WO2009052792A2 - Werkstoff für ein gasturbinenbauteil, verfahren zur herstellung eines gasturbinenbauteils sowie gasturbinenbauteil - Google Patents

Werkstoff für ein gasturbinenbauteil, verfahren zur herstellung eines gasturbinenbauteils sowie gasturbinenbauteil Download PDF

Info

Publication number
WO2009052792A2
WO2009052792A2 PCT/DE2008/001702 DE2008001702W WO2009052792A2 WO 2009052792 A2 WO2009052792 A2 WO 2009052792A2 DE 2008001702 W DE2008001702 W DE 2008001702W WO 2009052792 A2 WO2009052792 A2 WO 2009052792A2
Authority
WO
WIPO (PCT)
Prior art keywords
phase
gas turbine
temperature
turbine component
material according
Prior art date
Application number
PCT/DE2008/001702
Other languages
English (en)
French (fr)
Other versions
WO2009052792A3 (de
WO2009052792A9 (de
WO2009052792A8 (de
Inventor
Wilfried Smarsly
Helmut Clemens
Volker Guether
Sascha Kremmer
Andreas Otto
Harald Chladil
Original Assignee
Mtu Aero Engines Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mtu Aero Engines Gmbh filed Critical Mtu Aero Engines Gmbh
Priority to CA2703906A priority Critical patent/CA2703906C/en
Priority to US12/739,929 priority patent/US8888461B2/en
Priority to ES08841961.9T priority patent/ES2548243T3/es
Priority to JP2010530269A priority patent/JP5926886B2/ja
Priority to EP08841961.9A priority patent/EP2227571B1/de
Priority to PL08841961T priority patent/PL2227571T3/pl
Publication of WO2009052792A2 publication Critical patent/WO2009052792A2/de
Publication of WO2009052792A8 publication Critical patent/WO2009052792A8/de
Publication of WO2009052792A3 publication Critical patent/WO2009052792A3/de
Publication of WO2009052792A9 publication Critical patent/WO2009052792A9/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • the invention relates to a material for a gas turbine component according to the preamble of claim 1. Furthermore, the invention relates to a method for producing a gas turbine component according to the preamble of claim 9 and a gas turbine component according to the preamble of claim 13.
  • the most important materials used today for aircraft engines or other gas turbines are titanium alloys, nickel alloys (also called superalloys) and high-strength steels.
  • the high strength steels are used for shaft parts, gear parts, compressor casings and turbine casings.
  • Titanium alloys are typical materials for compressor parts.
  • Nickel alloys are suitable for the hot parts of the aircraft engine.
  • gas turbine components made of titanium alloys nickel alloy or other alloys are known from the prior art primarily investment casting and forging. All highly stressed gas turbine components, such as components for a compressor, are forgings. Components for a turbine, however, are usually designed as precision castings.
  • the present invention based on the problem of creating a novel material for a gas turbine component, a novel method for producing a gas turbine component and a novel gas turbine component.
  • a material according to claim 1 the same a) in the region of room temperature, the phase ß / B2-Ti, the phase Ot 2 -Ti 3 Al and the phase ⁇ -TiAl with a proportion of ß / B2-Ti phase of not more than 5 vol .-% ; b) in the eutectoid temperature the phase ß / B2-Ti, the phase Ci 2 -Ti 3 Al and the phase ⁇ -TiAl with a proportion of ß-Ti phase of at least 10 vol .-% on.
  • the material according to the invention which is a ⁇ -TiAl-based alloy material, allows forging within a larger temperature interval. Forging can be used as a starting material, a casting material, so that can be dispensed with expensive extruded material.
  • Fig. 1 is a highly schematic representation of a produced from the material according to the invention according to the invention blade of a gas turbine.
  • the present invention relates to a new material for a gas turbine component, namely a material based on a titanium-aluminum alloy.
  • the material according to the invention comprises several phases both in the region of the room temperature and in the region of the so-called eutectoid temperature.
  • the TiAl-based alloy material according to the invention has the phase ⁇ / B2-Ti, the phase (X 2 -Ti 3 Al and the phase ⁇ -TiAl, wherein the proportion of ß / B2-Ti phase at room temperature
  • the TiAl-based alloy material according to the invention has the phase ⁇ / B2-Ti, the phase Ct 2 -Ti 3 Al and the phase ⁇ -TiAl, where the Proportion of ß / B2-Ti phase in the eutectoid temperature range is at least or minimum 10 vol .-%.
  • the material according to the invention is accordingly a ⁇ -TiAl-based alloy material. It can be reshaped by conventional forging techniques with a forging temperature within a relatively large temperature interval.
  • the forging temperature of the material according to the invention is preferably between T e -50K and T ⁇ + 100K, where T e is the eutectoid temperature of the material and T ⁇ is the alpha transus temperature of the material.
  • the forging temperature or forming temperature is below T ⁇ , as well as in the area of the forging temperature or forming temperature and in the area of the eutectoid temperature temperature and the room temperature are the phases ß / B2-Ti, (X 2 Ti 3 Al and ⁇ -TiAl in the thermodynamic equilibrium.
  • the proportion of cubic body-centered ß / B2-Ti phase in the thermodynamic equilibrium of the material according to the invention is less than 5 vol .-% in the room temperature. In the area of the eutectoid temperature, the proportion of cubic body-centered ⁇ / B2-Ti phase is greater than 10% by volume.
  • the ⁇ -TiAl-based alloy material according to the invention also contains niobium, molybdenum and / or manganese as well as boron and / or carbon and / or silicon.
  • the titanium-aluminum-base alloy material has the following composition:
  • 0.1 to 1 at% preferably 0.1 to 0.5 at.%, Boron and / or carbon and / or silicon,
  • the procedure according to the invention is such that first of all a semifinished product or starting material is provided from the material according to the invention.
  • the semi-finished product can be a cost-effective, cast semi-finished product. It can also be provided that the semifinished product is a primary formed component.
  • the semifinished product from the ⁇ -TiAl-based alloy material according to the invention is formed by forging, namely at a forming temperature or forging temperature, the between T e -50K and T ⁇ + 100K. It is forged at a forming speed of at least 1 m / s. In a preferred development, the semifinished product is thermally coated before forging.
  • a blade 10 for a compressor of an aircraft engine is to be produced as a gas turbine component
  • the process according to the invention preferably proceeds in the area of an airfoil 11 to provide a coarser microstructure with high creep strength and in the area of a blade root 12 is forged for providing a finer microstructure with high ductility, preferably followed by a heat treatment to the simple forging and to the multiple forging.
  • Gas turbine components according to the invention are manufactured from the material according to the invention with the aid of the method according to the invention.
  • the gas turbine components according to the invention to compressor components, such.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Forging (AREA)

Abstract

Die Erfindung betrifft einen Werkstoff für ein Gasturbinenbauteil, nämlich einen Titan-Aluminium-Basis-Legierungswerkstoff, umfassend zumindest Titan und Aluminium. Erfindungsgemäß weist derselbe a) im Bereich der Raumtemperatur die Phase B2-Ti, die Phase α2-Ti3 A1 und die Phase γ-TiA1 mit einem Anteil der B2-Ti-Phase von maximal 5 Vol.-% auf, und b) im Bereich der eutektoiden Temperatur die Phase ß-Ti, die Phase α2- Ti3A1 und die Phase γ-TiA1 mit einem Anteil der ß-Ti-Phase von minimal 10 Vol.-% auf.

Description

Werkstoff für ein Gasturbinenbauteil, Verfahren zur Herstellung eines Gasturbinenbauteils sowie Gasturbinenbauteil
Die Erfindung betrifft einen Werkstoff für ein Gasturbinenbauteil nach dem Oberbegriff des Anspruchs 1. Des Weiteren betrifft die Erfindung ein Verfahren zur Herstellung eines Gasturbinenbauteils nach dem Oberbegriff des Anspruchs 9 sowie ein Gasturbinenbauteil nach dem Oberbegriff des Anspruchs 13.
Moderne Gasturbinen, insbesondere Flugtriebwerke, müssen höchsten Ansprüchen im Hinblick auf Zuverlässigkeit, Gewicht, Leistung, Wirtschaftlichkeit und Lebensdauer gerecht werden. In den letzten Jahrzehnten wurden insbesondere auf dem zivilen Sektor Flugtriebwerke entwickelt, die den obigen Anforderungen voll gerecht werden und ein hohes Maß an technischer Perfektion erreicht haben. Bei der Entwicklung von Flugtriebwerken spielt unter anderem die Werkstoffauswahl, die Suche nach neuen, geeigneten Werkstoffen sowie die Suche nach neuen Fertigungsverfahren eine entscheidende Rolle.
Die wichtigsten, heutzutage für Flugtriebwerke oder sonstige Gasturbinen verwendeten Werkstoffe sind Titanlegierungen, Nickellegierungen (auch Superlegierungen genannt) und hochfeste Stähle. Die hochfesten Stähle werden für Wellenteile, Getriebeteile, Verdichtergehäuse und Turbinengehäuse verwendet. Titanlegierungen sind typische Werkstoffe für Verdichterteile. Nickellegierungen sind für die heißen Teile des Flugtriebwerks geeignet.
Als Fertigungsverfahren für Gasturbinenbauteile aus Titanlegierungen, Nickellegierung oder sonstigen Legierungen sind aus dem Stand der Technik in erster Linie das Feingießen sowie Schmieden bekannt. Alle hochbeanspruchten Gasturbinenbauteile, wie zum Beispiel Bauteile für einen Verdichter, sind Schmiedeteile. Bauteile für eine Turbine werden hingegen in der Regel als Feingussteile ausgeführt.
Aus der Praxis ist es bereits bekannt, Gasturbinenbauteile aus Titan-Aluminium-Basis- Legierungswerkstoffen zu fertigen. Dabei kommen insbesondere γ-TiAl-Basis- Legierungswerkstoffe zum Einsatz, wobei das Schmieden solcher γ-TiAl-Basis- Legierungswerkstoffe problematisch ist. Schmiedeteile aus solchen Werkstoffen müssen nach der Praxis durch isothermes Schmieden oder Hot-Die-Schmieden von vorgeformten, wie z. B. stranggepressten, Halbzeugen hergestellt werden. Das isotherme Schmieden sowie das Hot-Die-Schmieden erfordert quasi isotherm-stranggepresstes Vormaterial, wodurch sich hohe Herstellkosten ergeben.
Es besteht daher ein Bedarf für ein adaptives Schmiedeverfahren unter Verwendung eines neuen Werkstoffs zur Herstellung von Gasturbinenbauteilen. Dieses Verfahren soll eine verbesserte Prozesssicherheit und Prozessstabilität unter reduzierten Herstellkosten gewährleisten.
Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, einen neuartigen Werkstoff für ein Gasturbinenbauteil, ein neuartiges Verfahren zur Herstellung eines Gasturbinenbauteils sowie ein neuartiges Gasturbinenbauteil zu schaffen.
Dieses Problem wird durch einen Werkstoff gemäß Anspruch 1 gelöst. Erfindungsgemäß weist derselbe a) im Bereich der Raumtemperatur die Phase ß/B2-Ti, die Phase Ot2-Ti3Al und die Phase γ-TiAl mit einem Anteil der ß/B2-Ti-Phase von maximal 5 Vol.-% auf; b) im Bereich der eutektoiden Temperatur die Phase ß/B2-Ti, die Phase Ci2-Ti3Al und die Phase γ-TiAl mit einem Anteil der ß-Ti-Phase von minimal 10 Vol.-% auf.
Der erfindungsgemäße Werkstoff, bei welchem es sich um einen γ-TiAl-Basis Legierungswerkstoff handelt, erlaubt ein Schmieden innerhalb eines größeren Temperaturintervalls. Zum Schmieden kann als Vormaterial ein Gussmaterial verwendet werden, sodass auf teures Strangpressmaterial verzichtet werden kann.
Das erfindungsgemäße Verfahren zur Herstellung eines Gasturbinenbauteils ist in Anspruch 9 und das erfindungsgemäße Gasturbinenbauteil ist in Anspruch 13 definiert. Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ausfuhrungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigt:
Fig. 1 eine stark schematisierte Darstellung einer aus dem erfindungsgemäßen Werkstoff nach dem erfindungsgemäßen Verfahren hergestellten Schaufel einer Gasturbine.
Die hier vorliegende Erfindung betrifft einen neuen Werkstoff für ein Gasturbinenbauteil, nämlich einen Werkstoff auf Basis einer Titan-Aluminium-Legierung. Der erfindungsgemäße Werkstoff umfasst sowohl im Bereich der Raumtemperatur als auch im Bereich der sogenannten eutektoiden Temperatur mehrere Phasen.
Im Bereich der Raumtemperatur weist der erfindungsgemäße TiAl-Basis- Legierungswerkstoff die Phase ß/B2-Ti, die Phase (X2-Ti3Al und die Phase γ-TiAl auf, wobei der Anteil der ß/B2-Ti-Phase bei Raumtemperatur höchstens bzw. maximal 5 Vol.-% beträgt. Ln Bereich der eutektoiden Temperatur weist der erfindungsgemäße TiAl-Basis- Legierungswerkstoff die Phase ß/B2-Ti, die Phase Ct2-Ti3 Al und die Phase γ-TiAl auf, wobei der Anteil der ß/B2-Ti-Phase im Bereich der eutektoiden Temperatur mindestens bzw. minimal 10 Vol.-% beträgt.
Bei dem erfindungsgemäßen Werkstoff handelt es sich demnach um einen γ-TiAl-Basis- Legierungswerkstoff. Derselbe kann mit konventionellen Schmiedeverfahren umgeformt werden, und zwar mit einer Schmiedetemperatur innerhalb eines relativ großen Temperaturintervalls. Die Schmiedetemperatur des erfindungsgemäßen Werkstoffs liegt vorzugsweise zwischen Te-50K und Tα+100K, wobei Te die eutektoide Temperatur des Werkstoffs und Tα die Alpha-Transus-Temperatur des Werkstoffs ist.
Wenn die Schmiedetemperatur bzw. Umformtemperatur unter Tα liegt, sowie im Bereich der Schmiedetemperatur bzw. Umformtemperatur sowie im Bereich der eutektoiden Tem- peratur und der Raumtemperatur befinden sich die Phasen ß/B2-Ti, (X2Ti3Al und γ-TiAl im thermodynamischen Gleichgewicht.
Der Anteil der kubisch raumzentrierten ß/B2-Ti-Phase im thermodynamischen Gleichgewicht des erfindungsgemäßen Werkstoffs ist im Bereich der Raumtemperatur kleiner als 5 Vol.-%. Im Bereich der eutektoiden Temperatur ist der Anteil der kubisch raumzentrierten ß/B2-Ti-Phase größer als 10 Vol.-%.
Der erfindungsgemäße γ-TiAl-Basis-Legierungswerkstoff weist neben Titan und Aluminium weiterhin Niob, Molybdän und/oder Mangan sowie Bor und/oder Kohlenstoff und / o- der Silizium auf.
Vorzugsweise weist der Titan- Aluminium-Basis-Legierungswerkstoff folgende Zusammensetzung auf:
- 42 bis 45 At.-% Aluminium, - 3 bis 8 At.-% Niob,
- 0,2 bis 3 At. -% Molybdän und/oder Mangan,
- 0,1 bis 1 At-% , bevorzugt 0,1 bis 0,5 At.-%, Bor und/oder Kohlenstoff und / oder Silizium,
- im Rest Titan.
Zur Herstellung eines Gasturbinenbauteils aus dem erfindungsgemäßen Werkstoff wird im Sinne des erfindungsgemäßen Verfahrens so vorgegangen, dass zuerst ein Halbzeug bzw. Vormaterial aus dem erfindungsgemäßen Werkstoff bereitgestellt wird. Bei dem Halbzeug kann es sich um ein kostengünstiges, gegossenes Halbzeug handeln. Es kann auch vorgesehen sein, dass es sich bei dem Halbzeug um ein primär umgeformtes Bauteil handelt.
Anschließend wird im Sinne des erfindungsgemäßen Verfahrens das Halbzeug aus dem erfindungsgemäßen γ-TiAl-Basis-Legierungswerkstoff durch Schmieden umgeformt, nämlich bei einer Umformtemperatur bzw. Schmiedetemperatur, die zwischen Te-50K und Tα+100K liegt. Dabei wird mit einer Umformgeschwindigkeit von mindestens 1 m/s geschmiedet. In zu bevorzugender Weiterbildung wird das Halbzeug dabei vor dem Schmieden wärmedämmend beschichtet.
Im Anschluss an das Schmieden erfolgt vorzugsweise eine Wärmebehandlung des herzustellenden Bauteils.
Dann, wenn gemäß Fig. 1 als Gasturbinenbauteil eine Laufschaufel 10 für einen Verdichter eines Flugtriebwerks hergestellt werden soll, wird beim erfindungsgemäßen Verfahren vorzugsweise so vorgegangen, dass im Bereich eines Schaufelblatts 11 zur Bereitstellung einer gröberen Mikrostruktur mit hoher Kriechfestigkeit einfach geschmiedet und im Bereich eines Schaufelfußes 12 zur Bereitstellung einer feineren Mikrostruktur mit hoher Duktilität mehrfach geschmiedet wird, wobei sich an das einfache Schmieden sowie an das mehrfache Schmieden vorzugsweise eine Wärmebehandlung anschließt.
Erfmdungsgemäße Gasturbinenbauteile sind mit Hilfe des erfindungsgemäßen Verfahrens aus dem erfindungsgemäßen Werkstoff gefertigt. Vorzugsweise handelt es sich bei den erfindungsgemäßen Gasturbinenbauteilen um Verdichterbauteile, so z. B. um Laufschaufeln eines Verdichters eines Flugtriebwerks, oder um Turbinenbauteile

Claims

Patentansprüche
1. Werkstoff für ein Gasturbinenbauteil, nämlich Titan- Aluminium-Basis- Legierungswerkstoff, umfassend zumindest Titan und Aluminium, dadurch gekennzeichnet, dass a) derselbe im Bereich der Raumtemperatur die Phase ß/B2-Ti, die Phase Ot2-Ti3 Al und die Phase γ-TiAl mit einem Anteil der ß/B2-Ti-Phase von maximal 5 Vol.-% aufweist, b) derselbe im Bereich der eutektoiden Temperatur die Phase ß/B2-Ti, die Phase (X2-Ti3Al und die Phase γ-TiAl mit einem Anteil der ß/B2-Ti-Phase von minimal 10 Vol.-% aufweist.
2. Werkstoff nach Anspruch 1 , dadurch gekennzeichnet, dass der Anteil der kubisch raumzentrierten ß/B2-Ti-Phase im Bereich der Raumtemperatur kleiner als 5 Vol.-% ist.
3. Werkstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Anteil der kubisch raumzentrierten ß/B2-Ti-Phase im Bereich der eutektoiden Temperatur größer als 10 Vol.-% ist.
4. Werkstoff nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass im Bereich der Raumtemperatur die Phasen ß/B2-Ti und (X2-Ti3Al und γ-TiAl vorlei- gen.
5. Werkstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass im Bereich der eutektoiden Temperatur sich die Phasen ß-Ti und Ot2Ti3Al und γ-TiAl im thermodynamischen Gleichgewicht befinden.
6. Werkstoff nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass derselbe folgende Bestandteile aufweist:
- Titan,
- Aluminium, - Mob,
- Molybdän und/oder Mangan,
- Bor und/oder Kohlenstoff und / oder Silizium.
7. Werkstoff nach Anspruch 6, dadurch gekennzeichnet, dass derselbe folgende Zusammensetzung aufweist:
- 42 bis 45 At.-% Aluminium, - 3 bis 8 At.-% Niob,
- 0,2 bis 3 At. -% Molybdän und/oder Mangan,
- 0,1 bis 1 At. -% Bor und/oder Kohlenstoff und / oder Silizium
- im Rest Titan.
8. Werkstoff nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Umformtemperatur desselben zwischen Te-50K und Tα+100K liegt, wobei Te die eutektoide Temperatur und Tα die Alpha-Transus-Temperatur desselben ist.
9. Verfahren zur Herstellung eines Gasturbinenbauteils mit folgenden Schritten:, a) Bereitstellen eines Halbzeugs aus einem Werkstoff nach einem oder mehreren der Ansprüche 1 bis 8; b) Schmieden des Halbzeugs aus dem Werkstoff zum Bauteil bei einer Umformtemperatur zwischen Te-50K und Tα+100K, wobei Te die eutektoide Temperatur des Werkstoffs und Tα die Alpha-Transus-Temperatur des Werkstoffs ist.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass mit einer Umformgeschwindigkeit von mindestens 1 m/s geschmiedet wird.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass im Anschluss an des Schmieden eine Wärmebehandlung erfolgt.
12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass als Halbzeug ein gegossenes Halbzeug verwendet wird.
13. Gasturbinenbauteil aus einem Werkstoff nach einem oder mehreren der Ansprüche 1 bis 8 hergestellt durch ein Verfahren nach einem oder mehreren der Ansprüche 9 bis 12.
14. Gasturbinenbauteil nach Anspruch 13, dadurch gekennzeichnet, dass dasselbe eine Schaufel ist, die im Bereich eines Schaufelblatts zur Bereitstellung einer gröberen Mikrostruktur mit hoher Kriechfestigkeit einfach geschmiedet ist, und die im Bereich eines Schaufelfußes zur Bereitstellung einer feineren Mikrostruktur mit hoher Duktilität mehrfach geschmiedet ist.
PCT/DE2008/001702 2007-10-27 2008-10-18 Werkstoff für ein gasturbinenbauteil, verfahren zur herstellung eines gasturbinenbauteils sowie gasturbinenbauteil WO2009052792A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2703906A CA2703906C (en) 2007-10-27 2008-10-18 Material for a gas turbine component, method for producing a gas turbine component as well as a gas turbine component
US12/739,929 US8888461B2 (en) 2007-10-27 2008-10-18 Material for a gas turbine component, method for producing a gas turbine component and gas turbine component
ES08841961.9T ES2548243T3 (es) 2007-10-27 2008-10-18 Material para un componente de turbina de gas, procedimiento para la fabricación de un componente de turbina de gas, así como componente de turbina de gas
JP2010530269A JP5926886B2 (ja) 2007-10-27 2008-10-18 ガスタービン構成部品のための材料、ガスタービン構成部品の製造方法、及びガスタービン構成部品
EP08841961.9A EP2227571B1 (de) 2007-10-27 2008-10-18 Werkstoff für ein gasturbinenbauteil, verfahren zur herstellung eines gasturbinenbauteils sowie gasturbinenbauteil
PL08841961T PL2227571T3 (pl) 2007-10-27 2008-10-18 Materiał na podzespół turbiny gazowej, sposób produkcji podzespołu turbiny gazowej i podzespół turbiny gazowej

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007051499.0 2007-10-27
DE102007051499A DE102007051499A1 (de) 2007-10-27 2007-10-27 Werkstoff für ein Gasturbinenbauteil, Verfahren zur Herstellung eines Gasturbinenbauteils sowie Gasturbinenbauteil

Publications (4)

Publication Number Publication Date
WO2009052792A2 true WO2009052792A2 (de) 2009-04-30
WO2009052792A8 WO2009052792A8 (de) 2009-07-30
WO2009052792A3 WO2009052792A3 (de) 2009-09-03
WO2009052792A9 WO2009052792A9 (de) 2009-11-05

Family

ID=40227637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/001702 WO2009052792A2 (de) 2007-10-27 2008-10-18 Werkstoff für ein gasturbinenbauteil, verfahren zur herstellung eines gasturbinenbauteils sowie gasturbinenbauteil

Country Status (8)

Country Link
US (1) US8888461B2 (de)
EP (1) EP2227571B1 (de)
JP (1) JP5926886B2 (de)
CA (1) CA2703906C (de)
DE (1) DE102007051499A1 (de)
ES (1) ES2548243T3 (de)
PL (1) PL2227571T3 (de)
WO (1) WO2009052792A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120048430A1 (en) * 2010-08-30 2012-03-01 United Technologies Corporation Process and System for Fabricating Gamma Tial Turbine Engine Components
JP2017122279A (ja) * 2010-05-12 2017-07-13 ベーレル・シユミーデテヒニク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト チタン−アルミニウム基合金から成る部材の製造方法及び部材
EP3269838A1 (de) 2016-07-12 2018-01-17 MTU Aero Engines GmbH Hochwarmfeste tial-legierung und herstellungsverfahren hierfür sowie bauteil aus einer entsprechenden tial-legierung

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012041276A2 (de) * 2010-09-22 2012-04-05 Mtu Aero Engines Gmbh Warmfeste tial-legierung
EP2505780B1 (de) * 2011-04-01 2016-05-11 MTU Aero Engines GmbH Schaufelanordnung für eine Turbomaschine
DE102011110740B4 (de) * 2011-08-11 2017-01-19 MTU Aero Engines AG Verfahren zur Herstellung geschmiedeter TiAl-Bauteile
US20130084190A1 (en) * 2011-09-30 2013-04-04 General Electric Company Titanium aluminide articles with improved surface finish and methods for their manufacture
EP2620517A1 (de) * 2012-01-25 2013-07-31 MTU Aero Engines GmbH Warmfeste TiAl-Legierung
ES2532582T3 (es) * 2012-08-09 2015-03-30 Mtu Aero Engines Gmbh Método para fabricar un segmento de corona de álabes de TiAl para una turbina de gas, así como un correspondiente segmento de corona de álabes
FR2997884B3 (fr) * 2012-11-09 2015-06-26 Mecachrome France Procede et dispositif de fabrication d'aubes de turbines.
ES2861125T3 (es) * 2013-01-30 2021-10-05 MTU Aero Engines AG Soporte de juntas de aluminuro de titanio para una turbomáquina
US10179377B2 (en) 2013-03-15 2019-01-15 United Technologies Corporation Process for manufacturing a gamma titanium aluminide turbine component
EP2851445B1 (de) 2013-09-20 2019-09-04 MTU Aero Engines GmbH Kriechfeste TiAl - Legierung
DE102013020460A1 (de) 2013-12-06 2015-06-11 Hanseatische Waren Handelsgesellschaft Mbh & Co. Kg Verfahren zur Herstellung von TiAl-Bauteilen
WO2015119927A1 (en) * 2014-02-05 2015-08-13 Borgwarner Inc. TiAl ALLOY, IN PARTICULAR FOR TURBOCHARGER APPLICATIONS, TURBOCHARGER COMPONENT, TURBOCHARGER AND METHOD FOR PRODUCING THE TiAl ALLOY
US9963977B2 (en) 2014-09-29 2018-05-08 United Technologies Corporation Advanced gamma TiAl components
DE102015103422B3 (de) 2015-03-09 2016-07-14 LEISTRITZ Turbinentechnik GmbH Verfahren zur Herstellung eines hochbelastbaren Bauteils aus einer Alpha+Gamma-Titanaluminid-Legierung für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke
DE102015115683A1 (de) * 2015-09-17 2017-03-23 LEISTRITZ Turbinentechnik GmbH Verfahren zur Herstellung einer Vorform aus einer Alpha+Gamma-Titanaluminid-Legierung zur Herstellung eines hochbelastbaren Bauteils für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke
RU2614294C1 (ru) * 2016-04-04 2017-03-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рыбинский государственный авиационный технический университет имени П.А. Соловьева" Способ изготовления штамповок лопаток из титановых сплавов
EP3249064A1 (de) 2016-05-23 2017-11-29 MTU Aero Engines GmbH Additive fertigung von hochtemperaturbauteilen aus tial
EP3326746A1 (de) * 2016-11-25 2018-05-30 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Verfahren zum fügen und/oder reparieren von substraten aus titanaluminidlegierungen
CN112410698B (zh) * 2020-11-03 2021-11-02 中国航发北京航空材料研究院 一种三相Ti2AlNb合金多层次组织均匀性控制方法
EP4299776A1 (de) 2021-04-16 2024-01-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Tial-legierung zum schmieden, tial-legierungsmaterial sowie verfahren zur herstellung von tial-legierungsmaterial

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546551B2 (ja) * 1991-01-31 1996-10-23 新日本製鐵株式会社 γ及びβ二相TiAl基金属間化合物合金及びその製造方法
JPH06116692A (ja) 1992-10-05 1994-04-26 Honda Motor Co Ltd 高温強度の優れたTiAl系金属間化合物およびその製造方法
WO1996012827A1 (fr) * 1994-10-25 1996-05-02 Mitsubishi Jukogyo Kabushiki Kaisha ALLIAGE A BASE DE COMPOSE INTERMETALLIQUE DE TiAl ET PROCEDE DE FABRICATION DUDIT ALLIAGE
USH1659H (en) 1995-05-08 1997-07-01 The United States Of America As Represented By The Secretary Of The Air Force Method for heat treating titanium aluminide alloys
JP3388970B2 (ja) * 1995-12-26 2003-03-24 三菱重工業株式会社 TiAl系金属間化合物基合金
JP3492118B2 (ja) * 1996-10-28 2004-02-03 三菱重工業株式会社 TiAl金属間化合物基合金
US6174387B1 (en) * 1998-09-14 2001-01-16 Alliedsignal, Inc. Creep resistant gamma titanium aluminide alloy
DE102004056582B4 (de) 2004-11-23 2008-06-26 Gkss-Forschungszentrum Geesthacht Gmbh Legierung auf der Basis von Titanaluminiden

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122279A (ja) * 2010-05-12 2017-07-13 ベーレル・シユミーデテヒニク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト チタン−アルミニウム基合金から成る部材の製造方法及び部材
US20120048430A1 (en) * 2010-08-30 2012-03-01 United Technologies Corporation Process and System for Fabricating Gamma Tial Turbine Engine Components
US8876992B2 (en) * 2010-08-30 2014-11-04 United Technologies Corporation Process and system for fabricating gamma TiAl turbine engine components
EP3269838A1 (de) 2016-07-12 2018-01-17 MTU Aero Engines GmbH Hochwarmfeste tial-legierung und herstellungsverfahren hierfür sowie bauteil aus einer entsprechenden tial-legierung
US10590520B2 (en) 2016-07-12 2020-03-17 MTU Aero Engines AG High temperature resistant TiAl alloy, production method therefor and component made therefrom

Also Published As

Publication number Publication date
CA2703906C (en) 2016-07-19
US8888461B2 (en) 2014-11-18
JP5926886B2 (ja) 2016-05-25
EP2227571B1 (de) 2015-09-02
PL2227571T3 (pl) 2016-02-29
JP2011502213A (ja) 2011-01-20
US20110189026A1 (en) 2011-08-04
CA2703906A1 (en) 2009-04-30
WO2009052792A3 (de) 2009-09-03
ES2548243T3 (es) 2015-10-15
WO2009052792A9 (de) 2009-11-05
EP2227571A2 (de) 2010-09-15
WO2009052792A8 (de) 2009-07-30
DE102007051499A1 (de) 2009-04-30

Similar Documents

Publication Publication Date Title
EP2227571B1 (de) Werkstoff für ein gasturbinenbauteil, verfahren zur herstellung eines gasturbinenbauteils sowie gasturbinenbauteil
DE102015103422B3 (de) Verfahren zur Herstellung eines hochbelastbaren Bauteils aus einer Alpha+Gamma-Titanaluminid-Legierung für Kolbenmaschinen und Gasturbinen, insbesondere Flugtriebwerke
EP2807281B1 (de) Verfahren zur herstellung geschmiedeter bauteile aus einer tial-legierung und entsprechend hergestelltes bauteil
DE60313065T2 (de) Dünne Produkte aus Beta- oder quasi Beta-Titan-Legierungen, Herstellung durch Schmieden
EP2742162B1 (de) Verfahren zu herstellung von geschmiedeten tial-bauteilen
DE102009061055B4 (de) Intermetallische Titanaluminid-Legierung
EP2851445B1 (de) Kriechfeste TiAl - Legierung
EP3269838B1 (de) Hochwarmfeste tial-legierung, herstellungsverfahren eines bauteils aus einer entsprechenden tial-legierung und bauteil aus einer entsprechenden tial-legierung
EP3530763B1 (de) Verfahren zur herstellung einer schaufel einer strömungsmaschine aus einer gradierten tial-legierung und entsprechend hergestelltes bauteil
EP3581668B1 (de) Verfahren zur herstellung eines bauteils aus gamma - tial und entsprechend hergestelltes bauteil
EP2905350A1 (de) Hochtemperatur TiAl-Legierung
WO2010000238A1 (de) Verfahren zum herstellen von gasturbinenschaufeln
EP2620517A1 (de) Warmfeste TiAl-Legierung
EP3211111A2 (de) Wärmebehandlungsverfahren für bauteile aus nickelbasis-superlegierungen
EP3427858A1 (de) Schmieden bei hohen temperaturen, insbesondere von titanaluminiden
WO2002048420A2 (de) Verfahren zur herstellung von hochbelastbaren bauteilen aus tiai-legierungen
DE4318424C2 (de) Verfahren zur Herstellung von Formkörpern aus Legierungen auf Titan-Aluminium-Basis
EP3584334A1 (de) Verfahren zur herstellung eines gescmiedeten bauteils aus einer tial-legierung und dadurch hergestelltes bauteil
WO2007082708A1 (de) Halbzeug aus einer alpha/alpha2-titanlegierung und verfahren zu seiner herstellung
DE10355892B4 (de) Verfahren zur Herstellung von Ti, Zr, Hf enthaltenden Gesenkschmiedeteilen
WO2010149141A2 (de) Verfahren zum herstellen und/oder reparieren einer schaufel für eine strömungsmaschine
DE10150674B4 (de) Verfahren zur Herstellung von hochbelastbaren Bauteilen aus TiAl-Legierungen
WO1999049090A1 (de) TiA1-BASISLEGIERUNG

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08841961

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2703906

Country of ref document: CA

Ref document number: 2010530269

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008841961

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12739929

Country of ref document: US