WO2008142806A1 - ギヤポンプ - Google Patents

ギヤポンプ Download PDF

Info

Publication number
WO2008142806A1
WO2008142806A1 PCT/JP2007/065975 JP2007065975W WO2008142806A1 WO 2008142806 A1 WO2008142806 A1 WO 2008142806A1 JP 2007065975 W JP2007065975 W JP 2007065975W WO 2008142806 A1 WO2008142806 A1 WO 2008142806A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
support shaft
driven
side wall
pump
Prior art date
Application number
PCT/JP2007/065975
Other languages
English (en)
French (fr)
Inventor
Keisuke Shinozaki
Original Assignee
Tbk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tbk Co., Ltd. filed Critical Tbk Co., Ltd.
Priority to EP07792605.3A priority Critical patent/EP2154373B1/en
Priority to US12/596,766 priority patent/US8376724B2/en
Priority to CN2007800530256A priority patent/CN101675247B/zh
Publication of WO2008142806A1 publication Critical patent/WO2008142806A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/18Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/185Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by varying the useful pumping length of the cooperating members in the axial direction

Definitions

  • the present invention relates to a gear pump that transports fluid using two gears that mesh with each other, and more particularly, to a gear pump that is configured so that the meshing width of two gears is variable.
  • the capacity of a gear pump is determined by the tooth height, tooth width, etc.
  • the discharge flow rate is determined by the capacity and the rotation speed of the gear (pump rotation speed).
  • this gear pump is used, for example, as an oil pump that supplies lubricating oil to the interior of a vehicle engine
  • the capacity of this oil pump is necessary for lubrication even if the output of the engine that is the drive source is low and the pump speed is small. It is set so that the amount of oil can be supplied.
  • the engine output is high and the pump speed is increased, an excessive amount of oil is supplied to the engine, and a high driving force is consumed by the oil pump. Risk of loss.
  • the structure is configured to receive the discharge fluid pressure over the entire back surface of the other side plate and apply the pressing force. And a large discharge fluid pressure is consumed to move the driven gear in the axial direction. Changing the pump capacity lowered the discharge fluid pressure, which had the problem of affecting the oil discharge supply of the gear pump.
  • the present invention has been made in view of these problems, and an object of the present invention is to provide a variable displacement gear pump that can efficiently change the pump capacity without affecting the oil discharge supply amount. And '' Means for deciding the assignment
  • the gear pump according to the present invention includes a first gear fixed to a first support shaft extending in the left-right direction and rotating together with the first support shaft, and a second support disposed on the first support shaft and in the vertical direction.
  • the gear pump is formed with a suction port communicating with the arrangement space and a discharge port cover S communicating with the arrangement space in the casing, and the first support shaft rotates and the first support shaft rotates.
  • the second gear By rotating in a state where the first gear and the second gear are engaged, fluid is sucked into the suction port and discharged from the discharge port.
  • the second gear is rotatably supported in the arrangement space, and both side surfaces of the second gear are sandwiched and supported by the Sfrf second support shaft and moved in the support shaft direction.
  • a gear holder provided freely, wherein the gear holder receives a biasing force from a biasing member that biases to one end side in the support shaft direction, and on the other end side in the support shaft direction against the biasing force. Moves in the direction of the support shaft while receiving the pressing force and holding the second gear.
  • the gear holder includes a first side wall provided with a ring-shaped shaft portion and a cylindrical side wall portion and a second cylindrical side wall.
  • the second self-gear is rotatably supported by the shaft, and one side surface of the one side wall of the tiff is close to one side surface of the second gear of the tiff side, and one side surface of the side wall is the second side.
  • a piston for receiving a ttflB pressing force be formed on the other side surface of the side wall of the side wall or the other side surface of the other side wall in the vicinity of the other side surface of the gear.
  • an internal flow path that communicates the discharge port and a closed space formed on the back side of the piston is formed in the gear hoso-redder.
  • the self-piston is configured to receive a braided self-pressing force by the fluid pressure supplied to the closed space through the internal flow path.
  • the gear holder is configured to be rotatably supported in the axial direction by being supported by the second support shaft while holding the second gear while being rotatably held.
  • sliding resistance occurs in the direction of the exercise (perpendicular to the axis) as the second gear rotates on the part of the gear holder that supports the second gear.
  • sliding resistance in the axial direction is generated. Therefore, sliding resistance is generated in different parts, so these resistances do not interfere with each other, and the rotation of the second gear and the movement of the gear holder in the axial direction are performed reliably.
  • the pump capacity can be changed efficiently.
  • the gear holder is formed with a biston that receives a pressing force on the other side surface of the one side wall or the other side surface of the other side wall, the pressing force can be applied directly to the gear holder.
  • the transmission of the gear holder can be suppressed, and the pressing force consumed when the gear holder moves in the axial direction can be reduced. Therefore, the efficiency of the gear hono-redder can be increased.
  • an internal flow path is formed in the gear wheel / redder to communicate the discharge port and the closed space formed by the outer peripheral portion of the second support shaft on the back side of the piston. Therefore, the pressure can be applied to the biston by guiding the fluid to the closed space, so that the pressing force can be generated without increasing the number of components, thereby reducing the manufacturing cost of the gear pump. It becomes possible.
  • FIG. 1 is a perspective view showing an oil pump according to Ming.
  • FIG. 2 is a cross-sectional view showing the II-II portion of FIG.
  • FIG. 3 is a cross-sectional view showing the III (a) -III (a) portion of FIG. 2 (a), and (b) is a cross-sectional view showing the III (b) -III (b) portion of FIG.
  • FIG. 4 is a cross-sectional view showing the IV-IV portion of FIG.
  • FIG. 5 is a cross-sectional view showing the V—V portion of FIG.
  • FIG. 6 is a cross-sectional view showing the VI-VI portion of FIG.
  • FIG. 7 is a cross-sectional view showing a portion VII-VII in FIG.
  • FIG. 8 is a cross-sectional view showing a state where the gear holder is pressed forward and is stationary.
  • FIG. 9 is an explanatory diagram showing the relationship between the pump rotation speed, the discharge flow rate, and the meshing width of the gears. -Best mode for carrying out the invention
  • FIG. 1 to 8 show an oil pump 1 as an example of a gear pump according to the present invention.
  • the arrow direction shown in Fig. 1 is defined as front and back and up and down, and the direction perpendicular to the page is defined as the left and right direction.
  • the oil pump 1 is provided in a non-illustrated vehicle and uses an engine as a drive source.
  • the oil pump 1 sucks lubricating oil stored in a tank (for example, an engine oil pan) provided in the vehicle and is connected to various parts of the engine. Discharge into the oil passage.
  • a tank for example, an engine oil pan
  • the oil pump 1 is mainly composed of a casing 3, a return spring 6, a drive gear 31, a driven gear 61, a drive side support shaft 30, a transmission shaft 30c, a driven side support shaft 60, and a gear hornore 1 1 0. It is a ⁇ 3 ⁇ 4 combination gear pump.
  • the casing 3 forms the outer peripheral portion of the oil pump 1, and each constituent member described later is disposed therein. Further, as shown in FIGS. 1 and 2, the casing 3 is composed of a front casing 10 and a rear casing 20 divided in the vicinity of the front and rear centers thereof, which are joined by joint surfaces 10 a and 20 a. They are joined and fastened in the front-rear direction at Porto.
  • a drive shaft support hole 11 1 force S that is circular and penetrates in the front-rear direction is formed.
  • a front space 13 which is a cylindrical hollow portion forward from the joint surface 10 a force, and this front space 13 is formed on the front side.
  • This is a cylindrical space region surrounded by the formed front end face 1 3 b and an inner peripheral face 1 3 a corresponding to the side surface of the cylindrical hollow portion.
  • a driven shaft support hole 12 that is circular and penetrates in the front-rear direction is formed in the front end face 13 b.
  • the central axis of the front space 13 and the central axis of the driven shaft support hole 12 are on the same IE line. Further, it is formed to extend to the center axis of the front space 13 and the driven shaft support hole 12, the center axis of the drive shaft support hole 11 and the force TO. Further, a ring-shaped hollow that communicates with the front space 13 and extends forward from the front end surface 13 b, has a bottom surface 7 a, and has the same inner peripheral surface as the inner peripheral surface 13 a. A panel holding space 7 is formed.
  • a hollow portion that is semicircular and extends rearward from the joint surface 20 a is formed in the upper portion of the rear casing 20, and this hollow portion opens downward and in the left-right direction.
  • the hollow part is formed such that the upper part is surrounded by a semicircular drive side inner peripheral surface 2 b and the rear part is surrounded by a drive side first side face 2 c.
  • a transmission shaft support hole 21 that is circular and penetrates in the front-rear direction is formed on the first side surface 2 c of the drive side, and the transmission shaft support hole 2 is located near the front end of the transmission shaft support hole 21.
  • a relief 2 1 a opened with a diameter larger than 1 is formed, and a bearing is provided in the relief 2 1 a.
  • the transmission shaft support hole 21 has a larger diameter than the ⁇ -axis support hole 11.
  • FIG. 5 there is a hollow portion that extends semicircularly from the joint surface 20a and opens rearward to the same surface as the first side surface 2c on the 3 ⁇ 45 side.
  • a rear space 14 is formed, and the rear space 14 is open upward and in the left-right direction.
  • the rear space 14 is surrounded by a semicircular driven inner peripheral surface 2 f at the lower portion, where the driven inner peripheral surface 2 f and the inner peripheral surface 1 of the front casing 10.
  • 3 a is the same diameter.
  • FIG. 6 and FIG. 7 it is a substantially ring-shaped hollow portion communicating with the rear side of the rear space 14, and the outer peripheral surface 15 a of the circular portion and the curved surface 15 curved downward.
  • An outer peripheral surface is formed by this, and a biston space 15 in which an inner peripheral surface force S is formed by a circular cylindrical inner peripheral surface 1 3 2 a is provided.
  • the driven side inner peripheral surface 2 f and the outer casing J inner peripheral surface 15 a have the same diameter and are the same surface.
  • the biston space 15 is formed with a ring-shaped bottom surface 24 at the rear end.
  • a cylindrical portion 23 which is a column extending in the front-rear direction with the side surface 2 3 b being circular in cross section as the outer peripheral surface at the center of the substantially ring-shaped biston space 15.
  • the front end surface 23 a which is the front end portion is formed on the rear side of the drive side first side surface 2 c.
  • a circular driven shaft support hole 22 is opened at the center of the cylindrical portion 23 toward the front end face 23 a force.
  • the piston space 15, the driven shaft support hole 2 2, and the cylindrical portion 2 3 have a central axis on the same side, that is, as shown in FIG. Concentric. Further, these central shafts and the central shaft of the transmission shaft support hole 21 extend to ⁇ fT.
  • the drive-side support shaft 30 is a cylindrical shaft extending in the front-rear direction, and its front end 30 a is located almost flush with the outer peripheral surface of the front casing 10, while the rear end is on the drive side Extends to first side 2c.
  • the transmission shaft 30 c is a cylindrical shaft that is integral with the drive-side support shaft 30 and extends in the front-rear direction.
  • the transmission shaft 30 c has a larger diameter than the drive-side support shaft 30, and its front end is on the drive-side
  • the rear end extends to the first side surface 2 c and extends rearward from the outer peripheral surface of the rear casing 20.
  • the driven side support shaft 60 is a columnar shaft extending in the front-rear direction and has substantially the same diameter as the rotation shaft 30, and its front portion is
  • the driven shaft support hole 12 extends to almost the middle size, while the rear part extends to the rear bottom surface of the driven shaft support hole 22.
  • the tooth tip 3 2 of the 13 ⁇ 43 ⁇ 4 gear 31 extends in the front-rear direction
  • the tooth tip 62 of the driven gear 61 extends in the front-rear direction.
  • the gear holder 1 1 0 is mainly composed of a front wall 1 1 1 and a ring rear wall 1 2 0.
  • the front wall 1 1 1 has a substantially cylindrical shape having a cylindrical opening 1 1 2 at the center thereof, and is formed to extend in the front-rear direction.
  • the cylindrical outer peripheral surface 1 1 3 is an inner peripheral surface. 1 3 Has approximately the same diameter as a.
  • a ring-shaped panel holding space 1 14 is formed in the outer peripheral portion from the front end surface of the front wall 1 1 1 toward the rear, and a bottom surface 1 1 4 a is formed in the rear portion of the panel holding space 1 1 4. ing.
  • the front wall 11 1 1 is formed with a front hollow portion 1 15 which is a cylindrical hollow portion having the same central axis as the opening 1 1 2 from the front end surface to the rear.
  • a ring-shaped tip end portion 1 16 is formed at the front tip portion of the front wall 11 1 1, and a ring-shaped rear end surface 1 11 1 a is formed at the rear end surface.
  • the ring rear wall 1 2 0 is one component formed by the force of the ring rod 1 2 1 and the piston portion 1 3 0.
  • the ring portion 1 2 1 is formed in a cylindrical shape extending in the front-rear direction.
  • the front end portion is the rear end surface of the front hollow portion 1 1 5 of the front wall 1 1 1 in the front-rear direction.
  • the rear end portion is located on substantially the same plane as the drive side first side face 2c.
  • a circular opening having substantially the same diameter as the driven support shaft 60 is formed on the inner peripheral portion of the ring portion 1 2 1, and the outer peripheral portion of the ring portion 1 2 1 is the opening portion 1 of the front wall 1 1 1. 1 Same diameter as 2.
  • the viston portion 1 3 0 is formed in a substantially cylindrical shape extending in the front-rear direction.
  • the front bottom surface 1 3 1 a which is the front end portion thereof is substantially the same as the first side surface 2 c on the driving side.
  • the rear end is formed by a ring-shaped rear bottom 13 2 c.
  • the center portion has a circular opening having the same diameter as that of the driven side support shaft 60, which is in communication with the inner peripheral portion of the ring portion 1 2 1.
  • the circular outer peripheral surface 1 30 a has substantially the same diameter as the outer inner peripheral surface 15 a of the biston space 15.
  • a bay curved surface 1 3 2 d curved downward is formed at the upper outer peripheral portion of the viston portion 1 3 0, and this curved shape is the same shape as the curved surface 1 5 b of the rear casing 20. It has become.
  • the biston portion 1 30 is formed in a cylindrical shape in the vicinity of the center of the sectional view from the rear bottom surface 1 3 2 c toward the front, and the outer periphery of the hollow portion is substantially circular in the sectional view.
  • the outer peripheral surface of the cylinder is 1 3 2 a
  • the front is formed by a ring-shaped rear bottom surface 1 3 1 b.
  • the side surface 2 3 b of the cylindrical portion 2 3 and the cylindrical outer peripheral surface 1 3 2 a have substantially the same diameter.
  • An internal flow path 1 3 3 communicating with the front bottom surface 1 3 1 a and the rear bottom surface 1 3 1 b is formed inside the viston portion 1 3 0. As shown in FIG.
  • the internal flow path 1 3 3 is formed obliquely from the front upper side to the rear lower side as viewed from the right side, and as shown in FIG. In the cross-sectional view from, the opening is inclined from the upper left side to the lower right side. Further, the inner flow path 1 3 3 communicates with the tip hole 1 3 3 a opened near the upper end of the rear bottom surface 1 3 1 b and is connected.
  • the return spring 6 is formed by spirally winding an elongated metal wire, and is configured to accumulate elastic energy by using the restoring force of an elastic body such as metal.
  • the drive-side support shaft 30 is inserted into the drive shaft support hole 11 and is rotatably supported.
  • the transmission shaft 30 c is inserted into the transmission shaft support hole 21 and is freely rotatable.
  • the supported and escaped 2 1 a can reduce the sliding area between the transmission shaft 30 c and the transmission shaft support hole 21, thereby reducing the sliding resistance.
  • the central axes of these shafts 30 and 30c are on the same shoreline, and the rear end portion of the driving side support shaft 30 and the front end portion of the transmission shaft 30c are connected to rotate integrally. .
  • the drive gear 31 is accommodated in a hollow portion formed above the rear casing 20.
  • the tooth tip 32 is directed so as to extend linearly in the front-rear direction, and the drive-side support shaft 3 It is supported and fixed at 0, so it rotates together with the island side support shaft 30.
  • the drive gear 3 1 is a part of the joint surface 10 a of the front casing 10, and is formed on a portion facing the other side surface 3 4 that is the front side surface of the drive gear 3 1.
  • the second side surface 2 d is adjacent to the other side surface 34 in substantially the same plane.
  • the drive side inner peripheral surface 2 b and the tooth tip 3 2 are close to each other.
  • the one side surface 33 which is the rear side surface of the gear 31, and the drive side first side surface 2c are close to each other.
  • a semicircular drive side pump chamber 2 a force S surrounded by the fiber side second side surface 2 d, the drive side inner peripheral surface 2 b and the! 3 ⁇ 43 ⁇ 4 side first side surface 2 c is formed.
  • the drive-side inner peripheral surface 2 b and the tooth tip 3 2 are formed in substantially the same length in the front-rear direction, so that the drive gear 3 1 is located in the front-side casing 1 in the drive-side pump chamber 2 a. The movement in the front-rear direction is restricted by 0 and the rear casing 20.
  • the front end 60 0 a of the driven side support shaft 60 is inserted into the driven shaft support hole 12, while the rear end 6 0 b is a driven shaft support provided on the rear case sink 20. It is fixed by being press-fitted into the hole 2 2.
  • positioning is provided at two locations. And align the positioning By assembling in this way, it is constructed so that it can be joined at an accurate position in the vertical and horizontal directions.
  • the positioning of one side is configured by opening a knock pin hole (shown in FIG. 3 to 3 ⁇ 4rf) at a position facing each of the joint surfaces 10 a and 20 a and inserting a knock pin there.
  • the other positioning is configured such that the driven shaft 60 is inserted by inserting the driven shaft 60 into the driven shaft support hole 12. That is, the driven shaft support hole 12 is formed slightly larger than the driven side support shaft 60.
  • the front end of the driven side support shaft 60 Positioning is achieved by inserting the part 60 a, and after the thread unwinding, the front end part 60 a of the inserted driven support shaft 60 is supported.
  • the gear honoreda 1 1 0 has a ring portion 1 2 in the opening portion 1 1 2 of the front wall 1 1 1 in a state where the driven gear 6 1 is rotatably supported on the circumferential portion of the ring portion 1 2 1.
  • the front end of 1 is press-fitted from the rear and fixed, so that the front wall 1 1 1, the ring rear wall 1 2 0, and the driven gear 6 1 are integrated into one force.
  • a driven support shaft 60 is slidably inserted into the central opening of the gear holder 110.
  • the other side surface 64 which is the front side surface of the driven gear 61, and the rear end surface 1 1 1a of the front wall 11 1 1 are substantially in the same plane and close to each other.
  • the tooth tip 62 that extends linearly in the front-rear direction of the driven gear 61 and the driven side inner peripheral surface 2 f are close to each other, and one side surface 6 that is the rear side surface of the driven gear 61. 3 and the front bottom 1 3 1 a are close to each other.
  • the driven gear 61 and the driving gear 3 1 are meshed in the vertical and middle dimensions.
  • a semicircular driven pump chamber 2 e surrounded by the rear end surface 1 1 1 a, the driven inner peripheral surface 2 f and the front bottom surface 1 3 1 a is formed, and further, the driven pump chamber The upper part of 2e communicates with the drive side pump chamber 2a, and the driven side pump chamber 2e and the drive side pump chamber 2a are collectively referred to as a pump chamber 2.
  • the pump chamber 2 is opened in the left-right direction, and as shown in FIG. 1, a suction port 4 communicating with the right side and a discharge port 5 communicating with the left side are formed.
  • the biston part 1 3 0 is inserted from the front to the rear into the biston space 1 5 by combining the curved surface 1 3 2 d of the biston part 1 3 0 and the bay curved surface 1 5 b of the rear casing 2 0 Has been. At this time, the curved surface 1 3 2 d, the curved surface 15 b, the outer peripheral surface 1 3 0 a, and the outer collar surface 15 a are close to each other. It is slidable in the axial direction in the Biston space 15.
  • the curved surface 1 3 2 d is substantially the same as the rotation trajectory of the tooth tip 3 2 when the drive gear 3 1 rotates.
  • the front wall 1 1 1 is inserted into the front space 1 3 of the front casing 10 from the rear to the front, and the outer peripheral surface 1 1 3 and the inner peripheral surface 1 3 a are close to each other. Therefore, the front wall 1 1 1 is slidable in the front space 1 3 in the axial direction.
  • the inner peripheral surface 13 a and the driven inner peripheral surface 2 f are the same surface, and therefore the tooth tip 62 of the driven gear 61 and the inner peripheral surface 13 a are close to each other.
  • the gear holder 1 1 0 is in a state where the rotation about the driven support shaft 60 is restricted in the axial direction. It can slide freely. Further, at this time, the center axis of the driven side support shaft 60 is the center axis of the horse motion side support shaft 30 and the delivery shaft 30 c, and the left and right positions thereof coincide with each other. The center axis of the driven support shaft 60 is on the same level as the center axes of the gear holder 110 and the cylindrical portion 23.
  • the return spring 6 is installed in the front law space 13 in front of the gear holder 110 so as to be extendable in the front-rear direction.
  • the rear end 6 a of the return panel 6 is accommodated and held in the spring holding space 1 1 4 and is in contact with the bottom surface 1 1 4 4 a.
  • the front end 6 b of the return panel 6 is received and held in the panel space 7 And is in contact with the bottom surface 7a.
  • the return spring 6 applies a urging force to the gear holder 1 1 0 in the rearward direction, so that the gear holder 1 1 0 slides in the rear axis direction, and the rear bottom surface 1 3 2 c Is stopped at the position where it contacts the bottom surface 24, and at this time, the ring-shaped closed space 2 5 surrounded by the rear bottom surface 1 3 1 b, the cylindrical outer peripheral surface 1 3 2 a and the front end surface 2 3 a; ⁇ Formed. Even in this stationary state, the return panel 6 applies a constant urging force to the gear holder 110 on the rear side.
  • the drive-side support shaft 30 connected to the transmission shaft 30 c and the delivery shaft 30 c is rotationally driven, and the combined gears
  • the oil / retained in the tank is sucked into the suction port 4 from the suction port 4a, sent to the discharge port 5 through the pump chamber 2, and discharged. It is pumped from the outlet 5a to the lubricating oil passage.
  • the lubricating oil passage is formed in the engine case, and is configured to increase the supply hydraulic pressure as the supply oil amount increases.
  • the drive gear 31 rotates in the direction A, so that the oil flowing into the gap between the drive-side pump chamber 2a and the equine gear 31 is drawn from the suction port 4. Transported to discharge port 5.
  • the driven gear 61 rotates in the direction B, so that the oil force flowing into the gap between the driven pump chamber 2 e and the driven gear 61 is discharged from the suction port 4. Transported to port 5.
  • oil since oil is at high pressure in the discharge port 5, the oil that is sandwiched between the teeth of the drive gear 3 1 and the driven gear 61 is engaged in the discharge port 5. Is discharged to the discharge port 5, and the oil can be transferred from the suction port 4 to the discharge port 5.
  • part of the oil discharged to the discharge port 5 is supplied to the closed space 25 via the internal flow path 1 33.
  • the hydraulic pressure of the oil supplied to the closed space 25 acts forward on the rear bottom surface 13 1 1 b, and the gear holder 110 receives a pressing force against the urging force in the forward axial direction.
  • the pressing force S exceeding the urging force is not generated, and the pressing force is canceled by the urging force, and the gear holder 1 1 0 is then bottom faced by the urging force 1 3 2 c force S bottom face 2 Still in contact with 4
  • Fig. 9 shows the force indicating the pump speed Ni when the engine is idling.
  • the idling width S of the driving gear 3 1 and the driven gear 6 1 at this idling is the maximum meshing width (referred to as ⁇ , and in the initial state shown in Fig. 2! /, Both gears 3 1 , 6 1 is the maximum engagement and width (combined at 5 M.
  • the gear holder 1 1 0 When the pump rotational speed N exceeds the first 1 N A, it exceeds the biasing force pressing force, the gear holder 1 1 0 by compressing the panel 6 slides forward axial direction against the biasing force The sliding force moves to a position where the pressing force and the urging force are balanced, and the meshing width and the width 5 of both gears 3 1 and 61 are shortened.
  • the upper part of the biston part 1 30 is the force curved surface 1 3 2 d moving into the rotation orbit area of the drive gear 3 1 so that the rotation orbit of the tooth tip 3 2 is substantially the same. Since it curves downward, the curved surface 1 3 2 d and the tooth tip 3 2 do not interfere.
  • pump rotation ⁇ Increase N and increase pump speed N
  • the discharge flow rate Q force is stabilized regardless of the increase / decrease in the pump rotation speed N due to the balance with the reduction in pump capacity caused by shortening the combined width s force s.
  • excessive oil is not discharged from the oil pump 1 even when the engine output increases.
  • the pressing force is further increased, and the gear holder 110 is further slid in the front axial direction against the biasing force.
  • the front end portion of the gear honoreda 1 1 0 1 1 6 force comes into contact with the front end surface 1 3 b of the front space 13 and stops.
  • the pump times ISfcN is beyond the second rotational speed N B, the gear holder 1 1 0, since the movement in the forward axial direction is restricted, ⁇ width S force mutually viewed ⁇ mutual viewed width of the time ( Therefore, the contact width S m at this time is called the minimum contact width.
  • the gear holder 1 1 0 moves in the front space 1 3 without being restricted by the axial moving force S. Inside, it moves to a predetermined position and stops according to the balance of pressing force and urging force. At this time, the urging force and the pressing force cancel each other by acting against the gear honoreda 1 1 0 from opposite directions, so that the driven support shaft 60 corresponds to the urging force and the pressing force.
  • the load does not act, so the gear holder 110 does not move up and down or left and right.
  • the gear holder 110 is formed concentrically with the driven support shaft 60 in a cross-sectional view, so that the driven support shaft Centering on 60, the gear holder 110 can be downsized, and the oil pump 1 can be downsized.
  • the downsizing of the gear hono-redder 110 reduces the pressing force required to slide the gear ho / redder 110 in the axial direction, so that the urging force against the pressing force can be reduced. It is possible to use a small one, and the oil pump 1 can be further downsized.
  • the oil is guided to the ring-shaped narrow closed space 25 that is concentric with the driven support shaft 60, thereby obtaining a necessary pressing force.
  • the pressing force can be applied in the axial direction in a well-balanced manner, so that the meshing width ⁇ can be changed smoothly.
  • the gear holder 1 1 0 has the ring portion 1 2 in the opening 1 1 2 of the front wall 1 1 1 in a state where the driven gear 6 1 is rotatably supported on the outer peripheral portion of the ring portion 1 2 1. 2
  • the front wall 1 1 1, the ring rear wall 1 2 0 and the driven gear 6 1 It is formed by becoming a body. Therefore, since the facing distance between the driven side first side surface 2 g and the driven side second side surface 2 h of the driven side pump chamber 2 e does not change, for example, the oil leaks when the facing distance increases. On the other hand, since the sliding distance does not increase by reducing the facing distance, it is easy to maintain the efficiency of the oil pump 1.
  • the discharge hydraulic pressure is applied to the rear bottom surface 1 3 1 b of the closed space 2 5 as a pressing force, and the urging force of the return spring 6 is applied to the gear holder 1 1 0, whereby the driven gear 6 1 is configured to be movable in the axial direction.
  • variable control of the pump capacity using the discharge hydraulic pressure is performed, and control for stabilizing the discharge flow rate Q can be easily performed regardless of the increase or decrease of the pump speed N.
  • an internal flow path 13 33 that connects the discharge port 5 and the closed space 25 is formed in the viston portion 130. Since the internal flow path 1 33 is only required to be formed inside the piston portion 1 30, the internal flow path 1 33 can be easily formed. Therefore, the omission of the seal structure, which is required when forming between a plurality of members, can be achieved, and the manufacturing cost of the oil pump 1 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

 オイルポンプ1は、駆動側支持軸30とともに回転する駆動歯車31と、従動側支持軸60に回転自在に支持され駆動歯車と噛合する従動歯車61と、駆動歯車および従動歯車を収容するポンプ室2を備えたケーシング3とを有している。ギヤポンプは、ケーシングに、ポンプ室2と連通する吸込ポート4および吐出ポート5が形成されて、オイルが吸込ポートに吸い込まれて吐出ポートから吐出されるように構成されている。ケーシング内に、従動歯車を回転自在に支持するとともに従動歯車の両側面を挟持して、従動側支持軸に支持されて軸方向に移動自在に設けられたギヤホルダ110を有し、ギヤホルダは、付勢力を受けるとともに付勢力に抗する押圧力を受けて、従動歯車を保持した状態で、軸方向に移動する。

Description

P T/JP2007/065975
1
明 糸田 書 ギヤポンプ
技術分野
本発明は、 互いに嚷合する 2つのギヤを使って流体を輸送するギヤポンプに関し、 詳細 には、 2つのギヤの嚙み合い幅が可変となるように構成されたギヤポンプに関する。 背景技術
一般にギヤポンプは、 歯丈や歯幅等によりその容量が決まり、 容量と歯車の回転速度 (ポンプ回転数) により吐出流量が決まる。 このギヤポンプを、 例えば車両用エンジン内 部に潤滑油を供給するオイルポンプとして用いる場合、 このオイルポンプの容量は、 駆動 源となるエンジンの出力が低くポンプ回転数が小さくても、 潤滑に必要な量のオイルを供 給できるように設定される。 一方、 エンジンの出力が高くなつてポンプ回転数が大きくな ると、 必要量に対して過剰な量のオイルがエンジン内部に供給されるとともに、 高い駆動 力がオイルポンプにより消費され、 エンジンの出力損失を招くおそれがある。
この問題を解決するギヤポンプとして、 ポンプ回転数が大きくなるに従って、 駆動ギヤ および従動ギヤの双方あるいは一方を軸方向に移動させることで、 嚙み合い幅を短くして ポンプ容量を小さくする、 可変容量型のギヤポンプが知られている (例えば、 特開 2 0 0 0 - 1 2 0 5 5 9号公幸 特開昭 5 7— 7 3 8 8 0号公幸参照) 。 特開 2 0 0 0— 1 2 0 5 5 9号公報に開示のギヤポンプにおいては、 従動ギヤを軸方向に挟む 2つの側板を設け、 従動ギヤの支持軸を両側板に支持させ、 一方の側板の背面に付勢力を作用させ、 iteの側 板の背面に吐出流体圧に応じた押圧力を付勢力に抗して作用させるように構成されてレ、る。 これにより、 両側板に挟まれた従動ギヤは、 押圧力と付勢力が釣り合う位置に軸方向に移 動し、 i¾ギヤとの嚙み合レ、幅が吐出流体圧に応じて変更される。 発明の開示
発明力 s解決しょうとする 1¾題
特開 2 0 0 0— 1 2 0 5 5 9号公報に開示のギヤポンプにおいては、 他方の側板の背面 全体で吐出流体圧を受けて、 押圧力を作用させる構成となっているので、 両側板および従 動ギヤを軸方向に移動させるために、 大きな吐出流体圧を消費することとなり、 よって、 ポンプ容量を変化させることによって吐出流体圧が低下し、 ギヤポンプのオイル吐出供給 量に影響を及ぼすという課題があつた。
本発明は、 このような課題に鑑みてなされたものであり、 オイル吐出供給量に影響を及 ぼすことなく、 効率よくポンプ容量を変化させることのできる可変容量型ギヤポンプを提 供することを目的とする。 ' 課題を角军決するための手段
本発明に係るギヤポンプは、 左右に延びた第 1支持軸に固定されて、 前記第 1支持軸と ともに回転する第 1ギヤと、 前記第 1支持軸と ¥ίϊに配設された第 2支持軸に回転自在に 支持されて、 ¾ίίΒ第 1ギヤと嚙合する第 2ギヤと、 前記第 1支持軸を回転自在に支持し、 tiff己第 2支持軸を支持するとともに、 前記第 1ギヤおよひ Iff記第 2ギヤを収容する配設空 間を備えた、 ケーシングとを有している。 さらに、 ギヤポンプは、 前記ケーシングに、 前 記配設空間と連通する吸込ポート、 およひ前記配設空間と連通する吐出ポートカ S形成され て、 |ίί¾第 1支持軸が回転して、 前記第 1ギヤと前記第 2ギヤとが嚙合した状態で回転す ることで、 流体が前記吸込ポートに吸い込まれて、 前記吐出ポートから吐出されるように 構成されている。 このとき、 前記配設空間に、 前記第 2ギヤを回転自在に支持するととも に、 前記第 2ギヤの両側面を挟持して、 Sfrf己第 2支持軸に支持されて支持軸方向に、 移動 自在に設けられたギヤホルダを有し、 前記ギヤホルダは、 支持軸方向の一端側に付勢する 付勢部材からの付勢力を受けるとともに、 前記付勢力に抗して支持軸方向の他端側に押圧 する押圧力を受けて、 歸己第 2ギヤを保持した状態で、 支持軸方向に移動する。
上記構成のギヤポンプにおいて、 前記ギヤホルダは、 リング状の軸部と円柱状の側壁部 とを備えた一方側壁および円柱状の他方側壁から構成されている。 このとき、 前記軸部に 認己第 2ギヤが回転自在に支持されて、 tiff己一方側壁の一側面が tiff己第 2ギヤの一側面と 近接するとともに、 前記 側壁の一側面が前記第 2ギヤの他側面と近接し、 ΙίϊΙΒ—方側 壁の他側面もしくは前記他方側壁の他側面に、 ttflB押圧力を受けるピストンが形成されて いること力好ましい。
また、 上記構成のギヤポンプにおいて、 前記ギヤホゾレダに、 前記吐出ポートと、 前記ピ ストンの背面側で形成された閉塞空間とを連通する内部流路カ形成されている。 このとき、 廳己ピストンは、 ΙίίϊΕ内部流路を介して 閉塞空間に供給された流体圧により、 編己押 圧力を受けるように構成されていることが好ましい。 発明の効果
本発明に係るギヤポンプによれば、 ギヤホルダは、 第 2ギヤを回転自在に保持するとと もに、 第 2ギヤを保持した状態で、 第 2支持軸に支持されて軸方向に移動自在に構成され ているので、 ギヤホルダの第 2ギヤを支持している部分には、 第 2ギヤの回転に伴い演習 方向 (軸直角方向) に摺動抵抗が発生し、 一方、 第 2支持軸表面には、 ギヤホルダの軸方 向への移動に伴い軸方向への摺動抵抗が発生する。 よって、 それぞれ異なった部分に摺動 抵抗が発生するので、 これらの抵抗が互いに干渉することがなく、 第 2ギヤの回転および ギヤホルダの軸方向への移動が確実に行われるので、 ギヤポンプの作動信頼性が向上する とともに、 効率よくポンプ容量を変ィ匕させることが可能となる。
また、 ギヤホルダは、 一方側壁の他側面もしくは他方側壁の他側面に、 押圧力を受ける ビストンが形成されていることで、 押圧力を直接ギヤホルダに作用させることが可能とな り、 よって、 押圧力の伝 失を抑えることができ、 ギヤホルダが軸方向へ移動時に消費 される押圧力を低減できるので、 ギヤホノレダの «効率を高めることが可能となる。 さらに、 ギヤホ /レダ内に、 吐出ポートと、 ピストンの背面側における第 2支持軸の外周 部で形成された、 閉塞空間とを連通する内部流路を形成している。 よって、 この閉塞空間 に流体を導くことでビストンに押圧力を作用させることができるので、 構成部品点数を増 やすことなく押圧力を発生させることができ、 よって、 ギヤポンプの製作コストを低減す ることが可能となる。 図面の簡単な説明
図 1は、 明に係るオイノレポンプを示す斜視図のである。
図 2は、 図 1の II— II部分を示す断面図である。
図 3は、 (a ) が図 2の III ( a ) — III ( a ) 部分を示す断面図で、 (b ) が図 2の III ( b ) -III ( b ) 部分を示す断面図ある。
図 4は、 図 2の IV— IV部分を示す断面図である。
図 5は、 図 2の V— V部分を示す断面図である。
図 6は、 図 2の VI— VI部分を示す断面図である。
図 7は、 図 2の VII— VII部分を示す断面図である。
図 8は、 ギヤホルダが前方に押圧されて静止した状態を示す断面図である。 図 9は、 ポンプ回転数と、 吐出流量および歯車の嚙み合い幅との関係を示す説明図であ る。 - 発明を実施するための最良の形態
以下、 図面を参照して本発明の実施形態について説明する。 図 1〜図 8に、 本 明に係 るギヤポンプの一例としての、 オイルポンプ 1を示している。 説明の便宜上、 図 1に示す 矢印方向を前後および上下とし、 紙面に垂直な方向を左右方向と定義する。 このオイルポ ンプ 1は、 図示しなレヽ車両に備えられてエンジンを駆動源としており、 車両に設けられた タンク (例えば、 エンジンオイルパン) に溜められた潤滑油を吸い込んで、 エンジン各部 に繋がる潤滑油路に吐出する。
オイノレポンプ 1は、 ケーシング 3、 戻しバネ 6、 駆動歯車 3 1、 従動歯車 6 1、 駆動側 支持軸 3 0、 伝達軸 3 0 c、 従動側支持軸 6 0、 ギヤホノレダ 1 1 0とを主体に構成された、 ^¾嚙合型ギヤポンプである。
ケーシング 3は、 オイノレポンプ 1の外周部を形成しており、 その内部には、 後述する各 構成部材が配置されている。 また、 ケーシング 3は、 図 1および図 2に示すように、 その 前後中央付近で分割された前ケーシング 1 0および後ケーシング 2 0から構成され、 これ らは接合面 1 0 a、 2 0 aで接合しており、 ポルト等で前後方向に締結されている。
前ケーシング 1 0の上部には、 図 2に示すように、 円形で前後方向に貫通した駆動軸支 持孔 1 1力 S形成されている。 一方、 前ケーシング 1 0の下方には、 接合面 1 0 a力ら前方 に向けて円柱状の中空部である前側空間 1 3が形成されており、 この前側空間 1 3は、 前 方側で形成された前端面 1 3 bと、 円柱状の中空部の側面に相当する内周面 1 3 aとによ つて囲まれた円筒状の空間領域である。 また、 前端面 1 3 bにおいて、 円形で前後方向に 貫通した従動軸支持孔 1 2が形成されている。 ここで、 前側空間 1 3の中心軸と従動軸支 持孔 1 2の中心軸とは同一 IE線上にある。 さらに、 前側空間 1 3およぴ従動軸支持孔 1 2 の中心軸と、 駆動軸支持孔 1 1の中心軸と力 TOに延びて形成されている。 さらに、 前 側空間 1 3に連通して、 前端面 1 3 bから前方側に延びて、 底面 7 aを有するとともに、 内周面 1 3 aと同一内周面を有した、 リング状の中空部であるパネ保持空間 7が形成され ている。
後ケーシング 2 0の上部には、 図 5に示すように、 接合面 2 0 aから半円状で後方へ延 ぴた中空部が形成されており、 この中空部は、 下方および左右方向に開口している。 また、 この中空部は、 その上部が半円面の駆動側内周面 2 bで囲まれて、 後方は駆動側第 1側面 2 cで囲まれて形成されている。 さらに、 駆動側第 1側面 2 cには、 円形で前後方向に貫 通した伝達軸支持孔 2 1が形成され、 また、 伝達軸支持孔 2 1の前端部近傍には、 伝達軸 支持孔 2 1より大きな径で開口した逃がし 2 1 aが形成され、逃がし 2 1 a内に軸受けが 設けられている。 ここで、 伝達軸支持孔 2 1は β軸支持孔 1 1よりも大きな径を有して いる。
後ケーシング 2 0の下部には、 図 5に示すように、 接合面 2 0 aから半円状で、 後方へ ¾5側第 1側面 2 cと同一面まで開口して延びた中空部である、 後側空間 1 4が形成され ており、 さらにこの後側空間 1 4は、 上方および左右方向に開口している。 また、 後側空 間 1 4は、 その下部が半円面の従動側内周面 2 fで囲まれており、 ここで、 従動側内周面 2 f と前ケーシング 1 0の内周面 1 3 aとは、 同一径である。 さらに、 図 6および図 7に 示すように、 後側空間 1 4の後方側に連通した略リング状の中空部で、 円形部分の外側内 周面 1 5 aおよび下方に湾曲した湾曲面 1 5 Mこよって外周面が形成され、 円形の円筒内 周面 1 3 2 aで内周面力 S形成された、 ビストン空間 1 5が設けられている。 従動側内周面 2 f と外彻 J内周面 1 5 aとは同一径を有して、 同一面をなしている。 ビストン空間 1 5は、 後端部にリング状の底面 2 4を形成している。
さらに、 後ケーシング 2 0の下部には、 略リング状のビストン空間 1 5の中心部におい て、 断面視円形の側面 2 3 bを外周面として、 前後に延びる円柱である、 円筒部 2 3が形 成されており、 前端部である前端面 2 3 aは、 駆動側第 1側面 2 cよりも後方側に形成さ れている。 さらに、 円筒部 2 3の中央部には、 前端面 2 3 a力^後方に向けて、 円形の従 動軸支持孔 2 2が開口している。 ここで、 ピストン空間 1 5、 従動軸支持孔 2 2および円 筒部 2 3は、 同一 锒上に中心軸を有しており、 つまり、 図 7に示すように、 断面視にお いてこれらは同心円状となっている。 さらに、 これら中心軸と、 伝達軸支持孔 2 1の中心 軸とは、 ¥fTに延びている。
駆動側支持軸 3 0は、 円柱状で前後方向に延びた軸で、 その前端部 3 0 aは前ケーシン グ 1 0の外周面とほぼ同一面こ位置し、 一方、 後端部は駆動側第 1側面 2 cまで延びてい る。 伝達軸 3 0 cは駆動側支持軸 3 0と一体の円柱状で前後方向に延びた軸であり、 駆動 側支持軸 3 0よりも大きな径を有しており、 その前端部は、 駆動側第 1側面 2 cまで延び、 後端は後ケーシング 2 0の外周面よりも、 後方に突出して延びている。 従動側支持軸 6 0 は、 円柱状で前後方向に延びた軸で、 回転軸 3 0と略同一径を有しており、 その前方部は、 従動軸支持孔 1 2の中 寸近まで延び、 一方、 後方部は、 従動軸支持孔 2 2の後方底面ま で延びている。 1¾¾歯車 3 1は、 図 5に示すように、 その歯先 3 2が前後方向に延びてお り、 また同様に、 従動歯車 6 1は、 その歯先 6 2が前後方向に延びている。
ギヤホルダ 1 1 0は、 前方壁 1 1 1およぴリング後方壁 1 2 0を主体に構成されている。 前方壁 1 1 1は、 その中心部に円筒形の開口部 1 1 2を有した略円筒状で、 前後方向に延 びて形成されており、 円筒状の外周面 1 1 3は内周面 1 3 aと略同一径を有する。 また、 前方壁 1 1 1の前端面から後方に向けて外周部に、 リング状のパネ保持空間 1 1 4が形成 され、 パネ保持空間 1 1 4の後方部に底面 1 1 4 aが形成されている。 さらに、 前方壁 1 1 1は、 前端面から後方に向けて開口部 1 1 2と同一中心軸を有した、 円柱状の中空部で ある前面中空部 1 1 5が形成されている。 なお、 前方壁 1 1 1の前方先端部には、 リング 状の先端部 1 1 6が形成されているとともに、 後方端面には、 リング状の後端面 1 1 1 a が形成されている。
リング後方壁 1 2 0は、 リング咅 1 2 1とピストン部 1 3 0と力らネ冓成された、 1つの 構成部品である。 リング部 1 2 1は、 円筒状で前後方向に延びて形成されており、 図 2に 示す状態で、 前後方向において、 前端部は前方壁 1 1 1の前面中空部 1 1 5の後端面に位 置し、 後端部は駆動側第 1側面 2 cと略同一面に位置している。 また、 リング部 1 2 1の 内周部は、 従動側支持軸 6 0と略同一径の円形開口部が形成され、 リング部 1 2 1の外周 部は、 前方壁 1 1 1の開口部 1 1 2と略同一径となっている。
ビストン部 1 3 0は、 前後方向に延びた略円柱状に形成されており、 図 2に示す状態で、 その前端部である前底面 1 3 1 aは駆動側第 1側面 2 cと略同一面に位置し、 後端部はリ ング状の後底面 1 3 2 cで形成されている。 また、 その中心部には、 リング部 1 2 1の内 周部と連通した、 従動側支持軸 6 0と略同一径の円形開口部を有し、 また、 ピストン部 1 3 0の断面視略円形の外周面 1 3 0 aは、 ビストン空間 1 5の外側内周面 1 5 aと略同一 径となっている。 さらに、 ビストン部 1 3 0の上方外周部では、 下方に向けて湾曲した湾 曲面 1 3 2 dが形成されており、 この湾曲形状は、 後ケーシング 2 0の湾曲面 1 5 bと同 一形状となっている。
さらに、 ビストン部 1 3 0は、 断面視中心付近において後底面 1 3 2 cから前方に向か つて、 円柱状に中空部が形成されており、 この中空部は、 その外周が断面視略円形の円筒 外周面 1 3 2 a、 前方がリング状の後底面 1 3 1 bで形成されている。 ここで、 円筒部 2 3の側面 2 3 bと円筒外周面 1 3 2 aとは、 略同一径となっている。 ビストン部 1 3 0の内部には、 前底面 1 3 1 aと後底面 1 3 1 bとに連通する内部流路 1 3 3が形成されている。 この内部流路 1 3 3は、 図 2に示すように、 右方向からの側面 視にお 、て、 前方上側から後方下側 と惧斜して形成されるとともに、 図 6に示すよう前 方からの断面視において、 上方左側から下方右側へと傾斜して開口している。 さらに、 内 部流路 1 3 3は、 後底面 1 3 1 bの上方端部近傍で開口した先端孔 1 3 3 aと連通してレヽ る。 なお、 戻しバネ 6は、 細長い金属線を螺旋状に巻いて形成されており、 金属などの弹 性体の復元力を利用し、 弾性エネルギーを蓄積する構成となっている。
以上、 ここまでは、 オイルポンプ 1の各構成部材について説明したが、 以下において、 これらの構成部材の組立状態にっレ、て、 図 2を参照しながら説明する。
駆動側支持軸 3 0は、 駆動軸支持孔 1 1に揷入されて回転自在に支持されており、 また、 伝達軸 3 0 cは、 伝達軸支持孔 2 1に揷入されて回転自在に支持され、 逃がし 2 1 aによ つて、 伝達軸 3 0 cと伝達軸支持孔 2 1との摺動面積を減らすことができ、 よって、 摺動 抵抗を小さくできる。 さらに、 これらの軸 3 0、 3 0 cの中心軸は同一 Ϊ 線上にあり、 駆 動側支持軸 3 0の後端部と、 伝達軸 3 0 cの前端部とは連結されて一体回転する。
駆動歯車 3 1は、 後ケーシング 2 0の上方で形成された中空部に収容されており、 この とき、 歯先 3 2が前後方向に直線状に延びるように向けられて、 駆動側支持軸 3 0に支持 されて固定されており、 よって、 嶋側支持軸 3 0と一体回転する。 また、 駆動歯車 3 1 は、 この状態において、 前ケーシング 1 0の接合面 1 0 aの一部で、 駆動歯車 3 1の前方 側面である他側面 3 4と対向する部分に形成された駆動側第 2側面 2 dは、 他側面 3 4と 略同一平面をなして近接している。 同様に、 駆動側内周面 2 bと歯先 3 2とは近接してお り、 さらに、 !¾¾歯車 3 1の後方側面である一側面 3 3と駆動側第 1側面 2 cとは近接し ている。 ここで、 ,繊側第 2側面 2 d、 駆動側内周面 2 bおよび !¾¾側第 1側面 2 cによ つて囲まれた、 半円状の駆動側ポンプ室 2 a力 S形成される。 なお、 駆動側内周面 2 bと歯 先 3 2とは、 前後方向に略同一長さで形成されているので、 駆動歯車 3 1は、 駆動側ボン プ室 2 a内において、 前ケーシング 1 0および後ケーシング 2 0によって前後方向の移動 が規制されている。
従動側支持軸 6 0は、 その前端部 6 0 aが従動軸支持孔 1 2に揷入されており、 一方、 後端部 6 0 bが、 後ケーシンク" 2 0に設けられた従動軸支持孔 2 2に圧入されて固定され ている。 ここで、 前ケーシング 1 0と後ケーシング 2 0とを、 互いの接合面 1 0 a、 2 0 aを合わせて組み立てる時に、 2箇所に位置決めを設けて、 その位置決め同士を合わせる ようにして組み立てることで、 上下左右方向に正確な位置で接合されるように構成されて レ、る。 このとき一方の位置決めは、 接合面 1 0 a、 2 0 aのそれぞれ対向する位置にノッ クピン穴 (図示 ~¾rf) を開けて、 そこにノックピンを揷入して構成されている。 また、 他 方の位置決めは、 従動軸支持孔 1 2に従動側支持軸 6 0を揷入することで位置決めとなる ように構成されている。 つまり、 従動軸支持孔 1 2は、 従動側支持軸 6 0に対してわずか に大きく形成されており、 前ケーシング 1 0と後ケーシング 2 0との組み立て時には、 従 動側支持軸 6 0の前端部 6 0 aを挿入することで位置決めとなり、 また糸且み立て後には、 挿入された従動側支持軸 6 0の前端部 6 0 aを支持している。 ギヤホノレダ 1 1 0は、 リン グ部 1 2 1のタト周部に、 従動歯車 6 1を回転自在に支持させた状態で、 前方壁 1 1 1の開 口部 1 1 2に、 リング部 1 2 1の前端部を後方から圧入して固定することで、 前方壁 1 1 1、 リング後方壁 1 2 0および従動歯車 6 1力 一体となることによって形成されている。 また、 ギヤホルダ 1 1 0の中心開口部には、 従動側支持軸 6 0が摺動自在に揷入されてい る。
このとき、 従動歯車 6 1の前方側面である他側面 6 4と、 前方壁 1 1 1の後端面 1 1 1 aとは、 略同一平面をなして近接している。 また、 同様に、 従動歯車 6 1の前後方向に直 線状に延びた歯先 6 2と従動側内周面 2 f とは近接しており、 従動歯車 6 1の後方側面で ある一側面 6 3と前底面 1 3 1 aとは近接している。 また、 従動歯車 6 1と駆動歯車 3 1 とは、 上下中 寸近で嚙合している。 ここで、 後端面 1 1 1 a、 従動側内周面 2 fおよび 前底面 1 3 1 aによって囲まれた、 半円状の従動側ポンプ室 2 eが形成され、 さらに、 従 動側ポンプ室 2 e上方は、 駆動側ポンプ室 2 aと連通しており、 これら従動側ポンプ室 2 eと駆動側ポンプ室 2 aとをまとめてポンプ室 2と呼ぶ。 ここで、 ポンプ室 2は、 左右方 向に開口しており、 図 1に示すように右側に連通した吸込ポート 4、 左側に連通した吐出 ポート 5が形成されている。
ビストン部 1 3 0は、 そのビストン部 1 3 0の湾曲面 1 3 2 dと後ケーシング 2 0の湾 曲面 1 5 bとを合わせて、 ビストン空間 1 5に対して、 前方から後方へと挿入されている。 このとき、 湾曲面 1 3 2 dと湾曲面 1 5 b、 外周面 1 3 0 aと外側內周面 1 5 aとは、 そ れぞれ近接しており、 よって、 ビストン部 1 3 0は、 ビストン空間 1 5内を軸方向に摺動 自在となっている。 ここで、 湾曲面 1 3 2 dは、 駆動歯車 3 1が回転したときの歯先 3 2 の回転軌道と略同一となっている。 さらに、 前方壁 1 1 1は、 前ケーシング 1 0の前側空 間 1 3に後方から前方へと挿入され、 外周面 1 1 3と内周面 1 3 aとが近接しており、 よ つて、 前方壁 1 1 1は、 前側空間 1 3内を軸方向に摺動自在となっている。 なお、 内周面 1 3 aと従動側内周面 2 f とは、 同一面なしており、 よって、 従動歯車 6 1の歯先 6 2と 内周面 1 3 aとは近接する。
ギヤホルダ 1 1 0は、 湾曲面 1 3 2 dと湾曲面 1 5 bとが嵌合状態となっているために、 従動側支持軸 6 0を中心とした回転が規制された状態で、 軸方向に摺動自在となっている。 さらにこのとき、 従動側支持軸 6 0の中心軸は、 馬区動側支持軸 3 0およ 云達軸 3 0 cの 中心軸と TOで、 力つこれらの左右位置は一致している。 また、 従動側支持軸 6 0の中心 軸は、 ギヤホルダ 1 1 0および円筒部 2 3の各中心軸と、 同一 上にある。
また、 戻しバネ 6が、 ギヤホルダ 1 1 0よりも前方の前ィ則空間 1 3において、 前後方向 に伸縮可能となる向きに設置されている。 戻しパネ 6の後端 6 aは、 バネ保持空間 1 1 4 に収容保持されて、 底面 1 1 4 aと当接しており、 一方、 戻しパネ 6の前端 6 bは、 パネ 空間 7に収容保持されて、 底面 7 aと当接している。 ここで、 戻しバネ 6は、 ギヤホ ルダ 1 1 0に対して、 後方側へ付勢力を作用させており、 よって、 ギヤホルダ 1 1 0は後 方軸方向へ摺動し、 後底面 1 3 2 cが底面 2 4に当接した位置で静止し、 このとき、 後底 面 1 3 1 b、 円筒外周面 1 3 2 aおよび前端面 2 3 aによって囲まれた、 リング状の閉塞 空間 2 5; ^形成される。 なお、 この静止状態においても、 戻しパネ 6は、 ギヤホルダ 1 1 0に対して、 後方側へ一定の付勢力を作用させている。
以上、 各構成部材の組立状態について説明してきたが、 以下においては、 オイルポンプ 1が稼動を開始したときの、 各構成咅附の動作について、 図 1から図 9を参照しながら説 明する。 なお、 図 2に示す状態を初期状態と定義する。
エンジンが台動してアイドリング状態となると、 図 2に示すように、 伝達軸 3 0 cおよ 云達軸 3 0 cに連結された駆動側支持軸 3 0が回転駆動し、 嚙合した両歯車 3 1, 6 1 が回転することで、 タンクに溜められたオイ/レが、 吸入口 4 aから吸込ポート 4に吸い込 まれ、 ポンプ室 2を経由して吐出ポート 5に送られて、 吐出口 5 aから潤滑油路に圧送さ れる。 なお、 潤滑油路は、 エンジンケースに形成されており、 供給油量の増加に応じて供 給油圧を上昇させる構成となっている。
このとき、 図 1に示すように、駆動歯車 3 1は方向 Aの向きに回転することによって、 駆動側ポンプ室 2 aと馬麵歯車 3 1との隙間に流入したオイルが、 吸込ポート 4から吐出 ポート 5に搬送される。 一方、 従動歯車 6 1は方向 Bの向きに回転することによって、 従 動側ポンプ室 2 eと従動歯車 6 1との隙間に流入したオイル力 吸込ポート 4から吐出ポ ート 5に搬送される。 なお、 吐出ポート 5においては、 オイルは高圧となっているため、 吐出ポート 5で駆動歯車 3 1と従動歯車 6 1とが嚙合することで、 互いの歯と歯との間に 挟まれたオイルを吐出ポート 5に排出し、 オイルを吸入ポート 4から吐出ポート 5に搬送 可能となる。
また、 このとき、 吐出ポート 5に吐出されたオイルの一部は、 内部流路 1 3 3を介して、 閉塞空間 2 5に供給される。 そして、 閉塞空間 2 5に供給されたオイルの油圧が、 後底面 1 3 1 bに対して前方に作用し、 ギヤホルダ 1 1 0は、 付勢力に抗する押圧力を前方軸方 向に受ける。 ここで、 初期状態においては、 付勢力を上回る押圧力力 S発生しておらず、 押 圧力は付勢力によって打ち消され、 ギヤホルダ 1 1 0は、 付勢力によってその後底面 1 3 2 c力 S底面 2 4に当接した状態で静止している。
図 9には、 エンジンがアイドリング時の、 ポンプ回転数 Niを示している力 オイルポ ンプ 1の■時には、 この回転数 Niを下回ることはほとんどなく、 このときの吐出流量 Qiは、 潤滑に必要とされる供給油量を確保可能になっている。 このアイドリング時の、 駆動歯車 3 1および従動歯車 6 1の噴み合い幅 Sを、 最大嚙み合い幅(^と称し、 図 2 に示す初期状態にお!/、ては、 両歯車 3 1, 6 1が最大嚙み合 、幅 (5 Mで嚙合している。 次に、 エンジンの出力が高くなつて、 ポンプ回転数 Nが第 1回転数 NAに達すると、 吐 出ポート 5での油圧が高まり、 それに伴って、 閉塞空間 2 5に供給されるオイルの油圧も 高まって、 よって、 アイドリング時よりも大きな押圧力が、 ギヤホルダ 1 1 0に作用する。 そして、 ギヤホルダ 1 1 0に作用する押圧力と付勢力と力 軸方向において、 ほぼ釣り合 う状態になる。
そして、 ポンプ回転数 Nが第 1 NAを越えると、 押圧力が付勢力を上回り、 ギヤ ホルダ 1 1 0は、 付勢力に抗して前方軸方向に摺動してパネ 6を圧縮させて、 押圧力が付 勢力と釣り合う位置まで摺動し、 両歯車 3 1 , 6 1の嚙み合レ、幅 5は短くなる。 このと き、 ビストン部 1 3 0の上部は、 駆動歯車 3 1の回転軌道領域内に移動してくる力 湾曲 面 1 3 2 dは、 歯先 3 2の回転軌道と略同一となるように下方に湾曲しているので、 湾曲 面 1 3 2 dと歯先 3 2とは干渉しない。 この状態において、 '駆動歯車 3 1と従動歯車 6 1 と力 嚙み合っていなレ、領域が形成される力 この領域に流入したオイルは、 吐出ポート 5で排出されず、 歯と歯との間に留まったままの状態となり、 よって、 アイドリング時と 比較してポンプ容量は低下する。
しカ し、 図 9に示すように、 ポンプ回^: Nの増加と、 ポンプ回転数 Nカ増カ卩して嚙み 合レヽ幅 s力 s短くなつて生じるポンプ容量の低下とのバランスにより、 結果として、 ボン プ回転数 Nの増減に関わらず吐出流量 Q力 安定するように構成されている。 これにより、 エンジンの出力が高くなっても、 オイルポンプ 1から過剰なオイルが吐出されない。
次に、 ポンプ回 »Nが、 第 2回 ¾S¾NBに i ると、 押圧力がさらに大きくなり、 ギ ャホルダ 1 1 0は、 付勢力に抗してさらに前方軸方向に摺動してパネ 6を圧縮させて、 図 8に示すように、 ギヤホノレダ 1 1 0の前端部 1 1 6力 前側空間 1 3の前端面 1 3 bに当 接して静止する。 ここで、 ポンプ回 ISfcNが第 2回転数 NBを越えても、 ギヤホルダ 1 1 0は、 前方軸方向への移動が規制されるため、 嚙み合い幅 S力 このときの嚙み合い幅 (^よりも短くなることはない。 よって、 このときの嚙み合い幅 Smを最小嚙み合い幅と 呼ぶ。
よって、 ポンプ回転数 Nが、 第 1回転数 NAおよび第 2回転数 NBの間にあるとき、 ギヤ ホルダ 1 1 0は、 軸方向の移動力 S規制されることなく、 前側空間 1 3内において、 押圧力 および付勢力の釣り合いによって、 所定位置に移動して停止する。 このとき、 付勢力およ び押圧力は、 ギヤホノレダ 1 1 0に対して、 互いに反対方向から作用することで打ち消し合 うため、 従動側支持軸 6 0には、 付勢力や押圧力に応じた負荷が作用せず、 よって、 ギヤ ホルダ 1 1 0 、 上下または左右方向に移動するようなことがない。
以下に、 本発明に係るオイルポンプ 1の効果をまとめてみると、 第 1に、 ギヤホルダ 1 1 0を、 断面視において従動側支持軸 6 0と同心円状に形成することで、 従動側支持軸 6 0を中心として、 ギヤホルダ 1 1 0を小型化可能となり、 よって、 オイルポンプ 1を小型 化可能となる。 さらに、 ギヤホノレダ 1 1 0の小型化によって、 ギヤホ /レダ 1 1 0の軸方向 への摺動に要する押圧力が小さくなるので、 押圧力に抗する付勢力も小さくでき、 よって、 戻しバネ 6を、 小型のものを用いることが可能となり、 オイルポンプ 1をさらに小型化可 能となる。
第 2に、 断面視において、 従動側支持軸 6 0と同心円でリング状の狭小な閉塞空間 2 5 にオイルを導くことで、 必要な押圧力を得る構成とすることで、 ギヤホルダ 1 1 0に対し て押圧力をバランス良く軸方向に作用させることが可能となり、 よって、 嚙み合い幅 δ の変更を円滑に行うことができる。
第 3に、 ギヤホルダ 1 1 0は、 リング部 1 2 1の外周部に、 従動歯車 6 1を回転自在に 支持させた状態で、 前方壁 1 1 1の開口部 1 1 2に、 リング部 1 2 1の前端部を後方から 圧入して固定することで、 前方壁 1 1 1、 リング後方壁 1 2 0および従動歯車 6 1力 一 体となることによって形成されている。 よって、 従動側ポンプ室 2 eの、 従動側第 1側面 2 gと従動側第 2側面 2 hとの対向間隔が変化することがないので、 例えば、 対向間隔が 大きくなることでオイルが漏出したり、 一方で、 対向間隔が小さくなることで、 摺動抵抗 が増大することもないので、 オイルポンプ 1の 効率を維持することが容易となる。 第 4に、 吐出油圧を閉塞空間 2 5の後底面 1 3 1 bに、 押圧力として作用させるととも に、 戻しバネ 6の付勢力を、 ギヤホルダ 1 1 0に作用させることで、 従動歯車 6 1を軸方 向に移動可能に構成している。 これにより、 吐出油圧を用いたポンプ容量の可変制御が行 われ、 ポンプ回転数 Nの増減に関わらず、 吐出流量 Qを安定させる制御を簡単に行うこと ができるようになる。
第 5に、 この可変制御を行わせるために、 ビストン部 1 3 0内部に、 吐出ポート 5と閉 塞空間 2 5とを連通する内部流路 1 3 3が形成されている。 この内部流路 1 3 3は、 ビス トン部 1 3 0の内部にのみ形成すれば良いので、 内部流路 1 3 3の形成を簡単に行うこと ができる。 よって、 複数部材間に跨って形成されるときに必要とされる、 シール構造の省 略も図られ、 オイノレポンプ 1の製作コストを低減することが可能となる。 第 6に、 従来の オイルポンプにおいて、 前ケーシング 1 0と後ケーシング 2 0とを組み立てる時に、 2箇 所にノックピン穴を開けてノックピンを揷入することで位置決めを構成していたが、 本発 明では従動軸支持孔 1 2に従動側支持軸 6 0を揷入する構成を位置決めとして利用するこ とで、 2箇所のうち 1箇所のノックピン穴加工およびノックピンが不要となる。 よって、 オイルポンプ 1の製作時の 工数を減らすことができるとともに、 製作コストを低減す ることが可能となる。

Claims

請 求 の 範 囲
1. 回転自在な第 1支持軸に固定されて前記第 1支持軸とともに回転する第 1ギヤと、 前記第 1支持軸と 亍に配設された第 2支持軸により回転自在に支持されて前記第 1 ギヤと嚙合する第 2ギヤと、
前記第 1支持軸を回転自在に支持し前記第 2支持軸を支持するとともに、 前記第 1ギ ャおよび SirtS第 2ギヤを収容する配設空間を備えたケーシングとからなり、
編己ケーシングに、 廳己配設空間と連通する吸込ポートおよび前記配設空間と連通す る吐出ポートが形成されて、
mrn ι支持軸が回転して前記第 ιギヤと MIS第 2ギヤとが嚙合した状態で回転する ことで、 流体が tin己吸込ポートに吸レ、込まれて前記吐出ポートから吐出されるギヤポ ンプにおいて、
Slit己配設空間に、 前記第 2ギヤを回転自在に支持するとともに前記第 2ギヤの両側面 を挟持し、 前記第 2支持軸上に軸方向に移動自在に支持されて取り付けられたギヤホ ルダを有し、
tiff己ギヤホルダは、 支持軸方向の一端側に位置して設けられた付勢部材からの軸方向 付勢力を受けるとともに、 前記付勢力に抗して支持軸方向の他端側に押圧する押圧力 を受けて、 前記第 2ギヤを保持した状態で支持軸方向に移動することを特徴とするギ ャポンプ。
2 · it己ギヤホルダは、 リング状の軸部と円柱状の側壁部とを備えた一方側壁および円筒 状の他方側壁から構成され、
tiff己軸部に前記第 2ギヤが回転自在に支持されて、 前記一方側壁が前記第 2ギヤの一 側面と近接するとともに、 tifieite側壁が前記第 2ギヤの他側面と近接し、
編己一方側壁もしくは前記他方側壁に、 編己押圧力を与えるためのビストンが設けら れていることを特徴とする請求項 1に記載のギヤポンプ。
3. 前記ギヤホルダに、 tiifB吐出ポートと、 前記ピストンの背面側で形成された閉塞空間 とを連通する内部流路が形成されており、
tiff己ビストンは、 tiff己内部流路を介して IB閉塞空間に供給された流体圧により前記 押圧力を発生するように構成されることを特徴とする請求項 1または 2に記載のギヤ ポンプ。
4. 前記一方側壁および前記他方側壁のいずれか一方に、 前記ギヤホルダが前記第 2支持 軸上を軸方向に移動したときに、 Ιίί13第 1ギヤとの干渉を避けるための内方に湾曲し た円弧状の湾曲面が形成されていることを特徴とする請求項 1〜 3のいずれかに記載 のギヤポンプ。
5 . 前記湾曲面が、 前記第 1ギヤの刃先の回転軌道と略同一形状に形成されていることを 特徴とする請求項 4に記載のギヤポンプ。
PCT/JP2007/065975 2007-05-21 2007-08-10 ギヤポンプ WO2008142806A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07792605.3A EP2154373B1 (en) 2007-05-21 2007-08-10 Gear pump
US12/596,766 US8376724B2 (en) 2007-05-21 2007-08-10 Gear pump enabling efficient pump capacity change
CN2007800530256A CN101675247B (zh) 2007-05-21 2007-08-10 齿轮泵

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-133683 2007-05-21
JP2007133683A JP5064886B2 (ja) 2007-05-21 2007-05-21 ギヤポンプ

Publications (1)

Publication Number Publication Date
WO2008142806A1 true WO2008142806A1 (ja) 2008-11-27

Family

ID=40031531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/065975 WO2008142806A1 (ja) 2007-05-21 2007-08-10 ギヤポンプ

Country Status (5)

Country Link
US (1) US8376724B2 (ja)
EP (1) EP2154373B1 (ja)
JP (1) JP5064886B2 (ja)
CN (1) CN101675247B (ja)
WO (1) WO2008142806A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011010835B4 (de) * 2011-02-10 2014-01-30 Audi Ag Verdrängerpumpe
DE102011013756A1 (de) * 2011-03-12 2012-09-13 Volkswagen Aktiengesellschaft Zahnradpumpe mit Verschiebeeinheit zur Einstellung einer Fördermenge
JP5670793B2 (ja) * 2011-03-27 2015-02-18 株式会社山田製作所 ポンプ装置
DE102013001750A1 (de) 2013-01-31 2014-07-31 Volkswagen Aktiengesellschaft Verfahren zur Regelung eines Öldrucks für einen Verbrennungsmotor sowie entsprechend ausgestaltete Ölpumpe
WO2014178483A1 (ko) * 2013-05-03 2014-11-06 Jang Soon Gil 가변 용량형 기어 펌프
PL3089639T3 (pl) * 2014-01-03 2018-10-31 Koninklijke Douwe Egberts B.V. Wymienne opakowanie dostarczające dla maszyny do dozowania napojów, dozownik, zespół pompy oraz sposób wytwarzania
KR102003107B1 (ko) 2015-08-12 2019-07-24 장순길 가변 용량 펌프
WO2017026639A1 (ko) * 2015-08-12 2017-02-16 장순길 가변 용량 기어 펌프
US10309396B2 (en) * 2016-04-27 2019-06-04 Deere & Company Positive displacement pump including an unloading device
US10113546B2 (en) * 2016-08-16 2018-10-30 Caterpillar Inc. Pump for an engine
CN108150410A (zh) * 2017-12-27 2018-06-12 郑州沃华机械有限公司 一种专门用于橡胶生产装置的熔体齿轮泵
JP7070174B2 (ja) * 2018-07-06 2022-05-18 トヨタ自動車株式会社 車両の動力伝達装置
CN108953576A (zh) * 2018-09-27 2018-12-07 湖南机油泵股份有限公司 一种能避免偏磨的变速器油泵

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2262331A (en) * 1940-12-05 1941-11-11 Bendix Aviat Corp Fluid pressure system
JPS5773880A (en) 1980-10-23 1982-05-08 Nissan Motor Co Ltd Variable capacity gear pump
JP2000120559A (ja) 1998-10-13 2000-04-25 Schwaebische Huettenwerke Gmbh 可変送出外歯車ポンプ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE511495C (de) * 1928-03-01 1930-10-30 Valentin Retterath Fluessigkeitsgetriebe
US2684636A (en) * 1949-12-05 1954-07-27 Arthur P Heldenbrand Variable capacity gear pump
DE1553234A1 (de) * 1965-06-25 1970-03-19 Tuchenhagen Otto Regelbare Zahnradpumpe
US3446118A (en) * 1966-10-28 1969-05-27 Tozaburo Kuhara Variable torque hydraulic gear motor
DE3528651A1 (de) * 1985-08-09 1987-02-19 Rohs Hans Guenther Prof Dr Ing Zahnradpumpe
DE4121074A1 (de) * 1991-06-26 1993-01-07 Pierburg Gmbh Aussenzahnradpumpe
US5306127A (en) * 1993-03-08 1994-04-26 Kinney Gerald R Fluid pump with axially adjustable gears
FR2711739B1 (fr) * 1993-10-26 1995-11-24 Renault Pompe de lubrification pour moteur à combustion interne.
DE10043842A1 (de) * 2000-03-02 2001-09-06 Volkswagen Ag Zahnradpumpe mit einer fördermengenverändernden Verschiebeeinheit
DE10033950C2 (de) * 2000-07-13 2003-02-27 Schwaebische Huettenwerke Gmbh Pumpe mit Magnetkupplung
DE102004002062A1 (de) * 2004-01-15 2005-08-04 Volkswagen Ag Zahnradpumpe mit Fördermengenregelung
DE102005029086B4 (de) * 2005-06-23 2016-06-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ölpumpe für eine Brennkraftmaschine
DE102006018124A1 (de) * 2006-04-19 2007-10-25 Schwäbische Hüttenwerke Automotive GmbH & Co. KG Verstellbare Rotationspumpe mit Verschleißminderung
US7717690B2 (en) * 2006-08-15 2010-05-18 Tbk Co., Ltd. Gear pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2262331A (en) * 1940-12-05 1941-11-11 Bendix Aviat Corp Fluid pressure system
JPS5773880A (en) 1980-10-23 1982-05-08 Nissan Motor Co Ltd Variable capacity gear pump
JP2000120559A (ja) 1998-10-13 2000-04-25 Schwaebische Huettenwerke Gmbh 可変送出外歯車ポンプ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2154373A4 *

Also Published As

Publication number Publication date
JP5064886B2 (ja) 2012-10-31
EP2154373A1 (en) 2010-02-17
CN101675247A (zh) 2010-03-17
CN101675247B (zh) 2013-04-24
US20100086422A1 (en) 2010-04-08
US8376724B2 (en) 2013-02-19
EP2154373B1 (en) 2019-10-09
EP2154373A4 (en) 2017-03-01
JP2008286147A (ja) 2008-11-27

Similar Documents

Publication Publication Date Title
WO2008142806A1 (ja) ギヤポンプ
JP5141993B2 (ja) オイルポンプ
JP4829957B2 (ja) 歯車ポンプ
US8910602B2 (en) Control valve comprising an integrated filter and cam shaft phase setter comprising said control valve
JP4499021B2 (ja) 車輌用伝動装置
CN105298837B (zh) 电动泵单元
CN102947594B (zh) 车用内齿轮式油泵
JP6648281B2 (ja) 加圧潤滑剤の供給を管理する制御システムを含む制御システムを備えるポンプ
CN102297130B (zh) 高效固定排量叶片泵
KR20080064706A (ko) 스크롤 압축기
US7717690B2 (en) Gear pump
JP6286657B2 (ja) オイルポンプ
JP2015052281A5 (ja)
WO2015072302A1 (ja) オイルポンプ装置およびリリーフ弁
JP7124954B2 (ja) はすば歯車ポンプまたはモータ
KR102140323B1 (ko) 전동 오일 펌프
CN111566349B (zh) 流体输送装置
JP2012172766A (ja) 車両用伝動装置
CN211777987U (zh) 发动机的油泵
JP5230971B2 (ja) ギヤポンプ
JP2022117255A (ja) オイルポンプ
JP6321338B2 (ja) ポンプ装置
CN114754282A (zh) 一种改进型汽车用油泵
JP2020041522A (ja) 可変容量形ポンプ
JP2017145871A (ja) 変速機の作動油供給装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780053025.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07792605

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12596766

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007792605

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE