WO2008150393A1 - Agents de contrôle des déprédateurs invertébrés 3-cyano-4-triazolyl-phénylisoxazoline - Google Patents

Agents de contrôle des déprédateurs invertébrés 3-cyano-4-triazolyl-phénylisoxazoline Download PDF

Info

Publication number
WO2008150393A1
WO2008150393A1 PCT/US2008/006637 US2008006637W WO2008150393A1 WO 2008150393 A1 WO2008150393 A1 WO 2008150393A1 US 2008006637 W US2008006637 W US 2008006637W WO 2008150393 A1 WO2008150393 A1 WO 2008150393A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
composition
invertebrate pest
compounds
invertebrate
Prior art date
Application number
PCT/US2008/006637
Other languages
English (en)
Inventor
George Philip Lahm
Thomas Francis Pahutski, Jr.
Benjamin Kenneth Smith
Original Assignee
E. I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E. I. Du Pont De Nemours And Company filed Critical E. I. Du Pont De Nemours And Company
Publication of WO2008150393A1 publication Critical patent/WO2008150393A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings

Definitions

  • This invention relates to certain isoxazolines, their N-oxides, salts and compositions suitable for agronomic and nonagronomic uses, and methods of their use for controlling invertebrate pests such as arthropods in both agronomic and nonagronomic environments.
  • invertebrate pests The control of invertebrate pests is extremely important in achieving high crop efficiency. Damage by invertebrate pests to growing and stored agronomic crops can cause significant reduction in productivity and thereby result in increased costs to the consumer.
  • invertebrate pests in forestry, greenhouse crops, ornamentals, nursery crops, stored food and fiber products, livestock, household, turf, wood products, and public and animal health is also important. Many products are commercially available for these purposes, but the need continues for new compounds that are more effective, less costly, less toxic, environmentally safer or have different sites of action.
  • Japanese Publication JP 2007-16017 discloses isoxazoline derivatives of Formula i as insecticides
  • each of Al, A2 and A3 is independently C or N;
  • Gl is a benzene ring;
  • G2 is an N-linked heterocyclic ring; and
  • X is halogen.
  • the isoxazolines of the present invention are not specifically disclosed in this publication.
  • This invention is directed to compounds of Formula 1 (including all enantiomers), iV-oxides, and salts thereof, and compositions containing them and their use for controlling invertebrate pests:
  • Rl is F, Cl, Br, cyano, CF 3 , OCF 2 H, OCF 3 or OCH 2 CF 3
  • R2 is H, F, Cl, Br, CH 3 , cyano, CF 3 , OCF 2 H, OCF 3 or OCH 2 CF 3
  • R3 is H, F, Cl, Br or CF 3 .
  • This invention is also directed to such compounds of Formula 1, (including all enantiomers), iV-oxides, and salts thereof, and compositions containing them and their use for controlling invertebrate pests as described above, and further herein, provided that when R 1 is Cl and R 2 is H or Cl, then R 3 is F, Br or CF 3 ; and when R 1 is Br and R 2 is H or Cl, then R3 is F, Cl or CF 3 .
  • This invention also provides a composition comprising a compound of Formula 1, an N-oxide or a salt thereof, and at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents.
  • this invention also provides a composition for controlling an invertebrate pest comprising a biologically effective amount of a compound of Formula 1, an iV-oxide or a salt thereof, and at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents, said composition optionally further comprising a biologically effective amount of at least one additional biologically active compound or agent.
  • This invention further provides a spray composition for controlling an invertebrate pest comprising a biologically effective amount of a compound of Formula 1, an iV-oxide or a salt thereof, or the composition described above, and a propellant.
  • This invention also provides a bait composition for controlling an invertebrate pest comprising a biologically effective amount of a compound of Formula 1, an iV-oxide or a salt thereof, or the compositions described in the embodiments above, one or more food materials, optionally an attractant, and optionally a humectant.
  • This invention further provides a trap device for controlling an invertebrate pest comprising said bait composition and a housing adapted to receive said bait composition, wherein the housing has at least one opening sized to permit the invertebrate pest to pass through the opening so the invertebrate pest can gain access to said bait composition from a location outside the housing, and wherein the housing is further adapted to be placed in or near a locus of potential or known activity for the invertebrate pest.
  • This invention provides a method for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound of Formula 1, an N-oxide or a salt thereof, (e.g., as a composition described herein).
  • This invention also relates to such method wherein the invertebrate pest or its environment is contacted with a composition comprising a biologically effective amount of a compound of Formula 1, an N-oxide or a salt thereof, and at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents, said composition optionally further comprising a biologically effective amount of at least one additional biologically active compound or agent.
  • This invention also provides a method for protecting a seed from an invertebrate pest comprising contacting the seed with a biologically effective amount of a compound of Formula 1, an N-oxide or a salt thereof, (e.g., as a composition described herein). This invention also relates to the treated seed.
  • This invention further provides a method for protecting an animal from an invertebrate parasitic pest comprising administering to the animal a parasiticidally effective amount of a compound of Formula 1, an N-oxide or a salt thereof, (e.g., as a composition described herein).
  • compositions comprising, “comprising,” “includes,” “including,” “has,” “having,” “contains” or “containing,” or any other variation thereof, are intended to cover a non-exclusive inclusion.
  • a composition, a mixture, process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such composition, mixture, process, method, article, or apparatus.
  • “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
  • invertebrate pest includes arthropods, gastropods and nematodes of economic importance as pests.
  • arthropod includes insects, mites, spiders, scorpions, centipedes, millipedes, pill bugs and symphylans.
  • gastropod includes snails, slugs and other Stylommatophora.
  • nematode includes all of the helminths, such as: roundworms, heartworms, and phytophagous nematodes (Nematoda), flukes (Tematoda), Acanthocephala, and tapeworms (Cestoda).
  • invertebrate pest control means inhibition of invertebrate pest development (including mortality, feeding reduction, and/or mating disruption), and related expressions are defined analogously.
  • agronomic refers to the production of field crops such as for food and fiber and includes the growth of corn, soybeans and other legumes, rice, cereal (e.g., wheat, oats, barley, rye, rice, maize), leafy vegetables (e.g., lettuce, cabbage, and other cole crops), fruiting vegetables (e.g., tomatoes, pepper, eggplant, crucifers and cucurbits), potatoes, sweet potatoes, grapes, cotton, tree fruits (e.g., pome, stone and citrus), small fruit (berries, cherries) and other specialty crops (e.g., canola, sunflower, olives).
  • wheat e.g., wheat, oats, barley, rye, rice, maize
  • leafy vegetables e.g., lettuce, cabbage, and other cole crops
  • fruiting vegetables e.g., tomatoes, pepper, eggplant, crucifers and cucurbits
  • potatoes e.g., sweet potatoes, grapes, cotton, tree fruits (e.g.
  • nonagronomic refers to other than field crops, such as horticultural crops (e.g., greenhouse, nursery or ornamental plants not grown in a field), residential, agricultural, commercial and industrial structures, turf (e.g., sod farm, pasture, golf course, lawn, sports field, etc.), wood products, stored product, agro-forestry and vegetation management, public health (i.e. human) and animal health (e.g., domesticated animals such as pets, livestock and poultry, undomesticated animals such as wildlife) applications.
  • horticultural crops e.g., greenhouse, nursery or ornamental plants not grown in a field
  • turf e.g., sod farm, pasture, golf course, lawn, sports field, etc.
  • wood products e.g., stored product, agro-forestry and vegetation management
  • public health i.e. human
  • animal health e.g., domesticated animals such as pets, livestock and poultry, undomesticated animals such as wildlife
  • Compounds of this invention can exist as enantiomers.
  • One skilled in the art will appreciate that one enantiomer may be more active and/or may exhibit beneficial effects when enriched relative to the other enantiomer or when separated from the other enantiomer. Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said enantiomers.
  • the compounds of the invention may be present as a mixture of enantiomers or as a single enantiomer.
  • the salts of the compounds of Formula 1 include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids.
  • the present invention comprises compounds selected from Formula 1, N-oxides and suitable salts thereof.
  • Embodiments of the present invention as described in the Summary of the Invention include (where Formula 1 as used in the following Embodiments includes iV-oxides and salts thereof):
  • Embodiment 1 A compound of Formula 1 wherein when R 1 is Cl and R 2 is H or Cl, then R 3 is F, Br or CF 3 ; and when R 1 is Br and R 2 is H or Cl, then R 3 is F, Cl or CF 3 .
  • Embodiment 2 A compound of Formula 1 wherein R 1 is F, Cl, Br, CF 3 , OCF 2 H or
  • Embodiment 3 A compound of Embodiment 2 wherein R 1 is Cl, Br, CF 3 or OCF 3 .
  • Embodiment 4 A compound of Embodiment 3 wherein R 1 is Cl, Br or CF 3 .
  • Embodiment 5. A compound of Embodiment 4 wherein R 1 is Cl.
  • Embodiment 6 A compound of Embodiment 4 wherein R 1 is Br.
  • Embodiment 7. A compound of Embodiment 4 wherein R 1 is CF 3 .
  • Embodiment 8. A compound of Formula 1 wherein R 2 is H, F, Cl, Br, CH 3 or cyano.
  • Embodiment 9. A compound of Embodiment 8 wherein R 2 is H, F or Cl.
  • Embodiment 10. A compound of Embodiment 8 wherein R 2 is CH 3 .
  • Embodiment 11 A compound of Embodiment 8 wherein R 2 is cyano. Embodiment 12. A compound of Embodiment 9 wherein R 2 is F. Embodiment 13. A compound of Embodiment 9 wherein R 2 is Cl. Embodiment 14. A compound of Embodiment 8 wherein R 2 is Br. Embodiment 15. A compound of Embodiment 9 wherein R 2 is H.
  • Embodiment 16 A compound of Formula 1 wherein R 3 is H, F, Cl, Br or CF 3 .
  • Embodiment 17. A compound of Embodiment 16 wherein R 3 is H, Cl, Br or CF 3 .
  • Embodiment 20. A compound of Embodiment 16 wherein R 3 is F.
  • Embodiment 21 A compound of Embodiment 18 wherein R 3 is Cl.
  • Embodiment 22 A compound of Embodiment 18 wherein R 3 is Br.
  • Embodiment 23 A compound of Embodiment 17 wherein R 3 is CF 3 .
  • Embodiments of this invention including Embodiments 1-23 above as well as any other embodiments described herein, can be combined in any manner, and the descriptions of variables in the embodiments pertain not only to the compounds of Formula 1 but also to the starting compounds and intermediate compounds useful for preparing the compounds of Formula 1.
  • embodiments of this invention, including Embodiments 1-23 above as well as any other embodiments described herein, and any combination thereof pertain to the compositions and methods of the present invention.
  • Embodiment A A compound of Formula 1 wherein R 1 is Cl, Br, CF 3 or OCF 3 ;
  • R 2 is H, F, Cl or CH 3 ;
  • R 3 is H, Cl, Br or CF 3 ; provided that when R 1 is Cl and R 2 is H or Cl, then R 3 is F, Br or CF 3 ; and when R 1 is
  • R 3 is F, Cl or CF 3 .
  • Specific embodiments include compounds of Formula 1 selected from the group consisting of:
  • compounds of this invention are characterized by favorable metabolic and/or soil residual patterns and exhibit activity controlling a spectrum of agronomic and nonagronomic invertebrate pests.
  • protection of agronomic crops from damage or injury caused by invertebrate pests by controlling invertebrate pests are embodiments of the invention.
  • Compounds of this invention because of their favorable translocation properties or systemicity in plants also protect foliar or other plant parts which are not directly contacted with a compound of Formula 1 or a composition comprising the compound.
  • compositions comprising a compound of any of the preceding Embodiments, as well as any other embodiments described herein, and any combinations thereof, and at least one additional component selected from the group consisting of a surfactant, a solid diluent and a liquid diluent, said compositions optionally further comprising at least one additional biologically active compound or agent.
  • compositions for controlling an invertebrate pest comprising a biologically effective amount of a compound of any of the preceding Embodiments, as well as any other embodiments described herein, and any combinations thereof, and at least one additional component selected from the group consisting of a surfactant, a solid diluent and a liquid diluent, said compositions optionally further comprising a biologically effective amount of at least one additional biologically active compound or agent.
  • Embodiments of the invention further include methods for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound of any of the preceding Embodiments (e.g., as a composition described herein).
  • Embodiments of the invention also include a composition comprising a compound of any of the preceding Embodiments, in the form of a soil drench liquid formulation.
  • Embodiments of the invention further include methods for controlling an invertebrate pest comprising contacting the soil with a liquid composition as a soil drench comprising a biologically effective amount of a compound of any of the preceding Embodiments.
  • Embodiments of the invention also include a spray composition for controlling an invertebrate pest comprising a biologically effective amount of a compound of any of the preceding Embodiments and a propellant.
  • Embodiments of the invention further include a bait composition for controlling an invertebrate pest comprising a biologically effective amount of a compound of any of the preceding Embodiments, one or more food materials, optionally an attractant, and optionally a humectant.
  • Embodiments of the invention also include a device for controlling an invertebrate pest comprising said bait composition and a housing adapted to receive said bait composition, wherein the housing has at least one opening sized to permit the invertebrate pest to pass through the opening so the invertebrate pest can gain access to said bait composition from a location outside the housing, and wherein the housing is further adapted to be placed in or near a locus of potential or known activity for the invertebrate pest.
  • Embodiments of the invention also include methods for protecting a seed from an invertebrate pest comprising contacting the seed with a biologically effective amount of a compound of any of the preceding Embodiments.
  • Embodiments of the invention also include methods for protecting an animal from an invertebrate parasitic pest comprising administering to the animal a parasiticidally effective amount of a compound of any of the preceding Embodiments.
  • One or more of the following methods and variations as described in Schemes 1-4 can be used to prepare the compounds of Formula 1.
  • the definitions of R 1 , R 2 and R ⁇ in the compounds of Formulae 1-9 below are as defined above in the Summary of the Invention unless otherwise noted.
  • Compounds of Formula 1 can be prepared by the cycloaddition of compounds of Formula 2 with nitrile oxides derived from oximes of Formula 3 as outlined in Scheme 1.
  • an oxime of Formula 3 is treated with a chlorinating reagent such as sodium hypochlorite, N-chlorosuccinimide, or chloramine-T to give a hydroxamoyl chloride intermediate.
  • a chlorinating reagent such as sodium hypochlorite, N-chlorosuccinimide, or chloramine-T
  • This intermediate generated in situ reacts with a styrene of Formula 2 to form a cycloaddition product of Formula 1.
  • Amine bases such as pyridine or triethylamine can be added.
  • Typical solvents include tetrahydrofuran, diethyl ether, dichloromethane, dioxane, and toluene.
  • Typical reaction temperatures range from room temperature to the reflux temperature of the solvent.
  • General procedures for cycloaddition of nitrile oxides with olefins are well described in the chemical literature (see, for instance, Synthesis 1982, 6, 508- 509 and Tetrahedron 2000, 56, 1057-1064).
  • the oxime of Formula 3 can be prepared by reaction of the corresponding aldehyde of Formula 6 with hydroxylamine according to methods known in the art (see, for example, Bioorg. Med. Chem. Lett. 1997, 7(21), 2813-2818) as shown in Scheme 3.
  • the aldehyde of Formula 6 can be prepared by the reaction of commercially available 3-cyano-4- fluorobenzaldehyde (7) with triazole (5) analogous to the method of Scheme 2.
  • Styrenes of Formula 2 can be prepared by the palladium-catalyzed coupling of commercially available 2-bromo-3,3,3-trifluoropropene (10) with aryl boronic acids and boronic esters of Formula 9 (wherein R a is H or alkyl) as outlined in Scheme 4. General procedures for this reaction are described in J. Fluorine Chem. 1999, 95, 167-170. Many boronic acids and boronic esters are commercially available.
  • cyclic dioxaborolanes of Formula 9 (wherein both R a are taken together as C(CH3) 2 C(CH3) 2 ) can be prepared from commercially available substituted benzenes of Formula 8 by the method described in Angew. Chem. 2002, 114, 3182-3184 and illustrated in Step B of synthesis Example 1.
  • R a is H or alkyl
  • Step A Preparation of 2,6-bis( 1 -methylethyl)-7V-(2-pyridinylmethylene)benzenamine
  • 2,6-Diisopropylphenylamine (8.27 g, 46.7 mmol) was added to a solution of 2- pyridinecarboxaldehyde (5.0 g, 46.7 mmol) in toluene (200 mL) in a round bottom flask equipped with a Dean-Stark trap, followed by the addition of a catalytic amount of p- toluenesulfonic acid (0.10 g). The reaction mixture was heated to reflux for 18 hours to remove water as an azeo trope. The reaction mixture was then washed once with water (100 mL), and the toluene was removed under reduced pressure.
  • Step B Preparation of 2-(3,5-dichloro-4-fluorophenyl)-4,4,5,5-tetramethyl-l,3,2- dioxaborolane
  • the reaction mixture turned from yellow to forest green to brick red within the first minute.
  • the reaction mixture was heated to reflux for 18 h.
  • the mixture was then partitioned between ethyl acetate and water, and the aqueous extract was washed twice with ethyl acetate.
  • the organic extracts were combined, dried over MgSC «4, and concentrated under reduced pressure.
  • the solid residue was purified by chromatography on silica gel by elution with ethyl acetate/hexane to afford the title compound as a solid (11.0 g).
  • 1 H NMR (CDCl 3 ) ⁇ 7.72 (d, 2H), 1.33 (s, 12H).
  • Step C Preparation of 1 ,3 -dichloro-2-fluoro-5 - [ 1 -(trifluoromethyl)ethenyl]benzene
  • Step D Preparation of 2-fluoro-5-[(hydroxyimino)methyl]benzonitrile Hydroxylamine (10.0 mL, 50% by weight aqueous solution, 152.0 mmol) was added to a solution of 4-fluoro-3-cyanobenzaldehyde (15.814 g, 106.13 mmol) in ethanol (200 mL). The reaction mixture was stirred vigorously for 3 h at room temperature. The volatiles were evaporated under reduced pressure to give an oily aqueous liquid, which was partitioned between ethyl acetate and water. The aqueous extract was washed twice with ethyl acetate. The organic extracts were combined, dried over MgSO 4 , and concentrated under reduced pressure.
  • Step E Preparation of 5-[5-(3,5-dichloro-4-fluorophenyl)- 4,5-dihydro-5-
  • Aqueous sodium hypochlorite solution (50 mL) was added to a solution of 2-fluoro-5- [(hydroxyimino)methyl]benzonitrile (2.0 g, 12.2 mmol), l,3-dichloro-2-fluoro-5-[l- (trifluoromethyl)ethenyl]benzene (4.0 g, 15.4 mmol) and tetrahydrofuran (50 mL).
  • the reaction changed color from yellow to orange to chartreuse.
  • the reaction mixture was stirred at room temperature for 3 h and then partitioned between ethyl acetate and water.
  • Step F Preparation of 5-[5-(3,5-dichloro-4-fluorophenyl)-4,5-dihydro-5-
  • Step A Preparation of 4,4,5,5-tetramethyl-2-(3,4,5-trichlorophenyl)-l,3,2- dioxaborolane
  • reaction mixture turned from yellow to forest green to brick red within the first minute.
  • the reaction mixture was heated to reflux for 18 h.
  • the reaction mixture was then partitioned between ethyl acetate and water, and the aqueous extract was washed twice with ethyl acetate.
  • the combined organic extracts were dried over MgSU4 and concentrated under reduced pressure.
  • the solid residue was purified by chromatography on silica gel by elution with ethyl acetate/hexane to afford the title compound as a solid (8.85 g).
  • 1 H NMR (CDCl 3 ) ⁇ 7.74 (s, 2H), 1.32 (s, 12H).
  • Step B Preparation of l,2,3-trichloro-5-[l-(trifluoromethyl)ethenyl]benzene
  • Step C Preparation of 5-[4,5-dihydro-5-(3,4,5-trichlorophenyl)-5-(trifluoromethyl)-3- isoxazolyl]-2-fluorobenzonitrile
  • Aqueous sodium hypochlorite solution (50 mL) was added to a solution of 2-fluoro-5- [(hydroxyimino)methyl]benzonitrile (2.0 g, 12.2 mmol, from Example 1, Step D), 1,2,3- trichloro-5-[l-(trifluoromethyl)ethenyl]benzene (4.0 g, 14.4 mmol) and tetrahydrofuran (50 mL).
  • the reaction mixture changed color from yellow to orange to chartreuse.
  • the reaction mixture was stirred at room temperature 3 h.
  • the reaction mixture was then partitioned between ethyl acetate and water, and the aqueous extract was washed twice with ethyl acetate.
  • Step D Preparation of 5-[4,5-dihydro-5-(3,4,5-trichlorophenyl)-5-(trifluoromethyl)-3- isoxazoly l]-2-( 1 H- 1 ,2,4-triazol- 1 -yl)benzonitrile
  • Step A Preparation of l-(trifluoromethyl)-3-[l-(trifluoromethyl)ethenyl]benzene
  • a compound of this invention will generally be used as an invertebrate pest control active ingredient in a composition, i.e. formulation, with at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents, which serves as a carrier.
  • a composition i.e. formulation
  • additional component selected from the group consisting of surfactants, solid diluents and liquid diluents, which serves as a carrier.
  • the formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature.
  • Liquid compositions include solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions and/or suspoemulsions) and the like, which optionally can be thickened into gels.
  • aqueous liquid compositions are soluble concentrate, suspension concentrate, capsule suspension, concentrated emulsion, microemulsion and suspo-emulsion.
  • nonaqueous liquid compositions are emulsifiable concentrate, microemulsifiable concentrate, dispersible concentrate and oil dispersion.
  • compositions are dusts, powders, granules, pellets, prills, pastilles, tablets, filled films (including seed coatings) and the like, which can be water-dispersible ("wettable") or water-soluble. Films and coatings formed from film- forming solutions or flowable suspensions are particularly useful for seed treatment.
  • Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated”). Encapsulation can control or delay release of the active ingredient.
  • An emulsifiable granule combines the advantages of both an emulsifiable concentrate formulation and a dry granular formulation. High-strength compositions are primarily used as intermediates for further formulation. Sprayable formulations are typically extended in a suitable medium before spraying.
  • Such liquid and solid formulations are formulated to be readily diluted in the spray medium, usually water.
  • Spray volumes can range from about from about one to several thousand liters per hectare, but more typically are in the range from about ten to several hundred liters per hectare.
  • Sprayable formulations can be tank mixed with water or another suitable medium for foliar treatment by aerial or ground application, or for application to the growing medium of the plant.
  • Liquid and dry formulations can be metered directly into drip irrigation systems or metered into the furrow during planting.
  • Liquid and solid formulations can be applied onto seeds of crops and other desirable vegetation as seed treatments before planting to protect developing roots and other subterranean plant parts and/or foliage through systemic uptake.
  • the formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight.
  • Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, gypsum, cellulose, titanium dioxide, zinc oxide, starch, dextrin, sugars (e.g., lactose, sucrose), silica, talc, mica, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate.
  • Typical solid diluents are described in Watkins et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey.
  • Liquid diluents include, for example, water, N ⁇ /V-dimethylalkanamides (e.g., iV,7V-dimethylformamide), limonene, dimethyl sulfoxide, iV-alkylpyrrolidones (e.g., iV-methylpyrrolidinone), ethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, propylene carbonate, butylene carbonate, paraffins (e.g., white mineral oils, normal paraffins, isoparaffins), alkylbenzenes, alkylnaphthalenes, glycerine, glycerol triacetate, sorbitol, triacetin, aromatic hydrocarbons, dearomatized aliphatics, alkylbenzenes, alkylnaphthalenes, ketones such as cyclohexanone, 2-heptanone,
  • Liquid diluents also include glycerol esters of saturated and unsaturated fatty acids (typically C6-C22), such as plant seed and fruit oils (e.g, oils of olive, castor, linseed, sesame, corn (maize), peanut, sunflower, grapeseed, safflower, cottonseed, soybean, rapeseed, coconut and palm kernel), animal-sourced fats (e.g., beef tallow, pork tallow, lard, cod liver oil, fish oil), and mixtures thereof.
  • plant seed and fruit oils e.g, oils of olive, castor, linseed, sesame, corn (maize), peanut, sunflower, grapeseed, safflower, cottonseed, soybean, rapeseed, coconut and palm kernel
  • animal-sourced fats e.g., beef tallow, pork tallow, lard, cod liver oil, fish oil
  • Liquid diluents also include alkylated fatty acids (e.g., methylated, ethylated, butylated) wherein the fatty acids may be obtained by hydrolysis of glycerol esters from plant and animal sources, and can be purified by distillation. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950.
  • the solid and liquid compositions of the present invention often include one or more surfactants. When added to a liquid, surfactants (also known as "surface-active agents”) generally modify, most often reduce, the surface tension of the liquid.
  • surfactants can be useful as wetting agents, dispersants, emulsifiers or defoaming agents.
  • surfactants can be classified as nonionic, anionic or cationic.
  • Nonionic surfactants useful for the present compositions include, but are not limited to: alcohol alkoxylates such as alcohol alkoxylates based on natural and synthetic alcohols (which may be branched or linear) and prepared from the alcohols and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof; amine ethoxylates, alkanolamides and ethoxylated alkanolamides; alkoxylated triglycerides such as ethoxylated soybean, castor and rapeseed oils; alkylphenol alkoxylates such as octylphenol ethoxylates, nonylphenol ethoxylates, dinonyl phenol ethoxylates and dodecyl phenol ethoxylates (prepared from the phenols and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); block polymers prepared from ethylene oxide or propylene oxide and reverse block polymers where the terminal blocks are prepared from propylene oxide
  • Useful anionic surfactants include, but are not limited to: alkylaryl sulfonic acids and their salts; carboxylated alcohol or alkylphenol ethoxylates; diphenyl sulfonate derivatives; lignin and lignin derivatives such as lignosulfonates; maleic or succinic acids or their anhydrides; olefin sulfonates; phosphate esters such as phosphate esters of alcohol alkoxylates, phosphate esters of alkylphenol alkoxylates and phosphate esters of styryl phenol ethoxylates; protein-based surfactants; sarcosine derivatives; styryl phenol ether sulfate; sulfates and sulfonates of oils and fatty acids; sulfates and sulfonates of ethoxylated alkylphenols; sulfates of alcohols; sulfates of e
  • Useful cationic surfactants include, but are not limited to: amides and ethoxylated amides; amines such as N-alkyl propanediamines, tripropylenetriamines and dipropylenetetramines, and ethoxylated amines, ethoxylated diamines and propoxylated amines (prepared from the amines and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); amine salts such as amine acetates and diamine salts; quaternary ammonium salts such as quaternary salts, ethoxylated quaternary salts and diquatemary salts; and amine oxides such as alkyldimethylamine oxides and bis-(2-hydroxyethyl)-alkylamine oxides.
  • amines such as N-alkyl propanediamines, tripropylenetriamines and dipropylenetetramines, and ethoxylated amine
  • Nonionic, anionic and cationic surfactants and their recommended uses are disclosed in a variety of published references including McCutcheon 's Emulsifiers and Detergents, annual American and International Editions published by McCutcheon's Division, The Manufacturing Confectioner Publishing Co.; Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964; and A. S. Davidson and B. Milwidsky, Synthetic Detergents, Seventh Edition, John Wiley and Sons, New York, 1987.
  • compositions of this invention may also contain formulation auxiliaries and additives, known to those skilled in the art as formulation aids (some of which may be considered to also function as solid diluents, liquid diluents or surfactants).
  • formulation auxiliaries and additives may control: pH (buffers), foaming during processing (antifoams such polyorganosiloxanes), sedimentation of active ingredients (suspending agents), viscosity (thixotropic thickeners), in-container microbial growth (antimicrobials), product freezing (antifreezes), color (dyes/pigment dispersions), wash-off (film formers or stickers), evaporation (evaporation retardants), and other formulation attributes.
  • Film formers include, for example, polyvinyl acetates, polyvinyl acetate copolymers, polyvinylpyrrolidone-vinyl acetate copolymer, polyvinyl alcohols, polyvinyl alcohol copolymers and waxes.
  • formulation auxiliaries and additives include those listed in McCutcheon 's Volume 2: Functional Materials, annual International and North American editions published by McCutcheon's Division, The Manufacturing Confectioner Publishing Co.; and PCT Publication WO 03/024222.
  • the compound of Formula 1 and any other active ingredients are typically incorporated into the present compositions by dissolving the active ingredient in a solvent or by grinding in a liquid or dry diluent.
  • Solutions, including emulsifiable concentrates can be prepared by simply mixing the ingredients. If the solvent of a liquid composition intended for use as an emulsifiable concentrate is water-immiscible, an emulsifier is typically added to emulsify the active-containing solvent upon dilution with water.
  • Active ingredient slurries, with particle diameters of up to 2,000 ⁇ m can be wet milled using media mills to obtain particles with average diameters below 3 ⁇ m.
  • Aqueous slurries can be made into finished suspension concentrates (see, for example, U.S. 3,060,084) or further processed by spray drying to form water-dispersible granules. Dry formulations usually require dry milling processes, which produce average particle diameters in the 2 to 10 ⁇ m range. Dusts and powders can be prepared by blending and usually grinding (such as with a hammer mill or fluid-energy mill). Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques.
  • Pellets can be prepared as described in U.S. 4,172,714.
  • Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493.
  • Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030.
  • Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.
  • Compound 1 65.0% dodecylphenol polyethylene glycol ether 2.0% sodium ligninsulfonate 4.0% sodium silicoaluminate 6.0% montmorillonite (calcined) 23.0%
  • Compound 1 10.0% attapulgite granules (low volatile matter, 0.71/0.30 mm; 90.0%
  • Compound 1 25.0% anhydrous sodium sulfate 10.0% crude calcium ligninsulfonate 5.0% sodium alkylnaphthalenesulfonate 1.0% calcium/magnesium bentonite 59.0%
  • Compound 1 20.00% polyvinylpyrrolidone-vinyl acetate copolymer 5.00% montan acid wax 5.00% calcium ligninsulfonate 1.00% polyoxyethylene/polyoxypropylene block copolymers 1.00% stearyl alcohol (POE 20) 2.00% polyorganosilane 0.20% colorant red dye 0.05% water 65.75%
  • invertebrate pests include invertebrates inhabiting a variety of environments such as, for example, plant foliage, roots, soil, harvested crops or other foodstuffs, building structures or animal integuments.
  • These pests include, for example, invertebrates feeding on foliage (including leaves, stems, flowers and fruits), seeds, wood, textile fibers or animal blood or tissues, and thereby causing injury or damage to, for example, growing or stored agronomic crops, forests, greenhouse crops, ornamentals, nursery crops, stored foodstuffs or fiber products, or houses or other structures or their contents, or being harmful to animal health or public health.
  • foliage including leaves, stems, flowers and fruits
  • seeds wood, textile fibers or animal blood or tissues
  • present compounds and compositions are thus useful agronomically for protecting field crops from phytophagous invertebrate pests, and also nonagronomically for protecting other horticultural crops and plants from phytophagous invertebrate pests.
  • This utility includes protecting crops and other plants (i.e. both agronomic and nonagronomic) that contain genetic material introduced by genetic engineering (i.e. transgenic) or modified by mutagenesis to provide advantageous traits.
  • traits include tolerance to herbicides, resistance to phytophagous pests (e.g., insects, mites, aphids, spiders, nematodes, snails, plant-pathogenic fungi, bacteria and viruses), improved plant growth, increased tolerance of adverse growing conditions such as high or low temperatures, low or high soil moisture, and high salinity, increased flowering or fruiting, greater harvest yields, more rapid maturation, higher quality and/or nutritional value of the harvested product, or improved storage or process properties of the harvested products.
  • Transgenic plants can be modified to express multiple traits.
  • plants containing traits provided by genetic engineering or mutagenesis include varieties of corn, cotton, soybean and potato expressing an insecticidal Bacillus thuringiensis toxin such as YIELD GARD ® , KNOCKOUT ® , STARLINK ® , BOLLGARD ® , NuCOTN ® and NEWLEAF ® , and herbicide-tolerant varieties of corn, cotton, soybean and rapeseed such as ROUNDUP READY ® , LIBERTY LINK ® ,
  • the present compounds and compositions may interact synergistically with traits introduced by genetic engineering or modified by mutagenesis, thus enhancing phenotypic expression or effectiveness of the traits or increasing the invertebrate pest control effectiveness of the present compounds and compositions.
  • the present compounds and compositions may interact synergistically with the phenotypic expression of proteins or other natural products toxic to invertebrate pests to provide greater-than-additive control of these pests.
  • compositions of this invention can also optionally comprise plant nutrients, e.g., a fertilizer composition comprising at least one plant nutrient selected from nitrogen, phosphorus, potassium, sulfur, calcium, magnesium, iron, copper, boron, manganese, zinc, and molybdenum.
  • a fertilizer composition comprising at least one plant nutrient selected from nitrogen, phosphorus, potassium, sulfur, calcium, magnesium, iron, copper, boron, manganese, zinc, and molybdenum.
  • compositions comprising at least one fertilizer composition comprising at least one plant nutrient selected from nitrogen, phosphorus, potassium, sulfur, calcium and magnesium.
  • Compositions of the present invention which further comprise at least one plant nutrient can be in the form of liquids or solids.
  • Solid formulations comprising a fertilizer composition can be prepared by mixing the compound or composition of the present invention with the fertilizer composition together with formulating ingredients and then preparing the formulation by methods such as granulation or extrusion.
  • solid formulations can be prepared by spraying a solution or suspension of a compound or composition of the present invention in a volatile solvent onto a previous prepared fertilizer composition in the form of dimensionally stable mixtures, e.g., granules, small sticks or tablets, and then evaporating the solvent.
  • Nonagronomic uses refer to invertebrate pest control in the areas other than fields of crop plants.
  • Nonagronomic uses of the present compounds and compositions include control of invertebrate pests in stored grains, beans and other foodstuffs, and in textiles such as clothing and carpets.
  • Nonagronomic uses of the present compounds and compositions also include invertebrate pest control in ornamental plants, forests, in yards, along roadsides and railroad rights of way, and on turf such as lawns, golf courses and pastures.
  • Nonagronomic uses of the present compounds and compositions also include invertebrate pest control in houses and other buildings which may be occupied by humans and/or companion, farm, ranch, zoo or other animals.
  • Nonagronomic uses of the present compounds and compositions also include the control of pests such as termites that can damage wood or other structural materials used in buildings.
  • Nonagronomic uses of the present compounds and compositions also include protecting human and animal health by controlling invertebrate pests that are parasitic or transmit infectious diseases.
  • the controlling of animal parasites includes controlling external parasites that are parasitic to the surface of the body of the host animal (e.g., shoulders, armpits, abdomen, inner part of the thighs) and internal parasites that are parasitic to the inside of the body of the host animal (e.g., stomach, intestine, lung, veins, under the skin, lymphatic tissue).
  • External parasitic or disease transmitting pests include, for example, chiggers, ticks, lice, mosquitoes, flies, mites and fleas.
  • Internal parasites include heartworms, hookworms and helminths.
  • Compounds and compositions of the present invention are suitable for systemic and/or non-systemic control of infestation or infection by parasites on animals.
  • Compounds and compositions of the present invention are particularly suitable for combating external parasitic or disease transmitting pests.
  • Compounds and compositions of the present invention are suitable for combating parasites that infest agricultural working animals, such as cattle, sheep, goats, horses, pigs, donkeys, camels, buffalos, rabbits, hens, turkeys, ducks, geese and bees; pet animals and domestic animals such as dogs, cats, pet birds and aquarium fish; as well as so-called experimental animals, such as hamsters, guinea pigs, rats and mice.
  • fatalities and performance reduction in terms of meat, milk, wool, skins, eggs, honey, etc.
  • agronomic or nonagronomic invertebrate pests include eggs, larvae and adults of the order Lepidoptera, such as armyworms, cutworms, loopers, and heliothines in the family Noctuidae (e.g., pink stem borer (Sesamia inferens Walker), corn stalk borer (Sesamia nonagrioides Lefebvre), southern armyworm (Spodoptera eridania Cramer), fall armyworm (Spodoptera fugiperda J. E.
  • Noctuidae e.g., pink stem borer (Sesamia inferens Walker), corn stalk borer (Sesamia nonagrioides Lefebvre), southern armyworm (Spodoptera eridania Cramer), fall armyworm (Spodoptera fugiperda J. E.
  • agronomic and nonagronomic pests include: eggs, adults and larvae of the order Dermaptera including earwigs from the family Forficulidae (e.g., European earwig (For ⁇ cula auricularia Linnaeus), black earwig ⁇ Chelisoches morio Fabricius)); eggs, immatures, adults and nymphs of the orders Hemiptera and Homoptera such as, plant bugs from the family Miridae, cicadas from the family Cicadidae, leafhoppers (e.g.
  • eggs, larvae, nymphs and adults of the order Acari such as spider mites and red mites in the family Tetranychidae (e.g., European red mite ⁇ Panonychus ulmi Koch), two spotted spider mite ⁇ Tetranychus urticae Koch), McDaniel mite ⁇ Tetranychus mcdanieli McGregor)); flat mites in the family Tenuipalpidae (e.g., citrus flat mite ⁇ Brevipalpus lewisi McGregor)); rust and bud mites in the family Eriophyidae and other foliar feeding mites and mites important in human and animal health, i.e.
  • Tetranychidae e.g., European red mite ⁇ Panonychus ulmi Koch
  • two spotted spider mite ⁇ Tetranychus urticae Koch McDaniel mite ⁇ Tetranychus
  • serpentine vegetable leafminer ⁇ Liriomyza sativae Blanchard
  • midges fruit flies
  • frit flies e.g., Oscinella frit Linnaeus
  • soil maggots e.g., house flies (e.g., Musca domestica Linnaeus), lesser house flies (e.g., Fannia canicularis Linnaeus, F.
  • femoralis Stein stable flies (e.g., Stomoxys calcitrans Linnaeus), face flies, horn flies, blow flies (e.g., Chrysomya spp., Phormia spp.), and other muscoid fly pests, horse flies (e.g., Tabanus spp.), bot flies (e.g., Gastrophilus spp., Oestrus spp.), cattle grubs (e.g., Hypoderma spp.), deer flies (e.g., Chrysops spp.), keds (e.g., Melophagus ovinus Linnaeus) and other Brachycera, mosquitoes (e.g., Aedes spp., Anopheles spp., Culex spp.), black flies (e.g., Prosimulium spp., Simulium s
  • Hymenoptera including bees (including carpenter bees), hornets, yellow jackets, wasps, and sawflies ⁇ Neodiprion spp.; Cephus spp.); insect pests of the order Isoptera including termites in the Termitidae (e.g., Macrotermes sp., Odontotermes obesus Rambur), Kalotermitidae (e.g., Cryptotermes sp.), and Rhinotermitidae (e.g., Reticulitermes sp., Coptotermes sp., Heterotermes tenuis Hagen) families, the eastern subterranean termite ⁇ Reticulitermes ⁇ avipes Kollar), western subterranean termite (Reticulitermes hesperus Banks), Formosan subterranean termite (Coptotermes formosanus Shiraki), West Indian drywood termite ⁇ Incisi
  • insect pests of the order Thysanura such as silverf ⁇ sh (Lepisma saccharina Linnaeus) and firebrat (Thermobia domestica Packard); insect pests of the order Mallophaga and including the head louse (Pediculus humanus capitis De Geer), body louse (Pediculus humanus Linnaeus), chicken body louse (Menacanthus stramineus Nitszch), dog biting louse (Trichodectes canis De Geer), fluff louse (Goniocotes gallinae De Geer), sheep body louse (Bovicola ovis Schrank), short-nosed cattle louse (Haematopinus eurysternus Nitzsch), long-nosed cattle louse (Linognathus vituli Linnaeus) and other sucking and chewing parasitic lice that attack man and animals; insect pests of the order Siphonoptera including the oriental
  • Additional arthropod pests covered include: spiders in the order Araneae such as the brown recluse spider (Loxosceles reclusa Gertsch & Mulaik) and the black widow spider (Latrodectus mactans Fabricius), and centipedes in the order Scutigeromorpha such as the house centipede (Scutigera coleoptrata Linnaeus).
  • spiders in the order Araneae such as the brown recluse spider (Loxosceles reclusa Gertsch & Mulaik) and the black widow spider (Latrodectus mactans Fabricius)
  • centipedes in the order Scutigeromorpha such as the house centipede (Scutigera coleoptrata Linnaeus).
  • Compounds of the present invention also have activity on members of the Classes Nematoda, Cestoda, Trematoda, and Acanthocephala including economically important members of the orders Strongylida, Ascaridida, Oxyurida, Rhabditida, Spirurida, and Enoplida such as but not limited to economically important agricultural pests (i.e. root knot nematodes in the genus Meloidogyne, lesion nematodes in the genus Pratylenchus, stubby root nematodes in the genus Trichodorus, etc.) and animal and human health pests (i.e.
  • Compounds of the invention show particularly high activity against pests in the order Lepidoptera (e.g., Alabama argillacea H ⁇ bner (cotton leaf worm), Archips argyrospila Walker (fruit tree leaf roller), A. rosana Linnaeus (European leaf roller) and other Archips species, Chilo suppressalis Walker (rice stem borer), Cnaphalocrosis medinalis Guenee (rice leaf roller), Cr ambus caliginosellus Clemens (corn root webworm), Cr ambus teterrellus Zincken (bluegrass webworm), Cydia pomonella Linnaeus (codling moth), Earias insulana Boisduval (spiny bollworm), Earias vittella Fabricius (spotted bollworm), Helicoverpa armigera H ⁇ bner (American bollworm), Helicoverpa zea Boddie (corn earworm), Heliothis virescens Fabricius (tobacco bud
  • Compounds of the invention also have significant activity on members from the order Homoptera including: Acyrthosiphon pisum Harris (pea aphid), Aphis craccivora Koch (cowpea aphid), Aphis fabae Scopoli (black bean aphid), Aphis gossypii Glover (cotton aphid, melon aphid), Aphis pomi De Geer (apple aphid), Aphis spiraecola Patch (spirea aphid), Aulacorthum solani Kaltenbach (foxglove aphid), Chaetosiphon fragaefolii Cockerell (strawberry aphid), Diuraphis noxia Kurdjumov/Mordvilko (Russian wheat aphid), Dysaphis plantaginea Paaserini (rosy apple aphid), Eriosoma lanigerum Hausmann (woolly apple aphid), Hyalopter
  • Compounds of this invention may also have activity on members from the order Hemiptera including: Acrosternum Mare Say (green stink bug), Anasa tristis De Geer (squash bug), Blissus leucopterus leucopterus Say (chinch bug), Cimex lectularius Linnaeus (bed bug) Corythuca gossypii Fabricius (cotton lace bug), Cyrtopeltis modesta Distant (tomato bug), Dysdercus suturellus Herrich-Schaffer (cotton stainer), Euchistus servus Say (brown stink bug), Euchistus variolarius Palisot de Beauvois (one-spotted stink bug), Graptosthetus spp.
  • Thysanoptera e.g., Frankliniella occidentalis Pergande (western flower thrips), Scirthothrips citri Moulton (citrus thrips), Sericothrips variabilis Beach (soybean thrips), and Thrips (abaci Lindeman (onion thrips); and the order Coleoptera (e.g., Leptinotarsa decemlineata Say (Colorado potato beetle), Epilachna varivestis Mulsant (Mexican bean beetle) and wireworms of the genera Agriotes, Athous or Limonius).
  • Thysanoptera e.g., Frankliniella occidentalis Pergande (western flower thrips), Scirthothrips citri Moulton (citrus thrips), Sericothrips variabilis Beach (soybean thrips), and Thrips (abaci Lindeman (onion th
  • compounds of this invention for controlling silverleaf whitefly (Bemisia argentifoli ⁇ ). Of note is use of compounds of this invention for controlling western flower thrip ⁇ Frankliniella occidentalis). Of note is use of compounds of this invention for controlling potato leafhopper (Empoasca fabae). Of note is use of compounds of this invention for controlling corn planthopper (Peregrinus maidis). Of note is use of compounds of this invention for controlling cotton melon aphid ⁇ Aphis gossypii). Of note is use of compounds of this invention for controlling green peach aphid ⁇ Myzus persicae). Of note is use of compounds of this invention for controlling diamondback moth ⁇ Plutella xylostella). Of note is use of compounds of this invention for controlling fall armyworm ⁇ Spodoptera frugiperda) .
  • Compounds of this invention can also be mixed with one or more other biologically active compounds or agents including insecticides, fungicides, nematocides, bactericides, acaricides, herbicides, herbicide safeners, growth regulators such as insect molting inhibitors and rooting stimulants, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, other biologically active compounds or entomopathogenic bacteria, virus or fungi to form a multi-component pesticide giving an even broader spectrum of agronomic and nonagronomic utility.
  • insecticides fungicides, nematocides, bactericides, acaricides, herbicides, herbicide safeners
  • growth regulators such as insect molting inhibitors and rooting stimulants, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, other biologically active compounds or entomopath
  • the present invention also pertains to a composition
  • a composition comprising a biologically effective amount of a compound of Formula 1, an N-oxide or salt thereof, and an effective amount of at least one additional biologically active compound or agent and can further comprise at least one of surfactants, solid diluents or liquid diluents.
  • the other biologically active compounds or agents can be formulated together with the present compounds, including the compounds of Formula 1, to form a premix, or the other biologically active compounds or agents can be formulated separately from the present compounds, including the compounds of Formula 1, and the two formulations combined together before application (e.g., in a spray tank) or, alternatively, applied in succession.
  • biologically active compounds or agents useful in the compositions of the present invention can be selected from invertebrate pest control agents having a different mode of action or a different chemical class including macrocyclic lactones, neonicotinoids, octopamine receptor ligands, ryanodine receptor ligands, ecdysone agonists, sodium channel modulators, chitin synthesis inhibitors, nereisotoxin analogs, mitochondrial electron transport inhibitors, cholinesterase inhibitors, cyclodiene insecticides, molting inhibitors, GABA ( ⁇ -aminobutyric acid)-regulated chloride channel blockers, juvenile hormone mimics, lipid biosynthesis inhibitors and biological agents including nucleopolyhedro viruses (NPV), members of Bacillus thuringiensis, encapsulated delta-endotoxins of Bacillus thuringiensis, and other naturally occurring or genetically modified insecticidal viruses.
  • NPV nucleopolyhedro viruses
  • additional biologically active compounds or agents selected from insecticides of the group consisting of pyrethroids, carbamates, neonicotinoids, neuronal sodium channel blockers, insecticidal macrocyclic lactones, ⁇ -aminobutyric acid antagonists, insecticidal ureas and juvenile hormone mimics, a member of Bacillus thuringiensis, a Bacillus thuringiensis delta-endotoxin, and a naturally occurring or a genetically modified viral insecticide.
  • insecticides such as abamectin, acephate, acetamiprid, acetoprole, amidofiumet (S- 1955), avermectin, azadirachtin, azinphos-methyl, bifenthrin, bifenazate, bistrifluron, buprofezin, carbofuran, cartap, chlorfenapyr, chlorfluazuron, chlorantraniliprole (DPX-E2Y45), chlorpyrifos, chlorpyrifos-methyl, chromafenozide, clothianidin, cyflumetofen, cyfluthrin, beta-cyfluthrin, cyhalothrin, gamma-cyhalothrin, lambda-cyhalothrin, cypermethrin, cyromazine,
  • entomopathogenic fungi such as green muscardine fungus
  • entomopathogenic viruses including baculovirus, nucleopolyhedro virus (NPV) such as Helicoverpa zea nucleopolyhedrovirus (HzNPV), Anagrapha falcifera nucleopolyhedrovirus (AfNPV); and granulosis virus (GV) such as Cydia pomonella granulosis virus (CpGV).
  • NPV nucleopolyhedro virus
  • HzNPV Helicoverpa zea nucleopolyhedrovirus
  • AfNPV Anagrapha falcifera nucleopolyhedrovirus
  • GV granulosis virus
  • CpGV Cydia pomonella granulosis virus
  • Compounds of this invention and compositions thereof can be applied to plants genetically transformed to express proteins toxic to invertebrate pests (such as Bacillus thuringiensis delta-endotoxins).
  • proteins toxic to invertebrate pests such as Bacillus thuringiensis delta-endotoxins.
  • the effect of the exogenously applied invertebrate pest control compounds of this invention may be synergistic with the expressed toxin proteins.
  • composition of the present invention wherein at least one additional biologically active compound or agent is selected from the group consisting of abamectin, acephate, acequinocyl, acetamiprid, acetoprole, acrinathrin, aldicarb, amidoflumet, amitraz, avermectin, azadirachtin, azinphos-methyl, bifenthrin, bifenazate, bistrifluron, borate, buprofezin, carbaryl, carbofuran, cartap, carzol, chinomethionat, chlorfenapyr, chlorfluazuron, chlorantraniliprole, chlorpyrifos, chlorpyrifos-methyl, chlorobenzilate, chromafenozide, clofentezin, clothianidin, cyflumetofen, cyfluthrin, beta-cyfluthrin, cyhalothr
  • composition of the present invention wherein at least one additional biologically active compound or agent is selected from the group consisting of abamectin, acetamiprid, amitraz, avermectin, azadirachtin, bifenthrin, buprofezin, cartap, chlorantraniliprole, chlorfenapyr, chlorpyrifos, clothianidin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, cypermethrin, cyromazine, deltamethrin, dieldrin, dinotefuran, diofenolan, emamectin, endosulfan, esfenvalerate, ethiprole, fenothiocarb, fenoxycarb, fenvalerate, fipronil, flonicamid, flubendiamide, flufenoxur
  • the weight ratio of these various mixing partners (in total) to the compound of Formula 1 is typically between about 1 :3000 and about 3000:1. Of note are weight ratios between about 1:300 and about 300:1 (for example ratios between about 1:30 and about 30:1).
  • weight ratios between about 1:300 and about 300:1 for example ratios between about 1:30 and about 30:1.
  • One skilled in the art can easily determine through simple experimentation the biologically effective amounts of active ingredients necessary for the desired spectrum of biological activity. It will be evident that including these additional components may expand the spectrum of invertebrate pests controlled beyond the spectrum controlled by the compound of Formula 1 alone. In certain instances, combinations of a compound of this invention with other biologically active (particularly invertebrate pest control) compounds or agents (i.e.
  • invertebrate pest control active ingredients can result in a greater-than-additive (i.e. synergistic) effect. Reducing the quantity of active ingredients released in the environment while ensuring effective pest control is always desirable.
  • synergism of invertebrate pest control active ingredients occurs at application rates giving agronomically satisfactory levels of invertebrate pest control, such combinations can be advantageous for reducing crop production cost and decreasing environmental load.
  • a combination of a compound of Formula 1 with at least one other invertebrate pest control active ingredient is such a combination where the other invertebrate pest control active ingredient has a different site of action from the compound of Formula 1.
  • a combination with at least one other invertebrate pest control active ingredient having a similar spectrum of control but a different site of action will be particularly advantageous for resistance management.
  • a composition of the present invention can further comprise a biologically effective amount of at least one additional invertebrate pest control active ingredient having a similar spectrum of control but a different site of action.
  • Contacting a plant genetically modified to express an invertebrate pest compound (e.g., protein) or the locus of the plant with a biologically effective amount of a compound of this invention can also provide a broader spectrum of plant protection and be advantageous for resistance management.
  • Table A lists specific combinations of a compound of Formula 1 with other invertebrate pest control agents illustrative of the mixtures, compositions and methods of the present invention.
  • the first column of Table A lists the specific invertebrate pest control agents (e.g., "Abamectin” in the first line).
  • the second column of Table A lists the mode of action (if known) or chemical class of the invertebrate pest control agents.
  • the third column of Table A lists embodiment(s) of ranges of weight ratios for rates at which the invertebrate pest control agent can be applied relative to a compound of Formula 1, an iV-oxide, or a salt thereof, (e.g., "50:1 to 1 :50" of abamectin relative to a compound of Formula 1 by weight).
  • the first line of Table A specifically discloses the combination of a compound of Formula 1 with abamectin can be applied in a weight ratio between 50:1 to 1 :50.
  • the remaining lines of Table A are to be construed similarly.
  • Table A lists specific combinations of a compound of Formula 1 with other invertebrate pest control agents illustrative of the mixtures, compositions and methods of the present invention and includes additional embodiments of weight ratio ranges for application rates.
  • invertebrate pest control agents for mixing with compounds of this invention include sodium channel modulators such as bifenthrin, cypermethrin, cyhalothrin, lambda-cyhalothrin, cyfluthrin, beta-cyfluthrin, deltamethrin, dimefiuthrin, esfenvalerate, fenvalerate, indoxacarb, metofluthrin, profluthrin, pyrethrin and tralomethrin; cholinesterase inhibitors such as chlorpyrifos, methomyl, oxamyl, thiodicarb and triazamate; neonicotinoids such as acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, nithiazine, thiacloprid and thiameth
  • sodium channel modulators such as bifenthrin, c
  • Patent 6,747,047, PCT Publications WO 2003/015518 and WO 2004/067528) and flubendiamide see U.S. Patent 6,603,044; nereistoxin analogs such as cartap; mitochondrial electron transport inhibitors such as chlorfenapyr, hydramethylnon and pyridaben; lipid biosynthesis inhibitors such as spirodiclofen and spiromesifen; cyclodiene insecticides such as dieldrin; cyflumetofen; fenothiocarb; flonicamid; metaflumizone; pyrafluprole; pyridalyl; pyriprole; pymetrozine; spirotetramat; and thiosultap-sodium.
  • mitochondrial electron transport inhibitors such as chlorfenapyr, hydramethylnon and pyridaben
  • lipid biosynthesis inhibitors such as spirodiclofen and spiromesifen
  • biological agents for mixing with compounds of this invention include nucleopolyhedro virus such as HzNPV and AfNPV; Bacillus thuringiensis and encapsulated delta-endotoxins of Bacillus thuringiensis such as Cellcap, MPV and MPVII; as well as naturally occurring and genetically modified viral insecticides including members of the family Baculoviridae as well as entomophagous fungi.
  • nucleopolyhedro virus such as HzNPV and AfNPV
  • Bacillus thuringiensis and encapsulated delta-endotoxins of Bacillus thuringiensis such as Cellcap, MPV and MPVII
  • naturally occurring and genetically modified viral insecticides including members of the family Baculoviridae as well as entomophagous fungi.
  • the composition of the present invention wherein the at least one additional biologically active compound or agent is selected from the Invertebrate Pest Control Agents listed in Table A above.
  • the weight ratios of a compound, including a compound of Formula 1, an TV-oxide or a salt thereof, to the additional invertebrate pest control agent typically are between 1000:1 and 1 :1000, with one embodiment being between 500:1 and 1 :500, another embodiment being between 250:1 and 1 :200 and another embodiment being between 100:1 and 1 :50.
  • Table B Listed below in Table B are embodiments of specific compositions comprising a compound of Formula 1 (compound numbers refer to compounds in Index Table A) and an additional invertebrate pest control agent.
  • A-67 1 and NPV e.g., Gemstar
  • B-67 2 and NPV e.g., Gemstar
  • C-67 9 and NPV e.g., Gemstar
  • D-67 10 and NPV e.g., Gemstar
  • Invertebrate pests are controlled in agronomic and nonagronomic applications by applying one or more compounds of this invention, typically in the form of a composition, in a biologically effective amount, to the environment of the pests, including the agronomic and/or nonagronomic locus of infestation, to the area to be protected, or directly on the pests to be controlled.
  • the present invention comprises a method for controlling an invertebrate pest in agronomic and/or nonagronomic applications, comprising contacting the invertebrate pest or its environment with a biologically effective amount of one or more of the compounds of the invention, or with a composition comprising at least one such compound or a composition comprising at least one such compound and a biologically effective amount of at least one additional biologically active compound or agent.
  • suitable compositions comprising a compound of the invention and a biologically effective amount of at least one additional biologically active compound or agent include granular compositions wherein the additional active compound is present on the same granule as the compound of the invention or on granules separate from those of the compound of the invention.
  • the compound or composition is typically applied to the seed of the crop before planting, to the foliage (e.g., leaves, stems, flowers, fruits) of crop plants, or to the soil or other growth medium before or after the crop is planted.
  • foliage e.g., leaves, stems, flowers, fruits
  • a method of contact is by spraying.
  • a granular composition comprising a compound of the invention can be applied to the plant foliage or the soil.
  • Compounds of this invention can also be effectively delivered through plant uptake by contacting the plant with a composition comprising a compound of this invention applied as a soil drench of a liquid formulation, a granular formulation to the soil, a nursery box treatment or a dip of transplants.
  • a composition of the present invention in the form of a soil drench liquid formulation.
  • a method for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound of the present invention or with a composition comprising a biologically effective amount of a compound of the present invention.
  • this method wherein the environment is soil and the composition is applied to the soil as a soil drench formulation.
  • compounds of this invention are also effective by localized application to the locus of infestation.
  • Other methods of contact include application of a compound or a composition of the invention by direct and residual sprays, aerial sprays, gels, seed coatings, microencapsulations, systemic uptake, baits, ear tags, boluses, foggers, fumigants, aerosols, dusts and many others.
  • One embodiment of a method of contact is a dimensionally stable fertilizer granule, stick or tablet comprising a compound or composition of the invention.
  • the compounds of this invention can also be impregnated into materials for fabricating invertebrate control devices (e.g., insect netting).
  • treating a seed means contacting the seed with a biologically effective amount of a compound of this invention, which is typically formulated as a composition of the invention.
  • This seed treatment protects the seed from invertebrate soil pests and generally can also protect roots and other plant parts in contact with the soil of the seedling developing from the germinating seed.
  • the seed treatment may also provide protection of foliage by translocation of the compound of this invention or a second active ingredient within the developing plant. Seed treatments can be applied to all types of seeds, including those from which plants genetically transformed to express specialized traits will germinate.
  • compositions formulated for seed treatment generally comprise a film former or adhesive agent. Therefore typically a seed coating composition of the present invention comprises a biologically effective amount of a compound of Formula 1, an N-oxide or salt thereof, and a film former or adhesive agent.
  • Seed can be coated by spraying a flowable suspension concentrate directly into a tumbling bed of seeds and then drying the seeds.
  • other formulation types such as wetted powders, solutions, suspoemulsions, emulsifiable concentrates and emulsions in water can be sprayed on the seed. This process is particularly useful for applying film coatings on seeds.
  • Various coating machines and processes are available to one skilled in the art. Suitable processes include those listed in P. Kosters et al., Seed Treatment: Progress and Prospects, 1994 BCPC Mongraph No. 57, and references listed therein.
  • the treated seed typically comprises a compound of the present invention in an amount from about 0.1 g to 1 kg per 100 kg of seed (i.e.
  • a flowable suspension formulated for seed treatment typically comprises from about 0.5 to about 70% of the active ingredient, from about 0.5 to about 30% of a film-forming adhesive, from about 0.5 to about 20% of a dispersing agent, from 0 to about 5% of a thickener, from 0 to about 5% of a pigment and/or dye, from 0 to about 2% of an antifoaming agent, from 0 to about 1% of a preservative, and from 0 to about 75% of a volatile liquid diluent.
  • the compounds of this invention can be incorporated into a bait composition that is consumed by an invertebrate pest or used within a device such as a trap, bait station, and the like.
  • a bait composition can be in the form of granules which comprise (a) active ingredients, namely a biologically effective amount of a compound of Formula 1, an N-oxide, or salt thereof; (b) one or more food materials; optionally (c) an attractant, and optionally (d) one or more humectants.
  • granules or bait compositions which comprise between about 0.001-5% active ingredients, about 40-99% food material and/or attractant; and optionally about 0.05-10% humectants, which are effective in controlling soil invertebrate pests at very low application rates, particularly at doses of active ingredient that are lethal by ingestion rather than by direct contact.
  • Some food materials can function both as a food source and an attractant.
  • Food materials include carbohydrates, proteins and lipids. Examples of food materials are vegetable flour, sugar, starches, animal fat, vegetable oil, yeast extracts and milk solids.
  • attractants are odorants and flavorants, such as fruit or plant extracts, perfume, or other animal or plant component, pheromones or other agents known to attract a target invertebrate pest.
  • humectants i.e. moisture retaining agents, are glycols and other polyols, glycerine and sorbitol.
  • a bait composition (and a method utilizing such a bait composition) used to control at least one invertebrate pest selected from the group consisting of ants, termites and cockroaches.
  • a device for controlling an invertebrate pest can comprise the present bait composition and a housing adapted to receive the bait composition, wherein the housing has at least one opening sized to permit the invertebrate pest to pass through the opening so the invertebrate pest can gain access to the bait composition from a location outside the housing, and wherein the housing is further adapted to be placed in or near a locus of potential or known activity for the invertebrate pest.
  • the compounds of this invention can be applied without other adjuvants, but most often application will be of a formulation comprising one or more active ingredients with suitable carriers, diluents, and surfactants and possibly in combination with a food depending on the contemplated end use.
  • One method of application involves spraying a water dispersion or refined oil solution of a compound of the present invention. Combinations with spray oils, spray oil concentrations, spreader stickers, adjuvants, other solvents, and synergists such as piperonyl butoxide often enhance compound efficacy.
  • Such sprays can be applied from spray containers such as a can, a bottle or other container, either by means of a pump or by releasing it from a pressurized container, e.g., a pressurized aerosol spray can.
  • Such spray compositions can take various forms, for example, sprays, mists, foams, fumes or fog.
  • Such spray compositions thus can further comprise propellants, foaming agents, etc. as the case may be.
  • a spray composition comprising a biologically effective amount of a compound or a composition of the present invention and a carrier.
  • a spray composition comprises a biologically effective amount of a compound or a composition of the present invention and a propellant.
  • propellants include, but are not limited to, methane, ethane, propane, butane, isobutane, butene, pentane, isopentane, neopentane, pentene, hydrofluorocarbons, chlorofluorocarbons, dimethyl ether, and mixtures of the foregoing.
  • a spray composition (and a method utilizing such a spray composition dispensed from a spray container) used to control at least one invertebrate pest selected from the group consisting of mosquitoes, black flies, stable flies, deer flies, horse flies, wasps, yellow jackets, hornets, ticks, spiders, ants, gnats, and the like, including individually or in combinations.
  • Nonagronomic applications include protecting an animal, particularly a vertebrate, more particularly a homeothermic vertebrate (e.g., mammal or bird) and most particularly a mammal, from an invertebrate parasitic pest by administering a parasiticidally effective (i.e. biologically effective) amount of a compound of the invention, typically in the form of a composition formulated for veterinary use, to the animal to be protected. Therefore of note is a method for protecting an animal comprising administering to the animal a parasiticidally effective amount of a compound of the invention.
  • parasitic and “parasiticidally” refers to observable effects on an invertebrate parasite pest to provide protection of an animal from the pest.
  • Parasiticidal effects typically relate to diminishing the occurrence or activity of the target invertebrate parasitic pest. Such effects on the pest include necrosis, death, retarded growth, diminished mobility or lessened ability to remain on or in the host animal, reduced feeding and inhibition of reproduction. These effects on invertebrate parasite pests provide control (including prevention, reduction or elimination) of parasitic infestation or infection of the animal.
  • Examples of invertebrate parasitic pests controlled by administering a parasiticidally effective amount of a compound of the invention to an animal to be protected include ectoparasites (arthropods, acarines, etc) and endoparasites (helminths, e.g., nematodes, trematodes, cestodes, acanthocephalans, etc.).
  • ectoparasites arthropods, acarines, etc
  • endoparasites e.g., nematodes, trematodes, cestodes, acanthocephalans, etc.
  • the compounds of this invention are effective against ectoparasites including: flies such as Haematobia (Lyperosia) irritans (horn fly), Stomoxys calcitrans (stable fly), Simulium spp. (blackfly), Glossina spp.
  • cyanotis ear mites
  • ticks such as Ixodes spp., Boophilus spp., Rhipicephalus spp., Amblyomma spp., Dermacentor spp., Hyalomma spp. and Haemaphysalis spp.
  • fleas such as Ctenocephalides felis (cat flea) and Ctenocephalides canis (dog flea).
  • Nonagronomic applications in the veterinary sector are by conventional means such as by enteral administration in the form of, for example, tablets, capsules, drinks, drenching preparations, granulates, pastes, boli, feed-through procedures, or suppositories; or by parenteral administration, such as by injection (including intramuscular, subcutaneous, intravenous, intraperitoneal) or implants; by nasal administration; by topical administration, for example, in the form of immersion or dipping, spraying, washing, coating with powder, or application to a small area of the animal, and through articles such as neck collars, ear tags, tail bands, limb bands or halters which comprise compounds or compositions of the present invention.
  • a parasiticidal composition comprises a mixture of a compound of Formula 1, an iV-oxide or a salt thereof, with one or more pharmaceutically or veterinarily acceptable carriers comprising excipients and auxiliaries selected with regard to the intended route of administration (e.g., oral, topical or parenteral administration such as injection) and in accordance with standard practice.
  • a suitable carrier is selected on the basis of compatibility with the one or more active ingredients in the composition, including such considerations as stability relative to pH and moisture content. Therefore of note is a composition for protecting an animal from an invertebrate parasitic pest comprising a parasitically effective amount of a compound of the invention and at least one carrier.
  • a compound of the present invention can be formulated in suspension, solution or emulsion in oily or aqueous vehicles, and may contain adjuncts such as suspending, stabilizing and/or dispersing agents.
  • Pharmaceutical compositions for injection include aqueous solutions of water-soluble forms of active ingredients (e.g., a salt of an active compound), preferably in physiologically compatible buffers containing other excipients or auxiliaries as are known in the art of pharmaceutical formulation.
  • a compound of the present invention can be formulated with binders/fillers known in the art to be suitable for oral administration compositions, such as sugars (e.g., lactose, sucrose, mannitol, sorbitol), starch (e.g., maize starch, wheat starch, rice starch, potato starch), cellulose and derivatives (e.g., methylcellulose, carboxymethylcellulose, ethylhydroxycellulose), protein derivatives (e.g., zein, gelatin), and synthetic polymers (e.g., polyvinyl alcohol, polyvinylpyrrolidone).
  • sugars e.g., lactose, sucrose, mannitol, sorbitol
  • starch e.g., maize starch, wheat starch, rice starch, potato starch
  • cellulose and derivatives e.g., methylcellulose, carboxymethylcellulose, ethylhydroxycellulose
  • protein derivatives e.g., zein
  • lubricants e.g., magnesium stearate
  • disintegrating agents e.g., cross-linked poiyvinylpyrrolidinone, agar, alginic acid
  • dyes or pigments can be added.
  • Pastes and gels often also contain adhesives (e.g., acacia, alginic acid, bentonite, cellulose, xanthan gum, colloidal magnesium aluminum silicate) to aid in keeping the composition in contact with the oral cavity and not being easily ejected.
  • the carrier is typically selected from high-performance feed, feed cereals or protein concentrates.
  • feed concentrate-containing compositions can, in addition to the parasiticidal active ingredients, comprise additives promoting animal health or growth, improving quality of meat from animals for slaughter or otherwise useful to animal husbandry.
  • additives can include, for example, vitamins, antibiotics, chemotherapeutics, bacteriostats, fungistats, coccidiostats and hormones.
  • Compounds of the present invention have been discovered to have favorable pharmacokinetic and pharmacodynamic properties providing systemic availability from oral administration and ingestion.
  • compositions for protecting an animal from an invertebrate parasite pest in a form for oral administration i.e. comprising, in addition to a parasiticidally effective amount of a compound of the invention, one or more carriers selected from binders and fillers suitable for oral administration and feed concentrate carriers).
  • Formulations for topical administration are typically in the form of a powder, cream, suspension, spray, emulsion, foam, paste, aerosol, ointment, salve or gel.
  • a topical formulation is a water-soluble solution, which can be in the form of a concentrate that is diluted before use.
  • Parasiticidal compositions suitable for topical administration typically comprise a compound of the present invention and one or more topically suitable carriers.
  • the active ingredient migrates over the surface of the animal to cover most or all of its external surface area.
  • the treated animal is particularly protected from invertebrate pests that feed off the epidermis of the animal such as ticks, fleas and lice.
  • formulations for topical localized administration often comprise at least one organic solvent to facilitate transport of the active ingredient over the skin and/or penetration into the epidermis of the animal.
  • Solvents commonly used as carriers in such formulations include propylene glycol, paraffins, aromatics, esters such as isopropyl myristate, glycol ethers, and alcohols such as ethanol and w-propanol.
  • the rate of application required for effective control i.e. "biologically effective amount" will depend on such factors as the species of invertebrate to be controlled, the pest's life cycle, life stage, its size, location, time of year, host crop or animal, feeding behavior, mating behavior, ambient moisture, temperature, and the like.
  • a compound of Formula 1, an N-oxide or a salt thereof is administered in a parasiticidally effective amount to an animal to be protected from invertebrate parasite pests.
  • a parasiticidally effective amount is the amount of active ingredient needed to achieve an observable effect diminishing the occurrence or activity of the target invertebrate parasite pest.
  • the parasitically effective dose can vary for the various compounds and compositions of the present invention, the desired parasitical effect and duration, the target invertebrate pest species, the animal to be protected, the mode of application and the like, and the amount needed to achieve a particular result can be determined through simple experimentation.
  • the daily dosage of a compound of the present invention typically ranges from about 0.01 mg/kg to about 100 mg/kg, more typically from about 0.5 mg/kg to about 100 mg/kg, of animal body weight.
  • dips and sprays typically contain from about 0.5 ppm to about 5000 ppm, more typically from about 1 ppm to about 3000 ppm, of a compound of the present invention.
  • Control efficacy represents inhibition of invertebrate pest development (including mortality) that causes significantly reduced feeding.
  • the pest control protection afforded by the compounds is not limited, however, to these species. See Index Index Tables A and B for compound descriptions.
  • the abbreviation “Ex.” stands for “Example” and is followed by a number indicating in which Synthesis Example the compound is prepared.
  • test unit For evaluating control of diamondback moth (Plutella xylostell ⁇ ) the test unit consisted of a small open container with a 12-14-day-old radish plant inside. This was pre-infested with about 50 neonate larvae that were dispensed into the test unit via corn-cob grits using a apelooka inoculator. The larvae moved onto the test plant after being dispensed into the test unit.
  • Test compounds were formulated using a solution containing 10% acetone, 90% water and 300 ppm X-77TM Spreader Lo-Foam Formula non-ionic surfactant containing alkylarylpolyoxyethylene, free fatty acids, glycols and isopropanol (Loveland Industries, Inc. Greeley, Colorado, USA).
  • the formulated compounds were applied in 1 mL of liquid through a SU J2 atomizer nozzle with 1/8 JJ custom body (Spraying Systems Co. Wheaton, Illinois, USA) positioned 1.27 cm (0.5 inches) above the top of each test unit. All experimental compounds in these tests were sprayed at 50 ppm, and the test was replicated three times.
  • each test unit was allowed to dry for 1 h and then a black, screened cap was placed on top. The test units were held for 6 days in a growth chamber at 25 0 C and 70% relative humidity. Plant feeding damage was then visually assessed based on foliage consumed and a pest mortality rating was also counted and calculated for each test unit.
  • the compounds of Formula 1 tested the following provided very good to excellent levels of control efficacy (20% or less feeding damage or 80% or more mortality): 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 19, 20, 21, 22, 23, 25, 26 and 27.
  • TEST B For evaluating control of fall armyworm (Spodoptera frugiperda) the test unit consisted of a small open container with a 4-5-day-old corn (maize) plant inside. This was pre-infested (using a core sampler) with 10-15 1 -day-old larvae on a piece of insect diet. Test compounds were formulated and sprayed at 50 ppm as described for Test A and replicated three times. After spraying, the test units were maintained in a growth chamber and then the control efficacy was rated for each test unit as described for Test A. Of the compounds of Formula 1 tested the following provided very good to excellent levels of control efficacy (20% or less feeding damage or 80% or more mortality): 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 19, 20, 21, 22, 23, 25 and 26.
  • test unit For evaluating control of potato leafhopper ⁇ Empoasca fabae) through contact and/or systemic means, the test unit consisted of a small open container with a 5-6 day old Soleil bean plant (primary leaves emerged) inside. White sand was added to the top of the soil and one of the primary leaves was excised prior to application. Test compounds were formulated and sprayed as described for Test A. All experimental compounds in these tests were sprayed at 250 ppm, and the test was replicated three times. After spraying, the test units were allowed to dry for 1 hour before they were post-infested with 5 potato leafhoppers (18- to 21 -day old adults). A black, screened cap was placed on the top of the cylinder. The test units were held for 6 days in a growth chamber at 19-21 0 C and 50-70% relative humidity. The control efficacy of each test unit was then visually assessed by the insect mortality.
  • test unit For evaluating control of corn planthopper ⁇ Peregrinus maidis) through contact and/or systemic means, the test unit consisted of a small open container with a 3— 4-day-old maize plant (spike) inside. White sand was added to the top of the soil prior to application. Test compounds were formulated and sprayed at 250 ppm and replicated three times as described for Test A. After spraying, the test units were allowed to dry for 1 h before they were post- infested with 10-20 corn planthoppers (18- to 20-day-old nymphs) by sprinkling them onto the sand with a salt shaker. A black, screened cap was placed on the top of the cylinder.
  • test units were held for 6 days in a growth chamber at 19-21 0 C and 50-70% relative humidity. Each test unit was then visually assessed for insect mortality. Of the compounds of Formula 1 tested the following provided very good to excellent levels of control efficacy (80% or more mortality): 1, 3, 8, 9, 10, 13, 14, 19, 20, 21, 22 and 25.
  • test unit For evaluating control of the western flower thrips (Frankliniella occidentalis) through contact and/or systemic means, the test unit consisted of a small open container with a 5-7 day old Soleil Bean plant inside. Test compounds were formulated and sprayed as described for Test A. All experimental compounds in these tests were sprayed at 250 ppm, and the test was replicated three times. After spraying, the test units were allowed to dry for 1 hour and then 22-27 adult thrips were added to each unit and then a black, screened cap was placed on top. The test units were held for 6 days at 25 0 C and 45-55% relative humidity. A mortality rating was assessed along with a plant damage rating for each test unit.
  • test unit For evaluating control of green peach aphid (Myzus persicae) through contact and/or systemic means, the test unit consisted of a small open container with a 12-15-day-old radish plant inside. This was pre-infested by placing on a leaf of the test plant 30—40 aphids on a piece of leaf excised from a culture plant (cut-leaf method). The larvae moved onto the test plant as the leaf piece desiccated. After pre-infestation, the soil of the test unit was covered with a layer of sand. Test compounds were formulated and sprayed as described for Test A. All experimental compounds in these tests were sprayed at 250 ppm, and the test was replicated three times.
  • each test unit was allowed to dry for 1 h and then a black, screened cap was placed on top. The test units were held for 6 days in a growth chamber at 19-21 °C and 50-70% relative humidity. Each test unit was then visually assessed for insect mortality.
  • test unit For evaluating control of cotton melon aphid (Aphis gossypi ⁇ ) through contact and/or systemic means, the test unit consisted of a small open container with a 6-7-day-old cotton plant inside. This was pre-infested with 30-40 insects on a piece of leaf according to the cut-leaf method described for Test F, and the soil of the test unit was covered with a layer of sand. Test compounds were formulated and sprayed at 250 ppm and the test was replicated three times. After spraying, the test units were maintained in a growth chamber and then visually rated assessed for insect mortality
  • test unit For evaluating control of silverleaf whitefly (Bemisia tabac ⁇ ), the test unit consisted of a 14-21 -day-old cotton plant grown in Redi-earth® media (Scotts Co.) with at least two true leaves infested with 2nd and 3rd instar nymphs on the underside of the leaves. Test compounds were formulated in no more than 2 mL of acetone and then diluted with water to 25-30 mL. The formulated compounds were applied using a flat fan air- assisted nozzle (Spraying Systems 122440) at 10 psi (69 kPa). Plants were sprayed to runoff on a turntable sprayer (patent publication EP-1110617- Al).
  • TEST I For evaluating control of the cat flea (Ctenocephalides felis), a CD-I ® mouse (about 30 g, male, obtained from Charles River Laboratories, Wilmington, MA) was orally dosed with a test compound in an amount of 10 mg/kg solubilized in propylene glycol/glycerol formal (60:40). Two hours after oral administration of the test compound, approximately 8 to 16 adult fleas were applied to each mouse. The fleas were then evaluated for mortality 48 hours after flea application to the mouse.

Abstract

La présente invention concerne des composés de formule 1, des N-oxydes et leurs sels ; dans la formule (I), R1 étant un atome de F, de Cl, de Br, de CF3, d'OCF2H, d'OCF3 d'OCH2CF3 ou un groupe cyano ; R2 étant un atome de H, de F, de Cl, de Br, de CH3, de CF3, d'OCF2H, d'OCF3 , d'OCH2CF3 ou un groupe cyano ; et R3 étant un atome de H, de F, de Cl, de Br ou de CF3. L'invention concerne également des compositions contenant les composés de formule (I) et des procédés de contrôle d'un déprédateur invertébré comprenant la mise en contact du déprédateur invertébré ou de son environnement avec une quantité biologiquement efficace d'un composé ou d'une composition de l'invention.
PCT/US2008/006637 2007-05-31 2008-05-23 Agents de contrôle des déprédateurs invertébrés 3-cyano-4-triazolyl-phénylisoxazoline WO2008150393A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US93279707P 2007-05-31 2007-05-31
US60/932,797 2007-05-31

Publications (1)

Publication Number Publication Date
WO2008150393A1 true WO2008150393A1 (fr) 2008-12-11

Family

ID=39712117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/006637 WO2008150393A1 (fr) 2007-05-31 2008-05-23 Agents de contrôle des déprédateurs invertébrés 3-cyano-4-triazolyl-phénylisoxazoline

Country Status (3)

Country Link
AR (1) AR066793A1 (fr)
TW (1) TW200900398A (fr)
WO (1) WO2008150393A1 (fr)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125130A1 (fr) 2009-04-30 2010-11-04 Basf Se Procédé de préparation de composés isoxazoline substitués et de leurs précurseurs
WO2011075591A1 (fr) 2009-12-17 2011-06-23 Merial Limited Dihydroazoles antiparasitaires et compositions les incluant
WO2011095581A1 (fr) 2010-02-05 2011-08-11 Intervet International B.V. Composés spiroindolines destinés à être utilisés comme agents anthelminthiques
WO2012007426A1 (fr) 2010-07-13 2012-01-19 Basf Se Composés d'isoxazoline benzamide à substitution azoline pour lutter contre les organismes nuisibles
WO2012041873A1 (fr) 2010-09-29 2012-04-05 Intervet International B.V. Composés n-hétéroarylés
WO2012041872A1 (fr) 2010-09-29 2012-04-05 Intervet International B.V. Composés n-hétéroarylés ayant une unité pontante cyclique pour le traitement de maladies parasitaires
WO2012127347A1 (fr) 2011-03-22 2012-09-27 Pfizer Inc. Dérivés d'isoxazoline en tant qu'agents anti-parasitaires
WO2013017678A1 (fr) 2011-08-04 2013-02-07 Intervet International B.V. Nouveaux composés de spiroindoline
US8507514B2 (en) 2009-02-06 2013-08-13 Sumitomo Chemical Company, Limited Hydrazide compound and use of the same in pest control
WO2013144180A1 (fr) 2012-03-28 2013-10-03 Intervet International B.V. Composés hétéroaryles à unité de pontage cyclique utilisés dans le traitement d'infections helminthiques
WO2013144179A1 (fr) 2012-03-28 2013-10-03 Intervet International B.V. Composés hétéroaryles à unité de pontage cyclique
CN103355279A (zh) * 2013-07-19 2013-10-23 江苏省农业科学院 用于防治设施作物蚜虫的电热灭蚜方法及其所用灭蚜液
WO2014019609A1 (fr) 2012-07-31 2014-02-06 Syngenta Participations Ag Procédé de lutte contre des organismes nuisibles s'attaquant au soja
WO2014029707A1 (fr) * 2012-08-24 2014-02-27 Syngenta Participations Ag Procédés de lutte contre les insectes
WO2014029710A2 (fr) * 2012-08-24 2014-02-27 Syngenta Participations Ag Procédés de lutte contre les nuisibles vivant dans le sol
US8735362B2 (en) 2009-12-01 2014-05-27 Syngenta Crop Protection, Llc Insecticidal compounds based on isoxazoline derivatives
WO2014081697A2 (fr) 2012-11-20 2014-05-30 Merial Limited Composés et compositions anthelminthiques et leur procédé d'utilisation
US9006447B2 (en) 2010-11-03 2015-04-14 Basf Se Method for preparing substituted isoxazoline compounds and their precursors 4-chloro, 4-bromo- or 4-iodobenzaldehyde oximes
WO2015066277A1 (fr) 2013-11-01 2015-05-07 Merial Limited Composés d'isoxazoline antiparasitaires et pesticides
WO2014029706A3 (fr) * 2012-08-24 2015-07-16 Syngenta Participations Ag Procédés de lutte contre les insectes
US9085541B2 (en) 2010-06-23 2015-07-21 Basf Se Process for producing imine compounds for combating invertebrate pests
US20150257386A1 (en) * 2012-10-10 2015-09-17 Syngenta Participations Ag Pesticidal mixtures
WO2015179414A1 (fr) 2014-05-19 2015-11-26 Merial, Inc. Composés anthelmintiques
WO2016069983A1 (fr) 2014-10-31 2016-05-06 Merial, Inc. Composition parasiticide comprenant du fipronil
US9770029B2 (en) 2008-07-09 2017-09-26 Basf Se Pesticidal active mixtures comprising isoxazoline compounds I
WO2018166855A1 (fr) 2017-03-16 2018-09-20 Basf Se Dihydroisoxazoles à substitution hétérobicyclique
WO2018178345A1 (fr) 2017-03-31 2018-10-04 Intervet International B.V. Formulation pharmaceutique de sel de crotonylaminopyridine
WO2020002593A1 (fr) 2018-06-29 2020-01-02 Intervet International B.V. Composé destiné à être utilisé contre une infection helminthique
EP4238971A1 (fr) * 2022-03-02 2023-09-06 Basf Se Dérivés substitués d'isoxazoline
WO2023165854A1 (fr) 2022-03-02 2023-09-07 Basf Se Dérivés d'isoxazoline substitués

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997013773A1 (fr) * 1995-10-12 1997-04-17 E.I. Du Pont De Nemours And Company Oxazolines et thiazolines arthropodicides
JP2007016017A (ja) * 2005-06-06 2007-01-25 Nissan Chem Ind Ltd 置換イソキサゾリン化合物及び有害生物防除剤
WO2007075459A2 (fr) * 2005-12-16 2007-07-05 E. I. Du Pont De Nemours And Company 5-arylisoxazolines pour lutter contre des parasites invertebres
WO2008019760A1 (fr) * 2006-08-15 2008-02-21 Bayer Cropscience Ag Isoxazolines insecticides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997013773A1 (fr) * 1995-10-12 1997-04-17 E.I. Du Pont De Nemours And Company Oxazolines et thiazolines arthropodicides
JP2007016017A (ja) * 2005-06-06 2007-01-25 Nissan Chem Ind Ltd 置換イソキサゾリン化合物及び有害生物防除剤
WO2007075459A2 (fr) * 2005-12-16 2007-07-05 E. I. Du Pont De Nemours And Company 5-arylisoxazolines pour lutter contre des parasites invertebres
WO2008019760A1 (fr) * 2006-08-15 2008-02-21 Bayer Cropscience Ag Isoxazolines insecticides

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9770029B2 (en) 2008-07-09 2017-09-26 Basf Se Pesticidal active mixtures comprising isoxazoline compounds I
US10231455B2 (en) 2008-07-09 2019-03-19 Basf Se Pesticidal active mixtures comprising isoxazoline compounds I
US10888094B2 (en) 2008-07-09 2021-01-12 Basf Se Pesticidal active mixtures comprising isoxazoline compounds I
US8507514B2 (en) 2009-02-06 2013-08-13 Sumitomo Chemical Company, Limited Hydrazide compound and use of the same in pest control
US8853410B2 (en) 2009-04-30 2014-10-07 Basf Se Process for preparing substituted isoxazoline compounds and their precursors
WO2010125130A1 (fr) 2009-04-30 2010-11-04 Basf Se Procédé de préparation de composés isoxazoline substitués et de leurs précurseurs
US10206400B2 (en) 2009-12-01 2019-02-19 Syngenta Participations Ag Insecticidal compounds based on isoxazoline derivatives
US11357231B2 (en) 2009-12-01 2022-06-14 Syngenta Crop Protection Llc Insecticidal compounds based on isoxazoline derivatives
US9609869B2 (en) 2009-12-01 2017-04-04 Syngenta Crop Protection, Llc Insecticidal compounds based on isoxazoline derivatives
US8735362B2 (en) 2009-12-01 2014-05-27 Syngenta Crop Protection, Llc Insecticidal compounds based on isoxazoline derivatives
US10750745B2 (en) 2009-12-01 2020-08-25 Syngenta Crop Protection, Llc Insecticidal compounds based on isoxazoline derivatives
EP3560923A1 (fr) 2009-12-17 2019-10-30 Boehringer Ingelheim Animal Health USA Inc. Composés dihydroazoles antiparasitaires et compositions les comprenant
WO2011075591A1 (fr) 2009-12-17 2011-06-23 Merial Limited Dihydroazoles antiparasitaires et compositions les incluant
EP3078664A1 (fr) 2009-12-17 2016-10-12 Merial Inc. Compositions antiparasitaires comprenant dihydroazoles
US8618126B2 (en) 2009-12-17 2013-12-31 Merial Limited Antiparisitic dihydroazole compounds and compositions comprising same
US9376434B2 (en) 2009-12-17 2016-06-28 Merial Inc. Antiparisitic dihydroazole compounds and compositions comprising same
US9776999B2 (en) 2009-12-17 2017-10-03 Merial Inc. Antiparisitic dihydroazole compounds and compositions comprising same
WO2011095581A1 (fr) 2010-02-05 2011-08-11 Intervet International B.V. Composés spiroindolines destinés à être utilisés comme agents anthelminthiques
US9085541B2 (en) 2010-06-23 2015-07-21 Basf Se Process for producing imine compounds for combating invertebrate pests
WO2012007426A1 (fr) 2010-07-13 2012-01-19 Basf Se Composés d'isoxazoline benzamide à substitution azoline pour lutter contre les organismes nuisibles
WO2012041872A1 (fr) 2010-09-29 2012-04-05 Intervet International B.V. Composés n-hétéroarylés ayant une unité pontante cyclique pour le traitement de maladies parasitaires
WO2012041873A1 (fr) 2010-09-29 2012-04-05 Intervet International B.V. Composés n-hétéroarylés
US9006447B2 (en) 2010-11-03 2015-04-14 Basf Se Method for preparing substituted isoxazoline compounds and their precursors 4-chloro, 4-bromo- or 4-iodobenzaldehyde oximes
US9061013B2 (en) 2011-03-22 2015-06-23 Zoetis Llc Isoxazoline derivatives as antiparasitic agents
WO2012127347A1 (fr) 2011-03-22 2012-09-27 Pfizer Inc. Dérivés d'isoxazoline en tant qu'agents anti-parasitaires
WO2013017678A1 (fr) 2011-08-04 2013-02-07 Intervet International B.V. Nouveaux composés de spiroindoline
WO2013144180A1 (fr) 2012-03-28 2013-10-03 Intervet International B.V. Composés hétéroaryles à unité de pontage cyclique utilisés dans le traitement d'infections helminthiques
WO2013144179A1 (fr) 2012-03-28 2013-10-03 Intervet International B.V. Composés hétéroaryles à unité de pontage cyclique
WO2014019609A1 (fr) 2012-07-31 2014-02-06 Syngenta Participations Ag Procédé de lutte contre des organismes nuisibles s'attaquant au soja
US9867375B2 (en) 2012-07-31 2018-01-16 Syngenta Participations Ag Methods of pest control in soybean
CN104582483A (zh) * 2012-08-24 2015-04-29 先正达参股股份有限公司 土壤有害生物控制的方法
WO2014029706A3 (fr) * 2012-08-24 2015-07-16 Syngenta Participations Ag Procédés de lutte contre les insectes
WO2014029710A2 (fr) * 2012-08-24 2014-02-27 Syngenta Participations Ag Procédés de lutte contre les nuisibles vivant dans le sol
CN104955328A (zh) * 2012-08-24 2015-09-30 先正达参股股份有限公司 控制昆虫的方法
WO2014029710A3 (fr) * 2012-08-24 2014-06-12 Syngenta Participations Ag Procédés de lutte contre les nuisibles vivant dans le sol
CN104602526A (zh) * 2012-08-24 2015-05-06 先正达参股股份有限公司 控制昆虫的方法
WO2014029707A1 (fr) * 2012-08-24 2014-02-27 Syngenta Participations Ag Procédés de lutte contre les insectes
US9510595B2 (en) * 2012-10-10 2016-12-06 Syngenta Participations Ag Pesticidal mixtures
US20150257386A1 (en) * 2012-10-10 2015-09-17 Syngenta Participations Ag Pesticidal mixtures
WO2014081697A2 (fr) 2012-11-20 2014-05-30 Merial Limited Composés et compositions anthelminthiques et leur procédé d'utilisation
EP3428162A1 (fr) 2012-11-20 2019-01-16 Merial Inc. Composés et compositions anthelminthiques et leur procédé d'utilisation
CN103355279A (zh) * 2013-07-19 2013-10-23 江苏省农业科学院 用于防治设施作物蚜虫的电热灭蚜方法及其所用灭蚜液
WO2015066277A1 (fr) 2013-11-01 2015-05-07 Merial Limited Composés d'isoxazoline antiparasitaires et pesticides
EP3733664A1 (fr) 2013-11-01 2020-11-04 Boehringer Ingelheim Animal Health USA Inc. Composés d'isoxazoline antiparasitaires et pesticides
WO2015179414A1 (fr) 2014-05-19 2015-11-26 Merial, Inc. Composés anthelmintiques
WO2016069983A1 (fr) 2014-10-31 2016-05-06 Merial, Inc. Composition parasiticide comprenant du fipronil
WO2018166855A1 (fr) 2017-03-16 2018-09-20 Basf Se Dihydroisoxazoles à substitution hétérobicyclique
WO2018178345A1 (fr) 2017-03-31 2018-10-04 Intervet International B.V. Formulation pharmaceutique de sel de crotonylaminopyridine
WO2020002593A1 (fr) 2018-06-29 2020-01-02 Intervet International B.V. Composé destiné à être utilisé contre une infection helminthique
EP4238971A1 (fr) * 2022-03-02 2023-09-06 Basf Se Dérivés substitués d'isoxazoline
WO2023165854A1 (fr) 2022-03-02 2023-09-07 Basf Se Dérivés d'isoxazoline substitués

Also Published As

Publication number Publication date
TW200900398A (en) 2009-01-01
AR066793A1 (es) 2009-09-09

Similar Documents

Publication Publication Date Title
US8367584B2 (en) Naphthalene isoxazoline compounds for control of invertebrate pests
EP1966195B1 (fr) 5-arylisoxazolines pour lutter contre des parasites invertebres
US8871941B2 (en) 8-bromo-5-quinolinecarboxaldehyde oxime
US8410153B2 (en) Naphthalene isoxazoline invertebrate pest control agents
WO2008150393A1 (fr) Agents de contrôle des déprédateurs invertébrés 3-cyano-4-triazolyl-phénylisoxazoline
US20090143410A1 (en) Isoxazolines for Controlling Invertebrate Pests
WO2009051956A2 (fr) Insecticides isoxazoline substitué par un pyrazole
WO2007123853A2 (fr) Agents hétérocycliques à cinq chaînons utiles dans la lutte contre les parasites invertébrés
WO2007123855A2 (fr) Pyrazolines utiles dans la lutte contre les parasites invertébrés
WO2012012366A1 (fr) 3-(aryloxy)azacycloalcanes pesticides
AU2014262193A1 (en) Naphthalene isoxazoline compounds for control of invertebrate pests

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08767863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08767863

Country of ref document: EP

Kind code of ref document: A1