epidural anesthesia by minimizing complications.
  • Complications that may arise during an epidural procedure include: bone resistance, inability to treat the catheter, fluid through the needle, fluid through the catheter, and pain in the insertion of the catheter or blood into the catheter.
  • the most important risk of epidural block is unintended, unrecognized intravascular injection. These complications are more likely with epidural anesthesia than with other regional techniques due to the number of plexuses in the epidural space, and possibly due to the relatively low pressure that exists in these veins.
  • Another potential complication in epidural anesthesia is air embolism.
  • the volume of air injected into the epidural veins can produce slight clinical manifestations of around 0.07 mL per kilogram by weight. Although the usual volume of air injected may not be dangerous, the persistence of the patent oval foramen may result in unexpected symptoms. This can be indicated by traumatic and accidental puncture directly to the venous epidural plexus during the epidural space detection maneuver. The air is as likely as the substance injected into the epidural space, to pass into the circulatory system within 15 seconds due to the pressure difference. A micro bubble air embolism can also flow into the general circulation.
  • Accidental dural puncture is typically recognized by the immediate loss of cerebral-spinal fluid (CSF) through the epidural needle.
  • CSF cerebral-spinal fluid
  • Accidental dural puncture leads to a high incidence of headache due to post-dural puncture, which can be quite severe.
  • Accidental dural puncture can occur even when the procedure is performed by highly experienced doctors. It is more common when performed by more inexperienced hands.
  • the location of the epidural space is critical to the success of epidural anesthesia.
  • the devices and procedures have been designed to improve the procedure.
  • the resistance loss technique is the most common method of locating a needle in the epidermal space.
  • the anesthesiologist is able to feel the loss of resistance to the injection through the needle. This may be due to the presence of a negative pressure in the epidural space. As noted above, negative pressure may not always introduce oneself. In such cases, the loss of resistance is not due to negative pressure, and the use of the technique may feel different for the user.
  • the Macintosh ball based on the principle of loss of resistance, consists of a small elastic rubber ball, which is permanently inflated with air while the needle is in the flap ligament.
  • the Macintosh balloon deflates when it enters the epidural space.
  • a problem that has been observed with this device is a higher incidence of incomplete anesthesia due to the amount of air injected.
  • An infusion drip connected to the Tuohy needle is based on the difference in pressure between atmospheric pressure and pressure within the epidural space. Once the Tuohy needle is inserted into the interspinal ligament, the tip of the The mandrel is removed and connected to an infusion serum system at the distal end of the needle. The drip speed will indicate the position of the upper needle. A sudden change in drip rate, such as a free flow, indicates that the needle has penetrated the epidural space. This method is not accurate and may be more effective at the thoracic level due to negative pressure. With this technique, it is not possible to find the difference between the epidural space and the subarachnoid space because the infusion will continue in the free drip, even if the needle has passed through the hard matter.
  • the Episensor TM which is an electronic method to detect negative pressure in the epidural space. This device has been found with results that cannot be better than more traditional techniques.
  • a device that includes a syringe with two chambers (known as the Epident ® ).
  • the device has a distal chamber, which contains 3 mL of saline solution and a nearby chamber that contains air.
  • the device has the feeling of compressibility that a user wants, avoiding the inconvenience of the loss of resistance that occurs with the air technique.
  • Similar syringes have been designed with a diaphragm, which is used to separate both fluids. The system is similar to the air bubble method, but it is more complex and expensive.
  • a glass syringe with a plunger which slides very easily, has been used to identify epidural spaces.
  • the most recent commercially available disposable epidural packages contain a plastic syringe with a plunger that has very low resistance. Normal syringes should not be used because their increased resistance can make identification of the epidural space more difficult.
  • a need is maintained for an automatic electronic device that provides an objective approach to the identification of the epidural space. That is safe, easy to use and has a high sensitivity to find the desired point, while producing a positive result.
  • a device for locating the epidural space includes a connector to form a tightly sealed connection with a needle.
  • An air container is formed by an air tank, a diaphragm, and a space in the needle when the needle is attached to the connector.
  • the device includes a pressure sensor configured to detect the air pressure in the air container.
  • An actuator is coupled to a switch and positioned adjacent to the diaphragm to compress the diaphragm when the switch is operated by a user causing a reduction in volume in the air container.
  • a circuit coupled to the pressure sensor and an alarm detects a signal indicative of the air pressure recorded by the pressure sensor. The circuit compares the signal to a threshold and produces a first state for the alarm when the pressure is above the threshold, and produces a second status for the alarm when the pressure drops below the threshold.
  • a method is provided to locate an epidural space.
  • the method includes inserting a needle into a patient until the yellow ligament is detected.
  • a closed air container is formed with an air tank and needle space.
  • the volume in the air container is reduced, and the air pressure in the air container is measured.
  • the air pressure measurement is compared with a threshold while the needle is pushed into the patient. When the air pressure falls below the threshold, the needle advance stops by the user.
  • Figure 1 is a perspective view of an electronic syringe.
  • Figure 2 is a detail view of the electronic syringe of Figure 1.
  • Figure 3 is a cross-sectional side view of the electronic syringe of Figure 1.
  • Figure 4 is a perspective view of the electronic syringe of Figure 1 with part of the housing removed.
  • Figure 5 is a schematic diagram of the electronic circuit used in the electronic syringe in Figure 1.
  • Figure 6 is a flow chart illustrating the operation of the electronic syringe.
  • FIG 1 is a perspective view of an example of an electronic syringe 100.
  • the electronic syringe 100 in Figure 1 includes a housing 102, which maintains the internal components (described in more detail below with reference to Figures 2-5), and a needle 104.
  • the electronic syringe 100 also includes a connector 106 for contacting the needle 104 that may or may not have a mandrel fixed, a switch 108 for activating the electronic syringe 100, and an alarm 110 to indicate when the epidural space has penetrated.
  • the electronic syringe 100 is used by a doctor, or anesthesiologist or any other qualified medical staff, to locate the epidural space during an anesthesia procedure.
  • the electronic syringe 100 facilitates puncture in the epidural space without pushing the needle very deep.
  • a safety mechanism incorporated in the form of a pneumatic sensor generates an alarm when the user is at risk of moving forward too.
  • the user operates the electronic syringe 100 as an anatomical pressure locator to precisely locate the epidural space advantageously minimizing complications such as a hard puncture, which can lead to spinal fluid release during the anesthesia procedure.
  • the electronic syringe 100 in Figure 1 can be implemented in a size that would allow its use as a manual device used by a single person.
  • the electronic syringe 100 is approximately 36.5 W x 35.4 T x 59 L mm, however, any electronic syringe 100 can be of any suitable size.
  • Examples of the electronic syringe 100 described herein are battery operated; however, any form of electrical energy can be used.
  • a feature can be included to ensure that the battery is activated only for a first intended use by preventing accidental activation.
  • a small piece of paper can be inserted between the battery and its contacts in such a way that it extends out of the housing 102 through a slit to allow the user to remove the paper to allow the first use. Once the paper is removed, the user can start the operation of sliding the switch 108 to activate the electronic syringe 100.
  • the electronic syringe 100 includes two 3V lithium batteries in series that can turn on the device during around an hour.
  • the alarm 110 in the example shown in Figure 1 is a visual alarm 110 implemented as an LED, or other suitable device that emits light.
  • the alarm 110 can also be implemented as an audible alarm, or any other device intended to attract the user's attention and indicate the presence of an event.
  • Alarm 110 indicates when the user has reached the epidural space.
  • the electronic syringe 100 the alarm 110 is implemented as an LED that changes to a red color to indicate that the needle can be pushed, and to a green color to indicate that the epidural space has been reached.
  • the electronic syringe 100 includes the connector 106, which may be a Luer type connector to provide a tightly sealed connection to the needle 104. Although, any suitable connector 106 may be used. Examples of the electronic syringe 100 are described herein as being compatible for use with a Tuohy 104 needle; however, any suitable needle 104 can be used.
  • the needle 104 used with the electronic syringe 100 may include a fixed mandrel, - however, any suitable structure or technique can be used with the Luer 106 connector to prevent tissue from entering the needle at the time the needle 104 enters the patient . In one example, a mandrel can be attached to the electronic syringe 100 with the needle 104 as an assembly.
  • the mandrel can be removably attached to the needle 104.
  • the fixed mandrel is not used to the device during the procedure with the needle 104 during the procedure.
  • the electronic syringe 100 can be used as follows. The user first inserts the Tuohy 104 needle into the patient. Initially, the needle 100 can be inserted with a mandrel. Neither the needle 104 nor the mandrel was attached to the electronic syringe 100 when it is first introduced into the patient. The user inserts the needle and mandrel 104 until it reaches the yellow ligament.
  • the mandrel When the yellow ligament is reached, the mandrel is removed and the electronic syringe 100 connects to the Tuohy 104 needle on the Luer 106 connector creating a tightly sealed connection.
  • the user slides the switch 108 to the active state.
  • a pressure sensor inside the housing 102 continuously detects a pressure inside an air tank, and the pressure is compared by an electronic circuit with a threshold pressure. As long as the measured pressure is greater than the threshold level, alarm 110 is set to indicate that the user can continue pushing the needle into the patient.
  • the electronic circuit causes the alarm 110 to indicate that the epidural space is reached.
  • An advantage of the electronic syringe 100 in Figure 1 is that the alarm 110 provides built-in fault detection.
  • the electronic syringe 100 when the electronic syringe 100 is connected to the needle in the Luer connector 106, if the alarm 110 is not set to indicate that the user can push the needle after the switch 108 slides in the active state, the user does not advance the needle. If alarm 110 does not changes, there may be a problem with the devices or the needle may not have been connected properly.
  • the needle 104 can be attached to the electronic syringe 100 with fixed mandrel prior to being inserted into the patient. The user can then insert the needle attached to the electronic syringe 100 into the patient and slide the switch 108 to load the electronic syringe 100. Assuming that alarm 110 indicates that the needle can be pushed, the user continues to insert the needle until Alarm 110 changes to indicate that the epidural space has been reached. In this other example, the mandrel is added to the needle 104 as a joint to the electronic syringe 100.
  • the mandrel has a smaller caliber than the Tuohy needle 104 and can include an airway to allow air to escape through the needle 104 when needle 104 is first applied to the patient. The airway can then become clogged again when the needle 104 is further inserted into the patient, thereby closing the space in the needle 104 and the electronic syringe tank 100.
  • the electronic syringe 100 can be used as a unit from the moment the needle 104 is inserted into the patient.
  • Figure 2 is a detailed view of the electronic syringe of Figure 1.
  • the detail view 200 in Figure 2 shows that the needle 104 is removed from a detailed view of the housing 102 of its contents.
  • the housing 102 is shown in its component parts, a housing of a first side 102a, a housing of a second side 102b, and a housing cover 102c.
  • Within the housing 102 are components that include two batteries 202, a battery carrier 204, a circuit board 206, an air tank 214, a diaphragm 216, a pressure sensor 218, an actuator 212, and an internal switch mechanism 210.
  • the actuator 212 is mounted on the switch mechanism 210 to follow the movement of the switch 108.
  • the actuator 212 is positioned to be in light contact, or very close to, the diaphragm 216.
  • the air tank 214 contains air and is sealed tightly to the housing cover 102c.
  • the diaphragm 216 can be made of a compressible material.
  • the switch 108 slides to activate the electronic syringe 100, the diaphragm 216 is compressed causing a volume reduction in the enclosed space formed by the air tank 214 and the needle 104.
  • the compression of the diaphragm 216 loads the air tank 214 by increasing the pressure that is higher than a threshold pressure.
  • the threshold can be set up to about 20 rare Hg within about ⁇ 2 mm Hg.
  • the pressure sensor 218 continuously monitors the air pressure in the air tank 214. When the epidural space is found, it provides a slight escape for the air in the air tank 214 sufficient to decrease the air pressure in the air tank. 214. Alarm 110 indicates when the epidural space is found by the color change when the pressure drops in the air tank 214.
  • FIG 3 is a cross-sectional side view of the electronic syringe of Figure 1.
  • the view in Figure 3 is taken in such a way that the Switch 108 is on the bottom side of the housing 102b.
  • the battery 202 is in the battery carrier 204 and the battery carrier 204 is mounted on the top of the circuit board 206.
  • TJn cable assembly 310 extends from the circuit board 206 to make the electrical connection with the pressure sensor 218 and the alarm 110 (shown in figures 1 and 2).
  • the view in Figure 3 illustrates the movement of the switch 108 in 302 when the electronic syringe 100 is activated.
  • Switch 108 causes actuator 212 to be pressed on diaphragm 216 to a compressed state at 216 '.
  • FIG. 4 is a perspective view of the electronic syringe of Figure 1 with part of the housing removed. Figure 4 shows the battery 202, the battery carrier 204, the circuit board 206, and the wires 310 of the circuit board 206 for the alarm 110 and the pressure sensor 218.
  • the pressure sensor 218 is shown positioned in the air tank 214. Diaphragm 216 is shown sealed at the end of the back of the air tank 214.
  • FIG. 5 is a schematic diagram of an electronic circuit 500 used in the electronic syringe in Figure 1.
  • the electronic circuit 500 includes a Tuohy needle 502, an air container 504, a pressure sensor 506, an amplifier 508, a comparator 510, a threshold indicator 512, and a comparator output 512.
  • the Tuohy 502 needle is inserted into the patient.
  • an air container 504 is formed in the air tank 214 and the space of the needle 502.
  • the air container 504 is a closed volume and when the electronic syringe 100 is loaded when activating the switch 108, pressure sensor 506 detects the increase in pressure above about 35 mm Hg.
  • the pressure sensor 506 can measure a range of about 0 to 300 mm Hg.
  • Pressure sensor 506 produces an electrical signal that is indicative of the pressure recorded for amplifier 508.
  • Amplifier 508 produces an amplified signal for comparator 510.
  • the amplified signal is compared with threshold 512, which is an indicative electronic signal. of a threshold pressure below which is indicative to reach the epidural space.
  • threshold 512 is an indicative electronic signal. of a threshold pressure below which is indicative to reach the epidural space.
  • threshold 512 is an indicative electronic signal. of a threshold pressure below which is indicative to reach the epidural space.
  • a red visual alarm 512a is produced.
  • comparator 510 changes the states indicating that the pressure in the air container 504 has fallen below the threshold
  • comparator 510 produces a signal that changes the visual alarm to a green color 512b.
  • the user detects the change to the green color 512b, the user stops the advance of the needle avoiding puncture of the hard mother.
  • the color changes in the visual alarm are red and green to illustrate the operation of the device. Any color change can be used.
  • an audible alarm can be added to the device, or used instead of a visual alarm.
  • Fig. 6 is a flow chart illustrating the operation of the electronic syringe 100 (in Fig. 1).
  • the method can begin by testing the electronic syringe 100 to determine if it works in step 602. Any suitable test can be performed.
  • the user presses the switch 108 (FIG. 1) while blocking the air leak in the connector to prevent air from escaping from the air tank to activate the electronic syringe 100.
  • the pressure on the switch 108 must turn on the alarm, which in this example is supposed to be a light, either green or red.
  • the user can unlock the air escape from the air tank, allowing the air to escape.
  • the alarm should change color, for example red or green.
  • the switch is returned to an inactive state once the test is completed.
  • Step 606 checks if the indicator light came on when the switch was pressed. If the indicator light did not come on, the electronic syringe 100 is discarded in step 604. If the light was turned on, the needle is placed inside the patient and advanced to reach the yellow ligament in step 608. In step 610, the needle is connected to the electronic syringe 100 In one example, a luer connector is used to make the connection. In step 612, the button on the electronic syringe 100 is pressed to the active state. The block of decisions 618 checks if the alarm shows a color change, for example to red, or from green to red. If the color did not change when the button was pressed, the electronic syringe 100 is removed from the needle in step 614, and the button is returned to the inactive state. The electronic syringe 100 is then reconnected for another attempt at step 610.
  • step 612 for example, red
  • the needle sinks into the patient in step 622 If the alarm recorded a color change in step 612 (for example, red), the needle sinks into the patient in step 622.
  • Decision block 624 verifies a color change in the alarm when the needle sinks in the patient If a color change is detected, the epidural space is found in step 626. Then the user can continue the procedure. If no color change is detected, the user checks if the needle is too deep in decision block 620. If the needle is too deep, the electronic syringe is removed in step 6161 and discarded in step 604. If it is not too deep to the needle, the user continue sinking the needle into the patient in step 622.
  • Figure 6 illustrates an example of a method of using the electronic syringe to locate an epidural space. Modifications can be made.
  • the needle may include an air leak. It can then be attached to the electronic syringe before inserting it into the patient. When the yellow ligament is found, the method can then be advanced as shown in Fig. 6 of step 612. Other modifications can also be made.
  • the electronic syringe 100 involves injecting air into the patient.
  • the amount of air injected into the patient is less than 0.1 mL, which is much less than previous techniques as much as 30 times.
  • the electronic syringe 100 is reusable within the same procedure, and can even be used repeatedly if an epidural space is not initially located.
  • the electronic syringe 100 can be used with any appropriate needle and / or mantrile.
  • the switch 108 can be implemented like any mechanism configured to move an actuator to compress the diaphragm 216.
  • the switch 108 can be implemented as a push button, or any other appropriate mechanism.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

Se describe un dispositivo para localizar un espacio epidural. El dispositivo incluye un conector para formar una conexión herméticamente sellada con una aguja. Un recipiente de aire se forma por un tanque de aire, un diafragma, y un espacio en la aguja cuando la aguja se une al conector. El dispositivo incluye un sensor de presión configurado para detectar la presión del aire en el recipiente de aire. Un accionador se acopla a un interruptor y se posiciona adyacente al diafragma para comprimir el diafragma cuando el interruptor se acciona por un usuario provocando una reducción en volumen en el recipiente de aire. Un circuito acoplado al sensor de presión y a una alarma detecta una señal indicativa de la presión del aire registrada por el sensor de presión. El circuito compara la señal al umbral y produce un primer estado para la alarma cuando la presión está arriba del umbral, y produce un segundo estado para la alarma cuando la presión cae debajo del umbral.

Description

JERINGA ELECTRÓNICA CON SISTEMA DE SEGURIDAD PARA
INYECCIÓN ESPINAL
SOLICITUDES RELACIONADAS Esta solicitud reivindica la prioridad de la
Solicitud de Patente Provisional de E. y.A. Número de
Serie 60/989,333, titulada JERINGA ELECTRÓNICA CON
SISTEMA DE SEGURIDAD PARA INYECCIÓN ESPINAL, y presentada el 20 de noviembre de 2007, la cual se incorpora para referencia en esta solicitud en su totalidad.
ANTECEDENTES DE LA INVENCIÓN
1. Campo de la Invención. Esta invención se refiere a agujas epidurales, y más particularmente a agujas epidurales usadas para inyecciones espinales .
2. Técnica relacionada
Los avances en anestesia perioperativa y analgesia han mejorado el alivio del dolor y satisfacción en pacientes sometidos a procedimientos quirúrgicos . Los estudios recientes sugieren que los avances en anestesia y analgesia postoperativa pueden afectar el resultado postoperativo. La anestesia y analgesia epidurales tienen el potencial de reducir o eliminar las respuestas de tensión perioperativas a la cirugía; por ello disminuyen las complicaciones quirúrgicas y mejoran los resultados mientras se reducen los gastos hospitalarios .
La anestesia epidμral ha sido utilizada por médicos durante alrededor de un siglo. En 1901, el radiólogo Jean-Anthanase Sicard reportó el tratamiento de pacientes que padecen de dolor ciático intratable severo o lumbago, al inyectar soluciones diluidas de cocaína a través del hiato sacro. Los médicos comenzaron a usar el método lumbar para la anestesia diversas décadas después, eventualmente en cirugía abdominal con anestesia epidural lumbar de toque sencillo.
El espacio epidural es la parte del canal vertebral no ocupado por la materia dura y sus contenidos. Es un espacio muy estrecho, a menudo referido como un 'espacio virtual, ' que se encuentra entre la dura y el revestimiento de periostio dentro del canal vertebral. La dura y el ligamento amarillo están estrechamente adyacentes al espacio virtual. El espacio epidural se extiende del foramen magnum al hiato sacro. Los nervios raquídeos anterior y posterior en su cubierta dural, pasan a través de este espacio potencial para unirse en el foramen intervertebral para formar nervios segméntales . El espacio epidural contiene plexo venoso y tejido graso el cual es continuo con la grasa en el espacio paravertebral .
El uso de anestesia epidural se ha expandido ampliamente a través de los años. La anestesia epidural puede usarse como un método anestésico para los procedimientos que involucran las extremidades inferiores, pelvis, perineo y abdomen inferior. Es posible realizar procedimientos en la parte superior del abdomen y torácicos bajo anestesia epidural. Algunos de los procedimientos específicos en los cuales la anestesia epidural puede usarse incluyen: cirugía de cadera y rodilla, reconstrucción vascular o amputación de las extremidades inferiores, obstetricia, anestesia local de concentración baja, opioides, o combinación de ambos, y trauma torácico con fracturas en la costilla o esternón.
La población objetivo para uso de anestesia epidural incluye mujeres embarazadas sometidas a cesárea, o mujeres a término que están planeando un parto vaginal pero desean tener un anestésico epidural disponible para el manejo de las contracciones del parto . Una ventaja adicional del uso de anestesia epidural es la capacidad de mantener anestesia continua después de la colocación de un catéter epidural, haciéndola adecuada para los procedimientos de larga duración. Esta característica también abarca el uso de esta técnica en el periodo postoperativo para la analgesia, usando concentraciones más bajas de fármacos anestésicos locales o en combinación con agentes diferentes .
Cuando se realiza un bloqueo epidural, el espacio epidural se penetra por la punta de la aguja después de pasar a través del ligamento flavo. I¿a aguja epidural sigue una dirección anatómica desde la piel al interior del cuerpo, a través del tejido subcutáneo, ligamento interespinoso, amarillo y que llega luego al espacio epidural. El usuario identifica el espacio y lo penetra cuidadosamente cuando el bisel de la aguja sale del ligamento amarillo para evitar la penetración de la dura si la aguja se empuja a la medida. El espacio epidural termina en el ligamento sacro medio. La distancia más larga se encuentra en la linea media y es de alrededor de 5 mm. Cuando el espacio epidural se encuentra, la anestesia se inyecta dentro del espacio. Las moléculas anestésicas epidurales rodean los nervios raquídeos y penetran profundamente en el interior del tejido de la médula espinal, evitando el cierre del canal de sodio, de esta manera bloquean la transmisión del mensaje de dolor del sitio de inyección y por debajo.
Una manera de identificar el espacio epidural durante un procedimiento de anestesia epidural involucra identificar una presión negativa para la aguja de avance. La presión en el espacio epidural se han medido para ser una presión epidural negativa alta de hasta ~60 mm Hg en el momento de la punción epidural. Sin embargo, la presión típicamente se vuelve positiva y se estabiliza a +3.7 ± 3.2 mm Hg. Esto sugiere que las presiones epidurales negativas en el momento de punción epidural pueden deberse al abultamiento de la membrana dural. El aire y la solución salina se colocan típicamente en las jeringas unidas a las agujas epidurales para determinar la pérdida de resistencia durante la inserción de un epidural. Por otro lado, puede que no haya ninguna presión negativa en algunos casos, o la presión negativa puede no ser importante. La capacidad para identificar correctamente el espacio epidural puede aumentar los beneficios de la anestesia epidural al minimizar las complicaciones. Las complicaciones que pueden surgir durante un procedimiento epidural incluyen: resistencia ósea, incapacidad para tratar el catéter, fluido a través de la aguja, fluido a través del catéter, y dolor en la inserción del catéter o sangre en el catéter. El riesgo más importante de bloqueo epidural es la inyección intravascular no intencional, no reconocida. Estas complicaciones son más probables con la anestesia epidural que con otras técnicas regionales debido al número de plexos en el espacio epidural, y posiblemente debido a la presión relativamente baja que existe en estas venas. Otra complicación potencial en la anestesia epidural es embolismo por aire. El volumen de aire inyectado en las venas epidurales puede producir manifestaciones clínicas ligeras de alrededor de 0.07 mL por kilogramo en peso. Aunque el volumen usual de aire inyectado puede no ser peligroso, la persistencia del foramen ovalado permeable puede resultar en una sintomatología inesperada. Esto puede indicarse por la punción traumática y accidental directamente al plexo epidural venoso durante la maniobra de detección del espacio epidural . El aire es tan probable como la substancia inyectada en el espacio epidural, para pasar al sistema circulatorio dentro de 15 segundos debido a la diferencia de presión. Un embolismo por aire de micro burbujas también puede fluir hacia la circulación general .
La punción dural accidental se reconoce típicamente por la pérdida inmediata de fluido cerebral-espinal (CSF, por sus siglas en inglés) a través de la aguja epidural. La punción dural accidental lleva a una alta incidencia de dolor de cabeza por punción post dural, el cual puede ser bastante severo. La punción dural accidental puede ocurrir aún cuando el procedimiento se efectúe por médicos altamente experimentados. Es más común cuando se realiza por manos más inexpertas.
Las complicaciones antes mencionadas ocurren menos frecuentemente cuando los procedimientos se realizan con doctores más experimentados. Sin embargo, los doctores con habilidad suficiente pueden no estar fácilmente disponibles en algμn tiempo dado. Además, sería deseable realizar bloqueos epidurales y anestesia sin contar con la experiencia del doctor.
En vista de las complicaciones y riesgos antes descritos, la localización del espacio epidural es crítica para el éxito de la anestesia epidural. Los dispositivos y procedimientos se han diseñado para mejorar el procedimiento. Actualmente, existen dos técnicas básicas para identificar cuando la aguja entra en el espacio epidural: una con base en la pérdida de resistencia detectada cuando la aguja entra al espacio, y la otra que detecta el cambio de presión dentro del espacio.
La técnica de pérdida de resistencia es el método más común para ubicar una aguja en el espacio epidμral . Cuando una aguja Tuohy se introduce en el espacio epidural, el anestesiólogo es capaz de sentir la pérdida de resistencia para la inyección a través de la aguja. Esto puede ser debido a la presencia de una presión negativa en el espacio epidural . Como se anota arriba, la presión negativa puede no siempre presentarse. En tales casos, la pérdida de resistencia no es debido a la presión negativa, y el uso de la técnica puede sentirse diferente por el usuario.
En los últimos años, se han desarrollado otros instrumentos o técnicas con base en los principios básicos de las dos teorías para identificar los espacios epidurales (la pérdida de resistencia y la presión negativa) con objeto de complementar o reemplazar las técnicas originales. Los ejemplos incluyen:
1. El balón Macintosh, con base en el principio de pérdida de resistencia, consiste de una pelota de hule elástica pequeña, la cual se infla permanentemente con aire mientras que la aguja está en el ligamento flavo. El balón Macintosh se desinfla cuando entra al espacio epidural . Un problema que se ha observado con este dispositivo es una incidencia más alta de anestesia incompleta debido a la cantidad de aire inyectado.
2. Un goteo por infusión conectado a la aguja Tuohy. Esta técnica es con base en la diferencia de presión entre la presión atmosférica y la presión dentro del espacio epidural. Una vez que la aguja Tuohy se introduce en el ligamento interespinal, la punta del mandril se extrae y conecta a un sistema de suero de infusión en el extremo distal de la aguja. La velocidad del goteo indicará la posición de la aguja superior. Un cambio repentino en la velocidad de goteo, tal como un flujo libre, indica que la aguja ha penetrado el espacio epidural . Este método no es preciso y puede ser más efectivo al nivel torácico debido a la presión negativa. Con esta técnica, no es posible encontrar la diferencia entre el espacio epidural y el espacio subaracnoide debido a que la infusión continuará en el goteo libre, aún si la aguja ha atravesado la materia dura.
3. El Episensor™, el cual es un método electrónico para detectar la presión negativa en el espacio epidural. Este dispositivo se ha encontrado con resultados que no pueden ser mejores que las técnicas más tradicionales .
4. Un dispositivo que incluye una jeringa con dos cámaras (conocidas como el Epident®) . El dispositivo tiene una cámara distal, la cual contiene 3 mL de solución salina y una cámara próxima que contiene aire. El dispositivo tiene la sensación de compresibilidad que un usuario desea, evitando la inconveniencia de la pérdida de resistencia que ocurre con la técnica de aire. Las jeringas similares se han diseñado con un diafragma, el cual se usa para separar ambos fluidos. El sistema es similar al método de burbuja de aire, pero es más complejo y caro.
5. Una jeringa de vidrio con un émbolo, el cual se desliza muy fácilmente, se ha usado para identificar los espacios epidurales . Los paquetes epidurales desechables comercialmente disponibles más recientes contienen una jeringa plástica con un émbolo que tiene resistencia muy baja. Las jeringas normales no deberían usarse debido a que su resistencia mayor puede hacer más difícil la identificación del espacio epidural. Estas soluciones para localizar el espacio epidural se han diseñado para ofrecer comodidad para el operador mientras que reducen las complicaciones. Sin embargo, han cumplido con éxito limitado.
Se mantiene una necesidad para un dispositivo electrónico automático que proporcione un enfoque objetivo para la identificación del espacio epidural. Que sea seguro, fácil de usar y que tenga una alta sensibilidad para encontrar el punto deseado, mientras se produce un resultado positivo.
SUMARIO DE LA INVENCIÓN En vista de lo anterior, se proporciona un dispositivo para localizar el espacio epidural . El dispositivo incluye un conector para formar una conexión herméticamente sellada con una aguja. Un recipiente de aire se forma por un tanque de aire, un diafragma, y un espacio en la aguja cuando la aguja se une al conector. El dispositivo incluye un sensor de presión configurado para detectar la presión del aire en el recipiente de aire. Un accionador se acopla a un interruptor y se posiciona adyacente al diafragma para comprimir el diafragma cuando el interruptor se acciona por un usuario provocando una reducción en volumen en el recipiente de aire. Un circuito acoplado al sensor de presión y a una alarma detecta una señal indicativa de la presión del aire registrada por el sensor de presión. El circuito compara la señal a un umbral y produce un primer estado para la alarma cuando la presión está arriba del umbral, y produce un segundo estado para la alarma cuando la presión cae debajo del umbral .
En otro aspecto de la invención, un método se proporciona para ubicar un espacio epidural . El método incluye insertar una aguja en un paciente hasta detectar el ligamento amarillo. Un recipiente de aire cerrado se forma con un tanque de aire y el espacio en la aguja. El volumen en el recipiente de aire se reduce, y la presión de aire en el recipiente de aire se mide. La medición de presión de aire se compara con un umbral mientras que se empuja la aguja dentro del paciente. Cuando la presión de aire cae debajo del umbral, el avance de la aguja se detiene por el usuario. Otros sistemas, métodos y características de la invención serán o se volverán evidentes para alguien con experiencia en la técnica durante la revisión de las siguientes figuras y descripción detallada. Se pretende que todos los sistemas, métodos, características y ventajas adicionales se incluyan dentro de esta descripción, estén dentro del alcance de la invención, y se protejan por las reivindicaciones acompañantes . BREVE DESCRIPCIÓN DE LOS DIBUJOS
Las implementaciones de ejemplo de la invención descritas a continuación pueden entenderse mejor al referirse a las siguientes figuras. Los componentes en las figuras no están necesariamente a escala, el énfasis más bien se coloca al ilustrar los principios de la invención. En las figuras, los números de referencia similares designan a las partes correspondientes a lo largo de las vistas diferentes.
La figura 1 es una vista en perspectiva de una jeringa electrónica.
La figura 2 es una vista en detalle de la jeringa electrónica de la figura 1. La figura 3 es una vista lateral en sección transversal de la jeringa electrónica de la figura 1.
La figura 4 es una vista en perspectiva de la jeringa electrónica de la figura 1 con parte del alojamiento removido. La figura 5 es un diagrama esquemático del circuito electrónico usado en la jeringa electrónica en la figura 1. La figura 6 es un diagrama de flujo que ilustra la operación de la jeringa electrónica.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN La figura 1 es una vista en perspectiva de un ejemplo de una jeringa electrónica 100. La jeringa electrónica 100 en la figura 1 incluye un alojamiento 102, el cual mantiene los componentes internos (descritos en más detalle a continuación con referencia a las figuras 2-5), y una aguja 104. La jeringa electrónica 100 también incluye un conector 106 para poner en contacto la aguja 104 que puede, o no, tener fijo un mandril, un interruptor 108 para activar la jeringa electrónica 100, y una alarma 110 para indicar cuando el espacio epidural se ha penetrado.
La jeringa electrónica 100 se usa por un doctor, o anestesiólogo o cualquier otro personal médico calificado, para ubicar el espacio epidural durante un procedimiento de anestesia. La jeringa electrónica 100 facilita la punción en el espacio epidural sin empujar la aguja muy profundo. Un mecanismo de seguridad incorporado en la forma de un sensor neumático genera una alarma cuando el usuario está en riesgo de avanzar demasiado. El usuario opera la jeringa electrónica 100 como un localizador de presión anatómica para localizar precisamente el espacio epidural ventajosamente minimizando las complicaciones tales como una punción de la dura, lo cual puede llevar a una liberación de fluido espinal durante el procedimiento de anestesia.
La jeringa electrónica 100 en la figura 1 puede implementarse en un tamaño que permitiría su uso como un dispositivo manual usado por una sola persona. En un ejemplo, la jeringa electrónica 100 es de aproximadamente 36.5 W x 35.4 T x 59 L mm, sin embargo, cualquier jeringa electrónica 100 puede ser de cualquier tamaño adecuado. Los ejemplos de la jeringa electrónica 100 descritos en la presente funcionan con baterías; sin embargo, cualquier forma de energía eléctrica puede usarse. Una característica puede incluirse para asegurar que la batería se activa solamente por un primer uso pretendido al evitar la activación accidental. Por ejemplo, una pieza pequeña de papel puede insertarse entre la batería y sus contactos de tal manera que se extiende fuera del alojamiento 102 a través de una rendija para permitir al usuario retirar el papel para permitir el primer uso. Una vez que el papel se retira, el usuario puede iniciar la operación de deslizar el interruptor 108 para activar la jeringa electrónica 100. En el ejemplo ilustrado, la jeringa electrónica 100 incluye dos baterías de 3V de litio en serie que pueden encender el dispositivo durante alrededor de una hora.
La alarma 110 en el ejemplo mostrado en la figura 1 es una alarma visual 110 implementada como un LED, u otro dispositivo adecuado que emite luz. La alarma 110 también puede implementarse como una alarma audible, o cualquier otro dispositivo pretendido para atraer la atención del usuario e indicar la presencia de un evento. La alarma 110 indica cuando el usuario ha alcanzado el espacio epidural . En un ejemplo, la jeringa electrónica 100, la alarma 110 se implementa como un LED que cambia a un color rojo para indicar que la aguja puede empujarse, y a un color verde para indicar que el espacio epidural se ha alcanzado.
La jeringa electrónica 100 incluye el conector 106, el cual puede ser un conector tipo Luer para proporcionar una conexión herméticamente sellada a la aguja 104. Aunque, cualquier conector adecuado 106 puede usarse. Los ejemplos de la jeringa electrónica 100 se describen en la presente como que son compatibles para el uso con una aguja Tuohy 104; sin embargo, cualquier aguja adecuada 104 puede usarse. La aguja 104 usada con la jeringa electrónica 100 puede incluir un mandril fijo,- sin embargo, cualquier estructura o técnica adecuada puede usarse con el conector tipo Luer 106 para evitar que entre tejido en la aguja al momento que la aguja 104 entra en el paciente. En un ejemplo, un mandril puede unirse a la jeringa electrónica 100 con la aguja 104 como un ensamble. El mandril puede unirse removiblemente a la aguja 104. En otro ejemplo, no se usa el mandril fijo al dispositivo durante el procedimiento con la aguja 104 durante el procedimiento. La jeringa electrónica 100 puede usarse como sigue. El usuario primero introduce la aguja Tuohy 104 en el paciente. Inicialmente, la aguja 100 puede insertarse con un mandril. Ni la aguja 104 ni el mandril se unieron a la jeringa electrónica 100 cuando primero se introduce en el paciente. El usuario inserta la aguja y el mandril 104 hasta que alcanza el ligamento amarillo. Cuando el ligamento amarillo se alcanza, el mandril se retira y la jeringa electrónica 100 se conecta a la aguja Tuohy 104 en el conector Luer 106 creando una conexión herméticamente sellada. El usuario luego desliza el interruptor 108 al estado activo. Un sensor de presión dentro del alojamiento 102 detecta una presión dentro de un tanque de aire continuamente, y la presión se compara por un circuito electrónico con una presión de umbral. Mientras la presión medida sea mayor que el nivel de umbral, la alarma 110 se establece para indicar que el usuario puede continuar empujando la aguja en el paciente. Cuando el espacio epidural se alcanza, una disminución repentina en la presión debajo del umbral se detecta y el circuito electrónico provoca que la alarma 110 indique que el espacio epidural se alcanza. Una ventaja de la jeringa electrónica 100 en la figura 1 es que la alarma 110 proporciona detección de fallas incorporada. Por ejemplo, cuando la jeringa electrónica 100 se conecta a la aguja en el conector Luer 106, si la alarma 110 no se establece para indicar que el usuario puede empujar la aguja después de que el interruptor 108 se desliza en el estado activo, el usuario no hace avanzar la aguja. Si la alarma 110 no cambia, puede existir un problema con los dispositivos o la aguja puede no haberse conectado apropiadamente.
En otro ejemplo del uso de la jeringa electrónica 100, la aguja 104 puede unirse a la jeringa electrónica 100 con mandril fijo previo a insertarse en el paciente. El usuario luego puede insertar la aguja unida a la jeringa electrónica 100 en el paciente y deslizar el interruptor 108 para cargar la jeringa electrónica 100. Suponiendo que la alarma 110 indica que la aguja puede empujarse, el usuario continúa la inserción de la aguja hasta que la alarma 110 cambia para indicar que se ha alcanzado el espacio epidural . En este otro ejemplo, el mandril se agrega a la aguja 104 como una unión a la jeringa electrónica 100. El mandril tiene un calibre más pequeño que la aguja Tuohy 104 y puede incluir una vía aérea para permitir el escape de aire a través de la aguja 104 cuando la aguja 104 primero se aplica al paciente. La vía aérea luego puede volverse a obstruir cuando la aguja 104 se introduce más en el paciente por ello cierra el espacio en la aguja 104 y el tanque de la jeringa electrónica 100. Al agregar el mandril a la jeringa electrónica mientras se une a la aguja 104, no es necesario primero insertar la aguja con mandril en el paciente para detectar el ligamento amarillo. La jeringa electrónica 100 puede usarse como una unidad desde el momento que la aguja 104 se inserta en el paciente. La figura 2 es una vista en detalle de la jeringa electrónica de la figura 1. La vista en detalle 200 en la figura 2 muestra que la aguja 104 se remueve de una vista en detalle del alojamiento 102 de sus contenidos. El alojamiento 102 se muestra en sus partes componentes, un alojamiento de un primer lado 102a, un alojamiento de un segundo lado 102b, y una tapa de alojamiento 102c. Dentro del alojamiento 102 están los componentes que incluyen dos baterías 202, un portador de baterías 204, un tablero de circuitos 206, un tanque de aire 214, un diafragma 216, un sensor de presión 218, un accionador 212, y un mecanismo interruptor interno 210. El accionador 212 se monta en el mecanismo de interruptor 210 para seguir el movimiento del interruptor 108. El accionador 212 se posiciona para estar en contacto ligero, o muy cerca de, el diafragma 216.
El tanque de aire 214 contiene aire y se sella herméticamente a la tapa de alojamiento 102c. Cuando la aguja 104 se inserta en el paciente, un espacio de aire cerrado se forma en el tanque de aire 214 y en la aguja 104. El diafragma 216 puede hacerse de un material compresible. Cuando el interruptor 108 se desliza para activar la jeringa electrónica 100, el diafragma 216 se comprime provocando una reducción de volumen en el espacio cerrado formado por el tanque de aire 214 y la aguja 104. La compresión del diafragma 216 carga el tanque de aire 214 al incrementar la presión que es más alta que una presión de umbral. En un ejemplo, el umbral puede establecerse hasta alrededor de 20 rara Hg dentro de alrededor de ±2 mm Hg. El sensor de presión 218 monitorea continuamente la presión del aire en el tanque de aire 214. Cuando el espacio epidural se encuentra, proporciona un escape ligero para el aire en el tanque de aire 214 suficiente para disminuir la presión del aire en el tanque de aire 214. La alarma 110 indica cuando el espacio epidural se encuentra por el cambio de color cuando la presión cae en el tanque de aire 214.
La figura 3 es una vista lateral en sección transversal de la jeringa electrónica de la figura 1. La vista en la figura 3 se toma de tal manera que el interruptor 108 está en el lado del fondo del alojamiento 102b. Como se muestra en la figura 3, la batería 202 está en el portador de baterías 204 y el portador de baterías 204 se monta en la parte superior del tablero de circuitos 206. TJn conjunto de cables 310 se extiende del tablero de circuitos 206 para hacer la conexión eléctrica con el sensor de presión 218 y la alarma 110 (se muestra en las figuras 1 y 2) . La vista en la figura 3 ilustra el movimiento del interruptor 108 en 302 cuando la jeringa electrónica 100 se activa. El interruptor 108 provoca que el accionador 212 se presione en el diafragma 216 a un estado comprimido en 216'. El interruptor 108 se activa mientras que la aguja (y/o el mandril) se ha insertado parcialmente en el paciente creando una presión más alta del volumen disminuido en el tanque de aire 214. Cuando el espacio epidural se alcanza, el aire en el tanque de aire 214 se libera en el espacio epidural provocando una disminución en la presión en el tanque de aire 214. El sensor de presión 218 registra la caída de presión y genera una señal para la alarma 110 para indicar que el espacio epidural se ha alcanzado. La figura 4 es una vista en perspectiva de la jeringa electrónica de la figura 1 con parte del alojamiento removido. La figura 4 muestra la batería 202, el portador de baterías 204, el tablero de circuitos 206, y los cables 310 del tablero de circuitos 206 para la alarma 110 y el sensor de presión 218. El sensor de presión 218 se muestra posicionado en el tanque de aire 214. El diafragma 216 se muestra sellado en el extremo de la parte de atrás del tanque de aire 214.
La figura 5 es un diagrama esquemático de un circuito electrónico 500 usado en la jeringa electrónica en la figura 1. El circuito electrónico 500 incluye una aguja Tuohy 502, un recipiente de aire 504, un sensor de presión 506, un amplificador 508, un comparador 510, un indicador de umbral 512, y una salida del comparador 512. En la operación, la aguja Tuohy 502 se inserta en el paciente. Cuando la jeringa electrónica 100 se une a la aguja 502, un recipiente de aire 504 se forma en el tanque de aire 214 y el espacio de la aguja 502. El recipiente de aire 504 es un volumen cerrado y cuando la jeringa electrónica 100 se carga al activar el interruptor 108, el sensor de presión 506 detecta el incremento en la presión por encima de alrededor de 35 mm Hg. El sensor de presión 506 puede medir un intervalo de alrededor de 0 hasta 300 mm Hg. El sensor de presión 506 produce una señal eléctrica que es indicativa de la presión registrada para el amplificador 508. El amplificador 508 produce una señal amplificada para el comparador 510. La señal amplificada se compara con el umbral 512, la cual es una señal electrónica indicativa de una presión de umbral debajo de la cual es indicativa para alcanzar el espacio epidural. Con tal de que la salida del comparador 510 indique que la presión en el recipiente de aire 504 es mayor que el umbral 512, se produce una alarma visual roja 512a. Cuando la salida del comparador 510 cambia los estados indicando que la presión en el recipiente de aire 504 ha caído debajo del umbral, el comparador 510 produce una señal que cambia la alarma visual a un color verde 512b. Cuando el usuario detecta el cambio al color verde 512b, el usuario detiene el avance de la aguja evitando punción de la dura madre.
Se entiende que los cambios de color en la alarma visual son rojo y verde para ilustrar la operación del dispositivo. Cualquier cambio de color puede usarse. Además, puede agregarse una alarma audible al dispositivo, o usarse en lugar de una alarma visual.
La Fig. 6 es un diagrama de flujo que ilustra la operación de la jeringa electrónica 100 (en la Fig. 1) . El método puede comenzar al probar la jeringa electrónica 100 para determinar si trabaja en la etapa 602. Se puede efectuar cualquier prueba adecuada. En un ejemplo, el usuario oprime el interruptor 108 (FIG. 1) mientras bloquea el escape de aire en el conector para evitar que escape el aire del tanque de aire para activar la jeringa electrónica 100. La presión sobre el interruptor 108 debe encender la alarma, la cual en este ejemplo se supone que es una luz, ya sea verde o roja. Luego el usuario puede desbloquear el escape de aire desde el tanque de aire, permitiendo que escape el aire. Cuando el aire escapa del tanque de aire, la alarma debe cambiar de color, por ejemplo rojo o verde. El interruptor se regresa a un estado inactivo una vez que se termina la prueba.
El bloque de decisiones 606 verifica si se encendió la luz del indicador cuando se oprimió el interruptor. Si no se encendió la luz del indicador, la jeringa electrónica 100 se descarta en la etapa 604. Si se encendió la luz, se coloca la aguja dentro del paciente y se avanza hasta alcanzar el ligamento amarillo en la etapa 608. En la etapa 610, se conecta la aguja a la jeringa electrónica 100. En un ejemplo, se usa un conector luer para hacer la conexión. En la etapa 612, el botón sobre la jeringa electrónica 100 se oprime al estado activo. El bloque de descisiones 618 verifica si la alarma muestra un cambio de color, por ejemplo al rojo, o del verde al rojo. Si el color no cambió cuando se oprimió el botón, se remueve la jeringa electrónica 100 de la aguja en la etapa 614, y se regresa el botón al estado inactivo. La jeringa electrónica 100 luego se vuelve a conectar para otro intento en la etapa 610.
Si la alarma registró un cambio de color en la etapa 612 (por ejemplo, al rojo) , se hunde la aguja dentro del paciente en la etapa 622. El bloque de decisiones 624 verifica un cambio de color en la alarma cuando la aguja se hunde en el paciente. Si se detecta un cambio de color, se encuentra el espacio epidural en la etapa 626. Luego puede continuar el usuario el procedimiento. Si no se detecta ningún cambio de color, el usuario verifica si la aguja está demasiado profunda en el bloque de decisiones 620. Si la aguja está demasiado profunda, se remueve la jeringa electrónica en la etapa 6161 y se descarta en la etapa 604. Si no está demasiado profunda al aguja, el usuario continúa hundiendo la aguja dentro del paciente en la etapa 622.
La Figura 6 ilustra un ejemplo de un método de uso de la jeringa electrónica para localizar un espacio epidural . Se pueden hacer modificaciones. Por ejemplo, la aguja puede incluir un escape de aire. Luego se puede unir a la jeringa electrónica previo a insertarla en el paciente. Cuando se encuentra el ligamento amarillo, el método puede luego avanzar como se muestra en la Fig. 6 de la etapa 612. Se pueden hacer también otras modificaciones.
También se nota que la jeringa electrónica 100 involucra inyectar aire en el paciente. Sin embargo, la cantidad de aire inyectado al paciente es de menos de 0.1 mL, que es mucho menor que las técnicas previas tanto como 30 veces. Además, la jeringa electrónica 100 es reutilizable dentro del mismo procedimiento, y puede incluso usarse repetidamente si un espacio epidural no se localiza inicialmente. Además, la jeringa electrónica 100 puede usarse con cualquier aguja apropiada y/o mantril. El interruptor 108 puede implementarse como cualquier mecanismo configurado para mover un accionador para comprimir el diafragma 216. El interruptor 108 puede implementarse como un botón de presionado, o cualquier otro mecanismo apropiado.
La descripción anterior de una implementación se ha presentado para propósitos de ilustración y descripción. Esta no es exhaustiva y no limita las invenciones reivindicadas a la forma precisa descrita. Son posibles modificaciones y variaciones a la luz de la descripción anterior o pueden adquirirse de la práctica de la invención. Observar también que la implementación puede variar entre sistemas. Las reivindicaciones y sus equivalentes definen el alcance de la invención.

Claims

REIVINDICACIONES
1. Un dispositivo para localizar un espacio epidural, caracterizado porque comprende: un conector para formar una conexión herméticamente sellada con una aguja; un recipiente de aire formado por un tanque de aire, un diafragma, y un espacio en la aguja cuando la aguja se une al conector; un sensor de presión configurado para detectar la presión del aire en el recipiente de aire; un accionador acoplado a un interruptor y posicionado adyacente al diafragma, el accionador operable para comprimir el diafragma cuando el interruptor se acciona por un usuario provocando una reducción en volumen en el recipiente de aire; y un circuito acoplado al sensor de presión y a una alarma, el circuito opera para recibir una señal que indica la presión del aire registrada por el sensor de presión, y comparar la señal al umbral, para producir un primer estado a la alarma cuando la presión está arriba del umbral, y para producir un segundo estado a la alarma cuando la presión cae debajo del umbral.
2. El dispositivo de conformidad con la reivindicación 1, caracterizado porque el conector es un conector tipo Luer.
3. El dispositivo de conformidad con la reivindicación 1, caracterizado porque el conector se configura para conexión con una aguja Tuohy.
4. El dispositivo de conformidad con la reivindicación 1, caracterizado porque la aguja incluye un mandril.
5. El dispositivo de conformidad con la reivindicación 1, caracterizado porque la alarma es una alarma visual que indica un cambio de presión con relación al umbral accionando un cambio de color en un dispositivo que emite luz.
6. El dispositivo de conformidad con la reivindicación 1, caracterizado porque la alarma es una alarma audible .
7. El dispositivo de conformidad con la reivindicación 1, caracterizado porque el recipiente de aire tiene un volumen de aproximadamente 1.13 mL antes de que el diafragma se comprima y un volumen de aproximadamente 1.06 mL cuando el diafragma se comprime .
8. Un método para localizar un espacio epidural, caracterizado porque comprende: insertar un aguja en un paciente hasta registrar el ligamento amarillo; formar un recipiente de aire cerrado con un tanque de aire y el espacio en la aguja; reducir el volumen en el recipiente de aire; medir la presión del aire en el recipiente de aire; comparar la medición de la presión del aire con un umbral mientras avanza la aguja en el paciente; y detener la aguja cuando la presión del aire cae debajo del umbral.
9. El método de conformidad con la reivindicación 8, caracterizado porque la etapa de reducir el volumen incluye comprimir un diafragma en el tanque de aire .
10. El método de conformidad con la reivindicación 8, caracterizado porque la etapa de insertar la aguja incluye usar un mandril.
11. El método de conformidad con la reivindicación 8, caracterizado además porque comprende generar una primera alarma que indica una medición de presión mayor que el umbral y una segunda alarma que indica una medición de presión de aire menor al umbral.
12. El método de conformidad con la reivindicación 11, caracterizado porque la primera alarma es una luz que tiene un primer color y la segunda alarma es una luz que tiene un segundo color.
13. El método de conformidad con la reivindicación 11, caracterizado porque las etapas de generar las primeras y segundas alarmas incluye generar primeras y segundas alarmas audibles.
14. Un método para localizar un espacio epidural, caracterizado porque comprende: conectar un aguja a un tanque de aire; formar un recipiente de aire cerrado al insertar la aguja conectada al tanque de aire en un paciente hasta registrar el ligamento amarillo; reducir el volumen en el recipiente de aire cerrado; medir la presión del aire en el recipiente de aire; comparar la medición de la presión del aire con un umbral mientras se empuja la aguja más dentro del paciente; y detener la aguja cuando la presión del aire cae debajo del umbral .
15. El método de conformidad con la reivindicación 14, caracterizado porque la etapa de reducir el volumen en el recipiente de aire cerrado incluye comprimir un diafragma en el tanque de aire.
16. El método de conformidad con la reivindicación 14, caracterizado porque la etapa de insertar la aguja incluye usar un mandril fijo al dispositivo.
17. El método de conformidad con la reivindicación 14, caracterizado además porque comprende generar una primera alarma que indica una medición de presión mayor que el umbral y una segunda alarma que indica una medición de presión de aire menor al umbral .
18. El método de conformidad con la reivindicación 17, caracterizado porque la primera alarma es una luz que tiene un primer color y la segunda alarma es una luz que tiene un segundo color.
19. El método de conformidad con la reivindicación 17, caracterizado porque las etapas de generar las primeras y segundas alarmas incluye generar primeras y segundas alarmas audibles .
PCT/MX2008/000158 2007-11-20 2008-11-20 Jeringa electrónica con sistema de seguridad para inyección espinal WO2009066972A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MX2010005507A MX2010005507A (es) 2007-11-20 2008-11-20 Jeringa electronica con sistema de seguridad para inyeccion espinal.
EP08852740A EP2223662A1 (en) 2007-11-20 2008-11-20 Electronic syringe with safety system for spinal injections

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US98933307P 2007-11-20 2007-11-20
US60/989,333 2007-11-20
US12/275,162 US20090131832A1 (en) 2007-11-20 2008-11-20 Electronic Syringe with Safety System for Spinal Injection
US12/275,162 2008-11-20

Publications (1)

Publication Number Publication Date
WO2009066972A1 true WO2009066972A1 (es) 2009-05-28

Family

ID=40642726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2008/000158 WO2009066972A1 (es) 2007-11-20 2008-11-20 Jeringa electrónica con sistema de seguridad para inyección espinal

Country Status (3)

Country Link
US (1) US20090131832A1 (es)
EP (1) EP2223662A1 (es)
WO (1) WO2009066972A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011094957A1 (zh) * 2010-02-02 2011-08-11 天津美迪斯医疗用品有限公司 一次性使用硬膜外穿刺负压指示器
US10004450B2 (en) 2016-05-03 2018-06-26 Texas Medical Center Tactile sensing device for lumbar punctures
WO2018172817A1 (es) * 2017-03-23 2018-09-27 Velez Rivera Hector De Jesus Aguja para suministrar un anestésico con orientador luminoso
US10383610B2 (en) 2017-10-27 2019-08-20 Intuitap Medical, Inc. Tactile sensing and needle guidance device

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8641715B2 (en) 2002-05-31 2014-02-04 Vidacare Corporation Manual intraosseous device
US20070049945A1 (en) 2002-05-31 2007-03-01 Miller Larry J Apparatus and methods to install, support and/or monitor performance of intraosseous devices
US11337728B2 (en) 2002-05-31 2022-05-24 Teleflex Life Sciences Limited Powered drivers, intraosseous devices and methods to access bone marrow
IL165222A0 (en) 2002-05-31 2005-12-18 Vidacare Corp Apparatus and method to access the bone marrow
US8668698B2 (en) 2002-05-31 2014-03-11 Vidacare Corporation Assembly for coupling powered driver with intraosseous device
US10973545B2 (en) 2002-05-31 2021-04-13 Teleflex Life Sciences Limited Powered drivers, intraosseous devices and methods to access bone marrow
US9504477B2 (en) 2003-05-30 2016-11-29 Vidacare LLC Powered driver
US8944069B2 (en) 2006-09-12 2015-02-03 Vidacare Corporation Assemblies for coupling intraosseous (IO) devices to powered drivers
US10219832B2 (en) 2007-06-29 2019-03-05 Actuated Medical, Inc. Device and method for less forceful tissue puncture
US8328738B2 (en) * 2007-06-29 2012-12-11 Actuated Medical, Inc. Medical tool for reduced penetration force with feedback means
US9987468B2 (en) 2007-06-29 2018-06-05 Actuated Medical, Inc. Reduced force device for intravascular access and guidewire placement
US10463838B2 (en) * 2009-08-19 2019-11-05 Medline Industries, Inc Vascular access methods and devices
EP2467057B1 (en) * 2009-08-19 2020-07-22 Medline Industries, Inc., Systems and devices for facilitating access to target anatomical sites or environments
US8814807B2 (en) 2009-08-19 2014-08-26 Mirador Biomedical Spinal canal access and probe positioning, devices and methods
WO2011158227A2 (en) * 2010-06-13 2011-12-22 Omeq - Innovative Medical Devices Ltd Anatomical-positioning apparatus and method with an expandable device
WO2012089223A1 (en) * 2010-12-28 2012-07-05 Mishail Ishak Ibrahim Device for detecting epidural space and accurate catheter placement
US9956341B2 (en) 2012-07-03 2018-05-01 Milestone Scientific, Inc. Drug infusion with pressure sensing and non-continuous flow for identification of and injection into fluid-filled anatomic spaces
EP3021892A4 (en) * 2013-06-24 2017-04-26 Senatore, Thomas A. Apparatus for hanging drop detection of epidural space penetration
JP5467668B1 (ja) * 2013-10-07 2014-04-09 応用電子工業株式会社 硬膜外腔識別装置
CN105664302B (zh) * 2014-11-21 2019-02-15 医盟科技股份有限公司 注射器定位装置
TWI572387B (zh) 2014-11-21 2017-03-01 羅文甫 注射器定位裝置
US10940292B2 (en) 2015-07-08 2021-03-09 Actuated Medical, Inc. Reduced force device for intravascular access and guidewire placement
KR101559740B1 (ko) * 2015-07-13 2015-10-15 최형찬 에피 체크 포인트
US11793543B2 (en) 2015-09-18 2023-10-24 Obvius Robotics, Inc. Device and method for automated insertion of penetrating member
US10220180B2 (en) 2015-10-16 2019-03-05 Milestone Scientific, Inc. Method and apparatus for performing a peripheral nerve block
US9504790B1 (en) * 2016-02-23 2016-11-29 Milestone Scientific, Inc. Device and method for identification of a target region
US11439353B2 (en) 2016-06-13 2022-09-13 Medtronic Holding Company Sàrl Multi-cannula sensing device
CN106404257B (zh) * 2016-11-30 2022-05-31 哈尔滨理工大学 一种柔性针穿刺力测量装置
US10632255B2 (en) 2017-02-15 2020-04-28 Milestone Scientific, Inc. Drug infusion device
US11471595B2 (en) 2017-05-04 2022-10-18 Milestone Scientific, Inc. Method and apparatus for performing a peripheral nerve block
CN109420220B (zh) * 2017-08-24 2024-02-20 南京巨鲨显示科技有限公司 一种高压注射器自适应流速控制方法
WO2019210140A1 (en) * 2018-04-26 2019-10-31 Virginia Commonwealth University Pressure sensitive needle positioning devices, release mechanisms, and methods
US10646660B1 (en) 2019-05-16 2020-05-12 Milestone Scientific, Inc. Device and method for identification of a target region

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2007667A (en) * 1933-04-18 1935-07-09 Stubbs George Edwin Boat anchor
GB2366729B (en) * 2000-07-05 2004-10-06 Mann Hasan A device for identification of the epidural space

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2409979A (en) * 1946-03-14 1946-10-22 Ralph L Huber Hypodermic needle
US2646042A (en) * 1951-05-18 1953-07-21 Hu Quang Hsi Medical apparatus
US3675722A (en) * 1971-04-05 1972-07-11 Gen Fire Extinguisher Corp Pressure indicator
US3856009A (en) * 1971-11-26 1974-12-24 Johnson & Johnson Catheter placement unit
US3920002A (en) * 1971-12-22 1975-11-18 Kendall & Co Fluid sampling and measuring apparatus
US3780693A (en) * 1972-05-15 1973-12-25 E Parr Visible fluid pressure indicator
US4000741A (en) * 1975-11-03 1977-01-04 The Kendall Company Syringe assembly
MX144149A (es) * 1976-04-28 1981-09-02 Kendall & Co Dispositivo mejorado para verificar la posicion de una aguja en el cuerpo de un paciente
US4178867A (en) * 1978-01-19 1979-12-18 Yin-Lung Yang Rescue signal device
US4215699A (en) * 1978-04-03 1980-08-05 The Kendall Company Position indicating device
US4284084A (en) * 1979-06-29 1981-08-18 The Kendall Company Syringe assembly
US4737146A (en) * 1979-12-25 1988-04-12 Yoshikiyo Amaki Multi-lumen epidural catheter
US4403988A (en) * 1980-08-21 1983-09-13 The Kendall Company Syringe assembly
US4349023A (en) * 1980-10-09 1982-09-14 Abbott Laboratories Epidural needle catheter and adapter
US4570640A (en) * 1981-08-06 1986-02-18 Barsa John E Sensory monitoring apparatus and method
US4535773A (en) * 1982-03-26 1985-08-20 Inbae Yoon Safety puncturing instrument and method
DE3327585A1 (de) * 1982-08-06 1984-02-09 John Martin Oxford Evans Chirurgisches instrument fuer die epidurale und spinale anaesthesie
US4519403A (en) * 1983-04-29 1985-05-28 Medtronic, Inc. Balloon lead and inflator
US4801293A (en) * 1985-10-09 1989-01-31 Anthony Jackson Apparatus and method for detecting probe penetration of human epidural space and injecting a therapeutic substance thereinto
US4623335A (en) * 1985-10-09 1986-11-18 Anthony Jackson Apparatus and methods for detecting probe penetration of human internal target tissue having predetermined internal pressure
US4944724A (en) * 1987-06-05 1990-07-31 Uresil Corporation Apparatus for locating body cavities having signaling indicator
US4796641A (en) * 1987-07-06 1989-01-10 Data Sciences, Inc. Device and method for chronic in-vivo measurement of internal body pressure
US4958901A (en) * 1987-07-13 1990-09-25 Neurodelivery Technology, Inc. Method for making a multi-lumen epidural-spinal needle and tip and stock configuration for the same
ES2007667A6 (es) * 1987-07-28 1989-07-01 Espejo Martinez Antonio Aparato localizador del espacio epidural
US4898080A (en) * 1987-08-11 1990-02-06 Lieberman Walter G Fluid powered linear slide
US4828547A (en) * 1987-09-28 1989-05-09 Bio-Plexus, Inc. Self-blunting needle assembly and device including the same
US4805605A (en) * 1988-01-11 1989-02-21 Glassman Medical Products, Inc. Abduction pillow
US4940458A (en) * 1989-02-02 1990-07-10 Cohn Arnold K Epidural needle placement system
US5018526A (en) * 1989-02-28 1991-05-28 Gaston Johansson Fannie Apparatus and method for providing a multidimensional indication of pain
US5024662A (en) * 1990-03-13 1991-06-18 Menes Cesar M Resistance syringe for epidural anesthesia
US5081990A (en) * 1990-05-11 1992-01-21 New York University Catheter for spinal epidural injection of drugs and measurement of evoked potentials
US5270685A (en) * 1991-07-02 1993-12-14 Mallinckrodt Medical, Inc. Syringe pressure monitor
US5188594A (en) * 1991-07-22 1993-02-23 Michael Zilberstein Method of administering medication into epidural space
US5205828A (en) * 1991-10-24 1993-04-27 Dan Kedem Epidural needle location indicator assembly
US5163904A (en) * 1991-11-12 1992-11-17 Merit Medical Systems, Inc. Syringe apparatus with attached pressure gauge
US6540764B1 (en) * 1992-06-02 2003-04-01 General Surgical Innovations, Inc. Apparatus and method for dissecting tissue layers
US5470316A (en) * 1993-09-07 1995-11-28 United States Surgical Corporation Body tissue penetrating device having a vacuum indicator
US5531696A (en) * 1993-12-13 1996-07-02 Menes; Cesar M. Elastomeric driver for epidural resistance syringe
US5397313A (en) * 1994-01-27 1995-03-14 The Kendall Company Low friction syringe
US5725509A (en) * 1994-04-05 1998-03-10 Symbiosis Corporation Air introduction system for medical needles
US5722955A (en) * 1994-08-04 1998-03-03 Epimed International, Inc. Pressure sensing syringe
US5819950A (en) * 1996-04-05 1998-10-13 Mccloskey; James Paschal Portable trommel
US6432401B2 (en) * 2000-05-12 2002-08-13 Novalar Pharmaceuticals, Inc. Local anesthetic methods and kits
US5865184A (en) * 1997-01-13 1999-02-02 Takiguchi; Tetsuo Combined spinal and epidural anesthesia
WO1999004705A1 (en) * 1997-07-25 1999-02-04 Tsui Ban C H Devices, systems and methods for determining proper placement of epidural catheters
US5902273A (en) * 1997-10-15 1999-05-11 Yang; Ian Y. Pressurizable epidural space identification syringe
US6183442B1 (en) * 1998-03-02 2001-02-06 Board Of Regents Of The University Of Texas System Tissue penetrating device and methods for using same
JP3825588B2 (ja) * 1999-08-23 2006-09-27 住友商事株式会社 静電植毛装置、静電塗装装置に配する静電加工室
CA2395924C (en) * 2000-01-06 2008-11-18 Raymond L. Bedell Steerable fiberoptic epidural balloon catheter and scope
EP1314128A2 (en) * 2000-08-28 2003-05-28 The United States of America, represented by the Administrator of the National Aeronautics and Space Administration (NASA) Multiple sensor system for tissue characterization
US6890295B2 (en) * 2002-10-31 2005-05-10 Medtronic, Inc. Anatomical space access tools and methods
US6786898B2 (en) * 2003-01-15 2004-09-07 Medtronic, Inc. Methods and tools for accessing an anatomic space
USD455495S1 (en) * 2001-01-30 2002-04-09 Ronald E. Tinsley Epidural stabilization device
US6565542B2 (en) * 2001-06-22 2003-05-20 Minnesota High-Tech Resources Epidural needle having a distal flare
US6773417B2 (en) * 2001-07-06 2004-08-10 Ispg, Inc. Epidural space locating device
US6860855B2 (en) * 2001-11-19 2005-03-01 Advanced Imaging Technologies, Inc. System and method for tissue biopsy using ultrasonic imaging
US6810879B1 (en) * 2002-05-31 2004-11-02 Ronald E. Tinsley Lateral epidural positioning device
US6769546B2 (en) * 2002-07-03 2004-08-03 L. John Busch Epidural anesthesia kit
US7175608B2 (en) * 2003-03-20 2007-02-13 Maan Hasan Device for the identification of the epidural space
US7186214B2 (en) * 2004-02-12 2007-03-06 Medtronic, Inc. Instruments and methods for accessing an anatomic space

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2007667A (en) * 1933-04-18 1935-07-09 Stubbs George Edwin Boat anchor
GB2366729B (en) * 2000-07-05 2004-10-06 Mann Hasan A device for identification of the epidural space

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011094957A1 (zh) * 2010-02-02 2011-08-11 天津美迪斯医疗用品有限公司 一次性使用硬膜外穿刺负压指示器
US10004450B2 (en) 2016-05-03 2018-06-26 Texas Medical Center Tactile sensing device for lumbar punctures
US11179097B2 (en) 2016-05-03 2021-11-23 Texas Medical Center Tactile sensing device for lumbar punctures
WO2018172817A1 (es) * 2017-03-23 2018-09-27 Velez Rivera Hector De Jesus Aguja para suministrar un anestésico con orientador luminoso
US10383610B2 (en) 2017-10-27 2019-08-20 Intuitap Medical, Inc. Tactile sensing and needle guidance device
US11000311B2 (en) 2017-10-27 2021-05-11 Intuitap Medical, Inc. Tactile sensing and needle guidance device

Also Published As

Publication number Publication date
EP2223662A1 (en) 2010-09-01
US20090131832A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
WO2009066972A1 (es) Jeringa electrónica con sistema de seguridad para inyección espinal
CN107548310B (zh) 硬膜外空间识别探测装置
ES2706993T3 (es) Infusión de fármacos con detección de presión y flujo no continuo con identificación de espacios anatómicos llenos de fluido e inyección en los mismos
US9186172B2 (en) Epidural space locating device
US20080249467A1 (en) Device and Method for Safe Access to a Body Cavity
US9931477B2 (en) Methods and devices for sensing tissues and tissue compartments
CN104994778B (zh) 定位和组织感应装置和方法
US5902273A (en) Pressurizable epidural space identification syringe
US20130085413A1 (en) Anatomical-positioning apparatus and method with an expandable device
JP7050816B2 (ja) 圧力変化を検出するためのシリンジ
US8608697B2 (en) Insertion indicator for needle
US11185245B2 (en) Catheter for monitoring pressure for muscle compartment syndrome
US20100152616A1 (en) Devices and methods for safely accessing bone marrow and other tissues
Phillips et al. How much gas is required for initial insufflation at laparoscopy?
US20050283092A1 (en) Continuous compartment pressure monitoring device
JP2004242936A (ja) 穿刺針
TW201617035A (zh) 一種使用壓力偵測醫療用針定位的裝置
EP2893887A1 (en) An indication device for locating a natural cavity in a body
WO2016034910A1 (es) Dispositivo para asistir en la detección de cavidades corporales
Chan et al. “Whoosh” Test as a Teaching Aid in Caudal Block
EP3629892A1 (en) Catheter for monitoring pressure for muscle compartment syndrome
US20220000381A1 (en) Catheter for monitoring pressure for muscle compartment syndrome
Sethna et al. Pediatric regional anesthesia equipment
WO2004035104A2 (en) Electronic epidural indicator
JP2004298278A (ja) 医療用穿刺針

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08852740

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1026/MUMNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/005507

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008852740

Country of ref document: EP

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0820482

Country of ref document: BR

Free format text: PEDIDO RETIRADO, UMA VEZ QUE, SEGUNDO O ART. 216 INCISO 2O DA LPI, O DOCUMENTO DE PROCURACAO NAO FOI PROTOCOLADO EM SESSENTA DIAS CONTADOS DA PRATICA DO PRIMEIRO ATO DA PARTE NO PROCESSO, E NAO HOUVE MANIFESTACAO DO REQUERENTE FRENTE A PUBLICACAO DO ARQUIVAMENTO DA PETICAO (11.6.1) NA RPI 2327 DE 11/08/2015.