WO2009059469A1 - A hybrid automatic repeat request method of the downstream tunnel - Google Patents

A hybrid automatic repeat request method of the downstream tunnel Download PDF

Info

Publication number
WO2009059469A1
WO2009059469A1 PCT/CN2007/003287 CN2007003287W WO2009059469A1 WO 2009059469 A1 WO2009059469 A1 WO 2009059469A1 CN 2007003287 W CN2007003287 W CN 2007003287W WO 2009059469 A1 WO2009059469 A1 WO 2009059469A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay station
tunnel
feedback
protocol data
terminal
Prior art date
Application number
PCT/CN2007/003287
Other languages
English (en)
French (fr)
Inventor
Yang Liu
Hongyun Qu
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to US12/734,164 priority Critical patent/US8208420B2/en
Priority to EP07816885.3A priority patent/EP2209245B1/en
Publication of WO2009059469A1 publication Critical patent/WO2009059469A1/zh
Priority to US13/474,807 priority patent/US8958359B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays

Definitions

  • the present invention relates to the field of communications, and in particular, to a downlink tunnel hybrid automatic repeat request method in a multi-hop relay system.
  • RSs relay stations
  • MR-BS multi-hop relay base station
  • HQQ hybrid automatic repeat request
  • the upstream control station has assigned a corresponding feedback channel to forward ACK/NAC: before each RS sends a HARQ burst (also called a sub-burst).
  • HARQ burst also called a sub-burst.
  • the RS After receiving the burst to be forwarded, the RS knows the feedback channel that it knows to be allocated, and then sends feedback on the corresponding resource. Since the centralized scheduling must allocate air interface resources by the MR-BS, once the relay burst fails, the retransmission delay will become very large due to the long feedback time.
  • a relay tunnel can be established between the access RS and the MR-BS.
  • a protocol data unit (PDU) of a plurality of MSs may be composed of a tunnel burst composed of MR-BSs and transmitted as a basic unit of HARQ in one frame. After the tunnel burst successfully arrives at the access RS, the RS restores the PDU of each MS and continues to complete the HARQ on the access link.
  • the draft IEEE 802.16j standard specifies that the tunnel data can be divided into two modes: Tunnel Packet Mode and Tunnel Burst Mode.
  • the tunnel packet mode the PDUs of the respective MSs are combined into one tunnel packet for transmission.
  • the tunnel group has its own packet header (including the Tunnel CID (TCID)) and the Cyclic Redundancy Check (CRC).
  • TCID Tunnel CID
  • CRC Cyclic Redundancy Check
  • tunnel data can be seen as a burst of the physical layer, a burst can only include the same tunnel
  • the PDU of the MS, the compressed connection identifier (RCID) of each PDU is replaced by the same TCID.
  • the prior art does not specify a complete HARQ method including tunnel data transmission. For example, when using tunnel packets or tunnel burst transmission, each MS ACK cannot be forwarded separately in the tunnel. If the tunnel data is not TCID and the data burst of each MS is separately fed back, the advantage of tunneling is lost, because it can be seen that several MSs are independently performing HARQ.
  • the present invention provides a downlink hybrid automatic repeat request method.
  • a downlink hybrid automatic repeat request method includes the following steps: a base station transmits tunnel data including protocol data units of a plurality of terminals to an access relay station through a tunnel link; and the access relay station determines its own pair to include Receiving the tunnel data of the protocol data unit of the multiple terminals, sending a feedback (receiving an acknowledgement message or a retransmission request message) to the base station through the tunnel link, or receiving corresponding protocol data sent by each terminal to the terminal through the access link.
  • the feedback of the receiving condition of the unit, the retransmission bandwidth is requested according to the feedback of each terminal, or the feedback of each terminal is sent to the base station through the tunnel link, wherein the access relay station successfully receives the tunnel data of the protocol data unit including the multiple terminals.
  • the tunnel link is composed of a multi-hop relay station, and the relay station accessing the base station is the first hop relay station, and the access terminal
  • the relay station is the nth hop relay station, where the first hop and the second hop Immediately after the base station does not transmit to the n-1 hop relay station receives the feedback data tunnel.
  • the base station allocates corresponding data transmission and feedback channels for each hop relay station before transmitting the tunnel data.
  • Each hop relay station knows the feedback channel allocated to it by the base station through its own calculation.
  • the t-th relay station in the tunnel link when the t-th relay station in the tunnel link does not successfully receive the tunnel data of the protocol data unit including the plurality of terminals, the t-th relay station passes the t-1 hop, the tth on the feedback channel allocated by the base station
  • the -2 hop first hop relay station transmits a retransmission request message to the base station. If the tunnel end point (i.e., the access relay station) successfully receives the tunnel data of the protocol data unit including the plurality of terminals, the uplink acknowledgement reception confirmation message is immediately received. If the access relay station does not successfully receive the tunnel data of the protocol data unit including the plurality of terminals, the uplink retransmission request message is immediately fed back.
  • the retransmission request message may be encoded to inform the base station which hop the tunnel data reception error occurred.
  • the t-th relay can encode it to notify the base station that the tunnel data reception error occurs. Which if mega. If the t-th relay station does not successfully receive the tunnel data of the protocol data unit including the plurality of terminals, the feedback channel uplink feedback retransmission request message is allocated to the feedback channel allocated thereto by the base station. The retransmission request message may be encoded to inform the base station which hop the tunnel data reception error occurred. If the tunnel data of the protocol data unit including the multiple terminals is a tunnel burst, the t-th relay station receiving the tunnel burst determines whether the channel is successfully received according to the cyclic redundancy check code of the protocol data unit of each terminal. Protocol data unit for each terminal.
  • the encoded retransmission request message includes information about the t-th relay station and information about the connection of the t-th relay station that has not successfully received the protocol data unit. If the tunnel data of the protocol data unit including the plurality of terminals is a tunnel packet, the t-th relay station receiving the tunnel burst is encoded in the retransmission request message according to the cyclic redundancy of the tunnel data of the protocol data unit including the plurality of terminals. It includes information about the t-th relay station and information about the tunnel packet connection that did not receive success. If the access relay station successfully receives the tunnel data of the protocol data unit including the plurality of terminals, the protocol data units of the respective terminals are separately transmitted to the respective terminals.
  • each terminal may send its reception status to the corresponding protocol data unit to the access relay station, that is, suspend the hybrid automatic repeat request of the access link.
  • the access relay station retransmits the corresponding protocol data unit to the terminal that did not successfully receive the corresponding protocol data unit by using the pre-scheduled air interface resource.
  • the access relay station re-applies to the base station for the air interface resource for retransmission.
  • the access relay station may report the reception status of the protocol data unit to the base station by using multiple terminals in a centralized manner to complete the hybrid automatic repeat request of the access link.
  • the relay station reports the reception status of the protocol data unit by the multiple terminals to the base station through the feedback channel pre-allocated by the base station. .
  • the access relay station may retransmit the corresponding protocol data unit to the terminal that has not successfully received the corresponding protocol data unit by using the pre-scheduled air interface resource.
  • the access relay station re-applies to the base station for the air interface resource for retransmission.
  • FIG. 1 is a schematic diagram of a wireless transparent relay network configuration according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a downlink hybrid automatic repeat request method according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of downlink-to-chain tunnel HARQ according to an embodiment of the present invention and using one access link pre-scheduling;
  • FIG. 1 is a schematic diagram of a wireless transparent relay network configuration according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a downlink hybrid automatic repeat request method according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of downlink-to-chain tunnel HARQ according to an embodiment of the present invention and using one access link pre-scheduling
  • FIG. 1 is a schematic diagram of a wireless transparent relay network configuration according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a downlink hybrid automatic repeat request method according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram
  • FIG. 5 is a downlink according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a downlink tunnel HARQ and adopting an access link pre-scheduling according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a downlink tunnel HARQ according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a downlink tunnel HARQ according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a tunneling data CID according to an embodiment of the present invention
  • FIG. 10 is a schematic diagram of a coding example of tunnel packet feedback according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of an empty burst format definition according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram of a feedback delay notification mode definition according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram of a feedback delay notification format according to an embodiment of the present invention.
  • a protocol data unit (PDU) of a plurality of MSs may be composed of a tunnel burst by the MR-BS, and transmitted as a basic unit of HARQ in one frame. After the tunnel burst successfully arrives at RS3, RS3 restores the PDU of each MS and continues to complete HARQ on the access link.
  • a downlink hybrid automatic repeat request method in accordance with an embodiment of the present invention is illustrated. As shown in FIG. 2, the method includes the following steps: S202: A base station sends tunnel data including protocol data units of multiple terminals to an access relay station through a tunnel link, and receives feedback from the relay station until the access relay station correctly receives data; S204.
  • the access relay station parses the protocol data unit of each terminal from the tunnel data, sends the protocol data unit of each terminal to the corresponding terminal, and performs corresponding processing after receiving the feedback from each terminal.
  • the tunnel link is composed of a multi-hop relay station, and the relay station accessing the base station is the first hop relay station, and the relay station of the access terminal is the n-th hop relay station, wherein the first hop and the second hop n-1 hop relay station are received.
  • the receiving confirmation message is not sent to the base station immediately.
  • the corresponding processing after the access relay station receives the feedback from each terminal is to upload the terminal feedback to the base station or not to upload the feedback, but to apply for retransmission bandwidth according to the terminal feedback.
  • step S202 after receiving the tunnel data, the RS does not need to give feedback immediately, but continues to transfer the data.
  • the MR-BS has assigned respective feedback channel forwarding feedback (tunnel data ACK/NAK) to each RS before each RS transmits a certain tunnel data.
  • Each RS can know its assigned feedback channel through its own calculations and then send feedback on the corresponding resources.
  • the feedback of RS3 is not received from the MS, but is generated locally. The calculation of all RS feedback moments does not need to consider the access link.
  • M is the hop count of the RS leaving the tunnel end point
  • q is the fixed delay frame number of the RS for the tunnel burst
  • k is the system defined HARQ feedback delay for the tunnel burst, which can be based on
  • the situation is given in the system broadcast message.
  • the specific implementation may adopt, but is not limited to, the following method:
  • the hop count of each station from the tunnel end point is added in the hop depth field of the sub-burst information element (IE) of the tunnel data.
  • Each station in the tunnel uses this value (M) to substitute the above formula to calculate the feedback tunnel feedback time.
  • M the RS transit tunnel burst fails, this failure must be fed back on the pre-arranged feedback channel.
  • the MR-BS restarts scheduling the next transfer. This step ends if and only if the tunnel data successfully reaches the access RS. Accordingly, coded feedback should be defined to represent different situations of tunnel data transmission.
  • the encoded tunnel data NAK should be fed back to the MR-BS according to the MR-BS prior scheduling.
  • the MR-BS judges the RS that failed to transmit according to the code, and schedules corresponding resources to retransmit the failed tunnel data.
  • the tunnel data is a tunnel packet
  • the packet itself is CRC-checked.
  • the RS can judge whether the reception is successful according to the CRC check code of the packet. If the reception tunnel packet fails, the entire tunnel packet can be retransmitted.
  • the MR-BS only needs to allocate one half subchannel for the tunnel packet feedback as the feedback channel.
  • the NAK feedback of the tunnel packet only needs to reflect that the failure occurs in ⁇ , and the corresponding coding can be as shown in Figure 8.
  • the feedback code DO indicates that the tunnel packet is successfully transmitted, and each relay receives the DO and uploads the DO to the MR-BS without change. If the X-hop tunnel data fails, the jump start RSx will upload D1, and the D1 RS (x-1) will increment the code and upload D2.
  • the MR-BS receives the feedback encoded as Dx and knows that the X hop needs to reschedule the resource to send the tunnel packet.
  • the MR-BS can also arrange a corresponding feedback channel for each connection of the tunnel packet.
  • the advantage of the tunnel packet is that if the tunnel burst transmission is successful, the CRC of the packet can be used to verify that all the PDUs are successfully transmitted, and then all the connections are successfully encoded on the respective feedback channels.
  • the RS should check the transmission error connection according to the CRC check code of each PDU, and then use the existing 16j standard to encode the upload feedback.
  • the MR-BS After receiving the feedback code in the existing standard, the MR-BS will arrange the retransmission of the tunnel packet according to the feedback.
  • the retransmitted packet will carry only the PDU of the connection that last transmitted the error.
  • the feedback channel is increased, the data transmission channel overhead is reduced.
  • the tunnel data is a tunnel burst, the burst itself does not carry the CRC face code.
  • each PDU that constitutes the tunnel burst determines whether the PDU reception is successful, and finally determines whether the entire burst is successfully received. If the receiving tunnel burst fails because some PDUs fail to receive, simply resend the corresponding PDU. Therefore, the feedback code of the tunnel burst needs to reflect which megabyte the failure occurred, and also which connected PDUs the failure occurred. Therefore, the feedback channel of the tunnel burst is actually a set of all connected feedback channels in the tunnel.
  • Each sub-burst that constitutes a burst can use its code as shown in Figure 8 to feed back its own reception.
  • the RS collects feedback of each sub-burst in the tunnel burst, and aggregates the feedback on the feedback channel allocated by the base station.
  • the MR-BS After receiving the existing set feedback code, the MR-BS will arrange the retransmission of the tunnel burst according to the feedback.
  • the retransmitted burst will carry only the sub-burst corresponding to the PDU that last transmitted the erroneous connection.
  • each MS (differentiated by RCID) can only carry a maximum of 16 connections, and correspondingly has 16 subchannels, so that 4 bits can be used to form a feedback subchannel identifier (ACID). .
  • the tunnel packet TCID and the tunnel burst TCID burst segmentation definition can be defined in the TCID definition. In this way, the TCID can distinguish between the tunnel packet and the tunnel burst mode.
  • the corresponding sub-burst ACID in the tunnel grouping mode is still 4 bits.
  • the ACID of the corresponding sub-burst is defined as 8 bits and reordered, so that the ACID conflict can be avoided.
  • the access RS (the starting point of the access link) has stored the burst of each access link, and the MR-BS should arrange the channel for burst retransmission and feedback on the access link.
  • the feature of Example 1 is chain-to-chain HARQ.
  • the data is transmitted separately in a different combination of transmission links formed by two links.
  • the transmissions on the two links use end-to-end HARQ, respectively.
  • the new data can be transmitted.
  • the embodiment of the present invention significantly improves the data transmission efficiency by receiving the MS feedback from the MR-BS to transmit the new receipt.
  • the feedback of the access link only needs to be transmitted to the access RS.
  • the access RS must apply for bandwidth retransmission and feedback from the MR-BS.
  • it may be considered to adopt pre-scheduling on the access link.
  • the MR-BS may pre-schedule an appropriate air interface resource for retransmission on the access link according to the link information of the access link.
  • 7 P 16599 RS3 can immediately resume retransmission failure bursts on pre-scheduled air interface resources without waiting for MR-BS to schedule new air interface resources.
  • the pre-scheduled resources ie, the number of times the pre-scheduling can be retransmitted and the sub-channels
  • the pre-scheduled resources can be adjusted according to the channel information reported by the access link. If all bursts of the access link are successfully transmitted before the pre-scheduled resources are exhausted, the access RS does not need to be fed back. If the burst of the MS is not successfully transmitted after the pre-scheduled resource is exhausted, the access RS must re-apply to the MR-BS for the resource retransmission unsuccessful burst.
  • Embodiment 2 can use a HARQ error report message defined by the IEEE 802.16j standard in the prior art.
  • the feature of Embodiment 2 is chain-to-chain transmission and MS burst feedback can be transmitted to the MR-BS. As shown in Figure 5, after the tunnel link data transmission is successful, the MS burst transmission can begin.
  • the access RS collects the ACK/NAK of all MSs, and then collectively feeds back to the upstream RS, and finally forwards it to the MR-BS.
  • the MR-BS schedules the resource to schedule a failed MS burst retransmission according to the received feedback.
  • a feature of Embodiment 3 is that MS burst feedback can be transmitted to the MR-BS and the MR-BS can pre-arrange the transmission link from the MR-BS to the MS (as shown in FIG. 7). If the tunnel data is transmitted to RS3 without retransmission and is successfully received by RS3, RS3 can immediately take out the MS burst in the tunnel data and send it to the MS. However, the price is that once the tunnel data transmission fails, the pre-arranged resources will be wasted. For the embodiment 2 and the embodiment 3, as shown in FIG. 6, in order to improve the retransmission efficiency, the MR-BS may pre-schedule an appropriate air interface resource for retransmission on the access link according to the link information of the access link. .
  • the retransmission can start immediately on the pre-scheduled air interface resources without waiting for the MR-BS to arrange new air interface resources.
  • the access RS must report the pre-scheduled retransmission results of each access link to the MR-BS.
  • the centralized feedback method can be used but is not limited to the following.
  • the MR-BS can arrange a dedicated HARQ-ACKCH area for accessing the RS report centralized feedback.
  • the order of feedback in the area may be specified by the MR-BS according to the order of connections or bursts, or may be encoded.
  • a centralized feedback coding scheme is shown in Figure 10.
  • the three bursts of feedback in the figure can be grouped together and represented by the tiles defined in the three IEEE 802.16j standards.
  • the different coded tile combinations are orthogonal to each other and represent different MS burst transmissions.
  • the feedback code AO indicates that all three bursts are correctly received
  • the feedback code A1 indicates that the first burst of the lower bit is transmitted incorrectly on the access link and the other two bursts are correctly received.
  • the RS relay centralized feedback needs to be triggered.
  • the RS is only triggered when it receives the data to be forwarded. If the access link retransmission burst, the RS does not receive the data, how to trigger the RS relay feedback is not defined in the prior art.
  • the first method is to use null data to trigger.
  • Figure 11 defines an empty burst HARQ burst
  • Figure 12 defines an empty burst HARQ burst format.
  • null data refers to data that does not transmit data.
  • Embodiment 2 and Embodiment 3 there are several empty bursts in the empty data.
  • the centralized feedback is the set of corresponding empty burst feedback.
  • the RS that receives the null data will only begin to calculate the delay for the feedback to forward the null data.
  • the formula for the delay calculation is as follows. If the RS receives null data in the ith frame, it should feed back in the (i+n) frame. Where n is the formula
  • n H*p + ( H+1 ) *j+s ( 2 ) H in equation ( 2 ) is the number of hops of the RS leaving the link terminal, p is the fixed delay frame number of the RS, and j is the system-defined HARQ Feedback delay, given in the system broadcast message, s is the delay for the access RS to collect all RS feedback.
  • the second method is to directly inform the RS of the delay required to forward the feedback.
  • Figure 13 defines the feedback delay notification mode
  • Figure 14 defines the feedback delay notification format. The RS that receives the notification will wait for the corresponding time according to the delay information in the notification, and will directly forward the feedback of the specified connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

下行隧道混合自动重传请求方法 技术领域 本发明涉及通信领域,更具体地涉及一种多跳中继***中的下行隧道混 合自动重传请求方法。 背景技术 为了扩大通信***覆盖范围并增加***容量,一个或者多个中继站(Relay Station , 简称 RS ) 可以设置在支持多跳中继的基站 (Multi-hop Relay Base Station, 简称 MR-BS )和终端( Mobile Stations, 简称 MS )之间。 在集中式中 继***中,信道资源分配必须由 MR-BS完成, 因此采用集中式调度 RS的中继 ***的混合自动重传清求 (Hybrid Automatic Repeat Request, 简称 HARQ ) 的 设计较为复杂。 由于 RS 的引入, HARQ 的形式也会相应增加, 典型的有端到端 HARQ 和每跳反馈 HARQ。 对于集中式中继端到端 HARQ , 上游控制站在 RS发送某 个 HARQ 突发 (也称子突发) 前已经给各个 RS 分配相应的反馈信道转发 ACK/NAC :。 现有技术中, RS 收到要转发的突发后, 通过计算知道自己被分 配的反馈信道, 然后在相应的资源上发送反馈。 由于集中式调度必须由 MR-BS 分配空口资源, 一旦中继突发失败, 重传延时也会由于漫长的反馈时间变得很 大。 此外, 如图 1 所示, 当一个 RS接入多个 MS时, 该接入 RS和 MR-BS 之间可以建立一条中继隧道 ( tunnel )。 多个 MS的协议数据单元( Protocol Data Unit, 简称 PDU ) 可以由 MR-BS组成一个隧道突发, 作为 HARQ的基本单位 在一帧中传输。当该隧道突发成功到达接入 RS之后,该 RS将各个 MS的 PDU 还原出来, 在接入链路上继续完成 HARQ。 目前, IEEE802.16j标准草稿中规定所述隧道数据可以分成两种模式: 隧 道分组模式 ( Tunnel Packet Mode ) 和隧道突发模式 ( Tunnel Burst Mode )。 在 隧道分组模式中, 各个 MS的 PDU被组合成一个隧道分组进行传输。 隧道分 组有自己的分组头(包含隧道连接标识( Tunnel CID,简称 TCID ) )和循环冗余 校验码 ( Cyclic Redundancy Check , 简称 CRC )。 一个突发中可以有不同隧道 的隧道分组。 在隧道突发模式中, TCID在下行位图信息元 (DL MAP IE )给
1 P16599 出, 因此隧道数据可以看作物理层的一个突发, 一个突发只能包括同一隧道的
MS的 PDU, 每个 PDU的压缩连接标识 ( RCID )被同一个 TCID取代。 但是, 现有技术并没有规定完整的包含隧道数据传输的 HARQ方法。 例如, 使用隧道分组或者隧道突发传输时, 每一个 MS的 ACK无法单独在 隧道中转发。 如果隧道数据不加 TCID而每一个 MS的数据突发单独反馈, 则失去了隧道传输的优点, 因为此时可以看作是若干个 MS 在独立进行 HARQ。 发明内容 鉴于以上所述的一个或多个问题,本发明提供了一种下行链路混合自动 重传请求方法。 根据本发明实施例的下行链路混合自动重传请求方法, 包括以下步骤: 基站通过隧道链路向接入中继站发送包括多个终端的协议数据单元的隧道数 据; 接入中继站判断其自身对包括多个终端的协议数据单元的隧道数据的接 收情况, 通过隧道链路向基站发送反馈(接收确认消息或重发请求消息), 或 接收各终端通过接入链路发送给其的对相应协议数据单元的接收情况的反 馈, 根据各终端的反馈申请重传带宽或通过隧道链路将各终端的反馈集中发 送至基站, 其中, 接入中继站成功接收包括多个终端的协议数据单元的隧道 数据后, 解析出各终端的协议数据单元, 通过接入链路将各终端的协议数据 单元发送给各终端, 隧道链路由多跳中继站组成, 接入基站的中继站为第 1 跳中继站, 接入终端的中继站为第 n跳中继站, 其中, 第 1跳、 第 2跳 第 n-1跳中继站收到隧道数据后不立即向基站发送反馈。 其中, 基站在发送隧道数据之前, 为各跳中继站分配相应的数据传输和 反馈信道。 各跳中继站通过自身的计算获知基站分配给其的反馈信道。 其中, 当隧道链路中的第 t跳中继站没有成功接收包括多个终端的协议 数据单元的隧道数据时, 第 t跳中继站在基站分配给其的反馈信道上通过第 t- 1跳、 第 t-2跳 第 1跳中继站向基站发送重发请求消息。 如果隧道终点(即, 接入中继站)成功接收包括多个终端的协议数据单 元的隧道数据, 则立刻上行反馈接收确认消息。 如果接入中继站没有成功接 收包括多个终端的协议数据单元的隧道数据,则立刻上行反馈重发请求消息。 重传请求消息可以编码以通知基站隧道数据接收错误发生在哪一跳。
2 P 16599 如果第 t跳中继站在第 i帧正确接收包括多个终端的协议数据单元的隧 道数据, 则在第 i + m帧向基站转发来自下游中继站的反馈, 其中, m = M*q + ( M+1 ) *k, M是第 t跳中继站距离隧道终点中继站的跳数, q是各跳中 继站对于隧道数据的固定延迟帧数, k 是各跳中继站对隧道数据的混合自动 重传请求的反馈延迟。 如果收到的反馈是接收确认消息, 则第 t跳中继站不 作任何改变上行转发, 如果收到的反馈是重发请求消息, 则第 t跳中继站可 以对其编码以通知基站隧道数据接收错误发生在哪一 if兆。 如果第 t跳中继站没有成功接收包括多个终端的协议数据单元的隧道数 据, 则在基站分配给其的反馈信道上行反馈重发请求消息。 重传请求消息可 以编码以通知基站隧道数据接收错误发生在哪一跳。 如果包括多个终端的协议数据单元的隧道数据是隧道突发,则收到隧道 突发的第 t跳中继站根据各终端的协议数据单元自带的循环冗余校验码判断 其是否成功接收了各终端的协议数据单元。 经过编码的重发请求消息中包括 有关第 t跳中继站的信息和有关第 t跳中继站的没有成功接收协议数据单元 的连接的信息。 如果包括多个终端的协议数据单元的隧道数据是隧道分组,则收到隧道 突发的第 t跳中继站根据包括多个终端的协议数据单元的隧道数据的循环冗 经过编码的重发请求消息中包括有关第 t跳中继站的信息和没有接收成功的 隧道分组连接的信息。 如果接入中继站成功接收了包括多个终端的协议数据单元的隧道数据, 则将各终端的协议数据单元分别发送至各终端。 此时,各终端可以将其对相应的协议数据单元的接收情况发送至接入中 继站, 即中止接入链路的混合自动重传请求。 接入中继站通过预先调度的空 口资源向未成功接收相应的协议数据单元的终端重传所述相应的协议数据单 元。 在预先调度的空口资源不足以向未成功接收相应的协议数据单元的终端 重传相应的协议数据单元的情况下, 接入中继站重新向基站申请用于重传的 空口资源。 此外,接入中继站也可以以集中上 4艮的方式将多个终端对协议数据单元 的接收情况上报至基站, 完成接入链路的混合自动重传请求。 此时, 接入中
3 P16599 继站通过基站预先分配的反馈信道, 将多个终端对协议数据单元的接收情况 上报给基站。。接入中继站可以通过预先调度的空口资源向未成功接收相应的 协议数据单元的终端重传相应的协议数据单元。 在预先调度的空口资源不足 以向未成功接收相应的协议数据单元的终端重传相应的协议数据单元的情况 下, 接入中继站重新向基站申请用于重传的空口资源。 通过本发明, 可以完善包括隧道数据传输的混合自动重传请求的方法。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是 居本发明实施例的无线透明中继网络配置的示意图; 图 2是根据本发明实施例的下行链路混合自动重传请求方法的流程图; 图 3是根据本发明实施例的下行隧道数据重传的示意图; 图 4是 >据本发明实施例的下行链到链隧道 HARQ并采用一个接入链 路预调度的示意图; 图 5是根据本发明实施例的下行隧道 HARQ的示意图; 图 6是根据本发明实施例的下行隧道 HARQ并采用一个接入链路预调 度的示意图; 图 7是根据本发明实施例的下行隧道 HARQ的示意图; 图 8是根据本发明实施例的集中反馈编码示例的示意图; 图 9是才艮据本发明实施例的隧道数据 CID的分类; 图 10是 居本发明实施例的隧道分组反馈的编码示例的示意图; 图 11是根据本发明实施例的空突发模式定义的示意图; 图 12是根据本发明实施例的空突发格式定义的示意图;
4 P 16599 '图 13是根据本发明实施例的反馈延时通知模式定义的示意图; 以及 图 14是根据本发明实施例的反馈延时通知格式的示意图。 具体实施方式 下面参考附图, 详细说明本发明的具体实施方式。 参考图 1 , 说明根据本发明实施例的无线透明中继网络的配置。 如图 1 所示, RS3接入多个 MS, 相应地, RS3和 MR-BS之间可以建立一条中继隧 道( tunnel )。 多个 MS的协议数据单元 ( PDU ) 可以由 MR-BS组成一个隧 道突发, 作为 HARQ的基本单位在一帧中传输。 当该隧道突发成功到达 RS3 之后, RS3将各个 MS的 PDU还原出来, 在接入链路上继续完成 HARQ。 参考图 2, 说明 居本发明实施例的下行链路混合自动重传请求方法。 如图 2所示, 该方法包括以下步骤: S202, 基站通过隧道链路向接入中继站 发送包括多个终端的协议数据单元的隧道数据, 并接收来自中继站的反馈直 到接入中继站正确接收数据; S204, 接入中继站从隧道数据解析出各个终端 的协议数据单元, 将各个终端的协议数据单元发送给相应终端, 并在接收到 来自各个终端的反馈后做相应处理。 其中, 隧道链路由多跳中继站组成, 接 入基站的中继站为第 1跳中继站,接入终端的中继站为第 n跳中继站,其中, 第 1跳、 第 2跳 第 n- 1跳中继站收到隧道数据后不立即向基站发送接 收确认消息。 其中, 接入中继站接收来自各个终端的反馈后的相应处理为将 终端反馈上传到基站或者不上传反馈而是根据终端反馈申请重传带宽。 以下将详细 4 述上述各个步骤的处理。 在步骤 S202中, 如图 3所示, RS收到隧道数据后并不需要立刻给出反 馈, 而是继续将数据中转。 MR-BS在各个 RS发送某个隧道数据前已经给各 个 RS分配相应的反馈信道转发反馈 (隧道数据 ACK/NAK )。 各个 RS可以 通过自己的计算知道自己被分配的反馈信道,然后在相应的资源上发送反馈。 此时, RS3的反馈不是从 MS收到, 而是自己本地产生。 所有 RS反馈时刻 的计算无需考虑接入链路。 计算端到端隧道突发 HARQ反馈延时的规则由下面公式给出: m = M*q + ( M+l ) *k。 其中, M是 RS离开隧道终点的跳数; q是 RS对于隧道突发 的固定延迟帧数; k是***定义对于隧道突发的 HARQ反馈延迟, 可以根据
5 P16599 情况在***广播消息中给出。 其中, 具体实现可以采用但不限于以下方法: 在隧道数据的子突发信息 元 (IE ) 的跳数(hop depth ) 域中加入各站距离隧道终点的跳数。 隧道中各 站利用这个数值 ( M ) 代入上述公式自己计算转发隧道反馈时刻。 此外, 如果 RS中转隧道突发失败, 则必须在预先安排的反馈信道上反 馈这个失败。 MR-BS重新开始调度下一次中转。 当且仅当隧道数据成功达到 接入 RS, 本步骤才结束。 相应地, 应该定义编码反馈以表示隧道数据传输的 不同情况。 当隧道数据在链路传输中失败时, 如图 4所示, 编码的隧道数据 NAK 应该按照 MR-BS事先的调度反馈到 MR-BS。 MR-BS根据编码判断出传输失 败的 RS , 并调度相应的资源来重传失败的隧道数据。 当隧道数据为隧道分组时, 分组本身加上了 CRC校验码。 RS可以根据 分组的 CRC 校验码判断接收是否成功。 如果接收隧道分组失败, 则可以重 发整个隧道分组。 MR-BS 只需为隧道分组反馈分配一个半子信道作反馈信 道。 这样相当于把一个隧道分组看成一个普通的子突发, 大大节省了反馈信 道, 代价是重传的数据信道总是占据隧道分组大小。 隧道分组的 NAK反馈 只需反映失败发生在 ρ那一兆, 相应的编码可以如图 8所示。 反馈编码 DO表 示隧道分组发送成功,各个中继收到 DO后不加改变将 DO上传直到 MR-BS。 如果在 X跳隧道数据发生失败,该跳起点 RSx将上传 D1 ,收到 D1的 RS( x-1 ) 将编码加一, 上传 D2。 如此循环, MR-BS收到编码为 Dx的反馈就知道在 X 跳需要重新安排资源发送隧道分组。 此外, MR-BS也可以为隧道分组各个连接安排相应的反馈信道。 此时, 隧道分组的好处是, 如果隧道突发传输成功, 则可以利用分组自带的 CRC 一次检验出所有 PDU 发送成功, 然后所有的连接在各自的反馈信道上都要 反馈成功编码。 相应地, 如果隧道突发传输失败, 则 RS应该根据各 PDU自 带 CRC校验码检验出传输错误连接, 然后用现有 16j标准中编码上传反馈。 MR-BS收到现有标准中反馈编码后, 将根据反馈安排隧道分组的重传。 重传 的分组将只携带上次传输出错的连接的 PDU。 这样虽然反馈信道增大, 但是 数据传输信道开销会减小。 当所述隧道数据为隧道突发时, 突发本身没有携带 CRC校脸码。 RS应
6 P 16599 该根据组成隧道突发的各个 PDU 自带的 CRC校验码分别判断 PDU接收是 否成功, 最后再判断整个突发是否接收成功。 如果因为部分 PDU 接收失败 导致接收隧道突发失败, 只需重发相应的 PDU 即可。 因此, 隧道突发的反 馈编码除开需要反映失败发生在哪一兆, 还要反映失败发生在哪些连接的 PDU。 因此, 隧道突发的反馈信道实际上是隧道中所有连接反馈信道的集联。 每一个构成突发的子突发都可以利用如图 8的编码反馈自己的接收情况。 RS 收集了隧道突发中各个子突发的反馈, 在基站分配的反馈信道上集联上传反 馈。 MR-BS收到现有集联反馈编码后, 将根据反馈安排隧道突发的重传。 重 传的突发将只携带上次传输出错连接的 PDU对应的子突发。 此外, 在现有的 IEEE802.16j标准技术中, 每一个 MS (用 RCID区别) 最多只能携带 16个连接, 相应的有 16个子信道, 因此可以用 4个 bit构成 反馈子信道标识 ( ACID )。 但是隧道突发中, 不同的子突发的 RCID被同一 个 TCID取代, 此时各个 MS的 ACID就有可能沖突, 进而无法辨识出错的 子突发是哪一个。 因此, 可以如图 9所示, 在 TCID定义中将隧道分组 TCID 和隧道突发 TCID突发分段定义。 这样传输中就可以 居 TCID区分隧道分 组和隧道突发模式。 隧道分组模式中相应子突发 ACID仍然是 4个 bit。 隧道 突发模式中, 定义相应子突发中 ACID为 8个 bit并重新排序, 这样就可以 避免 ACID的冲突。 在步骤 S204中, 接入 RS (接入链路的起点) 已经存储了各个接入链路 的突发, MR-BS在接入链路上应该安排突发重传和反馈的信道。 实施例 1 的特点是链到链 HARQ。 所谓链到链 ( link by link ), 如图 1 所示, 指的是隧道 HARQ是一个链路, 隧道终点的接入 RS到各个 MS的各 个接入链路是另外一个链路。 数据以不同的组合方式在两个链路构成的传输 链路分别传输。 在两个链路上的传输分别采用端到端 HARQ。 这样只要隧道 终端成功接收到隧道数据, 新的数据就可以开始传输。 相对 MR-BS收到 MS 反馈才能传输新收据, 本发明实施例显著提高了数据传输效率。 在实施例 1 中, 接入链路的反馈只需传到接入 RS。 但是, 如果接入链 路中突发传输失败, 接入 RS必须向 MR-BS申请带宽重传以及反馈。 为了提 高接入链路重传效率, 可以考虑在接入链路采用预调度。 如图 4所示, MR-BS可以根据接入链路的链路信息在接入链路预先调 度适当的用于重传的空口资源。 一旦 MS上报 RS3接入链路突发接收失败,
7 P 16599 RS3 可以在预先调度的空口资源上立刻开始重传失败突发, 而不用等待 MR-BS安排新的空口资源。预调度的资源(即预调度可以重传的次数以及子 信道) 可以根据接入链路上报的信道信息调整。 如果在预调度的资源耗尽之前所有接入链路的突发都传输成功, 接入 RS无需再反馈。 如果在预调度的资源耗尽之后仍有 MS的突发未传输成功, 接入 RS必须向 MR-BS重新申请资源重传未成功突发。这个申请可以使用现 有技术中由 IEEE802.16j标准定义的 HARQ错误报告消息( HARQ error report message )。 实施例 2的特点是链到链的传输且 MS突发反馈可以传送到 MR-BS。 如图 5 所示, 隧道链路数据传输成功后, MS 突发传输才能开始。 接入 RS 收集所有的 MS的 ACK/NAK,然后集中反馈到上游 RS ,最终转发到 MR-BS。 MR-BS根据收到的反馈调度资源安排失败的 MS突发重传。 实施例 3的特点是 MS突发反馈可以传送到 MR-BS且 MR-BS可以预 先安排从 MR-BS到 MS的传输链路(如图 7所示)。 如果隧道数据无重发地 传送到 RS3且成功被 RS3接收, 则 RS3可以立刻把隧道数据中的 MS突发 取出并发送给 MS。 不过这样的代价是, 一旦隧道数据发送失败, 事先安排 的资源将被浪费。 对于实施例 2和实施例 3 , 如图 6所示, 为了提高重传效率, MR-BS 可以根据接入链路的链路信息在接入链路预先调度适当的用于重传的空口资 源。 一旦 MS上4艮接入链路突发接收失败, 重传可以在预先调度的空口资源 上立刻开始, 而不用等待 MR-BS 安排新的空口资源。 预调度资源耗尽后, 无论重传是否成功, 接入 RS必须把每个接入链路的预调度重传结果集中后 上报给 MR-BS。 对于实施例 2和实施例 3 , 集中反馈上 4艮方式可以使用但不限于以下方 式。 MR-BS可以安排一个专用 HARQ— ACKCH 区域供接入 RS上报集中反 馈。 区域中反馈的次序可以由 MR-BS根据连接或者突发的顺序指定, 也可 以采用编码方式。 一个集中反馈编码方式如图 10 所示。 图中三个突发的反 馈可以编成一组, 由三个 IEEE 802.16j标准中定义的碎片 (tile )表示。 不同 编码的 tile组合彼此正交, 代表不同的 MS突发传输情况。 例如反馈编码 AO 表示三个突发都正确收到, 而反馈编码 A1 表示低位第一个突发在接入链路 传输错误而其他两个突发都正确收到。
8 P 16599 在集中反馈上报中, 对于实施例 2和实施例 3 , 需要触发 RS中转集中 反馈。 但是现有技术中, RS只有在收到要转发数据时才会被触发。 如果是接 入链路重发突发, RS并未收到数据, 如何触发 RS中转反馈在现有技术中并 未定义。 为解决这个问题, 具体的可以有但不限于以下两种方法。 方法一是利用空数据触发。 图 11定义了空突发 HARQ突发, 图 12定 了空突发 HARQ突发格式。 所谓空数据, 指的是不传输数据的数据。 对于实施例 2和实施例 3 , — 个空数据中有若干空突发。 集中反馈即为对应空突发反馈的集合。 收到该空 数据的 RS只会为转发该空数据的反馈开始计算延时。延时计算的公式如下。 假如 RS在第 i帧收到空数据, 应该在第 ( i+n )帧反馈。 其中 n由公式
( 1 ) 决定。 n = H*p + ( H+1 ) *j+s ( 2 ) 公式( 2 )中的 H是 RS离开链路终端的跳数, p是 RS的固定延迟帧数, j是***定义的 HARQ反馈延迟, 在***广播消息中给出, s是接入 RS收集 所有 RS反馈的延时。 方法二是直接通知 RS转发反馈所需时延。 图 13定义了反馈延时通知 模式, 图 14定义了反馈延时通知格式。 收到该通知的 RS将根据通知中延时 信息等待相应时间, 到时直接转发指定连接的反馈。 以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。
9 P 16599

Claims

权 利 要 求 书 一种下行链路混合自动重传请求方法, 其特征在于, 包括以下步骤: 基站通过隧道链路向接入中继站发送包括多个终端的协议数据单 元的隧道数据;
所述接入中继站判断其自身对所述包括多个终端的协议数据单元 的隧道数据的接收情况, 并通过所述隧道链路向所述基站发送反馈, 或 接收各所述终端通过接入链路发送给其的对相应协议数据单元的接收情 况的反馈, 根据各所述终端的反馈申请重传带宽或通过所述隧道链路将 各所述终端的反馈集中发送至所述基站, 其中
所述接入中继站成功接收所述包括多个终端的协议数据单元的隧 道数据后, 解析出各所述终端的协议数据单元, 通过所述接入链路将各 所述终端的协议数据单元发送给各所述终端,
所述隧道链路由多跳中继站组成,接入所述基站的中继站为第 1跳 中继站, 接入所述终端的中继站为第 n 兆中继站, 其中, 第 1 if兆、 第 2 跳 第 n-1 跳中继站收到所述隧道数据后不立即向所述基站发送反 馈。 根据权利要求 1所述的方法, 其特征在于, 所述基站在发送所述隧道数 据之前, 为所述各跳中继站分配相应的数据传输和反馈信道。 根据权利要求 2所述的方法, 其特征在于, 所述各跳中继站通过自身的 计算获知所述基站分配给其的反馈信道。 根据权利要求 3所述的方法, 其特征在于, 当所述隧道链路中的第 t跳 中继站没有成功接收所述包括多个终端的协议数据单元的隧道数据时, 所述第 t跳中继站在所述基站分配给其的反馈信道上通过第 t-1跳、第 t-2 跳 第 1跳中继站向所述基站发送重发请求消息。 根据权利要求 4所述的方法, 其特征在于, 如果第 t跳中继站在第 i帧收 到所述包括多个终端的协议数据单元的隧道数据,则在第 i + m帧向所述 基站发送来自下游中继站的反馈, 其中, m = M*q + ( M+1 ) *k, M是 所述第 t跳中继站距离所述接入中继站的跳数, q是所述各跳中继站对于 所述包括多个终端的协议数据单元的隧道数据的固定延迟帧数, k 是所
10 P 16599 述各跳中继站对所述包括多个终端的协议数据单元的隧道数据的混合自 动重传请求的反馈延迟。
6. 居权利要求 4所述的方法, 其特征在于, 所述第 t if兆中继站对所述重 发请求消息进行编码, 并通过所述基站为其分配的反馈信道向所述基站 发送经过编码的重发请求消息。
7. 根据权利要求 5或 6所述的方法, 其特征在于, 如果所述接入中继站成 功接收了所述包括多个终端的协议数据单元的隧道数据, 则立刻向所述 基站发送接收确认消息, 否则立刻对所述重发请求消息进行编码, 并向 所述基站发送所述经过编码的重发请求消息。
8. 根据权利要求 7所述的方法, 其特征在于, 如果所述包括多个终端的协 议数据单元的隧道数据是隧道突发, 则所述第 t跳中继站 居各所述终 端的协议数据单元自带的循环冗余校验码判断其是否成功接收了各所述 终端的协议数据单元。
9. 根据权利要求 8所述的方法, 其特征在于, 所述经过编码的重发请求消 息中包括有关所述第 t跳中继站的信息和有关所述第 t跳继站中的没有成 功接收所述协议数据单元的连接的信息。
10. 根据权利要求 9所述的方法, 其特征在于, 所述接入中继站通过预先调 度的空口资源向未成功接收相应的协议数据单元的终端重传所述相应的 协议数据单元。
11. 根据权利要求 10所述的方法, 其特征在于, 在所述预先调度的空口资源 不足以向未成功接收相应的协议数据单元的终端重传所述相应的协议数 据单元的情况下, 所述接入中继站重新向所述基站申请用于重传的空口 资源。
12. 根据权利要求 11所述的方法, 其特征在于, 所述接入中继站通过所述隧 道链路或专用的混合自动重传响应链路, 将所述多个终端的反馈集中发 送给所述基站。
11 P 16599
13. 根据权利要求 7所述的方法, 其特征在于, 如果所述包括多个终端的协 议数据单元的隧道数据是隧道分组, 则所述第 t跳中继站根据所述包括 多个终端的协议数据单元的隧道数据的循环冗余校验码判断其是否成功 接收了所述包括多个终端的协议数据单元的隧道数据。
14. 根据权利要求 13所述的方法, 其特征在于, 所述经过编码的重发请求消 息中包括有关所述第 t跳中继站的信息。
15. 根据权利要求 14所述的方法, 其特征在于, 所述接入中继站通过预先调 度的空口资源向未成功接收相应的协议数据单元的终端重传所述相应的 协议数据单元。
16. 根据权利要求 15所述的方法, 其特征在于, 在所述预先调度的空口资源 不足以向未成功接收相应的协议数据单元的终端重传所述相应的协议数 据单元的情况下, 所述接入中继站重新向所述基站申请用于重传的空口 资源。
17. 根据权利要求 16所述的方法, 其特征在于, 所述接入中继站通过所述隧 道链路或专用的混合自动重传响应链路, 将所述多个终端的反馈发送给 所述基站。
12 P 16599
PCT/CN2007/003287 2007-11-05 2007-11-20 A hybrid automatic repeat request method of the downstream tunnel WO2009059469A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/734,164 US8208420B2 (en) 2007-11-05 2007-11-20 Hybrid automatic repeat request method of a downlink tunnel
EP07816885.3A EP2209245B1 (en) 2007-11-05 2007-11-20 A hybrid automatic repeat request method of the downstream tunnel
US13/474,807 US8958359B2 (en) 2007-11-05 2012-05-18 Hybrid automatic repeat request method of a downlink tunnel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710165178.1 2007-11-05
CN2007101651781A CN101431394B (zh) 2007-11-05 2007-11-05 下行隧道混合自动重传请求方法

Publications (1)

Publication Number Publication Date
WO2009059469A1 true WO2009059469A1 (en) 2009-05-14

Family

ID=40625358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003287 WO2009059469A1 (en) 2007-11-05 2007-11-20 A hybrid automatic repeat request method of the downstream tunnel

Country Status (4)

Country Link
US (2) US8208420B2 (zh)
EP (1) EP2209245B1 (zh)
CN (1) CN101431394B (zh)
WO (1) WO2009059469A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295509B2 (en) 2000-09-13 2007-11-13 Qualcomm, Incorporated Signaling method in an OFDM multiple access system
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
CN101855858A (zh) * 2007-09-10 2010-10-06 韩国电子通信研究院 用于分配资源和接收数据的方法
CN101431394B (zh) * 2007-11-05 2012-01-11 中兴通讯股份有限公司 下行隧道混合自动重传请求方法
KR101237016B1 (ko) * 2007-11-08 2013-02-25 삼성전자주식회사 중계 방식을 사용하는 무선통신시스템에서 응답 채널 전송 장치 및 방법
JP2011509608A (ja) * 2008-01-11 2011-03-24 ゼットティーイー コーポレイション Harqシーン用フィードバック情報中継転送方法
WO2009101816A1 (ja) * 2008-02-14 2009-08-20 Panasonic Corporation 無線通信基地局装置、無線通信中継局装置、無線通信端末装置、無線通信システム及び無線通信方法
CN101908954B (zh) * 2009-06-03 2015-06-03 中兴通讯股份有限公司 一种解决中继节点上行传输冲突的方法及装置
US8554506B2 (en) * 2009-08-07 2013-10-08 Advanced Processor Srchitectures, LLC Distributed computing
US9429983B1 (en) 2013-09-12 2016-08-30 Advanced Processor Architectures, Llc System clock distribution in a distributed computing environment
US9645603B1 (en) 2013-09-12 2017-05-09 Advanced Processor Architectures, Llc System clock distribution in a distributed computing environment
US11042211B2 (en) 2009-08-07 2021-06-22 Advanced Processor Architectures, Llc Serially connected computing nodes in a distributed computing system
CN101662798B (zh) * 2009-09-22 2012-06-06 北京科技大学 无线传感器网络低功耗邀请重传方法及其装置
CN102215476B (zh) * 2010-04-02 2016-03-30 中兴通讯股份有限公司 中继通信网络的信息传输方法及***
US8917621B2 (en) * 2011-12-28 2014-12-23 Huawei Technologies Co., Ltd. Method and apparatus for obtaining feedback delay
US9203757B2 (en) * 2012-03-22 2015-12-01 Texas Instruments Incorporated Network throughput using multiple reed-solomon blocks
CN102710656B (zh) * 2012-06-14 2014-03-12 北京理工大学 基于汽车网关***的通信协议逆向解析方法
US9544782B2 (en) * 2012-11-02 2017-01-10 Qualcomm Incorporated Systems, apparatus, and methods for range extension of wireless communication
US10057016B2 (en) * 2015-04-09 2018-08-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for data transmission
US11012345B2 (en) * 2016-05-25 2021-05-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method, device, and system
TWI685272B (zh) * 2017-09-27 2020-02-11 關隆股份有限公司 無線系統的連線方法
US10938733B2 (en) * 2019-07-19 2021-03-02 Lenovo (Singapore) Pte. Ltd. Transmitting data using a relay user equipment
CN110519023A (zh) * 2019-08-30 2019-11-29 北京展讯高科通信技术有限公司 数据传输方法、用户终端及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020037565A (ko) * 2000-11-14 2002-05-22 조정남 비동기 이동 통신 시스템에서의 하이브리드 에이알큐의적용을 위한 부가 정보 전송 방법
CN1984072A (zh) * 2006-05-29 2007-06-20 华为技术有限公司 调度信息传输方法及用户终端及基站节点
CN101047481A (zh) * 2006-03-27 2007-10-03 中兴通讯股份有限公司 一种无线通信***中自动重传请求分布式反馈方法
GB2436912A (en) * 2006-04-04 2007-10-10 Nec Technologies Selective inclusion of a Length Indicator field in an ARQ PDU

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873627B1 (en) 1995-01-19 2005-03-29 The Fantastic Corporation System and method for sending packets over a computer network
SE0301053D0 (sv) * 2003-04-07 2003-04-07 Ericsson Telefon Ab L M Method and system in a communications network
EP1797663B1 (en) 2004-08-31 2019-07-24 Telefonaktiebolaget LM Ericsson (publ) Data unit sender and data unit relay device
WO2006031048A2 (en) * 2004-09-13 2006-03-23 Lg Electronics Inc. Method and apparatus for reproducing a data recorded in recording medium using a local storage
KR100678054B1 (ko) * 2005-01-31 2007-02-02 삼성전자주식회사 무선 통신 시스템에서 핸드오버 방법
KR100903053B1 (ko) * 2005-11-04 2009-06-18 삼성전자주식회사 광대역 무선접속 통신망에서 멀티홉시스템을 위한자동반복요청 장치 및 방법
US8149757B2 (en) 2006-01-17 2012-04-03 Nokia Corporation Bandwidth efficient HARQ scheme in relay network
CN101047431B (zh) * 2006-06-22 2011-02-02 华为技术有限公司 在含有中继站的通信***中实现混合自动重传的方法
CN101431394B (zh) * 2007-11-05 2012-01-11 中兴通讯股份有限公司 下行隧道混合自动重传请求方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020037565A (ko) * 2000-11-14 2002-05-22 조정남 비동기 이동 통신 시스템에서의 하이브리드 에이알큐의적용을 위한 부가 정보 전송 방법
CN101047481A (zh) * 2006-03-27 2007-10-03 中兴通讯股份有限公司 一种无线通信***中自动重传请求分布式反馈方法
GB2436912A (en) * 2006-04-04 2007-10-10 Nec Technologies Selective inclusion of a Length Indicator field in an ARQ PDU
CN1984072A (zh) * 2006-05-29 2007-06-20 华为技术有限公司 调度信息传输方法及用户终端及基站节点

Also Published As

Publication number Publication date
US20100246478A1 (en) 2010-09-30
CN101431394B (zh) 2012-01-11
CN101431394A (zh) 2009-05-13
US8958359B2 (en) 2015-02-17
EP2209245A1 (en) 2010-07-21
US8208420B2 (en) 2012-06-26
EP2209245A4 (en) 2013-04-03
US20120236781A1 (en) 2012-09-20
EP2209245B1 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
WO2009059469A1 (en) A hybrid automatic repeat request method of the downstream tunnel
JP7004338B2 (ja) Ttiバンドリングによるアップリンク送信の強化
US8149757B2 (en) Bandwidth efficient HARQ scheme in relay network
US8054789B2 (en) Aggregated harq report
US11012196B2 (en) Base stations, user equipments and a system for wireless communication, as well as the corresponding methods
EP1976175B1 (en) Apparatus and method for asynchronous control message transmission for data retransmission in wireless relay communication system
US20090141676A1 (en) Method and apparatus for providing an error control scheme in a multi-hop relay network
US20080165670A1 (en) Method and System for Enabling HARQ Operations on Channels between Stations in Wireless Communication Networks
WO2008000190A1 (fr) Procédé et système et station relais pour la mise en oeuvre de harq
EP2932640A1 (en) System and method for ue fountain relay based network
WO2010091602A1 (zh) 一种用于调整移动台睡眠模式的方法及装置
WO2009089664A1 (en) A method for relaying and forwarding the feedback information in harq scene
CN101902777B (zh) 一种混合自动请求重传方法及基站设备
CN102377544A (zh) 一种通信***中的重传方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07816885

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12734164

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2007816885

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007816885

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE