WO2008117839A1 - Novel polyvalent hydroxy compound, method for producing the same, epoxy resin using the compound, and epoxy resin composition and cured product thereof - Google Patents

Novel polyvalent hydroxy compound, method for producing the same, epoxy resin using the compound, and epoxy resin composition and cured product thereof Download PDF

Info

Publication number
WO2008117839A1
WO2008117839A1 PCT/JP2008/055798 JP2008055798W WO2008117839A1 WO 2008117839 A1 WO2008117839 A1 WO 2008117839A1 JP 2008055798 W JP2008055798 W JP 2008055798W WO 2008117839 A1 WO2008117839 A1 WO 2008117839A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
hydroxy compound
resin composition
sar
carbon atoms
Prior art date
Application number
PCT/JP2008/055798
Other languages
French (fr)
Japanese (ja)
Inventor
Hisashi Yamada
Hideyasu Asakage
Original Assignee
Tohto Kasei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007076307A external-priority patent/JP2008231071A/en
Priority claimed from JP2007084061A external-priority patent/JP2008239853A/en
Application filed by Tohto Kasei Co., Ltd. filed Critical Tohto Kasei Co., Ltd.
Publication of WO2008117839A1 publication Critical patent/WO2008117839A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/10Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C323/18Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/08Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/302Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Novel polyhydric hydroxy compound process for producing the compound, epoxy resin, epoxy resin composition and cured product thereof using the compound
  • the present invention relates to a sulfide structure-containing polyhydric hydroxy compound, a sulfide structure-containing epoxy resin useful as an epoxy resin curing agent, modifier, and the like, an epoxy resin composition using the same, and a cured product thereof. It is suitably used as an insulating material in the electrical and electronic fields such as printed wiring boards and semiconductor encapsulation. Background art
  • Epoxy resins have been used in a wide range of industrial applications, but their required performance has become increasingly sophisticated in recent years.
  • semiconductor encapsulating materials are a typical field of resin compositions based on epoxy resins, but as the degree of integration of semiconductor elements increases, the package size is becoming larger and thinner, and the mounting method However, the transition to surface mounting is progressing, and the development of materials with excellent solder heat resistance is desired. Therefore, as a sealing material, in addition to low moisture absorption, improvement in adhesion and adhesion at the interface between different materials such as lead frames and chips is strongly demanded.
  • Patent Document 1 shows that a naphthal aralkyl resin is applied to a semiconductor sealing material.
  • naphthol aralkyl resin is excellent in low hygroscopicity, low thermal expansion, etc.
  • Patent Document 2 proposes a curing agent having a biphenyl structure and describes that it is effective for improving flame retardancy, but has a drawback of poor curability.
  • both naphthalene-based resins and biphenyl-based resins have a main skeleton composed of only hydrocarbons, so that they were not sufficient for the development of flame retardancy and adhesion.
  • Patent Document 3 discloses an epoxy resin composition containing a bifunctional hydroxy compound having a sulfide structure.
  • the bifunctional hydroxy compound has a high melting point
  • an epoxy resin curing agent is disclosed.
  • it is a bifunctional compound, it has a disadvantage that it is inferior in heat resistance as compared with a polyfunctional compound.
  • epoxy resins that satisfy these requirements are not yet known.
  • the well-known bisphenol type epoxy resin is widely used because it is liquid at room temperature, has excellent workability, and is easy to mix with hardeners, additives, etc.
  • moisture resistance There is a problem in terms of moisture resistance.
  • nopolac-type epoxy resins are known as improved heat resistance, but there are problems in adhesion, moisture resistance, and the like.
  • conventional epoxy resins whose main skeleton is composed only of hydrocarbons have no flame retardancy.
  • a method of adding a phosphate ester flame retardant is disclosed.
  • the method using phosphate ester flame retardants does not have sufficient moisture resistance.
  • the phosphoric acid ester is hydrolyzed under high temperature and high humidity, which reduces the reliability as an insulating material.
  • Patent Documents 2 and 4 disclose examples in which a aralkyl epoxy resin having a biphenyl structure is applied to a semiconductor encapsulant as one that improves flame retardancy without containing phosphorus atoms or halogen atoms.
  • Patent Document 5 discloses an example in which an aralkyl type epoxy resin having a naphthalene structure is used. However, these epoxy resins have insufficient performance in any of flame retardancy, adhesion and heat resistance.
  • Patent Documents 6, 7 and 8 disclose naphthol-based aralkyl-type epoxy resins and semiconductor encapsulants containing the same, but nothing focuses on flame retardancy.
  • Patent Document 9 includes Although a polyhydric hydroxy compound having an phenyl ether structure and an epoxidized product thereof are disclosed, it does not focus on adhesion and flame retardancy. Further, Patent Document 10 discloses a semiconductor sealing material using a bifunctional epoxy resin having a sulfide structure. However, these epoxy resins have insufficient heat resistance and are difficult. It is not focused on flammability.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5- 1 09 9 3 4
  • Patent Document 2 Japanese Patent Laid-Open No. 11 1 1 4 0 1 6 6
  • Patent Document 3 Japanese Patent Application Laid-Open No. 6-1 4 5 3 0 6
  • Patent Document 4 Japanese Patent Laid-Open No. 2 00 0-1 2 90 92
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-5 9 7 92
  • Patent Document 6 Japanese Patent Laid-Open No. 3-90 075
  • Patent Document 7 Japanese Patent Laid-Open No. 3-2 8 1 6 2 3
  • Patent Document 8 Japanese Patent Laid-Open No. 4 1 1 7 3 8 3 1
  • Patent Document 9 Japanese Patent Laid-Open No. 10-2 6 5 5 5 4
  • Patent Document 10 Japanese Patent Laid-Open No. 6 1 4 5 3 0 0 Disclosure of Invention
  • the purpose of the present invention is to have excellent performance in adhesion to a metal substrate and flame retardancy in applications such as lamination, molding, casting, and adhesion, as well as excellent heat resistance.
  • Providing sulfido structure-containing polyhydric hydroxy compounds useful as hardeners, modifiers, etc. providing excellent adhesion to metal substrates and flame retardancy, as well as excellent heat resistance.
  • the object is to provide an epoxy resin composition useful for sealing electrical and electronic parts that give a cured product, circuit board materials, etc., and to provide the cured product.
  • the sulfido structure-containing polyhydric hydroxy compound of the present invention is represented by the following general formula (1).
  • A represents either a benzene ring or a naphthalene ring which may be substituted with a hydrocarbon group having 1 to 8 carbon atoms
  • R 2 represents a hydrogen atom which may be the same or different, or a carbon number of 1 to 6 represents an alkyl group
  • G represents a hydrogen atom or a glycidyl group
  • n represents a number from 1 to 10
  • m represents an integer from 1 to 2.
  • This sulfide structure-containing epoxy resin has the following general formula (2)
  • A represents either a benzene ring or a naphthalene ring which may be substituted with a hydrocarbon group having 1 to 8 carbon atoms
  • R 2 represents a hydrogen atom which may be the same or different, or carbon number 1 Any one of ⁇ 6 alkyl groups
  • n is a number from 1 to 10
  • m is an integer from 1 to 2.
  • the polyhydric hydroxy compound containing a sulfido structure is a cross-linking agent represented by the following formula (5) with respect to 1 mol of the hydroxy compound represented by the following formula (3) or (4): 0.1 to 0.9 It can be obtained by reacting with mol.
  • R 3 represents an alkyl group having 1 to 8 carbon atoms
  • p represents an integer of 0 to 3
  • m represents an integer of 1 to 2.
  • R 2 represents a hydrogen atom which may be the same or different, or an alkyl group having 1 to 6 carbon atoms
  • R 4 represents OH, alkoxy or halogen.
  • the novel polyhydric hydroxy compound represented by the general formula (1) of the present invention can be obtained by reacting a specific hydroxy compound with a specific cross-linking agent.
  • A represents a benzene ring or a naphthalene ring, and these rings may be substituted with a hydrocarbon group having 1 to 8 carbon atoms.
  • A is a benzene ring or naphthalene ring which is unsubstituted or substituted with a methyl tomb.
  • R 1 and R 2 each represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or a methyl group, and these may be the same or different.
  • m is 1 or 2, but is preferably 1.
  • n represents the average number of repetitions, and is 1 to 10, preferably 1 to 5.
  • a polyhydric hydroxy compound can be obtained by reacting the hydroxy compound represented by the general formula (2) or (3) with the cross-linking agent represented by the general formula (4).
  • R 3 is a hydrocarbon group having 1 to 8 carbon atoms, preferably an alkyl group, more preferably a methyl group.
  • p is an integer of 0 to 3, preferably 0.
  • SAR sulfide structure-containing polyhydric hydroxy compound of the present invention is represented by the general formula (1). Since SAR can be epoxidized into an epoxy resin (hereinafter also referred to as SAE), SAR is also an epoxy resin intermediate.
  • the softening point of S A R is preferably 40 to 200 ° C., preferably 50 to 200 ° C., more preferably 60 to 120 ° C.
  • the softening point refers to a softening point measured based on the ring and ball method of JISK— 6 9 1 1. If it is lower than this, the heat resistance of the cured product is lowered when it is added to an epoxy resin, and if it is higher than this, the fluidity during molding is lowered.
  • the SAR of the present invention is useful as an epoxy resin curing agent and modifier, and when applied to an epoxy resin composition, it has excellent adhesion to dissimilar materials, as well as excellent flame retardancy and heat resistance. It is possible to give a hardened material and to use it suitably for applications such as sealing electrical and electronic parts and circuit board materials. If the epoxy resin composition containing the SAR of the present invention is heat-cured, it can be made into an epoxy resin cured product, and this cured product is excellent in terms of adhesion, flame retardancy, high heat resistance, etc. It can be used suitably for applications such as sealing ih for electrical and electronic parts, circuit board materials, etc.
  • the SAE of the present invention when applied to an epoxy resin composition, is excellent in high adhesion to dissimilar materials and gives a cured product with excellent flame retardancy and heat resistance, sealing of electrical and electronic parts, circuit It can be suitably used for applications such as substrate materials. If the epoxy resin composition containing the SAE or SAR of the present invention is cured by heating, it can be made into an epoxy resin cured product. This cured product is in terms of adhesion, flame retardancy, and high heat resistance. It can be used for applications such as sealing electrical and electronic parts and circuit board materials.
  • FIG. 1 is a 1 H-NMR spectrum of SAR-A obtained in Example 1.
  • FIG. 2 is an infrared absorption spectrum of SAR_A obtained in Example 1.
  • FIG. 3 is a GP C chart of SAR-A obtained in Example 1.
  • FIG. 4 shows the SAR-A FD-MS chart obtained in Example 1.
  • FIG. 5 is the 1 H-NMR spectrum of S AE-A obtained in Example 8.
  • FIG. 6 is an infrared absorption spectrum of SAE-A obtained in Example 8.
  • FIG. 7 is a GP C chart of SAE-A obtained in Example 8. BEST MODE FOR CARRYING OUT THE INVENTION
  • the SAR of the present invention can itself be a component of a phenol resin composition or an epoxy resin composition.
  • a sulfido structure-containing polyhydric hydroxy compound is added to a halogenated alkyl compound, a halogenated alkylke.
  • thiol compounds, epihalohydrin compounds, etc. some or all of the hydrogen atoms of OH groups in the sulfido structure-containing polyhydric hydroxy compounds are substituted with alkyl groups, alkenyl groups, glycidyl groups, etc. be able to.
  • the SAR of the present invention can be synthesized by reacting a hydroxy compound represented by the formula (3) or (4) with a cross-linking agent represented by the formula (5).
  • the amount of the crosslinking agent used is in the range of 0.1 to 0.9 mol, preferably in the range of 0.2 to 0.8 mol, with respect to 1 mol of the hydroxy compound. If it is smaller than this, the amount of unreacted hydroxy compounds increases during synthesis, the softening point of the synthesized SAR is lowered, and the heat resistance of the cured product when used as an epoxy resin curing agent decreases. If it is larger than this, the softening point of SAR will increase, and in some cases, SAR may gel during synthesis.
  • the acid catalyst can be appropriately selected from known inorganic acids and organic acids.
  • mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, organic acids such as formic acid, oxalic acid, trifluoroacetic acid, P-toluenesulfonic acid, dimethylsulfuric acid, and jetylsulfuric acid
  • this reaction is usually performed at 10 to 25 ° C. for 1 to 20 hours.
  • alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol monole, methyl cetosolve, ethylcele solve, etc.
  • ketones such as acetone, methinoreethylketone, methylisobutylketone
  • ethers such as dimethyl ether, jetyl ether, diisopropyl ether, tetrahydrofuran, and dioxane
  • aromatic compounds such as benzene, toluene, black benzene, and dichlorobenzene can be used as the solvent.
  • phenols represented by the general formula (3) or naphthols represented by the general formula (4) include, for example, phenol monole, o-crezonore, m_crezo monole, p-crezonore, Ethylphenols, Isopropylphenols, Tertiarybutylphenols, Arylphenols, Phenylphenols, 2,6-Xylenol, 2,6-Gethinorephenol, Noridoquinone, Resorcinol, Catechol, 1 Naphth Toilet, 21 Naphthol, 1,5—Naphthalenediol, 1,6—Naphthalenediol, 1,7-Naphthalenediole, 2,6—Naphthalenediole, 2,7—Naphthalenediole And so on. These phenols or naphthols may be used alone or in combination of two or more.
  • R 2 represents either the same or different hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 4 represents any of OH, alkoxy, or halogen. Indicates.
  • the crosslinking agent represented by the general formula (5) diphenylsulfide dimethyl compounds, dimethylol compounds or dialkyl ethers thereof can be used. Examples of such cross-linking agents include 4,4′-dichloromethyldiphenylsulfide, 2,4′-dichloromethinoresiphenylsulfide, and 2,2′-dichloromethinoresidenylsulfide.
  • Ref. 4, 4'—Dihydroxymethyldiph; nilsulfide, 2,4'—Dihydroxymethyldiphenylsulfonyl, 2,2 'Dihydroxymethyldiphenylsulfide, 4,4' Dimethoxy Simethino Resifenil / Refuid, 2, 4'-dimethymethinoresin phenylsulfide, 2,2'-dimethoxymethyldiphenylsulfide, 4,4'-diisopropoxymethyldiphenylsulfide, 2,4'-diisopropoxymethyldiph ⁇ Nylsulfide, 2,2'-Diisopropoxymethyldiphenylenosenolide, 4,4'-Dibutoxymethinoresinenoresulphide, 2,4'-Dibutoxymethyldiphenylsulfide 2, 2, 1-dibutoxymethyldiphenylsulfide.
  • the substitution position of the chloromethyl group and methylol group or its alkyl ether group with respect to the diphenyls / ref ide may be any of 4, 4 '1 position, 2, 4' 1 position, and 2, 2 '1 position.
  • Desirable compound as agent is 4, 4 'integral, and 4, 4' integral is 50% in total condensing agent. Those containing 0 or more are particularly preferred. If it is less than this, there are disadvantages such as a decrease in the curing rate when the synthesized resin is cured and the resulting cured product becomes brittle.
  • the phenol resin composition of the present invention comprises the above S A R in a polyvalent phenolic compound.
  • the content of SAR is in the range of 2 to 200 parts by weight, preferably 5 to 100 parts by weight, more preferably 10 to 80 parts by weight with respect to 100 parts by weight of the polyvalent phenolic compounds. It is. If it is less than this, the effects of modification such as low hygroscopicity, heat resistance, adhesion, and flame retardancy will be small, and if it is more than this, the viscosity will increase and the moldability will deteriorate.
  • the polyhydric phenolic compounds mentioned here refer to all compounds having two or more phenolic hydroxyl groups in one molecule.
  • trivalent or higher phenols represented by ethane, phenenorenovolak, o-cresol / lenovolac, naphthol novolak, polybutanol and the like.
  • polyhydric phenolic compounds may be described as being representative of phenolic
  • the softening point of the phenol resin is usually 40 to 20 ° C., preferably 60 to 15 ° C. C (D range. If it is lower than this range, the heat resistance of the cured product obtained by using it as a curing agent for epoxy resin will decrease. If it is higher than this range, the miscibility with S A R will decrease.
  • the phenol resin composition of the present invention comprises a melt mixing method in which mixing is performed by stirring, kneading, etc. at a temperature equal to or higher than the softening point of either the phenol resin or SAR, and a solvent that dissolves each of them. It can be obtained by a method such as a solution mixing method in which it is dissolved and uniformly mixed by stirring, kneading or the like. Solvents used in the solution mixing method include, for example, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycolate, methinocele sonorebu, ethylcelesolve, acetone, methylethylketone, methylisobutylketone, etc.
  • Ketones dimethyl ether, jetyl ether, diisopropyl ether, ethers such as tetrahydrofuran, dioxane, and aromatic solvents such as benzene, toluene, xylene, black benzene, and dichlorobenzene. it can.
  • an epoxy resin, an inorganic filler, another phenol resin, and other additives (materials) can be blended.
  • the phenol resin composition of the present invention can be made into a phenol resin cured product by using it in combination with a curing agent generally used in phenol resin compositions such as hexamethyltetramine.
  • the epoxy resin composition of the present invention contains at least an epoxy resin and a curing agent, and is a composition in which the SAR is blended as a part or all of the curing agent.
  • the amount of SAR is usually in the range of 2 to 200 parts by weight, preferably 5 to 80 parts by weight, with respect to 100 parts by weight of the epoxy resin. If it is less than this, the effect of improving adhesion and flame retardancy and heat resistance will be small, and if it is more than this, there will be a problem that the strength of the moldable paste will be reduced.
  • the sulfide structure-containing epoxy resin (hereinafter also referred to as SAE) of the present invention is represented by the general formula (1).
  • the sulfido structure-containing polyhydric hydroxy compound (S AR) is represented by the general formula (2).
  • SAE can be obtained by epoxidizing SAR.
  • the SAE of the present invention is advantageously produced by reacting the SAR represented by the general formula (2) with epichlorohydrin, but is not limited to this reaction.
  • SAR and a halogenated halide can be reacted to form a allylic ether compound and then reacted with a peroxide.
  • the reaction of reacting the above SAR with epichlorohydrin can be carried out in the same manner as a normal epoxidation reaction.
  • an alkali metal hydroxide such as sodium hydroxide or hydroxy hydroxide
  • 20 to 150 ° C preferably The method of making it react for 1 to 10 hours in the range of 30 to 80 degreeC is mentioned.
  • the amount of the metal hydroxide used is 0.8 to 1.5 mol, preferably 0.9 to 1.2 mol, based on 1 mol of the SAR hydroxyl group. is there.
  • epichlorohydrin is used in excess relative to 1 mol of hydroxyl group in SAR, but usually 1.5 to 30 mol, preferably 2 to 15 mol, relative to 1 mol of hydroxyl group in SAR. Range.
  • the epoxy resin composition of the present invention contains at least an epoxy resin and a curing agent, and there are the following two types.
  • blended said SAE as a part or all of an epoxy resin 2) A composition in which SAE and SAR are blended as part or all of epoxy resin and curing agent.
  • epoxy resin component other types of epoxy resins may be blended in addition to SAE represented by the general formula (1).
  • epoxy resin in this case all ordinary epoxy resins having two or more epoxy groups in the molecule can be used. Examples include bisphenol A, bisphenol S, fluorene bisphenol, 4,
  • Bivalent phenols such as biphenol, 2, 2, monobiphenol, hydroquinone and resorcin, or tris (4-hydroxyphenenole) methane, 1, 1, 2, 2— Halogenation of tetrakis (4-hydroxyphenyl) ethane, phenol nopolac, o — trihydric or higher phenols such as cresol novolac, phenol aralkyl resins, naphthol aralkyl resins, or tetrabromobisphenol A
  • Examples include darcidyl etherified compounds derived from bisphenols. These epoxy resins can be used alone or in combination of two or more. And of the present invention
  • the amount of SAE represented by the general formula (8) is 5 to 100%, preferably 60 to 100% of the entire epoxy resin. It should be a range.
  • the amount of SAR is usually 2 to 200 parts by weight, preferably 5 to 80 parts by weight with respect to 100 parts by weight of the epoxy resin. is there. If it is less than this, the effect of improving the adhesion and flame retardancy is small, and if it is more than this, there is a problem that the moldability and the strength of the cured product are lowered.
  • the amount of SAR is usually determined in consideration of the equivalent balance of OH groups in SAR and epoxy groups in epoxy resin.
  • the equivalent ratio of the epoxy resin and the curing agent is usually in the range of 0.2 to 5.0, and preferably in the range of 0.5 to 2.0. If it is larger or smaller than this, the curability of the epoxy resin composition is lowered, and the heat resistance, mechanical strength, etc. of the cured product are lowered.
  • a curing agent other than the SAR of the present invention can be used in combination as a curing agent.
  • Other curing The blending amount of the agent is determined within the range in which the blending amount of the SAR is normally maintained in the range of 2 to 200 parts by weight, preferably 5 to 80 parts by weight with respect to 100 parts by weight of the epoxy resin. Is done. If the amount of SAR is less than this, the effect of improving low moisture absorption, adhesion and flame retardancy is small, and if it is too much, there is a problem that the moldability and the strength of the cured product are lowered.
  • epoxy resin curing agents other than SAR
  • epoxy resin curing agents can be used, such as dicyandiamide, acid anhydrides, polyhydric phenols, aromatic and aliphatic amines, etc.
  • polyhydric phenols are preferably used as curing agents in fields where high electrical insulation properties such as semiconductor encapsulants are required. Specific examples of curing agents are shown below.
  • acid anhydride curing agents examples include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrohydrate-free hydrophthalic acid, and methyl anhydride hymic. Acid, dodecynyl succinic anhydride, nadic anhydride, trimellitic anhydride.
  • polyhydric phenols examples include bisphenol A, bisphenol F, bisphenol nore S, flossed lenbisphenol nore, 4, 4'-biphenolate, 2, 2'-bivenol, hydroquinone, resorcin, naphthalenediol.
  • Divalent phenols such as tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetraxane (4-hydroxyoxyphenyl) ethane, phenolenonopolak, 0-crezo
  • trivalent phenols such as mono-renoborak, naphthol novolak, and polybuhlphenol.
  • amines examples include 4,4'-diaminodiphenylmethane and 4,4'-diaminodiph.
  • Aromatic amines such as ennenopropane, 4,4'-diaminodiphenenolesnolephone, m-phenylenediamine, p-xylylenediamine, ethylenediamine, hexamethylenediamine, diethylenetriamine, and aliphatic amines such as triethylenetetramine There is.
  • Aromatic amines such as ennenopropane, 4,4'-diaminodiphenenolesnolephone, m-phenylenediamine, p-xylylenediamine, ethylenediamine, hexamethylenediamine, diethylenetriamine, and aliphatic amines such as triethylenetetramine There is.
  • One or more of these curing agents can be mixed and used in the composition.
  • an oligomer or a polymer compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene resin, indene-coumarone resin, phenoxy resin, or the like is modified. You may mix
  • the addition amount is usually in the range of 2 to 30 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • the epoxy resin composition of the present invention may contain additives such as inorganic fillers, pigments, flame retardants, thixotropic agents, coupling agents, fluidity improvers and the like.
  • inorganic fillers include silica powder such as spherical or crushed fused silica and crystalline silica, alumina powder, glass powder, or my strength, talc, calcium carbonate, alumina, hydrated alumina, and the like.
  • a preferable blending amount when used for a semiconductor encapsulant is 70% by weight or more, more preferably 80% by weight or more.
  • Examples of the pigment include organic or inorganic extender pigments, scaly pigments, and the like.
  • wrinkle-modifying agents include silicon, castor oil, aliphatic amide wax, oxidized polyethylene wax, and organic bentonite.
  • a curing accelerator can be used in the epoxy resin composition of the present invention as needed.
  • examples include amines, imidazoles, organic phosphines, Lewis acids, etc., specifically 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine.
  • Tertiary amine such as triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methyl imidazole, 2-phenyl-1-phenyl 4 -Imidazoles such as methyl imidazole and 2-heptadecyl imidazole, tryptyl phosphine, methyl diphenyl phosphine, triphenyl Organic phosphines such as norephosphine, diphenenorephosphine, and phenenolephosphine, tetrafenenorephosphonium tetrafeninoreporate, tetrafenenorephosphonium ethyltriphenyl borate, tetrabutylphosphonium tetraptylborate And tetraphenylboron salts such as tetra-substituted
  • the resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a coupling agent such as ⁇ -glycidoxyprovir trimethyoxysilane, a colorant such as carbon black, and the like. Flame retardants such as antimony oxide, low stress agents such as silicon oil, lubricants such as calcium stearate, etc. can be used.
  • the epoxy resin composition of the present invention is made into a varnish in which an organic solvent is dissolved, and then impregnated into a fibrous material such as glass cloth, a polyamide nonwoven fabric, a polyester nonwoven fabric such as a liquid crystal polymer, and the like, and then the solvent is removed. It can be a pre-preda. In some cases, a laminate can be formed by coating on a sheet-like material such as copper foil, stainless steel foil, polyimide film, polyester film or the like.
  • an epoxy resin cured product can be obtained.
  • This cured product is excellent in terms of low hygroscopicity, high heat resistance, adhesion, flame retardancy, and the like. Become.
  • This cured product can be obtained by molding the epoxy resin composition by a method such as casting, compression molding, transfer molding or the like. The temperature at this time is usually in the range of 120-20 ° C.
  • the viscosity was measured using a B-type viscometer, and the softening point was measured by the ring-and-ball method according to JISK 169 1.11.
  • the GPC measurement conditions are as follows: Equipment: HL C-8 2A (manufactured by Tosohichi Co., Ltd.), column: TSK-GE L 2 00 0 X 3 and TSK-GE L 40 0 0 X 1 (Both Tosoh (Manufactured by Co., Ltd.), solvent: tetrahydrofuran, flow rate: 1 m 1 Zmin, temperature: 38 ° C, detector: RI, and polystyrene standard solution was used for the calibration curve.
  • 0-cresol novolac type epoxy resin (OCNE; epoxy equivalent 200, softening point 65 ° C) as epoxy resin component, SAR-A, SAR-B, examples obtained in Examples 1 and 2 as curing agents
  • the phenol resin composition obtained in 3 (resin composition A), phenol novolac (Hardener A: Gunei Chemical Co., PSM— 4 2 6 1; OH equivalent 10 3, softening point 8 2 ° C), phenol aralkyl resin (Hardener B; Meiwa Kasei, MEH— 7 8 0 0 SS, OH equivalent 1 75, softening point 6 7 ° C), silica as filler (average particle size 18 / ⁇ ⁇ ), trif as curing accelerator;
  • the composition shown in Table 3 was kneaded to obtain an epoxy resin composition.
  • This epoxy resin composition was molded at 1755 ° C. and post-cured at 1755 ° C. for 12 hours to obtain a cured test piece, which was then subjected to various
  • the glass transition point (T g) and linear expansion coefficient (C T E) were measured at a rate of temperature increase of 10 ° CZ using a thermomechanical measurement device. Also, the water absorption is 50 mm in diameter and 3 mni in thickness, and the water absorption is 10 hours at 85 ° C and 85% RH. Using the composition, a disk having a diameter of 50 mm and a thickness of 3 mm was formed, and the weight change rate after post-curing was absorbed at 1 33 ° C., 3 atm, 96 hours. The adhesive strength was 25 mmX 1 2.5 mmX 0.5 miii between two copper plates, formed at 1 75 ° C with a compression molding machine, and 12 hours at 180 ° C.
  • SAE-A o_cresol novolak type epoxy resin synthesized in Example 8 (OCNE; ⁇ poxy equivalent 20 0, softening point 65 ° C), bifunctional diphenylsulfide type epoxy Resin (manufactured by Tohto Kasei Co., Ltd., YSLV—50 TE; epoxy equivalent 170, melting point 45 ° C.) was used as a curing agent component
  • SAR—A phenol novolak
  • curing agent A Made by Gunei Chemical Co., Ltd., P SM— 42 6 1; OH equivalent 10 3, softening point 8 2 ° C
  • 1 naphthol aralkyl type resin curing agent B: Toto Kasei, SN 4 7 5; OH equivalent 2 1 0, softening point 7 7 ° C).
  • Epoxy resin compositions were obtained with the formulations shown in Tables 5 and 7 (average particle size 18 ⁇ m), using triphenylphosphine as a curing accelerator.
  • surface shows the weight part in a mixing
  • molding was carried out at 1755 ° C., and post-curing was carried out at 1755 ° C. for 12 hours to obtain a cured specimen, which was then subjected to various physical property measurements. The results are shown in Table 4.
  • the SAR of the present invention is useful as a curing agent and modifier for epoxy resins, When applied to a resin composition, it provides excellent adhesion to dissimilar materials, and provides a cured product with excellent flame resistance and heat resistance. For applications such as sealing electrical and electronic parts, circuit board materials, etc. It can be used suitably.
  • SAE blended with the SAR of the present invention when applied to an epoxy resin composition, is excellent in high adhesion to dissimilar materials and gives a cured product with excellent flame retardancy and heat resistance. It can be suitably used for applications such as sealing and circuit board materials. If the epoxy resin composition containing SAE or SAR of the present invention is cured by heating, an epoxy resin cured product can be obtained. This cured product is excellent in terms of adhesion, flame retardancy, and high heat resistance. It can be used suitably for applications such as sealing electrical and electronic parts and circuit board materials.

Abstract

Disclosed are a novel polyvalent hydroxy compound and an epoxy resin, each of which can be represented by the general formula (1) below. The resin is excellent in close adhesion to a material of a different kind, and enables to obtain a cured product having excellent flame retardancy and heat resistance. In the formula, A represents a benzene ring or naphthalene ring which may be substituted by a hydrocarbon group having 1-8 carbon atoms; R1 and R2 may be the same or different and represent a hydrogen atom or an alkyl group having 1-6 carbon atoms; G representsa hydrogen atom or a glycidyl group; n represents a number of 1-10; and m represents an integer of 1-2.

Description

明 細 書  Specification
新規多価ヒ ドロキシ化合物、 該化合物の製造方法、 該化合物を用いたエポキシ樹脂並 ぴにエポキシ樹脂組成物及ぴその硬化物 Novel polyhydric hydroxy compound, process for producing the compound, epoxy resin, epoxy resin composition and cured product thereof using the compound
技術分野 Technical field
本発明は、 エポキシ樹脂の硬化剤、 改質剤等として有用なスルフィ ド構造含有多価 ヒ ドロキシ化合物、 スルフィ ド構造含有エポキシ樹脂、 これら用いたエポキシ樹脂組 成物並びにその硬化物に関するものであり、 プリント配線板、 半導体封止等の電気電 子分野の絶縁材料等に好適に使用される。 背景技術  TECHNICAL FIELD The present invention relates to a sulfide structure-containing polyhydric hydroxy compound, a sulfide structure-containing epoxy resin useful as an epoxy resin curing agent, modifier, and the like, an epoxy resin composition using the same, and a cured product thereof. It is suitably used as an insulating material in the electrical and electronic fields such as printed wiring boards and semiconductor encapsulation. Background art
エポキシ樹脂は工業的に幅広い用途で使用されてきているが、 その要求性能は近年 ますます高度化している。 例えば、 エポキシ樹脂を主剤とする樹脂組成物の代表的分 野に半導体封止材料があるが、 半導体素子の集積度の向上に伴い、 パッケージサイズ は大面積化、 薄型化に向かう とともに、 実装方式も表面実装化への移行が進展してお り、 半田耐熱性に優れた材料の開発が望まれている。 従って、 封止材料としては、 低 吸湿化に加え、 リードフレーム、 チップ等の異種材料界面での接着性 ·密着性の向上 が強く求められている。 回路基板材料においても同様に、 半田耐熱性向上の観点から 低吸湿性、 高耐熱性、 高密着性の向上に加え、 誘電損失低減の観点から低誘電性に優 れた材料の開発が望まれている。 これらの要求に対応するため、 様々な新規構造のェ ポキシ樹脂及び硬化剤が検討されている。 更に最近では、 環境負荷低減の観点から、 ハロゲン系難燃剤排除の動きがあり、 より難燃性に優れたエポキシ樹脂及び硬化剤が 求められている。  Epoxy resins have been used in a wide range of industrial applications, but their required performance has become increasingly sophisticated in recent years. For example, semiconductor encapsulating materials are a typical field of resin compositions based on epoxy resins, but as the degree of integration of semiconductor elements increases, the package size is becoming larger and thinner, and the mounting method However, the transition to surface mounting is progressing, and the development of materials with excellent solder heat resistance is desired. Therefore, as a sealing material, in addition to low moisture absorption, improvement in adhesion and adhesion at the interface between different materials such as lead frames and chips is strongly demanded. Similarly, for circuit board materials, in addition to improving low heat absorption, high heat resistance, and high adhesion from the viewpoint of improving solder heat resistance, it is desirable to develop materials with excellent low dielectric properties from the viewpoint of reducing dielectric loss. ing. To meet these demands, various new structures of epoxy resins and curing agents are being investigated. More recently, from the viewpoint of reducing environmental impact, there has been a movement to eliminate halogen-based flame retardants, and epoxy resins and curing agents with better flame retardancy have been demanded.
従って、 上記背景から種々のェポキシ樹脂及ぴェポキシ樹脂硬化剤が検討されてい る。 エポキシ樹脂硬化剤の一例として、 ナフタレン系樹脂が知られており、 特許文献 1にはナフ トールァラルキル樹脂を半導体封业材へ応用することが示されている。 但 し、 ナフトールァラルキル樹脂は、 低吸湿性、 低熱膨張性等に優れるものの、 硬化性 に劣る欠点があった。 また、 特許文献 2にはビブヱニル構造を有する硬化剤が提案さ れ、 難燃性向上に有効であることが記載されているが、 硬化性に劣る欠点があった。 更に、 ナフタレン系樹脂、 ビフエニル系樹脂ともに、 炭化水素のみで構成される主骨 格を有することから、 難燃性や密着性の発現に十分ではなかった。 Therefore, various epoxy resins and epoxy resin curing agents have been studied from the above background. As an example of the epoxy resin curing agent, a naphthalene-based resin is known, and Patent Document 1 shows that a naphthal aralkyl resin is applied to a semiconductor sealing material. However, naphthol aralkyl resin is excellent in low hygroscopicity, low thermal expansion, etc. There was a disadvantage inferior to. Patent Document 2 proposes a curing agent having a biphenyl structure and describes that it is effective for improving flame retardancy, but has a drawback of poor curability. Furthermore, both naphthalene-based resins and biphenyl-based resins have a main skeleton composed of only hydrocarbons, so that they were not sufficient for the development of flame retardancy and adhesion.
また、 特許文献 3にはスルフィ ド構造を有する 2官能性ヒ ドロキシ化合物を含むェ ポキシ樹脂組成物が開示されているが、 2官能性ヒ ドロキシ化合物は高融点であるこ とから、 エポキシ樹脂硬化剤としての取り扱い性に問題があった。 更には、 2官能性 化合物であるため、 多官能性化合物と比較して耐熱性に劣る欠点もあった。  Patent Document 3 discloses an epoxy resin composition containing a bifunctional hydroxy compound having a sulfide structure. However, since the bifunctional hydroxy compound has a high melting point, an epoxy resin curing agent is disclosed. As a result, there was a problem in handling. Furthermore, since it is a bifunctional compound, it has a disadvantage that it is inferior in heat resistance as compared with a polyfunctional compound.
—方、 エポキシ樹脂についても、 これらの要求を満足するものは未だ知られていな い。 例えば、 周知のビスフエノール型エポキシ樹脂は、 常温で液状であり、 作業性に 優れていることや、 硬化剤、 添加剤等との混合が容易であることから広く使用されて いるが、 耐熱性、 耐湿性の点で問題がある。 また、 耐熱性を改良したものとして、 ノ ポラック型エポキシ樹脂が知られているが、接着性、耐湿性等に問題がある。 更には、 主骨格が炭化水素のみで構成される従来のエポキシ樹脂では、 難燃性を全く もたない。 ハロゲン系難燃剤を用いることなく難燃性を向上させるための方策として、 リン酸 エステル系の難燃剤を添加する方法が開示されている。 しかし、 リン酸エステル系の 難燃剤を用いる方法では、 耐湿性が十分ではない。 また、 高温、 多湿な環境下ではリ ン酸エステルが加水分解を起こし、 絶縁材料としての信頼性を低下させる問題があつ た。  -On the other hand, epoxy resins that satisfy these requirements are not yet known. For example, the well-known bisphenol type epoxy resin is widely used because it is liquid at room temperature, has excellent workability, and is easy to mix with hardeners, additives, etc. There is a problem in terms of moisture resistance. In addition, nopolac-type epoxy resins are known as improved heat resistance, but there are problems in adhesion, moisture resistance, and the like. Furthermore, conventional epoxy resins whose main skeleton is composed only of hydrocarbons have no flame retardancy. As a measure for improving flame retardancy without using a halogen flame retardant, a method of adding a phosphate ester flame retardant is disclosed. However, the method using phosphate ester flame retardants does not have sufficient moisture resistance. In addition, the phosphoric acid ester is hydrolyzed under high temperature and high humidity, which reduces the reliability as an insulating material.
リン原子やハロゲン原子を含むことなく、 難燃性を向上させるものとして、 特許文 献 2及び 4ではビフエ二ル構造を有するァラルキル型エポキシ樹脂を半導体封止材へ 応用した例が開示されている。 特許文献 5には、 ナフタレン構造を有するァラルキル 型エポキシ樹脂を使用する例が開示されている。 しかしながら、 これらのエポキシ樹 脂は難燃性や、 密着性、 耐熱性のいずれかにおいて性能が十分でない。 特許文献 6、 7及び 8にはナフ トール系ァラルキル型エポキシ樹脂及びこれを含有する半導体封止 材が開示されているが、 難燃性に着目したものはない。 また、 特許文献 9には、 ジフ ェニルエーテル構造を有する多価ヒ ドロキシ化合物及ぴそのエポキシ化物が開示され ているが、 密着性や難燃性に着目したものではない。 さらには、 特許文献 1 0には、 スルフィ ド構造を有する 2官能性エポキシ樹脂を用いた半導体封止材料が開示されて いるが、 これらのエポキシ樹脂は耐熱性において性能が十分でなく、 また難燃性に着 目したものではない。 Patent Documents 2 and 4 disclose examples in which a aralkyl epoxy resin having a biphenyl structure is applied to a semiconductor encapsulant as one that improves flame retardancy without containing phosphorus atoms or halogen atoms. . Patent Document 5 discloses an example in which an aralkyl type epoxy resin having a naphthalene structure is used. However, these epoxy resins have insufficient performance in any of flame retardancy, adhesion and heat resistance. Patent Documents 6, 7 and 8 disclose naphthol-based aralkyl-type epoxy resins and semiconductor encapsulants containing the same, but nothing focuses on flame retardancy. In addition, Patent Document 9 includes Although a polyhydric hydroxy compound having an phenyl ether structure and an epoxidized product thereof are disclosed, it does not focus on adhesion and flame retardancy. Further, Patent Document 10 discloses a semiconductor sealing material using a bifunctional epoxy resin having a sulfide structure. However, these epoxy resins have insufficient heat resistance and are difficult. It is not focused on flammability.
特許文献 1 :特開平 5— 1 0 9 9 3 4号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 5- 1 09 9 3 4
特許文献 2 :特開平 1 1一 1 4 0 1 6 6号公報  Patent Document 2: Japanese Patent Laid-Open No. 11 1 1 4 0 1 6 6
特許文献 3 :特開平 6— 1 4 5 3 0 6号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 6-1 4 5 3 0 6
特許文献 4 :特開 2 0 0 0 ― 1 2 9 0 9 2号公報  Patent Document 4: Japanese Patent Laid-Open No. 2 00 0-1 2 90 92
特許文献 5 :特開 2 0 0 4 ― 5 9 7 9 2号公報  Patent Document 5: Japanese Patent Application Laid-Open No. 2004-5 9 7 92
特許文献 6 :特開平 3— 9 0 0 7 5号公報  Patent Document 6: Japanese Patent Laid-Open No. 3-90 075
特許文献 7 :特開平 3— 2 8 1 6 2 3号公報  Patent Document 7: Japanese Patent Laid-Open No. 3-2 8 1 6 2 3
特許文献 8 :特開平 4一 1 7 3 8 3 1号公報  Patent Document 8: Japanese Patent Laid-Open No. 4 1 1 7 3 8 3 1
特許文献 9 :特開平 1 0— 2 6 5 5 5 4号公報  Patent Document 9: Japanese Patent Laid-Open No. 10-2 6 5 5 5 4
特許文献 1 0 : 特開平 6 1 4 5 3 0 0号公報 発明の開示  Patent Document 10: Japanese Patent Laid-Open No. 6 1 4 5 3 0 0 Disclosure of Invention
本発明の目的は、 積層、 成形、 注型、 接着等の用途において金属基材との密着性や 難燃性に優れるとともに、 耐熱性等にも優れた性能を有し、 エポキシ樹脂組成物の硬 化剤、 改質剤等として有用なスルブイ ド構造含有多価ヒ ドロキシ化合物を提供するこ と、金属基材との密着性や難燃性に優れるとともに、耐熱性等にも優れた性能を有し、 積層、 成形、 注型、 接着等の用途に有用なスルフィ ド構造含有エポキシ樹脂を提供す ること、 優れた成形性を有するとともに、 密着性、 難燃性及び耐熱性等に優れた硬化 物を与える電気 ·電子部品類の封止、 回路基板材料等に有用なエポキシ樹脂組成物を 提供すること、 及ぴその硬化物を提供することにある。  The purpose of the present invention is to have excellent performance in adhesion to a metal substrate and flame retardancy in applications such as lamination, molding, casting, and adhesion, as well as excellent heat resistance. Providing sulfido structure-containing polyhydric hydroxy compounds useful as hardeners, modifiers, etc., providing excellent adhesion to metal substrates and flame retardancy, as well as excellent heat resistance. Provided with a sulfide structure-containing epoxy resin useful for applications such as lamination, molding, casting, and adhesion, excellent moldability, and excellent adhesion, flame retardancy, and heat resistance The object is to provide an epoxy resin composition useful for sealing electrical and electronic parts that give a cured product, circuit board materials, etc., and to provide the cured product.
本発明のスルフィ ド構造含有多価ヒ ドロキシ化合物おょぴスルフィ ド構造含有ェポ キシ樹脂は、 下記一般式 (1 ) で表される。 The sulfido structure-containing polyhydric hydroxy compound of the present invention The xy resin is represented by the following general formula (1).
Figure imgf000006_0001
Figure imgf000006_0001
ここで、 Aは炭素数 1〜 8の炭化水素基で置換されてもよいベンゼン環又はナフタレ ン環のいずれかを示し、 、 R 2 は同一又は異なってもよい水素原子、 又は炭素数 1 ~ 6のアルキル基のいずれかを示し、 Gは水素原子、 グリシジル基のいずれかを示 し、 nは 1 ~ 1 0の数を示し、 mは 1〜2の整数を示す。 Here, A represents either a benzene ring or a naphthalene ring which may be substituted with a hydrocarbon group having 1 to 8 carbon atoms, R 2 represents a hydrogen atom which may be the same or different, or a carbon number of 1 to 6 represents an alkyl group, G represents a hydrogen atom or a glycidyl group, n represents a number from 1 to 10, and m represents an integer from 1 to 2.
このスルフィ ド構造含有エポキシ樹脂は、 下記一般式 (2)  This sulfide structure-containing epoxy resin has the following general formula (2)
Figure imgf000006_0002
Figure imgf000006_0002
ここで、 Aは炭素数 1〜 8の炭化水素基で置換されていてもよいベンゼン環又はナフ タレン環のいずれかを示し、 、 R2 は同一又は異なってもよい水素原子、 又は炭 素数 1 ~ 6のアルキル基のいずれかを示し、 nは 1 ~ 1 0の数を示し、 mは 1〜2の 整数を示す。 Here, A represents either a benzene ring or a naphthalene ring which may be substituted with a hydrocarbon group having 1 to 8 carbon atoms, R 2 represents a hydrogen atom which may be the same or different, or carbon number 1 Any one of ~ 6 alkyl groups, n is a number from 1 to 10, and m is an integer from 1 to 2.
で表される多価ヒ ドロキシ化合物とェピクロルヒ ドリンとを反応させることにより得 ることができる。 It can be obtained by reacting a polyhydric hydroxy compound represented by the formula with epichlorohydrin.
スルフィ ド構造含有多価ヒ ドロキシ化合物は、 下記式 (3) 又は (4) で表される ヒ ドロキシ化合物 1モルに対し、 下記式 (5) で表される架橋剤 0. 1 ~0. 9モル とを反応させることにより得ることができる。
Figure imgf000007_0001
The polyhydric hydroxy compound containing a sulfido structure is a cross-linking agent represented by the following formula (5) with respect to 1 mol of the hydroxy compound represented by the following formula (3) or (4): 0.1 to 0.9 It can be obtained by reacting with mol.
Figure imgf000007_0001
ここで、 R3 は炭素数 1〜 8のアルキル基を示し、 pは 0~ 3の整数、 mは 1〜2の 整数を示す。 Here, R 3 represents an alkyl group having 1 to 8 carbon atoms, p represents an integer of 0 to 3, and m represents an integer of 1 to 2.
Figure imgf000007_0002
Figure imgf000007_0002
ここで、 、 R 2 は同一又は異なってもよい水素原子、 又は炭素数 1〜 6のアルキ ル基を示し、 R4 は OH、 アルコキシ又はハロゲンを示す。 Here, R 2 represents a hydrogen atom which may be the same or different, or an alkyl group having 1 to 6 carbon atoms, and R 4 represents OH, alkoxy or halogen.
本発明の一般式 (1 ) で表される新規多価ヒ ドロキシ化合物は、 特定のヒ ドロキシ 化合物と特定の架橋剤を反応させることにより得ることができる。 一般式 ( 1 ) にお いて、 Aはベンゼン環又はナフタレン環を示し、 これらの環は炭素数 1〜 8の炭化水 素基で置換されていてもよい。 好ましくは、 Aは無置換若しくはメチル墓で置換され たベンゼン環又はナフタレン環である。 R 及び R 2は水素原子又は炭素数 1〜 6のァ ルキル基を示すが、 好ましくは水素原子又はメチル基であり、 これらは同一又は異な つてもよい。 mは 1又は 2であるが、 好ましくは 1である。 nは平均の繰り返し数を 示し、 1〜 1 0であるが、 好ましくは 1〜 5である。 このような多価ヒ ドロキシ化合 物は、 一般式 (2) 又は (3) で表されるヒ ドロキシ化合物と一般式 (4) で表され る架橋剤とを反応させることにより得られる。 一般式 (2) 又は (3) において、 R3 は炭素数 1〜 8の炭化水素基であるが、 好ましくはアルキル基であり、 より好ましく はメチル基である。 pは 0〜 3の整数であるが、 好ましくは 0である。 本発明のスルフイ ド構造含有多価ヒ ドロキシ化合物 (以下、 SARともいう) は一 般式 (1) で表される。 また、 S ARはエポキシ化することによりエポキシ樹脂 (以 下、 SAEともいう) とすることができるので、 S ARはエポキシ樹脂の中間体でも ある。 The novel polyhydric hydroxy compound represented by the general formula (1) of the present invention can be obtained by reacting a specific hydroxy compound with a specific cross-linking agent. In the general formula (1), A represents a benzene ring or a naphthalene ring, and these rings may be substituted with a hydrocarbon group having 1 to 8 carbon atoms. Preferably, A is a benzene ring or naphthalene ring which is unsubstituted or substituted with a methyl tomb. R 1 and R 2 each represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a hydrogen atom or a methyl group, and these may be the same or different. m is 1 or 2, but is preferably 1. n represents the average number of repetitions, and is 1 to 10, preferably 1 to 5. Such a polyhydric hydroxy compound can be obtained by reacting the hydroxy compound represented by the general formula (2) or (3) with the cross-linking agent represented by the general formula (4). In the general formula (2) or (3), R 3 is a hydrocarbon group having 1 to 8 carbon atoms, preferably an alkyl group, more preferably a methyl group. p is an integer of 0 to 3, preferably 0. The sulfide structure-containing polyhydric hydroxy compound (hereinafter also referred to as SAR) of the present invention is represented by the general formula (1). Since SAR can be epoxidized into an epoxy resin (hereinafter also referred to as SAE), SAR is also an epoxy resin intermediate.
S A Rの軟化点は 4 0〜20 0°Cであることがよく、 好ましくは 5 0〜; 1 6 0 °C、 より好ましくは 6 0〜 1 2 0 °Cの範囲である。 ここで、 軟化点は、 J I S K— 6 9 1 1の環球法に基づき測定される軟化点を指す。 これより低いと、 これをエポキシ樹脂 に配合したとき、 硬化物の耐熱性が低下し、 これより高いと成形時の流動性が低下す る。  The softening point of S A R is preferably 40 to 200 ° C., preferably 50 to 200 ° C., more preferably 60 to 120 ° C. Here, the softening point refers to a softening point measured based on the ring and ball method of JISK— 6 9 1 1. If it is lower than this, the heat resistance of the cured product is lowered when it is added to an epoxy resin, and if it is higher than this, the fluidity during molding is lowered.
本発明の SARは、 エポキシ樹脂の硬化剤、 及び改質剤として有用であり、 ェポキ シ樹脂組成物に応用した場合、 異種材料との高密着性に優れるとともに、 難燃性及び 耐熱性に優れた硬化物を与え、 電気 ·電子部品類の封止、 回路基板材料等の用途に好 適に使用することが可能である。 本発明の S ARを配合したエポキシ樹脂組成物を加 熱硬化させれば、 エポキシ樹脂硬化物とすることができ、 この硬化物は密着性、 難燃 性、 高耐熱性等の点で優れたものを与え、 電気 ·電子部品類の封 ih、 回路基板材料等 の用途に好適に使用することが可能である。  The SAR of the present invention is useful as an epoxy resin curing agent and modifier, and when applied to an epoxy resin composition, it has excellent adhesion to dissimilar materials, as well as excellent flame retardancy and heat resistance. It is possible to give a hardened material and to use it suitably for applications such as sealing electrical and electronic parts and circuit board materials. If the epoxy resin composition containing the SAR of the present invention is heat-cured, it can be made into an epoxy resin cured product, and this cured product is excellent in terms of adhesion, flame retardancy, high heat resistance, etc. It can be used suitably for applications such as sealing ih for electrical and electronic parts, circuit board materials, etc.
本発明の SAEは、 エポキシ樹脂組成物に応用した場合、 異種材料との高密着性に 優れるとともに、難燃性及び耐熱性に優れた硬化物を与え、 電気 ·電子部品類の封止、 回路基板材料等の用途に好適に使用することが可能である。 本発明の S AE又は S A Rを配合したェポキシ樹脂組成物を加熱硬化させれば、 ェポキシ樹脂硬化物とするこ とができ、 この硬化物は密着性、 難燃性、 高耐熱性等の点で優れたものを与え、 電気 · 電子部品類の封止、 回路基板材料等の用途に好適に使用することが可能である。 図面の簡単な説明  The SAE of the present invention, when applied to an epoxy resin composition, is excellent in high adhesion to dissimilar materials and gives a cured product with excellent flame retardancy and heat resistance, sealing of electrical and electronic parts, circuit It can be suitably used for applications such as substrate materials. If the epoxy resin composition containing the SAE or SAR of the present invention is cured by heating, it can be made into an epoxy resin cured product. This cured product is in terms of adhesion, flame retardancy, and high heat resistance. It can be used for applications such as sealing electrical and electronic parts and circuit board materials. Brief Description of Drawings
第 1図は、 実施例 1で得られた S AR— Aの1 H— NMRスペク トルである。 FIG. 1 is a 1 H-NMR spectrum of SAR-A obtained in Example 1.
第 2図は、 実施例 1で得られた S AR_ Aの赤外吸収スぺク トルである。 第 3図は、 実施例 1で得られた SAR— Aの GP Cチャートである。 FIG. 2 is an infrared absorption spectrum of SAR_A obtained in Example 1. FIG. 3 is a GP C chart of SAR-A obtained in Example 1.
第 4図は、 実施例 1で得られた S AR— Aの FD— MSチヤ一トである。  FIG. 4 shows the SAR-A FD-MS chart obtained in Example 1.
第 5図は、 実施例 8で得られた S AE— Aの1 H— NMRスぺク トルである。 FIG. 5 is the 1 H-NMR spectrum of S AE-A obtained in Example 8.
第 6図は、 実施例 8で得られた SAE— Aの赤外吸収スぺク トルである。  FIG. 6 is an infrared absorption spectrum of SAE-A obtained in Example 8.
第 7図は、 実施例 8で得られた S AE— Aの GP Cチャートである。 発明を実施するための最良の形態  FIG. 7 is a GP C chart of SAE-A obtained in Example 8. BEST MODE FOR CARRYING OUT THE INVENTION
本発明について詳細に述べる。  The present invention will be described in detail.
本発明の S ARは、 それ自体をフヱノール樹脂組成物又はエポキシ樹脂組成物の一 成分とすることができるが、 場合により、 スルフイ ド構造含有多価ヒ ドロキシ化合物 にハロゲン化アルキル化合物、 ハロゲン化ァルケ-ル化合物、 ェピハロヒ ドリ ン化合 物等を反応させることにより、 スルフィ ド構造含有多価ヒ ドロキシ化合物中の OH基 の水素原子の一部又は全部をアルキル基、 アルケニル基、 グリシジル基等に置換する ことができる。  The SAR of the present invention can itself be a component of a phenol resin composition or an epoxy resin composition. In some cases, a sulfido structure-containing polyhydric hydroxy compound is added to a halogenated alkyl compound, a halogenated alkylke. -By reacting thiol compounds, epihalohydrin compounds, etc., some or all of the hydrogen atoms of OH groups in the sulfido structure-containing polyhydric hydroxy compounds are substituted with alkyl groups, alkenyl groups, glycidyl groups, etc. be able to.
本発明の SARは、 式 (3) 又は (4) で表されるヒ ドロキシ化合物と、 式 (5) で表される架橋剤を反応させることにより合成することができる。 この場合の架橋剤 の使用量は、 ヒ ドロキシ化合物 1モルに対して、 0. 1〜0. 9モルの範囲であるが、 好ましくは 0. 2~0. 8モルの範囲である。 これより小さいと合成の際、 未反応の ヒ ドロキシ化合物が多くなり、 合成された S ARの軟化点が低くなり、 エポキシ樹脂 硬化剤として使用した場合の硬化物の耐熱性が低下する。 また、 これより大きいと S ARの軟化点が高くなり、 場合により合成の際に SARがゲル化することがある。 この反応は無触媒又は酸触媒の存在下に行うことができる。 この酸触媒としては、 周知の無機酸、 有機酸より適宜選択することができる。 例えば、 塩酸、 硫酸、 燐酸等 の鉱酸や、 ギ酸、 シユウ酸、 トリフルォロ酢酸、 P-トルエンスルホン酸、 ジメチル硫 酸、 ジェチル硫酸等の有機酸や、 塩化亜鉛、 塩化アルミニウム、 塩化鉄、 三フッ化ホ ゥ素等のルイス酸あるいはイオン交換樹脂、 活性白土、 シリカ-アルミナ、 ゼォライ ト 等の固体酸等が挙げられる。 The SAR of the present invention can be synthesized by reacting a hydroxy compound represented by the formula (3) or (4) with a cross-linking agent represented by the formula (5). In this case, the amount of the crosslinking agent used is in the range of 0.1 to 0.9 mol, preferably in the range of 0.2 to 0.8 mol, with respect to 1 mol of the hydroxy compound. If it is smaller than this, the amount of unreacted hydroxy compounds increases during synthesis, the softening point of the synthesized SAR is lowered, and the heat resistance of the cured product when used as an epoxy resin curing agent decreases. If it is larger than this, the softening point of SAR will increase, and in some cases, SAR may gel during synthesis. This reaction can be carried out without a catalyst or in the presence of an acid catalyst. The acid catalyst can be appropriately selected from known inorganic acids and organic acids. For example, mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, organic acids such as formic acid, oxalic acid, trifluoroacetic acid, P-toluenesulfonic acid, dimethylsulfuric acid, and jetylsulfuric acid, zinc chloride, aluminum chloride, iron chloride, trifluoride Lewis acid such as hydrogen fluoride or ion exchange resin, activated clay, silica-alumina, zeolite And solid acids such as
また、 この反応は通常、 1 0 ~ 2 5 0 °Cで 1 〜 2 0時間行われる。 更に、 反応の際 には、 メタノール、 エタノール、 プロパノール、 ブタノール、 エチレングリ コ一ノレ、 メチルセ口ソルブ、 ェチルセ口ソルブ等のアルコール類や、 アセ トン、 メチノレエチル ケトン、 メチルイソプチルケトン等のケ トン類、 ジメチルエーテル、 ジェチルエーテ ル、 ジイソプロピルエーテル、 テ トラヒ ドロフラン、 ジォキサン等のエーテル類、 ベ ンゼン、 トルエン、 クロ口ベンゼン、 ジクロロベンゼン等の芳香族化合物等を溶媒と して使用することができる。  In addition, this reaction is usually performed at 10 to 25 ° C. for 1 to 20 hours. Furthermore, during the reaction, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol monole, methyl cetosolve, ethylcele solve, etc., and ketones such as acetone, methinoreethylketone, methylisobutylketone Further, ethers such as dimethyl ether, jetyl ether, diisopropyl ether, tetrahydrofuran, and dioxane, and aromatic compounds such as benzene, toluene, black benzene, and dichlorobenzene can be used as the solvent.
一般式 ( 3 ) で表されるフエノール類又は一般式 (4 ) で表されるナフ トール類と しては、 例えばフエノ一ノレ、 o—ク レゾーノレ、 m _クレゾ一ノレ、 p—ク レゾーノレ、 ェ チルフエノール類、 イソプロピルフエノール類、 ターシャリーブチルフエノール類、 ァリルフエノール類、 フエニルフエノール類、 2, 6一キシレノール、 2 , 6—ジェ チノレフエノ一ノレ、 ハイ ドロキノン、 レゾ.ルシン、 カテコール、 1 一ナフ ト一ル、 2一 ナフ トール、 1 , 5—ナフタレンジオール、 1 , 6—ナフタレンジオール、 1 , 7 - ナフタレンジォーノレ、 2, 6—ナフタレンジォーノレ、 2, 7—ナフタレンジォ一ノレな どが挙げられる。 これらのフエノール類又はナフ トール類は単独でもよいし、 2種以 上を併用してもよい。  Examples of phenols represented by the general formula (3) or naphthols represented by the general formula (4) include, for example, phenol monole, o-crezonore, m_crezo monole, p-crezonore, Ethylphenols, Isopropylphenols, Tertiarybutylphenols, Arylphenols, Phenylphenols, 2,6-Xylenol, 2,6-Gethinorephenol, Noridoquinone, Resorcinol, Catechol, 1 Naphth Toilet, 21 Naphthol, 1,5—Naphthalenediol, 1,6—Naphthalenediol, 1,7-Naphthalenediole, 2,6—Naphthalenediole, 2,7—Naphthalenediole And so on. These phenols or naphthols may be used alone or in combination of two or more.
また、 一般式 ( 5 ) において、 、 R 2 は同一又は異なってもよい水素原子、 又 は炭素数 1〜 6のアルキル基のいずれかを示し、 R 4 は O H、 アルコキシ又はハロゲ ンのいずれかを示す。 一般式 (5 ) で表される架橋剤として、 ジフエニルスルフイ ド のジク口ロメチル化合物、 ジメチロール化合物又はそのジアルキルエーテル類が使用 できる。 このよ うな架橋剤と しては、 例えば 4, 4 ' ージクロロメチルジフエニルス ルフイ ド、 2 , 4 ' 一 ジクロロメチノレジフエニルスルフイ ド、 2 , 2 ' 一 ジクロロ メチノレジフエニルスノレフィ ド、 4, 4 ' —ジヒ ドロキシメチルジフ; ニルスルフィ ド、 2 , 4 ' —ジヒ ドロキシメチルジフエニルスノレフイ ド、 2 , 2 ' ージヒ ドロキシメチ ルジフエニルスルフイ ド、 4, 4 ' ージメ トキシメチノレジフエニルス/レフイ ド、 2 , 4 ' —ジメ トキシメチノレジフエニルスルフイ ド、 2, 2 ' ージメ トキシメチルジフエ ニルスルフイ ド、 4 , 4 ' —ジイソプロポキシメチルジフエニルスルフイ ド、 2, 4 ' 一ジイソプロポキシメチルジフヱニルスルフィ ド、 2, 2 ' ージイソプロポキシメチ ルジフエニノレスノレフイ ド、 4, 4 ' 一ジブトキシメチノレジフエニノレスルフイ ド、 2, 4 ' —ジブトキシメチルジフエニルスルフイ ド、 2, 2, 一ジブトキシメチルジフエ ニルスルフィ ドなどが挙げられる。 In the general formula (5), R 2 represents either the same or different hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 4 represents any of OH, alkoxy, or halogen. Indicates. As the crosslinking agent represented by the general formula (5), diphenylsulfide dimethyl compounds, dimethylol compounds or dialkyl ethers thereof can be used. Examples of such cross-linking agents include 4,4′-dichloromethyldiphenylsulfide, 2,4′-dichloromethinoresiphenylsulfide, and 2,2′-dichloromethinoresidenylsulfide. Ref., 4, 4'—Dihydroxymethyldiph; nilsulfide, 2,4'—Dihydroxymethyldiphenylsulfonyl, 2,2 'Dihydroxymethyldiphenylsulfide, 4,4' Dimethoxy Simethino Resifenil / Refuid, 2, 4'-dimethymethinoresin phenylsulfide, 2,2'-dimethoxymethyldiphenylsulfide, 4,4'-diisopropoxymethyldiphenylsulfide, 2,4'-diisopropoxymethyldiphヱ Nylsulfide, 2,2'-Diisopropoxymethyldiphenylenosenolide, 4,4'-Dibutoxymethinoresinenoresulphide, 2,4'-Dibutoxymethyldiphenylsulfide 2, 2, 1-dibutoxymethyldiphenylsulfide.
クロロメチル基及ぴメチロール基又はそのアルキルエーテル基のジフエニルス/レフ イ ドに対する置換位置は、 4, 4 ' 一位、 2, 4 ' 一位、 2, 2 ' 一位のいずれでも よいが、 架橋剤として望ましい化合物は 4, 4 ' 一体であり、 全縮合剤中に 4, 4 ' 一体が 5 0重量。 /0以上含まれるものが特に好ましい。 これより少ないと合成された樹 脂を硬化させる際の硬化速度が低下したり、 得られた硬化物がもろくなるなどの欠点 がある。 The substitution position of the chloromethyl group and methylol group or its alkyl ether group with respect to the diphenyls / ref ide may be any of 4, 4 '1 position, 2, 4' 1 position, and 2, 2 '1 position. Desirable compound as agent is 4, 4 'integral, and 4, 4' integral is 50% in total condensing agent. Those containing 0 or more are particularly preferred. If it is less than this, there are disadvantages such as a decrease in the curing rate when the synthesized resin is cured and the resulting cured product becomes brittle.
本発明のフエノール樹脂組成物は、 多価フエノール性化合物類中に上記 S A Rを含 有してなる。 S A Rの含有率は、 多価フエノール性化合物類 1 0 0重量部に対し、 2 〜 2 0 0重量部、 好ましくは 5〜 1 0 0重量部、 更に好ましくは 1 0〜 8 0重量部の 範囲である。 これより少ないと低吸湿性、 耐熱性、 密着性、 及び難燃性等の改質効果 が小さく、 これより多いと粘度が高くなり成形性が低下する。  The phenol resin composition of the present invention comprises the above S A R in a polyvalent phenolic compound. The content of SAR is in the range of 2 to 200 parts by weight, preferably 5 to 100 parts by weight, more preferably 10 to 80 parts by weight with respect to 100 parts by weight of the polyvalent phenolic compounds. It is. If it is less than this, the effects of modification such as low hygroscopicity, heat resistance, adhesion, and flame retardancy will be small, and if it is more than this, the viscosity will increase and the moldability will deteriorate.
ここで言う多価フユノール性化合物類とは、 1分子中にフエノール性水酸基を 2個 以上有するもの全てを指し、 例えば、 ビスフエノール A、 ビスフエノール F、 ビスフ ェノール S、 フルォレンビスフエノール、 4 , 4 ' —ビフエノール、 2, 2 ' -ビフエ ノール、 ハイ ドロキノン、 レゾルシン、 ナフタレンジオール等の 2価のフエノール類、 あるいは、 トリス— (4 ヒ ドロキシフエニル) メタン、 1 , 1 , 2, 2—テ トラキス (4 -ヒ ドロキシフエ二ノレ) ェタン、 フエノーノレノボラック、 o -ク レゾ一/レノボラック、 ナフトールノボラック、 ポリ ビュルフエノール等に代表される 3価以上のフエノール 類がある。 更には、 フエノール類、 ナフ トール類、 ビスフエノール A、 ビスフエノー ノレ F、 ビスフエノーノレ S、 フゾレオレンビスフエノーノレ、 4, 4 , —ビブエノーノレ、 2 , 2 ' -ビフエノーノレ、 ハイ ドロキノン、 レゾノレシン、 ナフタレンジォーノレ等の 2価のフ ェノール類と、 ホルムアルデヒ ド、 ァセ トアルデヒ ド、 ベンズアルデヒ ド、 p -ヒ ドロ キシベンズアルデヒ ド、 p -キシリ レングリ コール、 p -キシリ レングリ コールジメチ ノレエーテノレ、 4, 4 ' -ジメ トキシメチノレビフエ二ノレ、 4, 4 ' -ジメ トキシメチノレジ フエ二ルェ一テル、 ジビニルベンゼン類、 ジビニノレビフエ二ノレ類、 ジビニノレナフタレ ン類等の架橋剤との反応により合成される多価フエノール性化合物等がある。 以下、 多価フエノール性化合物類を、 フ ノール樹脂で代表して述べることがある。 The polyhydric phenolic compounds mentioned here refer to all compounds having two or more phenolic hydroxyl groups in one molecule. For example, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4 , 4'—Biphenol, 2,2'-biphenol, dihydroquinone, resorcin, naphthalenediol and other divalent phenols, or tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-Hydroxyphenenole) There are trivalent or higher phenols represented by ethane, phenenorenovolak, o-cresol / lenovolac, naphthol novolak, polybutanol and the like. Furthermore, phenols, naphthols, bisphenol A, bisphenol nore F, bisphenol nore S, fusololeen bisphenol nore, 4, 4, —bibuenole, 2, Divalent phenols such as 2'-biphenolenore, hydroquinone, resoronoresin, naphthalenediolole, formaldehyde, acetoaldehyde, benzaldehyde, p-hydroxybenzaldehyde, p-xylylene liglychol , P-xylylene lentil coledimethylolatenore, 4,4'-dimethoxymethinorebifenole, 4,4'-dimethoxymethinoresinyl ester, divinylbenzenes, divininolevenobinoles, divininorenaphthalenes And polyhydric phenolic compounds synthesized by reaction with a crosslinking agent. Hereinafter, polyhydric phenolic compounds may be described as being representative of phenolic resins.
フエノール樹脂の軟化点は、 通常、 4 0〜 2 0 0 °C、 好ましくは 6 0 ~ 1 5 0。C (D 範囲である。 これより低いと、 エポキシ樹脂の硬化剤として使用して得られた硬化物 の耐熱性が低下する。 またこれより高いと S A Rとの混合性が低下する。  The softening point of the phenol resin is usually 40 to 20 ° C., preferably 60 to 15 ° C. C (D range. If it is lower than this range, the heat resistance of the cured product obtained by using it as a curing agent for epoxy resin will decrease. If it is higher than this range, the miscibility with S A R will decrease.
本発明のフヱノール樹脂組成物は、 フヱノール樹脂又は S A Rのいずれか一方の軟 化点以上の温度で、 撹袢、 混練等により均一に混合する溶融混合法と、 それぞれを溶 解する溶媒に両者を溶解させて、 撹袢、 混練等により均一に混合する溶液混合法等の 方法で得ることができる。 溶液混合法に用いる溶媒としては、 例えばメタノール、 ェ タノ一ノレ、 プロパノーノレ、 ブタノ一ノレ、 エチレングリ コーノレ、 メチノレセ口ソノレブ、 ェ チルセ口ソルブ等のアルコール類、 アセ トン、 メチルェチルケ トン、 メチルイソプチ ルケ トン等のケ トン類、 ジメチルエーテル、 ジェチルェ一テル、 ジイソプロピルェ一 テル、 テ トラヒ ドロフラン、 ジォキサン等のエーテル類、 ベンゼン、 トルエン、 キシ レン、 クロ口ベンゼン、 ジクロロベンゼン等の芳香族系溶媒などを挙げることができ る。 なお、 この組成物を得る際に、 エポキシ樹脂、 無機充填材、 他のフエノール樹脂、 その他の添加剤 (材) を配合することもできる。  The phenol resin composition of the present invention comprises a melt mixing method in which mixing is performed by stirring, kneading, etc. at a temperature equal to or higher than the softening point of either the phenol resin or SAR, and a solvent that dissolves each of them. It can be obtained by a method such as a solution mixing method in which it is dissolved and uniformly mixed by stirring, kneading or the like. Solvents used in the solution mixing method include, for example, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycolate, methinocele sonorebu, ethylcelesolve, acetone, methylethylketone, methylisobutylketone, etc. Ketones, dimethyl ether, jetyl ether, diisopropyl ether, ethers such as tetrahydrofuran, dioxane, and aromatic solvents such as benzene, toluene, xylene, black benzene, and dichlorobenzene. it can. In addition, when obtaining this composition, an epoxy resin, an inorganic filler, another phenol resin, and other additives (materials) can be blended.
本発明のフエノール樹脂組成物は、 へキサメチルテトラミン等のフヱノール榭脂成 形材料に一般的に用いる硬化剤と併用することにより、 フエノール樹脂硬化物とする ことができる。  The phenol resin composition of the present invention can be made into a phenol resin cured product by using it in combination with a curing agent generally used in phenol resin compositions such as hexamethyltetramine.
本発明のエポキシ樹脂組成物は、 少なく ともエポキシ樹脂および硬化剤を含むもの であり、 硬化剤の一部又は全部として前記 S A Rを配合した組成物である。 上記組成 物の場合、 SARの配合量は、 通常エポキシ樹脂 1 0 0重量部に対して 2〜 2 0 0重 量部、 好ましくは 5〜8 0重量部の範囲である。 これより少ないと密着性、 難燃性お ょぴ耐熱性向上の効果が少なく、 これより多いと成形性おょぴ硬化物の強度が低下す る問題がある。 The epoxy resin composition of the present invention contains at least an epoxy resin and a curing agent, and is a composition in which the SAR is blended as a part or all of the curing agent. Above composition In the case of products, the amount of SAR is usually in the range of 2 to 200 parts by weight, preferably 5 to 80 parts by weight, with respect to 100 parts by weight of the epoxy resin. If it is less than this, the effect of improving adhesion and flame retardancy and heat resistance will be small, and if it is more than this, there will be a problem that the strength of the moldable paste will be reduced.
本発明のスルフイ ド構造含有エポキシ樹脂 (以下、 SAEともいう) は一般式 (1) で表される。 また、 スルブイ ド構造含有多価ヒ ドロキシ化合物 (S AR) は一般式(2) で表される。 SAEは、 SARをエポキシ化することにより得ることができる。  The sulfide structure-containing epoxy resin (hereinafter also referred to as SAE) of the present invention is represented by the general formula (1). The sulfido structure-containing polyhydric hydroxy compound (S AR) is represented by the general formula (2). SAE can be obtained by epoxidizing SAR.
本発明の S AEは、 上記一般式 ( 2 ) で表される SARと、 ェピクロルヒ ドリンを 反応させることより製造することが有利であるが、 この反応に限らない。  The SAE of the present invention is advantageously produced by reacting the SAR represented by the general formula (2) with epichlorohydrin, but is not limited to this reaction.
S ARをェピクロルヒ ドリンと反応させる反応の他、 S ARとハロゲン化ァリルを 反応させ、 ァリルエーテル化合物とした後、 過酸化物と反応させる方法をとることも できる。 上記 SARをェピクロルヒ ドリンと反応させる反応は、 通常のエポキシ化反 応と同様に行うことができる。  In addition to the reaction of SAR with epichlorohydrin, SAR and a halogenated halide can be reacted to form a allylic ether compound and then reacted with a peroxide. The reaction of reacting the above SAR with epichlorohydrin can be carried out in the same manner as a normal epoxidation reaction.
例えば、上記 SARを過剰のェピクロルヒ ドリンに溶解した後、水酸化ナトリゥム、 水酸化力リ ゥム等のアル力リ金属水酸化物の存在下に、 2 0〜 1 5 0°C、好ましくは、 3 0〜 8 0°Cの範囲で 1〜 1 0時間反応させる方法が挙げられる。 この際のアル力リ 金属水酸化物の使用量は、 S ARの水酸基 1モルに対して、 0. 8〜 1. 5モル、 好 ましくは、 0. 9 ~ 1. 2モルの範囲である。 また、 ェピクロルヒ ドリンは S AR中 の水酸基 1モルに対して過剰に用いられるが、 通常、 S AR中の水酸基 1モルに対し て、 1. 5〜 3 0モル、 好ましくは、 2〜 1 5モルの範囲である。 反応終了後、 過剰 のェピクロルヒ ドリンを留去し、 残留物をトルエン、 メチルイソブチルケトン等の溶 剤に溶解し、 濾過し、 水洗して無機塩を除去し、 次いで溶剤を留去することにより 目 的のエポキシ樹脂を得ることができる。  For example, after dissolving the above SAR in an excess of epichlorohydrin, in the presence of an alkali metal hydroxide such as sodium hydroxide or hydroxy hydroxide, 20 to 150 ° C, preferably The method of making it react for 1 to 10 hours in the range of 30 to 80 degreeC is mentioned. In this case, the amount of the metal hydroxide used is 0.8 to 1.5 mol, preferably 0.9 to 1.2 mol, based on 1 mol of the SAR hydroxyl group. is there. In addition, epichlorohydrin is used in excess relative to 1 mol of hydroxyl group in SAR, but usually 1.5 to 30 mol, preferably 2 to 15 mol, relative to 1 mol of hydroxyl group in SAR. Range. After completion of the reaction, excess epichlorohydrin is distilled off, and the residue is dissolved in a solvent such as toluene or methyl isobutyl ketone, filtered, washed with water to remove inorganic salts, and then the solvent is distilled off. The target epoxy resin can be obtained.
本発明のエポキシ樹脂組成物は、 少なく ともエポキシ樹脂及ぴ硬化剤を含むもので あるが、 次の 2種類がある。  The epoxy resin composition of the present invention contains at least an epoxy resin and a curing agent, and there are the following two types.
1 ) エポキシ樹脂の一部又は全部として前記 SAEを配合した組成物。 2) エポキシ榭脂及び硬化剤の一部又は全部として前記 S AEと S ARを配合した組 成物。 1) The composition which mix | blended said SAE as a part or all of an epoxy resin. 2) A composition in which SAE and SAR are blended as part or all of epoxy resin and curing agent.
上記 1 ) の組成物の場合、 エポキシ樹脂成分として、 一般式 ( 1 ) で表される S A E以外に別種のエポキシ樹脂を配合してもよい。 この場合のエポキシ樹脂としては、 分子中にエポキシ基を 2個以上有する通常のエポキシ樹脂はすべて使用できる。 例を 挙げれば、 ビスフエノール A、 ビスフエノール S、 フルオレンビスフエノール、 4 , In the case of the above composition 1), as the epoxy resin component, other types of epoxy resins may be blended in addition to SAE represented by the general formula (1). As the epoxy resin in this case, all ordinary epoxy resins having two or more epoxy groups in the molecule can be used. Examples include bisphenol A, bisphenol S, fluorene bisphenol, 4,
4 ' —ビフエノール、 2, 2, 一ビフエノール、 ハイ ドロキノン、 レゾルシン等の 2 価のフエノ一ノレ類、 あるいは、 ト リス一 ( 4—ヒ ドロキシフエニノレ) メタン、 1, 1, 2, 2—テ トラキス (4ーヒ ドロキシフエニル) ェタン、 フエノールノポラック、 o —クレゾールノボラック等の 3価以上のフエノール類、 フエノール系ァラルキル樹脂 類、 ナフトール系ァラルキル樹脂類、 又はテトラブロモビスフエノール A等のハロゲ ン化ビスフエノール類から誘導されるダルシジルエーテル化物等がある。 これらのェ ポキシ樹脂は、 1種又は 2種以上を混合して用いることができる。 そして、 本発明の4 '— Bivalent phenols such as biphenol, 2, 2, monobiphenol, hydroquinone and resorcin, or tris (4-hydroxyphenenole) methane, 1, 1, 2, 2— Halogenation of tetrakis (4-hydroxyphenyl) ethane, phenol nopolac, o — trihydric or higher phenols such as cresol novolac, phenol aralkyl resins, naphthol aralkyl resins, or tetrabromobisphenol A Examples include darcidyl etherified compounds derived from bisphenols. These epoxy resins can be used alone or in combination of two or more. And of the present invention
5 AEを必須成分とする組成物の場合、 一般式 (8) で表される S AEの配合量はェ ポキシ樹脂全体中、 5〜 1 0 0%、 好ましくは 6 0〜 1 0 0 %の範囲であることがよ い。 5 In the case of a composition containing AE as an essential component, the amount of SAE represented by the general formula (8) is 5 to 100%, preferably 60 to 100% of the entire epoxy resin. It should be a range.
また、 上記 2) の組成物の場合、 S ARの配合量は、 通常、 エポキシ樹脂 1 0 0重 量部に対して 2〜 2 0 0重量部、 好ましくは 5~8 0重量部の範囲である。 これより 少ないと密着性及び難燃性向上の効果が小さく、 これより多いと成形性及ぴ硬化物の 強度が低下する問題がある。  In the case of the above composition 2), the amount of SAR is usually 2 to 200 parts by weight, preferably 5 to 80 parts by weight with respect to 100 parts by weight of the epoxy resin. is there. If it is less than this, the effect of improving the adhesion and flame retardancy is small, and if it is more than this, there is a problem that the moldability and the strength of the cured product are lowered.
硬化剤の全量と して本発明の S ARを用いる場合、 通常、 SARの配合量は、 SA R中の OH基とェポキシ樹脂中のェポキシ基の当量パランスを考慮して配合する。 ェ ポキシ樹脂及ぴ硬化剤の当量比は、 通常、 0. 2〜5. 0の範囲であり、 好ましくは 0. 5〜2. 0の範囲である。 これより大きくても小さくても、 エポキシ樹脂組成物 の硬化性が低下するとともに、 硬化物の耐熱性、 力学強度等が低下する。  When the SAR of the present invention is used as the total amount of the curing agent, the amount of SAR is usually determined in consideration of the equivalent balance of OH groups in SAR and epoxy groups in epoxy resin. The equivalent ratio of the epoxy resin and the curing agent is usually in the range of 0.2 to 5.0, and preferably in the range of 0.5 to 2.0. If it is larger or smaller than this, the curability of the epoxy resin composition is lowered, and the heat resistance, mechanical strength, etc. of the cured product are lowered.
硬化剤として本発明の S AR以外の硬化剤を併用することができる。 その他の硬化 剤の配合量は、 S A Rの配合量が、 通常、 エポキシ樹脂 1 0 0重量部に対して 2〜 2 0 0重量部、 好ましくは 5 ~ 8 0重量部の範囲が保たれる範囲内で決定される。 S A Rの配合量がこれより少ないと低吸湿性、 密着性及び難燃性向上の効果が小さく、 こ れょり多いと成形性及ぴ硬化物の強度が低下する問題がある。 A curing agent other than the SAR of the present invention can be used in combination as a curing agent. Other curing The blending amount of the agent is determined within the range in which the blending amount of the SAR is normally maintained in the range of 2 to 200 parts by weight, preferably 5 to 80 parts by weight with respect to 100 parts by weight of the epoxy resin. Is done. If the amount of SAR is less than this, the effect of improving low moisture absorption, adhesion and flame retardancy is small, and if it is too much, there is a problem that the moldability and the strength of the cured product are lowered.
S A R以外の硬化剤としては、 一般にエポキシ樹脂の硬化剤として知られているも のはすべて使用でき、 ジシアンジアミ ド、 酸無水物類、 多価フエノール類、 芳香族及 び脂肪族ァミン類等がある。 これらの中でも、 半導体封止材等の高い電気絶縁性が要 求される分野においては、 多価フエノール類を硬化剤として用いることが好ましい。 以下に、 硬化剤の具体例を示す。  As curing agents other than SAR, all of those generally known as epoxy resin curing agents can be used, such as dicyandiamide, acid anhydrides, polyhydric phenols, aromatic and aliphatic amines, etc. . Among these, polyhydric phenols are preferably used as curing agents in fields where high electrical insulation properties such as semiconductor encapsulants are required. Specific examples of curing agents are shown below.
酸無水物硬化剤としては、 例えば、 無水フタル酸、 テトラヒ ドロ無水フタル酸、 メ チルテ トラヒ ドロ無水フタル酸、 へキサヒ ドロ無水フタル酸、 メチルへキサヒ ドロ無 水フタル酸、 メチル無水ハイ ミ ック酸、 無水ドデシニルコハク酸、 無水ナジック酸、 無水トリメ リ ッ ト酸等がある。  Examples of acid anhydride curing agents include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrohydrate-free hydrophthalic acid, and methyl anhydride hymic. Acid, dodecynyl succinic anhydride, nadic anhydride, trimellitic anhydride.
多価フエノール類としては、 例えば、 ビスフエノール A、 ビスフエノール F、 ビス フエノーノレ S、 フスレ才レンビスフエノーノレ、 4, 4 ' ービフエノーノレ、 2, 2 ' —ビブ ェノール、 ハイ ドロキノン、 レゾルシン、 ナフタレンジオール等の 2価のフエノーノレ 類、 あるいは、 ト リス- ( 4 -ヒ ドロキシフエニル) メタン、 1 , 1, 2 , 2 -テ トラキ ス (4—ヒ ドロキシフエ二ノレ) ェタン、 フエノーノレノポラック、 0 -クレゾ一ノレノボラ ック、 ナフ トールノボラック、 ポリ ビュルフエノール等に代表される 3価以上のフエ ノール類がある。 更には、 フエノール類、 ナフ トール類、 ビスフエノール A、 ビスフ ェノ一ル F、 ビスフエノール S、 フルオレンビスフエノール、 , 4 ' -ビフエノール、 2, 2 ' -ビフエノール、 ハイ ドロキノン、 レゾルシン、 ナフタレンジオール等の 2価 のフエノール類と、 ホルムアルデヒ ド、 ァセ トアルデヒ ド、 ベンズアルデヒ ド、 !) -ヒ ドロキシベンズアルデヒ ド、 p -キシリ レングリ コール、 ビスクロロメチルビフエニル 等の縮合剤により合成される多価フエノール性化合物等がある。  Examples of polyhydric phenols include bisphenol A, bisphenol F, bisphenol nore S, flossed lenbisphenol nore, 4, 4'-biphenolate, 2, 2'-bivenol, hydroquinone, resorcin, naphthalenediol. Divalent phenols such as tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetraxane (4-hydroxyoxyphenyl) ethane, phenolenonopolak, 0-crezo There are more than trivalent phenols, such as mono-renoborak, naphthol novolak, and polybuhlphenol. Furthermore, phenols, naphthols, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol,, 4'-biphenol, 2, 2'-biphenol, hydroquinone, resorcin, naphthalenediol, etc. Dihydric phenols, formaldehyde, acetoaldehyde, benzaldehyde,! ) -Hydroxybenzaldehyde, p-xylylene glycol, polyhydric phenolic compounds synthesized by condensing agents such as bischloromethylbiphenyl.
アミン類と しては、 4 , 4 ' -ジアミ ノジフエニルメタン、 4 , 4 ' -ジァミノジフ ェニノレプロパン、 4 , 4 ' -ジアミノジフエニノレスノレホン、 m-フエ二レンジァミ ン、 p -キシリ レンジアミン等の芳香族ァミン類、 エチレンジァミン、 へキサメチレンジァ ミン、 ジエチレントリアミン、 トリエチレンテトラミン等の脂肪族ァミン類がある。 上記組成物には、 これら硬化剤の 1種又は 2種以上を混合して用いることができる。 本発明のエポキシ樹脂組成物中には、 ポリエステル、 ポリアミ ド、 ポリイミ ド、 ポ リエーテル、 ポリ ウレタン、 石油樹脂、 ィンデン樹脂、 ィンデン · クマロン樹脂、 フ エノキシ樹脂等のオリゴマー又は高分子化合物を他の改質剤等として適宜配合しても よい。 添加量は、 通常、 エポキシ樹脂 1 0 0重量部に対して、 2〜 3 0重量部の範囲 である。 Examples of amines include 4,4'-diaminodiphenylmethane and 4,4'-diaminodiph. Aromatic amines such as ennenopropane, 4,4'-diaminodiphenenolesnolephone, m-phenylenediamine, p-xylylenediamine, ethylenediamine, hexamethylenediamine, diethylenetriamine, and aliphatic amines such as triethylenetetramine There is. One or more of these curing agents can be mixed and used in the composition. In the epoxy resin composition of the present invention, an oligomer or a polymer compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene resin, indene-coumarone resin, phenoxy resin, or the like is modified. You may mix | blend suitably as a quality agent etc. The addition amount is usually in the range of 2 to 30 parts by weight with respect to 100 parts by weight of the epoxy resin.
また、 本発明のエポキシ樹脂組成物には、 無機充填剤、 顔料、 難然剤、 揺変性付与 剤、 カツプリング剤、 流動性向上剤等の添加剤を配合できる。 無機充填剤と しては、 例えば、 球状あるいは、 破砕状の溶融シリカ、 結晶シリカ等のシリカ粉末、 アルミナ 粉末、 ガラス粉末、 又はマイ力、 タルク、 炭酸カルシウム、 アルミナ、 水和アルミナ 等が挙げられ、 半導体封止材に用いる場合の好ましい配合量は 7 0重量%以上であり、 更に好ましくは 8 0重量%以上である。  In addition, the epoxy resin composition of the present invention may contain additives such as inorganic fillers, pigments, flame retardants, thixotropic agents, coupling agents, fluidity improvers and the like. Examples of inorganic fillers include silica powder such as spherical or crushed fused silica and crystalline silica, alumina powder, glass powder, or my strength, talc, calcium carbonate, alumina, hydrated alumina, and the like. A preferable blending amount when used for a semiconductor encapsulant is 70% by weight or more, more preferably 80% by weight or more.
顔料としては、 有機系又は、 無機系の体質顔料、 鱗片状顔料、 等がある。 摇変性付 与剤としては、 シリ コン系、 ヒマシ油系、 脂肪族アマイ ドワックス、 酸化ポリェチレ ンワックス、 有機ベントナイ ト系等を挙げることができる。  Examples of the pigment include organic or inorganic extender pigments, scaly pigments, and the like. Examples of wrinkle-modifying agents include silicon, castor oil, aliphatic amide wax, oxidized polyethylene wax, and organic bentonite.
更に、 本発明のエポキシ樹脂組成物には必要に応じて硬化促進剤を用いることがで きる。 例を挙げれば、 アミン類、 イミダゾール類、 有機ホスフィン類、 ルイス酸等が あり、 具体的には、 1 , 8—ジァザビシクロ (5, 4 , 0 ) ゥンデセン一 7、 トリエ チレンジァミン、 ベンジルジメチルァミ ン、 トリエタノールァミン、 ジメチルァミノ エタノール、 ト リス (ジメチルアミノメチル) フエノールなどの三級ァミン、 2—メ チルイミダゾール、 2—フエ二ルイミダゾール、 2—ェチルー 4一メチルイ ミダゾー ル、 2一フエニル一 4ーメチルイミダゾール、 2—ヘプタデシルイミダゾールなどの イミダゾール類、 ト リプチルホスフィン、 メチルジフエニルホスフィン、 ト リフエ二 ノレホスフィン、 ジフエニノレホスフィン、 フエニノレホスフインなどの有機ホスフィン類、 テ トラフエ二ノレホスホニゥム ' テ トラフェニノレポレート、 テ トラフエ二ノレホスホニゥ ム .ェチルトリフエニルボレート、 テトラブチルホスホニゥム ·テトラプチルボレー トなどのテトラ置換ホスホニゥム ·テトラ置換ポレート、 2ーェチル一 4ーメチルイ ミダゾール · テ トラフエ二ルポレート、 N—メチルモルホリ ン ' テ トラフエ二ルポレ ートなどのテトラフェニルボロン塩などがある。 添加量としては、 通常、 エポキシ樹 脂 1 00重量部に対して、 0. 2から 5重量部の範囲である。 Furthermore, a curing accelerator can be used in the epoxy resin composition of the present invention as needed. Examples include amines, imidazoles, organic phosphines, Lewis acids, etc., specifically 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine. Tertiary amine such as triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, 2-methylimidazole, 2-phenylimidazole, 2-ethyl-4-methyl imidazole, 2-phenyl-1-phenyl 4 -Imidazoles such as methyl imidazole and 2-heptadecyl imidazole, tryptyl phosphine, methyl diphenyl phosphine, triphenyl Organic phosphines such as norephosphine, diphenenorephosphine, and phenenolephosphine, tetrafenenorephosphonium tetrafeninoreporate, tetrafenenorephosphonium ethyltriphenyl borate, tetrabutylphosphonium tetraptylborate And tetraphenylboron salts such as tetra-substituted phosphonium tetra-substituted porates, 2-ethyl-4-methyl imidazole tetraf diol porate, N-methylmorpholine tetraf di porate, and the like. The amount added is usually in the range of 0.2 to 5 parts by weight per 100 parts by weight of the epoxy resin.
更に必要に応じて、 本発明の樹脂組成物には、 カルナバワックス、 OPワックス等 の離型剤、 γ-グリシドキシプロビルトリメ トキシシラン等のカップリング剤、 カーボ ンブラック等の着色剤、 三酸化アンチモン等の難燃剤、 シリ コンオイル等の低応力化 剤、 ステアリン酸カルシウム等の滑剤等を使用できる。  Further, if necessary, the resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a coupling agent such as γ-glycidoxyprovir trimethyoxysilane, a colorant such as carbon black, and the like. Flame retardants such as antimony oxide, low stress agents such as silicon oil, lubricants such as calcium stearate, etc. can be used.
本発明のエポキシ樹脂組成物は、 有機溶剤の溶解させたワニス状態とした後に、 ガ ラスクロス、 ァラミ ド不織布、 液晶ポリマー等のポリエステル不織布、 等の繊維状物 に含浸させた後に溶剤除去を行い、 プリプレダとすることができる。 また、 場合によ り銅箔、 ステンレス箔、 ポリイミ ドフィルム、 ポリエステルフィルム等のシート状物 上に塗布することにより積層物とすることができる。  The epoxy resin composition of the present invention is made into a varnish in which an organic solvent is dissolved, and then impregnated into a fibrous material such as glass cloth, a polyamide nonwoven fabric, a polyester nonwoven fabric such as a liquid crystal polymer, and the like, and then the solvent is removed. It can be a pre-preda. In some cases, a laminate can be formed by coating on a sheet-like material such as copper foil, stainless steel foil, polyimide film, polyester film or the like.
本発明のエポキシ樹脂組成物を加熱硬化させれば、 エポキシ樹脂硬化物とすること ができ、 この硬化物は低吸湿性、 高耐熱性、 密着性、 難燃性等の点で優れたものとな る。 この硬化物は、 エポキシ樹脂組成物を注型、 圧縮成形、 トランスファー成形等の 方法により、成形加工して得ることができる。 この際の温度は通常、 1 20〜2 20°C の範囲である。  If the epoxy resin composition of the present invention is cured by heating, an epoxy resin cured product can be obtained. This cured product is excellent in terms of low hygroscopicity, high heat resistance, adhesion, flame retardancy, and the like. Become. This cured product can be obtained by molding the epoxy resin composition by a method such as casting, compression molding, transfer molding or the like. The temperature at this time is usually in the range of 120-20 ° C.
実施例 Example
以下、 実施例により本発明を更に具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to examples.
ここで、 粘度は B型粘度計を用い、 軟化点は J I S K一 6 9 1 1に従い環球法で測 定した。 また、 G P C測定条件は、 装置; HL C— 8 2A (東ソ一(株) 製)、 カラム ; T SK— GE L 2 0 0 0 X 3本及ぴ T S K— GE L 40 0 0 X 1本 (いずれも東ソー (株) 製)、 溶媒; テトラヒ ドロフラン、 流量; 1 m 1 Zm i n、 温度; 3 8°C、 検 出器; R Iであり、 検量線にはポリスチレン標準液を使用した。 Here, the viscosity was measured using a B-type viscometer, and the softening point was measured by the ring-and-ball method according to JISK 169 1.11. The GPC measurement conditions are as follows: Equipment: HL C-8 2A (manufactured by Tosohichi Co., Ltd.), column: TSK-GE L 2 00 0 X 3 and TSK-GE L 40 0 0 X 1 (Both Tosoh (Manufactured by Co., Ltd.), solvent: tetrahydrofuran, flow rate: 1 m 1 Zmin, temperature: 38 ° C, detector: RI, and polystyrene standard solution was used for the calibration curve.
実施例 1 Example 1
5 0 0m lの 4口フラスコに、 ヒ ドロキシ化合物成分としてフエノール 5 0. 0 g (0. 5 3モル)、架橋剤としてジク口ロメチルジフエニルスルフィ ド 6 0. 2 g (0. 2 1モル) を仕込み、 攪拌しながら 1 2 0°Cで 3時間反応させた。 この間、 発生する 塩酸は系外へ取り除いた。 反応後、 過剰のフエノールを減圧留去し、 褐色状樹脂 (多 価ヒ ドロキシ化合物) 6 0. 2 gを得た。 この化合物を SAR— Aという。 この化合 物の軟化点は 7 1°C、 1 5 0°Cでの溶融粘度は 0. 3 1 P a ' sであった。 S AR— Aの1 H— NMRスぺク トルを第 1図、 赤外吸収スぺク トルを第 2図、 GP Cチヤ一 トを第 3図、 FD— MSチャートを図 4に示す。 In a 500 ml 4-necked flask, phenol as the hydroxy compound component 5 0.0 g (0.5 3 mol) and dicyclomethyldiphenyl sulfide 6 0.2 g (0.2 1 mol), and the mixture was reacted at 120 ° C for 3 hours with stirring. During this time, the generated hydrochloric acid was removed from the system. After the reaction, excess phenol was distilled off under reduced pressure to obtain 60.2 g of a brown resin (multivalent hydroxy compound). This compound is called SAR-A. The softening point of this compound was 71 ° C., and the melt viscosity at 150 ° C. was 0.3 1 Pa ′s. Fig. 1 shows the 1 H-NMR spectrum of SAR-A, Fig. 2 shows the infrared absorption spectrum, Fig. 3 shows the GP C chart, and Fig. 4 shows the FD-MS chart.
実施例 2 Example 2
ヒ ドロキシ化合物成分として 1一ナフ トール 5 0. 0 g (0. 3 5モル)、 架橋剤と して実施例 1 と同じジクロロメチルジフエニルスルフイ ド 2 9 · 5 g (0. 1 0モル) を用い、 実施例 1 と同様にして反応させ、 褐色状樹脂 (多価ヒ ドロキシ化合物) 4 7. O gを得た。 この化合物を S AR— Bという。 この化合物のその軟化点は 8 0°C、 1 5 0°Cでの溶融粘度は 0. 5 3 P a - sであった。  1 naphthol as a hydroxy compound component 5 0.0 g (0.35 mol), and dichloromethyldiphenylsulfide as the cross-linking agent as in Example 1 2 9 .5 g (0.10 mol) ) To give a brown resin (polyhydric hydroxy compound) 4 7. O g. This compound is called SAR-B. The softening point of this compound was 80 ° C., and the melt viscosity at 150 ° C. was 0.5 3 Pa-s.
実施例 3 Example 3
1 5 0°Cに溶融させた 5 0 gのフエノールノポラック (軟化点 8 2°C、 OH当量 1 0 3) 中に、 実施例 1で得た S AR— A 5 0 gを加え、 均一に溶融させてフエノール 樹脂組成物 1 00 gを得た (樹脂組成物 A)。 得られたフエノール樹脂組成物の軟化点 は 7 5°C、 1 50°Cでの溶融粘度は 0. 28 P a ' sであった。  Add 50 g of SAR—A obtained in Example 1 to 50 g of phenol nopolac (softening point 82 ° C, OH equivalent 10 3) melted at 150 ° C. To obtain 100 g of a phenol resin composition (resin composition A). The resulting phenol resin composition had a softening point of 75 ° C. and a melt viscosity at 150 ° C. of 0.28 Pa ′s.
実施例 4 ~ 7及ぴ比較例 1 ~ 2 Examples 4-7 and Comparative Examples 1-2
エポキシ樹脂成分として 0 -クレゾールノボラック型エポキシ樹脂 (OCNE ;ェポ キシ当量 20 0、 軟化点 6 5°C)、 硬化剤として実施例 1、 2で得た SAR— A、 S A R— B、 実施例 3で得たフエノール樹脂組成物 (樹脂組成物 A)、 フエノールノボラッ ク (硬化剤 A :群栄化学製、 P SM— 4 2 6 1 ; OH当量 1 0 3、 軟化点 8 2°C)、 フエノールァラルキル樹脂 (硬化剤 B ; 明和化成製、 MEH— 7 8 0 0 S S、 OH当 量 1 7 5、 軟化点 6 7°C) を用い、 充填剤としてシリカ (平均粒径 1 8 /ζ πι)、 硬化促 進剤としてトリフ; ニルホスフィンを表 1及び表 3に示す配合で混練しエポキシ樹脂 組成物を得た。 このエポキシ樹脂組成物を用いて 1 7 5 °Cにて成形し、 1 7 5 °Cにて 1 2時間ポス トキュアを行い、 硬化物試験片を得た後、 各種物性測定に供した。 0-cresol novolac type epoxy resin (OCNE; epoxy equivalent 200, softening point 65 ° C) as epoxy resin component, SAR-A, SAR-B, examples obtained in Examples 1 and 2 as curing agents The phenol resin composition obtained in 3 (resin composition A), phenol novolac (Hardener A: Gunei Chemical Co., PSM— 4 2 6 1; OH equivalent 10 3, softening point 8 2 ° C), phenol aralkyl resin (Hardener B; Meiwa Kasei, MEH— 7 8 0 0 SS, OH equivalent 1 75, softening point 6 7 ° C), silica as filler (average particle size 18 / ζ πι), trif as curing accelerator; The composition shown in Table 3 was kneaded to obtain an epoxy resin composition. This epoxy resin composition was molded at 1755 ° C. and post-cured at 1755 ° C. for 12 hours to obtain a cured test piece, which was then subjected to various physical property measurements.
ガラス転移点 (T g ) 及び線膨張係数 (C T E) の測定は、 熱機械測定装置を用い て 1 0°CZ分の昇温速度で求めた。 また吸水率は、 直径 5 0mm、 厚さ 3mniの円形の試 験片を用いて、 8 5°C、 8 5 %RHの条件で 1 0 0時間吸湿させた吸水率は、 本ェポ キシ樹脂組成物を用いて、 直径 5 0mm、 厚さ 3mm の円盤を成形し、 ポス トキュア後 1 3 3°C、 3atm、 9 6時間吸湿させた後の重量変化率とした。 接着強度は、 銅板 2枚の 間に 2 5 mmX 1 2. 5 mmX 0. 5 miiiの成形物を圧縮成形機により 1 7 5 °Cで成 形し、 1 8 0°Cにて 1 2時間ポス トキュアを行った後、 引張剪断強度を求めることに より評価した。 難燃性は、 厚さ 1 1 6インチの試験片を成形し、 UL 9 4 V-0規格 によって評価し、 5本の試験片での合計の燃焼時間で表した。 結果を表 2および表 4 に示す。  The glass transition point (T g) and linear expansion coefficient (C T E) were measured at a rate of temperature increase of 10 ° CZ using a thermomechanical measurement device. Also, the water absorption is 50 mm in diameter and 3 mni in thickness, and the water absorption is 10 hours at 85 ° C and 85% RH. Using the composition, a disk having a diameter of 50 mm and a thickness of 3 mm was formed, and the weight change rate after post-curing was absorbed at 1 33 ° C., 3 atm, 96 hours. The adhesive strength was 25 mmX 1 2.5 mmX 0.5 miii between two copper plates, formed at 1 75 ° C with a compression molding machine, and 12 hours at 180 ° C. After the post-cure, the tensile shear strength was determined and evaluated. Flame retardancy was measured by UL 94 4 V-0 standard, and the total burning time of five test pieces was expressed by molding a 1 16 inch thick test piece. The results are shown in Tables 2 and 4.
表 1  table 1
Figure imgf000019_0001
表 2
Figure imgf000019_0001
Table 2
Figure imgf000020_0001
実施例 8
Figure imgf000020_0001
Example 8
四つロセパラブルフラスコに実施例 1で得た SAR— A5 0 g、 ェピクロルヒ ドリ ン 1 3 2 g、 ジエチレングリ コールジメチルエーテル 20 gを入れ撹拌溶解させた。 均一に溶解後、 1 3 OmmHgの減圧下 6 5°Cに保ち、 48 %水酸化ナトリ ウム水溶 液 1 9. 4 gを 2時間かけて滴下し、 この滴下中に還流留出した水とェピクロルヒ ド リンを分離槽で分離しェピクロルヒ ドリンは反応容器に戻し、 水は系外に除いて反応 した。 反応終了後、 濾過により生成した塩を除き、 更に水洗したのちェピクロルヒ ド リンを留去し、 エポキシ樹脂 5 0. 5 gを得た (SAE— A)。 得られた樹脂の軟化点 は 6 1°C、 1 5 0 °Cにおける溶融粘度は 0. 1 6 P a . s、 エポキシ当量は 2 8 8 g / e q . であった。 SAE— Aの1 H— NMRスぺク トルを第 5図、 赤外吸収スぺク トルを第 6図、 G P Cチャートを第 7図に示す。 In a four-separable flask, 50 g of SAR-A obtained in Example 1, 13 2 g of epichlorohydrin, and 20 g of diethylene glycol dimethyl ether were stirred and dissolved. After uniform dissolution, maintain at 65 ° C under a reduced pressure of 13 OmmHg, drop 19.4 g of 48% aqueous sodium hydroxide solution over 2 hours, and add water and epichlorochlore refluxed during this addition. Drin was separated in a separation tank, epichlorohydrin was returned to the reaction vessel, and water was removed from the system for reaction. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epichlorohydrin was distilled off to obtain 50.5 g of an epoxy resin (SAE-A). The softening point of the obtained resin was 61 ° C., the melt viscosity at 1550 ° C. was 0.16 Pas, and the epoxy equivalent was 2 88 g / eq. Figure 5 a 1 H- NMR spectrum of SAE- A, shows an infrared absorption scan Bae-vector to FIG. 6, the GPC chart in FIG. 7.
実施例 9〜 1 2及び比較例 3〜 5 Examples 9-12 and Comparative Examples 3-5
エポキシ樹脂成分として、 実施例 8で合成した S AE— A、 o_クレゾールノボラッ ク型エポキシ樹脂 (OCNE ;ヱポキシ当量 2 0 0、 軟化点 6 5°C)、 二官能性ジフヱ ニルスルフイ ド型エポキシ樹脂 (東都化成製、 Y S L V— 5 0 TE ;エポキシ当量 1 70、 融点 4 5°C) を用い、 硬化剤成分として、 実施例 1で合成した S AR— A、 フ ェノールノボラック (硬化剤 A : 群栄化学製、 P SM— 42 6 1 ; OH当量 1 0 3、 軟化点 8 2°C)、 1一ナフ トールァラルキル型樹脂 (硬化剤 B :東都化成製、 SN— 4 7 5 ; OH当量 2 1 0、 軟化点 7 7°C) を用いた。 更に、 充填剤として球状シリカ (平均粒径 1 8 μ m), 硬化促進剤としてトリフエ-ルホスフィンを用い、 表 5及ぴ 7に示す配合でェポキシ樹脂組成物を得た。 表中の数値は配合における重量部を示す。 このエポキシ樹脂組成物を用いて 1 7 5 °Cで成形し、 更に 1 7 5 °Cにて 1 2時間ポ ス トキユアを行い、 硬化物試験片を得た後、 各種物性測定に供した。 結果を表 4に示 す。 As an epoxy resin component, SAE-A, o_cresol novolak type epoxy resin synthesized in Example 8 (OCNE; ヱ poxy equivalent 20 0, softening point 65 ° C), bifunctional diphenylsulfide type epoxy Resin (manufactured by Tohto Kasei Co., Ltd., YSLV—50 TE; epoxy equivalent 170, melting point 45 ° C.) was used as a curing agent component, and SAR—A, phenol novolak (curing agent A: Made by Gunei Chemical Co., Ltd., P SM— 42 6 1; OH equivalent 10 3, softening point 8 2 ° C), 1 naphthol aralkyl type resin (curing agent B: Toto Kasei, SN 4 7 5; OH equivalent 2 1 0, softening point 7 7 ° C). Furthermore, spherical silica as a filler Epoxy resin compositions were obtained with the formulations shown in Tables 5 and 7 (average particle size 18 μm), using triphenylphosphine as a curing accelerator. The numerical value in a table | surface shows the weight part in a mixing | blending. Using this epoxy resin composition, molding was carried out at 1755 ° C., and post-curing was carried out at 1755 ° C. for 12 hours to obtain a cured specimen, which was then subjected to various physical property measurements. The results are shown in Table 4.
表 3 Table 3
Figure imgf000021_0001
表 4
Figure imgf000021_0001
Table 4
Figure imgf000021_0002
産業上の利用の可能性
Figure imgf000021_0002
Industrial applicability
本発明の SARは、 エポキシ樹脂の硬化剤、 及び改質剤として有用であり、 シ樹脂組成物に応用した場合、 異種材料との高密着性に優れるとともに、 難燃性及び 耐熱性に優れた硬化物を与え、 電気 ·電子部品類の封止、 回路基板材料等の用途に好 適に使用することが可能である。 本発明の S A Rを配合した S A Eは、 エポキシ樹脂 組成物に応用した場合、 異種材料との高密着性に優れるとともに、 難燃性及び耐熱性 に優れた硬化物を与え、 電気,電子部品類の封止、 回路基板材料等の用途に好適に使 用することが可能である。 本発明の S A E又は S A Rを配合したエポキシ樹脂組成物 を加熱硬化させれば、 エポキシ樹脂硬化物とすることができ、 この硬化物は密着性、 難燃性、 高耐熱性等の点で優れたものを与え、 電気 ·電子部品類の封止、 回路基板材 料等の用途に好適に使用することが可能である。 The SAR of the present invention is useful as a curing agent and modifier for epoxy resins, When applied to a resin composition, it provides excellent adhesion to dissimilar materials, and provides a cured product with excellent flame resistance and heat resistance. For applications such as sealing electrical and electronic parts, circuit board materials, etc. It can be used suitably. SAE blended with the SAR of the present invention, when applied to an epoxy resin composition, is excellent in high adhesion to dissimilar materials and gives a cured product with excellent flame retardancy and heat resistance. It can be suitably used for applications such as sealing and circuit board materials. If the epoxy resin composition containing SAE or SAR of the present invention is cured by heating, an epoxy resin cured product can be obtained. This cured product is excellent in terms of adhesion, flame retardancy, and high heat resistance. It can be used suitably for applications such as sealing electrical and electronic parts and circuit board materials.

Claims

請求の範囲 The scope of the claims
1. 下記一般式 (1)
Figure imgf000023_0001
1. The following general formula (1)
Figure imgf000023_0001
ここで、 Aは炭素数 1〜 8の炭化水素基で置換されてもよいベンゼン環又はナフタレ ン環のいずれかを示し、 、 R 2 は同一又は異なってもよい水素原子、 又は炭素数 1〜 6のアルキル基のいずれかを示し、 Gは水素原子、 グリシジル基のいずれかを示 し、 nは 1〜 1 0の数を示し、 mは 1 ~2の整数を示す。 Here, A represents either a benzene ring or a naphthalene ring that may be substituted with a hydrocarbon group having 1 to 8 carbon atoms, R 2 represents a hydrogen atom that may be the same or different, or 1 to carbon atoms Any one of 6 alkyl groups, G represents either a hydrogen atom or a glycidyl group, n represents a number from 1 to 10, and m represents an integer from 1 to 2.
で表されるエポキシ樹脂または多価ヒ ドロキシ化合物。 An epoxy resin or a polyhydric hydroxy compound represented by
2. 下記一般式 (2)
Figure imgf000023_0002
2. General formula (2)
Figure imgf000023_0002
ここで、 Aは炭素数 1〜 8の炭化水素基で置換されてもよいベンゼン環又はナフタレ ン環のいずれかを示し、 R ;L 、 R 2 は同一又は異なってもよい水素原子、 又は炭素数 1 ~ 6のアルキル基のいずれかを示し、 nは 1〜 1 0の数を示し、 mは 1 ~2の整数 を示す。 Here, A represents either a benzene ring or a naphthalene ring which may be substituted with a hydrocarbon group having 1 to 8 carbon atoms, R; L and R 2 may be the same or different hydrogen atoms, or carbon Any one of 1 to 6 alkyl groups, n represents a number from 1 to 10 and m represents an integer from 1 to 2;
で表される多価ヒ ドロキシ化合物とェピクロルヒ ドリンとを反応させることを特徴と するェポキシ樹脂の製造方法。 A process for producing an epoxy resin, characterized by reacting a polyhydric hydroxy compound represented by the formula:
3. エポキシ樹脂及び硬化剤よりなるエポキシ樹脂組成物において、 請求項 1に記载 のエポキシ榭脂および/または多価ヒ ドロキシ化合物を必須成分として配合してなる エポキシ樹脂組成物。  3. An epoxy resin composition comprising an epoxy resin and a curing agent, the epoxy resin composition according to claim 1 and / or a polyhydric hydroxy compound as essential components.
4. 請求項 3に記載のエポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物。  4. A cured epoxy resin obtained by curing the epoxy resin composition according to claim 3.
5. 下記式 (3) 又は (4) で表されるヒ ドロキシ化合物 1モルに対し、 下記式 (5) で表される架橋剤 0. 1〜0. 9モルを反応させることを特徴とする請求項 1に記载 の多価ヒ ドロキシ化合物の製造方法。 5. It is characterized by reacting 0.1 to 0.9 mol of a crosslinking agent represented by the following formula (5) with respect to 1 mol of the hydroxy compound represented by the following formula (3) or (4). Indicated in claim 1 A method for producing a polyhydric hydroxy compound.
Figure imgf000024_0001
Figure imgf000024_0001
ここで、 R3 は炭素数 1〜 8のアルキル基を示し、 pは 0~ 3の整数、 mは 1 ~2の 整数を示す。
Figure imgf000024_0002
ここで、 、 R2 は同一又は異なってもよい水素原子、 又は炭素数 1〜 6のアルキ ノレ基を示し、 R4 は OH、 アルコキシ又はハロゲンを示す。
Here, R 3 represents an alkyl group having 1 to 8 carbon atoms, p represents an integer of 0 to 3, and m represents an integer of 1 to 2.
Figure imgf000024_0002
Here, R 2 represents a hydrogen atom which may be the same or different, or an alkynole group having 1 to 6 carbon atoms, and R 4 represents OH, alkoxy or halogen.
6. エポキシ樹脂及ぴ硬化剤よりなるエポキシ樹脂組成物において、 硬化剤の一部又 は全部として、 請求項 1に記載の多価ヒ ドロキシ化合物を、 エポキシ樹脂 1 0 0重量 部に対して 2から 200重量部配合してなることを特徴とするエポキシ樹脂組成物。  6. In an epoxy resin composition comprising an epoxy resin and a curing agent, the polyhydric hydroxy compound according to claim 1 as a part or all of the curing agent may be added to 2 parts by weight of the epoxy resin. To 200 parts by weight of an epoxy resin composition.
7. 軟化点が 40〜 200°Cである請求項 1に記載の多価ヒ ドロキシ化合物。 7. The polyhydric hydroxy compound according to claim 1, which has a softening point of 40 to 200 ° C.
PCT/JP2008/055798 2007-03-23 2008-03-19 Novel polyvalent hydroxy compound, method for producing the same, epoxy resin using the compound, and epoxy resin composition and cured product thereof WO2008117839A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-076307 2007-03-23
JP2007076307A JP2008231071A (en) 2007-03-23 2007-03-23 New polyvalent hydroxy compound, and epoxy resin composition and its cured product
JP2007084061A JP2008239853A (en) 2007-03-28 2007-03-28 Epoxy resin, epoxy resin composition and cured product thereof
JP2007-084061 2007-03-28

Publications (1)

Publication Number Publication Date
WO2008117839A1 true WO2008117839A1 (en) 2008-10-02

Family

ID=39788572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055798 WO2008117839A1 (en) 2007-03-23 2008-03-19 Novel polyvalent hydroxy compound, method for producing the same, epoxy resin using the compound, and epoxy resin composition and cured product thereof

Country Status (1)

Country Link
WO (1) WO2008117839A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185515A (en) * 1989-01-12 1990-07-19 Dainippon Ink & Chem Inc Epoxy resin and epoxy resin composition
JPH0959248A (en) * 1995-08-22 1997-03-04 Sumitomo Seika Chem Co Ltd New sulfur compound and its production
JP2002338541A (en) * 2001-05-21 2002-11-27 Sumitomo Seika Chem Co Ltd Dielectric forming substance and dielectric film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02185515A (en) * 1989-01-12 1990-07-19 Dainippon Ink & Chem Inc Epoxy resin and epoxy resin composition
JPH0959248A (en) * 1995-08-22 1997-03-04 Sumitomo Seika Chem Co Ltd New sulfur compound and its production
JP2002338541A (en) * 2001-05-21 2002-11-27 Sumitomo Seika Chem Co Ltd Dielectric forming substance and dielectric film

Similar Documents

Publication Publication Date Title
JP5320130B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5931234B2 (en) Method for producing epoxy resin composition
TWI652289B (en) Denatured polyhydric hydroxy resin, epoxy resin, epoxy resin composition and cured product thereof
JP5000191B2 (en) Carbazole skeleton-containing resin, carbazole skeleton-containing epoxy resin, epoxy resin composition and cured product thereof
JP5548562B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP6462295B2 (en) Modified polyvalent hydroxy resin, epoxy resin, epoxy resin composition and cured product thereof
JP5457304B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
WO2013125620A1 (en) Polyvalent hydroxy resin, epoxy resin, method for producing same, epoxy resin composition and cured product thereof
JP5166096B2 (en) Polyvalent hydroxy compound, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP2017066268A (en) Polyhydric hydroxy resin, epoxy resin, methods of producing them, epoxy resin composition and cured article thereof
WO2003068837A1 (en) Indole resins, epoxy resins and resin compositions containing the same
JP7277136B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP2007297538A (en) Resin containing indole skeleton, epoxy resin containing indole skeleton, epoxy resin composition and cured product thereof
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP2022007036A (en) Epoxy resin composition and cured product thereof
JP2010235823A (en) Epoxy resin, epoxy resin composition and cured product of the same
JP5548792B2 (en) Polyvalent hydroxy resin, production method thereof, epoxy resin composition and cured product thereof
JP2008231071A (en) New polyvalent hydroxy compound, and epoxy resin composition and its cured product
JP7193337B2 (en) Polyvalent hydroxy resin, epoxy resin, epoxy resin composition and cured product thereof
WO2008117839A1 (en) Novel polyvalent hydroxy compound, method for producing the same, epoxy resin using the compound, and epoxy resin composition and cured product thereof
JP4813201B2 (en) Indole skeleton-containing epoxy resin, epoxy resin composition and cured product thereof
JP2022142436A (en) Polyhydric hydroxy resin, epoxy resin, epoxy resin composition, and cured product thereof
JPWO2003104295A1 (en) Acenaphthylene-modified phenolic resin and epoxy resin composition
JP5390491B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
WO2008114766A1 (en) Novel polyvalent hydroxy compound, method for producing the compound, epoxy resin and epoxy resin composition each using the compound, and cured product of the composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08751814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08751814

Country of ref document: EP

Kind code of ref document: A1