WO2008153591A1 - Système de conversion d'énergie vectorielle omar - Google Patents

Système de conversion d'énergie vectorielle omar Download PDF

Info

Publication number
WO2008153591A1
WO2008153591A1 PCT/US2007/083865 US2007083865W WO2008153591A1 WO 2008153591 A1 WO2008153591 A1 WO 2008153591A1 US 2007083865 W US2007083865 W US 2007083865W WO 2008153591 A1 WO2008153591 A1 WO 2008153591A1
Authority
WO
WIPO (PCT)
Prior art keywords
integral
mechanic
gaseous fluid
electrical conversion
movement absorption
Prior art date
Application number
PCT/US2007/083865
Other languages
English (en)
Inventor
Omar De La Rosa
Original Assignee
Omar De La Rosa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omar De La Rosa filed Critical Omar De La Rosa
Publication of WO2008153591A1 publication Critical patent/WO2008153591A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L8/00Electric propulsion with power supply from forces of nature, e.g. sun or wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • This invention relates generally to the transformation of the kinetic energy into electrical power, more specifically to a method and system for the generation of electrical power by storing compressed air associated to the movement of objects or bodies and the usage of said stored compressed air for the actuation of a motor/generator set.
  • Oil refineries can pose huge threats to the environment.
  • Harvesting, processing, and distributing fossil fuels create problems such as oil spills, massive fires, soil poisoning and decrease air quality.
  • offshore oil drilling may create a hazard for aquatic organisms and big spills can affect miles and miles of shorelines.
  • Coal mining methods, particularly mountaintop removal and strip mining, have been causes for concern.
  • Transportation of coal requires the use of diesel-powered locomotives, while crude oil is typically transported by tanker ships. Each of these requires the combustion of fossil fuels.
  • environmental-awareness groups are encouraging consumers to shy away of oil, coal and nuclear generated power in favor of cleaner alternatives such as sun-powered cells and windmills. Windmills while a clean alternative based on a free resource, it is dependent of weather behavior to a point at which if air currents are non -existent, power will not be generated.
  • One prior art attempt provides a regenerative heat storage compressed air power system wherein the heat of compression is stored underground in a compressed air storage cavern when it is cooled and thereafter stored in an air storage cavern. When energy is needed, the air is drawn back through the heat storage cavern where it is heated and then applied to assist in the heating of gases passing between the turbines.
  • Another prior art attempt provides a method of electricity production wherein a plurality of windmills turn air compressors and the air is stored in a storage tank sealed by water and is available for work such as driving an air turbine to operate an electric generator. It is also known to use a wind operated heating system wherein wind, through a cyclic control device, communicates with heat storing liquid in pipes stored in a thermally insulated tank.
  • the fluid in the pipes begins to oscillate in a motion which produces viscous dissipation and heat which may be distributed to an enclosure.
  • the prior art also provides a heating and cooling system capable of using solar heat.
  • a tank of liquid is heated by solar heat which in turn warms stones in a container.
  • a blower circulates air from a space to be heated through a filter into the container where the stones warm the air. The warmed air is then circulated back to the space to be heated.
  • the invention comprises a movement absorption element that selectively directs air into a pipeline system whenever said movement absorption element is actuated.
  • the pipeline system is interconnected to a compressing device which facilitates the flow of air into an air storage tank.
  • a motor/generator set is connected to the air storage tank through the pipeline system. The motor/generator set is configured to provide electrical power to an exterior load when said motor is actuated by the compressed air stored in the storage tank.
  • V is the volume [m3] of the vessel containing n moles of gas, n is the amount of substance of gas [mol],
  • R is the gas constant [8.314472 m3 Pa K-l mol-1],
  • T is the temperature in kelvins [K].
  • R The ideal gas constant (R) depends on the units used in the formula. The value given above, 8.314472, is for the SI units of pascal cubic meters per mole per kelvin, which is equal to joule per mole per kelvin (J mol-1 K-I ). Another value for R is 0.082057 L atm mol-l K-1)
  • R has a different value for each different unit of pressure and the other quantities used.
  • the compressed air electrical power generator can be of great use to a small entity as the air that is compressed and later stored may not only come from the power generated by windmills or water currents, but from a foot operated pedal or a car weight-operated apparatus installed on a driveway or road.
  • the compressed air is stored for later use and may be use as a back-up way for powering a house that is primarily served by the local electricity supply company.
  • FIG. 1 shows an energy conversion system according to a preferred embodiment of invention.
  • FIG. 2 shows a macro diagram of the energy conversion system according to a preferred embodiment of invention.
  • Fig. 1 shows a preferred embodiment of the present invention.
  • the system of the present invention comprises a movement absorption element 1 that generates a movement every time a force is applied against any of its surfaces.
  • the movement absorption element 1 experiences a linear compression/decompression effect every time a force is applied against one of its surfaces.
  • at least one movement absorption element 1 is adapted to be position below a street road 7. When a vehicle 8 travels over the road 7, the weight of the vehicle 8 imposes a gravitational linear force against the road which in turns applies a proportional force against the movement absorption element 1.
  • additional movement absorption elements 1 can be adapted to be positioned below other surfaces.
  • an additional movement absorption element 1 is positioned below a sidewalk 10.
  • a pipeline system 2 is interconnected to said movement absorption elements 1 to allow the flow and distribution of air throughout the system
  • a compressor 3 is connected to said pipeline system 2 and adapted to direct to flow of air to a storage tank 5 which in turn is connected to a motor/generator set 6.
  • the motor/generator set 6 comprises a pneumatic motor and an electric generator.
  • other types of motors could be used such as : thermodynamic and hydraulic motors depending on the application.
  • the output of the electric generator is selectively connected to supply electrical energy to an external load 11.
  • FIG. 2 shows a general diagram of the power conversion system of the invention.
  • the first part of the invention is represented by block 1.
  • the movement absorption element of the invention can be implemented in a variety of embodiments. For example, it can be positioned below a parking lot, so that the vehicle traffic imposes the necessary weight to actuate the movement absorption element. In another embodiment, it can be selectively connected to a railway so that the weight and/or the movement of a train actuates the movement absorption element. Alternatively, the motion generated by windmills or the flow of water at a dam can be advantageously used to actuate the movement absorption element. It is also envisioned, that the movement absorption element can be adapted to a flexible fluid pipe system.
  • the flexible pipe When installed in a residential environment, every time a person actuates a fluid flow regulating element such as a water faucet or shower or uses the washer machine; the flexible pipe will be compressed/decompressed. The compression/decompression effect will actuate the movement absorption element according to the invention.
  • the concept of the invention is to combine all the direct and indirect movement received in any direction to generate electrical power by means of the inventive concept.
  • the compressed air is directed to a storage tank 5.
  • the compressed air can be directed to any storage element.
  • a storage element can be adapted to positioned inside a power distribution pole or any kind of utility pole such as cable TV, telephone or telegraphic poles, inside a wall of a residential or commercial structure, or below ground or road level.
  • the storage tank 5 is adapted to be integrated into existing structures.
  • the storage tank unit may be disposed in or on any surface of a structure, such as a roof, a ceiling, a wall, a column or a floor of commercial or residential structures.
  • the air stored in the tank is directed to a motor/generator set 6 to produce electrical power usable by any external load 11.
  • the generated power can be directly connected to residential/commercial structure to serve as a primary power source. Alternatively, it can be connected through an electrical transfer switch in order to provide backup or supplemental power to any residential/commercial structure. It is also envisioned, that the electrical power generated by the system can be connected to a utility power distribution/transmission system to supplement the power grid and/or sell it to the utility power company.
  • Another embodiment of the invention uses the inverse polarity to repel two magnets.
  • One of the magnets is disposed on a substantially bottom portion of a vehicle and the other magnet is disposed on the top portion of a movement absorption element. When the vehicle is right above the movement absorption element the magnets will repel each other, thus causing the movement absorption element to be pressed down and to go back to its original position once the vehicle is substantially far.
  • Another of the embodiments of the invention utilizes pressurized air with temperatures lower than its surrounding environment to provide with an air conditioning sub-system. Field tests show that the temperature of the environment was lower as measures were taken closer to the storage tank. On large- scales vectorial energy conversion systems, some of the cold air could be redirected to an air conditioning sub-system. An additional benefit will be savings on electricity consumption due to the fact that no electrical energy will be needed to cool down air or water.
  • Another embodiment of the invention utilizes the counterweight of an elevator system to move a cylinder/piston arrangement.
  • the movement of the cylinder/piston arrangement generates the air that can be compressed and stored for electrical energy generation.
  • a system of weights is disposed on the body of the storage tank unit The weights are moved by a small amount of compressed air leaving the storage tank unit Movement of the weights will cause air to be generated, this air can also be used to generate power

Abstract

L'invention comprend un élément d'absorption de mouvement qui dirige sélectivement l'air dans un système de conduites quand l'élément d'absorption de mouvement est actionné. Le système de conduites est interconnecté à un dispositif de compression qui facilite l'écoulement d'air dans un réservoir de stockage d'air. Un ensemble moteur/générateur est relié au réservoir de stockage d'air par l'intermédiaire du système de conduites. L'ensemble moteur/générateur est configuré de façon à fournir une alimentation électrique à une charge extérieure quand ledit moteur est actionné par l'air comprimé stocké dans le réservoir de stockage.
PCT/US2007/083865 2007-06-08 2007-11-07 Système de conversion d'énergie vectorielle omar WO2008153591A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US94269207P 2007-06-08 2007-06-08
US60/942,692 2007-06-08

Publications (1)

Publication Number Publication Date
WO2008153591A1 true WO2008153591A1 (fr) 2008-12-18

Family

ID=40129999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/083865 WO2008153591A1 (fr) 2007-06-08 2007-11-07 Système de conversion d'énergie vectorielle omar

Country Status (1)

Country Link
WO (1) WO2008153591A1 (fr)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108077A (en) * 1974-06-07 1978-08-22 Nikolaus Laing Rail vehicles with propulsion energy recovery system
US6223846B1 (en) * 1998-06-15 2001-05-01 Michael M. Schechter Vehicle operating method and system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108077A (en) * 1974-06-07 1978-08-22 Nikolaus Laing Rail vehicles with propulsion energy recovery system
US6223846B1 (en) * 1998-06-15 2001-05-01 Michael M. Schechter Vehicle operating method and system

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8627658B2 (en) 2008-04-09 2014-01-14 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy
US8763390B2 (en) 2008-04-09 2014-07-01 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8713929B2 (en) 2008-04-09 2014-05-06 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8733094B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8209974B2 (en) 2008-04-09 2012-07-03 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8234862B2 (en) 2009-01-20 2012-08-07 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8122718B2 (en) 2009-01-20 2012-02-28 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7963110B2 (en) 2009-03-12 2011-06-21 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8479502B2 (en) 2009-06-04 2013-07-09 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8468815B2 (en) 2009-09-11 2013-06-25 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8109085B2 (en) 2009-09-11 2012-02-07 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8661808B2 (en) 2010-04-08 2014-03-04 Sustainx, Inc. High-efficiency heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8245508B2 (en) 2010-04-08 2012-08-21 Sustainx, Inc. Improving efficiency of liquid heat exchange in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8806866B2 (en) 2011-05-17 2014-08-19 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems

Similar Documents

Publication Publication Date Title
WO2008153591A1 (fr) Système de conversion d'énergie vectorielle omar
CN103124845B (zh) 用于产生补充电能的方法和设备
CN110998200B (zh) 用于产生热和电的联产***和方法
WO2011024928A1 (fr) Générateur d'électricité hybride accouplé à un générateur d'électricité à gravité qui utilise une bascule comportant un dispositif de charge de pression
US20110227345A1 (en) System and method for generating and storing clean energy
CN103003576B (zh) 液压动力转换器
EP2262993A2 (fr) Stockage d'énergie à air comprimé amélioré par adsorption
WO2021177028A1 (fr) Système d'alimentation électrique à grande surface
CN102146814A (zh) 超临界低温空气能发电装置
JP4659818B2 (ja) 電気エネルギーへの変換のための熱エネルギー蓄積装置
US20100320767A1 (en) Pressure grid system and method of using
US20210391769A1 (en) Compressed Air Accumulation System For Power Generation
EP1647709A2 (fr) Système utilisant les différences naturelles de température pour la production d'énergie
US6729136B2 (en) Liquid metal/liquid nitrogen power plant for powering a turbine or any use device
JP3153668U (ja) 路盤発電装置
GB2464488A (en) Using otherwise wasted thermal energy from engines
CN101333975A (zh) 制造和使用压缩空气的设备
WO2018236824A1 (fr) Moteur et générateur entraînés par une force de levier
US8387379B2 (en) Electricity generation device using hot gas engine
RU2598859C2 (ru) Комбинированная ветросиловая энергоустановка
CN110073157A (zh) 用于可持续产生能量的***和方法
US20120187699A1 (en) Compressed Air Accumulation System For Power Generation
CN107574841A (zh) 一种双通道压力发电井盖装置
JP2000054946A (ja) 水中での空気浮力利用の浮力発電装置
Bicer Thermodynamic analysis of a renewable energy-driven electric vehicle charging station with on-site electricity generation from hydrogen and ammonia fuel cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07873601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A SENT ON 31/03/10)

122 Ep: pct application non-entry in european phase

Ref document number: 07873601

Country of ref document: EP

Kind code of ref document: A1