WO2008114855A1 - 酸化亜鉛単結晶の製造方法 - Google Patents

酸化亜鉛単結晶の製造方法 Download PDF

Info

Publication number
WO2008114855A1
WO2008114855A1 PCT/JP2008/055198 JP2008055198W WO2008114855A1 WO 2008114855 A1 WO2008114855 A1 WO 2008114855A1 JP 2008055198 W JP2008055198 W JP 2008055198W WO 2008114855 A1 WO2008114855 A1 WO 2008114855A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
melt
single crystal
solvent
mol
Prior art date
Application number
PCT/JP2008/055198
Other languages
English (en)
French (fr)
Inventor
Yoshizumi Tanaka
Itsuhiro Fujii
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to RU2009138235/05A priority Critical patent/RU2474625C2/ru
Priority to CN200880005468.2A priority patent/CN101646809B/zh
Priority to JP2009505251A priority patent/JP5067419B2/ja
Priority to US12/531,087 priority patent/US8409348B2/en
Publication of WO2008114855A1 publication Critical patent/WO2008114855A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method

Definitions

  • the present invention relates to a method for producing a zinc oxide single crystal, and more particularly to a method for producing a zinc oxide single crystal by a pulling method from a melt.
  • Zinc oxide ( ⁇ ) is applied to pyroelectric elements, piezoelectric elements, gas sensors, transparent conductive films, etc., but is a direct transition semiconductor with a forbidden band of 3.4 eV. It is promising as a material for LEDs and other optoelectronic devices.
  • the conventional hydrothermal synthesis method and flux method not only make it difficult to produce large single crystals, but the hydrothermal synthesis method requires special production equipment that generates high temperature and pressure. It is costly.
  • molecular beam epitaxy has been proposed, this method is suitable for the production of a single crystal thin film, but is not suitable for the production of a large single crystal bulk body. Under such circumstances, a melt pulling method using boron oxide and vanadium oxide or molybdenum oxide as a solvent has been proposed (Japanese Laid-Open Patent Publication No. 2 0 0 2-1 9 3 6 9 8 2 0 0 3 — 2 7 9 0).
  • “solute” means zinc oxide.
  • the “solvent” is a substance for dissolving the solute, and includes one or more compounds such as oxides or halides such as fluorides and chlorides.
  • the term “melt” refers to a state in which the solute is dissolved in the solvent, and in some cases, includes a state in which a part of the dissolved solute is precipitated and the solid and the liquid coexist. The liquid part in this case is referred to as “liquid phase” to distinguish it from the melt.
  • Japanese Patent Application Laid-Open No. 2 0 2-1 9 3 6 9 8 zinc oxide which is a solute and vanadium oxide and Z or boron oxide which are solvents are mixed and heated and melted. The temperature of the melt is lowered, and zinc oxide ZnO microcrystals are deposited and grown on the seed crystal or substrate. At this time, the temperature of the portion where the seed crystal is in contact with the melt is several tens of degrees C lower than the melt temperature. The reason is that heat is dissipated from the rod with the seed crystal attached. Thereby, zinc oxide crystals are selectively deposited on the seed crystals.
  • the present invention provides the following.
  • the solvent is a compound that forms a eutectic phase diagram with zinc oxide as a solute, and the composition of the eutectic point is from 30 mol% to 99.99 mol% in terms of zinc oxide concentration.
  • the eutectic temperature is a solvent formed of one or more compounds selected from compounds having a eutectic temperature in the range of 700 to 170 ° C. The method for producing a zinc oxide single crystal according to 6).
  • the mixing ratio of zinc oxide to the compound constituting the solvent is 99.9 mol% to 30 mol% to 0.1 mol% to 70 mol%, and the mixing ratio of various solvents is The method for producing a zinc oxide single crystal as described in any one of (1) to (9) above, wherein the content is from 100 mol% to 0 mol%.
  • the compound constituting the solvent is tungsten oxide (W0 3 ), fluoride (PbF 2 ), lead chloride (PbCl 2 ), niobium oxide (Nb 2 0 5 ), cobalt monoxide (CoO), Silicon dioxide (Si0 2 ), titanium oxide (TiO 2 ), aluminum oxide ( ⁇ 2 0 3 ), sodium tetraborate (Na 2 B 4 0 7
  • FIG. 1 shows an example of the zinc oxide single crystal continuous pulling apparatus of the present invention.
  • FIG. 2 is a phase diagram for explaining the production procedure of the zinc oxide single crystal according to the present invention.
  • the present invention provides a high-quality solvent by using a solvent having an average density higher than that of zinc oxide when pulling a zinc oxide single crystal from the melt by the melt pulling method.
  • This is a method for producing zinc oxide crystals.
  • a zinc oxide crystal is precipitated on the seed crystal from a mixed melt with a solvent capable of dissolving zinc oxide, which is a solute, and the zinc oxide single crystal deposited on the seed crystal is pulled up from the melt.
  • zinc oxide single crystals are continuously produced by growing zinc oxide single crystals and supplying the same amount of zinc oxide raw material as the zinc oxide that is pulled up to the melt.
  • a solvent formed of a compound having an average density higher than that of zinc oxide is used, and a zinc oxide raw material additionally supplied to the melt is preheated and supplied. Since the zinc oxide single crystal is continuously pulled up, the size of the zinc oxide single crystal can be increased, and the production efficiency can be improved.
  • the form of zinc oxide as a raw material is not particularly limited as long as it can be continuously supplied to the melt.
  • powders, powders granulated with a spray dryer, powders sintered into pellets, or rods can be used as raw materials.
  • the compound constituting the solvent is not limited as long as it is a solvent that can dissolve zinc oxide, which is a solute, and can precipitate zinc oxide crystals on a seed crystal from a mixed melt with the solute.
  • tungsten oxide (W0 3 ), lead fluoride (PbF 2 ), lead chloride (PbCl 2 ), niobium oxide (Nb 2 0 5 ), and cobalt monoxide (CoO) have low eutectic temperatures.
  • the compound constituting the solvent may include two or more kinds of oxides or halides such as fluorides and chlorides. Combining these solvents makes it easier to control the slope of the liquidus, increasing the amount of single crystals that can be recovered by the pulling method, and improving the controllability during production.
  • the mixing ratio between the raw material zinc oxide and the compound constituting the solvent is preferably 99.9 mol% to 30 mol% to 0.1 mol% to 70 mol%.
  • the mixing ratio of the various solvents can be from 100 mol% to 0 mol%, respectively.
  • the mixing ratio is in the above range, and if it is within this range, good pulling can be achieved. For example, if the amount of the solvent exceeds 99.9 mol%, the melting point of the melt becomes high, and the raw material zinc oxide is sublimated, so that it is impossible to produce a melt, and it is difficult to pull up the single crystal.
  • the amount of the solvent is less than 30 mol%, the eutectic composition is exceeded and zinc oxide does not precipitate.
  • Z n O is known to change its characteristics remarkably by mixing different elements. Li, Na, K, Cu, Ag, N, P, As, Cr, Al, Bi, Sb, Co, Fe, Ni, Ti, Mn, V, and Pr are mixed in a few percent or less, P type semiconductor Applications include magnetic field, magnetic semiconductors, conductivity control, and Paris evening.
  • a ZnO single crystal is produced by continuously depositing and growing ZnO single crystals on a seed crystal having a lattice constant and a melting point close to those of ZnO or ZnO from a constituent solution based on zinc oxide and a solvent. To do.
  • the pulling speed is preferably 0.5 to 50 mm / day, more preferably 0, 5 to 1 O mmZ days, and the rotation speed is preferably 0 to 70. 0 rpm, more preferably 0 to 400 0111, and the temperature drop rate of the melt is preferably 0.5 to 10 ° C / hour, more preferably 0.5 to 5 ° CZ.
  • the pulling speed is preferably lower considering the quality of the crystal, but the higher speed is preferable considering the production speed. Within the above range, zinc oxide crystals can be produced without affecting the quality of the crystals.
  • the rotation speed uses a wide number of rotations as described above in order to stir the melt and shake off unnecessary solvents. A rotational speed as high as possible is desired in order to shake off unnecessary solvents. However, if the rotational speed is too high, the melt is disturbed and adversely affects the crystal growth.
  • the cooling rate is preferably in the above range from the viewpoint of crystal quality and productivity.
  • the single crystal grows by pulling up the zinc oxide single crystal, and the zinc oxide is reduced from the bath composition, so that the zinc oxide does not precipitate.
  • the same amount of zinc oxide raw material as that of the zinc oxide single crystal to be pulled is supplied to the bath.
  • the method for measuring the amount of the zinc oxide single crystal to be pulled up and the method for supplying the zinc oxide raw material to the bath are not particularly limited.
  • the amount of zinc oxide single crystal pulled by a load cell can be measured.
  • the supply of the zinc oxide raw material to the bath does not need to be completely continuously synchronized with the pulling amount of the zinc oxide single crystal, and after pulling up the specific amount of zinc oxide single crystal, the same amount as the pulling amount is obtained. It is possible to supply the zinc oxide raw material to the bath and repeat the operation of pulling up a specific amount of zinc oxide single crystal again.
  • the latter supply method has an advantage that the composition of the melt can be made uniform (stabilized) and pulled up easily. However, if the amount of zinc oxide single crystal pulled up too much before supplying the raw material is too high, the melt composition will be the composition above the liquidus line, the solid phase will not exist, only the liquid phase will be present, and it will not be possible to pull up. Raise the amount below that.
  • the amount of zinc oxide raw material supplied at one time is too large, the temperature of the bath may drop rapidly and the quality of the crystal may be deteriorated. desirable.
  • the supply of zinc oxide raw material in the same amount as the amount to be pulled up does not need to be precise for each supply, and it should be controlled within the range where continuous production is possible throughout the process.
  • the preheating temperature of the zinc oxide raw material is preferably the same as the temperature of the melt, but is preferably higher than the melt. Any temperature lower than the sublimation temperature of the zinc oxide raw material may be used. Even if the temperature is lower than that of the melt, the effect of preheating can be obtained by preheating.
  • the preheating temperature is There is no problem as long as the difference from the temperature of the melt is within 100 ° C, but more preferably within 50 ° C.
  • the zinc oxide raw material to be supplied according to the pulling amount should be supplied as quietly as possible at a position as far as possible from the crystal pulling part so as not to disturb the melt, especially the melt in the crystal pulling part. it can.
  • a weir (Luppo 8) is provided between the zinc oxide raw material supply section and the crystal pulling section, and the melt in the raw material supply section due to the raw material supply is quiet. It can be introduced into the lift (eg via a throat below the weir).
  • a high-quality zinc oxide crystal can be produced, and the pulling is repeated by the procedure described later as shown in FIG. It was confirmed that a single crystal long in the pulling method can be continuously produced, and that the pulling speed can be increased by using a compound having a density higher than that of zinc oxide as a solvent.
  • Figure 1 shows a continuous pulling device for zinc oxide single crystals.
  • 1 is an alumina support rod
  • 2 is a platinum support rod
  • 3 is a thermal insulation wool
  • 4 is a high-frequency heating coil
  • 5 is a platinum-rhodium thermocouple
  • 6 is a radiation thermometer
  • 7 is an external platinum pot
  • 8 is Lutpo in platinum
  • 9 is melt
  • 10 is seed crystal
  • 1 is grown single crystal
  • 1 zinc oxide (raw material)
  • 1 is raw material zinc oxide feeder
  • 1 is load cell
  • 1 is 5 It's one night.
  • the seed crystal 10 is fixed to the platinum support rod 2 with a platinum wire. Further, use platinum wire on the alumina support rod 1 Fix it. This prevents the melt 9 and the alumina support rod 1 from contacting and reacting.
  • Zinc oxide Density: 5.6 g cm 3
  • Tungsten oxide Density: 7. 16 g 0 111 3
  • 7 1.5 2 8.5
  • 5 0 0 g was filled in platinum ruppo 7 serving as a heating element having a diameter of 100 mm and a height of 70 mm.
  • Zinc oxide single crystal 10 which is a seed crystal is brought into contact with the melt surface.
  • Zinc oxide crystals are deposited from the interface between the seed crystal and the melt at the lowest temperature.
  • a single crystal can be obtained by gradually pulling up the crystal thus grown.
  • the temperature changes from 2 to 3 in Fig. 2 and the single crystal of zinc oxide is pulled up. As a result, the composition of the melt changes from 2 to 3 '.
  • the melt composition becomes the composition of the liquidus (3 ''), and only the liquid phase in which the solid phase of zinc oxide does not coexist and the pull-up cannot be continued. Therefore, it is necessary to control the melt composition so that it does not become the composition of the liquidus.
  • the melt composition reaches 3 ', the same amount of raw material zinc oxide as measured by the load cell 14 is replenished from the raw material zinc oxide feeder 1 3 and the melt composition is increased from 3'. Return to 3 and continue pulling. This operation is stopped at a temperature 5 to 10 ° C. higher than the eutectic temperature, the melt composition is returned to 5, and the melt temperature is set to 2 again to continue the pulling.
  • Zinc oxide Tungsten oxide (Density: 7.16 g / cm 3 ) in mol%, mixed at 71.5: 28.5, filled into platinum ruppo 7 and heated to 1350 ° C Then, after sufficiently melting, it was cooled to 1250 ° C and started to be pulled up while being maintained at 1250 ° C.
  • When pulling up at a constant temperature measure the weight of the single crystal pulled up by the load cell, and control the melt composition so that it does not exceed the liquidus. Continue to pull up the raw material zinc oxide while replenishing it intermittently from the raw material zinc oxide supply equipment 13.
  • the pulling amount When the pulling amount is large, the replenishing amount increases, and when the raw material is replenished, the temperature of the melt rapidly drops and adversely affects the growth of the single crystal. Therefore, it is desirable to control the pulling amount as small as possible.
  • the raw material zinc oxide was filled so that the melt temperature did not change rapidly.
  • the pulling speed was l S mmZ days, and the rotating speed was 0 to 400 rpm.
  • the obtained zinc oxide single crystal was 20 x 20 x 35 mm in size, and a pale yellow zinc oxide single crystal with few impurities could be produced in 10 days.
  • Zinc Oxide Niobium Oxide (Density: 5. 9 g / cm 3 ) in mol%, mixed at 8 4.6: 1 5.4, filled in platinum ruppo 7 and heated up to 1450 After fully melting, it was cooled to 140 ° C. and started to be pulled up.
  • the manufacturing conditions at this time were as follows: the pulling speed was 1 to 5 mmZ, the rotation speed was 0 to 400 rpm, and the temperature of the melt was 1 to 10 ° CZ.
  • the obtained zinc oxide single crystal is 20 x 20 x 35 mm in size, and light yellow zinc oxide with few impurities A single crystal could be produced in 10 days.
  • a zinc oxide single crystal was produced by the continuous pulling method.
  • the pulling speed was 1 to 5 mmZ days
  • the rotation speed was 0 to 400 rpm
  • the temperature drop rate of the melt was 1 to 10 ° CZ.
  • the obtained zinc oxide single crystal was 20 ⁇ 20 ⁇ 35 mm, and an almost transparent zinc oxide single crystal with few impurities could be produced in 10 days.
  • Zinc oxide tungsten oxide (density: 7. 1 6 g / cm 3 ): with: (2. 3 6 g / cm 3 density) the molar%, 7 0: sodium tetraborate 2 4 were mixed with 6 .
  • the average density of tandasten oxide and sodium tetraborate in this composition is 6.2 g / cm 3 .
  • the pulling speed was 1 to 5 mmZ days
  • the rotation speed was 0 to 400 rpm
  • the temperature drop rate of the melt was 1 to L 0 ° C.
  • the obtained zinc oxide single crystal was 20 ⁇ 20 ⁇ 35 mm, and an almost transparent zinc oxide single crystal with few impurities could be produced in 10 days.
  • a zinc oxide single crystal was produced by a pulling method without supplying raw material zinc oxide.
  • Mix at 5 fill into platinum rupspore, heat to 1 3500 ° C and melt sufficiently, then cool to 1300 ° C.
  • the pulling speed was 1 S mm / 7 days
  • the rotating speed was 1 to 400 rpm
  • the temperature drop rate of the melt was 1 to 10 ° CZ.
  • the obtained zinc oxide single crystal was 20 X 20 X 1 mm in size, and a pale yellow zinc oxide single crystal with few impurities could be produced. However, production of more than 2 days did not occur.
  • a zinc oxide single crystal was produced by the continuous pulling method.
  • Zinc oxide Vanadium oxide (V 2 O 5- ) (Density: 3.4 g / cm 3 ) in mol%, mixed at 8 5: 15 and charged into platinum crucible 7, 1 300 ° After heating to C and melting sufficiently, cool to 1280 ° C and start crystal production.
  • the pulling speed was 1 to 5 mm / day
  • the rotating speed was 1 to 400 rpm
  • the temperature drop rate of the melt was 1 to 10 ° C / hour.
  • the obtained zinc oxide single crystal had a size of 8 mm x 8 x length in the pulling direction of 20 mm, and a dark green zinc oxide single crystal with many impurities was produced in 10 days.
  • a zinc oxide single crystal was produced by the continuous pulling method.
  • Zinc oxide Molybdenum oxide (M o O 3 ) (Density: 4.7 g / cm 3 ) in mol%, mixed at 5 4: 4 6 and filled in platinum ruppo 7, 1 200 ° C Until it is fully melted and then cooled to 1 1550 ° C, and crystal production begins.
  • the lifting speed is 1 to 5 mm / day
  • the rotation speed is:! ⁇ 40 O rpm
  • the temperature drop rate of the melt was 1 to 10 ° C./hour.
  • the obtained zinc oxide single crystal had a size of 9 mm ⁇ 9 ⁇ 15 mm in the pulling direction, and a dark blue zinc oxide single crystal with many impurities was produced in 10 days.
  • Zinc oxide (ZnO) is a promising material for pyroelectric elements, piezoelectric elements, gas sensors, transparent conductive films, etc., as well as other materials for blue to ultraviolet: LED and other optoelectronic devices. According to the present invention, it is possible to improve the quality of large-sized zinc oxide single crystals manufactured by the melt pulling method, further increase the size of single crystals, enable continuous production, and increase productivity. Therefore, the industrial utility of the present invention is clear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

酸化亜鉛を溶解することができかつ融液において酸化亜鉛より高い平均密度を有する溶媒と、酸化亜鉛との混合融液から、酸化亜鉛の結晶を種子結晶上に析出させる、酸化亜鉛単結晶の製造方法。好ましくは、引上げる際に、引上げた酸化亜鉛と同量の酸化亜鉛原料を供給しながら酸化亜鉛単結晶を連続的に引上げる。結晶品質に優れ、引上げ方向に長い単結晶を連続で製造することができる。

Description

酸化亜鉛単結晶の製造方法 関連出願との関係
本件出願は、 2 0 0 7年 3月 1 6 日に日本国特許庁に出願した特 願 2 0 0 7 - 6 8 8 4 8号に明基づく優先権を主張する出願であり、 その出願の開示は参照してここに糸含める。 技術分野
' 本発明は酸化亜鉛単結晶の製造方法、 より詳しくは融液からの引 き上げ法による酸化亜鉛単結晶の製造方法に関する。 背景技術
酸化亜鉛 (ΖηΟ) は、 焦電素子、 圧電素子、 ガスセンサー、 透明 導電膜などに応用されているが、 禁制帯幅 3. 4 e Vを有する直接 遷移型半導体であり、 青色から紫外域の L E Dその他の光電子デバ イス用材料として有望である。
そこで、 従来からの水熱合成法やフラックス法では大型の単結晶 を製造することが困難なばかりでなく、 水熱合成法では、 高温高圧 を発生する特殊な製造装置が必要であることは、 コス ト的にデメリ ッ トである。 また、 分子線エピタキシー法なども提案されているが 、 この方法は、 単結晶薄膜の製造には適しているが、 大型の単結晶 バルク体の製造には不向きである。 そのような中で、 酸化ホウ素と 酸化バナジウムを、 あるいは酸化モリブデンを溶媒として用いた融 液引き上げ法が提案されている (特開 2 0 0 2 — 1 9 3 6 9 8号公 報、 特開 2 0 0 3 — 2 7 9 0号公報) 。 本願明細書において、 「溶質」 とは、 酸化亜鉛を示す。 次に、 「 溶媒」 とは、 上記溶質を溶解させるための物質であり、 酸化物また は、 フッ化物、 塩化物等のハロゲン化物などの化合物を 1種類以上 含むものを示す。 また、 「融液」 とは、 上記溶媒に溶質が溶解した 状態を示し、 場合によっては、 溶解した溶質の一部が析出し、 固体 と液体が共存する状態も含める。 この場合の液体部分を、 融液と区 別するために、 「液相」 と記す。
具体的には、 特開 2 0 0 2— 1 9 3 6 9 8号公報では、 溶質であ る酸化亜鉛と、 溶媒である酸化バナジウム及び Z又は酸化硼素と混 合して加熱融解したのち、 融液を降温させ、 酸化亜鉛 Z nOの微結晶 を種子結晶上あるいは基板上に析出、 成長させる。 このとき、 融液 温度に比べ、 種子結晶が融液に接触する部分の温度が、 数十 °C低く なる。 その理由は、 種子結晶を取り付けた棒から放熱するからであ る。 それにより、 種子結晶上に酸化亜鉛の結晶が選択的に析出する 。 特開 2 0 0 3— 2 7 9 0号公報では、 溶質である酸化亜鉛と、 溶 媒である酸化モリブデンを混合して加熱融解したのち、 融液を定温 に保つか若しくは降温させ、 酸化亜鉛 ZnOの微結晶を種子結晶上あ るいは基板上に析出、 成長させる。 発明の開示
融液引き上げ法により大型の酸化亜鉛単結晶を製造することがで きるようになつたが、 単結晶の品質を高め、 また単結晶をさらに大 型化すること、 連続生産を可能にし、 生産性をより高めることが望 まれる。
融液引上げ法において、 溶媒は、 融液引き上げ法で、 融液から酸 化亜鉛単結晶を引上げる際に、 1又は 2以上の化合物からなり酸化 亜鉛の密度より高い平均密度を有する溶媒を用いると、 高品質の酸 化亜鉛結晶を製造することができ、 さらに、 引上げた酸化亜鉛と同 量の酸化亜鉛原料を融液に供給すれば、 酸化亜鉛単結晶を連続して 製造することができ、 引上げる酸化亜鉛単結晶をより長くすること ができ、 生産性も向上させることができるとの着想に基づき、 本発 明は下記を提供するものである。
( 1 ) 酸化亜鉛を溶解することができかつ融液において酸化亜鉛 より高い平均密度を有する溶媒と、 酸化亜鉛との混合融液から、 酸 化亜鉛の結晶を種子結晶上に析出させることを特徴とする酸化亜鉛 単結晶の製造方法。
( 2 ) 溶質である酸化亜鉛を溶解することが出来る溶媒との混合 融液から酸化亜鉛の結晶を種子結晶上に析出させ、 融液から酸化亜 鉛の単結晶を引上げながら製造する方法であって、 引上げる際に、 引上げる酸化亜鉛と同量の酸化亜鉛原料を供給し、 酸化亜鉛単結晶 を連続的に引上げることを特徴とする、 上記 ( 1 ) に記載の酸化亜 鉛単結晶の製造方法。
( 3 ) 融液から酸化亜鉛の結晶を特定量引き上げた後、 その引き 上げた酸化亜鉛と同量の酸化亜鉛原料を融液に供給し、 その後再び 融液から酸化亜鉛の結晶を引き上げる操作を繰り返し、 かつ、 酸化 亜鉛の引き上げ量は結晶付近の融液の組成が溶媒と酸化亜鉛を成分 とする系の相図における液相線より上の液相のみ組成にならない量 とすることを特徴とする、 上記 ( 2 ) に記載の酸化亜鉛単結晶の製 造方法。
( 4 ) 酸化亜鉛原料を予熱して供給することを特徴とする、 上記 ( 1 ) 〜 ( 3 ) 記載の酸化亜鉛単結晶の製造方法。
( 5 ) 予熱温度が融液の温度との差が 1 0 0 C以内である、 上記 ( 4 ) に記載の酸化亜鉛単結晶の製造方法。
( 6 ) 融液の結晶引上げ部分と酸化亜鉛原料の供給部との間に堰 を設けて、 酸化亜鉛原料を供給するときに、 結晶引上げ部分の融液 に乱れを生じさせないようにした、 上記 (2) 〜 ( 5) に記載の酸 化亜鉛単結晶の製造方法。
( 7) 前記溶媒が、 溶質である酸化亜鉛と共晶系状態図を形成す る化合物であって、 共晶点の組成が酸化亜鉛の濃度で 3 0モル%か ら 9 9. 9モル%の範囲で、 かつ、 共晶温度が 7 0 0 °Cから 1 7 2 0°Cの範囲である化合物のうち一種類以上で形成される溶媒である ことを特徴とする上記 ( 1 ) 〜 ( 6) に記載の酸化亜鉛単結晶の製 造方法。
( 8) 前記溶媒として、 溶質である酸化亜鉛と共晶系状態図を形 成する化合物であって、 固体状態での平均密度 (於室温) が 5. 6 gZcm3 以上である化合物を用いることを特徴とする、 上記 ( 1 ) 〜 ( 7 ) に記載の酸化亜鉛単結晶の製造方法。
( 9) 前記溶媒を構成する化合物が、 酸化物、 またはフッ化物、 塩化物などのハロゲン化物の中で、 1種類以上を含むことを特徴と する上記 ( 1 ) 〜 ( 8) に記載の酸化亜鉛単結晶の製造方法。
( 1 0 ) 酸化亜鉛と前記溶媒を構成する化合物との混合比が 9 9 . 9モル%から 3 0モル%対 0. 1モル%から 7 0モル%であり、 各種溶媒同士の混合比は、 それぞれ 1 0 0モル%から 0モル%であ ることを特徴とする上記 ( 1 ) 〜 ( 9) に記載の酸化亜鉛単結晶の 製造方法。
( 1 1 ) 前記溶媒を構成する化合物が、 酸化タングステン (W03 ) 、 フッ化铅 (PbF2) 、 塩化鉛 (PbCl2) 、 酸化ニオブ (Nb205 ) 、 一酸化コバルト (CoO) 、 二酸化ケイ素 (Si02) 、 酸化チタン (TiO 2) 、 酸化アルミニウム (Αί 203 ) 、 四ほう酸ナトリウム (Na2B407
) のうちの一種類以上を含むことを特徴とする上記 ( 1 ) 〜 ( 1 0 ) に記載の酸化亜鉛単結晶の製造方法。 図面の簡単な説明
図 1は本発明の酸化亜鉛単結晶連続引上げ装置の例を示す。
図 2は本発明による酸化亜鉛単結晶の製造手順を説明するための 状態図である。 発明を実施するための最良の形態
本発明は、 融液引上げ法において、 溶媒は、 融液引き上げ法で、 融液から酸化亜鉛単結晶を引上げる際に、 酸化亜鉛の密度より高い 平均密度を有する溶媒を用いて、 高品質の酸化亜鉛結晶を製造する 方法である。 さらには、 溶質である酸化亜鉛を溶解することが出来 る溶媒との混合融液から酸化亜鉛の結晶を種子結晶上に析出させ、 種子結晶上に析出した酸化亜鉛の単結晶を融液から引上げて酸化亜 鉛の単結晶を成長させ、 かつ引上げる酸化亜鉛と同量の酸化亜鉛原 料を融液に供給することで、 酸化亜鉛単結晶を連続的に製造する方 法である。 好適には、 酸化亜鉛の密度より高い平均密度を有する化 合物で形成された溶媒を用い、 また、 融液に追加供給する酸化亜鉛 原料を予熱して供給する。 酸化亜鉛単結晶を連続的に引上げるので 、 酸化亜鉛単結晶の寸法を大きく し、 また生産効率を向上させるこ とができる。
原料の酸化亜鉛は、 形態等は特に限定されず、 連続的に融液に供 給できるものであれば良い。 例えば、 粉末状、 粉末をスプレ一ドラ ィャ一等で顆粒状にしたもの、 粉末を焼結してペレツ ト状にしたも の、 または、 棒状に成形したもの等を原料として用いることが出来 る。
本発明では、 溶媒として、 酸化亜鉛の密度より高い平均密度を有 する溶媒を用いる。 溶媒が 1又は 2以上の化合物から形成されるこ とができるが、 その 1又は 2以上の化合物から形成される溶媒の平 均密度が酸化亜鉛の密度より高い。 溶媒の密度が酸化亜鉛の密度よ り高いものを用いると、 融液上部に酸化亜鉛 ZnOが偏析しやすいの で、 酸化亜鉛結晶の品質が向上し、 さらに、 引き上げに有利に働き 、 引き上げ速度を高くすることができる効果が得られる。
酸化亜鉛を溶解することができかつ融液において酸化亜鉛より高 い平均密度を有する 1又は 2以上の化合物からなる溶媒を作成する ために、 簡便には、 酸化亜鉛 ZnOの密度 (於室温) は 5. 6 g / c m3 であることから、 溶質である酸化亜鉛と共晶系状態図を形成す る化合物であって、 密度 (於室温) が 5. 6 § / c 2 以上である 化合物を一種類以上含む溶媒を用いることができる。
溶媒を構成する化合物は、 溶質である酸化亜鉛を溶解することが 出来、 溶質との混合融液から酸化亜鉛の結晶を種子結晶上に析出さ せることができる溶媒であれば、 限定されないが、 たとえば、 酸化 タングステン (W03) 、 酸化アルミニウム (A 1203 ) 、 酸化モリブデ ン (Mo03) 、 酸化チタン (Ti02) 、 フッ化鉛 (PbF2) 、 塩化鉛 (Pb Cl2) 、 酸化ニオブ (Nb205 ) 、 一酸化コバルト (CoO) 、 四三酸化 コバルト (Co304 ) 、 一酸化マンガン (MnO) 、 二酸化マンガン (Mn 02) 、 三二酸化マンガン (Mn203 ) 、 四三酸化マンガン (Mn304 ) の うちの一種類又は二種類以上を含むことができる。 酸化タンダステ ン (W03) 、 フッ化鉛 (PbF2) 、 塩化鉛 (PbCl2) 、 酸化ニオブ (Nb 205 ) 、 一酸化コバルト (CoO) 、 二酸化ケイ素 (Si02) 、 酸化チタ ン (Ti02) 、 酸化アルミニウム (A 1203 ) 、 四ほう酸ナトリウム (N &^40Ί ) のうちの一種類以上を含むことが好ましい。 特に酸化タン グステン (W03) 、 フッ化鉛 (PbF2) 、 塩化鉛 (PbCl2) 、 酸化ニォ ブ (Nb205 ) 、 一酸化コバルト (CoO) が共晶温度が低いので、 製造 に有利であり、 好ましい。
二種類以上を含む場合、 各種溶媒同士の混合比は、 それぞれ 1 0 0モル%から 0モル%であることができるが、 各々 0 . 0 0 1モル %から 9 9 . 9 9 9モル%であることが好ましい。
溶媒が、 溶質である酸化亜鉛と共晶系状態図を形成する化合物で あって、 共晶点の組成が酸化亜鉛の濃度で 5モル%から 9 9 . 9 % の範囲で、 かつ、 共晶温度が 7 0 0 °Cから 1 7 2 0 °Cの範囲である 化合物のうち一種類以上で形成される溶媒であることが好ましい。 このような溶媒を用いると、 液相線の傾きを制御できるので、 引き 上げ法で回収できる単結晶量を増やしたり、 製造時の制御性が向上 する。
溶媒を構成する化合物が、 酸化物、 またはフッ化物、 塩化物など のハロゲン化物の中で、 2種類以上を含むことができる。 このよう な溶媒を組み合わせることで、 液相線の傾きの制御がより容易にな り、 引き上げ法で回収できる単結晶量を増やしたり、 製造時の制御 性が向上する効果がある。
原料である酸化亜鉛と溶媒を構成する化合物との混合比は、 9 9 . 9モル%から 3 0モル%対 0 . 1モル%から 7 0モル%であるこ とが好ましい。 各種溶媒同士の混合比は、 それぞれ 1 0 0モル%か ら 0モル%であることができる。 溶媒を組み合わせることで、 液相 線の傾きを制御できるので、 引き上げ法で回収できる単結晶量を増 やしたり、 製造時の制御性が向上するが、 酸化亜鉛と溶媒を構成す る化合物との混合比は上記の範囲であることで、 この範囲であれば 、 良好な引上げが出来る。 例えば、 溶媒の量が 9 9 . 9モル%より 多くなると、 融液の融点が高くなり原料の酸化亜鉛が昇華してしま い融液を生成出来ないので単結晶の引上げが困難になる。 一方、 溶 媒量が 3 0モル%より少なくなると、 共晶組成を超えてしまい酸化 亜鉛が析出しなくなる。
Z n Oは異種元素の混入によって著しく特性をかえることが知られ ており、 Li, Na, K, Cu, Ag, N, P, As, Cr, Al, Bi, Sb, Co, Fe, Ni, Ti, Mn, V, Prが数%以下混合され、 P型半導体化、 磁性半導 体、 導電率の制御、 パリス夕などの応用がある。
本発明では、 酸化亜鉛と溶媒を基本とする構成溶液から、 ZnOま たは ZnOと格子定数及び融点の近い種子結晶上に、 ZnO単結晶を連続 的に析出、 成長させて ZnO単結晶を製造する。
酸化亜鉛と溶媒を含む浴は、 加熱して液相線上の温度で融解させ て融液とした後、 降温させて融液中に酸化亜鉛が析出するのを、 種 子結晶上に結晶化させ、 結晶化した酸化亜鉛単結晶を引上げて単結 晶を成長させる。 この引き上げ法自体は公知であり、 たとえば、 特 開 2 0 0 2 — 1 9 3 6 9 8号公報及び特開 2 0 0 3 — 2 7 9 0号公 報に記載の方法と同様でよい。
そのほかの製造条件としては、 限定するわけではないが、 引上げ 速度は好ましくは 0. 5〜 5 0 mm /日、 より好ましくは 0, 5〜 1 O mmZ日、 回転速度は好ましくは 0〜 7 0 0 r p m、 より好ま しくは 0〜 4 0 0 111、 融液の降温速度は好ましくは 0. 5〜 1 0 °C/時が好ましく、 より好ましくは 0. 5〜 5 °CZ時である。 引 上速度は、 結晶の品質を考慮すると遅い方が好ましいが、 製造速度 を考えると、 早い方が望ましい。 上記の範囲であれば、 結晶の品質 に影響なく酸化亜鉛の結晶を製造できる。 回転速度は、 融液を撹拌 するための効果と不要な溶媒を振り切るために上記のような幅広い 回転数を用いる。 不要な溶媒を振り切る為には出来るだけ高い回転 数が望まれるが、 高回転過ぎると融液の乱れが発生し、 結晶成長に 悪い影響を及ぼすので上記のような範囲が好ましい。 冷却速度は、 結晶の品質と生産性の観点から上記範囲が好ましい。
本発明では、 酸化亜鉛単結晶を引上げて単結晶が成長するととも に、 浴組成から酸化亜鉛が減少して、 酸化亜鉛が析出しなくなる前 に、 引上げる酸化亜鉛単結晶の量と同量の酸化亜鉛原料を浴に供給 する。
引上げる酸化亜鉛単結晶の量の測定方法及び酸化亜鉛原料の浴へ の供給方法は特に限定されない。 たとえば、 ロードセルで引上げる 酸化亜鉛単結晶の量を測定できる。
酸化亜鉛原料の浴への供給は、 酸化亜鉛単結晶の引き上げ量と完 全に連続的に同期する必要はなく、 特定量の酸化亜鉛単結晶の引上 げた後、 その引き上げ量と同量の酸化亜鉛原料を浴に供給し、 再び 特定量の酸化亜鉛単結晶の引上げる操作を繰り返すことで構わない 。 後者の供給方法は融液の組成を均一化 (安定化) して引き上げを 行う ことが容易である利点がある。 ただし、 原料供給前に酸化亜鉛 単結晶の引き上げ量が多すぎると、 融液組成が液相線の上部の組成 になり、 固相が存在しなくなり、 液相のみとなり、 引き上げができ なくなるので、 それ以下の量の引き上げとする。 また、 一度に供給 する酸化亜鉛原料の量が多すぎると、 浴の温度が急激に降下して結 晶の品質を低下させる恐れがあるので、 浴温を急激に低下させない 量で供給することが望ましい。 引き上げ量と同量の酸化亜鉛原料の 供給も、 個々の供給毎に精密である必要はなく、 プロセス全体で連 続製造が可能な範囲内に制御すればよい。
引き上げ量に応じて供給する酸化亜鉛原料は予熱して供給するこ とが好ましい。 供給する酸化亜鉛原料が低温であると、 融液の温度 にムラができて、 結晶品質を低下させる恐れがあるが、 酸化亜鉛原 料は予熱して供給することで、 融液の温度ムラを防ぎ、 結晶品質を 安定させる上で好ましい。 酸化亜鉛原料の予熱温度は、 融液の温度 と同じであることが好ましいが、 融液より高温でも好ましい。 酸化 亜鉛原料の昇華温度より低い温度であればよい。 また、 融液より低 い温度であっても予熱すれば、 予熱の効果は得られる。 予熱温度は 融液の温度との差が 1 0 0 °c以内であれば問題はないが、 更に好ま しくは、 5 0 °C以内であることが好ましい。
引き上げ量に応じて供給する酸化亜鉛原料は融液、 特に結晶引上 げ部分の融液に乱れを生じないように、 結晶引上げ部からできるだ け離れた位置で、 できるだけ静かに供給することができる。 図 1 に 示したように、 酸化亜鉛原料の供給部と結晶引上げ部の間に堰 (ル ッポ 8 ) を設けて原料供給による原料供給部の融液の乱れが静まつ た融液が結晶引上げ部へ (例えば堰の下のスロートを介して) 導入 されるようにすることができる。
本発明により、 酸化亜鉛の密度より高い平均密度を有する化合物 からなる溶媒を用いると、 高品質の酸化亜鉛結晶を製造することが できること、 図 2に示すような後述の手順で引上げを繰り返すこと で、 引上げ方法に長い単結晶を連続で製造でき、 しかも、 酸化亜鉛 よりも密度の大きな化合物を溶媒として使用することにより、 引上 げ速度を早く出来ることが確認された。 実施例
(実施例 1 )
酸化亜鉛単結晶を連続引上げ法によって製造する具体例を示す。 図 1 に酸化亜鉛単結晶連続引上げ装置を示す。 図 1 において、 1 は アルミナ支持棒、 2は白金支持棒、 3は断熱ウール、 4は高周波加 熱コイル、 5は白金—ロジウム熱電対、 6は放射温度計、 7は白金 外ルツポ、 8は白金内ルツポ、 9は融液、 1 0は種子結晶、 1 1 は 成長した単結晶、 1 2は酸化亜鉛 (原料) 、 1 3は原料酸化亜鉛供 給装置、 1 4はロードセル、 1 5はモ一夕一である。
図 2に示す製造手順に従って説明する。 種子結晶 1 0を白金支持 棒 2 に白金線で固定する。 それを更にアルミナ支持棒 1 に白金線で 固定する。 これにより、 融液 9とアルミナ支持棒 1とが接触して反 応することを避けることが出来る。 酸化亜鉛 (密度 : 5. 6 gノ c m3 ) : 酸化タングステン (密度 : 7. 1 6 ノ 0 1113 ) をモル% で、 7 1. 5 : 2 8. 5で混合して、 5 0 0 gを、 口径 1 0 0mm 、 高さ 7 0 mmの発熱体を兼ねた白金ルツポ 7に充填した。 これを 高周波加熱コイル 4による誘導加熱方式により約 1 3 5 0 °Cまで加 熱して原料を均一に溶融させた後に、 1 3 0 0 °Cまで冷却する (図 2中、 1→ 2 ) 。 種子結晶である酸化亜鉛単結晶 1 0を融液表面に 接触させる。 融液を徐々に冷却させると、 最も温度の低い種子結晶 と融液の界面から酸化亜鉛の結晶が析出する。 このようにして成長 した結晶を徐々に引上げることにより単結晶を得ることが出来る。 しかしながら、 この方法では、 図 2中の 2から 3に温度が変化し、 酸化亜鉛の単結晶が引上げられた結果、 融液の組成は、 2から 3 ' に変化する。 この時、 引上げ量が多すぎると、 融液組成が液相線の 組成 (3 ' ' ) になり酸化亜鉛の固相が共存しない液相のみの融液 となり引上げが続けられないので、 引上げ量は、 融液組成が液相線 の組成にならないように制御する必要がある。 融液組成が 3 ' にな つたら、 ロードセル 1 4で計測した引上げた単結晶の重量と同量の 原料酸化亜鉛を原料酸化亜鉛供給装置 1 3から補充して、 融液組成 を 3 ' から 3に戻し、 引上げを続ける。 この操作を共晶温度より 5 〜 1 0 °C高い温度で止め、 融液組成を 5に戻して、 再度融液温度を 2にして引き続き引き上げを行う。 このサイクルを続けることによ つて、 引上げ方向に長い単結晶を連続的に製造できる。 この時のそ の他の製造条件としては、 引上げ速度は、 l〜 5mm/日、 回転速 度は、 0〜 4 0 0 r p m、 融液の降温速度は、 1〜 1 0°C/"時であ つた。 得られた結晶は、 2 0 X 2 0 X4 0mmの大きさで、 不純物 の少ないほぼ透明の酸化亜鉛単結晶を 1 0 日で製造できた。 (実施例 2 )
実施例 1 と同じ装置を用いて酸化亜鉛単結晶を連続引上げ法によ つて製造した。 酸化亜鉛 : 酸化タングステン (密度 : 7. 1 6 g/ c m3 ) をモル%で、 7 1. 5 : 2 8. 5で混合し、 白金ルツポ 7 に充填し、 1 3 5 0 °Cまで加熱して十分溶融させた後に、 1 2 5 0 °Cまで冷却し、 1 2 5 0 °Cで保持した状態で、 引き上げを開始した 。 温度一定の条件で引き上げを行う場合は、 ロードセルで引上げた 単結晶の重量を測定しておき、 融液組成が液相線を越えない組成に 制御し、 引上げた単結晶の重量と同じ重量の原料酸化亜鉛を原料酸 化亜鉛供給装置 1 3から断続的に補充しながら引き続き引上げを続 ける。 引上げ量が多いと補充量が多くなり、 原料補充時に融液の温 度が急激に下がり単結晶の育成に悪影響を及ぼすので、 引上げ量を 出来るだけ少量で制御することが望ましい。 この例では、 単結晶の 重量が 0. 1〜 0. 5 g増える毎に原料酸化亜鉛を融液温度が急激 に変化しないように充填した。 この時の製造条件としては、 引上げ 速度は、 l S mmZ日、 回転速度は、 0〜 4 0 0 r p mであった 。 得られた酸化亜鉛単結晶は 2 0 X 2 0 X 3 5 mmの大きさで、 不 純物の少ない淡黄色の酸化亜鉛単結晶を 1 0 日で製造できた。
(実施例 3 )
実施例 1 と同じ装置を用いて酸化亜鉛単結晶を連続引上げ法によ つて製造した。 酸化亜鉛 : 酸化ニオブ (密度 : 5. 9 g / c m3 ) をモル%で、 8 4. 6 : 1 5. 4で混合し、 白金ルツポ 7 に充填し 、 1 4 5 0でまで加熱して十分溶融させた後に、 1 4 0 0 °Cまで冷 却し、 引き上げを開始した。 この時の製造条件としては、 引上げ速 度は、 l〜 5 mmZ日、 回転速度は、 0〜 4 0 0 r p m、 融液の降 温速度は、 1〜 1 0 °CZ時であった。 得られた酸化亜鉛単結晶は 2 0 X 2 0 X 3 5 mmの大きさで、 不純物の少ない淡黄色の酸化亜鉛 単結晶を 1 0 日で製造できた。
(実施例 4 )
実施例 1 と同じ装置を用いて酸化亜鉛単結晶を連続引上げ法によ つて製造した。 酸化亜鉛 : フッ化鉛 (密度 : 8. 4 g/ c m3 ) を モル%で、 2 5 : 7 5で混合し、 白金ルツポ 7に充填し、 1 2 0 0Cまで加熱して十分溶融させた後に、 1 1 0 0 °Cまで冷却し、 引き 上げを開始した。 この時の製造条件としては、 引上げ速度は、 1〜 5 mmZ日、 回転速度は、 0〜 4 0 0 r p m、 融液の降温速度は、 1〜 1 0 °CZ時であった。 得られた酸化亜鉛単結晶は 2 0 X 2 0 X 3 5 mmの大きさで、 不純物の少ないほぼ透明の酸化亜鉛単結晶を 1 0 日で製造できた。
(実施例 5 )
実施例 1 と同じ装置を用いて酸化亜鉛単結晶を連続引上げ法によ つて製造した。 酸化亜鉛 : 酸化タングステン (密度 : 7. 1 6 g / c m3 ) : 四ホウ酸ナトリウム (密度 : 2. 3 6 g / c m3 ) をモ ル%で、 7 0 : 2 4 : 6で混合した。 この組成での酸化タンダステ ンと四ホウ酸ナトリウムの平均密度は、 6. 2 g / c m3 となる。 これらを白金ルツポ 7 に充填し、 1 3 0 0 °Cまで加熱して十分溶融 させた後に、 1 2 5 0 °Cまで冷却し、 引き上げを開始した。 この時 の製造条件としては、 引上げ速度は、 l〜 5 mmZ日、 回転速度は 、 0〜 4 0 0 r p m、 融液の降温速度は、 1〜; L 0 °C 時であった 。 得られた酸化亜鉛単結晶は 2 0 X 2 0 X 3 5 mmの大きさで、 不 純物の少ないほぼ透明の酸化亜鉛単結晶を 1 0 日で製造できた。
(実施例 6 )
実施例 1 と同じ装置を用いて、 原料酸化亜鉛の供給をせずに酸化 亜鉛単結晶を引上げ法によって製造した。 酸化亜鉛 : 酸化タンダス テン (密度 : 7. 1 6 g / c m3 ) をモル%で、 7 1. 5 : 2 8. 5で混合して、 白金ルツポアに充填し、 1 3 5 0 °Cまで加熱して十 分溶融させた後に、 1 3 0 0 °Cまで冷却する。 この時の製造条件と しては、 引上げ速度は、 l S mm/7日、 回転速度は、 1〜 4 0 0 r p m、 融液の降温速度は、 1〜 1 0 °CZ時であった。 得られた酸 化亜鉛単結晶は 2 0 X 2 0 X 1 m mの大きさで、 不純物の少ない淡 黄色の酸化亜鉛単結晶を製造できた。 しかし、 2 日以上の製造は出 来なかった。
(比較例 1 )
実施例 1 と同じ装置を用いて酸化亜鉛単結晶を連続引上げ法によ つて製造した。 酸化亜鉛 : 酸化バナジウム (V 2 O 5 -) (密度 : 3 . 4 g / c m 3 ) をモル%で、 8 5 : 1 5で混合して、 白金ルツボ 7 に充填し、 1 3 0 0 °Cまで加熱して十分溶融させた後に、 1 2 8 0 °Cまで一旦冷却し、 結晶製造を開始する。 この時の製造条件とし ては、 引上げ速度は、 l〜 5 mm/日、 回転速度は、 l〜 4 0 0 r p m、 融液の降温速度は、 1〜 1 0 °C/時であった。 得られた酸化 亜鉛単結晶は 8 X 8 X引上方向の長さ 2 0 mmの大きさで、 不純物 の多い深緑色の酸化亜鉛単結晶を 1 0 日間で製造した。
(比較例 2 )
実施例 1 と同じ装置を用いて酸化亜鉛単結晶を連続引上げ法によ つて製造した。 酸化亜鉛 : 酸化モリブデン (M o O 3 ) (密度 : 4 . 7 g / c m3 ) をモル%で、 5 4 : 4 6で混合して、 白金ルツポ 7に充填し、 1 2 0 0 °Cまで加熱して十分溶融させた後に、 1 1 5 0 °Cまで一旦冷却し、 結晶製造を開始する。 この時の製造条件とし ては、 引上げ速度は、 1〜 5 mm/日、 回転速度は、 :!〜 4 0 O r p m、 融液の降温速度は、 1〜 1 0 °C/時であった。 得られた酸化 亜鉛単結晶は 9 X 9 X引上方向の長さ 1 5 mmの大きさで、 不純物 の多い濃青色の酸化亜鉛単結晶を 1 0 日間で製造した。 産業上の利用可能性
酸化亜鉛 (ZnO) は、 焦電素子、 圧電素子、 ガスセンサー、 透明 導電膜などのほか、 青色から紫外域の: L E Dその他の光電子デバイ ス用材料として有望な材料である。 本発明により、 融液引き上げ法 により製造される大型の酸化亜鉛単結晶の品質を高めること、 さら には単結晶をさらに大型化すること、 連続生産を可能にし、 生産性 をより高めることが可能にされるので、 本発明の産業上の有用性は 明らかである。

Claims

1 . 酸化亜鉛を溶解することができかつ融液において酸化亜鉛よ り高い平均密度を有する溶媒と、 酸化亜鉛との混合融液から、 酸化 亜鉛の結晶を種子結晶上に析出させることを特徴とする酸化亜鉛単 結晶の製造方法。 請
2 . 前記混合融液から酸化亜鉛の結晶を種子結晶上に析出させ、 融液から酸化亜鉛の単結晶を引上げ、 前記引上げの際に、 引上げる 酸化亜鉛と同量の酸化亜鉛原料を供給し、 酸化亜鉛単結晶を連続的 に引上げることを特徴とする、 請求項 1 に記載の酸化亜鉛単結晶の 囲
製造方法。
3 . 融液から酸化亜鉛の結晶を特定量引き上げた後、 その引き上 げた酸化亜鉛と同量の酸化亜鉛原料を融液に供給し、 その後再び融 液から酸化亜鉛の結晶を引き上げる操作を繰り返し、 かつ、 酸化亜 鉛の引き上げ量は結晶付近の融液の組成が溶媒と酸化亜鉛を成分と する系の相図における液相線より上の液相のみ組成にならない量と することを特徴とする、 請求項 2に記載の酸化亜鉛単結晶の製造方 法。
4 . 酸化亜鉛原料を予熱して供給することを特徴とする、 請求項 1 〜 3のいずれか 1項に記載の酸化亜鉛単結晶の製造方法。
5 . 予熱温度が融液の温度との差が 1 0 0 °C以内である、 請求項 4に記載の酸化亜鉛単結晶の製造方法。
6 . 融液の結晶引上げ部分と酸化亜鉛原料の供給部との間に堰を 設けて、 酸化亜鉛原料を供給するときに、 結晶引上げ部分の融液に 乱れを生じさせないようにした、 請求項 2又は 3 に記載の酸化亜鉛 単結晶の製造方法。
7 . 前記溶媒が、 溶質である酸化亜鉛と共晶系状態図を形成する 化合物であって、 共晶点の組成が酸化亜鉛の濃度で 3 0モル%から 9 9. 9モル%の範囲で、 かつ、 共晶温度が 7 0 0 °Cから 1 7 2 0 °Cの範囲である化合物のうち一種類以上で形成される溶媒であるこ とを特徴とする、 請求項 1又は 2に記載の酸化亜鉛単結晶の製造方 法。
8. 前記溶媒として、 溶質である酸化亜鉛と共晶系状態図を形成 する化合物であって、 固体状態での平均密度 (於室温) が 5. 6 g Zc m3 以上である化合物を用いることを特徴とする、 請求項 1又 は 2に記載の酸化亜鉛単結晶の製造方法。
9. 前記溶媒を構成する化合物が、 酸化物、 またはフッ化物、 塩 化物などのハロゲン化物の中で、 1種類以上を含むことを特徴とす る請求項 1又は 2に記載の酸化亜鉛単結晶の製造方法。
1 0. 酸化亜鉛と前記溶媒を構成する化合物との混合比が 9 9. 9モル%から 3 0モル%対 0. 1モル%から 7 0モル%であり、 各 種溶媒同士の混合比は、 それぞれ 1 0 0モル%から 0モル%である ことを特徴とする、 請求項 1又は 2に記載の酸化亜鉛単結晶の製造 方法。
1 1. 前記溶媒を構成する化合物が、 酸化タングステン (W03) 、 フッ化鉛 (PbF2) 、 塩化鉛 (PbCl2) 、 酸化ニオブ (Nb205 ) 、 一 酸化コバルト (CoO) 、 二酸化ケイ素 (Si02) 、 酸化チタン (Ti02 ) 、 酸化アルミニウム (Ai 203 ) 、 四ほう酸ナトリウム (Na2B407) のうちの一種類以上を含むことを特徴とする、 請求項 1又は 2に記 載の酸化亜鉛単結晶の製造方法。
PCT/JP2008/055198 2007-03-16 2008-03-14 酸化亜鉛単結晶の製造方法 WO2008114855A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2009138235/05A RU2474625C2 (ru) 2007-03-16 2008-03-14 Способ получения монокристалла оксида цинка
CN200880005468.2A CN101646809B (zh) 2007-03-16 2008-03-14 氧化锌单晶的制造方法
JP2009505251A JP5067419B2 (ja) 2007-03-16 2008-03-14 酸化亜鉛単結晶の製造方法
US12/531,087 US8409348B2 (en) 2007-03-16 2008-03-14 Production method of zinc oxide single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-068848 2007-03-16
JP2007068848 2007-03-16

Publications (1)

Publication Number Publication Date
WO2008114855A1 true WO2008114855A1 (ja) 2008-09-25

Family

ID=39765955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/055198 WO2008114855A1 (ja) 2007-03-16 2008-03-14 酸化亜鉛単結晶の製造方法

Country Status (5)

Country Link
US (1) US8409348B2 (ja)
JP (1) JP5067419B2 (ja)
CN (1) CN101646809B (ja)
RU (1) RU2474625C2 (ja)
WO (1) WO2008114855A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235350A (ja) * 2009-03-30 2010-10-21 Ube Ind Ltd 酸化亜鉛単結晶の製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090326077A1 (en) * 2008-06-27 2009-12-31 Cardiac Pacemakers, Inc. Polyisobutylene urethane, urea and urethane/urea copolymers and medical devices containing the same
AU2010203373B2 (en) 2009-01-12 2013-08-01 University Of Massachusetts Lowell Polyisobutylene-based polyurethanes
JP5602859B2 (ja) 2009-08-21 2014-10-08 カーディアック ペースメイカーズ, インコーポレイテッド ポリイソブチレンベースの架橋性ポリマーおよびそれを含有する医療機器
US8374704B2 (en) 2009-09-02 2013-02-12 Cardiac Pacemakers, Inc. Polyisobutylene urethane, urea and urethane/urea copolymers and medical leads containing the same
US8644952B2 (en) * 2009-09-02 2014-02-04 Cardiac Pacemakers, Inc. Medical devices including polyisobutylene based polymers and derivatives thereof
KR101690490B1 (ko) * 2010-10-21 2016-12-28 에스케이이노베이션 주식회사 탄화규소 단결정의 제조방법 및 장치
US8660663B2 (en) 2010-12-20 2014-02-25 Cardiac Pacemakers, Inc. Lead having a conductive polymer conductor
JP2015535538A (ja) 2012-11-21 2015-12-14 ユニバーシティー オブ マサチューセッツUniversity of Massachusetts 高強度ポリイソブチレンポリウレタン
US10526429B2 (en) 2017-03-07 2020-01-07 Cardiac Pacemakers, Inc. Hydroboration/oxidation of allyl-terminated polyisobutylene
US10415149B2 (en) * 2017-03-31 2019-09-17 Silfex, Inc. Growth of a shaped silicon ingot by feeding liquid onto a shaped ingot
CN106958041B (zh) * 2017-05-27 2019-01-29 山东大学 一种xTeO2·P2O5(x=2,4)晶体的制备方法及制备装置
WO2019036544A1 (en) 2017-08-17 2019-02-21 Cardiac Pacemakers, Inc. PHOTORÉTICULATED POLYMERS FOR IMPROVED DURABILITY
CN111479596B (zh) 2018-01-17 2023-04-07 心脏起搏器股份公司 封端聚异丁烯聚氨酯

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367588A (ja) * 1991-06-17 1992-12-18 Fujitsu Ltd エピタキシャル結晶の製造方法
JP2002193698A (ja) * 2000-12-26 2002-07-10 National Institute Of Advanced Industrial & Technology ZnO単結晶の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944870B1 (ja) 1967-09-21 1974-11-30
JPH08253393A (ja) * 1995-01-19 1996-10-01 Hoya Corp Ktp固溶体単結晶及びその製造方法
JP3694736B2 (ja) 2001-06-12 2005-09-14 独立行政法人産業技術総合研究所 酸化亜鉛単結晶の製造方法
CN101384756B (zh) 2006-03-01 2011-11-23 三菱瓦斯化学株式会社 采用液相生长法的ZnO单晶的制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04367588A (ja) * 1991-06-17 1992-12-18 Fujitsu Ltd エピタキシャル結晶の製造方法
JP2002193698A (ja) * 2000-12-26 2002-07-10 National Institute Of Advanced Industrial & Technology ZnO単結晶の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI X.H. ET AL.: "Bridgman growth of ZnO crystals from high temperature solution", APPL. PHYS. A, SPRINGER BERLIN, vol. 82, no. 2, February 2006 (2006-02-01), pages 373 - 376, XP019337127 *
NIELSEN J. W. ET AL.: "The growth of large single crystals of zinc oxide", J. PHYS. CHEM., vol. 64, no. 11, November 1960 (1960-11-01), pages 1762 - 1763, XP002594676 *
WANKLYN B. ET AL.: "The growth of ZnO crystals from phosphate and vanadate fluxes", J. CRYST. GROWTH, vol. 7, no. 1, August 1970 (1970-08-01), pages 107 - 108, XP023184982 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235350A (ja) * 2009-03-30 2010-10-21 Ube Ind Ltd 酸化亜鉛単結晶の製造方法

Also Published As

Publication number Publication date
CN101646809B (zh) 2014-01-29
JPWO2008114855A1 (ja) 2010-07-08
CN101646809A (zh) 2010-02-10
RU2474625C2 (ru) 2013-02-10
JP5067419B2 (ja) 2012-11-07
RU2009138235A (ru) 2011-04-27
US8409348B2 (en) 2013-04-02
US20100107967A1 (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5067419B2 (ja) 酸化亜鉛単結晶の製造方法
TWI404841B (zh) 依液相成長法之ZnO單結晶之製造方法
TWI554659B (zh) SiC單晶的製造方法
JP2009126770A (ja) 炭化珪素単結晶の成長法
JP5260881B2 (ja) Mg含有ZnO系混晶単結晶、その積層体およびそれらの製造方法
JP3694736B2 (ja) 酸化亜鉛単結晶の製造方法
KR101830524B1 (ko) 대면적 2차원 금속-칼코겐화합물 단결정 및 이의 제조방법
JP2010235350A (ja) 酸化亜鉛単結晶の製造方法
JPH06122588A (ja) 酸化物結晶の作製方法
JP3548910B2 (ja) ZnO単結晶の製造方法
JP3870258B2 (ja) 酸化物半導体単結晶の製造方法
JPS61501984A (ja) チオガリウム酸銀(Ag GaS↓2)の単結晶薄層の製造方法
JP3216298B2 (ja) 化合物半導体結晶成長用縦型容器
WO2003068696A1 (fr) Procede de production d'un monocristal de semiconducteur compose
JP2672597B2 (ja) チタン酸バリウム単結晶の製造方法
JPH0243717B2 (ja) Bapbo3keisankabutsuchodendotaitanketsushonoyoekihikiagehonyoruseizohoho
JPS63274696A (ja) 銅酸ランタン単結晶の製造方法
JP2000178095A (ja) 結晶成長方法
JP5352245B2 (ja) 化合物半導体単結晶の製造方法および結晶成長装置
JPH01138199A (ja) 鉛錫テルル系半導体単結晶
JP2003286096A (ja) P形半導体SrCu2O2単結晶の製造方法
JPH08295507A (ja) 光学結晶及びその製造方法
JPS6156200B2 (ja)
JPH04164889A (ja) 単結晶の製造方法
JPH07247200A (ja) 酸化チタン単結晶の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880005468.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722563

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009505251

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12531087

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009138235

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 08722563

Country of ref document: EP

Kind code of ref document: A1