WO2008111680A1 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
WO2008111680A1
WO2008111680A1 PCT/JP2008/054837 JP2008054837W WO2008111680A1 WO 2008111680 A1 WO2008111680 A1 WO 2008111680A1 JP 2008054837 W JP2008054837 W JP 2008054837W WO 2008111680 A1 WO2008111680 A1 WO 2008111680A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
light
layer
emitting device
semiconductor
Prior art date
Application number
PCT/JP2008/054837
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiko Tsuchida
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2008111680A1 publication Critical patent/WO2008111680A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to an organic / inorganic hybrid type light emitting device. Dragon
  • organic electroluminescence (organic EL) devices are being industrialized, and the development of high-intensity light-emitting diodes (polymer LED) using polymer materials as light-emitting materials has been accelerated.
  • High-? Materials are soluble in organic solvents, and the melt viscosity can be controlled by adjusting the high-liver material.
  • the light-emitting element itself can also be flexure, so it is expected to be applied to the lighting field including various displays.
  • an element using an inorganic material as a light emitting material is superior to an element using an organic material as a light emitting material in terms of durability.
  • the element whose luminescent material is an inorganic semiconductor material that has been put into practical use is a shell-type lamp and is difficult to be used as a surface emitting light source. Since inorganic semi-materials are hard and brittle, it is difficult to make flexible optical elements.
  • the polymer LED has a phenomenon that the initial luminance decreases with the passage of time as the current is constant due to deterioration of the light emitting material.
  • causes of deterioration of luminescent materials due to high liver materials include oxidation reactions,
  • An object of the present invention is to provide an organic / inorganic eight-hybrid light emitting device that can solve the above-described problems.
  • Another object of the present invention is to provide an organic / inorganic hybrid type light emitting device with improved light extraction efficiency.
  • the present invention provides (1) to (10).
  • a light emitting device in which semiconductor particles having a heterostructure are dispersed in an organic layer and emits light by charge injection.
  • a light emitting device in which semiconductor particles having a pn junction are dispersed in an organic layer and emits light by charge injection.
  • a light-emitting device that emits light by charge injection, in which halves having a double heterostructure are dispersed in an organic layer.
  • a light-emitting device that emits light by charge injection, with half-particles having a quantum well structure dispersed in an organic layer.
  • a light-emitting device that emits light by charge injection, in which semiconductor crystals grown on single crystal grains are dispersed in an organic layer.
  • single crystal particles is Al 2 ⁇ 3
  • the semiconductor crystal is grown on a single crystal particles is semi present 3-V nitride compound, (5) or (6) light-emitting device according .
  • a semiconductor particle that includes at least one semiconductor satisfying at least one selected from the group consisting of (i), (ii), (ii i), and (iv), and an organic layer, wherein the semiconductor particles are dispersed in the organic layer A light emitting device.
  • the light-emitting device of the present invention uses an inorganic semiconductor as a light-emitting material and uses a high-liver material as a power transmission layer, thereby suppressing deterioration of the high-liver material and realizing a long-lasting light-emitting device with high luminous efficiency. It is what I did.
  • the high liver material in this way, the application process, which is an advantage of the high molecular material, can be achieved, and the light emitting device can be obtained at low cost by the application process.
  • the difference in refractive index between the high liver material and the inorganic half is increased, and the inorganic half is embedded in the high liver material to improve the light extraction efficiency.
  • the light emitting device can be configured. Simple gauge explanation
  • FIG. 1 is a schematic cross-sectional view of a light emitting device according to the present invention.
  • FIG. 2 is a schematic cross-sectional view of another light emitting device according to the present invention.
  • FIG. 3 is a schematic cross-sectional view of another light-emitting device according to the present invention.
  • FIG. 4 shows an outline of a vapor phase growth semiconductor manufacturing apparatus used for manufacturing the luminescent semiconductor particles according to the present invention.
  • the major structural feature is that inorganic semiconductor particles having a function of emitting light by charge injection are arranged in an organic semiconductor material having a function of current injection. .
  • a configuration in which inorganic light-emitting semiconductor particles that emit light by charge injection are arranged between a pair of electrodes (anode and wisteria) made of an organic material at least one of which is transparent or translucent. can be mentioned. That is, the light-emitting device according to the present invention has a luminescent semi-particle arranged in an organic substance (low liver and Z or high liver). Has a foundation.
  • the luminescent semiconductor particles can be composed of a 3-5 group, 2-6 group compound semiconductor or a 4 group semiconductor.
  • a transparent electrode 2 serving as an anode is layered on a substrate 1, and a hole transport layer 3 is formed on the transparent electrode 2.
  • a large number of light-emitting semi-particles 7 are dispersed. Any method may be used to disperse and arrange the luminescent semi-particles 7 in the hole transport layer 3.
  • the luminescent half particles 7 are inorganic semiconductor fine particles, as will be described in detail later.
  • the hole transport layer 3 in which the light-emitting semiconductor particles 7 are dispersed including a step of dispersing the light-emitting semiconductor particles 7 that are inorganic semi- # f fine particles in a solvent and applying the particles onto the transparent electrode 2. May be formed.
  • a hole / ⁇ material may be laminated between the hole transport layer 3 and the transparent electrode 2.
  • An electron transport layer 5 is formed on the hole transport layer 3, and a cathode 6 is formed on the electron transport layer 5.
  • a light emitting polymer layer may be provided between the hole transport layer 3 and the electron transport layer 5.
  • an electron 3 ⁇ 4 ⁇ layer may be laminated between the electron transport layer 5 and ⁇ 6, or a hole block between the hole transport layer 3 and the electron transport layer 5 in which the light-emitting semi-particles 7 are dispersed. Layers may be stacked.
  • the luminescent semi-particles 7 will be described.
  • particles provided with 3-5 gg compound compound half-tank Yoshiaki on the surface of the particles can be used.
  • 3-5 group nitride compound semi ⁇ Mikichi Akira has (i) a heterostructure, (i i) a pn junction, or
  • the 3-5 silicide compound semiconductor crystal may satisfy any one of (i) to (iii), or two or more.
  • a 1 N or G a N fine particles are mixed with HV PE (Hydride Vapor Phase Epitaxy) and the like, and the resulting fine particles can be grown by methods such as MOVPE (Metal Organic Vapor Phase Epitaxy) and MBE (Molecular Beam Epitaxy).
  • MOVPE Metal Organic Vapor Phase Epitaxy
  • MBE Molecular Beam Epitaxy
  • the layer structure of the above 3-5 compound compound semiconductor crystal the structure reverted in the compound semiconductor light emitting device can be used as it is.
  • the light emitting layer structure of the light emitting semiconductor particles 7 may be a double hetero structure. Another embodiment of the luminescent semi-particle 7 will be described below.
  • a light emitting semiconductor particles 7 can include a front surface of the A 1 2 0 3 particles prepared as 3 ⁇ 4 ⁇ particles, particles obtained by forming a 3-5 nitride compound semiconductor crystal .
  • a semiconductor crystal includes one or all of a heterostructure, a pn junction, and a quantum well layer, or a heterostructure, a pn junction, and a quantum well layer.
  • the formation of a 3-5 silicide compound semiconductor crystal on the A 1 2 0 3 particles is an example, and the present invention is not limited to this.
  • arsenide, ⁇ X, or a mixed crystal of these five elements can be manufactured in the same manner.
  • the layer structure of the light emitting layer for example, a conventional layer structure for a hetero structure, a pn junction structure, or a quantum well structure which is reversed in another compound semi-light emitting element can be used as it is.
  • a conventional layer structure for a hetero structure, a pn junction structure, or a quantum well structure which is reversed in another compound semi-light emitting element can be used as it is.
  • a 1 2 3 When forming 3-5 key compound semiconductor crystals on the surface of particles, HVPE (Hydride Vapor Phase Epi taxy), MOV PE (Metal Organic Vapor Phase Epi taxy), MB E (Molcular Beam Epi Good quality crystals can be grown using methods such as taxy).
  • HVPE Hydride Vapor Phase Epi taxy
  • MOV PE Metal Organic Vapor Phase Epi taxy
  • MB E Molcular Beam Epi Good quality crystals can be grown using methods such as taxy).
  • the A 1 2 0 3 particles have a hexagonal crystal structure, which is convenient for crystal growth of the 3-5 3 ⁇ 4 g compound compound semi- # f crystal.
  • the ⁇ » ⁇ 'on Ffa layer may be grown required 3-5 nitride compound semiconductors crystals but without forming a low temperature buffer layer, the front surface of the a 1 2 ⁇ 3 particles may be formed directly 3 5 key product based compound semiconductor crystal.
  • the use of A l 2 ⁇ 3 particles it is easy to align the Ki ⁇ to fall within a certain range the tree St of course, intended to A 1 2 0 3 particles having a hexagonal crystal structure Therefore, the semiconductor crystal can be formed on the surface of the A 1 2 0 3 particles with extremely high crystallinity. As a result, the luminous efficiency of the obtained semi-difficult particles 7 is extremely good.
  • the semiconductor crystal includes a heterostructure, a pn junction, and a quantum well structure
  • electrons and holes are reduced by an external electric field to regenerate the electrons and holes in the semiconductor crystal. Emits light when bonded.
  • a substrate is prepared in advance, a large number of ingenious particles are arranged on the substrate, and in this state, the surface of each individual particle is formed.
  • the light-emitting semi-particles 7 can be obtained by separating the particles on which the semiconductor crystal is formed from the substrate.
  • the S I_ ⁇ 2 thin film can have use those formed on such as a sapphire substrate.
  • the substrate particles used to form the semiconductor crystals must be able to withstand the process. That is, as a condition for forming a nitride-based compound semiconductor crystal, a high temperature close to 100 ° C. A temperature and an S3 ⁇ 4 atmosphere such as NH 3 are required. In addition, nitride-based compound semiconductor crystals need to be selectively formed on the particles.
  • the shape of the particles is not particularly limited, but is preferably a plate shape.
  • ⁇ ? -alumina “Sumicorundum” (diameter 200 nm to 18 mm) has been sold by the company. Also, of-alumina particles with diameters of 30 nm, 50 nm, 70 nm, and 100 nm are available as developed products. These fine particles are single crystals, and can be obtained in a uniform manner. —3 ⁇ 4 3-5; ⁇ Compound compound halves can obtain single crystals by epitaxial growth after forming a buffer layer on a single crystal sapphire substrate, but sapphire ( ⁇ - ⁇ 1 2 0 A large number of defects occur due to the misfit of the crystal lattice with 3 ). On the other hand, high-quality crystals can be obtained without using a low-temperature buffer layer by using a single alumina with a diameter of about 30 nm to 100 nm as the substrate.
  • the particles for use in the present invention have a specific crystal structure and that the growth direction is appropriately selected from the viewpoint of easy formation of a semiconductor crystal.
  • the crystal structure is preferably hexagonal.
  • the methods for forming semi-crystals on the surface of the particles include organometallic m3 ⁇ 4 growth method (MOVP E), fountain epitaxy method (MBE), hydride gas layer growth method (HVPE), no-less laser lamination method (PLD). ) Etc. can be used. However, MOCVD and MBE are preferred.
  • a quartz substrate is prepared, and particles are arranged on the quartz substrate.
  • the arrangement of the knitted particles on the quartz substrate can be achieved, for example, by turning the inferior particles, which are fine particles, into a slurry with ultrafe and so on.
  • it can be applied to a quartz substrate.
  • the fine particles, which are fine particles are arranged on the quartz substrate without overlapping.
  • it may be carried out by a method of immersing a quartz substrate in a slurry containing base material particles and a medium, or a method of applying to a slurry quartz substrate.
  • vapor deposition on a substrate such as sapphire in place of the quartz substrate may be used to also form the S I_ ⁇ 2 thin film.
  • S particles are A 1 2 3 particles.
  • any shape can be placed on the quartz substrate on a relatively flat surface by applying slurry onto the quartz substrate.
  • Xenomoto used is water, methanol, ethanol, isopropanol, n-butanol, ethylene glycol, dimethylacetamide, methyl ethyl ketone, methyl isobutyl ketone, etc., preferably tt *. 3 ⁇ 4 ⁇
  • the f-type particles such as A 1 2 0 3 are fixed to the stone substrate by interhepatic force.
  • the ⁇ MOV PE apparatus is used for the epitaxial growth of Group 3-5 nitride compound semiconductor crystals to form semiconductor crystals on the surface of 3 ⁇ 4 ⁇ aged particles.
  • the base particles are preferably A 1 2 0 3 particles having a hexagonal crystal structure. The reason is as described above.
  • 3-5 compound half-tank Yoshiaki with p n junctions is difficult &, and multi-quantum well structure is laminated as described above. Thereafter, a p-type AlGaN layer, a p-type GaN layer, and a tunnel injection layer (thin film n-type layer) may be laminated. .
  • the raw material for the above-mentioned epitaxial crystal growth will be described.
  • the Group 2 source gas includes an organometallic compound of one or more elements selected from the group consisting of Mg, Ca, Sr, Ba and Zn. Mix and use.
  • organometallic groups include dimethyl group, jetyl group, and biscyclopentene dieni ⁇ ! Examples thereof include a rhe group, a bismethylcyclopentaenyl group, and a bisethylcyclopentaenyl group.
  • gallium source gas aluminum source gas, and indium source gas
  • a trialkylated product or a hydride in which an alkyl group having 1 or 3 carbon atoms or a hydrogen atom is bonded to each metal atom is usually used.
  • a raw material of Ga trimethylgallium ((CH 3 ) 3 Ga), triethylgallium ((C 2 H 5 ) 3 Ga), or the like can be used.
  • Ammonia is usually used as the nitrogen raw material, but hydrazine, methyl hydrazine, 1,1-dimethylhydrazine, 1,2-dimethylhydrazine, tert-butylylamine, ethylenediamine and the like can be used. These can be used in worms or in any combination. Of these raw materials, ammonia and hydrazine are preferred because they do not contain carbon atoms in their molecules, and therefore there is little carbon contamination in the semiconductor.
  • Gases such as nitrogen, hydrogen, argon, and helium can be used alone or in combination as a growth atmosphere gas and a carrier gas for the metal material.
  • an atmosphere of hydrogen gas or helium gas pre-decomposition of the raw material is suppressed, which is more preferable.
  • FIG. 4 shows an outline of an example of a vapor phase growth semiconductor B apparatus used for producing luminescent 14 semiconductor particles according to the present invention by the MOV PE method.
  • the vapor phase growth semiconductor manufacturing apparatus includes a reaction furnace 12 in which a raw material gas is supplied from a raw material supply device through a raw material supply line 11 1.
  • a susceptor 14 for heating the S-plate 13 is provided in the reaction furnace 12.
  • the susceptor 14 is a polygonal cylinder with multiple plates 13 attached to its surface.
  • the S I_ ⁇ 2 layer (not shown) of the surface of the substrate 1 3, respectively, in a state of particles (not shown) is uniformly coated with as described above.
  • the susceptor 14 can be rotated by a rotating device 15.
  • ⁇ Infrared lamp 14 is provided with an infrared lamp 16 for heating susceptor 14.
  • the substrate 1 3 is placed at a desired growth temperature. Can be heated.
  • the raw material gas supplied to the reactor 1 2 through the raw material supply line 1 1 is thermally decomposed on the substrate 1 3 and applied to the substrate 1 3.
  • a desired compound is finely grown only on a predetermined surface to form a light emitting layer.
  • unreacted raw material gas is discharged to the outside of the reaction through the exhaust port 18 and sent to the exhaust gas treatment device.
  • the light emitting layer is formed, since it is placed on the S I_ ⁇ 2 layer substrates 1 3 on the surface, with the base particle with an acid such as hydrofluoric acid It can be peeled off as a light emitting semiconductor particle.
  • Luminescent halved particles obtained by peeling can be used as they are for various light emitting devices.
  • they may be laminated on the light emitting element by a technique such as laser abrasion, magnetron sputtering, or plasma CVD.
  • the semiconductor crystal layer structure is, for example, a conventional layer structure such as a hetero-age structure, a pn-age structure, a quantum well structure, or a double heterojunction structure that is used as a light-emitting layer in a conventional compound semiconductor light-emitting device. Can be used as they are.
  • the light emitting device 10 is configured as described above, when a voltage is applied between the pair of electrodes, that is, between the transparent electrode 2 and the cathode 6 which are anodes, the positive electrode configured by the organic material is thereby formed. Holes and electrons move in the hole transport layer 3 and the electron transport layer 5, and the luminescent semiconductor particles 7 scattered in the hole transport layer 3 emit light due to the movement of these charges. Light emitted from the light-emitting semiconductor particles 7 can be extracted outside through the transparent electrode 2.
  • the transparent electrode 2 by increasing the difference between the refractive index of the hole transport layer 3 and the refractive index of the luminescent semiconductor particle 7, light from the luminescent semiconductor particle 7 is scattered within the hole transport »3. As a result, light can be extracted from the transparent electrode 2 very efficiently.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of the light emitting device according to the present invention.
  • the light-emitting device 20 shown in FIG. 2 has the structure shown in FIG. 1 in which the hole transport layer 3 is replaced with a light-emitting high ' ⁇ 4 and light-emitting semiconductor particles 7 are dispersed in the light-emitting high layer 4. It is.
  • a light emitting high layer 4 in which light emitting semiconductor particles 7 are dispersed is provided on a substrate 1 on which a transparent electrode 2 serving as an anode is laminated.
  • Such a light-emitting high layer 4 is achieved by dispersing the light-emitting semi-particles 7 in a solvent and coating the transparent electrode 2 with a solvent in which the light-emitting semi-particles 7: particles 7 are dispersed.
  • the luminescent semi-particles 7 may be first placed on the transparent electrode 2 and then the luminescent high-density layer 4 may be formed after pressing.
  • a hole transport material and a transparent material 2 are disposed between the light emitting high liver layer 4 and the transparent electrode 2.
  • a structure in which a hole or a hole & ⁇ material is laminated may be used.
  • the hole transport ⁇ ] S 3 is formed on the transparent electrode 2! Further, a hole injection layer may be laminated between the hole transport layer 3 and the transparent electrode 2.
  • the electron transport layer may be laminated before forming the cathode 6 after forming the transparent polymer layer 4 in which the light emitting semi-particles 7 are dispersed in the light emitting 14 polymer material.
  • a structure in which an electron injection layer is stacked between the electron transport layer 5 and the cathode 6 may be used, or between the light emitting polymer layer 4 in which the light emitting semi-particles 7 are dispersed and the electron transport layer 5.
  • a hole blocking layer may be laminated.
  • the light emitting semiconductor particles 7 when the voltage is applied between the pair of electrodes, the light emitting semiconductor particles 7 emit light in the same manner as in the case of the light emitting device 10. Since the light emitting polymer layer 4 also emits light, the light emitting device has a higher luminance than the light emitting device 10.
  • FIG. 3 is a cross-sectional view showing still another embodiment of the light-emitting device according to the present invention.
  • the light emitting device 30 shown in FIG. 3 is different from the light emitting device 10 shown in FIG. 1 in that the light emitting semiconductor particles 7 are dispersed in the electron transport layer 5.
  • the light-emitting device 30 is formed by further laminating a hole transport layer 3 on a substrate 1 on which a transparent electrode 2 serving as an anode is laminated, and dispersing a light-emitting semiconductor particle 7 in an electron transport material.
  • Three The electron transport layer 5 can be formed by laminating on it.
  • the luminescent semiconductor particles 7 may be dispersed in a solvent and applied, and thus the luminescent semi-particles 7 may be placed on the hole transport M 3 and then the electron transport layer 5 may be formed.
  • the light-emitting semi-particles 7 are dispersed in the electron transporting material, and the electron transporting layer 5 is laminated using this.
  • the hole transporting material and Z or hole are interposed between the electron transporting layer 5 and the anode 6. 3 ⁇ 4 ⁇ material may be laminated.
  • the electron / ⁇ layer may be laminated before the cathode 6 is formed.
  • a light-emitting polymer layer may be laminated between the electron transport 5 in which the light-emitting semi-hard particles 7 are dispersed and the transparent electrode 2, and further between the light-emitting polymer layer and the transparent electrode 2.
  • Hole transport may be provided, and a hole injection layer may be laminated between the hole transport S and the transparent electrode 2.
  • the age at which only one layer is provided between ⁇ 6 and the light emitting layer is an electron injection layer, and ⁇
  • the layer in contact with the layer is referred to as an electron ax layer, and that layer is referred to as an electron transport layer.
  • the electron 3 ⁇ 4 ⁇ layer is a layer having a function of improving the electron 3 ⁇ 4 ⁇ ratio from the electron transport layer, and the electron transport layer is a layer having a function of improving electron injection from an electron injection layer or an electron transport layer closer to the cathode.
  • the electron ax layer or the electron transport layer has a function of blocking hole transport from the hole transport layer or the light emitting layer to the electron transport layer, these layers are referred to as a hole blocking layer. There is.
  • Examples of what is provided between the transparent electrode 2 serving as the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
  • a hole injection layer When only one layer is provided between the anode 2 and the light emitting layer, this is a hole 3 ⁇ 4 ⁇ layer, and when two or more layers are provided between the anode and the light emitting layer, the layer in contact with the anode is the hole injection layer.
  • the layer is called hole transport.
  • the hole injection layer is a layer that has the function of improving the efficiency of hole injection from the ridge, and the hole transport layer improves the hole injection from the hole transport layer closer to the hole layer or the anode. It is a layer having the function of A hole injection layer, or When the hole transport MS has a function of blocking electron transport from the electron transport layer or the light emitting layer to the hole transport layer, these layers may be referred to as an electron block layer.
  • the current 3 ⁇ 4 ⁇ function is assigned to the organic semi-general material
  • the light-emitting function is assigned to the inorganic semi-material, so that the reduction in molecular weight or oxidation that occurs when the organic material is in the excited state. It is possible to suppress the occurrence of side reactions and to suppress the decrease in luminance due to the self-luminescence of the organic material itself.
  • the inorganic material with high light resistance is thinned as the light emitting material, it can be thinned with.
  • the combination of inorganic particles having a high refractive index and organic materials having a low refractive index can improve the light extraction efficiency and provide a high-luminance light-emitting device.

Abstract

A light emitting device is provided. The light emitting device has dispersed semiconductor particles, each of which has a hetero structure, in an organic layer, and emits light by charge injection.

Description

明 細 書 発光デバイス ^ ^  Light emitting device ^ ^
本発明は、 有機 ·無機ハイプリッド型の発光デバイスに関する。 龍  The present invention relates to an organic / inorganic hybrid type light emitting device. Dragon
近年、 有機エレクト口ルミネッセンス (有機 E L) 素子が工業化されつつあり、 発光材 料として高分子材料を用いる高分発光ダイオード (高分子 L ED) の開発が加速されて いる。 高^?材料は有機溶媒に可溶であり、 高肝材料の を調^ ることで溶波粘度 を制御することが可能である。 このことを利用すると、 塗布法により低コストプロセスで 有機 E L素子を $¾ することが可能である。 また、 高肝材料などによるフレキシカレ基 板を用いることで、 発光素子自体もフレキシカレとすることが可能であるため、 様々なデ イスプレイをはじめ、 照明分野への応用が期待されている。  In recent years, organic electroluminescence (organic EL) devices are being industrialized, and the development of high-intensity light-emitting diodes (polymer LED) using polymer materials as light-emitting materials has been accelerated. High-? Materials are soluble in organic solvents, and the melt viscosity can be controlled by adjusting the high-liver material. By utilizing this, it is possible to obtain an organic EL element by a low cost process by a coating method. In addition, by using a flexure substrate made of high liver materials, etc., the light-emitting element itself can also be flexure, so it is expected to be applied to the lighting field including various displays.
一方、 発光材料として無機半 材才料を用いる素子は、 耐久性の点で、 発光材料として 有機材料を用いる素子より優れている。 し力、し、 実用化されている、 発光材料が無機半導 ί材才料である素子は砲弾型ランプであり、 面発光光源として™することが困難である。 無機半 材才料は固くもろいため、 これからフレキシブリ 光素子を することは困難 である。  On the other hand, an element using an inorganic material as a light emitting material is superior to an element using an organic material as a light emitting material in terms of durability. The element whose luminescent material is an inorganic semiconductor material that has been put into practical use is a shell-type lamp and is difficult to be used as a surface emitting light source. Since inorganic semi-materials are hard and brittle, it is difficult to make flexible optical elements.
また、 高分子 L EDは、 発光材料の劣化などにより電流一定で初期輝度が诗間の経過と ともに低下する現象がある。 高肝材料による発光材料の劣化原因としては、 酸化反応、 In addition, the polymer LED has a phenomenon that the initial luminance decreases with the passage of time as the current is constant due to deterioration of the light emitting material. Causes of deterioration of luminescent materials due to high liver materials include oxidation reactions,
^^量の変化などいくつ力の可能性が報告されている。 このような劣化原因は、 有機材料、 特に高分子材料に特有な現象である。 高分子材料は、 紫外線で低 子量化することが知ら れており、 太陽光下での耐久性 (耐光性) が低いという問題も有している。 耐久性や輝度 の低下などの問題は、 発光素子の発光効率を高め、 この分 ¾λ電力を抑制することにより 解決することが T能である。 このため、 ¾έ¾、 高^? LEDの開発、 改良の努力は、 発光 材料の高性能化の検討に向けられていた。 発明の開示 ^^ There are several possibilities for power, such as changes in quantity. The cause of such deterioration is a phenomenon peculiar to organic materials, particularly polymer materials. Polymer materials are known to have a low molecular weight with ultraviolet rays, and have a problem of low durability (light resistance) under sunlight. Durability and brightness It is T ability to solve problems such as a decrease in light emission by increasing the light emission efficiency of the light emitting element and suppressing the λ power. For this reason, efforts to develop and improve high-luminosity LEDs were aimed at studying high-performance light-emitting materials. Disclosure of the invention
本発明の目的は、 上述の問題点を解決することができる、 長赫の有機 ·無機八イブリ ッド型の発光デバイスを提供することにある。  An object of the present invention is to provide an organic / inorganic eight-hybrid light emitting device that can solve the above-described problems.
本発明の他の目的は、 光取り出し効率を向上させた有機 ·無機パイブリッド型の発光デ パイスを提供することにある。  Another object of the present invention is to provide an organic / inorganic hybrid type light emitting device with improved light extraction efficiency.
上述目的を達成するため、 本発明者らは検討した結果を本発明を完成するに至った。 本発明は、 (1) 〜 (10) を提供する。  In order to achieve the above-described object, the present inventors have completed the present invention based on the results of studies. The present invention provides (1) to (10).
( 1 ) ヘテロ構造を有する半導体粒子が有機層中に分散されてなり、 電荷注入により発光 する発光デバイス。  (1) A light emitting device in which semiconductor particles having a heterostructure are dispersed in an organic layer and emits light by charge injection.
(2) pn接合を有する半導体粒子が有機層中に分散されてなり、 電荷注入により発光す る発光デバイス。  (2) A light emitting device in which semiconductor particles having a pn junction are dispersed in an organic layer and emits light by charge injection.
(3) ダブルへテロ構造を有する半 立子が有機層中に分散されてなり、 電荷注入によ り発光する発光デバイス。  (3) A light-emitting device that emits light by charge injection, in which halves having a double heterostructure are dispersed in an organic layer.
(4) 量子井戸構造を有する半 本粒子が有機層中に分散されてなり、 電荷注入により発 光する発光デバイス。  (4) A light-emitting device that emits light by charge injection, with half-particles having a quantum well structure dispersed in an organic layer.
(5) 単結晶微粒上に結晶成長された半導体結晶が有機層中に分散されてなり、 電荷注入 により発光する発光デバイス。  (5) A light-emitting device that emits light by charge injection, in which semiconductor crystals grown on single crystal grains are dispersed in an organic layer.
(6) 半導体粒子が単結晶微粒子上に結晶成長されてなる、 (1) 〜 (5) いずれか記載 の発光デバイス。  (6) The light-emitting device according to any one of (1) to (5), wherein the semiconductor particles are grown on single crystal fine particles.
(7) 単結晶微粒子が Al23であり、 単結晶微粒子上に結晶成長される半導体結晶が 3 —5族窒化物系化合物半 本である、 (5) 又は (6) 記載の発光デバイス。 ( 8) 単結晶微粒子上に半導体結晶を成長する場合、 低温バッファ層を形成せずに結晶成 長させてなる、 (5) 〜 (6 ) いずれか記載の発光デバイス。 (7) single crystal particles is Al 23, the semiconductor crystal is grown on a single crystal particles is semi present 3-V nitride compound, (5) or (6) light-emitting device according . (8) The light-emitting device according to any one of (5) to (6), wherein a semiconductor crystal is grown on a single crystal fine particle, and the crystal is grown without forming a low-temperature buffer layer.
( 9 ) (i)、 (i i)、 (ii i)及び (iv)からなる群より選ばれる少なくとも 1つを満足する半導 体立子と有機層とを含み、 半導体粒子が有機層中に分散されてなる発光デバィス。  (9) A semiconductor particle that includes at least one semiconductor satisfying at least one selected from the group consisting of (i), (ii), (ii i), and (iv), and an organic layer, wherein the semiconductor particles are dispersed in the organic layer A light emitting device.
(0シングルヘテロ構造を有する、 (0 has a single heterostructure,
(ii) p ni^を有する、  (ii) have p ni ^,
(ii i)ダブルへテ口構造を有する、  (ii i) has a double-head structure,
(iv)量子井戸構造を る。  (iv) It has a quantum well structure.
( 1 0 ) 単結晶微粒上に結晶成長された半導体結晶が有機層中に分散されてなる発光デバ イス。  (10) A light emitting device in which a semiconductor crystal grown on a single crystal grain is dispersed in an organic layer.
本発明の発光デバイスは、 無機半導体を発光材料として用いると共に、 高肝材料を電 送層として用いることで、 高肝材料の劣化を抑制し、 高発光効率で長赫の発光デ バイスを実現できるようにしたものである。 高肝材料をこのように用いることで、 高分 子材料の利点である塗布プロセスの ¾が可能となり、 塗布プロセスにより発光デバイス を低コストで ¾ することができる。 また、 高肝材料と無機半 本とで屈折率の差を大 きくしておき、 無機半 本を高肝材料に埋め込む構成とすることにより、 光取り出し効 率を向上させた有機 ·無機八イブリッド型の発光デバイスを構成することができる。 麵の簡軌説明  The light-emitting device of the present invention uses an inorganic semiconductor as a light-emitting material and uses a high-liver material as a power transmission layer, thereby suppressing deterioration of the high-liver material and realizing a long-lasting light-emitting device with high luminous efficiency. It is what I did. By using the high liver material in this way, the application process, which is an advantage of the high molecular material, can be achieved, and the light emitting device can be obtained at low cost by the application process. In addition, the difference in refractive index between the high liver material and the inorganic half is increased, and the inorganic half is embedded in the high liver material to improve the light extraction efficiency. The light emitting device can be configured. Simple gauge explanation
図 1は、 本発明による発光デバイスの模式的断面図である。 FIG. 1 is a schematic cross-sectional view of a light emitting device according to the present invention.
図 2は、 本発明による他の発光デバイスの模式的断面図である。 FIG. 2 is a schematic cross-sectional view of another light emitting device according to the present invention.
図 3は、 本発明による他の発光デバイスの模式的断面図である。 FIG. 3 is a schematic cross-sectional view of another light-emitting device according to the present invention.
図 4は、 本発明による発光性半導体粒子の製造に使用される気相成長半導体製造装置の概 略を示す。 FIG. 4 shows an outline of a vapor phase growth semiconductor manufacturing apparatus used for manufacturing the luminescent semiconductor particles according to the present invention.
符号の説明 1 基板 Explanation of symbols 1 Board
2 透明電極 (陽極)  2 Transparent electrode (anode)
3 正孔輸送層  3 Hole transport layer
4 発光 14高肝層 4 Luminescence 14 High liver layer
5 電子輸送層  5 Electron transport layer
6 隨 6 隨
7 発光性半導体粒子  7 Luminescent semiconductor particles
1 0、 2 0、 3 0 発光デバイス  1 0, 2 0, 3 0 Light emitting device
1 1 原^給ライン  1 1 Hara ^ Supply line
1 2 反応炉  1 2 Reactor
1 3 基板  1 3 Board
1 4 プ夕 ,  1 4
1 5 回転装置  1 5 Rotating device
1 6 赤外線ランプ  1 6 Infrared lamp
1 7 加熱用電源  1 7 Power supply for heating
1 8 排気ポー卜 発明を ¾6&rるため の形態  1 8 Exhaust port Form for invention ¾6 & r
図面を参照して本発明の実施の形態を説明する。  Embodiments of the present invention will be described with reference to the drawings.
本発明による発光デバイスの一実施形態について述べると、 その構造上の大きな は、 電流注入機能を有する有機半導体材料中に、 電荷注入により発光する機能を備えた無機半 導体粒子を配したことである。 より具体的な実施の形態としては、 少なくとも一方が透明 又は半透明である有機材料から成る一対の電極間 (陽極及び藤間) に、 電荷注入により 発光する無機の発光性半導体粒子を配した構成を挙げることができる。 すなわち、 本発明 による発光デバイスは、 有機物 (低肝及び Z又は高肝) 中に発光性半 本粒子を配す るという基 冓成を有している。 発光性半導体粒子は、 3— 5族、 又は 2— 6族化合物半 導体あるいは 4族半導体を用いて構成することができる。 図 1に示した発光デバイス 1 0は、 基板 1の上に陽極として働く透明電極 2が 層され ており、 透明電極 2の上には正孔輸送層 3が形成されている。 正孔輸送層 3中には、 多数 の発光性半 本粒子 7が分散して設けられている。 正孔輸送層 3に発光性半 本粒子 7を 分散配置する方法はどのような方法であってもよい。 発光性半 体粒子 7は、 後で詳しく 説明されるように、 無機半導体微粒子である。 したがって、 例えば、 無機半 #f本微粒子で ある発光性半導体粒子 7を溶媒に分散させて透明電極 2上に塗布する工程を含んで、 発光 性半導体粒子 7が分散されている正孔輸送層 3を製膜してもよい。 正?し輸送層 3のための 有機材料中に発光性半導体粒子 7を分散配置する場合は、 正孔輸送層 3と透明電極 2との 間に正孔 ¾λ材料を積層する構成としてもよい。 An embodiment of the light-emitting device according to the present invention will be described. The major structural feature is that inorganic semiconductor particles having a function of emitting light by charge injection are arranged in an organic semiconductor material having a function of current injection. . As a more specific embodiment, a configuration in which inorganic light-emitting semiconductor particles that emit light by charge injection are arranged between a pair of electrodes (anode and wisteria) made of an organic material at least one of which is transparent or translucent. Can be mentioned. That is, the light-emitting device according to the present invention has a luminescent semi-particle arranged in an organic substance (low liver and Z or high liver). Has a foundation. The luminescent semiconductor particles can be composed of a 3-5 group, 2-6 group compound semiconductor or a 4 group semiconductor. In the light emitting device 10 shown in FIG. 1, a transparent electrode 2 serving as an anode is layered on a substrate 1, and a hole transport layer 3 is formed on the transparent electrode 2. In the hole transport layer 3, a large number of light-emitting semi-particles 7 are dispersed. Any method may be used to disperse and arrange the luminescent semi-particles 7 in the hole transport layer 3. The luminescent half particles 7 are inorganic semiconductor fine particles, as will be described in detail later. Therefore, for example, the hole transport layer 3 in which the light-emitting semiconductor particles 7 are dispersed is included, including a step of dispersing the light-emitting semiconductor particles 7 that are inorganic semi- # f fine particles in a solvent and applying the particles onto the transparent electrode 2. May be formed. When the luminescent semiconductor particles 7 are dispersed in the organic material for the correct transport layer 3, a hole / λ material may be laminated between the hole transport layer 3 and the transparent electrode 2.
また、 正孔輸送層 3を形成するための有機材料中に発光性半 本粒子 7を分散させた後、 これを,して正孔輸送層 3を形 る方法を握することもできる。  It is also possible to grasp a method of forming the hole transport layer 3 by dispersing the luminescent semi-particles 7 in the organic material for forming the hole transport layer 3 and then dispersing it.
正孔輸送層 3の上には電子輸送層 5が 層されており、 電子輸送層 5の上には陰極 6が 形成されている。 なお、 正孔輸送層 3と電子輸送層 5との間には発光高分子層を設けても よい。 また、 電子輸送層 5と麵 6の間に電子 ¾Λ層を積層してもよいし、 発光性半 本 粒子 7を分散した正孔輸送層 3と電子輸送層 5との間に、 正孔ブロック層を積層してもよ い。  An electron transport layer 5 is formed on the hole transport layer 3, and a cathode 6 is formed on the electron transport layer 5. A light emitting polymer layer may be provided between the hole transport layer 3 and the electron transport layer 5. Further, an electron ¾Λ layer may be laminated between the electron transport layer 5 and 麵 6, or a hole block between the hole transport layer 3 and the electron transport layer 5 in which the light-emitting semi-particles 7 are dispersed. Layers may be stacked.
次に、 発光性半 粒子 7について説明する。 発光性半導体粒子 7は、 粒子の表面 に、 3— 5 ¾g化物系化合物半 棚吉晶を設けたものを用いることができる。 3— 5族 窒化物系化合物半 {機吉晶は、 (i)ヘテロ構造を有する、 (i i) p n接合を有する、 又は Next, the luminescent semi-particles 7 will be described. As the luminescent semiconductor particles 7, particles provided with 3-5 gg compound compound half-tank Yoshiaki on the surface of the particles can be used. 3-5 group nitride compound semi {Mikichi Akira has (i) a heterostructure, (i i) a pn junction, or
(i i i)量子井戸構造を有する。 3— 5娃化物系化合物半導碰結晶は、 (i)〜(i i i)のいず れか 1つ、 又は 2以上満足してもよい。 このような 3— 5族窒化物系化合物半導疆結晶 を製造する方法として、 A 1 N又は G a N微粒子を HV P E (Hydride Vapor Phase Epi taxy ) などの方法で S¾gし、 得られた微粒子に、 MOV P E (Metal Organic Vapor Phase Epi taxy ) 、 MB E (Molcular Beam Epi taxy ) などの方法により成長する方法が挙 げられる。 上記 3— 5 化物系化合物半導 結晶の層構造は、 ί ^の化合物半導体発 光素子において翻されている構造をそのまま用いることができる。 発光性半導体粒子 7 の発光層構造はダブルへテロ構造としてもよい。 発光性半 本粒子 7の別の実施の形態について以下に説明する。 (iii) It has a quantum well structure. The 3-5 silicide compound semiconductor crystal may satisfy any one of (i) to (iii), or two or more. As a method for producing such a Group 3-5 nitride compound semiconductor crystal, A 1 N or G a N fine particles are mixed with HV PE (Hydride Vapor Phase Epitaxy) and the like, and the resulting fine particles can be grown by methods such as MOVPE (Metal Organic Vapor Phase Epitaxy) and MBE (Molecular Beam Epitaxy). As the layer structure of the above 3-5 compound compound semiconductor crystal, the structure reverted in the compound semiconductor light emitting device can be used as it is. The light emitting layer structure of the light emitting semiconductor particles 7 may be a double hetero structure. Another embodiment of the luminescent semi-particle 7 will be described below.
発光性半導体粒子 7の他の実施形態として、 ¾ ^粒子として用意した A 1 2 03粒子の表 面に、 3— 5族窒化物系化合物半導体結晶を形成して成る粒子を挙げることができる。 半 導体結晶には、 ヘテロ構造、 p n接合、 量子井戸層のいずれか一つ、 又はへテロ構造、 p n接合、 量子井戸層の 2つ又は全部が含まれている。 A 1 2 03粒子の上に 3— 5體化物 系化合物半導体結晶を形成するのは一例であり、 これに限定されない。 例えば、 3— 5族 窒化物系化合物半導体結晶に代えて、 砒化物、 ^匕物あるいはこれら 5 素の混晶であ つても同様に製造することが 能である。 Another embodiment of a light emitting semiconductor particles 7 can include a front surface of the A 1 2 0 3 particles prepared as ¾ ^ particles, particles obtained by forming a 3-5 nitride compound semiconductor crystal . A semiconductor crystal includes one or all of a heterostructure, a pn junction, and a quantum well layer, or a heterostructure, a pn junction, and a quantum well layer. The formation of a 3-5 silicide compound semiconductor crystal on the A 1 2 0 3 particles is an example, and the present invention is not limited to this. For example, in place of the Group 3-5 nitride-based compound semiconductor crystal, arsenide, ^ X, or a mixed crystal of these five elements can be manufactured in the same manner.
発光層の層構造は、 例えば «の化合物半難発光素子において翻されているへテロ 構造、 p n接合構造、 量子井戸構造のための従来の層構造をそのまま用いることができる。 ダブルへテロ構造についても同様である。 .  As the layer structure of the light emitting layer, for example, a conventional layer structure for a hetero structure, a pn junction structure, or a quantum well structure which is reversed in another compound semi-light emitting element can be used as it is. The same applies to the double heterostructure. .
■ 謝粒子として用意された A 1 2 03粒子の表面に設けられる 3— 5體化物系化合物半 本結晶の結晶性を良好なものにすることが、 発光特性を良好にするために必要である。 その結晶性が悪いと、 発光効率が悪ぐ 3¾な輝度の発光を得ることができない。 ■ It is necessary to improve the crystallinity of the 3-5 silicide compound semi-crystals provided on the surface of A 1 2 0 3 particles prepared as particles. is there. If the crystallinity is poor, the light emission efficiency is poor, and it is not possible to obtain light emission with a 3/3 brightness.
A 1 23粒子の表面に 3— 5鍵化物系化合物半導体結晶を形成する場合、 HV P E (Hydride Vapor Phase Epi taxy ) 、 MOV P E (Metal Organic Vapor Phase Epi taxy ) 、 MB E (Molcular Beam Epi taxy ) などの方法を用いて良質な結晶を育成することができ る。 上述した本実施の形態において、 A 1 203粒子が六方晶構造を有しており、 3 - 5¾g 化物系化合物半 #f本結晶を結晶成長させるには都合がよい。 A 1 203粒子の表面に低^ Λ ッファ層を予め形成しておき、 該 ί»Λ'ッファ層上に所要の 3— 5族窒化物系化合物半導 体結晶を成長させてもよいが、 低温バッファ層を形成することなしに、 A 1 23粒子の表 面に、 直接 3— 5鍵化物系化合物半導体結晶を形成してもよい。 A 1 2 3 When forming 3-5 key compound semiconductor crystals on the surface of particles, HVPE (Hydride Vapor Phase Epi taxy), MOV PE (Metal Organic Vapor Phase Epi taxy), MB E (Molcular Beam Epi Good quality crystals can be grown using methods such as taxy). In the above-described embodiment, the A 1 2 0 3 particles have a hexagonal crystal structure, which is convenient for crystal growth of the 3-5 ¾ g compound compound semi- # f crystal. A 1 2 0 3 leave the low ^ lambda Ffa layer on the surface of the particles formed in advance, the ί »Λ 'on Ffa layer may be grown required 3-5 nitride compound semiconductors crystals but without forming a low temperature buffer layer, the front surface of the a 1 23 particles may be formed directly 3 5 key product based compound semiconductor crystal.
このように、 A l 23粒子を用いると、 その樹圣がある範囲内に入るよう樹圣を揃える ことが容易なことは勿論、 A 1 203粒子を六方晶構造のものとすることもできるので、 半 導体結晶を極めて結晶性よく A 1 203粒子の表面に形成することができる。 この結果、 得 られた発光性半難粒子 7の発光効率は、 極めて良好なものとなる。 Thus, the use of A l 23 particles, it is easy to align the Ki圣to fall within a certain range the tree St of course, intended to A 1 2 0 3 particles having a hexagonal crystal structure Therefore, the semiconductor crystal can be formed on the surface of the A 1 2 0 3 particles with extremely high crystallinity. As a result, the luminous efficiency of the obtained semi-difficult particles 7 is extremely good.
このように、 半導体結晶には、 ヘテロ構造、 p n接合、 量子井戸構造が含まれているの で、 外部からの電界により電子と正孔とが ¾λされ 半導体結晶中で電子と正孔との再結 合により発光する。  As described above, since the semiconductor crystal includes a heterostructure, a pn junction, and a quantum well structure, electrons and holes are reduced by an external electric field to regenerate the electrons and holes in the semiconductor crystal. Emits light when bonded.
上記実施の形態の説明において、 謝粒子として A 1 203粒子を用いた例を説明し、 A 1 2 03粒子を用いることの優位性についても説明したが、 以下に、 半導体結晶が形成され る基材である基材粒子についてさらに具体的に詳しく説明する。 In the description of the above embodiment describes the example using the A 1 2 0 3 particles as Xie particles, it has been also described advantages of using A 1 2 0 3 particles, below, the semiconductor crystal formation The substrate particles that are the substrates to be produced will be described in more detail.
s 粒子の表面に上述の如き半導体結晶を気相成長法により形成する場合、 例えば予め 基板を用意しておき、 基板上に多数の勘才粒子を配置し、 この状態で各 才粒子の表面に 半 本結晶を形成した後、 半導体結晶が形成されている謝粒子を基板上から分離して発 光性半 本粒子 7を得ることができる。  s When forming a semiconductor crystal as described above on the surface of a particle by vapor phase epitaxy, for example, a substrate is prepared in advance, a large number of ingenious particles are arranged on the substrate, and in this state, the surface of each individual particle is formed. After the formation of the semi-crystal, the light-emitting semi-particles 7 can be obtained by separating the particles on which the semiconductor crystal is formed from the substrate.
したがって、 基板から発光性半 本粒子 7を分離するためには、 基板上〖こは半 本結晶 が形成されない方が ましい。 半導体結晶が形成されな!^基板の一例としては安価な石英 基板を挙げることができる。 S i〇2薄膜をサファイア基板等の上に形成したのものを用 いてもよい。 Therefore, in order to separate the luminescent semi-particles 7 from the substrate, it is preferable that no semi-crystals are formed on the substrate. A semiconductor crystal is not formed! An example of a substrate is an inexpensive quartz substrate. The S I_〇 2 thin film can have use those formed on such as a sapphire substrate.
半導体結晶を形成するために用いる基材粒子はプロセスに耐えられるものでなければな らない。 すなわち、 窒化物系化合物半導体結晶を形成する条件として、 1 0 0 0°C近い高 温と、 NH3などの S¾雰囲気とが必要となる。 また、 窒化物系化合物半導体結晶がその 粒子に選択的に形成される必要がある。 これらの条件を満足する基材粒子の材料としては、 A 1203、 S i、 S i C、 A 1 N、 MgA 124、 L i Ta〇3などがある。 これらのう ち A 1203、 S i、 S i Cが好ましく、 さらに好ましくは A 1203であり、 ひ一アルミナ が特に好ましい。 謝粒子の形状は、 特に限定されないが、 板状であるのが好ましい。 The substrate particles used to form the semiconductor crystals must be able to withstand the process. That is, as a condition for forming a nitride-based compound semiconductor crystal, a high temperature close to 100 ° C. A temperature and an S¾ atmosphere such as NH 3 are required. In addition, nitride-based compound semiconductor crystals need to be selectively formed on the particles. As the material of the base particles satisfy these conditions, and the like A 1 2 0 3, S i , S i C, A 1 N, MgA 1 2 〇 4, L i Ta_〇 3. Of these, A 1 2 0 3 , Si, and S i C are preferable, A 1 2 0 3 is more preferable, and monoalumina is particularly preferable. The shape of the particles is not particularly limited, but is preferably a plate shape.
α?—アルミナの一例としては、 「スミコランダム」 (直径が 200 n mから 18〃 m) の商品名でィ抜化報式会社より されている。 また開発品として直径が 30 nm、 5 0 nm、 70 nm、 100 nmの of—アルミナの微粒子が入手可能である。 これらの微 '粒子は単結晶であり、 樹圣の揃ったものを得ることができる。 Η¾に 3— 5; ^化物系化 合物半 本は単結晶サフアイァ基板上に ッファ層を形成した後ェピタキシャル成長 することで単結晶を得ることができるが、 サファイア (α— Α 1203) との結晶格子のミ スフイツ卜により多数の欠陥が発生する。 これに対し、 直径 30 nm〜 100 nm程度の サイズの 一アルミナを基板として用いることで低温バッファ層なしでも高品質の結晶 を得ることが 能である。 As an example of α? -alumina, “Sumicorundum” (diameter 200 nm to 18 mm) has been sold by the company. Also, of-alumina particles with diameters of 30 nm, 50 nm, 70 nm, and 100 nm are available as developed products. These fine particles are single crystals, and can be obtained in a uniform manner. —¾ 3-5; ^ Compound compound halves can obtain single crystals by epitaxial growth after forming a buffer layer on a single crystal sapphire substrate, but sapphire (α- Α 1 2 0 A large number of defects occur due to the misfit of the crystal lattice with 3 ). On the other hand, high-quality crystals can be obtained without using a low-temperature buffer layer by using a single alumina with a diameter of about 30 nm to 100 nm as the substrate.
本発明に用いる謝粒子は、 半導体結晶の形成しやすさの面から、 特定の結晶構造を有 し、 しかも成長方向を適切に選択することが重要である。 結晶構造は六方晶系であること が好ましい。 なお、 基材粒子は、 所定の基板上に重なることなく均一に分布させることが 望まれる。  It is important that the particles for use in the present invention have a specific crystal structure and that the growth direction is appropriately selected from the viewpoint of easy formation of a semiconductor crystal. The crystal structure is preferably hexagonal. In addition, it is desirable that the base material particles are uniformly distributed without overlapping on a predetermined substrate.
. 謝粒子の表面に半 本結晶を形成する方法としては、 有機金属 m¾成長法 (MOVP E) 、 泉エピタキシー法 (MBE) 、 ハイドライド気層成長法 (HVPE) 、 ノ、レス レーザー積層法 (PLD) などを用いることができる。 しかし、 MOCVD法、 MBE法 が好ましい。  The methods for forming semi-crystals on the surface of the particles include organometallic m¾ growth method (MOVP E), fountain epitaxy method (MBE), hydride gas layer growth method (HVPE), no-less laser lamination method (PLD). ) Etc. can be used. However, MOCVD and MBE are preferred.
次に、 本発明による発光性半導体粒子 7を する方法の一実施形態について説明する。 先ず、 石英基板を用意し、 該石英基板上に 粒子を配置する。 石英基板上への編粒子 の配置は、 例えば微粒子である勘才粒子を超feなどでスラリー状にし、 スピンコ一夕一 などで石英基板上に塗 る方法が挙げられる。 このような方法で、 微粒子である編粒 子は石英基板上に重なり合うことなく配列される。 また、 基材粒子と媒体を含むスラリー 中へ石英基板を浸漬する方法、 又は、 スラリー石英基板に塗布や る方法で行っても よい。 石英基板の代わりにサファイアなどの基板に蒸着により S i〇2薄膜を形成したも のを用いてもよい。 Next, an embodiment of a method for producing the luminescent semiconductor particles 7 according to the present invention will be described. First, a quartz substrate is prepared, and particles are arranged on the quartz substrate. The arrangement of the knitted particles on the quartz substrate can be achieved, for example, by turning the inferior particles, which are fine particles, into a slurry with ultrafe and so on. For example, it can be applied to a quartz substrate. In this way, the fine particles, which are fine particles, are arranged on the quartz substrate without overlapping. Further, it may be carried out by a method of immersing a quartz substrate in a slurry containing base material particles and a medium, or a method of applying to a slurry quartz substrate. By vapor deposition on a substrate such as sapphire in place of the quartz substrate may be used to also form the S I_〇 2 thin film.
S 粒子としては A 1 23粒子カ^?ましい。 A 1 2 03粒子の場合、 どの様な形状であつ ても、 石英基板上にスラリーを塗 ることで、 比較的平坦面で石英基板上に配置するこ とが可能である。 用いる謝本は、 水、 メタノール、 エタノール、 イソプロパノール、 n - ブ夕ノール、 エチレングリコール、 ジメチルァセトアミド、 メチルェチルケトン、 メチル イソプチルケトン等であり、 好ましく tt*である。 ¾ ^後、 A 1 2 03の如き ®f才粒子は石 英基板に肝間力により固定される。 S particles are A 1 2 3 particles. In the case of A 1 2 0 3 particles, any shape can be placed on the quartz substrate on a relatively flat surface by applying slurry onto the quartz substrate. Xenomoto used is water, methanol, ethanol, isopropanol, n-butanol, ethylene glycol, dimethylacetamide, methyl ethyl ketone, methyl isobutyl ketone, etc., preferably tt *. ¾ ^ After that, the f-type particles such as A 1 2 0 3 are fixed to the stone substrate by interhepatic force.
¾ί才粒子表面に半導体結晶を形成するための 3— 5族窒化物系化合物半導体結晶のェピ タキシャル成長には、 例え ^MOV P E装置が用いられる。 3— 5艘化物系化合物半導 体結晶のェピタキシャル成長のためには、 基材粒子としては六方晶構造を有している A 1 2 03粒子が好ましい。その理由は、 既に述べた通りである。 For example, the ^ MOV PE apparatus is used for the epitaxial growth of Group 3-5 nitride compound semiconductor crystals to form semiconductor crystals on the surface of ¾ί aged particles. For the epitaxial growth of 3-5 silicide compound semiconductor crystals, the base particles are preferably A 1 2 0 3 particles having a hexagonal crystal structure. The reason is as described above.
多重量子井戸層を含んだ 3 - 5尉匕合物半 棚吉晶を難する ¾ ^のェピタキシャル 結晶成長の一実施形態に関して説明する。 先ず、 A 1 2 03粒子を石英基板あるいは S i〇 2を蒸着したサファイアなどの基板上に ®f才粒子として配置し、 勘才粒 面上に、 バッ ファ層なしで n型 G a Nを形成した後、 多重量子井戸構造を形成し、 発光性半導体粒子と する。 An embodiment of an epitaxy crystal growth of ¾ ^ that makes 3-5 compound half-tank Yoshiaki containing multiple quantum well layers difficult will be described. First, the A 1 2 0 3 particles arranged as ®f old particles on a substrate such as sapphire with a deposit of a quartz substrate or S I_〇 2, on Kansaitsubu surface, without buffer layer n-type G a N After forming, a multi-quantum well structure is formed to produce luminescent semiconductor particles.
p n接合を含んだ 3 - 5尉匕合物半 棚吉晶を難する &、 上述の如くして多重量 子井戸構造を積層する。 この後、 p型 A l G a N層、 p型 G a N層、 トンネル注入層 (薄 膜 n型層) を積層してもよい。 .  3-5 compound half-tank Yoshiaki with p n junctions is difficult &, and multi-quantum well structure is laminated as described above. Thereafter, a p-type AlGaN layer, a p-type GaN layer, and a tunnel injection layer (thin film n-type layer) may be laminated. .
上述したェピタキシャル結晶成長の為の原料について説明する。 2族原料ガスとしては、 M g、 C a、 S r、 B a及び Z nからなる群より選ばれた 1種以上の元素の有機金属化合 物を混合して用いる。 有機金属基としては、 ジメチル基、 ジェチル基、 ビスシクロペン夕 ジエニ^!レ基、 ビスメチルシクロペンタジェニル基、 ビスェチルシクロペン夕ジェニル基な どが例示される。 The raw material for the above-mentioned epitaxial crystal growth will be described. The Group 2 source gas includes an organometallic compound of one or more elements selected from the group consisting of Mg, Ca, Sr, Ba and Zn. Mix and use. Examples of organometallic groups include dimethyl group, jetyl group, and biscyclopentene dieni ^! Examples thereof include a rhe group, a bismethylcyclopentaenyl group, and a bisethylcyclopentaenyl group.
ガリウム原料ガス、 アルミニウム原料ガス、 インジウム原料ガスとしては、 各金属原子 に炭素数が 1力、ら 3のアルキル基もしく « 素が結合した、 トリアルキル化物もしく 水素化物が、 通常用いられる。 例えば G aの原料としてはトリメチルガリウム ( (C H 3 ) 3 G a ) 、 トリェチルガリウム ( (C2 H5 ) 3 G a) などを用いることができる。 As the gallium source gas, aluminum source gas, and indium source gas, a trialkylated product or a hydride in which an alkyl group having 1 or 3 carbon atoms or a hydrogen atom is bonded to each metal atom is usually used. For example, as a raw material of Ga, trimethylgallium ((CH 3 ) 3 Ga), triethylgallium ((C 2 H 5 ) 3 Ga), or the like can be used.
窒素原料としてはアンモニアを通常使用するが、 ヒドラジン、 メチルヒドラジン、 1, 1ージメチルヒドラジン、 1 , 2—ジメチルヒドラジン、 tーブチリレアミン、 エチレンジ ァミンなどカ举げられる。 これらは稱虫でまたは任意の組み合わせで 合して用いること ができる。 これらの原料のうち、 アンモニアとヒドラジンは、 分子中に炭素原子を含まな いため、 半導体中への炭素の汚染が少なく好適である。  Ammonia is usually used as the nitrogen raw material, but hydrazine, methyl hydrazine, 1,1-dimethylhydrazine, 1,2-dimethylhydrazine, tert-butylylamine, ethylenediamine and the like can be used. These can be used in worms or in any combination. Of these raw materials, ammonia and hydrazine are preferred because they do not contain carbon atoms in their molecules, and therefore there is little carbon contamination in the semiconductor.
成長時雰囲気ガス及 機金属原料のキャリアガスとしては、 窒素、 水素、 アルゴン、 ヘリウムなどの気体を単独あるいは混合して用いることができる。 水素ガス、 ヘリウムガ ス雰囲気中では、 原料の前分解が抑制されるため、 より好ましい。  Gases such as nitrogen, hydrogen, argon, and helium can be used alone or in combination as a growth atmosphere gas and a carrier gas for the metal material. In an atmosphere of hydrogen gas or helium gas, pre-decomposition of the raw material is suppressed, which is more preferable.
MOV P E法により、 本発明による発光 14半導体粒子を製造するのに使用される気相成 長半導体 B装置の一例の概略を図 4に示す。 気相成長半導体製造装置は、 図示していな Ι 原料供給装置から原料ガスが原料供給ライン 1 1を通じて供給される反応炉 1 2を備え ている。 反応炉 1 2内に ¾S板 1 3を加熱するためのサセプ夕, 1 4が設けられている。 サ セプ夕 1 4は多角柱体であり、 その表面に 板 1 3が複数枚取り付けられている。 この 場合、 基板 1 3の各表面の図示しない S i〇2層上には、 それぞれ、 粒子 (図示せ ず) が上述の如くして均一に塗布された状態となっている。 FIG. 4 shows an outline of an example of a vapor phase growth semiconductor B apparatus used for producing luminescent 14 semiconductor particles according to the present invention by the MOV PE method. The vapor phase growth semiconductor manufacturing apparatus includes a reaction furnace 12 in which a raw material gas is supplied from a raw material supply device through a raw material supply line 11 1. A susceptor 14 for heating the S-plate 13 is provided in the reaction furnace 12. The susceptor 14 is a polygonal cylinder with multiple plates 13 attached to its surface. In this case, the S I_〇 2 layer (not shown) of the surface of the substrate 1 3, respectively, in a state of particles (not shown) is uniformly coated with as described above.
サセプ夕 1 4は回転装置 1 5によって回転できる構造となっている。 †Hプ夕 1 4の内 部には、 サセプタ 1 4を加熱するための赤外線ランプ 1 6が備えられている。 赤外線ラン プ 1 6に加熱用電源 1 7から加熱用の電流を流すことにより、 基板 1 3を所望の成長温度 に加熱することができる。 この加熱により、 原料供給ライン 1 1を通じて反応炉 1 2に供 給される原料ガスが基板 1 3上で熱分解し、 基板 1 3上に塗布されている図示しなレゝ勘才 粒子の表面、 好ましくは所定の表面にのみ所望の化合物を細成長させ発光層を形 る。 反応炉 1 2に供給された原料ガスのうち未反応の原料ガスは、 排気ポート 1 8より反応 の外部に排出され 排ガス処理装置へ送られる。 The susceptor 14 can be rotated by a rotating device 15. † Infrared lamp 14 is provided with an infrared lamp 16 for heating susceptor 14. By supplying a heating current from the heating power source 1 7 to the infrared lamp 1 6, the substrate 1 3 is placed at a desired growth temperature. Can be heated. By this heating, the raw material gas supplied to the reactor 1 2 through the raw material supply line 1 1 is thermally decomposed on the substrate 1 3 and applied to the substrate 1 3. Preferably, a desired compound is finely grown only on a predetermined surface to form a light emitting layer. Out of the raw material gas supplied to the reaction furnace 12, unreacted raw material gas is discharged to the outside of the reaction through the exhaust port 18 and sent to the exhaust gas treatment device.
こうして基板 1 3上の S 粒子の表面に成長、 形成させた発光層は、 基板 1 3の表面の S i〇2層上に載置されているため、 弗酸などの酸により基材粒子と共に発光性半導体粒 子として剥離することができる。 剥離によって得られた発光性半割本粒子はそのまま各種 発光素子用として麵することもできる。 さらに、 この 性半 本粒子を基板上から削 り取らずに、 レーザアブレーシヨン、 マグネトロンスパッ夕、 プラズマ C VDなどの手法 で発光素子上へ積層してもよい。 なお、 半導体結晶の層構造は、 例えば従来の化合物半導 体発光素子において発光層として用いられている、 ヘテロ齢構造、 p n齢構造、 量子 井戸構造、 ダブルへテロ接合構造等の従来の層構造をそのまま用いることができる。 Thus grown on the surface of the S particles on the substrate 1 3, the light emitting layer is formed, since it is placed on the S I_〇 2 layer substrates 1 3 on the surface, with the base particle with an acid such as hydrofluoric acid It can be peeled off as a light emitting semiconductor particle. Luminescent halved particles obtained by peeling can be used as they are for various light emitting devices. In addition, without removing the semiconductive particles from the substrate, they may be laminated on the light emitting element by a technique such as laser abrasion, magnetron sputtering, or plasma CVD. The semiconductor crystal layer structure is, for example, a conventional layer structure such as a hetero-age structure, a pn-age structure, a quantum well structure, or a double heterojunction structure that is used as a light-emitting layer in a conventional compound semiconductor light-emitting device. Can be used as they are.
発光デバイス 1 0〖¾¾上のように構成されているので、 一対の電極間、 すなわち、 陽極 である透明電極 2と陰極 6との間に電圧を印加すると、 これにより有機材料によって構成 された正孔輸送層 3及び電子輸送層 5において正孔及び電子の移動が生じ、 これらの電荷 の移動により正孔輸送層 3中に散在している発光性半導体粒子 7が発光する。 発光性半導 体粒子 7よりの発光は透明電極 2を介して外部に取り出すことができる。 ここで、 正孔輸 送層 3の屈折率と発光性半導体粒子 7の屈折率との差を大きくしておくことにより、 発光 性半導体粒子 7からの光が正孔輸 » 3内で散乱し、 これにより透明電極 2から極めて効 率よく光を取り出すことができる。 この結果、 発光デバイス 1 0における光取り出し効率 を大きく改善させることができる。 図 2は、 本発明による、 発光デバイスの他の実施の形態を示す模式的断面図である。 図 2に示した発光デバイス 2 0は、 図 1に示す構成において、 正孔輸送層 3を発光性高 'Λ 4に置き換え、 発光性高 層 4内に発光性半導体粒子 7を分散させたものである。 発光デバイス 2 0は、 陽極として働く透明電極 2を積層した基板 1上に、 発光性半導体 粒子 7が分散している発光性高^^層 4が設けられている。 このような発光性高 層 4 の形成は、 発光性半 本粒子 7を溶媒に分散させ、 発光性半^:粒子 7の分散している溶 媒を透明電極 2上に塗^ ΓΤることにより、 発光性半 本粒子 7を透明電極 2上に先ず、 載 置し、 し力 後発光性高^ Τ層 4を瞧してもよい。 発光性高^ ΐ層 4に発光性半 本粒 子 7を分纖置するようにした発光デバィス 2 0の場合は、 発光性高肝層 4と透明電極 2との間に正孔輸送材料及び Ζ又は正孔 &λ材料を積層する構造としてもよい。 Since the light emitting device 10 is configured as described above, when a voltage is applied between the pair of electrodes, that is, between the transparent electrode 2 and the cathode 6 which are anodes, the positive electrode configured by the organic material is thereby formed. Holes and electrons move in the hole transport layer 3 and the electron transport layer 5, and the luminescent semiconductor particles 7 scattered in the hole transport layer 3 emit light due to the movement of these charges. Light emitted from the light-emitting semiconductor particles 7 can be extracted outside through the transparent electrode 2. Here, by increasing the difference between the refractive index of the hole transport layer 3 and the refractive index of the luminescent semiconductor particle 7, light from the luminescent semiconductor particle 7 is scattered within the hole transport »3. As a result, light can be extracted from the transparent electrode 2 very efficiently. As a result, the light extraction efficiency in the light emitting device 10 can be greatly improved. FIG. 2 is a schematic cross-sectional view showing another embodiment of the light emitting device according to the present invention. The light-emitting device 20 shown in FIG. 2 has the structure shown in FIG. 1 in which the hole transport layer 3 is replaced with a light-emitting high 'Λ 4 and light-emitting semiconductor particles 7 are dispersed in the light-emitting high layer 4. It is. In the light emitting device 20, a light emitting high layer 4 in which light emitting semiconductor particles 7 are dispersed is provided on a substrate 1 on which a transparent electrode 2 serving as an anode is laminated. The formation of such a light-emitting high layer 4 is achieved by dispersing the light-emitting semi-particles 7 in a solvent and coating the transparent electrode 2 with a solvent in which the light-emitting semi-particles 7: particles 7 are dispersed. The luminescent semi-particles 7 may be first placed on the transparent electrode 2 and then the luminescent high-density layer 4 may be formed after pressing. In the case of a light emitting device 20 in which a light emitting semi-particle 7 is placed in a light emitting high layer 4, a hole transport material and a transparent material 2 are disposed between the light emitting high liver layer 4 and the transparent electrode 2. A structure in which a hole or a hole & λ material is laminated may be used.
また、 発光性半 本粒子 7を発光高分子材料中に分散させて発光性高 子層 4を形成す る前に、 透明電極 2上に正孔輸^] S 3を! ^しておいてもよく、 さらに正孔輸送層 3と透 明電極 2との間に正孔注入層を積層しておいてもよい。  In addition, before forming the light-emitting polymer layer 4 by dispersing the light-emitting semiconductor particles 7 in the light-emitting polymer material, the hole transport ^] S 3 is formed on the transparent electrode 2! Further, a hole injection layer may be laminated between the hole transport layer 3 and the transparent electrode 2.
また、 発光性半^本粒子 7が発光 14高 子材料中に分散されている ¾¾性高 子層 4を 製瘼した後、 陰極 6の形成前に電子輸送層を積層してもよい。 また、 電子輸送層 5と陰極 6との間に電子注入層を積層する構造としてもよいし、 発光性半 本粒子 7を分散した発 光性高 子層 4と電子輸送層 5との間に正孔ブロック層を積層してもよい。  Alternatively, the electron transport layer may be laminated before forming the cathode 6 after forming the transparent polymer layer 4 in which the light emitting semi-particles 7 are dispersed in the light emitting 14 polymer material. Further, a structure in which an electron injection layer is stacked between the electron transport layer 5 and the cathode 6 may be used, or between the light emitting polymer layer 4 in which the light emitting semi-particles 7 are dispersed and the electron transport layer 5. A hole blocking layer may be laminated.
図 2に示した発光デバィス.2 0によると、 一対の電極間に電圧を印加することにより、 発光デバイス 1 0の場合と同様にして発«半 本粒子 7が発光するのは勿論のこと、 発 «高分子層 4も発光するので、 発光デバイス 1 0に比べて、 より高い輝度の発光デバイ スとなる。  According to the light emitting device 20 shown in FIG. 2, when the voltage is applied between the pair of electrodes, the light emitting semiconductor particles 7 emit light in the same manner as in the case of the light emitting device 10. Since the light emitting polymer layer 4 also emits light, the light emitting device has a higher luminance than the light emitting device 10.
図 3は、 本発明による発光デバイスのさらに別の実施の形態を示 的断面図である。 図 3に示した発光デバイス 3 0は、 発光性半導体粒子 7を電子輸送層 5中に分散させた点 で、 図 1に示した発光デバイス 1 0と異なっている。  FIG. 3 is a cross-sectional view showing still another embodiment of the light-emitting device according to the present invention. The light emitting device 30 shown in FIG. 3 is different from the light emitting device 10 shown in FIG. 1 in that the light emitting semiconductor particles 7 are dispersed in the electron transport layer 5.
発光デバイス 3 0は、 陽極として働く透明電極 2を積層した基板 1上に、 正孔輸送層 3 をさらに積層し、 電子輸送性材料中に発光性半導体粒子 7を分散したものを正孔輸送層 3 上に積層することによって電子輸送層 5を形! ¾Tることができる。 このとき発光性半導体 粒子 7を溶媒に分散させて塗布し、 これにより発光性半 本粒子 7を正孔輸 M 3上に載 置してから電子輸送層 5を してもよい。 電子輸送性材料中に発光性半 本粒子 7を分 散し、 これを用いて電子輸送層 5を積層する は、 電子輸送層 5と陽極 6との間に正孔 輸送材料及び Z又は正孔 ¾λ材料を積層する構造としてもよい。 The light-emitting device 30 is formed by further laminating a hole transport layer 3 on a substrate 1 on which a transparent electrode 2 serving as an anode is laminated, and dispersing a light-emitting semiconductor particle 7 in an electron transport material. Three The electron transport layer 5 can be formed by laminating on it. At this time, the luminescent semiconductor particles 7 may be dispersed in a solvent and applied, and thus the luminescent semi-particles 7 may be placed on the hole transport M 3 and then the electron transport layer 5 may be formed. The light-emitting semi-particles 7 are dispersed in the electron transporting material, and the electron transporting layer 5 is laminated using this. The hole transporting material and Z or hole are interposed between the electron transporting layer 5 and the anode 6. ¾λ material may be laminated.
また、 発«半導体粒子 7を分散した電子輸送層 5を製膜した後、 陰極 6の形成前に電 子 ¾λ層を積層してもよい。 また、 発光性半難粒子 7を分散した電子輸 5と透明電 極 2との間に発光性高分子層を積層してもよぐ 発光性高分子の層と透明電極 2との間に さらに正孔輸 を設けてもよく、 正孔輸 ¾Sと透明電極 2との間に正孔注入層を積層し てもよい。  Further, after the electron transport layer 5 in which the semiconductor particles 7 are dispersed is formed, the electron / λ layer may be laminated before the cathode 6 is formed. Alternatively, a light-emitting polymer layer may be laminated between the electron transport 5 in which the light-emitting semi-hard particles 7 are dispersed and the transparent electrode 2, and further between the light-emitting polymer layer and the transparent electrode 2. Hole transport may be provided, and a hole injection layer may be laminated between the hole transport S and the transparent electrode 2.
ここで、 薩 6と発光層の間に一層のみ設けた齢は、 これが電子注入層であり、 隨 Here, the age at which only one layer is provided between 薩 6 and the light emitting layer is an electron injection layer, and 隨
6と発光層の間に二層以上設けた^は «に接している層を電子 ax層とし、 そ の層は電子輸送層と称する。 電子 ¾λ層は、 からの電子 ¾Λ 率を改善する機能を有 する層であり、 電子輸送層は、 電子注入層又は陰極により近い電子輸送層からの電子注入 を改善す 機能を有する層である。 ' When two or more layers are provided between 6 and the light emitting layer, the layer in contact with the layer is referred to as an electron ax layer, and that layer is referred to as an electron transport layer. The electron ¾λ layer is a layer having a function of improving the electron ¾Λ ratio from the electron transport layer, and the electron transport layer is a layer having a function of improving electron injection from an electron injection layer or an electron transport layer closer to the cathode. '
また、 電子 ax層、 若しくは電子輸送層が正孔輸送層または発光層から電子輸 itsへの 正孔の輸送を堰き止める機能を有する場合には、 これらの層を正孔ブロック層と称するこ とがある。  When the electron ax layer or the electron transport layer has a function of blocking hole transport from the hole transport layer or the light emitting layer to the electron transport layer, these layers are referred to as a hole blocking layer. There is.
陽極として働く透明電極 2と発光層との間に設けるものとしては、 正孔注入層 ·正孔輸 送層、 電子ブロック層等が挙げられる。 陽極 2と発光層の間に一層のみ設けた場合は、 こ れが正孔 ¾λ層であり、 陽極と発光層の間に二層以上設けた場合は陽極に接している層を 正孔注入層とし、 そ の層は正孔輸顯と称する。 正孔注入層は、 麵からの正孔注 入効率を改善する機能を有する層であり、 正孔輸送層とは、 正孔 層又は陽極により近 ぃ正孔輸送層からの正孔注入を改善する機能を有する層である。 また、 正孔注入層、 又は 正孔輸 MSが電子輸送層または発光層から正孔輸送層への電子の輸送を堰き止める機能を 有する場合には、 これらの層を電子プロック層と称することがある。 Examples of what is provided between the transparent electrode 2 serving as the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer. When only one layer is provided between the anode 2 and the light emitting layer, this is a hole ¾λ layer, and when two or more layers are provided between the anode and the light emitting layer, the layer in contact with the anode is the hole injection layer. The layer is called hole transport. The hole injection layer is a layer that has the function of improving the efficiency of hole injection from the ridge, and the hole transport layer improves the hole injection from the hole transport layer closer to the hole layer or the anode. It is a layer having the function of A hole injection layer, or When the hole transport MS has a function of blocking electron transport from the electron transport layer or the light emitting layer to the hole transport layer, these layers may be referred to as an electron block layer.
^±の利用可難 ^ ± available
本発明によれば、 電流 ¾λ機能は有機半綱才料に、 発光機能は無機半 才料にそれ ぞ'れ分担させるため、 有機材料が励起状態になった時に生じる分子量の低下や酸化などの 副反応の発生を抑え、 有機材料自身の自発光による輝度低下を抑制することができる。 ま た、 耐光性の高い無機半 ^料を発光材料として細するため、 での細も可能で ある。 さらに、 屈折率の大きな無機粒子と屈折率の小さな有機材料の組合せにより光取り 出し効率が向上され 高輝度の発光デバィスを提供することができる。  According to the present invention, the current ¾λ function is assigned to the organic semi-general material, and the light-emitting function is assigned to the inorganic semi-material, so that the reduction in molecular weight or oxidation that occurs when the organic material is in the excited state. It is possible to suppress the occurrence of side reactions and to suppress the decrease in luminance due to the self-luminescence of the organic material itself. In addition, since the inorganic material with high light resistance is thinned as the light emitting material, it can be thinned with. Furthermore, the combination of inorganic particles having a high refractive index and organic materials having a low refractive index can improve the light extraction efficiency and provide a high-luminance light-emitting device.

Claims

請求の範囲 The scope of the claims
1 . ヘテロ構造を有する半導体粒子が有機層中に分散されてなり、 電荷注入により発光 する発光デバイス。 1. A light-emitting device in which semiconductor particles having a heterostructure are dispersed in an organic layer and emits light by charge injection.
2 . p n接合を有する半 本粒子が有機層中に分散されてなり、 電荷注入により発光す る発光デバイス。 2. A light-emitting device in which semi-particles with a pn junction are dispersed in an organic layer and emit light by charge injection.
3. ダカレヘテロ構造を有する半 本粒子が有機層中に分散されてなり、 電荷 によ り発光する発光デバイス。  3. A light-emitting device in which semi-particles with a dacare heterostructure are dispersed in an organic layer and emits light when charged.
4. 量子井戸構造を有する半導体粒子が有機層中に分散されてなり、 電荷注入により発 光する発光デバイス。  4. A light-emitting device that emits light by charge injection, in which semiconductor particles with a quantum well structure are dispersed in an organic layer.
5 . 単結晶微粒子上に結晶成長された半 本結晶が有機層中に分散されてなり、 該半導 体結晶が電 入により発光する発光デバイス。  5. A light emitting device in which a semi-crystal grown on a single crystal fine particle is dispersed in an organic layer, and the semiconductor crystal emits light when it is charged.
6. 半導体粒子が単結晶微粒子上に結晶成長されてなる請求項 1〜 5いずれか記載の発 光デバイス。  6. The light emitting device according to any one of claims 1 to 5, wherein the semiconductor particles are grown on single crystal fine particles.
7 . 単結晶微粒子が A 1 2 03であり、 単結晶微粒子上に結晶成長される半 本結晶が 3 ― 5族窒化物系化合物半 本である請求項 5又は 6記載の発光デバィス。 . 7 single crystal particles is A 1 2 0 3, half this crystal is grown on a single crystal particles 3 - Group 5 emission Debaisu of claim 5 or 6, wherein the nitride-based compound is a semi-present.
8 . 単結晶微粒子上に半導体結晶を成長する場合、 低 ッファ層を形成せずに結晶成 長させてなる請求項 5〜 7いずれか記載の発光デバィス。  8. The light emitting device according to any one of claims 5 to 7, wherein when a semiconductor crystal is grown on a single crystal fine particle, the crystal is grown without forming a low buffer layer.
9 . (i)、 (i i)、 (i i i)及び (iv)からなる群より選ばれる少なくとも 1つを満足する半導体 粒子と有機層とを含み、 半 本粒子が有機層中に分散されてなる発光デバイス。 9. Semiconductor particles satisfying at least one selected from the group consisting of (i), (ii), (iii) and (iv) and an organic layer, and the semi-particles are dispersed in the organic layer Light emitting device.
(i)シングルへテロ構造を有する、 (i) having a single heterostructure,
(i i) p n接合を有する、  (i i) has a p n junction,
(i i i)ダブルへテロ構造を有する、  (i i i) has a double heterostructure,
(iv)量子井戸構造を有する。 (iv) It has a quantum well structure.
0. 単結晶微粒上に結晶成長された半導体結晶が有機層中に分散されてなる発光デバイ ス。 ' 0. A light emitting device in which semiconductor crystals grown on single crystal grains are dispersed in an organic layer. '
PCT/JP2008/054837 2007-03-14 2008-03-11 Light emitting device WO2008111680A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007065785A JP5020667B2 (en) 2007-03-14 2007-03-14 Light emitting device
JP2007-065785 2007-03-14

Publications (1)

Publication Number Publication Date
WO2008111680A1 true WO2008111680A1 (en) 2008-09-18

Family

ID=39759608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/054837 WO2008111680A1 (en) 2007-03-14 2008-03-11 Light emitting device

Country Status (3)

Country Link
JP (1) JP5020667B2 (en)
TW (1) TW200848492A (en)
WO (1) WO2008111680A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101887946B (en) * 2009-05-14 2014-09-17 群创光电股份有限公司 Manufacturing method of organic electroluminescent device and its image display system
KR101407209B1 (en) * 2010-10-07 2014-06-16 포항공과대학교 산학협력단 Method for formation of micro- and nano-scale patterns and method for producing micro- and nano-scale channel transistor, and micro- and nano-scale channel light emitting transistor using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366282A (en) * 1986-09-05 1988-03-24 Res Dev Corp Of Japan Fluorescent substance of ultrafine particle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004202361A (en) * 2002-12-25 2004-07-22 Sony Corp Growth method of fine particle, growth apparatus of fine particle, and fine particle
JP2006117735A (en) * 2004-10-19 2006-05-11 Toyota Motor Corp Powder light-emitting element and light-emitting apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6366282A (en) * 1986-09-05 1988-03-24 Res Dev Corp Of Japan Fluorescent substance of ultrafine particle

Also Published As

Publication number Publication date
JP5020667B2 (en) 2012-09-05
TW200848492A (en) 2008-12-16
JP2008226738A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
TWI413279B (en) Group iii nitride semiconductor light emitting device, process for producing the same, and lamp
CN101346827B (en) III nitride white light LED
TWI451591B (en) Nitride-based light emitting device
TWI316769B (en) Semiconductor element and its fabrication method
US10128410B2 (en) Multi-color light emitting devices with compositionally graded cladding group III-nitride layers grown on substrates
US8106419B2 (en) Group-III nitride compound semiconductor light-emitting device, method of manufacturing group-III nitride compound semiconductor light-emitting device, and lamp
WO2009154129A1 (en) Iii-group nitride semiconductor light emitting element, method for manufacturing the element, and lamp
CN109119515B (en) Light emitting diode epitaxial wafer and manufacturing method thereof
EP2105974B1 (en) Method for manufacturing a nitride semiconductor light emitting diode
WO2009119498A1 (en) Nitride semiconductor light emitting element
CN109411579A (en) Semiconductor devices and preparation method thereof with graphene-structured
KR20150040660A (en) Method for growing nitride semiconductor layer and Nitride semiconductor formed therefrom
CN105914270A (en) Manufacturing method of silicon-based gallium nitride LED epitaxial structure
CN109638117B (en) AlN template, epitaxial wafer structure and manufacturing method
KR101713426B1 (en) Light emitting diode and method for fabricating thereof
CN112687773B (en) Epitaxial wafer of ultraviolet light-emitting diode and preparation method thereof
WO2008111680A1 (en) Light emitting device
TW200418199A (en) White light LED
US8729670B2 (en) Semiconductor substrate and method for manufacturing the same
JP2006128653A (en) Group iii-v compound semiconductor, its manufacturing method and its use
CN111564538A (en) Ultraviolet light emitting diode epitaxial structure and preparation method thereof
Jeon et al. Comparison of strain in GaN-based blue light-emitting diode grown on silicon (111) and sapphire substrates
CN220456444U (en) Semiconductor structure
US20120160157A1 (en) Method of manufacturing light emitting diode
JP2004200723A (en) Method for improving crystallinity of iii-v group compound semiconductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08722233

Country of ref document: EP

Kind code of ref document: A1