WO2009003342A1 - Procédé à économie d'énergie et très efficace pour couler-laminer en continu des bandes d'acier - Google Patents

Procédé à économie d'énergie et très efficace pour couler-laminer en continu des bandes d'acier Download PDF

Info

Publication number
WO2009003342A1
WO2009003342A1 PCT/CN2007/070233 CN2007070233W WO2009003342A1 WO 2009003342 A1 WO2009003342 A1 WO 2009003342A1 CN 2007070233 W CN2007070233 W CN 2007070233W WO 2009003342 A1 WO2009003342 A1 WO 2009003342A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
continuous casting
casting
strip
energy
Prior art date
Application number
PCT/CN2007/070233
Other languages
English (en)
French (fr)
Inventor
Yingyao Chen
Original Assignee
Baoshan Iron & Steel Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron & Steel Co., Ltd. filed Critical Baoshan Iron & Steel Co., Ltd.
Priority to AT07764162T priority Critical patent/ATE522289T1/de
Priority to PCT/CN2007/070233 priority patent/WO2009003342A1/zh
Priority to JP2010513613A priority patent/JP2010531734A/ja
Priority to EP07764162A priority patent/EP2174728B1/en
Publication of WO2009003342A1 publication Critical patent/WO2009003342A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/466Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a non-continuous process, i.e. the cast being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B15/0007Cutting or shearing the product
    • B21B2015/0014Cutting or shearing the product transversely to the rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B2015/0057Coiling the rolled product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/12End of product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/12End of product
    • B21B2273/16Tail or rear end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B39/00Arrangements for moving, supporting, or positioning work, or controlling its movement, combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B39/004Transverse moving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/08Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing hydraulically

Definitions

  • the invention relates to a continuous casting process, in particular to an efficient and energy-saving continuous casting and rolling process of strip steel. Background technique
  • the strip continuous rolling technology has been developed for nearly half a century. It has formed the traditional conventional hot rolling process with thick slabs as raw materials and the technology of thin slab continuous casting and rolling.
  • the thin slab continuous casting and rolling process technology its typical process is CSP, FTSR or ISP (AST); its biggest advantage is that the latent heat of high temperature continuous casting billet is used to the maximum extent, saving fuel.
  • the thin slab continuous casting and rolling process achieves the finishing rolling and constant speed rolling because it eliminates the temperature difference of the strip, which is particularly advantageous for the production of extremely thin gauge steel strips and the use of ultra-fast cooling to control the structural properties of the strip steel to produce high-strength steel.
  • the rolling line of the process can only correspond to two continuous casting lines.
  • the capacity of the rolling mill is greatly limited.
  • the rolling mill is always in the idling state to be rolled, and the electric energy is wasted a lot;
  • the strip produced by the thin slab continuous casting and rolling process has relatively high yield strength and relatively poor surface quality, and cannot be used as raw material for producing high-precision products by cold rolling. Summary of the invention
  • the object of the present invention is to provide a high-efficiency and energy-saving continuous casting and rolling process for strip steel, which solves the problem that the conventional high-speed continuous casting billet cannot be directly charged by the conventional hot strip rolling process, and the energy waste of the high-temperature latent heat of the continuous casting billet cannot be utilized efficiently.
  • An efficient and energy-saving continuous casting and rolling process for strip steel which comprises the following steps: continuous casting blank, cutting, casting billet conveying from roller conveyor to heating furnace, casting billet heating, blank descaling, rough rolling, cutting head and tail, Descaling, finish rolling, cooling, coiling before finishing rolling; wherein, at least 2 casting streams are provided in the continuous casting process; at least 2 heating furnaces are used for the heating of the slab, and the rolling line is staggered as a center line .
  • the heating furnace discharging roller can be used as a rolling line working roller.
  • the process of the present invention is provided with four casting streams, and the casting slab is heated to provide four heating furnaces, which are staggered by the rolling line as a center line or staggered in groups of two.
  • the heating furnace adopts a walking beam type short heating furnace, which includes a heating section and a soaking section.
  • a hot coil box is provided, and the hot coil box is a coreless shaft displacement type or a double station coreless coiling type hot coil box.
  • the rough rolling uses a four-roll reversing mill equipped with a front vertical roll.
  • a reversible 2-roll mill or an irreversible 2-roll mill equipped with a front vertical roll may be optionally provided before the roughing mill.
  • an unloading device for discharging the slab blank is provided beside the roller conveyor for conveying the slab or next to the discharge roller of the heating furnace.
  • the post-rolling cooling is carried out by laminar cooling.
  • an ultra-fast cooling section is provided after or after the hot coiling box and/or after the finish rolling or/and the coiling, and the cooling rate is greater than 80 ° C / s.
  • the continuous casting process is provided with 4 casting streams, and the casting blank is cut into a piece of the required length of the casting blank by the slab cutting machine, and is conveyed to both sides of the rolling line through the casting blank conveying roller, which is located in the rolling A transfer machine for transferring the slab is disposed between the slab conveyor rollers on the same side of the line.
  • rough rolling is performed 3 times, 5 times or 7 times.
  • the roll is set up before and after the roughing mill, which is more advantageous for improving the width precision of the finished product, and is advantageous for eliminating the black line defect of the finished side.
  • the slab conveyor roller or next to the heating furnace discharge roller there is an unloading device that can lower the slab blank. If the rolling line is stopped for a long time, the continuous casting slab can be hoisted or pushed out through the unloading equipment. The billet is concentrated for take-out or tissue cold billet production.
  • the invention also provides a strip continuous casting and rolling equipment, which mainly comprises a continuous casting machine, a slab cutting machine, a transfer machine, a heating furnace, a descaling device, a roughing mill, which are operatively connected to the rolling line in sequence, Hot coil box, flying shear, finishing rolling descaling device, finishing mill, laminar cooling device, and coiler; wherein, the continuous casting machine comprises at least two continuous casting machines respectively arranged on both sides of the rolling line; The casting machine flows out of one side of the outer casting stream, and the other continuous casting machine flows out of the other side of the outer casting stream; the heating furnace comprises two seats, which are arranged one by one along the two sides of the rolling line.
  • the roughing mill is a 4-roll reversing mill equipped with a set of vertical rolls in front and rear.
  • the roughing mill further comprises a 2-roll mill equipped with a set of vertical rolls in front of the front of the 4-roll reversing mill.
  • a descaling device is provided in front of the 4-roll reversing mill.
  • an ultra-fast cooling zone is provided before the flying shear.
  • an ultra-fast cooling zone is provided before and after the laminar cooling device.
  • This provides a powerful means for process control, organization and performance control of fine grain steel, HSLA steel and duplex steel, TRIP and phase change induced plastic steel, multiphase steel and other advanced high strength steel (AHSS).
  • the hot coil box is a double station coreless coiling or a coreless shaft transfer type.
  • the finishing mill consists of 6 or 7 4-roll mills.
  • a vertical roll is arranged in front of the finishing mill.
  • the coiler is composed of 2 or 3 sets.
  • a continuous casting machine flows out of one side of the outer casting stream and one side of the inner casting stream, and the other continuous casting machine flows out of the other side of the outer casting stream and the other side of the casting stream.
  • the transfer machine combines one side of the inner casting stream into one side of the outer casting stream, and merges the other inner side casting stream into the other side of the outer casting stream;
  • the heating furnace comprises four seats, which are arranged one by one along the two sides of the rolling line;
  • the combined outer side slab flow and the inner slab flow sequentially enter the two heating furnaces on one side of the rolling line, and the combined outer side slab flow and The inner side of the casting stream flows into the two furnaces on the other side of the rolling line.
  • a continuous casting machine flows out of one side of the outer casting stream and one side of the inner casting stream, and the other continuous casting machine flows out of the other side of the outer casting stream and the other side of the casting stream.
  • the transfer machine combines one side of the inner billet stream into one side of the outer billet stream, and merges the other inner side billet stream into the other side of the outer billet stream;
  • the furnace consists of four seats, which are staggered by two sets along the two sides of the rolling line. Arrangement; the combined one side outer casting flow and the inner inner casting flow sequentially enter two heating furnaces on one side of the rolling line, and the combined outer side casting flow and the other inner casting flow sequentially enter the other side of the rolling line Heating furnace.
  • the above-mentioned high-efficiency continuous casting and rolling equipment and process make maximum use of the latent heat of continuous casting slab, the highest hot charging temperature, the lowest energy consumption of the process, the maximum capacity of the finishing mill, the lowest fixed cost per ton of steel, and short production line. It occupies less land and invests in provinces. It can meet the production of various steel grades and specifications of product outlines. It can stably produce thin, wide and high-strength varieties with the highest product coverage, good surface quality, high added value and high economic benefits.
  • the present invention adopts two or four heating furnaces, which are arranged in a staggered arrangement or a two-part staggered arrangement, and the four-stream is merged into two streams by a transfer machine, and the inlet rolls of the heating furnaces on both sides of the rolling line, respectively.
  • the connection of the channels realizes the dream that the four streams which cannot be realized by thin slab continuous casting and rolling can be integrated into one rolling line and the high temperature direct loading and rolling.
  • the continuous casting machine and the rolling mill have high production capacity, which solves the thin slab continuous rolling and rolling process.
  • the inherent continuous casting machine has small capacity, does not match the rolling mill production capacity, the rolling mill is often idle, and the capacity is not maximized. It also saves energy.
  • the heating furnace of the invention adopts a walking beam type short heating furnace, and each of the heating furnaces has a buffer heat preservation zone capable of loading a half furnace steel water continuous casting billet; when the rolling line is hit for a short time, the buffer zone in the heating furnace is heated.
  • the extension part of the heating furnace steel roller can directly slab the slab, which can ensure that the molten steel has been completely poured without causing stop casting; this thoughtful and perfect design fundamentally solves the thin slab.
  • the continuous casting and rolling process production line has serious defects of excessive rigidity, which has the flexibility similar to the traditional conventional hot rolling production line, which greatly facilitates the production organization and fault handling, and is conducive to rapid recovery of production and reduction of failure costs.
  • the furnace length of the heating furnace is generally 15 to 30 meters and the width is about 12 meters. In the conventional conventional hot rolling, the furnace length is generally 45 to 50 meters.
  • the width of the four heating furnaces along the width of the rolling line is about 100 meters, which is only one-half to one-third of the length of the thin-slab continuous casting and rolling tunnel. This shortens the length of the production line and greatly reduces the floor space.
  • the process of the invention applies the hot coil box technology, and the hot coil box is a coreless shaft displacement type or a double station coreless coiling method.
  • the hot-rolling box has the same high-temperature continuous casting billet as the main features of thin slab continuous casting and rolling, and is directly loaded into the furnace to achieve constant-speed rolling, entering the middle of the finishing blank, and the section temperature is uniform, meeting the large quantity, Stable production
  • the vertical box-type vertical roller is arranged, and the ability to eliminate the black line at the edge is provided.
  • the cooling process of the invention adopts two cooling processes of laminar cooling and ultra-fast cooling, and changes the process of producing ultra-fine grain high-strength steel with high cost and low temperature under normal pressure, and adopts control.
  • a stable process for the production of ultra-fine grained high-strength steels with a phase change in the cooling process and a low-cost process to accurately control the final phase change product will provide a large number of high-quality hot rolled coils for the pickling line.
  • the continuous casting and heating furnace layout of the invention is compact and reasonable, the heating furnace is staggered along the rolling line, and the latent heat of the slab is fully utilized, and all the casting blanks are loaded into the heating furnace at a temperature of 800 to 900 ° C to achieve maximum energy saving.
  • the conventional conventional hot rolling process can achieve a hot billet hot charging furnace with a temperature of 50% to 60% at 300 ° C to 600 ° C.
  • the process yield of the invention can reach more than 3 million tons, and the continuous casting machine adopts 2 machines and 2 streams, and adopts two heating furnaces arranged in a crosswise direction to realize parallel flow rolling of two machines and two streams.
  • the heating furnace has a simple structure and can be made.
  • the 100% high temperature continuous casting billet is directly charged into the heating furnace for a shorter heating time. It has the characteristics of one investment and convenient maintenance.
  • the thickness of the slab is 140 ⁇ 250mm, so the temperature drop is smaller and more energy-saving.
  • the drawing speed is lower than that of the thin slab, the accident rate is low, the variety is large, the compression ratio is large, the latent heat of continuous casting and rolling can be utilized to the maximum and the temperature of the continuous casting billet can reach 800 ⁇ 900 °C, and the heating furnace time is the shortest. The lowest consumption.
  • the true meaning of continuous casting and rolling is achieved, achieving energy saving and high efficiency. This is a completely new and innovative process.
  • FIG. 1 is a schematic view showing a process flow of a first embodiment of the present invention
  • FIG. 2 is a schematic view showing a process flow of a second embodiment of the present invention.
  • FIG. 3 is a schematic view showing a process flow of a third embodiment of the present invention.
  • FIG. 4 is a schematic view showing a process flow of a fourth embodiment of the present invention
  • Figure 5 is a schematic view showing the process flow of the fifth embodiment of the present invention
  • FIG. 6 is a schematic view showing a process flow of a sixth embodiment of the present invention.
  • Figure 7 is a schematic view showing the structure of the hot coil box of the present invention.
  • 8-hot roll box 9-ultra-fast cooling zone, 10-flying shear, 11-finishing mill (6 or 7), 12-layer flow cooling, 13-coil (2 or 3), 14- Rolling line, 15--side outer casting flow, 16--side inner casting flow, 17- the other inner casting flow, 18- the other outer casting flow, 19-unloading equipment, 20-slab cutting machine , 21, 21 ' - slab conveying roller roller.
  • the process flow of the first embodiment of the present invention It adopts two single-machine single-flow vertical bending type continuous casting machines 1, and continuously casts a casting blank by two machines and two streams, and sets two heating furnaces 3 for rolling lines.
  • 14 is the center line, adopting a one-to-one staggered arrangement; two casting streams from the continuous casting machine 1 are cut by the slab cutting machine 20, and the cut pieces of the slab are conveyed by the slab conveying roller 21, 2 to the heating furnace
  • the charging slab of the charging drum of the heating furnace 3 is sent to the heating furnace 3 through the steel pusher, and the slab is heated by the two heating furnaces 3, merged on the rolling line 14, and is subjected to the descaling device 4
  • the billet is dephosphorized and then subjected to rough rolling.
  • the rough rolling step uses a 4-roll reversing mill (roughing mill 7) equipped with front and rear vertical rolls 5, and a descaling device 4 at the inlet of the roughing mill 7 (4-roll reversible rolling mill); After rolling, the hot coil box 8 is used, and then the ultra-fast cooling zone 9, the flying shear 10 cutting head, the finishing rolling descaling device 4, etc. enter the finishing rolling 11, and the finishing rolling 11 is performed by 6 or 7 4-roll rolling mills; There is a set of vertical rollers 5 in front; after ultra-fresh cooling after finishing 11 , laminar cooling 12 and super fast 9 but after the winding 13 by the winding machine. Suitable for medium and thin slabs with a thickness of 100-180mm.
  • the rolling pass is three passes or a thick slab of 180-230mm (rough rolling is a powerful four-roll reversing mill - roughing mill 7).
  • the rolling pass is five-seven.
  • the capacity scale is 2 to 3 million tons per year depending on the length of the effective work roll. Ultra-fast cooling zone before finishing rolling 9 Set according to product outline process and performance requirements.
  • the extension portion of the slab conveying roller path 21, 2 and the heating furnace charging roller is provided with a slab lowering line and a lower line unloading device 19, such as rolling
  • a slab lowering line and a lower line unloading device 19 such as rolling
  • the rough rolling step adds one 2 rolls.
  • Reverse or irreversible rolling mill 6 rough rolling mill 7-4 roll reversing mill is only equipped with a set of front vertical rolls 5, which is suitable for the thickness of the blank
  • the capacity scale is 2 to 3 million tons per year depending on the length of the effective work roll.
  • Ultra-fast cooling zone before finish rolling 9 According to the product outline process and performance requirements, it can be set or not.
  • a double-machine dual-flow vertical bending type continuous casting machine 1 is used, (2 sets of 4 machines and 4 streams) 2 continuous casting machines, and 2 casting blanks are cast by each continuous casting machine.
  • the casting billet is continuously cast in a flowing manner, and after the flame cutting by the slab cutter, the billet streams 16 and 17 on both sides of the inner side are merged into the billet streams 15 and 18 on the outer sides of the respective sides by the transfer machine 2, thereby 4 The streams are merged into 2 streams.
  • the heating furnace 3 is provided with 4 seats, with the rolling line 14 as the center line, and two heating furnaces 3 on one side, one by one.
  • the transfer machine 2 Through the transfer machine 2, the design of the 4-stream continuous casting slab which cannot be realized by the thin slab continuous casting and rolling is directly charged into the heating furnace and merged into one rolling line.
  • the roughing mill is a 4-roll reversing mill (rough rolling mill 7) with a set of vertical rolls 5 before and after. It is suitable for three-pass rolling of medium-thickness slabs with a thickness of 100-180mm, or 180-230mm thick slab rolling. Five or seven passes. Depending on the length of the effective roll body, it is suitable for medium-thickness and thick slab continuous casting and rolling production lines with a capacity of 3.5-4.5 million tons/year.
  • the ultra-fast cooling zone before finishing rolling 9 can be set according to the product outline process and performance requirements.
  • a fourth embodiment of the present invention differs from the third embodiment in that the roughing mill is a reversible or irreversible 2 roll mill 6 equipped with a front vertical roll 5 and a set of a front set roll 5 4-roll reversing mill (roughing mill 7), suitable for slab thickness of 180mm-250mm thick slab, rolling pass 3+3 passes or 1+5 passes, capacity scale of 3.5-5 million tons/year Medium thickness and thick slab continuous casting and rolling production line. Everything else is the same.
  • the arrangement of the heating furnace 3 is arranged in a staggered arrangement of two sets, and a four-roll reversing rolling mill with a front and rear matching roller is arranged for rough rolling, which is suitable for
  • the slab is rolled three times or a thick slab of 180-230 mm with a thickness of 100-180 mm.
  • the roughing mill 7 is a strong four-roll reversing mill.
  • the rolling pass is five passes or seven passes.
  • the capacity scale is 350 to 4.5 million tons per year depending on the length of the effective roll body.
  • the ultra-fast cooling zone before finishing rolling is set according to the product outline process and performance requirements.
  • a sixth embodiment of the present invention differs from the embodiment 5 in that a reversible or irreversible two-roll mill 6 is provided for rough rolling with a front vertical roll 5, and a rough rolling mill 7 (four-roll reversible rolling mill) is equipped with only a front vertical roll 5 . It is suitable for thick slabs with a thickness of 180mm ⁇ 250mm, with 3+3 passes or 1+5 passes, and medium-thickness and thick slab continuous casting with a capacity of 3.5-5.0 million tons/year. Rolling production line. Everything else is the same. Specifically, the implementation content of each process step of the present invention is:
  • the molten steel is transported to the continuous casting machine through the insulated steel water tank, ladle or intermediate tank.
  • the casting machine is a straight arc type CONROLL caster with a casting speed of ⁇ 3.7 m/min and a cast section of 140-150 mm X 900-1650 mm.
  • the blank cutting machine is flame cut, and the required length is controlled by a computer.
  • Two single-machine single-flow or double-machine dual-flow vertical bending type continuous casting machine is adopted, so that 2 machines (continuous casting machine) 2 streams (casting stream) or 4 machines (continuous casting machine) 4 streams (casting stream) are connected
  • the cast billet is cut by flame and cast into a continuous casting billet having a section of 100-250 mm X 900-1650 mm and a billet length selected according to the coil weight and the outer diameter of the coil. If the slab is continuously rolled in a 4-stream manner, the 2 slab flow of one continuous casting machine can be made by the transfer machine (the transfer machine can be moved laterally between the 2 slab streams of one continuous casting machine) Combine into 1 stream, thereby combining 4 streams into 2 streams.
  • Two or four walking beam short heating furnaces are used. If two heating furnaces are used, the rolling line is taken as the center line, and one furnace is staggered. If four heating furnaces are used, the rolling line is used as the center line, and the two furnaces are arranged one by one or two sets. Arrangement. The two streams combined by the four streams are respectively connected to the inlet rolls of the heating furnaces on both sides of the rolling line by the transfer machine. This realizes the dream of four streams of thin slab continuous casting and rolling combined into one rolling line and the same temperature, and solves the problem that the continuous casting machine inherent in the thin slab continuous rolling and rolling process cannot be overcome, and the rolling mill The production capacity is not matched, the rolling mill is often idle, and the production capacity is not maximized.
  • the rapid heating furnace adopts a two-stage walking beam mechanism or a long-stroke pusher structure, and a slab buffer heat preservation zone capable of loading half furnace steel water is left in the rear section of each furnace;
  • the slab is directly off the assembly line; this thoughtful and perfect design has successfully solved the serious defects of the rigid slab continuous casting and rolling process production line, which has the same flexibility as the traditional hot rolling production line, which greatly facilitates the production. Organization, troubleshooting, and help to quickly restore production and reduce the cost of failure.
  • the furnace is cooled by vaporization.
  • the length of the furnace can be 15 ⁇ 30m, the furnace width is ll ⁇ 17m, the heating capacity is 130 ⁇ 200t/h, the hot charging temperature of the casting billet is 800 ⁇ 900°C, and the casting billet temperature is 1100 ⁇ 1250. °C.
  • the descaling device is descaled by a high pressure water descaling device with a pressure of 15 to 18 MPa, and the spray angle is swung by 15 degrees.
  • a 2-roller rolling mill equipped with a front roller and a 4-roller reversible rolling mill with a set of vertical rollers and a set of vertical rollers are provided, and a descaling device is provided at the entrance of the 4-roll reversible roughing mill.
  • 4-roller powerful reversible rolling mill vertical roller diameter ⁇ 1000 ⁇ 1100mm, roller body length 650mm, vertical roller maximum side pressure up to 80mm, maximum rolling pressure up to 7000KN, roll gap adjustment to full hydraulic pressure, main drive power is 2 X 1100KW.
  • a descaling device is provided at the entrance and exit of the roughing mill, the descaling pressure is 15 to 18 MPa, and the injection angle is oscillated by 15 degrees.
  • the hot coil box is a coreless shaft displacement type, also known as a double station coreless coil type, with a maximum coiling speed of 5.5 mps, a coiling capacity of 20 to 40 mm, a width of 800 to 1650 mm, and a coiling temperature of 900. ⁇ 1100 ° C, maximum coil weight 28t, coil outer diameter: 1400 ⁇ 2200 mm, unwinding speed up to 1.5mps.
  • a schematic structural view of a hot roll box 8 of the present invention includes a guide roll 81, a bending roll 82, a forming roll 83, a take-up idler 84A, 84B, an unwinding arm 89, a shovel head 91, an unwinding roll 85A, 85B, hot coil box 8 conveying roller 88, positioning pin 90, flat tail roller 86, pinch roller 87.
  • the guide roller 81, the bending roller 82, the forming roller 83, and the take-up rollers 84A, 84B form a take-up station 94; the unwinding arm 89, the shovel head 91, the unwinding idler 85A, 85B, and the hot roll box 8 transport roller 88
  • the positioning pin 90, the flat tail roller 86, and the pinch roller 87 form an unwinding rolling station 93.
  • the inlet guide roller 81 is raised to a position, and the intermediate blank conveyed through the rough rolling conveyor roller 80 is introduced into the bending roller 82 along the guide roller 81.
  • the bending roller 82 is previously based on the thickness of the intermediate blank.
  • the forming roll 83 automatically raises the take-up position, the take-up roll 84A is held at the initial position, the take-up roll 84B is lifted to the take-up position, and during the take-up process, the intermediate roll is at the bending roll A certain elastic-plastic bending deformation occurs in 82.
  • a certain elastic recovery is generated under the action of the elastic recovery torque.
  • the intermediate blank head will be When the forming roll 83 collides, the strip is further bent to complete the winding of the first ring.
  • the intermediate blank rolls onto the take-up idler 84A, and the roll of the bending roll 82 follows the intermediate blank
  • the take-up idler 84B decreases as the outer diameter of the intermediate blank increases, forming a final roll.
  • the intermediate blank Before the end of the winding, the intermediate blank is left with a certain length of the intermediate blank for contact with the shovel head 91 of the unwinding arm 89 when unwinding, and then the take-up idler 84B is lowered to a certain position below the rolling straight line for subsequent unwinding and The coil is transferred to the unwinding idler for preparation 85, at which point the intermediate blank has completely detached from the bending roller 82 and the entire winding process is completed.
  • the shovel head 91 contacts the tail portion of the intermediate blank previously reserved, and presses the tail portion of the intermediate blank to be unfolded for unwinding.
  • the tail portion of the intermediate billet is turned into an unrolled head.
  • the intermediate billet provides the forward moving force by the take-up roller 84 in contact therewith, as the unwinding progresses,
  • the head of the intermediate billet passes through the unwinding roller 85 in turn, and the hot coil box 8 transports the roller table 88.
  • the hot coil box 8 transports the roller table 88 to support the unwinding process of the intermediate billet, and enters the pinch roller 87, and the pinch is fed.
  • the roller 87 straightens the intermediate blank and provides the forward movement of the intermediate blank.
  • the head of the intermediate blank leaves the pinch roller 87 and enters the transfer roller path 92 before the flying shear 10, after which, when the intermediate blank head passes through After the flying shear 10 cuts the head and descales 4, it enters the first frame of the finishing mill 11.
  • the unwinding arm 89 can be lifted after the flying shear 10 has been cut.
  • the intermediate billet head When the intermediate billet head enters the first frame of the finishing train 11, the intermediate billet is ready to be moved directly from the take-up idler 84 to the unwinding idler 85, at which time the unwinding idler 85 is in a lower position,
  • the take-up roller 84A rises above the rolling line position, and the take-up idler 84B descends below the rolling line position, and the intermediate billet is taken up from the take-up idler by the turning force of the take-up idler 84 and the tension of the intermediate billet advancement.
  • 84 Move directly to the unwinding roller 85.
  • the unwinding roller 85 When the intermediate billet is on the unwinding roller 85, the unwinding roller 85 is raised to the rolling line position, and at the same time, the take-up roller 84A is lowered to the take-up position, and the take-up roller 84B is raised to the take-up position, thereby winding up
  • the idler roller 84 is in the position to be rolled, waiting for the winding of the next steel piece, thereby realizing an intermediate blank roll on the unwinding rolling station 93, and the winding station 94 also has the condition of taking up the next intermediate blank roll. .
  • the flat tail roller 86 waits for the intermediate blank at the original position, and when the flat tail roller 86 contacts the intermediate blank, at the same time, the flat tail roller 86 advances to the designated position and the intermediate blank contact according to the set value, and the flat tail roller 86 is used to wind the steel coil. fixed.
  • the positioning pin 90 is inserted into the intermediate billet core to prevent the intermediate billet from being rolled.
  • the intermediate billet is smoothly deployed against the locating pin 90.
  • the locating pin 90 is retracted to the original position. At this point, the entire unwinding process is completed.
  • the unwinding rolling station 93 is in a state of waiting for the next intermediate billet to be unwound.
  • the take-up station 94 can simultaneously take up the next intermediate blank; since the take-up station 94 and the unwinding and rolling station 93 can be at the same time.
  • the work helped to retrieve the time added during the unwinding, and solved the technical problem that the hot coil box was the obstacle to the capacity of the rolling mill in the past, effectively solving the problem that the intermediate core temperature is low and the pure rolling time is affected.
  • Major defects make the full advantage of the hot coil box fully reflected.
  • the head and tail are cut on the slab by a drum-type flying shear.
  • the maximum shear section of the flying shear is 50 X 1650mm, the maximum shearing force is 9600KN, the shearing speed is 0.35 ⁇ 1.5mps, the main transmission power is 980KW, and the main transmission speed is 0 ⁇ 680rpm.
  • the slab is descaled by a finishing rolling descaling device.
  • the finishing rolling descaling device consists of two sets of headers, the pressure is 15 ⁇ 20Mpa, and the spray angle is 15 °.
  • a strong cooling section with a length of 5m is used, which is cooled by a water curtain method.
  • the maximum water volume of the cooling water is 600 m 3 ph to facilitate ferrite rolling.
  • a set of vertical rolls is arranged in front of the first frame of the finishing mill, and the finishing mill consists of 6 or 7 4-roll mills.
  • F1-F7 are all CVC mills, the roll amount is ⁇ 150mm, the bending force is ten 1200KN, F1-F3 is the electric pressure control with thick control AGC, F4-F7 is the hydraulic pressure reduction with thickness control AGC, the work roll bearing is Four-row tapered roller bearings, support roller bearings are dynamic and static oil film bearings, work roll diameter F1-F2 is ⁇ 720 ⁇ 820 ⁇ , F3-F7 is ⁇ 650 ⁇ 750mm, roll length is 1780mm, support roll diameter F1-F2 is ⁇ 1300 ⁇ 1450mm, F3-F7 is ⁇ 1270 ⁇ 1400mm, and the roll length is 1750mm.
  • the maximum rolling force F1-F3 is 35000KN, F4-F7 is 30000KN, the main motor is AC frequency conversion, the motor power F1-F3 is 6500KW, F4-F7 is 5500KW, the maximum rolling speed is 12mps, F1-F7 upper and lower rolls are belt Lubrication and rolling to improve the surface quality of the strip.
  • the finishing temperature is between 900 and 1080 °C, and the outlet temperature is between 800 and 900 °C.
  • the F3-F7 outlet is dedusted by wet dust removal to ensure environmental quality.
  • Ultra-fast cooling is provided before and after the laminar cooling section.
  • the laminar flow cooling of the strip is 100m long, including 50m in the Pu cold area and 20m in the strong cooling area, and the rest is the air cooling area.
  • the laminar cooling water volume is 8400 m 3 ph
  • the side water spray volume is 180 m 3 ph
  • the laminar water pressure is 0.03. ⁇ 0.05Mpa, side spray water pressure l.OMpa, water temperature ⁇ 40 °C, while the machine side water tank to ensure pressure stability, coiling temperature controlled by CTC model.
  • the cooling rate of ultra-fast cooling is greater than 80 ° C / S, and its water pressure and water volume are at least 2 times the water pressure and water volume of laminar cooling.
  • the coiler can be selected 2 or 3 as needed.
  • the coiler has step control, and the winding capacity is: carbon steel, X65, X70, the specification is 1.0 ⁇ 12.7 X 1650mm, the inner diameter of the coil is 762mm, the maximum outer diameter is 2000mm, and the maximum coil weight is 29t.
  • Pinch roller upper and lower roller diameter 920/460mm, roller length 1780mm, motor power: 150/300KW, speed 525/900rpm. After the drum is expanded, the inner diameter is 762mm, the second stage is expanded, the motor power is 370KW, and the motor speed is 340/1080rpm.
  • the coiling inlet side guide is hydraulically servo-operated, with an opening of 500 to 1880 mm, with position and pressure control.
  • the present invention optimizes the layout of the rolling line equipment, maximizes the use of continuous casting slab- latent heat, achieves the highest hot charging temperature, relatively low energy consumption in the process, maximizes the capacity of the finishing mill, and fixes the cost per ton of steel.
  • the lowest, short production line, small footprint, investment province can meet the production of various steel grades and specifications of the product outline, can stably produce thin, wide and high-strength varieties, the product coverage is the highest, the product surface quality is good, the added value is high, the economy High efficiency.
  • thin slab continuous casting and rolling it has a great advantage.
  • traditional conventional rolling mills it also has outstanding advantages in terms of energy saving and production of thin gauge and fine grain high strength steel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Description

一种高效、 节能的带钢连铸连轧工艺 技术领域
本发明涉及连铸工艺, 特别涉及一种高效、 节能的带钢连铸连轧工艺。 背景技术
带钢连轧技术发展近大半个世纪, 形成以厚板坯为原料的传统常规热连轧工 艺和薄板坯连铸连轧工艺等技术。
传统常规热连轧技术已经非常成熟, 采用板坯加热、 粗轧加精轧, 该工艺具 有适应性、 灵活性最强等特点。 运用该工艺能生产出满足市场用户不同要求的各 种产品, 表面质量好, 能提供适应冷轧生产的优质原料。 该工艺只要加热能力足 够, 轧机就能发挥最大的产能效益。 但是, 由于该热连轧工艺的连铸坯必须下线 重新组合, 再按计划顺序入加热炉进行加热、 轧制, 造成连铸坯的潜热得不到很 好的利用, 直接导致加热燃料的浪费。
薄板坯连铸连轧工艺技术, 其典型的工艺有 CSP、 FTSR或 ISP (AST) ; 其 最大优势是高温连铸坯的潜热得到了最大限度的利用, 节省燃料。 另外, 薄板坯 连铸连轧工艺由于消除了带坯温差, 实现了精轧恒速轧制, 特别有利于生产极薄 规格带钢和运用超快冷却控制带钢的组织性能, 生产高强钢。
但是, 薄板坯连铸连轧工艺存在如下不足:
1. 工艺的轧制线只能对应两条连铸线, 轧机的产能受到极大的限制, 轧机始 终处于待轧空转状态, 电能浪费很大;
2. 虽然连铸连轧取消了板坯库, 轧制线较短, 占地面积应该小, 厂房投资省, 但实际上由于需要安装 200-300米超长的辊底式加热炉, 使得从连铸机到卷取机 的长度不但没有缩短, 反而和传统常规轧机相似长, 抵消了轧制线短的优势, 实 际占地面积并没有减少, 厂房投资并未节省。
3. 该工艺线刚性太强, 生产组织灵活性差, 轧制事故处理难度大, 时间长。
4. 薄板坯连铸连轧工艺生产出的带钢屈强比较高, 表面质量相对较差, 不能 做冷轧生产高精产品的原料。 发明内容
本发明的目的是提供一种高效、 节能的带钢连铸连轧工艺, 解决传统常规热 连轧工艺高温连铸坯不能直接装炉加热、 不能高效利用连铸坯高温潜热的能源浪 费的问题; 必须配设大型板坯库、 浪费土地资源增加板坯库土地、 厂房、 设备投 资的技术问题。 解决薄板坯连铸连轧工艺中连铸机与轧机产能不匹配、 轧机产能 空放、 单位成本高、 产品范围窄、 档次低、 产品竞争能力低、 效益低的问题; 工 艺生产线刚性强、 生产组织困难、 事故处理困难的技术问题。
本发明采用的技术方案是:
一种高效、 节能的带钢连铸连轧工艺, 其包括以下步骤, 连续铸坯、 切割、 铸坯由辊道输送至加热炉、 铸坯加热、 坯料除鳞、 粗轧、 切头尾、 精轧前除鳞、 精轧、 冷却、 卷取; 其中, 连铸工序设有至少 2条铸流; 设至少 2座加热炉用于 铸坯加热, 并以轧线为中心线一一交错排列。
进一步, 本发明工艺中设有 2条铸流、 2座加热炉, 所述的加热炉出料辊道可 作轧线工作辊道。
又, 本发明工艺设有 4条铸流, 铸坯加热设 4座加热炉, 以轧线为中心线一 一交错排列或以 2座一组交错排列。
加热炉采用步进梁式短加热炉, 其包括加热段和均热段。
粗轧后设热卷箱, 热卷箱为无芯轴位移式或双工位无芯卷取式热卷箱。
本发明工艺中, 粗轧采用配前立辊的四辊可逆轧机。
本发明工艺中, 粗轧机前还可选择地设有配前立辊的可逆式 2辊轧机或不可逆 式 2辊轧机。
本发明工艺中, 输送铸坯的辊道旁或加热炉出料辊道旁还设有可将铸坯下线 的卸载设备。
本发明工艺中, 精轧后冷却采用层流冷却。
本发明工艺中, 热卷箱后或 /和精轧后或 /和卷取前设超快冷却段, 其冷却速度 大于 80°C/s。
本发明工艺中, 连铸工序设有 4 条铸流, 铸流经板坯切割机切割成一块块所 需定尺长度的铸坯, 经铸坯输送辊道传送至轧线两侧, 位于轧线同侧的铸坯输送 辊道之间设置可移送铸坯的移载机。 本发明工艺中, 粗轧轧制 3道次、 5道次或 7道次。
在本发明工艺中, 粗轧机前后设立辊, 更有利于提高成品宽度精度, 有利于 消除成品边部折叠黑线缺陷。
在铸坯输送辊道旁或加热炉出料辊道旁设有可将铸坯下线的卸载设备, 如轧 线长时间停机, 可通过卸载设备将连铸坯吊出或推出轧线, 冷坯集中外卖或组织 冷坯生产。
本发明还提供一种带钢连铸连轧设备, 主要包括, 可操作地依次连接在轧线 上的连铸机、 板坯切割机、 移载机、 加热炉、 除鳞装置、 粗轧机、 热卷箱、 飞剪、 精轧除鳞装置、 精轧机、 层流冷却装置、 以及卷取机; 其中, 连铸机包括分别布 置在轧线两边的至少 2台连铸机; 其中, 一连铸机流出一边外侧铸坯流, 而另一 连铸机流出另一边外侧铸坯流; 加热炉包括 2座,采用沿轧线两边一一交错布置。
在所述的带钢连铸连轧设备中, 粗轧机是前后各配一组立辊的 4辊可逆轧机。 在所述的带钢连铸连轧设备中, 粗轧机还包括一设置在 4 辊可逆轧机前面的 前面配一组立辊的 2辊轧机, 采用这种配置, 四辊可逆粗轧机机后不再设立辊, 仅在前面配一组立辊。
在所述的带钢连铸连轧设备中, 在 4辊可逆轧机前设置除鳞装置。
在所述的带钢连铸连轧设备中, 在飞剪前设置超快冷却区。
在所述的带钢连铸连轧设备中, 在层流冷却装置前后分别设置超快冷却区。 由此为细晶粒钢、 HSLA钢及双相钢、 TRIP及相变诱导塑性钢、 复相钢等先进高 强钢 (AHSS ) 的工艺控制和组织、 性能控制提供了强有力的手段。
在所述的带钢连铸连轧设备中, 热卷箱是双工位无芯卷取或称无芯轴移送式。 在所述的带钢连铸连轧设备中, 精轧机由 6或 7架 4辊轧机组成。
在所述的带钢连铸连轧设备中, 精轧机前设置立辊。
在所述的带钢连铸连轧设备中, 卷取机由 2或 3台组成。
在所述的带钢连铸连轧设备中, 一连铸机流出一边外侧铸坯流和一边内侧铸 坯流, 而另一连铸机流出另一边外侧铸坯流和另一边内侧铸坯流; 移载机将一边 内侧铸坯流合并入一边外侧铸坯流, 将另一边内侧铸坯流合并入另一边外侧铸坯 流; 加热炉包括 4座, 采用沿轧线两边一一错开布置; 合并后的一边外侧铸坯流 和一边内侧铸坯流依次进入轧线一边的两加热炉, 合并后的另一边外侧铸坯流和 另一边内侧铸坯流依次进入轧线另一边的两加热炉。
在所述的带钢连铸连轧设备中, 一连铸机流出一边外侧铸坯流和一边内侧铸 坯流, 而另一连铸机流出另一边外侧铸坯流和另一边内侧铸坯流; 移载机将一边 内侧铸坯流合并入一边外侧铸坯流, 将另一边内侧铸坯流合并入另一边外侧铸坯 流; 加热炉包括 4座, 采用沿轧线两边 2座一组错开布置; 合并后的一边外侧铸 坯流和一边内侧铸坯流依次进入轧线一边的两加热炉, 合并后的另一边外侧铸坯 流和另一边内侧铸坯流依次进入轧线另一边的两加热炉。
上述高效连铸连轧的设备和工艺最大限度地利用了连铸板坯潜热, 热装温度 实现最高, 工序能耗相对最低, 精轧机产能得到最大限度发挥、 吨钢固定成本最 低、 生产线短、 占地少、 投资省, 能满足产品大纲各钢种和规格的生产, 可以稳 定生产薄、 宽、 高强度品种, 产品覆盖率最大, 产品表面质量好、 附加值高, 经 济效益高。
本发明相比现有技术具有如下积极效果:
1. 本发明采用二座或四座加热炉, 以一一交错布置或两座一组交错布置, 通 过移载机使由 4流合并成 2流分别与轧线两侧的加热炉的入炉辊道相连接, 实现 了薄板坯连铸连轧无法实现的 4流并入一条轧线同温度高温直装连轧的梦想, 连 铸机和轧机产能高度匹配, 解决了薄板坯连轧连轧工艺固有的连铸机能力小、 与 轧机生产能力不匹配、 轧机常处于空转待轧、 产能得不到最大发挥的难题, 还节 约了能源。
2. 本发明加热炉采用步进梁式短加热炉, 每座加热炉内留有可装半炉钢水量 连铸坯的缓冲保温区; 碰到轧线短时间停机, 加热炉内的缓冲区加上加热炉装钢 辊道的延伸部分可供板坯直接下线, 可保障已炼成的钢水全部浇注完而不会造成 停铸; 这种周到完善的设计根本性成功地解决了薄板坯连铸连轧工艺生产线刚性 过强的严重缺陷, 从而具有了与传统常规热连轧生产线相近的柔性, 大大方便了 生产组织、 故障处理, 有利于快速恢复生产和降低故障成本。 加热炉炉长一般为 15〜30米, 宽 12米左右, 传统常规热连轧中加热炉的炉长一般为 45〜50米。 四 座加热炉沿轧线方向宽度布置总长 100米左右, 仅为薄板坯连铸连轧辊底隧道炉 长度的二分之一到三分之一, 缩短了生产线的长度, 占地面积大幅减少。
3. 本发明工艺应用热卷箱技术, 热卷箱为无芯轴位移式或称双工位无芯卷取 式热卷箱,具有和薄板坯连铸连轧主要特征完全相同的高温连铸坯同时直接装炉, 实现恒速轧制, 进入精轧的中间坯头尾、 断面温度均匀, 满足大批量、 稳定生产
<2.0mm的薄规格钢卷和超细晶体高强钢及充分利用连铸坯高温潜热。 原有传统 常规热连轧无热卷工艺, 由于无法解决中间坯头尾温差大、 精轧甩尾和稳定轧制 问题, 不能实现恒速轧制, 因此不具备大批量稳定生产超薄带钢和超细晶体高强 钢的能力。
4. 本发明工艺中配置配立箱孔型立辊, 具备了消除边部黑线能力。
5. 本发明冷却工艺采用层流冷却加超快冷却的两种冷却工艺, 改变了以往通 常采用加合金、 低温大压下的高成本不稳定生产超细晶粒高强钢的工艺, 而采用 控制冷却过程的相变以及最终相变产物准确控制的低成本工艺来稳定生产超细晶 粒高强钢, 将能为酸洗线提供大批高质量的热轧原料卷。
6. 本发明连铸与加热炉布局紧凑、 合理, 加热炉沿轧线一一交错布置, 充分 利用板坯的潜热, 全部铸坯以 800〜900°C的温度装入加热炉实现最大限度节能。 而传统常规热连轧工艺最多能做到 50%〜60%的温度在 300°C〜600°C的热坯热装 炉。
7. 本发明工艺产量可达 300万吨以上, 连铸机采用 2机 2流, 采用交叉面向 布置的两座加热炉实现对两机两流的并流轧制,加热炉结构简单,可以做到 100% 高温连铸坯直接装入加热炉, 加热时间更短。 具有一次投资省、 维护方便的特点。
8. 板坯厚度选用 140〜250mm, 因而温降更小, 更为节能。 拉速比薄板坯低, 事故率低, 品种多、 压缩比大, 能最大限度利用连铸连轧的潜热及连铸坯入炉温 度可达 800〜900°C,在加热炉时间最短, 能耗最低。在传统常规热连轧的基础上, 真正意义全部实现连铸连轧, 达到节能高效的目的, 这是一个完全创新的全新工 艺方案。 附图说明
图 1为本发明第一实施例的工艺流程示意图;
图 2为本发明第二实施例的工艺流程示意图;
图 3为本发明第三实施例的工艺流程示意图;
图 4为本发明第四实施例的工艺流程示意图; 图 5为本发明第五实施例的工艺流程示意图;
图 6为本发明第六实施例的工艺流程示意图;
图 7为本发明热卷箱的结构示意图。
图中标记说明:
1-连铸机, 2-移载机, 3-均热炉, 4-除鳞装置, 5-立辊, 6-二辊轧机, 7-粗轧机,
8-热卷箱, 9-超快冷却区, 10-飞剪, 11-精轧机 (6或 7架) , 12-层流冷却装置, 13-卷取机 (2或 3台) , 14-轧线, 15-—边外侧铸坯流, 16-—边内侧铸坯流, 17- 另一边内侧铸坯流, 18-另一边外侧铸坯流, 19-卸载设备, 20-板坯切割机, 21、 21 ' -铸坯输送辊辊道。 具体实施方式
参见图 1, 本发明第一实施例的工艺流程: 其采用两台单机单流垂直弯曲型连 铸机 1, 以 2机 2流方式连铸铸坯, 设 2座加热炉 3, 以轧线 14为中心线, 采用 一一交错布置; 从连铸机 1来的 2条铸流经板坯切割机 20切割, 切割后的一块块 铸坯由铸坯输送辊道 21、 2 输送至加热炉 3的装钢辊道, 在加热炉 3装钢辊道 上的铸坯经推钢机送入加热炉 3, 铸坯经过 2座加热炉 3加热、 合流于轧线 14, 经除鳞装置 4进行坯料除磷后进入粗轧, 粗轧步骤使用一架配前后立辊 5的 4辊 可逆轧机 (粗轧机 7 ) , 在粗轧机 7 ( 4辊可逆轧机) 入口还设有除鳞装置 4; 粗 轧后采用热卷箱 8, 再经过超快冷却区 9、 飞剪 10切头尾、 精轧除鳞装置 4等进 入精轧 11, 精轧 11由 6架或 7架 4辊轧机; 精轧机前设有一组立辊 5 ; 精轧 11 后经过超快冷却 9、层流冷却 12以及再次超快冷却 9后由卷取机卷取 13。适合于 坯厚为 100-180mm的中薄板坯轧制道次为三道次或者 180-230mm的厚板坯 (粗 轧为强力四辊可逆轧机-粗轧机 7 )轧制道次为五-七道。根据有效工作辊身长度的 不同, 产能规模为 200-300万吨 /年。 精轧前超快冷却区 9根据产品大纲工艺和性 能要求设置。
特别地, 本发明工艺中, 连铸工序中铸坯输送辊辊道 21、 2 旁和加热炉装 钢辊道的延伸部分设有可将铸坯下线通道和下线卸载设备 19, 如轧线长时间停 机,可通过卸载设备 19将连铸坯吊出或推出轧线,冷坯集中外卖或组织冷坯生产。
参见图 2, 本发明第二实施例, 与实施例 1相比, 粗轧步骤增加了 1架 2辊可 逆或不可逆轧机 6, 粗轧机 7-4辊可逆轧机仅配一组前立辊 5, 其适合于坯厚为
180-250mm的厚板坯, 轧制道次为 3+3道次或 1+5道次。 根据有效工作辊身长度 的不同, 产能规模为 200-300万吨 /年。 精轧前超快冷却区 9根据产品大纲工艺和 性能要求, 可设可不设。
参见图 3, 在本发明第三实施例中, 采用双机双流垂直弯曲型连铸机 1, 以(2 台 4机 4流) 2台连铸机, 每台连铸机铸出 2铸坯流的方式连铸铸坯, 经板坯切 割机火焰切割后, 通过移载机 2将两边内侧的铸坯流 16和 17分别合并到相应边 的外侧的铸坯流 15和 18, 从而将 4流合并成 2流。
加热炉 3设 4座, 以轧线 14为中心线, 一边两座加热炉 3, 一一交错布置。 通过移载机 2, 实现了薄板坯连铸连轧不能实现的 4流连铸板坯同温度直接装入 加热炉, 汇流到一条轧线的设计。
粗轧机为 1架前后各配一组立辊 5的 4辊可逆轧机(粗轧机 7 ) , 适合于坯厚 为 100-180mm中等厚度板坯轧三道次, 或 180-230mm厚板坯轧轧五道次或七道 次。 根据有效辊身长度的不同, 适合产能规模为 350-450万吨 /年的中等厚度和厚 板坯连铸连轧生产线。 精轧前的超快冷却区 9根据产品大纲工艺和性能要求, 可 设可不设。
参看图 4, 本发明的第四实施例, 其与实施例 3的区别是粗轧机为 1架配前立 辊 5的可逆或不可逆 2辊轧机 6和 1架-配一组前立辊 5的 4辊可逆轧机(粗轧机 7 ) , 适合板坯厚为 180mm-250mm厚板坯, 轧制道次为 3+3道次或 1+5道次, 产 能规模为 350-500万吨 /年的中等厚度和厚板坯连铸连轧生产线。 其他均相同。
参看图 5, 本发明的第五实施例, 在本实施例中, 加热炉 3的布置方式采用两 座一组交错布置, 粗轧设一架前后配立辊的四辊可逆轧机, 其适合于坯厚为 100-180mm中等厚度板坯轧三道次或者 180-230mm的厚板坯(粗轧机 7为强力四 辊可逆轧机) 轧制道次为五道次或七道次。 根据有效辊身长度的不同, 产能规模 为 350〜450万吨 /年。 精轧前的超快冷却区 9根据产品大纲工艺和性能要求设置。
参看图 6, 本发明第六实施例, 与实施例 5区别是粗轧增加一座配前立辊 5的 可逆或不可逆二辊轧机 6, 粗轧机 7 (四辊可逆轧机) 只配前立辊 5。 其适合坯厚 为 180mm~250mm 的厚板坯, 轧制道次为 3+3 道次或 1+5 道次, 产能规模为 350-500万吨 /年的中等厚度和厚板坯连铸连轧生产线。 其他均相同。 具体地, 本发明的各工艺步骤的实施内容为:
( 1 ) 连铸铸坯 (2机 2流是指, 2台连铸机, 每台连铸机铸出 1铸坯流; 2机 4流是指, 2台连铸机, 每台连铸机铸出 2铸坯流)
通过保温钢水罐、 钢包或中间罐将钢水运抵连铸机, 铸机型式为直弧型 CONROLL铸机, 铸速 < 3.7m/min, 铸成断面 140-150mm X 900-1650mm, 经板坯 切割机火焰切割, 所需定尺长度由计算机控制。 采用两台单机单流或双机双流垂 直弯曲型连铸机, 从而以 2机(连铸机) 2流(铸坯流)或 4机(连铸机) 4流(铸 坯流)方式连铸铸坯, 用火焰切割, 铸成断面为 100-250mm X 900-1650mm、 坯长 根据卷重和钢卷外径选择的连铸坯。 如果是以 4流方式连轧铸坯, 则通过移载机 (移载机可横向移动在一台连铸机的 2铸坯流之间) , 可以使一台连铸机的 2铸 坯流合并成 1流, 从而使 4流合并成 2流。
( 2 ) 铸坯加热
采用二座或四座步进梁式短加热炉。 如果采用二座加热炉, 则以轧线为中心 线, 一边一炉交错布置; 如果采用四座加热炉, 则以轧线为中心线, 一边两炉, 以一一交错布置或两座一组交错布置。 通过移载机使由 4流合并成的 2流分别与 轧线两侧的加热炉的入炉辊道相连接。 由此实现了薄板坯连铸连轧的 4流并入一 条轧线同温度直装连轧的梦想, 解决了薄板坯连轧连轧工艺固有的且无法克服的 连铸机能力小、 与轧机生产能力不匹配、 轧机常处于空转待轧、 产能得不到最大 发挥的难题。 快速加热炉采用两段步进梁机构, 或长行程推钢机结构, 每座炉子 后段留有可装半炉钢水量的板坯缓冲保温区; 加上加热炉装钢辊道的延伸部分可 供板坯直接下线; 这种周到完善的设计根本性成功地解决了薄板坯连铸连轧工艺 生产线刚性过强的严重缺陷, 从而具有了与传统热连轧生产线相似的柔性, 大大 方便了生产组织、 故障处理, 有利于快速恢复生产和降低故障成本。 加热炉用汽 化冷却, 炉长可根据需要选择 15〜30m, 炉宽 l l〜17m, 加热能力 130〜200t/h, 铸坯热装温度达 800〜900°C, 铸坯出炉温度为 1100〜1250°C。
( 3 ) 坯料除鳞
铸坯经加热出炉后, 以压力 15〜18Mpa高压水除鳞装置进行除鳞, 其喷射角 摆动 15度。
( 4 ) 粗轧 采用 1架配机前立辊的 2辊轧机和 1架配 1组机前或 1架前后各配 1组立辊 的 4辊强力可逆轧机, 4辊可逆粗轧机的入口设有除鳞装置。 4辊强力可逆轧机, 立辊直径 Φ 1000〜1100mm, 辊身长度 650mm, 立辊一次最大侧压量可达 80mm, 最大轧制压力达 7000KN, 辊缝调整为全液压, 主传动的功率是 2 X 1100KW。 水 平轧机的工作辊辊径 Φ 1100〜 Φ 1200mm、 辊身长度 1780mm, 支撑辊辊径 Φ 1300〜 Φ 1450mm、 辊身长度 1750mm, 最大轧制压力 45000KN, 工作辊最大速度 达 5.5m/s, 主传动功率 2 X 7500KW, 速度 0〜45/90rpm。 另外在粗轧机的出入口 分别设有除鳞装置, 除鳞压力为 15〜18Mpa, 喷射角摆动 15度。
( 5 ) 热卷
热卷箱为无芯轴位移式亦称双工位无芯卷取式, 最大卷取速度 5.5mps, 热卷 箱卷取厚度为 20〜40 mm、 宽度为 800〜 1650 mm, 卷取温度 900〜 1100°C, 最大 卷重 28t, 钢卷外径: 1400〜2200 mm, 开卷速度最大 1.5mps。
参见图 7, 本发明的热卷箱 8的结构示意图, 其包括导向辊 81、 弯曲辊 82、 成型辊 83、 卷取托辊 84A、 84B、 开卷臂 89、 铲头 91、 开卷托辊 85A、 85B、 热 卷箱 8输送辊 88、 定位销 90、 平尾辊 86、 夹送辊 87。 其中, 导向辊 81、 弯曲辊 82、 成型辊 83、 卷取托辊 84A、 84B形成卷取工位 94; 开卷臂 89、 铲头 91、 开 卷托辊 85A、 85B、 热卷箱 8输送辊 88、 定位销 90、 平尾辊 86、 夹送辊 87形成 开卷轧制工位 93。
在卷取过程中, 入口导向辊 81抬起到一定位置, 将经粗轧输送辊道 80输送 过来的中间坯沿导向辊 81引入弯曲辊 82,弯曲辊 82事先根据中间坯来料的厚度, 设定好辊缝, 成型辊 83会自动抬起卷取位置, 卷取托辊 84A保持在初始位置, 卷取托辊 84B抬起到卷取位置, 在卷取过程中, 中间坯在弯曲辊 82中产生了一 定的弹塑性弯曲变形, 当中间坯头部离开弯曲辊 82时,在弹性恢复力矩的作用下 要产生一定的弹复,随着卷取过程的继续,中间坯头部将与成形辊 83 发生碰撞,将 使带钢进一步弯曲,完成第一圈的卷取, 随着卷取继续, 中间坯卷落在卷取托辊 84A上, 弯曲辊 82辊缝随着中间坯卷外径尺寸的不断增大而增大, 卷取托辊 84B 随着中间坯卷外径的不断增大而降低, 形成最终成卷。
当卷取结束前, 中间坯卷的尾部留有一定长度中间坯用于开卷时与开卷臂 89 的铲头 91接触, 随后, 卷取托辊 84B降到轧直线以下一定位置, 为后续开卷和 钢卷传送到开卷托辊作准备 85, 此时, 中间坯已完全脱离弯曲辊 82, 整个卷取过 程结束。 准备开卷时, 开卷臂 89降到一定位置后, 铲头 91接触到此前预留的中 间坯尾部, 压住中间坯尾部使其展开准备开卷。 在开卷阶段, 中间坯卷取时所述 的尾部变成了开卷的头部, 刚开始开卷时, 中间坯卷由与其接触的卷取托辊 84 提供前移的动力, 随着开卷的进行, 中间坯卷的头部依次通过开卷托辊 85, 热卷 箱 8输送辊道 88, 热卷箱 8输送辊道 88起对中间坯卷开卷过程的一个支撑作用, 进入夹送辊 87, 夹送辊 87对中间坯进行矫直并为中间坯提供前移的动力, 中间 坯卷的头部离开夹送辊 87后进入到飞剪 10前输送辊道 92, 其后, 当中间坯头部 经飞剪 10切头、 除鳞 4后进入精轧机组 11第一架。 开卷臂 89可在飞剪 10切完 头以后抬起。
当中间坯卷头部进入精轧机组 11 第一架时, 准备将中间坯卷从卷取托辊 84 直接移动到开卷托辊 85, 此时, 开卷托辊 85处于一个较低的位置, 卷取托辊 84A 上升到轧线位置以上, 卷取托辊 84B下降到轧线位置以下, 借助卷取托辊 84的 翻转力和中间坯卷前移的张力, 将中间坯卷从卷取托辊 84 直接移动到开卷托辊 85。 当中间坯卷处于开卷托辊 85上时, 开卷托辊 85上升到轧线位置, 与此同时, 卷取托辊 84A下降卷取位置、 卷取托辊 84B上升到卷取位置, 从而卷取托辊 84 处于待卷位置,等待下一块钢的卷取, 从而实现了在开卷轧制工位 93开卷上一块 中间坯卷, 卷取工位 94同时具备了卷取下一块中间坯卷的条件。
平尾辊 86在原始位置处等待中间坯卷, 当平尾辊 86接触到中间坯时, 与此 同时, 平尾辊 86按照设定值前进到指定位置和中间坯接触, 平尾辊 86用来将钢 卷固定。
当开卷进行到中间坯卷还剩最后 2-3圈时, 定位销 90***中间坯卷芯部, 防 止中间坯卷产生叠轧。开卷到最后 1圈时,中间坯卷是紧贴定位销 90而顺利展开, 当中间坯卷脱离定位销 90后, 定位销 90收回到原始位置。 至此, 整个开卷过程 全部完成。 此时, 开卷轧制工位 93处于等待下一中间坯卷开卷的状态。
当中间坯卷全部移送到开卷轧制工位 93 时, 卷取工位 94就可以同时进行下 一块中间坯的卷取; 由于卷取工位 94、 开卷轧制工位 93可以在同一时间内同时 进行工作, 帮助找回了开卷时所增加的时间, 解决了过去热卷箱是限制轧机产能 发挥的障碍的技术难题, 有效解决了中间芯部温度低、 延长纯轧时间影响产量的 重大缺陷, 使热卷箱的全部优势得以充分体现。
( 6) 切头尾
通过转鼓式飞剪对板坯切头尾。 飞剪最大剪切断面 50 X 1650mm, 最大剪切力 是 9600KN,剪切速度是 0.35〜1.5mps,主传动功率是 980KW, 主传动速度是 0〜 680rpm。
( 7) 精轧除鳞
利用精轧除鳞装置再对板坯进行除鳞。精轧除鳞装置包括 2组集管,压力 15〜 20Mpa, 喷射角 15 ° 。
( 8 ) 精轧
精轧前设强冷段,长度为 5m,采用水幕方式冷却,冷却水最大水量为 600 m3ph, 以利于铁素体轧制。
精轧机第一机架前设一组立辊, 精轧机组由 6架或 7架 4辊轧机组成。 F1-F7 均为 CVC轧机, 窜辊量 ± 150mm, 弯辊力均为十 1200KN, F1-F3 为电动压下带 厚控 AGC, F4-F7为液压压下带厚控 AGC, 工作辊轴承为四列圆锥滚柱轴承, 支 撑辊轴承为动静压油膜轴承, 工作辊直径 F1-F2 为 Φ 720〜820ηιηι、 F3-F7 为 Φ 650〜750mm, 辊身长 1780mm, 支撑辊直径 F1-F2为 Φ 1300〜1450mm、 F3-F7为 Φ 1270〜1400mm, 辊身长 1750mm。 最大轧制力 F1-F3 为 35000KN, F4-F7 为 30000KN,主电机均为交流变频, 电机功率 F1-F3为 6500KW, F4-F7为 5500KW, 最大轧制速度 12mps, F1-F7 上下辊均带润滑轧制, 以提高带钢表面质量。 精轧 入口温度为 900〜1080°C之间, 出口温度为 800〜900°C之间, F3-F7出口采用湿 式除尘法除尘, 以保证环境质量。
( 9) 带钢层流冷却和超快冷却
层流冷却段前后设有超快冷却。 其中, 带钢层流冷却共 100m长, 其中普冷区 50m、强冷区 20m,其余为空冷区,层流冷却水量为 8400 m3ph,侧喷水量 180 m3ph, 层流水压 0.03〜0.05Mpa, 侧喷水压 l.OMpa, 水温均 <40°C, 同时在机旁设有机 旁水箱, 以保证压力稳定, 卷取温度由 CTC模型控制。
超快冷却的冷却速率大于 80°C/S, 其水压、 水量至少 2倍于层流冷却的水压、 水量。
( 10) 带钢卷取 卷取机可根据需要选择 2台或 3 台。 卷取机带踏步控制, 卷取能力为: 碳素 钢、 X65、X70,规格是 1.0〜12.7 X 1650mm,钢卷内径 762mm,最大外径 2000mm, 最大卷重 29t。 夹送辊上下辊径: 920/460mm, 辊身长 1780mm, 电机功率: 150/300KW, 转速 525/900rpm。 卷筒扩张后内径 762mm, 2 级扩张, 电机功率 370KW, 电机转速 340/1080rpm。 助卷辊 3个、 辊径 350mm、 辊身长 1780mm、 电机功率 37/74KW、 转速 570/1000rpm, 间隙调整采用伺服阀控制。 卷取入口侧 导板液压伺服式, 开度为 500〜1880mm, 带有位置与压力控制。
综上所述, 本发明通过轧线设备布置的优化, 最大限度地利用连铸板坯-潜热, 热装温度实现最高, 工序能耗相对最低, 精轧机产能得到最大限度发挥、 吨钢固 定成本最低、 生产线短、 占地少、 投资省, 能满足产品大纲各钢种和规格的生产, 可以稳定生产薄、 宽、 高强度品种, 产品覆盖率最大, 产品表面质量好、 附加值 高, 经济效益高。 与薄板坯连铸连轧相比, 具有较大优势。 在节能和生产薄规格 及细晶粒高强钢等方面与传统常规轧机相比也具有突出的优势。

Claims

权利要求书
1. 一种高效、节能的带钢连铸连轧工艺, 其包括以下步骤, 连续铸坯、 切割、 铸坯由辊道输送至加热炉、 铸坯加热、 坯料除鳞、 粗轧、 切头尾、 精轧前除鳞、 精轧、 冷却、 卷取; 其中, 连铸工序设有至少 2条铸流; 设至少 2座加热炉用于 铸坯加热, 并以轧线为中心线一一交错排列。
2. 如权利要求 1所述的高效、 节能的带钢连铸连轧工艺, 其特征是, 设有 2 条铸流、 2座加热炉, 所述的加热炉出料辊道可作轧线工作辊道。
3. 如权利要求 1所述的高效、 节能的带钢连铸连轧工艺, 其特征是, 设有 4 条铸流, 铸坯加热设 4座加热炉, 以轧线为中心线一一交错排列或以 2座一组交 错排列。
4. 如权利要求 1或 2或 3所述的高效、节能的带钢连铸连轧工艺,其特征是, 加热炉采用步进梁式短加热炉, 其包括加热段和均热段。
5. 如权利要求 1或 2或 3所述的高效、节能的带钢连铸连轧工艺,其特征是, 粗轧后设热卷箱, 热卷箱为无芯轴位移式或双工位无芯卷取式热卷箱。
6. 如权利要求 1或 2或 3所述的高效、 节能的带钢连铸连轧工艺, 其特征是, 粗轧采用配前立辊的四辊可逆轧机。
7. 如权利要求 5所述的高效、 节能的带钢连铸连轧工艺, 其特征是, 粗轧采 用配前立辊的四辊可逆轧机。
8. 如权利要求 1或 2或 3所述的高效、 节能的带钢连铸连轧工艺, 其特征是, 粗轧机前还可选择地设有配前立辊的可逆式 2辊轧机或不可逆式 2辊轧机。
9. 如权利要求 5所述的高效、 节能的带钢连铸连轧工艺, 其特征是, 粗轧机 前还可选择地设有配前立辊的可逆式 2辊轧机或不可逆式 2辊轧机。
10.如权利要求 1或 2或 3所述的高效、 节能的带钢连铸连轧工艺, 其特征是, 输送铸坯的辊道旁或加热炉出料辊道旁还设有可将铸坯下线的卸载设备。
11.如权利要求 5所述的高效、 节能的带钢连铸连轧工艺, 其特征是, 输送铸 坯的辊道旁或加热炉出料辊道旁还设有可将铸坯下线的卸载设备。
12.如权利要求 1或 2或 3所述的高效、节能的带钢连铸连轧工艺,其特征是, 精轧后冷却采用层流冷却。
13.如权利要求 5所述的高效、 节能的带钢连铸连轧工艺, 其特征是, 精轧后 冷却采用层流冷却。
14.如权利要求 5所述的高效、 节能的带钢连铸连轧工艺, 其特征是, 热卷箱 后或 /和精轧后或 /和卷取前设超快冷却段, 其冷却速度大于 80°C/s。
15.如权利要求 1或 3所述的高效、 节能的带钢连铸连轧工艺, 其特征是, 连 铸工序设有 4条铸流, 经铸坯输送辊道传送至轧线两侧, 位于轧线同侧的铸坯输 送辊道之间设置可移送铸坯的移载机。
16.如权利要求 5或 9或 11或 13或 14所述的高效、 节能的带钢连铸连轧工 艺, 其特征是, 连铸工序设有 4条铸流, 经铸坯输送辊道传送至轧线两侧, 位于 轧线同侧的铸坯输送辊道之间设置可移送铸坯的移载机。
17.如权利要求 1或 2或 3所述的高效、节能的带钢连铸连轧工艺,其特征是, 粗轧轧制 3道次、 5道次或 7道次。
18.如权利要求 5或 9或 11或 13或 14所述的高效、 节能的带钢连铸连轧工 艺, 其特征是, 粗轧轧制 3道次、 5道次或 7道次。
19.—种带钢连铸连轧设备, 包括, 沿轧线 (14) 前方和上方可操作地依次布 置的连铸机 (1 ) 、 切割机 (20) 、 输送辊道 (21、 2 ) 加热炉 (3 ) 、 除鳞装 置 (4) 、 粗轧机 (7) 、 飞剪 (10) 、 二次除鳞装置 (4) 、 精轧机 (11 ) 、 层流 冷却装置 (12) 、 以及卷取机 (13 ) ; 其特征在于,
所述连铸机(1 )提供至少 2流铸坯(16, 18和 /或 15, 17) ; 所述加热炉 (3 ) 包括至少 2座, 沿所述轧线 (14) 两边一一交错布置; 其中, 所述至少 2流铸坯 的各一半分别进入所述轧线 (14) 两边的所述加热炉 (3 ) 被加热。
20.如权利要求 19所述的带钢连铸连轧设备, 其特征在于, 所述连铸机 (1 ) 提供 2流铸坯 (15, 18 ) ; 所述加热炉 (3 ) 包括 2座, 沿所述轧线 (14) 两边一 一交错布置; 其中, 所述各 1流铸坯分别进入所述轧线 (14) 两边的所述加热炉 ( 3 ) 被加热。
21.如权利要求 19所述的带钢连铸连轧设备, 其特征在于, 所述连铸机 (1 ) 提供 4流铸坯 (15, 16, 17, 18 ) ; 所述加热炉 (3 ) 设 4座, 沿所述轧线 (14) 两边一一交错布置; 各 2流之间设移载机(2) , 所述各 2流铸坯通过所述移载机
(2)合并成 1流铸坯, 各合并后的 1流铸坯分别进入所述轧线(14)两边的所述 加热炉 (3) 被加热。
22.如权利要求 19所述的带钢连铸连轧设备, 其特征在于, 所述连铸机 (1) 提供 4流铸坯(15, 16, 17, 18) ; 所述加热炉 (3)包括 4座, 沿所述轧线 (14) 两边成 2座一组交错布置; 各 2流之间设移载机(2) , 所述各 2流铸坯通过所述 移载机(2)合并成 1流铸坯, 各合并后的 1流铸坯分别进入所述轧线 (14)两边 的所述加热炉 (3) 被加热。
23.如权利要求 19〜22中任一所述的带钢连铸连轧设备, 其特征在于, 所述粗 轧机 (7) 为前后配孔型的立辊 (5) 的 4辊可逆轧机。
24.如权利要求 19 中任一所述的带钢连铸连轧设备, 其特征在于, 所述粗轧 机 (7) 前还设置一前面配立辊 (5) 的 2辊轧机 (6) 。
25.如权利要求 19或 24所述的带钢连铸连轧设备, 其特征在于, 在所述粗轧 机 (7) 前分别设置除鳞装置 (4) 。
26.如权利要求 19或 25所述的带钢连铸连轧设备, 其特征在于, 在所述飞剪
(10) 前或层流冷却装置 (12) 前或卷取机 (13) 前设置超快冷却区 (9) 。
27.如权利要求 19所述的带钢连铸连轧设备,其特征在于,还设有热卷箱(8), 该热卷箱 (8) 位于粗轧机 (7) 后。
28.如权利要求 27所述的带钢连铸连轧设备, 其特征在于, 所述热卷箱 (8) 是双工位无芯热卷箱。
29.如权利要求 19所述的带钢连铸连轧设备, 其特征在于, 所述精轧机 (11) 由 6~7架 4辊轧机组成。
30.如权利要求 19或 26所述的带钢连铸连轧设备, 其特征在于, 所述精轧机
(11) 前设置立辊 (5) 。
31.如权利要求 19所述的带钢连铸连轧设备, 其特征在于, 所述卷取机 (13) 由 2〜3台组成。
32.如权利要求 19、 20、 21、 22、 24 中任意一项所述的带钢连铸连轧设备, 其特征是, 输送铸坯的辊道旁或加热炉出料辊道旁还设有可将铸坯下线的卸载设 备。
PCT/CN2007/070233 2007-07-04 2007-07-04 Procédé à économie d'énergie et très efficace pour couler-laminer en continu des bandes d'acier WO2009003342A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT07764162T ATE522289T1 (de) 2007-07-04 2007-07-04 Hocheffizientes energiesparendes verfahren zum walzen von stahlbändern unmittelbar nach dem stranggiessen
PCT/CN2007/070233 WO2009003342A1 (fr) 2007-07-04 2007-07-04 Procédé à économie d'énergie et très efficace pour couler-laminer en continu des bandes d'acier
JP2010513613A JP2010531734A (ja) 2007-07-04 2007-07-04 効率的且省エネルギーな帯鋼連続鋳造及び連続圧延プロセス
EP07764162A EP2174728B1 (en) 2007-07-04 2007-07-04 A high efficient, energy-saving process of continuous casting-rolling of the strip steels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/070233 WO2009003342A1 (fr) 2007-07-04 2007-07-04 Procédé à économie d'énergie et très efficace pour couler-laminer en continu des bandes d'acier

Publications (1)

Publication Number Publication Date
WO2009003342A1 true WO2009003342A1 (fr) 2009-01-08

Family

ID=40225704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/070233 WO2009003342A1 (fr) 2007-07-04 2007-07-04 Procédé à économie d'énergie et très efficace pour couler-laminer en continu des bandes d'acier

Country Status (4)

Country Link
EP (1) EP2174728B1 (zh)
JP (1) JP2010531734A (zh)
AT (1) ATE522289T1 (zh)
WO (1) WO2009003342A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101966568A (zh) * 2010-11-26 2011-02-09 中冶赛迪工程技术股份有限公司 一种铸坯横移机构
CN104624676A (zh) * 2013-11-15 2015-05-20 上海梅山钢铁股份有限公司 一种热轧除鳞设备的节能配置方法
CN115323160A (zh) * 2022-08-30 2022-11-11 宝武集团鄂城钢铁有限公司 提高连铸坯热装比的方法及***

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102310078B (zh) * 2010-05-28 2013-08-28 罗光政 利用钢水余热生产型材棒线材的连铸连轧方法
CN102161090B (zh) * 2010-12-23 2012-11-07 中国科学院金属研究所 一种提高厚大断面铸坯自补缩能力的方法
KR101828560B1 (ko) * 2014-01-17 2018-02-12 다니엘리 앤드 씨. 오피시네 메카니케 쏘시에떼 퍼 아찌오니 금속 제품 제조를 위한 플랜트 및 방법
CN104438326B (zh) * 2014-10-17 2017-04-12 武汉钢铁(集团)公司 薄板坯连铸连轧中高碳钢的轧制工艺
CN106077091A (zh) * 2016-06-21 2016-11-09 中冶华天工程技术有限公司 低能耗连铸热坯直接轧制型钢棒线材生产方法
CN108435794B (zh) * 2018-04-10 2019-09-24 中冶赛迪工程技术股份有限公司 一种连铸连轧的工艺方法
CN108672493A (zh) * 2018-04-11 2018-10-19 新疆八钢铁股份有限公司 一种热拔式轧制方法
DE102019207459A1 (de) * 2018-05-23 2019-11-28 Sms Group Gmbh Gieß-Walzanlage für den Batch- und Endlosbetrieb
CN109142144B (zh) * 2018-07-20 2020-12-22 中冶连铸技术工程有限责任公司 铸坯均质化程度分析方法
CN110032760B (zh) * 2019-03-07 2022-06-07 福建三钢闽光股份有限公司 基于轧线信息共享分析***优化中板生产组织方法
CN110090861B (zh) * 2019-05-21 2020-02-07 东北大学 一种简单断面型钢的无头轧制方法
CN110355221B (zh) * 2019-06-06 2020-09-18 山东钢铁股份有限公司 一种热轧带钢生产线精除鳞夹送辊调整***及方法
CN111672915B (zh) * 2020-05-21 2022-03-15 武汉定飞科技有限公司 一种可逆冷轧机供液泵节能运行的方法
EP4049768A1 (de) * 2021-02-25 2022-08-31 Primetals Technologies Austria GmbH Giess-walz-verbundanlage und verfahren zur herstellung von warmband mit einer enddicke kleiner als 1,2 mm auf der giess-walz-verbundanlage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483521A (zh) * 2002-09-19 2004-03-24 鞍钢集团新钢铁有限责任公司 中薄板坯连铸连轧板卷的生产方法
EP1657004A1 (en) * 2004-10-28 2006-05-17 ARVEDI, Giovanni Process and production line for manufacturing hot ultrathin steel strips with two casting lines for a single endless rolling line
CN1978080A (zh) * 2005-11-29 2007-06-13 中冶赛迪工程技术股份有限公司 一种带钢生产工艺-esp
CN101003051A (zh) * 2006-01-20 2007-07-25 上海梅山钢铁股份有限公司 一种高效连铸连轧工艺

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3241745C2 (de) * 1982-11-11 1985-08-08 Mannesmann AG, 4000 Düsseldorf Verfahren zum Herstellen von warmgewalztem Stahlband aus stranggegossenem Vormaterial in unmittelbar aufeinanderfolgenden Arbeitsschritten
JPH0747404A (ja) * 1993-08-09 1995-02-21 Ishikawajima Harima Heavy Ind Co Ltd 圧延方法及びその装置
JP3319075B2 (ja) * 1993-09-02 2002-08-26 石川島播磨重工業株式会社 薄スラブの熱間圧延設備
US5467519A (en) * 1994-01-10 1995-11-21 Tippins Incorporated Intermediate thickness twin slab caster and inline hot strip and plate line
JPH1133601A (ja) * 1997-07-16 1999-02-09 Ishikawajima Harima Heavy Ind Co Ltd 圧延設備
DE19953252A1 (de) * 1999-11-04 2001-05-10 Sms Demag Ag Verfahren zur Oberflächenbearbeitung eines kontinuierlich gegossenen Stahlproduktes und Einrichtung hierzu
JP3503581B2 (ja) * 2000-07-27 2004-03-08 住友金属工業株式会社 連続鋳造熱鋳片の熱間圧延用加熱炉への装入方法。
JP2002066602A (ja) * 2000-08-30 2002-03-05 Nkk Corp 熱間加工設備および熱間加工方法
JP3418739B2 (ja) * 2000-09-29 2003-06-23 川崎重工業株式会社 連続鋳造熱延設備および連続鋳造熱延方法
JP2002219501A (ja) * 2001-01-26 2002-08-06 Nkk Corp 熱間鋼帯の製造方法及びその製造設備

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483521A (zh) * 2002-09-19 2004-03-24 鞍钢集团新钢铁有限责任公司 中薄板坯连铸连轧板卷的生产方法
EP1657004A1 (en) * 2004-10-28 2006-05-17 ARVEDI, Giovanni Process and production line for manufacturing hot ultrathin steel strips with two casting lines for a single endless rolling line
CN1978080A (zh) * 2005-11-29 2007-06-13 中冶赛迪工程技术股份有限公司 一种带钢生产工艺-esp
CN101003051A (zh) * 2006-01-20 2007-07-25 上海梅山钢铁股份有限公司 一种高效连铸连轧工艺

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101966568A (zh) * 2010-11-26 2011-02-09 中冶赛迪工程技术股份有限公司 一种铸坯横移机构
CN101966568B (zh) * 2010-11-26 2012-04-11 中冶赛迪工程技术股份有限公司 一种铸坯横移机构
CN104624676A (zh) * 2013-11-15 2015-05-20 上海梅山钢铁股份有限公司 一种热轧除鳞设备的节能配置方法
CN104624676B (zh) * 2013-11-15 2017-02-01 上海梅山钢铁股份有限公司 一种热轧除鳞设备的节能配置方法
CN115323160A (zh) * 2022-08-30 2022-11-11 宝武集团鄂城钢铁有限公司 提高连铸坯热装比的方法及***

Also Published As

Publication number Publication date
JP2010531734A (ja) 2010-09-30
EP2174728A1 (en) 2010-04-14
ATE522289T1 (de) 2011-09-15
EP2174728B1 (en) 2011-08-31
EP2174728A4 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
WO2009003342A1 (fr) Procédé à économie d&#39;énergie et très efficace pour couler-laminer en continu des bandes d&#39;acier
EP1870172B1 (en) A continuous casting and rolling method for medium plate
US4698897A (en) Making hot roller steel strip from continuously cast ingots
CN1189256C (zh) 中薄板坯连铸连轧板卷的生产方法
JP2012213807A (ja) 効率的且省エネルギーな帯鋼連続鋳造及び連続圧延プロセス
WO2009036665A1 (fr) Procédé de coulée-laminage en continu d&#39;une feuille intermédiaire et mince
JP2993735B2 (ja) 偏平な熱間圧延薄鋼ストリップの製造装置およびその製造方法
CN108526221A (zh) 一种低碳钢连铸连轧生产线及其生产工艺
CN100560240C (zh) 一种高效连铸连轧工艺
US5150597A (en) Hot strip plant
MX2010006014A (es) Metodo y planta para la producción de productos laminados planos.
CN109433826B (zh) 中薄板坯连铸连轧机组及其生产方法
JP7308358B2 (ja) 効率的な2スタンドのダブル切断ラインに直通する厚中板生産ライン及び生産方法
JPH07214105A (ja) 鋳造及び圧延方法と鋳造及び圧延装置
CN208542737U (zh) 一种低碳钢连铸连轧生产线
US9433983B2 (en) Rolling method for strip and corresponding rolling line
CN209334441U (zh) 中薄板坯连铸连轧机组
CN112337968B (zh) 一种多功能热轧板带生产机组及其生产方法
CN1640568A (zh) 中厚板坯连铸连轧机组边部补热的直轧工艺
JP3418739B2 (ja) 連続鋳造熱延設備および連続鋳造熱延方法
JPS598442B2 (ja) ホツトストリツプ圧延設備列
CN212238621U (zh) 一种用于全无头热轧带钢生产线上的卷取机夹送装置
JPS6138704A (ja) 金属圧延方法
JP2000317501A (ja) 熱間圧延設備および熱間圧延方法
JPS6253242B2 (zh)

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07764162

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010513613

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007764162

Country of ref document: EP