WO2008116950A1 - Método de generación de gotas y burbujas micro y submicrométricas mediante coflujos viscosos - Google Patents

Método de generación de gotas y burbujas micro y submicrométricas mediante coflujos viscosos Download PDF

Info

Publication number
WO2008116950A1
WO2008116950A1 PCT/ES2008/000159 ES2008000159W WO2008116950A1 WO 2008116950 A1 WO2008116950 A1 WO 2008116950A1 ES 2008000159 W ES2008000159 W ES 2008000159W WO 2008116950 A1 WO2008116950 A1 WO 2008116950A1
Authority
WO
WIPO (PCT)
Prior art keywords
drops
procedure
fluid
micrometric
bubbles
Prior art date
Application number
PCT/ES2008/000159
Other languages
English (en)
French (fr)
Inventor
Álvaro GÓMEZ MARÍN
Francisco DEL CAMPO CORTÉS
José Manuel GORDILLO ARIAS DE SAAVEDRA
Original Assignee
Universidad De Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Sevilla filed Critical Universidad De Sevilla
Publication of WO2008116950A1 publication Critical patent/WO2008116950A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0404Technical information in relation with mixing theories or general explanations of phenomena associated with mixing or generalizations of a concept by comparison of equivalent methods

Definitions

  • the present invention describes a process for generating small drops or bubbles (dispersed phase) within a continuous phase, both of which are immiscible fluids.
  • the range of droplet sizes obtained by this procedure can range from one millimeter to smaller sizes of the bead (minimum droplet sizes of the order of 100 nanometers).
  • the size range of the bubbles obtained by this procedure is between the millimeter and the millimeter.
  • the diameter of the resulting jet decreases with respect to the injection size of the stream A.
  • the procedure object of the present invention is a simplification of previous procedures, and therefore an improvement, for the generation of emulsions composed of micrometric or nanometric drops, which are applicable to the Pharmaceutical Industry, the Food Industry, Medicine or Materials Science .
  • the same procedure can be used for the generation of monodisperse bubbles of micrometric size.
  • the monodispersed foam The result is of interest for Materials Science and for the Food Industry.
  • both methods firmly present an axial symmetry (axilsymmetric) in the zone of the nordase in which the jet is produced, although there are materializations of flor-focusing devices in practically two-dimensional geometries (Anna et al, Appl. Phys Lett, (2003), 82, 364-366, Gordillo et al., Phys. Fluids, (2004), 16, 2828-2834).
  • the capsules are generated by chemical processes of deposition of a substance on the surface of a drop of a compound or active ingredient.
  • the purpose of the outer cover which is usually elastic or rigid, is to protect the active principle that is inside.
  • the outer shell is made solid by some method (for example, by making the outer fluid a photopolymer that increases its viscosity or stiffens with ultraviolet light), solid capsules can be generated. Emulsions can be generated in these devices by simply injecting a liquid using any of the procedures outlined above in a bath of an immiscible liquid with the injected fluid.
  • the first procedure belongs to the family of devices known as flow focusing, and is protected by patents US 6174469, US 6187214 and US 6450189. In this case, as with the atomizers of the flow focusing type, the two concentric streams of fluid they are accelerated due to the favorable pressure gradient that exists between a pressurized chamber with gas and the outside.
  • the diameter of the inner and outer jets decreases and, finally, by a fundamentally capillary mechanism, the compound drops are generated. These compound drops can have diameters of the order of 100 microns.
  • the inner and outer concentric jets are accelerated using an electric field.
  • the capsules generated can have nanometric sizes (the capsules produced according to this procedure are the smallest ever generated), and are protected according to patents P200100231, PCT ES02 / 00047 and PCT US 02/02787.
  • This procedure has, however, the disadvantage compared to flow focusing devices that electric fields are necessary and that the Liquid flow rates are of the order of 1000 to 100 times lower than those that can be used in flow focusing technology.
  • Figure 1 Scheme of the geometric configuration of the device, which consists of a capillary tube, of internal diameter Di, which is housed inside another of a larger diameter, Do.
  • a flow rate Qi is injected through the inner tube, so that the output speed is substantially lower than that of the external current, Uo.
  • the internal current narrows and drops of sizes much smaller than Di.
  • FIG. 1 Materialization of the device in operation under arbitrary operating conditions.
  • Di 100 microns
  • Do 800 microns.
  • the inner and outer tubes are made of silica and glass respectively.
  • FIG. 3 Detail of the operation of the device as a device for producing micrometric drops.
  • the flow of the external liquid remains constant. It is observed that, when the internal flow decreases sufficiently (from c to a), the diameter of the drops obtained is even smaller than the spatial resolution of the image ( ⁇ 3 microns / pixel).
  • Drops of silicone oil in glycerin with sizes in the range of 1.2 to 1.8 microns, under arbitrary operating conditions.
  • the droplet size of the obtained microemulsions may be of the order of miera or less.
  • FIG. 1 Air bubbles of 20 microns in glycerin under arbitrary operating conditions. The operation of the device for the generation of microbubbles is shown. Description of the invention and example of materialization
  • the present invention aims at a new method for the controlled generation of drops (which could be composed) and bubbles within another fluid immiscible with the first, which has the following peculiarities:
  • the fluid domain in which the drops or bubbles are generated is delimited by the free space between two impervious tubes, one introduced inside the other (see Figure 1).
  • the centering thereof is not necessary since the same flow symmetry makes a natural centering (see example in figure 2).
  • a flow, appropriately regulated, of a liquid with a viscosity ⁇ 0 is injected through the tube of greater characteristic length.
  • a flow, appropriately regulated, Qi, of a fluid with viscosity ⁇ is injected through the inner tube.
  • the flow rate Qi is such that the output rate of the inner fluid is at least ten times lower than the speed of the outer stream, Uo.
  • the Reynolds number of the inner stream must be of unit or smaller order.
  • the external flow drags into the internal current, narrowing it, as shown in Figures 2 and 3.
  • the outer tube is cylindrical, with an inner diameter of 800 microns, while the inner tube is made of silica, also cylindrical and has an outer diameter of 150 microns and an inner one of 100 microns.
  • the length of the outer tube is 4 centimeters, while the part of the inner tube introduced outside, has a length of 1 centimeter.
  • the internal and external flow rates are introduced from pressurized tanks with compressed air, through tubes that narrow downstream to fit the dimensions of the outer tubes, Do (see Figure 1) and the inner tube, Di.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

La presente invención describe un procedimiento para generar pequeñas gotas o burbujas (fase dispersa) en el seno de una fase continua, siendo ambos fluidos inmiscibles. El rango de tamaño de las gotas obtenidas mediante este procedimiento puede ir desde el milímetro a tamaños inferiores de la micra (tamaños mínimos de gotas del orden de los 100 nanómetros). Por otra parte, el rango de tamaños de las burbujas obtenidas por este procedimiento está comprendido entre el milímetro y la micra. La espuma monodispersa resultante es de interés para la Ciencia de los Materiales y para la Industria Alimentaria.

Description

TÍTULO
Método de generación de gotas y burbujas micro y submicrométricas mediante cofluios viscosos
RESUMEN
La presente invención describe un procedimiento para generar pequeñas gotas o burbujas (fase dispersa) en el seno de una fase continua, siendo ambos fluidos inmiscibles. El rango de tamaños de las gotas obtenidas mediante este procedimiento puede ir desde el milímetro a tamaños inferiores de Ia miera (tamaños mínimos de gotas del orden de los 100 nanómetros). Por otra parte, el rango de tamaños de las burbujas obtenidas por este procedimiento está comprendido entre el milímetro y Ia miera. Cuando una corriente de un fluido A descarga de manera paralela en el seno de otro fluido B que se mueve a una velocidad superior, siendo A y B inmiscibles, y los números de Reynolds característicos de ambas corrientes son ambos inferiores a Ia unidad, siendo el número capilar de orden unidad o mayor, se desarrolla un chorro de A en B, que posteriormente rompe en gotas. Cuando el cociente entre Ia velocidad de inyección de Ia corriente de fluido A y Ia de B decrece, el diámetro del chorro resultante decrece con respecto al tamaño de inyección de Ia corriente A. Controlando simplemente Ia relación de velocidades, podemos controlar el tamaño de los chorros resultantes, que pueden tener dimensiones inferiores a Ia miera. La rotura capilar de estos chorros produce gotas o burbujas de tamaños característicos del orden del chorro.
Mediante este procedimiento se consiguen unas gotas extremadamente pequeñas, utilizando únicamente los esfuerzos viscosos que se generan de manera natural cuando dos corrientes viscosas fluyen paralelamente y los números de Reynolds característicos de ambas corrientes son inferiores a Ia unidad y el número capilar es superior a una cantidad de orden unidad.
El procedimiento objeto de Ia presente invención supone una simplificación de procedimientos previos, y por tanto una mejora, para Ia generación de emulsiones compuestas por gotas micrométricas o nanométricas, que son aplicables a Ia Industria Farmacéutica, Ia Industria Alimenticia, Medicina o Ciencia de los Materiales. El mismo procedimiento puede ser utilizado para Ia generación de burbujas monodispersas de tamaño micrométrico. La espuma monodispersa resultante es de interés para Ia Ciencia de los Materiales y para Ia Industria Alimenticia.
ESTADO DE LA TÉCNICA
En los últimos años se han multiplicado los estudios, invenciones y aplicaciones relacionadas con el control microscópico de las corrientes fluidas, y entre estos estudios e invenciones destacan los que involucran superficies libres o interfases entre dos fluidos inmiscibles para poder conseguir estructuras microscópicas (micro-gotas, micro-burbujas, micro-cápsulas, etc.) de forma reproducible y robusta. Conviene destacar aquí dos fenómenos/inventos peculiares representativos de Ia generación de micro-chorros: (i) el electrospray o producción de micro-chorros de líquido mediante fuerzas electrostáticas, conocido desde hace siglos, y (i¡) el "flow focusing" capilar, que emplea fuerzas de presión (puramente mecánicas) y un orificio de "enfocamiento" para generar el chorro. Respondiendo a su geometría, ambos métodos presentan genuinamente una simetría axial (axilsimétricos) en Ia zona de Ia ¡nterfase en Ia que se produce el chorro, aunque existen materializaciones de dispositivos flor-focusing en geometrías prácticamente bidimensionales (Anna et al, Appl. Phys. Lett, (2003), 82, 364-366, Gordillo et al, Phys. Fluids, (2004), 16, 2828-2834).
En el caso del electrospray, los principales inconvenientes provienen de:
(i) Ia inherente e inevitable dependencia del fenómeno respecto a las propiedades eléctricas del líquido, Io cual limita enormemente Ia libertad paramétrica fisicoquímica del método (aunque hayan surgido aplicaciones de enorme relevancia en bioquímica -espectrometría de masas de moléculas biológicas),
(ii) Ia pequeña productividad de método (caudal másico muy pequeño) y Ia dificultad para "escalarlo" o "multiplicarlo" (multiplexing) (iii) Ia mediocre robustez del método por su gran dependencia de las condiciones superficiales y tamaños de los tubos de alimentación de los líquidos.
En "flow focusing" axilsimétrico, aunque se eliminan los inconvenientes de Ia dependencia respecto a las propiedades del fluido, aún se tienen problemas respecto al alineamiento de los tubos de alimentación respecto a los orificios de enfocamiento. En las implementaciones de tipo flow-focusing 2D, el problema principal proviene del mojado con las superficies que confinan al fluido a dispersar. La razón por Ia que Ia producción controlada de partículas micro y submicrométricas supone una de las líneas de investigación más activas dentro de! campo de Ia Mecánica de Fluidos, es por el gran número de aplicaciones tanto científicas como tecnológicas que tiene. Por ejemplo, como se señala en el reciente artículo "Micro- and nanoparticles vía capillary flows", Barrero y Loscertales, Annual Review of Fluid Mechanics, (2007), 39, 89-106, Ia absorción eficiente de nuevos fármacos por los tejidos y órganos requiere que el producto activo se encuentre confinado en gotas de tamaños sustancialmente menores que 10 mieras. Las emulsiones formadas por gotas de tamaño micrométrico también tienen aplicación en muchos otros campos, como Ia industria alimenticia, o Ia ciencia de los materiales (fabricación de dispositivos ópticos mediante cristales líquidos), entre otros. En Ia actualidad existen un número considerable de procedimientos que permiten conseguir este tipo de microemulsiones, con tamaños característicos de gotas en el entorno de las diez mieras. Sin embargo, sólo existe una técnica que consiga bajar el tamaño por debajo de esta cota de manera eficiente: Ia de los electrosprays simples y compuestos (Loscertales, Barrero y otros, Science, (2002), 295, 5560). Aquí presentamos una técnica que prescinde del uso de campos eléctricos o de surfactantes y que posee una geometría tan sencilla, que carece de los problemas de centrado de los dispositivos tipo flow focusing tridimensional, Gañán-Calvo y Gordillo, Phys. Rev. Lett. (2001), 87, 274501 , o de mojado con las superficies adyacentes como las técnicas que hacen uso de dispositivos tipo flow-focusing creados con los métodos de soft-lithography (Anna et al, Appl. Phys. Lett, (2003), 82, 364-366). Estos métodos, además de ser más complejos en cuanto a su geometría puesto que Ia corriente a dispersar ha de ser enfocada a través de un orificio o canal de dimensión menor que Ia aguja inyectora, son incapaces de conseguir tamaños de gotas por debajo de las 5 mieras de manera sistemática.
En los últimos tiempos, existe un interés creciente por parte de Ia industria alimenticia, farmacéutica o química de generar cápsulas que contengan en su interior un principio activo y que exteriormente están recubiertas de una coraza flexible o rígida. Son innumerables las patentes que registran un procedimiento para Ia producción de cápsulas o de emulsiones. En el caso de cápsulas para aplicación alimenticia se encuentran los ejemplos de las patentes AU754712 y EP1263451. En aplicaciones a Ia industria química (principalmente empresas dedicadas a Ia fabricación de detergentes), EP1288287 y WO03002160. Las aplicaciones a Ia industria farmacéutica son las más comunes y cuentan con innumerables registros, entre los que cabe citar WO03004003, WO0041740, US6514526, EP1151746. En Ia mayor parte de estos ejemplos, las cápsulas son generadas mediante procesos químicos de deposición de una sustancia sobre Ia superficie de una gota de un compuesto o principio activo. El fin de Ia cubierta externa, que suele ser elástica o rígida, es Ia de proteger el principio activo que se encuentra en su interior. Existen procedimientos, patentados inicialmente en Ia Universidad de Sevilla, que siguen un procedimiento diferente para encapsular líquidos o generar emulsiones. Ambos se basan en hacer fluir de manera coaxial dos corrientes fluidas inmiscibles. Es bien sabido que los chorros cilindricos se rompen en gotas debido al crecimiento de una inestabilidad capilar, también conocida como inestabilidad de Rayleigh. Cuando esta rotura se produce de manera simultánea en los chorros interior y exterior, se generan gotas que en su interior poseen otras gotas de menor tamaño. Si Ia cubierta externa se hace sólida mediante algún procedimiento (por ejemplo, haciendo que el fluido exterior sea un fotopolímero que aumente su viscosidad o que se rigidice con, luz ultravioleta), pueden generarse cápsulas sólidas. Las emulsiones pueden generarse en estos dispositivos sin más que inyectar un líquido utilizando cualquiera de los procedimientos antes señalados en un baño de un líquido inmiscible con el fluido inyectado. El primer procedimiento pertenece a Ia familia de dispositivos conocidos como flow focusing, y está protegido por las patentes US 6174469, US 6187214 y US 6450189. En este caso, al igual que ocurre con los atomizadores del tipo flow focusing las dos corrientes concéntricas de fluido son aceleradas debido al gradiente favorable de presión que existe entre una cámara presurizada con gas y el exterior. El diámetro de los chorros interior y exterior decrece y, finalmente, por un mecanismo fundamentalmente capilar, se generan las gotas compuestas. Estas gotas compuestas pueden llegar a tener diámetros del orden de las 100 mieras. Por otra parte, con Ia tecnología conocida como Y-Flow, los chorros concéntricos interior y exterior son acelerados haciendo uso de un campo eléctrico. Las cápsulas generadas pueden llegar a tener tamaños nanométricos (las cápsulas producidas según este procedimiento son las más pequeñas jamás generadas), y está protegido según las patentes P200100231 , PCT ES02/00047 y PCT US 02/02787. Este procedimiento tiene, sin embargo, Ia desventaja frente a los dispositivos flow focusing de que son necesarios campos eléctricos y que los caudales de líquido son del orden de 1000 a 100 veces menores que los que se pueden utilizar en Ia tecnología flow focusing.
Descripción de las figuras
Figura 1. Esquema de Ia configuración geométrica del dispositivo, que consta de un tubo capilar, de diámetro interior Di, que se encuentra alojado en el interior de otro de mayor diámetro, Do. Por el tubo interior se inyecta un caudal Qi, de manera que Ia velocidad de salida sea sustancialmente menor que Ia de Ia corriente exterior, Uo. En el rango paramétrico adecuado, Ia corriente interior se estrecha y se generan gotas de tamaños muy inferiores a Di.
Figura 2. Materialización del dispositivo en funcionamiento bajo condiciones de operación arbitrarias. En este caso, Di=100 mieras, Do=800 mieras. Los tubos interior y exterior son de sílica y de cristal respectivamente.
Figura 3. Detalle del funcionamiento del dispositivo como aparato de producción de gotas micrométricas. En las tres imágenes, el caudal del líquido exterior se mantiene constante. Se observa que, cuando el caudal interior disminuye Io suficiente (de c hacia a), el diámetro de las gotas obtenidas es incluso menor que Ia resolución espacial de Ia imagen (~ 3 micras/píxel).
Figura 4. Gotas de aceite de silicona en glicerina, con tamaños en el rango de las 1.2 a las 1.8 mieras, en condiciones de operación arbitrarias. Como puede observarse, el tamaño de las gotas de las microemulsiones obtenidas, puede ser del orden de Ia miera o inferior.
Figura 5. Burbujas de aire de 20 mieras en glicerina en condiciones de operación arbitrarias. Se muestra el funcionamiento de dispositivo para Ia generación de microburbujas. Descripción de Ia invención y ejemplo de materialización
La presente invención tiene por objeto un nuevo método para Ia generación controlada de gotas (que podrían ser compuestas) y burbujas en el seno de otro fluido inmiscible con el primero, que presenta las siguientes peculiaridades:
El dominio fluido en el que se generan las gotas o burbujas está delimitado por el espacio libre entre dos tubos impermeables, uno introducido en el interior del otro (véase Ia figura 1). El centrado de los mismos no es necesario dado que Ia misma simetría del flujo hace un centrado natural (véase ejemplo en figura 2). Por el tubo de mayor longitud característica se inyecta un caudal, regulado de manera apropiada, de un líquido con una viscosidad μ0. Por el tubo interior se inyecta un caudal, regulado de manera apropiada, Qi, de un fluido con viscosidad μ¡. El caudal Qi es tal que Ia velocidad de salida del fluido interior sea, al menos, diez veces inferior Ia velocidad de Ia corriente exterior, Uo.
Debe ocurrir que los esfuerzos de Ia corriente exterior, sean mayores que los de confinamiento por tensión superficial (número capilar de orden unidad o mayor) y que el número de Reynolds de Ia corriente exterior sea mucho menor que Ia unidad. El número de Reynolds de Ia corriente interior debe ser de orden unidad o menor.
En el rango de parámetros apropiado, el flujo exterior arrastra a Ia corriente interior, estrechándola, tal y como se muestra en las figuras 2 y 3. Por ejemplo, en Ia figura 3, el fluido exterior es glicerina μo=95O centipoises, Ia velocidad Uo=O.1 m/s. El fluido interior es aceite de silicona, de viscosidad μ¡=19.36 centipoises. En esta materialización, el tubo exterior es cilindrico, de diámetro interior 800 mieras, mientras que el tubo interior es de sílica, también cilindrico y tiene un diámetro exterior de 150 mieras y uno interior de 100 mieras. El caudal interior, Qi es, en Ia primera fotografía (a) Qi=3.4 nanolitros/s, (b) 9.12 nanolitros/s y (c) 26.2 nanolitros/s. La longitud del tubo exterior es de 4 centímetros, mientras que Ia parte del tubo interior introducida en el exterior, tiene una longitud de 1 centímetro. Los caudales interior y exterior son introducidos desde depósitos presurizados con aire comprimido, a través de tubos que se estrechan aguas abajo hasta encajar con las dimensiones de los tubos exterior, Do (véase Ia figura 1 ) y Ia del tubo interior, Di.

Claims

REIVINDICACIONES
1.- Procedimiento para generar chorros de tamaño micrométrico y nanométrico caracterizado porque un caudal Q¡ de un fluido A, de viscosidad μ¡ y densidad ρ¡ inyectado desde un tubo de diámetro D y de manera paralela a otro flujo fluido B de viscosidad μ0, densidad p0 y de velocidad característica U0 con A y B inmiscibles entre sí, siendo los números de Reynolds característicos de ambas corrientes tales que p0u0D/μ0<i y PÍQÍ/ (Dμo) <io y siendo el número capilar μouo/σ>0.75, con σ Ia tensión superficial entre los dos fluidos, genera un chorro de líquido A en el seno de B de diámetro d=[4Q¡/(π Uo)]1/2
2.- Procedimiento de generación de chorros de tamaño micrométrico y nanométrico siguiendo el procedimiento de generación de chorros de Ia reivindicación 1 , caracterizado porque el caudal Q¡ y Ia velocidad U0 son tales que [4Q¡/(π Uo)]1/2<1 mm.
3.- Procedimiento de generación de gotas de tamaño micrométrico y nanométrico siguiendo el procedimiento de generación de chorros de las reivindicaciones 1 y 2, caracterizado porque Ia rotura capilar del chorro genera gotas de diámetros de 1 a 20 veces el diámetro del chorro.
4.- Procedimiento de generación de emulsiones según el procedimiento descrito en las reivindicaciones 1 y 2
5.- Procedimiento de generación de burbujas según el procedimiento descrito en las reivindicaciones 1 y 2, caracterizado porque el fluido interior B es un gas.
6.- Procedimiento de generación de espumas según el procedimiento descrito en las reivindicaciones 1 y 2 donde el fluido interior B es un gas.
PCT/ES2008/000159 2007-03-27 2008-03-24 Método de generación de gotas y burbujas micro y submicrométricas mediante coflujos viscosos WO2008116950A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200700844 2007-03-27
ES200700844 2007-03-27

Publications (1)

Publication Number Publication Date
WO2008116950A1 true WO2008116950A1 (es) 2008-10-02

Family

ID=39788068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000159 WO2008116950A1 (es) 2007-03-27 2008-03-24 Método de generación de gotas y burbujas micro y submicrométricas mediante coflujos viscosos

Country Status (1)

Country Link
WO (1) WO2008116950A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH563807A5 (en) * 1973-02-14 1975-07-15 Battelle Memorial Institute Fine granules and microcapsules mfrd. from liquid droplets - partic. of high viscosity requiring forced sepn. of droplets
WO1999030832A1 (en) * 1997-12-17 1999-06-24 Universidad De Sevilla Stabilized capillary microjet and devices and methods for producing same
ES2140998A1 (es) * 1996-05-13 2000-03-01 Univ Sevilla Procedimiento de atomizacion de liquidos.
ES2180405A1 (es) * 2001-01-31 2003-02-01 Univ Sevilla Dispositivo y procedimiento para producir chorros liquidos compuestos multicomponentes estacionarios y capsulas multicomponente y/o multica pa de tamaño micro y nanometrico.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH563807A5 (en) * 1973-02-14 1975-07-15 Battelle Memorial Institute Fine granules and microcapsules mfrd. from liquid droplets - partic. of high viscosity requiring forced sepn. of droplets
ES2140998A1 (es) * 1996-05-13 2000-03-01 Univ Sevilla Procedimiento de atomizacion de liquidos.
WO1999030832A1 (en) * 1997-12-17 1999-06-24 Universidad De Sevilla Stabilized capillary microjet and devices and methods for producing same
ES2180405A1 (es) * 2001-01-31 2003-02-01 Univ Sevilla Dispositivo y procedimiento para producir chorros liquidos compuestos multicomponentes estacionarios y capsulas multicomponente y/o multica pa de tamaño micro y nanometrico.

Similar Documents

Publication Publication Date Title
Barrero et al. Micro-and nanoparticles via capillary flows
Panizza et al. Controlled production of hierarchically organized large emulsions and particles using assemblies on line of co-axial flow devices
US8439487B2 (en) Continuous ink jet printing of encapsulated droplets
AU2012340120B2 (en) System and method for providing a micron-scale continuous liquid jet
Marín et al. Generation of micron-sized drops and bubbles through viscous coflows
CN104815709A (zh) 一种产生微液滴的方法和装置
Acero et al. Focusing liquid microjets with nozzles
WO2003066231A1 (es) Dispositivo para la producción de chorros capilares y partículas micro y nanométricos
ES2872473T3 (es) Procedimiento y dispositivo de generación de emulsiones micrométricas simples y compuestas
US9861942B1 (en) Virtual orifice bubble generator to produce custom foam
He et al. Micron-sized double emulsions and nematic shells generated via tip streaming
Acero et al. Enhancement of the stability of the flow focusing technique for low-viscosity liquids
US8272716B2 (en) Method of continuous inkjet printing
WO2008116950A1 (es) Método de generación de gotas y burbujas micro y submicrométricas mediante coflujos viscosos
Wu et al. Dual-stream of monodisperse droplet generator
Hwang et al. Targeted electrohydrodynamic printing for micro-reservoir drug delivery systems
WO2016170951A1 (ja) 微小液滴の生成方法及び生成装置、微小液滴の輸送方法及び輸送装置、並びに、微小液滴
ES2272168B1 (es) Procedimiento y dispositivo para impresion por micro-gotas de espuma.
KR102092725B1 (ko) 3d 프린트로 제작된 미세 유체 디바이스를 이용한 밀도차-유체직속 방법 및 이를 이용한 다양한 크기의 액적 병렬 생산 장치
Skurtys et al. Structuring bubbles and foams in gelatine solutions within a circular microchannel device
Zhang et al. Engineering the flow of liquid two-phase systems by passive noise control
Baghel et al. Dispensing uniform droplets of phosphate buffer saline using electrohydrodynamic jetting
WO2004065019A1 (es) Método y dispositivo de generación de microcorrientes fluidas para la producción de microburbujas, microgotas, microemulsiones, y microcápsulas
ES2578283B2 (es) Sistema y procedimiento para la generación de microburbujas monodispersas en configuración de co-flujo
Shirong et al. Experimental investigation of droplet formation in coaxial microchannels with different geometries of inner channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08750399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08750399

Country of ref document: EP

Kind code of ref document: A1