WO2009052356A2 - Procédés et compositions conductrices destinés à être utilisés dans la fabrication de dispositifs à semi-conducteur - Google Patents

Procédés et compositions conductrices destinés à être utilisés dans la fabrication de dispositifs à semi-conducteur Download PDF

Info

Publication number
WO2009052356A2
WO2009052356A2 PCT/US2008/080277 US2008080277W WO2009052356A2 WO 2009052356 A2 WO2009052356 A2 WO 2009052356A2 US 2008080277 W US2008080277 W US 2008080277W WO 2009052356 A2 WO2009052356 A2 WO 2009052356A2
Authority
WO
WIPO (PCT)
Prior art keywords
composition
glass
thick film
weight percent
silver
Prior art date
Application number
PCT/US2008/080277
Other languages
English (en)
Other versions
WO2009052356A3 (fr
Inventor
Alan Frederick Carroll
Kenneth Warren Hang
Original Assignee
E. I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/176,697 external-priority patent/US7935277B2/en
Application filed by E. I. Du Pont De Nemours And Company filed Critical E. I. Du Pont De Nemours And Company
Publication of WO2009052356A2 publication Critical patent/WO2009052356A2/fr
Publication of WO2009052356A3 publication Critical patent/WO2009052356A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/06Frit compositions, i.e. in a powdered or comminuted form containing halogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells

Definitions

  • a conventional solar cell structure with a p-type base has a negative electrode that is typically on the front-side or sun side of the cell and a positive electrode on the backside. It is well-known that radiation of an appropriate wavelength falling on a p-n junction of a semiconductor body serves as a source of external energy to generate hole-electron pairs in that body. Because of the potential difference which exists at a p-n junction, holes and electrons move across the junction in opposite directions and thereby give rise to flow of an electric current that is capable of delivering power to an external circuit. Most solar cells are in the form of a silicon wafer that has been metallized, i.e., provided with metal contacts that are electrically conductive. Although various methods and compositions for forming solar cells exist, there is a need for compositions, structures, and devices which have improved electrical performance, and methods of making.
  • the glass frit may include one or more of AI 2 O 3 , Si 2 O 2 , and B 2 O 3 . In an aspect of this embodiment, based on weight percent of total glass composition, the amount of Si 2 O 2 , AI 2 O 3 , and B 2 O 3 may be less than 31. In an embodiment, the glass frit may include one or more of Bi 2 O 3 , BiF 3 , Na 2 O, Li 2 O, and Ag 2 O. In an embodiment, based on weight percent of total glass composition, the amount of (Bi 2 O 3 + BiF 3 ) / (Na 2 O + Li 2 O + Ag 2 O) may be greater than 14.
  • the structure is useful in the manufacture of photovoltaic devices.
  • the glass frit comprises a component selected from: (a) a metal wherein said metal is selected from Zn, Mg, Gd, Ce, Zr, Ti, Mn, Sn, Ru, Co, Fe, Cu and Cr; (b) a metal oxide of one or more of the metals selected from Zn, Mg, Gd, Ce, Zr, Ti, Mn, Sn, Ru, Co, Fe, Cu and Cr; (c) any compounds that can generate the metal oxides of (b) upon firing; and (d) mixtures thereof.
  • the thick film conductor composition may be printed on the substrate to form busbars.
  • the busbars may be more than two busbars.
  • the busbars may be three or more busbars.
  • the thick film conductor composition may be printed on the substrate to form connecting lines.
  • the connecting lines may contact a busbar.
  • the connecting lines contacting a busbar may be interdigitated between the connecting lines contacting a second busbar.
  • the busbar formed on the substrate may consist of two busbars arrayed in a parallel arrangement with conductor lines formed perpendicular to the busbar and arrayed in an interdigitated parallel line pattern.
  • the busbars may be three or more busbars.
  • the central busbar may serve as a common between the busbars to each side in a parallel arrangement.
  • the area coverage of the three busbars may be adjusted to approximately the same as the case for the use of two busbars.
  • the perpendicular lines are adjusted to shorter dimensions appropriate to the spacing between pairs of busbars.
  • the components of the thick film conductor composition(s) are electrically functional silver powders, zinc-containing additive(s), and Pb-free glass frit dispersed in an organic medium. Additional additives may include metals, metal oxides or any compounds that can generate these metal oxides during firing. The components are discussed herein below.
  • the glass frit may include one or more of Bi 2 O 3 , BiF 3 , Na 2 O, Li 2 O, and Ag 2 O. In an embodiment, based on weight percent of total glass composition, the amount of (Bi 2 O 3 + BiF 3 ) / (Na 2 O + Li 2 O + Ag 2 O) may be greater than 14.
  • the first glass frit material may be SiO2 1.7 wt%, ZrO2 0.5 wt%, B2O3 12 wt% , Na2O 0.4 wt%, LJ2O 0.8 wt%, and Bi2O3 84.6 wt% and the second glass frit material may be as SiO2 27 wt%, ZrO2 4.1 wt%, Bi2O3 68.9 wt%.
  • the proportions of the blend may be used to adjust the blend ratio to meet optimal performance of the thick film conductor paste, under conditions recognized by one of skill in the art..
  • An embodiment of the present invention relates to a thick film composition, wherein the thick film composition includes:
  • An embodiment of the invention relates to a structure in which the silicon nitride or other insulating layers may be treated resulting in the removal of at least a portion of the silicon nitride or other insulating layers.
  • the treatment may be chemical treatment.
  • the removal of at least a portion of the silicon nitride or other insulating layers may result in an improved electrical contact between the conductor of the thick film composition and the semiconductor substrate.
  • the structure may have improved efficiency.
  • the method of manufacture of the semiconductor device may also be characterized by manufacturing a semiconductor device from a structural element composed of a junction- bearing semiconductor substrate and an insulating film formed on one main surface thereof, wherein the insulating layer is selected from a titanium oxide silicon nitride, SiNx:H, silicon oxide, and silicon oxide/titanium oxide film, which method includes the steps of forming on the insulating film, in a predetermined shape and at a predetermined position, a metal paste material having the ability to react and penetrate the insulating film, forming electrical contact with the silicon substrate.
  • the titanium oxide film may beformed by coating a titanium-containing organic liquid material onto the semiconductor substrate and firing, or by a thermal CVD.
  • the silicon nitride film may be formed by PECVD (plasma enhanced chemical vapor deposition).
  • An embodiment of the invention also provides a semiconductor device manufactured from this same method.
  • a silicon nitride film or other insulating films including SiNx:H i.e., the insulating film comprises hydrogen for passivation during subsequent firing processing
  • the insulating film comprises hydrogen for passivation during subsequent firing processing
  • titanium oxide film, and silicon oxide film, 30, which functions as an antireflection coating is formed on the above-described n-type diffusion layer, 20.
  • This silicon nitride film, 30, lowers the surface reflectance of the solar cell to incident light, making it possible to greatly increase the electrical current generated.
  • the thickness of the silicon nitride film, 30, depends on its refractive index, although a thickness of about 700 to 900A is suitable for a refractive index of about 1.9 to 2.0.
  • the solar cells built according to the method described above were placed in a commercial IV tester for measuring efficiencies (ST-1000).
  • the Xe Arc lamp in the IV tester simulated the sunlight with a known intensity and radiated the front surface of the cell.
  • the tester used a four contact method to measure current (I) and voltage (V) at approximately 400 load resistance settings to determine the cell's I-V curve. Both fill factor (FF) and efficiency (EfT) were calculated from the I-V curve.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

Des modes de réalisation de l'invention portent sur un dispositif à semi-conducteur au silicium, et sur une pâte à l'argent conductrice destinés à être utilisés dans la face avant d'un dispositif de pile solaire.
PCT/US2008/080277 2007-10-18 2008-10-17 Procédés et compositions conductrices destinés à être utilisés dans la fabrication de dispositifs à semi-conducteur WO2009052356A2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US98092907P 2007-10-18 2007-10-18
US60/980,929 2007-10-18
US12/176,697 2008-07-21
US12/176,697 US7935277B2 (en) 2005-04-14 2008-07-21 Conductive compositions and processes for use in the manufacture of semiconductor devices

Publications (2)

Publication Number Publication Date
WO2009052356A2 true WO2009052356A2 (fr) 2009-04-23
WO2009052356A3 WO2009052356A3 (fr) 2009-07-02

Family

ID=40303603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/080277 WO2009052356A2 (fr) 2007-10-18 2008-10-17 Procédés et compositions conductrices destinés à être utilisés dans la fabrication de dispositifs à semi-conducteur

Country Status (1)

Country Link
WO (1) WO2009052356A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013022623A1 (fr) * 2011-08-11 2013-02-14 E. I. Du Pont De Nemours And Company Pâte pour couche épaisse contenant de l'oxyde de plomb-tellure-lithium-titane et son utilisation dans la fabrication de dispositifs à semi-conducteur
WO2013022620A1 (fr) * 2011-08-11 2013-02-14 E. I. Du Pont De Nemours And Company Pâte pour couche épaisse contenant de l'oxyde de plomb-tellure-lithium-titane et son utilisation dans la fabrication de dispositifs à semi-conducteur
CN103871541A (zh) * 2012-05-03 2014-06-18 苏州晶银新材料股份有限公司 太阳能电池中背电极用导电浆料
US10069020B2 (en) 2010-05-04 2018-09-04 E I Du Pont De Nemours And Company Thick-film pastes containing lead- and tellurium-oxides, and their use in the manufacture of semiconductor devices
US10658528B2 (en) 2017-04-18 2020-05-19 Dupont Electronics, Inc. Conductive paste composition and semiconductor devices made therewith

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1321441A1 (fr) * 2001-12-21 2003-06-25 Shoei Chemical Inc. Verre et pâte conductrice l'utilisant
EP1713091A2 (fr) * 2005-04-14 2006-10-18 E.I.Du pont de nemours and company Méthode de fabrication d'un dispositif semiconducteur et composés conducteurs utilisés dans celui-ci
EP1713092A2 (fr) * 2005-04-14 2006-10-18 E.I.Du pont de nemours and company Compositions conductrices et méthode pour leur utilisation dans la fabrication de dispositifs semiconducteurs
EP1713095A2 (fr) * 2005-04-14 2006-10-18 E.I. Dupont De Nemours And Company Méthode de fabrication de dispositif semiconducteur et compositions conductrices utilisées

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1321441A1 (fr) * 2001-12-21 2003-06-25 Shoei Chemical Inc. Verre et pâte conductrice l'utilisant
EP1713091A2 (fr) * 2005-04-14 2006-10-18 E.I.Du pont de nemours and company Méthode de fabrication d'un dispositif semiconducteur et composés conducteurs utilisés dans celui-ci
EP1713092A2 (fr) * 2005-04-14 2006-10-18 E.I.Du pont de nemours and company Compositions conductrices et méthode pour leur utilisation dans la fabrication de dispositifs semiconducteurs
EP1713095A2 (fr) * 2005-04-14 2006-10-18 E.I. Dupont De Nemours And Company Méthode de fabrication de dispositif semiconducteur et compositions conductrices utilisées

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10069020B2 (en) 2010-05-04 2018-09-04 E I Du Pont De Nemours And Company Thick-film pastes containing lead- and tellurium-oxides, and their use in the manufacture of semiconductor devices
US10468542B2 (en) 2010-05-04 2019-11-05 Dupont Electronics, Inc. Thick-film pastes containing lead-tellurium-lithium-oxides, and their use in the manufacture of semiconductor devices
US10559703B2 (en) 2010-05-04 2020-02-11 Dupont Electronics, Inc. Thick-film pastes containing lead-tellurium-boron-oxides, and their use in the manufacture of semiconductor devices
US11043605B2 (en) 2010-05-04 2021-06-22 E I Du Pont De Nemours And Company Thick-film pastes containing lead- and tellurium-oxides, and their use in the manufacture of semiconductor devices
WO2013022623A1 (fr) * 2011-08-11 2013-02-14 E. I. Du Pont De Nemours And Company Pâte pour couche épaisse contenant de l'oxyde de plomb-tellure-lithium-titane et son utilisation dans la fabrication de dispositifs à semi-conducteur
WO2013022620A1 (fr) * 2011-08-11 2013-02-14 E. I. Du Pont De Nemours And Company Pâte pour couche épaisse contenant de l'oxyde de plomb-tellure-lithium-titane et son utilisation dans la fabrication de dispositifs à semi-conducteur
US8691119B2 (en) 2011-08-11 2014-04-08 E I Du Pont De Nemours And Company Thick film paste containing lead-tellurium-lithium-titanium-oxide and its use in the manufacture of semiconductor devices
US8696948B2 (en) 2011-08-11 2014-04-15 E I Du Pont De Nemours And Company Thick film paste containing lead—tellurium—lithium—titanium—oxide and its use in the manufacture of semiconductor devices
CN103871541A (zh) * 2012-05-03 2014-06-18 苏州晶银新材料股份有限公司 太阳能电池中背电极用导电浆料
CN103871541B (zh) * 2012-05-03 2017-04-12 苏州晶银新材料股份有限公司 太阳能电池中背电极用导电浆料
US10658528B2 (en) 2017-04-18 2020-05-19 Dupont Electronics, Inc. Conductive paste composition and semiconductor devices made therewith

Also Published As

Publication number Publication date
WO2009052356A3 (fr) 2009-07-02

Similar Documents

Publication Publication Date Title
US7780878B2 (en) Lead-free conductive compositions and processes for use in the manufacture of semiconductor devices: Mg-containing additive
US7790065B2 (en) Conductive compositions and processes for use in the manufacture of semiconductor devices: Mg-containing additive
US8226856B2 (en) Lead-free conductive compositions and processes for use in the manufacture of semiconductor devices: flux materials
US7935277B2 (en) Conductive compositions and processes for use in the manufacture of semiconductor devices
US8187505B2 (en) Conductive compositions and processes for use in the manufacture of semiconductor devices: flux materials
EP1713095B1 (fr) Méthode de fabrication de dispositif semiconducteur et compositions conductrices utilisées
US20090266409A1 (en) Conductive compositions and processes for use in the manufacture of semiconductor devices
US20110315218A1 (en) Conductive compositions and processes for use in the manufacture of semiconductor devices
US20090101210A1 (en) Conductive compositions and processes for use in the manufacture of semiconductor devices: multiple busbars
EP1713091A2 (fr) Méthode de fabrication d'un dispositif semiconducteur et composés conducteurs utilisés dans celui-ci
US20080254567A1 (en) Thick film conductive composition and processe for use in the manufacture of semiconductor device
WO2009146398A1 (fr) Compositions conductrices et procédés d'utilisation dans la fabrication de dispositifs à semi-conducteurs
US20090104456A1 (en) Conductive compositions and processes for use in the manufacture of semiconductor devices
WO2009052356A2 (fr) Procédés et compositions conductrices destinés à être utilisés dans la fabrication de dispositifs à semi-conducteur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08840053

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08840053

Country of ref document: EP

Kind code of ref document: A2