WO2008108009A1 - n-TYPE CARBON SEMICONDUCTOR FILM AND SEMICONDUCTOR DEVICE UTILIZING THE SAME - Google Patents

n-TYPE CARBON SEMICONDUCTOR FILM AND SEMICONDUCTOR DEVICE UTILIZING THE SAME Download PDF

Info

Publication number
WO2008108009A1
WO2008108009A1 PCT/JP2007/059821 JP2007059821W WO2008108009A1 WO 2008108009 A1 WO2008108009 A1 WO 2008108009A1 JP 2007059821 W JP2007059821 W JP 2007059821W WO 2008108009 A1 WO2008108009 A1 WO 2008108009A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor film
carbon
type carbon
type
substrate
Prior art date
Application number
PCT/JP2007/059821
Other languages
French (fr)
Japanese (ja)
Inventor
Michikazu Hara
Original Assignee
Tokyo Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007056652A external-priority patent/JP2007273970A/en
Application filed by Tokyo Institute Of Technology filed Critical Tokyo Institute Of Technology
Publication of WO2008108009A1 publication Critical patent/WO2008108009A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic System, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an n-type vigorous semiconductor film, a semiconductor element using the same, and a solar cell.
  • Inorganic semiconductor materials are widely used as materials for semiconductor elements.
  • inorganic semiconductors undergo high-temperature processing at 300 ° C or higher during manufacturing and device manufacturing processes under vacuum such as vapor deposition, sputtering, and CVD, so large-area devices can easily be manufactured at low cost. Difficult to manufacture.
  • organic semiconductor materials instead of inorganic semiconductor materials.
  • Organic semiconductors can be manufactured in an easy manufacturing process at low temperatures, and can be easily increased in area.
  • n-type semiconductors which are the carriers responsible for charge
  • p-type semiconductors which are holes.
  • organic p-type semiconductors those having a Penyusen structure, polythiophene structure, and vorphyrin structure are known
  • organic n-type semiconductors fullerenes and fullerene derivatives are known.
  • these materials have special structures, so the raw materials are limited, and the synthesis route is a complicated and expensive material.
  • the present invention provides a semiconductor device and a solar cell that can be easily produced at low cost and easily by preparing an n-type carbon semiconductor or a p-type carbon semiconductor, and that can be used for high performance and a large area.
  • the present invention provides the following inventions in order to solve the above problems.
  • An organic compound containing at least one of nitrogen and sulfur is produced by contacting a substrate in a liquid phase state or a gas phase state under normal pressure, followed by heat treatment.
  • n-type carbon semiconductor film according to (4) which does not substantially contain a nitrile group.
  • (6) The n-type carbon semiconductor film according to any one of the above (3) to (5), wherein the temperature of the heat treatment is 20 ° C to 900 ° C;
  • a solar cell comprising the semiconductor element according to any one of (10) to (12) above.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor device using the n-type carbon semiconductor film obtained in Example 1.
  • the n-type carbon semiconductor film in the present invention is substantially composed of an assembly of six-membered carbon rings, and in the spectrum by Raman spectroscopy, the D band in the vicinity of 1300 cm- 1 (usually from 1200 to 1) 4 0 0 cm- broad band at 1) and 1 6 0 0 cm- 1 near the G band (usually 1 4 5 0 ⁇ 1 7 0 0 cm- broad band at 1) the integrated intensity ratio I (D) / I (G) is 0.3 to 3.0, preferably 0.5 to 2.5.
  • the D band of Raman spectrum is the vibration of Alg breat hing mode in a carbon six-membered ring. This band is forbidden in the graph item, and when the structural disorder increases, the selectivity for this stretching mode is relaxed and peaks are observed. This peak intensity is known to be strongly influenced by the presence of carbon 6-membered aromatic rings (6-membered sp 2 carbocycles).
  • the G band of the Raman spectrum is the E2g mode vibration of the carbon six-membered ring, and is derived from the stretching motion in which the bonds between sp 2 atoms are planar. This is due to vibrations that occur specifically in carbon atoms in the sp 2 state.
  • the Raman spectrum consisting of the sum of the D band and G band is divided into two peaks with Gaussian or Gaussian-Lorentzian, and the integrated intensities I (D) These integrated intensity ratios I (D) / I (G) were calculated as I (G).
  • the integral intensity ratio I (D) / I (G) is less than 0.3, it will not function as a semiconductor because it becomes a semimetal.
  • the hexagonal network structure in which the six-membered carbon atoms forming the benzene ring are connected in a plane is called graph envy, and the structure in which this sheet is stacked in layers is a dullite crystal.
  • delocalized ⁇ -electrons can move through a conjugated system formed along a carbon chain with a hexagonal network structure, so that high electrical conductivity similar to that of metal is shown. is there.
  • the integral intensity ratio I (D) / I (G) exceeds 3.0, the number of assembled carbon six-membered rings is small and insulation is exhibited, and electrical conductivity cannot be obtained. If the integral intensity ratio I (D) / I (G) ratio is less than 0.3 or more than 3.0, at least one of the peak splits may be ambiguous and less than 0.3. It is an insulator, and even if it exceeds 3.0, it may be a semimetal (conductor).
  • the ⁇ -type carbon semiconductor film of the present invention preferably has a graph sheet having a size of about 1 to 5 nm.
  • the elemental ratio (N and / or S) / C of nitrogen and / or nitrogen and carbon by X-ray photoelectron spectroscopy is 0.001 to 0.4. 0, preferably 0.05 to 0.20. If this elemental ratio (N and / or S) / C is less than 0.01, no n-type is shown. On the other hand, if it exceeds 0.40, electrical conductivity is extremely low. Drops to the edge.
  • the n-type carbon semiconductor film in the present invention preferably has 0. 02 diffraction lines in the powder X-ray pattern. This diffraction line indicates the existence of a structure in which multiple layers of dalaphen sheets, which were suggested to exist in the Raman spectroscopic spectrum, were stacked.
  • the n-type carbon semiconductor according to the present invention has a structure in which graph sheets are stacked.
  • the n-type carbon semiconductor of the present invention mainly comprises a carbon six-membered ring, but the elemental ratio of nitrogen and / or nitrogen to carbon (N and / or S) / C is preferably from 0.001 to 0.40, preferably Contains nitrogen and sulfur or sulfur corresponding to 0.05 to 0.20.
  • the n-type carbon semiconductor film is mainly composed of a six-membered carbon ring because elements other than carbon and nitrogen or sulfur are not substantially detected by Raman spectroscopic analysis or X-ray photoelectron spectroscopic measurement. Can be confirmed by
  • the n-type force one-bon semiconductor of the present invention is characterized by the Raman spectroscopic spectrum, the X-ray photoelectron spectroscopic spectrum, the powder X-ray, and the infrared spectroscopic spectrum. The structure is shown.
  • an organic compound containing nitrogen and sulfur which is a precursor of the n-type semiconductor film, is brought into contact with the substrate in a liquid phase state or in a gas phase state under normal pressure, It can be manufactured by heat treatment.
  • organic compound containing nitrogen and sulfur which is the precursor of the n-type semiconductor of the present invention, hydrocarbons containing nitrogen and sulfur are preferable.
  • Hydrocarbons containing nitrogen are not particularly limited, but aliphatic amines, aromatic amines, nitriles, aromatic heterocycles, amides, imides, imines, urethanes, Isocyanides, amino acids 7 059821
  • Nitro compounds nitrogen-containing polymer compounds, and the like.
  • the structure of the aliphatic amine is not particularly limited, but an aliphatic amine having 1 to 60 carbon atoms is preferably used.
  • Specific examples include alkylamines such as methylamine, ethylamine, jetylamine, triethylamine, propylamine, isopropylamine, diisopropylamine, ptylamine, isoptilamine, pentylamine, hexylamine, 1,6-diaminohexane, cyclohexylamine and the like.
  • alkylamines such as methylamine, ethylamine, jetylamine, triethylamine, propylamine, isopropylamine, diisopropylamine, ptylamine, isoptilamine, pentylamine, hexylamine, 1,6-diaminohexane, cyclohexylamine and the like.
  • the substituents of amine contain alkyl groups, functional groups other than alkyl groups, and elements other than carbon and hydrogen, such as oxygen, nitrogen, and sulfur, in the substituents, such as alkanolamines. It does not matter. Aliphatic amines can be primary, secondary or tertiary amines.
  • aromatic amines having 1 to 60 carbon atoms are preferably used. Specific examples include aniline and diphenylamine.
  • the substitution group of the alkyl group may have an alkyl group, a functional group other than the alkyl group, or an element other than carbon or hydrogen such as oxygen, nitrogen, or sulfur.
  • Aromatic amines can be primary, secondary or tertiary amines.
  • nitriles having 1 to 30 carbon atoms such as acetonitrile, benzonitrile, hexanenitrile and the like are preferably used.
  • polyacrylonitrile is also preferably used.
  • aromatic heterocycles there is no limitation on the valence and the structure is not particularly limited, but an aromatic heterocycle having 4 to 30 carbon atoms is preferably used. It is. Specific examples include pyridine, pyrimidine, quinoline, isoquinoline, pyrrole, piperidine, pyrimidine, imidazole, and purine. These aromatic rings may have a substituent.
  • the substituent is not particularly limited, and examples thereof include an alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group.
  • nitrogen-containing hydrocarbons aliphatic amines, aromatic amines, polyacrylonitrile, polyethyleneimine, and aromatic heterocycles are more preferably used.
  • Hydrocarbons containing sulfur are not particularly limited, but thiols such as methane thiol and ethane thiol; sulfides such as dimethyl sulfide and jetyl sulfide; sulfones; chepine, thiophene, thianthrene, etc. Sulfur-containing heterocycles; Sulfur-containing aliphatic cyclic compounds such as tetrahydrothiophene; Sulfur-containing polymer compounds such as polythiophene;
  • nitrogen and sulfur may be contained in the same molecule.
  • These precursors may be used alone or in any combination of two or more kinds and in a ratio.
  • the precursor As a method of bringing the precursor into contact with the substrate in a liquid phase state, the precursor is substantially as it is, or from the state of a solution or dispersion, a coating method, a casting method, a blade coating method, a wire bar method, a spin coating method.
  • Coating methods such as a method, a dip coating method and a spray coating method; publicly known methods can be used. These methods are generally carried out under normal pressure.
  • the precursor solvent is not particularly limited, and a common organic solvent or water can be used as long as it can dissolve or disperse the precursor.
  • organic solvents include aliphatic hydrocarbons such as hexane, heptane, and octane; aromatic hydrocarbons such as toluene, xylene, benzene, and chlorobenzene; alcohols such as methanol, ethanol, propanol, and butanol; Ketones such as acetone, methyl ethyl ketone, cyclobennone, cyclohexanone, etc .; Ethers such as jetyl ether, dioxane, tetrahydrofuran; Nitrogen-containing aromatic hydrocarbons such as pyridine and quinoline; Halogenated hydrocarbons such as chloroform, methylene chloride, dichloroethane, trichloroethane, and trichloroethylene; N, N-dimethylformamide,
  • One of these organic solvents may be used alone, or two or more thereof may be used in any combination and ratio.
  • a general method such as stirring is used.
  • dissolution may be performed while heating.
  • a surfactant may coexist.
  • the surfactant include a cationic system, an anionic system, and a nonionic system.
  • the concentration of the precursor in the solution is not particularly limited, and can be used in any ratio depending on the type of substrate and the method of contacting the substrate.
  • the solvent or the dispersion medium may be removed as necessary.
  • the removal of the solvent or dispersant can be performed by a general method such as heating under normal pressure or reduced pressure, or removing the solvent or dispersant accompanied by an air stream. 2007/059821
  • a method of bringing the precursor into contact with the substrate in a gas phase there is a method of bringing the precursor into contact with the substrate in the state of a gas or a mist containing the precursor.
  • the method of incorporating the precursor into the gas is not particularly limited, and examples thereof include a method of bringing the gas into contact with the precursor by bubbling or the like.
  • the normal pressure generally means atmospheric pressure, and means a state where the pressure is not forcibly increased or decreased.
  • the gas containing the precursor is preferably an inert gas.
  • the inert gas include nitrogen, argon, helium, carbon dioxide, and carbon monoxide.
  • the inert gas may be used alone or in a mixture of two or more.
  • the oxygen concentration in the inert gas is desirably 3% by volume or less, preferably 1% by volume or less, and more preferably 0.5% by volume or less.
  • the precursor in contact with the substrate can be converted into an n-type carbon semiconductor film by heat treatment and immobilized on the substrate.
  • the temperature of the heat treatment is 2100 ° C to 900 ° C, preferably 3200 ° C to 800 ° C. If the temperature becomes too high, the integral intensity ratio I (D) / I (G) ratio of the Raman spectroscopic spectrum decreases. If the temperature is too low, no 0 2 diffraction lines are observed in the powder X-ray pattern, nitrile groups are detected, and the I-band and D-pand of the Raman spectroscopic spectrum tend not to be observed.
  • nitrile groups are generally generated during the heat treatment process. To do.
  • the film is substantially free of nitrile groups. This Therefore, it is important to prevent the nitrile group from being contained in the product by controlling the heat treatment conditions according to the structure of the raw material.
  • the fact that nitrile groups are not substantially contained in the film is, for example, an absorption band of nitrile groups in infrared spectroscopic measurement.
  • the heat treatment is preferably performed in an inert gas atmosphere.
  • the inert gas include nitrogen, argon, helium, carbon dioxide, carbon monoxide and the like.
  • the inert gas may be used alone or in a mixture of two or more.
  • the oxygen concentration in the inert gas is desirably 3% by volume or less, preferably 1% by volume or less, and more preferably 0.5% by volume or less.
  • an inert gas atmosphere containing molecular oxygen such as air may be used.
  • the inert gas include nitrogen, argon, helium, carbon dioxide, and carbon monoxide.
  • the concentration of molecular oxygen is 0.5% by volume or more, preferably 1% by volume or more, and more preferably 3% by volume or more.
  • heat treatment may be performed while the gas containing the precursor is kept in contact with the substrate.
  • the heat treatment time depends on the film thickness of the n-type carbon semiconductor film, the type of organic compound, and the temperature, it is usually about 0.1 seconds to 100 hours.
  • the film thickness can be selected according to the purpose, but is usually 1 to 100 nm, and preferably 5 to 500 nm.
  • the substrate can be appropriately selected according to the purpose.
  • Semiconductor substrates such as copper substrates, metal substrates such as stainless steel and nickel, insulating substrates such as glass, alumina, gallium nitride, indium oxide, and zinc oxide, and ceramic substrates can be used.
  • Another compound or the like may be coated on these substrates, and the n-type force-bon semiconductor film of the present invention may be formed thereon. It is desirable to treat the substrate with hydrofluoric acid before use.
  • n-type carbon semiconductor film of the present invention it is not necessary to add a commonly used n-type dopant, but it is not excluded to add it as appropriate.
  • the electrical conductivity of the n-type carbon semiconductor of the present invention is usually 100 S / cm or more.
  • the P-type carbon semiconductor in the present invention is produced by contacting a hydrocarbon, which is a precursor of a p-type semiconductor film, with a substrate in a liquid phase state or a gas phase state under normal pressure, followed by heat treatment.
  • a P-type carbon semiconductor film mainly composed of an aggregate of carbon six-membered rings is used.
  • the D band near 1 30 0 c nr 1 normally a broad band in 1 2 0 0 to 1 4 0 0 cm- 1
  • the integrated intensity ratio I (D) / I (G) of the G band near 0 cm— 1 is 0.3 to 3.0, preferably A p-type force single-bon semiconductor film having a thickness of 0.5 to 2.5 can be used.
  • the integrated intensity ratio I (D) II (G) is less than 0.3, it will be a semi-metal and will not function as a semiconductor, while the integrated intensity ratio I (D) / I (G) will be 3.0. If exceeded, the number of aggregated carbon six-membered rings is small and insulation is exhibited, and electrical conductivity cannot be obtained. Further, the P-type carbon semiconductor film in the present invention preferably has 0. 02 diffraction lines in the powder X-ray pattern. PT / JP2007 / 059821
  • Precursor hydrocarbons are not particularly limited, but aliphatic chain hydrocarbons such as methane, ethane, propane, butane, butene, pentane, hexane, and octane, cyclopentane, cyclohexane, cyclooctane, etc.
  • Non-heterocyclic monocyclic or polycyclic aromatic hydrocarbons such as aliphatic cyclic hydrocarbons, benzene, toluene, xylene, ethylbenzene, styrene, naphthenolene, anthracene, naphtha, gasolin, light oil, heavy oil, petroleum Can be widely used, such as tar or pitch based on coal or coal. These precursors may be used alone or in any combination and ratio of two or more.
  • the precursor As a method of bringing the precursor into contact with the substrate in a liquid phase state, the precursor is substantially as it is, or from the state of a solution or dispersion, a coating method, a casting method, a blade coating method, a wire bar method, a spin coating method. Coating methods such as a method, a dip coating method, and a spray coating method; publicly known methods can be used.
  • the precursor solvent is not particularly limited, and a common organic solvent or water can be used as long as it can dissolve or disperse the precursor.
  • organic solvents examples include aliphatic hydrocarbons such as hexane, heptane and octane; aromatic hydrocarbons such as toluene, xylene, benzene and black benzene; alcohols such as methanol, ethanol, propanol and butyl alcohol Ketones such as acetone, methyl ethyl ketone, cyclobennone, cyclohexanone, etc .; Ethers such as jetyl ether, dioxane, tetrahydrofuran, etc .; Ethyl acetate, butyl acetate, propylene glycol methyl ether, etc.
  • aliphatic hydrocarbons such as hexane, heptane and octane
  • aromatic hydrocarbons such as toluene, xylene, benzene and black benzene
  • alcohols such as methanol, ethanol, propanol and
  • Nitrogen-containing aromatic hydrocarbons such as pyridine and quinoline; Halogenated hydrocarbons such as chloroform, methylene chloride, dichloroethane, trichloroethane, and trichloroethylene; N, N —dimethylformamide, Amides such as N, N-dimethylacetamide, N-methylpyrrolidone, N, N-dimethylimidazolidinone, sulfur-containing solvents such as dimethylsulfoxide and carbon disulfide can be used.
  • Halogenated hydrocarbons such as chloroform, methylene chloride, dichloroethane, trichloroethane, and trichloroethylene
  • Amides such as N, N-dimethylacetamide, N-methylpyrrolidone, N, N-dimethylimidazolidinone
  • sulfur-containing solvents such as dimethylsulfoxide and carbon disulfide can be used.
  • One of these organic solvents may be used alone, or two or more thereof may be used in any combination and ratio.
  • a general method such as stirring is used.
  • dissolution may be performed while heating.
  • a surfactant may coexist.
  • the surfactant include a cationic system, an anionic system, and a nonionic system.
  • the concentration of the precursor in the solution is not particularly limited, and can be used in any ratio depending on the type of substrate and the method of contacting the substrate.
  • the solvent or the dispersion medium may be removed as necessary.
  • the removal of the solvent or dispersant can be performed by a general method such as heating under normal pressure or reduced pressure, or removing the solvent or dispersant accompanied by an air stream.
  • a method of bringing the precursor into contact with the substrate in a gas phase state there is a method in which the precursor is brought into contact with the substrate in the state of a gas or a mist containing the precursor.
  • the method of incorporating the precursor into the gas is not particularly limited, and examples thereof include a method of bringing the gas into contact with the precursor by bubbling or the like.
  • the normal pressure when the substrate is brought into contact with the substrate in the gas phase under normal pressure, the normal pressure generally refers to the atmospheric pressure, and refers to the state where the pressure is not forcibly increased or decreased.
  • the gas is preferably an inert gas.
  • the inert gas include nitrogen, argon, helium, carbon dioxide, and carbon monoxide.
  • the inert gas may be used alone or in a mixture of two or more. T / JP2007 / 059821
  • the oxygen concentration in the inert gas is desirably 3% by volume or less, preferably 1% by volume or less, and more preferably 0.5% by volume or less.
  • the precursor in contact with the substrate can be converted into a P-type carbon semiconductor film by heat treatment and immobilized on the substrate.
  • the temperature for the heat treatment is from 200 ° C. to 90 ° C., preferably from 300 ° C. to 80 ° C. If the temperature gets too high, the integrated intensity ratio I (D) / I (G) ratio of the Raman spectrum will become smaller.
  • the temperature can be selected according to the value of the desired integral intensity ratio I (D) / I (G).
  • the heat treatment is preferably performed in an inert gas atmosphere.
  • the inert gas include nitrogen, argon, helium, carbon dioxide, carbon monoxide and the like.
  • the inert gas may be used alone or in a mixture of two or more.
  • the oxygen concentration in the inert gas is desirably 3% by volume or less, preferably 1% by volume or less, and more preferably 0.5% by volume or less.
  • an inert gas atmosphere containing molecular oxygen such as air may be used.
  • the inert gas include nitrogen, argon, helium, carbon dioxide, and carbon monoxide.
  • the concentration of molecular oxygen is 0.5% by volume or more, preferably 1% by volume or more, and more preferably 3% by volume or more.
  • heat treatment may be performed while the gas containing the precursor is kept in contact with the substrate.
  • the treatment time depends on the film thickness of the n-type carbon semiconductor film, the type of organic compound, and the temperature, but is usually about 0.1 seconds to 100 hours.
  • the film thickness can be selected according to the purpose, but is usually 1 to 100 nm, preferably 5 to 500 nm.
  • the substrate can be appropriately selected according to the purpose. For example, a semiconductor substrate such as a silicon substrate, a metal substrate such as stainless steel or nickel, an insulating substrate such as glass, alumina, gallium nitride, indium oxide, or zinc oxide.
  • a ceramic substrate can be used.
  • Another compound or the like may be coated on these substrates, and the P-type force-bon semiconductor film of the present invention may be formed thereon. It is desirable to treat the substrate with hydrofluoric acid before use.
  • the p-type semiconductor film of the present invention may be formed after the n-type carbon semiconductor film of the present invention is formed on the substrate.
  • the n-type force-bon semiconductor film of the present invention may be formed after forming the p-type force-bon semiconductor film of the present invention on the substrate.
  • the n-type force semiconductor film and the p-type carbon semiconductor film of the present invention can be prepared from a liquid phase state such as a precursor solution by various known coating methods.
  • the precursor can be prepared from a gas phase under normal pressure without requiring pressurization or decompression.
  • a general heating furnace or the like can be used for the heat treatment. According to the method of the present invention, a semiconductor film having a large area can be easily produced at a low cost.
  • the n-type carbon semiconductor film of the present invention is used as a material for semiconductor elements.
  • it can be suitably used as an n-type semiconductor film of a semiconductor element having a pn junction composed of a p-type semiconductor film and an n-type semiconductor film.
  • a p n junction is a part of a semiconductor where a p-type region and an n-type region are in contact.
  • the formation of the pn conjugate itself can be performed by a conventional method.
  • it can also be a pin junction.
  • the p-type semiconductor film a known p-type semiconductor film such as Si can be used, but preferably the P-type carbon semiconductor film of the present invention mainly composed of an aggregate of carbon six-membered rings. Is used.
  • the method for forming the P n bonded body is not particularly limited.
  • the n-type of the present invention is formed thereon.
  • the p-type carbon semiconductor film may be formed.
  • the semiconductor device using the n-type carbon semiconductor film of the present invention is a device such as a diode, a transistor, a photoelectric conversion device, or various sensors as a pn junction which is a junction structure of a p-type semiconductor and an n-type semiconductor as described above.
  • a semiconductor element particularly for solar cells it can be suitably used as a semiconductor element particularly for solar cells. That is, for example, the above-mentioned n-type carbon semiconductor film and p-type carbon semiconductor film are stacked on a silicon substrate, and a pn junction is formed as a photoelectric conversion layer, which is incorporated into a solar cell having a known configuration having electrodes and the like.
  • a hole having ten electricity a hole from which an electron has escaped
  • an electron having one electricity are generated, which are separated by a pn junction and become a current.
  • the solar cell using the semiconductor element using the n-type carbon semiconductor film according to the present invention has, for example, a performance with an energy efficiency of 0.05% or more when measured in a solar simulator AM 1.5 G mode. Is obtained.
  • P-type Si (100) substrate (2 X 2 cm) (Mitsubishi Materials Co., Ltd.) surface-treated with dilute hydrofluoric acid was placed in a quartz annular electric furnace, and nitrogen gas containing pyridine vapor was distributed. Under heating at 700 ° C. for 10 hours. As the nitrogen gas containing pyridine vapor, pyridine was introduced, nitrogen gas was blown into the container kept at 20 ° C, and 50 ml / min was blown into the container. 2007/059821
  • FIG. 1 is a schematic cross-sectional view of this structure.
  • a tens of nanometer gold sputtering film (3) is formed on a carbon film (2) on a substrate (1) ( (4) is the lead wire)
  • this device has been confirmed to have photovoltaic and photocurrent against the forward bias of pn, and it is clear that the carbon thin film functions as an n-type semiconductor. Became.
  • n-type Si (100) substrate (2 X 2 cm) (Mitsubishi Materials Co., Ltd.) surface-treated with dilute hydrofluoric acid was placed in a quartz annular electric furnace under nitrogen gas flow containing benzene vapor. And heated at 600 ° C. for 10 hours. As nitrogen gas containing this benzene vapor, benzene is introduced, 2007/059821
  • Nitrogen gas was blown into the container held at 2 Ot: at 50 mL / min, and nitrogen-benzene gas derived from the container was used.
  • the Si substrate surface side of the obtained sample substrate was polished to construct the same device as in Example 1.
  • photovoltaic power and photocurrent were observed for the forward bias of pn in this device, and it became clear that the carbon thin film functions as a P-type semiconductor.
  • this device was confirmed to operate as a solar cell with 0 CV: 20 OmV, Jsc: 13.9 mA / cm 2, energy conversion efficiency: 1.8% .
  • a polished Ni substrate (0.1 X 2 X 2 cm) was placed in a quartz annular electric furnace and heated at 70 ° C. for 10 hours under a nitrogen gas flow containing pyridine vapor as in Example 1. did. Thereafter, the sample was heated at 60 ° C. for 10 hours under a nitrogen gas flow containing benzene vapor in the same manner as in Example 2.
  • Example 2 The Ni substrate side of the obtained sample substrate was polished, and a device similar to Example 1 was constructed. As a result of electrical measurement, photovoltaic power and photocurrent were observed for this device in the forward direction of pn, and it became clear that this device functions as a pn junction. As measured by solar simulator AM I .5 G mode, this device operates as 0 CV: lOOmV, Jsc: 10. OmA / cm 2 , energy conversion efficiency: 1.2% solar cell It was done.
  • P-type Si (1 0 0) substrate (2 X 2 cm) (Mitsubishi Materials Co., Ltd.) surface-treated with dilute hydrofluoric acid was placed in a quartz annular electric furnace under nitrogen gas flow containing pyridine vapor And heated at 100 ° C. for 10 hours.
  • nitrogen gas containing pyridine vapor pyridine was introduced, nitrogen gas of 5 O mL / min was blown into a container maintained at 20 ° C., and nitrogen-pyridine gas derived from the container was used.
  • the carbon thin film showed 0 0 2 diffraction lines in the powder X-ray pattern, and no absorption peak in the vicinity of 2 1 30 cm -1 was observed in the infrared spectrum.
  • Example 4 One side of the obtained sample substrate was polished to construct a device similar to Example 1. As a result of electrical measurement, it was confirmed that the carbon thin film functions as a conductor, and it was confirmed that it does not function as a solar cell.
  • Example 4
  • One side of a polished Ni substrate (0.1 X 2 X 2 cm) was spin-coated with C heavy oil at 3 00 rpm, and 7 0 0 ° under nitrogen gas flow in a quartz tubular electric furnace. Heated at C for 5 hours. It was confirmed with a scanning electron microscope that a carbon thin film of about 30 nm was formed on the heated substrate. Further, 5 wt% polyacrylonitrile N, N-dimethylformamide solution was spin-coated three times on this striking thin film, and nitrogen gas was circulated in a stone electric tube furnace manufactured by Ishiei. Heated at ° C for 5 hours. A scanning electron microscope confirmed that a carbon thin film of about 100 nm was formed on the heated substrate.
  • P-type S i (1 0 0) substrate X 22 cm, manufactured by Mitsubishi Materials surface-treated with dilute hydrofluoric acid was placed in a quartz tubular electric furnace, and under a nitrogen gas flow containing normal butylamine vapor, 7 0 Heated at 0 ° C for 5 hours. Nitrogen gas containing normal-peptylamine vapor was blown with nitrogen gas at 10 m 1 / m 1 n into a container containing normal-peptylamine kept at 15 ° C, and nitrogen normal n-butylamine exiting from the container Gas was used.
  • the Si substrate surface side of the obtained sample substrate was polished to construct the same device as in Example 1.
  • photovoltaic power and photocurrent were observed against the forward bias of pn, and it was revealed that the obtained carbon thin film functions as an n-type semiconductor.
  • this device is: ⁇ CV: 20 00 mV, J sc: l 1. 9 mA / cm 2 , energy conversion efficiency T / JP2007 / 059821
  • Heating under the flow of nitrogen gas containing normal butylamine vapor was carried out in the same manner as in Example 4 except that the heating was performed at 150 ° C. for 5 hours and the flow rate of nitrogen gas was 5 O ml / min.
  • the carbon thin film obtained by heating was not able to obtain a clear absorption spectrum in either the D band or the G band in the Raman spectroscopic spectrum. Also, no X-ray diffraction line was observed in the powder X-ray pattern, and no clear absorption was observed in the vicinity of 2 2500 cm- 1 corresponding to the nitrile group in the infrared spectrum. I was not able to admit.
  • the obtained sample substrate was constructed with the same device as in Example 1 and subjected to electrochemical measurements, but was found to be an insulator. As a result of measurement in AM I .5 G mode, it was found that the solar cell does not function as a solar cell.
  • a quartz glass substrate (2 ⁇ 2 cm) was placed in a quartz tubular electric furnace and heated at 700 ° C. for 5 hours under a nitrogen gas flow containing normal-pylamine vapor.
  • a nitrogen gas flow containing normal-pylamine vapor 10 m 1 Zmin of nitrogen gas was blown into a container containing pyridine maintained at 15 ° C., and nitrogen one-normal ptylamamine gas exiting from the container was used. It was confirmed with a scanning electron microscope that a thin film of about 30 nm was formed on the substrate obtained by heating.
  • the electric conductivity of the carbon thin film on this substrate is calculated by van der Pauw method. It was measured. As a result, it was confirmed that the electrical conductivity of this carbon thin film was 40 0 S / Cm.
  • the present invention it is possible to provide a semiconductor element and a solar cell that can produce an n-type power single semiconductor at low cost and that can be used for high performance and a large area.

Abstract

An n-type carbon semiconductor of low cost; and a semiconductor device and solar cell of high performance and large area utilizing the same. There is provided an n-type carbon semiconductor film composed mainly of an aggregate of carbon 6-membered rings, exhibiting in its spectrum according to Raman spectroscopy an integral intensity ratio of D-band in the vicinity of 1300 cm-1 to G-band in the vicinity of 1600 cm-1, I(D)/I(G), of 0.3 to 3.0, and exhibiting an element ratio of nitrogen and/or sulfur to carbon according to X-ray photoelectron spectroscopy, (N and/or S)/C, of 0.01 to 0.40. This n-type carbon semiconductor film is obtained by bringing an organic compound containing nitrogen and/or sulfur in the form of liquid phase or vapor phase under normal pressures into contact with a top of substrate and performing heating treatment at 200° to 900°C.

Description

明 細 書 n型力一ボン半導体膜およびそれを用いた半導体素子 技術分野  Description n-type striking semiconductor film and semiconductor device using the same
本発明は、 n型力一ボン半導体膜並びにそれを用いた半導体素子 および太陽電池に関する。 背景技術  The present invention relates to an n-type vigorous semiconductor film, a semiconductor element using the same, and a solar cell. Background art
太陽電池や、 ダイオード、 光ダイオード、 電界効果トランジスタ 、 エレク ト口ルミネッセンスなどの電子デバイスには、 p n接合等 の半導体素子が用いられている。 半導体素子の材料としては、 無機 半導体材料が広く用いられている。 しかし、 無機半導体は、 製造時 に 3 0 0 °C以上の高温処理や、 蒸着、 スパッタリング、 C V D等の 真空下での素子製造プロセスを経るため、 大面積の素子を、 容易に 低コス トで製造することが難しい。 そこで、 近年、 無機半導体材料 の代わりに、 有機半導体材料を用いる試みがなされている。 有機半 導体は、 低温下の容易な製造プロセスでの製造が可能で、 大面積化 も容易に行えるとの可能性を有する。  Semiconductor devices such as pn junctions are used in electronic devices such as solar cells, diodes, photodiodes, field effect transistors, and electroluminescence. Inorganic semiconductor materials are widely used as materials for semiconductor elements. However, inorganic semiconductors undergo high-temperature processing at 300 ° C or higher during manufacturing and device manufacturing processes under vacuum such as vapor deposition, sputtering, and CVD, so large-area devices can easily be manufactured at low cost. Difficult to manufacture. In recent years, therefore, attempts have been made to use organic semiconductor materials instead of inorganic semiconductor materials. Organic semiconductors can be manufactured in an easy manufacturing process at low temperatures, and can be easily increased in area.
半導体は、 その電荷の担い手である多数キャリアが、 伝導電子で ある n型半導体と、 正孔である p型半導体とに大別される。 有機 p 型半導体としては、 ペン夕セン構造、 ポリチォフェン構造、 ボルフ ィ リン構造を有するものが知られ、 有機 n型半導体としては、 フラ 一レン、 フラーレン誘導体が知られている。 しかしながら、 これら はいずれも特殊な構造を有するために原料が限られている上、 合成 経路も複雑な高価な材料である。 また、 その製造プロセスの中では 、 高真空条件を必要とする等、 安価に大量に製造することは未だ難 しい材料である。 Semiconductors are broadly divided into n-type semiconductors, which are the carriers responsible for charge, and p-type semiconductors, which are holes. As organic p-type semiconductors, those having a Penyusen structure, polythiophene structure, and vorphyrin structure are known, and as organic n-type semiconductors, fullerenes and fullerene derivatives are known. However, these materials have special structures, so the raw materials are limited, and the synthesis route is a complicated and expensive material. In addition, in the manufacturing process, it is still difficult to manufacture a large amount at a low cost, such as requiring high vacuum conditions. New material.
また、 特許第 2 9 8 0 5 4 6号公報には、 p—キシ口'キノンを原 料とした、 p型と推定される炭素質半導体や、 ジクロロ— p—キシ レンを原料とした、 n型と推定される炭素質半導体を常圧下に調製 し、 太陽電池に利用する方法が報告されている。 しかしながら、 こ の報告例では、 半導体素子である p n接合において、 少なく ともど ちらか一方は、 無機半導体であるシリコン基板であるため、 この P n接合を用いた素子の低コス トでの容易な製造は実質的には不可能 である。 また、 半導体の構造に関する情報が不明確であり、 極めて 限定された原料を用いた限られた条件でのみ生成する材料と推定さ れ、 広く一般的に用いることはできないものといえる。  In addition, in Japanese Patent No. 2 9 8 5 4 6, carbonaceous semiconductors presumed to be p-type, starting from p-xyloquinone, and dichloro-p-xylene as raw materials, A method for preparing n-type carbonaceous semiconductors under normal pressure and using them in solar cells has been reported. However, in this report, since at least one of the pn junctions that are semiconductor elements is a silicon substrate that is an inorganic semiconductor, it is easy to reduce the cost of elements using this Pn junction. Manufacturing is virtually impossible. In addition, the information on the structure of the semiconductor is unclear, and it is estimated that the material can be produced only under limited conditions using extremely limited raw materials. Therefore, it cannot be widely used in general.
さらに近年、 電力需要は世界的規模で急速に増大しつつあり、 埋 蔵資源、 環境負荷等の課題も踏まえて、 エネルギー源の転換が種々 検討され、 太陽光発電もクリーンで恒久的な電力供給手段として最 も注目されているものの一つである。 しかしながら、 現在実用化さ れている S i 系太陽電池では、 その原料のエネルギーコス トが高く 、 その製造工程において、 スパッ夕、 蒸着等の製造装置が必要不可 欠であり、 したがって、 これらがそのコス ト、 生産性、 太陽電池の 大面積化等の障壁となっている。  Furthermore, in recent years, power demand has been increasing rapidly on a global scale, and various conversions of energy sources have been studied, taking into account issues such as reserve resources and environmental impact, and solar power generation is also clean and permanent. This is one of the most popular means. However, Si-based solar cells that are currently in practical use have high energy costs for raw materials, and manufacturing equipment such as sputtering and vapor deposition is indispensable in the manufacturing process. Barriers such as cost, productivity, and large area of solar cells.
一方において、 S i と同族元素であるカーボン材料を用いて、 有 機半導体の一種である。 カーボン半導体を調製して、 その半導体を 用いた太陽電池を作製することが提案されている (So l ar Ene rgy M a t . k So l ar Ce l l s, 65, 163- 170, 2001 ) 。 しかしながら、 そこでの カーボンはダイヤモンドに含まれる s p 3 炭素を主体としたァモル ファスカーボンであり、 その作成に特殊な原料、 およびスパッ夕等 の装置が必要なことは S i 系太陽電池の場合と変りがない。 On the other hand, it is a kind of organic semiconductor using a carbon material that is a group element of Si. It has been proposed to prepare a carbon semiconductor and fabricate a solar cell using the semiconductor (Solar EnergyMat. KSollarCels, 65, 163-170, 2001). However, the carbon there is amorphous carbon mainly composed of sp 3 carbon contained in diamond, and special raw materials and equipment such as sputtering are required for its preparation, unlike the case of Si solar cells. There is no.
このように、 低コス トでかつ容易に、 カーボン半導体等の有機半 導体を製造する方法は実質的には存在しなかった。 特に、 n型力一 ボン半導体を、 常圧下に、 容易に、 低コス トで製造できる方法はほ とんど知られていない。 従って、 力一ボン半導体を利用した太陽電 池を低コス トで製造できる方法はなかった。 発明の開示 In this way, organic semiconductors such as carbon semiconductors can be easily manufactured at low cost. There has been virtually no method for producing conductors. In particular, little is known about how n-type semiconductors can be manufactured easily and at low cost under normal pressure. Therefore, there was no method that could produce a solar cell using a single-power semiconductor at low cost. Disclosure of the invention
本発明は、 低コス トかつ容易に n型カーボン半導体や p型カーボ ン半導体を調製し、 それを用いて高性能、 かつ大面積としうる半導 体素子および太陽電池を提供するものである。  The present invention provides a semiconductor device and a solar cell that can be easily produced at low cost and easily by preparing an n-type carbon semiconductor or a p-type carbon semiconductor, and that can be used for high performance and a large area.
本発明は、 上記の課題を解決するために以下の発明を提供する。 The present invention provides the following inventions in order to solve the above problems.
( 1 ) 主に炭素六員環の集合体からなり、 ラマン分光法によるスぺ ク トルにおいて、 1 3 0 0 c π 1付近の Dバンドと 1 6 0 0 c m—1 付近の Gバンドの積分強度比 I (D) / I (G) が 0. 3〜 3. 0 であり、 かつ X線光電子分光法による窒素および/またはィォゥと 炭素との元素比 (Nおよび/または S ) /Cが 0. 0 1〜 0. 4 0で ある n型力一ボン半導体膜 ; (1) Consisting mainly of an assembly of six-membered carbon rings, in the spectrum by Raman spectroscopy, the integration of the D band near 1 3 0 0 c π 1 and the G band near 1 600 cm 1 The intensity ratio I (D) / I (G) is 0.3 to 3.0, and the elemental ratio (N and / or S) / C of nitrogen and / or nitrogen and carbon by X-ray photoelectron spectroscopy is An n-type force-bonding semiconductor film that is 0.0 1 to 0.40;
( 2 ) 粉末 X線図形に 0 0 2回折線が認められる上記 ( 1 ) に記載 の n型カーボン半導体膜 ;  (2) The n-type carbon semiconductor film according to the above (1), in which 0 2 diffraction lines are observed in the powder X-ray pattern
( 3 ) 窒素と硫黄の少なく ともどちらか一方を含有する有機化合物 を、 液相状態もしくは、 常圧下気相状態で基板上に接触させた後、 加熱処理することによって製造された、 上記 ( 1 ) もしくは ( 2 ) に記載の n型カーボン半導体膜 ;  (3) An organic compound containing at least one of nitrogen and sulfur is produced by contacting a substrate in a liquid phase state or a gas phase state under normal pressure, followed by heat treatment. Or n-type carbon semiconductor film according to (2);
( 4 ) 窒素と硫黄の少なく ともどちらか一方を含有する有機化合物 が、 含窒素炭化水素類である、 上記 ( 3 ) に記載の n型カーボン半 導体膜 ;  (4) the n-type carbon semiconductor film according to (3), wherein the organic compound containing at least one of nitrogen and sulfur is a nitrogen-containing hydrocarbon;
( 5 ) 実質的に二トリル基を含有しない、 上記 ( 4 ) に記載の n型 カーボン半導体膜 ( 6 ) 加熱処理の温度が、 2 0 0 °C〜 9 0 0 °Cである、 上記 ( 3 ) 〜 ( 5 ) のいずれかに記載の n型カーボン半導体膜 ; (5) The n-type carbon semiconductor film according to (4), which does not substantially contain a nitrile group. (6) The n-type carbon semiconductor film according to any one of the above (3) to (5), wherein the temperature of the heat treatment is 20 ° C to 900 ° C;
( 7 ) 主に炭素六員環の集合体からなり、 ラマン分光によるスぺク トルにおいて、 1 3 0 0 c m— 1付近の Dバンドと 1 6 0 0 c m-1付 近の Gバンドの積分強度比 I (D) / I (G) 力 0. 3〜 3. 0 である、 p型カーボン半導体膜 ; (7) mainly formed of an aggregate of six-membered carbon ring, in scan Bae-vector by Raman spectroscopy, the 1 3 0 0 cm- 1 near D band and 1 6 0 0 c m- 1 with near the G band P-type carbon semiconductor film having an integral intensity ratio I (D) / I (G) force of 0.3 to 3.0;
( 8 ) 炭化水素類を、 液相状態もしくは常圧下気相状態で基板上に 接触させた後、 加熱処理することによって製造された、 上記 ( 7 ) に記載の P型カーボン半導体膜 ;  (8) The P-type carbon semiconductor film according to the above (7), which is produced by bringing a hydrocarbon into contact with a substrate in a liquid phase state or a gas phase state under normal pressure and then heat-treating it;
( 9 ) 加熱処理の温度が、 2 0 0 °C〜 9 0 0 °Cである、 上記 ( 7 ) もしくは ( 8 ) に記載の p型カーボン半導体膜 ;  (9) The p-type carbon semiconductor film according to the above (7) or (8), wherein the temperature of the heat treatment is 20 ° C. to 900 ° C .;
( 1 0 ) 上記 ( 1 ) 〜 ( 6 ) のいずれかに記載の n型カーボン半導 体膜が含まれる半導体素子 ;  (10) a semiconductor device comprising the n-type carbon semiconductor film according to any one of (1) to (6) above;
( 1 1 ) 半導体素子が ( 1 ) 〜 ( 6 ) のいずれかに記載の n型力一 ボン半導体膜が含まれる p n接合を含んでいる、 上記 ( 1 0 ) に記 載の半導体素子 ;  (11) The semiconductor element according to (10) above, wherein the semiconductor element includes a pn junction including the n-type force semiconductor film according to any one of (1) to (6);
( 1 2 ) 上記 ( 1 ) 〜 ( 6 ) のいずれかに記載の n型力一ボン半導 体膜と、 上記 ( 7 ) 〜 ( 9 ) のいずれかに記載の p型カーボン半導 体膜が含まれる p n接合を有している上記 ( 1 0 ) もしくは ( 1 1 ) に記載の半導体素子 ; ならびに  (12) The n-type force one-bon semiconductor film according to any one of (1) to (6) above and the p-type carbon semiconductor film according to any one of (7) to (9) above A semiconductor device according to the above (1 0) or (1 1) having a pn junction comprising:
( 1 3 ) 上記 ( 1 0 ) 〜 ( 1 2 ) のいずれかに記載の半導体素子を 含んでなる太陽電池。  (1 3) A solar cell comprising the semiconductor element according to any one of (10) to (12) above.
本発明によれば、 低コス トでかつ容易に n型カーボン半導体や P 型カーボン半導体を調製し、 それを用いて高性能、 かつ大面積とし うる半導体素子および太陽電池を提供し得る。 図面の簡単な説明 図 1は実施例 1で得られた n型カーボン半導体膜を用いた半導体 デバイスの断面概略図を示す。 発明を実施するための最良の形態 According to the present invention, an n-type carbon semiconductor or a P-type carbon semiconductor can be easily prepared at a low cost, and a semiconductor element and a solar cell that can be used with high performance and a large area can be provided. Brief Description of Drawings FIG. 1 is a schematic cross-sectional view of a semiconductor device using the n-type carbon semiconductor film obtained in Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
本発明における n型カーボン半導体膜は、 実質的に炭素六員環の 集合体からなり、 ラマン分光法によるスペク トルにおいて、 1 3 0 0 c m— 1付近の Dバンド (通常 1 2 0 0〜 1 4 0 0 c m—1における ブロードなバンド) と 1 6 0 0 c m— 1付近の Gバンド (通常 1 4 5 0〜 1 7 0 0 c m— 1におけるブロードなバンド) の積分強度比 I ( D ) / I (G) が 0. 3〜 3. 0、 好ましくは 0. 5〜 2. 5であ る。 The n-type carbon semiconductor film in the present invention is substantially composed of an assembly of six-membered carbon rings, and in the spectrum by Raman spectroscopy, the D band in the vicinity of 1300 cm- 1 (usually from 1200 to 1) 4 0 0 cm- broad band at 1) and 1 6 0 0 cm- 1 near the G band (usually 1 4 5 0~ 1 7 0 0 cm- broad band at 1) the integrated intensity ratio I (D) / I (G) is 0.3 to 3.0, preferably 0.5 to 2.5.
ラマンスペク トルの Dバンドは、 炭素六員環における Alg breat hing modeの振動である。 このバンドは、 グラフアイ トでは禁制で あり、 構造の乱雑さが増すと、 この伸縮モードに対する選択性が緩 み、 ピークが観測されるようになる。 このピーク強度は、 炭素 6員 芳香環 ( 6員 s p 2 炭素環) の存在に強く影響されることが知られ ている。 The D band of Raman spectrum is the vibration of Alg breat hing mode in a carbon six-membered ring. This band is forbidden in the graph item, and when the structural disorder increases, the selectivity for this stretching mode is relaxed and peaks are observed. This peak intensity is known to be strongly influenced by the presence of carbon 6-membered aromatic rings (6-membered sp 2 carbocycles).
また、 ラマンスペク トルの Gバンドは、 炭素六員環の E2g mode の振動であり、 sp2 原子同士の結合が平面的に行う伸縮運動に由来 する。 これは、 s p 2 状態の炭素原子に特異的に起こる振動に由来 する。 The G band of the Raman spectrum is the E2g mode vibration of the carbon six-membered ring, and is derived from the stretching motion in which the bonds between sp 2 atoms are planar. This is due to vibrations that occur specifically in carbon atoms in the sp 2 state.
Dバンド、 Gバンドの和から成るラマンスぺク トルをガウシアン 、 あるいはガウシアン一ローレンツイアンで 2つにピーク分割し、 得られた Dバンド、 Gバン ドの積分強度をそれぞれの積分強度 I ( D) 、 I (G) として、 これらの積分強度比 I (D) / I (G) を 算出した。  The Raman spectrum consisting of the sum of the D band and G band is divided into two peaks with Gaussian or Gaussian-Lorentzian, and the integrated intensities I (D) These integrated intensity ratios I (D) / I (G) were calculated as I (G).
半導体材料として機能するカーボン材料には、 最適な s p 2 混成 状態が存在する。 本発明者らが鋭意検討した結果、 ラマン分光法に よるスペク トルにおいて、 1 3 0 0 c m— 1付近の Dバンド (通常 1 2 0 0〜 1 4 0 0 c m— 1におけるブロードなバンド) と 1 6 0 0 c m-1付近の Gバンド (通常 1 4 5 0〜 1 7 0 0 c m— 1におけるブロ ードなバンド) の積分強度比 I (D) /I (G) と、 本発明の n型 カーボン半導体膜の性能に相関があることを初めて見出した。 An optimal sp 2 hybrid for carbon materials that function as semiconductor materials A state exists. As a result of intensive studies by the present inventors, in a spectrum by Raman spectroscopy, a D band in the vicinity of 1300 cm- 1 (normally a broad band from 1200 to 1400 cm- 1 ) and 1 and 6 0 0 c m-1 near the G band (usually 1 4 5 0~ 1 7 0 0 cm- blow over de band in 1) of the integrated intensity ratio I (D) / I (G), the present invention We found for the first time that there is a correlation between the performance of n-type carbon semiconductor films.
一般的に積分強度比 I (D) / I (G) が 0. 3未満であると、 半金属となるため半導体として機能しない。 ベンゼン環を形成する 炭素原子の 6員環を平面状に連結した 6角形の網目構造は、 グラフ エンシー卜と呼ばれ、 このシートを何層にも積み重ねた構造がダラ ファイ トの結晶である。 グラフアイ トでは、 6角形の網構造の炭素 鎖に沿って形成された共役系を介して、 非局在化した π電子が移動 できるため、 金属と同様の高い電気伝導性が示されるからである。 一方、 一般的に積分強度比 I (D) / I (G) が 3. 0 を超えると 、 集合した炭素六員環の数が少なく絶縁性を示し、 電気伝導性が得 られない。 積分強度比 I (D) / I (G) 比が 0. 3未満もしくは 3. 0 を超える場合は、 少なく ともいずれか一方のピーク分割が不 明瞭となる場合があり、 0. 3未満であっても絶縁体であり、 3. 0 を超えても半金属 (導体) である場合もある。  Generally, if the integral intensity ratio I (D) / I (G) is less than 0.3, it will not function as a semiconductor because it becomes a semimetal. The hexagonal network structure in which the six-membered carbon atoms forming the benzene ring are connected in a plane is called graph envy, and the structure in which this sheet is stacked in layers is a dullite crystal. In the graph item, delocalized π-electrons can move through a conjugated system formed along a carbon chain with a hexagonal network structure, so that high electrical conductivity similar to that of metal is shown. is there. On the other hand, when the integral intensity ratio I (D) / I (G) exceeds 3.0, the number of assembled carbon six-membered rings is small and insulation is exhibited, and electrical conductivity cannot be obtained. If the integral intensity ratio I (D) / I (G) ratio is less than 0.3 or more than 3.0, at least one of the peak splits may be ambiguous and less than 0.3. It is an insulator, and even if it exceeds 3.0, it may be a semimetal (conductor).
ラマン分光スぺク トルの解析結果、 本発明の η型カーボン半導体 膜は、 好適には 1〜 5 nm程度の大きさのグラフエンシートを有す ると推測される。  As a result of analysis by Raman spectroscopy spectrum, it is estimated that the η-type carbon semiconductor film of the present invention preferably has a graph sheet having a size of about 1 to 5 nm.
さらに、 本発明における n型力一ボン半導体膜は、 X線光電子分 光法による窒素および/またはィォゥと炭素との元素比 (Nおよび/ または S ) /Cが 0. 0 1〜 0. 4 0、 好ましくは 0. 0 5〜 0. 2 0、 である。 この元素比 (Nおよび/または S ) /Cが 0. 0 1未 満であると n型を示さず、 一方 0. 4 0 を超えると電気伝導性が極 端に低下する。 Further, in the n-type force-bonding semiconductor film of the present invention, the elemental ratio (N and / or S) / C of nitrogen and / or nitrogen and carbon by X-ray photoelectron spectroscopy is 0.001 to 0.4. 0, preferably 0.05 to 0.20. If this elemental ratio (N and / or S) / C is less than 0.01, no n-type is shown. On the other hand, if it exceeds 0.40, electrical conductivity is extremely low. Drops to the edge.
本発明における n型カーボン半導体膜は、 好適には粉末 X線図形 に 0 0 2回折線が認められる。 この回折線は、 ラマン分光スぺク 卜 ルにおいて存在が示唆されたダラフェンシートが何層にも積み重な つた構造の存在を示すものである。 本発明の n型カーボン半導体に おいては、 グラフエンシートが積み重なった構造が存在する。  The n-type carbon semiconductor film in the present invention preferably has 0. 02 diffraction lines in the powder X-ray pattern. This diffraction line indicates the existence of a structure in which multiple layers of dalaphen sheets, which were suggested to exist in the Raman spectroscopic spectrum, were stacked. The n-type carbon semiconductor according to the present invention has a structure in which graph sheets are stacked.
本発明の n型カーボン半導体は主に炭素六員環から成るが、 窒素 および/またはィォゥと炭素との元素比 (Nおよび/または S ) / C が 0 . 0 1〜 0 . 4 0、 好ましくは 0 . 0 5〜 0 . 2 0、 に相当す る窒素およびノまたは硫黄を含有する。 n型カーボン半導体膜が主 に炭素六員環から成ることは、 ラマン分光スペク トル解析や、 X線 光電子分光スペク トル測定により、 炭素や、 窒素もしくは硫黄以外 の元素が実質的に検出されないこと等により確認することができる  The n-type carbon semiconductor of the present invention mainly comprises a carbon six-membered ring, but the elemental ratio of nitrogen and / or nitrogen to carbon (N and / or S) / C is preferably from 0.001 to 0.40, preferably Contains nitrogen and sulfur or sulfur corresponding to 0.05 to 0.20. The n-type carbon semiconductor film is mainly composed of a six-membered carbon ring because elements other than carbon and nitrogen or sulfur are not substantially detected by Raman spectroscopic analysis or X-ray photoelectron spectroscopic measurement. Can be confirmed by
このように、 本発明の n型力一ボン半導体は、 ラマン分光スぺク トル、 X線光電子分光スぺク トル、 粉末 X線、 赤外分光スぺク トル の各手法により、 それぞれ特徴的な構造を示すものである。 As described above, the n-type force one-bon semiconductor of the present invention is characterized by the Raman spectroscopic spectrum, the X-ray photoelectron spectroscopic spectrum, the powder X-ray, and the infrared spectroscopic spectrum. The structure is shown.
本発明における n型カーボン半導体膜は、 n型半導体膜の前駆体 となる窒素および硫黄を含有する有機化合物を、 液相状態、 もしく は常圧下に気相状態で基板に接触させた後、 加熱処理することによ つて製造することができる。  In the n-type carbon semiconductor film of the present invention, an organic compound containing nitrogen and sulfur, which is a precursor of the n-type semiconductor film, is brought into contact with the substrate in a liquid phase state or in a gas phase state under normal pressure, It can be manufactured by heat treatment.
本発明の n型半導体の前駆体である、 窒素および硫黄を含有する 有機化合物としては、 窒素および硫黄を含有する炭化水素類が好ま しい。  As the organic compound containing nitrogen and sulfur which is the precursor of the n-type semiconductor of the present invention, hydrocarbons containing nitrogen and sulfur are preferable.
窒素を含有する炭化水素類としては特に制限はないが、 脂肪族ァ ミン類、 芳香族ァミン類、 二トリル類、 芳香族複素環類、 アミ ド類 、 イミ ド類、 イミン類、 ウレタン類、 イソシアニド類、 アミノ酸類 7 059821 Hydrocarbons containing nitrogen are not particularly limited, but aliphatic amines, aromatic amines, nitriles, aromatic heterocycles, amides, imides, imines, urethanes, Isocyanides, amino acids 7 059821
8  8
、 ニトロ化合物類、 含窒素高分子化合物等、 広く挙げることができ る。 Nitro compounds, nitrogen-containing polymer compounds, and the like.
脂肪族アミンとしては構造は特に限定されないが、 好ましく用い られるのは、 炭素数 1〜 6 0の脂肪族ァミンである。 具体例として は、 メチルァミン、 ェチルァミン、 ジェチルァミン、 トリェチルァ ミン、 プロピルアミン、 イソプロピルァミン、 ジイソプロピルアミ ン、 プチルァミン、 イソプチルァミン、 ペンチルァミン、 へキシル ァミン、 1 , 6 —ジァミノへキサン、 シクロへキシルァミン等のァ ルキルアミン類が挙げられる。 ァミ ンの置換基に、 アルキル基や、 アルキル基以外の官能基や、 アルカノールァミ ン類のように、 置換 基の中に、 酸素、 窒素、 硫黄等の炭素や水素以外の元素を含有して いても構わない。 脂肪族ァミンは、 1級ァミンでも 2級ァミンでも 3級ァミンでも構わない。  The structure of the aliphatic amine is not particularly limited, but an aliphatic amine having 1 to 60 carbon atoms is preferably used. Specific examples include alkylamines such as methylamine, ethylamine, jetylamine, triethylamine, propylamine, isopropylamine, diisopropylamine, ptylamine, isoptilamine, pentylamine, hexylamine, 1,6-diaminohexane, cyclohexylamine and the like. Kind. The substituents of amine contain alkyl groups, functional groups other than alkyl groups, and elements other than carbon and hydrogen, such as oxygen, nitrogen, and sulfur, in the substituents, such as alkanolamines. It does not matter. Aliphatic amines can be primary, secondary or tertiary amines.
芳香族ァミンとしては、 構造は特に限定されないが、 好ましく用 いられるのは、 炭素数 1〜 6 0の芳香族ァミン類である。 具体例と しては、 ァニリン、 ジフエ二ルァミン等が挙げられる。 了ミ ンの置 換基に、 アルキル基や、 アルキル基以外の他の官能基や、 酸素、 窒 素、 硫黄等の炭素や水素以外の元素を有していても構わない。 芳香 族ァミンは、 1級ァミンでも 2級ァミンでも 3級ァミンでも構わな い。  The structure of the aromatic amine is not particularly limited, but aromatic amines having 1 to 60 carbon atoms are preferably used. Specific examples include aniline and diphenylamine. The substitution group of the alkyl group may have an alkyl group, a functional group other than the alkyl group, or an element other than carbon or hydrogen such as oxygen, nitrogen, or sulfur. Aromatic amines can be primary, secondary or tertiary amines.
二トリル類の具体例として、 ァセトニトリル、 ベンゾニトリル、 へキサン二トリル等の炭素数 1〜 3 0の二トリル類が好ましく用い られるが、 その他に、 ポリアクリロニトリルも好ましく用いられる イミン類として、 ポリエチレンイミンも好ましく用いられる。  As specific examples of nitriles, nitriles having 1 to 30 carbon atoms such as acetonitrile, benzonitrile, hexanenitrile and the like are preferably used. In addition, polyacrylonitrile is also preferably used. Are also preferably used.
芳香族複素環類としては、 価数に限定はなく、 構造も特に限定さ れないが、 好ましく用いられるのは炭素数 4〜 3 0の芳香族複素環 である。 具体例としては、 ピリジン、 ピリミジン、 キノ リン、 イソ キノ リン、 ピロ一ル、 ピぺリジン、 ピリミジン、 イミダゾ一ル、 プ リン、 が挙げられる。 これら芳香族環は置換基を有していても良い 。 置換基としては、 特に制限はないが、 メチル基、 ェチル基、 プロ ピル基、 ブチル基等のアルキル基等が挙げられる。 As aromatic heterocycles, there is no limitation on the valence and the structure is not particularly limited, but an aromatic heterocycle having 4 to 30 carbon atoms is preferably used. It is. Specific examples include pyridine, pyrimidine, quinoline, isoquinoline, pyrrole, piperidine, pyrimidine, imidazole, and purine. These aromatic rings may have a substituent. The substituent is not particularly limited, and examples thereof include an alkyl group such as a methyl group, an ethyl group, a propyl group, and a butyl group.
本発明において、 窒素を含有する炭化水素類としては、 脂肪族ァ ミン類、 芳香族ァミン類、 ポリアクリ ロニトリル、 ポリエチレンィ ミン、 芳香族複素環類がより好ましく用いられる。  In the present invention, as the nitrogen-containing hydrocarbons, aliphatic amines, aromatic amines, polyacrylonitrile, polyethyleneimine, and aromatic heterocycles are more preferably used.
硫黄を含有する炭化水素類としては、 特に制限はないが、 メタン チオール、 エタンチオール等のチオール類 ; ジメチルスルフィ ド、 ジェチルスルフィ ド等のスルフィ ド類 ; スルホン類 ; チェピン、 チ ォフェン、 チアンスレン等の含硫黄複素環類 ; テトラヒ ドロチオフ ェン等の含硫黄脂肪族環状化合物 ; ポリチォフェン等の含硫黄高分 子化合物 ; 等が挙げられる。  Hydrocarbons containing sulfur are not particularly limited, but thiols such as methane thiol and ethane thiol; sulfides such as dimethyl sulfide and jetyl sulfide; sulfones; chepine, thiophene, thianthrene, etc. Sulfur-containing heterocycles; Sulfur-containing aliphatic cyclic compounds such as tetrahydrothiophene; Sulfur-containing polymer compounds such as polythiophene;
また、 同一分子内に、 窒素と硫黄の両方を有していても構わない これらの前駆体は単独で用いても構わないし、 2種類以上の任意 の組み合わせ及び比率で用いても構わない。  Further, both nitrogen and sulfur may be contained in the same molecule. These precursors may be used alone or in any combination of two or more kinds and in a ratio.
前駆体を液相状態で基板上に接触させる方法としては、 前駆体を 実質的にそのまま単独で、 もしくは溶液または分散液の状態から、 塗布法、 キャスティング法、 ブレードコート法、 ワイヤバー法、 ス ピンコート法、 ディップコート法、 スプレーコート法等のコ一ティ ング方法 ; 公知の方法を用いることができる。 これらの方法は一般 的に常圧下で実施される。  As a method of bringing the precursor into contact with the substrate in a liquid phase state, the precursor is substantially as it is, or from the state of a solution or dispersion, a coating method, a casting method, a blade coating method, a wire bar method, a spin coating method. Coating methods such as a method, a dip coating method and a spray coating method; publicly known methods can be used. These methods are generally carried out under normal pressure.
前駆体の溶媒としては、 特に制限はなく、 前駆体を溶解もしくは 分散し得るものであれば、 一般的な有機溶媒等や水を用いることが できる。 有機溶媒の例としては、 へキサン、 ヘプタン、 オクタン等の脂肪 族炭化水素 ; トルエン、 キシレン、 ベンゼン、 クロロベンゼン等の 芳香族炭化水素 ; メタノール、 エタノール、 プロパノ一ル、 ブタノ —ル等のアルコール類 ; アセトン、 メチルェチルケトン、 シクロべ ン夕ノン、 シクロへキサノン等のケトン類 ; ジェチルエーテル、 ジ ォキサン、 テトラヒ ドロフラン等のエーテル類 ; 酢酸ェチル、 酢酸 プチル、 酢酸プロピレンダリコールメチルエーテル等のエステル類 ; ピリジン、 キノ リ ン等の含窒素芳香族炭化水素 ; クロ口ホルム、 塩化メチレン、 ジクロロェタン、 トリクロロェタン、 トリクロロェ チレン等のハロゲン化炭化水素 ; N, N—ジメチルホルムアミ ド、 N , N—ジメチルァセ トアミ ド、 N—メチルピロリ ドン、 N , N— ジメチルイミダゾリジノン等のアミ ド類、 ジメチルスルホキシド、 二硫化炭素等の含硫黄溶媒等を用いることができる。 中でも、 ケト ン類、 アミ ド類、 エステル類、 ジメチルスルホキシドが好ましい。 The precursor solvent is not particularly limited, and a common organic solvent or water can be used as long as it can dissolve or disperse the precursor. Examples of organic solvents include aliphatic hydrocarbons such as hexane, heptane, and octane; aromatic hydrocarbons such as toluene, xylene, benzene, and chlorobenzene; alcohols such as methanol, ethanol, propanol, and butanol; Ketones such as acetone, methyl ethyl ketone, cyclobennone, cyclohexanone, etc .; Ethers such as jetyl ether, dioxane, tetrahydrofuran; Nitrogen-containing aromatic hydrocarbons such as pyridine and quinoline; Halogenated hydrocarbons such as chloroform, methylene chloride, dichloroethane, trichloroethane, and trichloroethylene; N, N-dimethylformamide, N, N —Dimethylacetamide, N-methyl Examples include amides such as pyrrolidone and N, N-dimethylimidazolidinone, and sulfur-containing solvents such as dimethyl sulfoxide and carbon disulfide. Of these, ketons, amides, esters, and dimethyl sulfoxide are preferable.
これらの有機溶媒は、 いずれか一種を単独で用いてもよく、 2種 類以上を任意の組み合わせおよび比率で用いてもよい。 前駆体を溶 解もしくは分散させる方法としては、 攪拌等一般的な方法が用いら れる。 溶解や分散を促進させるために、 加熱しながら溶解させても よい。 前駆体の溶解状態や分散状態を安定化させるために、 界面活 性剤が共存してもよい。 界面活性剤としては、 カチオン系、 ァニォ ン系、 ノ二オン系が挙げられる。  One of these organic solvents may be used alone, or two or more thereof may be used in any combination and ratio. As a method for dissolving or dispersing the precursor, a general method such as stirring is used. In order to promote dissolution and dispersion, dissolution may be performed while heating. In order to stabilize the dissolved state and dispersed state of the precursor, a surfactant may coexist. Examples of the surfactant include a cationic system, an anionic system, and a nonionic system.
溶液中の、 前駆体の濃度は、 特に制限はなく、 基板の種類や基板 への接触方法に応じて、 任意の比率で用いることができる。  The concentration of the precursor in the solution is not particularly limited, and can be used in any ratio depending on the type of substrate and the method of contacting the substrate.
前駆体を基板上に液相状態で接触させた後、 必要に応じて、 溶媒 または分散媒を除去しても構わない。 溶媒又は分散剤の除去は、 常 圧もしくは減圧下に加熱したり、 気流に同伴させて除去する等の一 般的な方法を用いることができる。 2007/059821 After the precursor is brought into contact with the substrate in a liquid phase state, the solvent or the dispersion medium may be removed as necessary. The removal of the solvent or dispersant can be performed by a general method such as heating under normal pressure or reduced pressure, or removing the solvent or dispersant accompanied by an air stream. 2007/059821
11 前駆体を気相状態で基板上に接触させる方法としては、 前駆体を 含有するガスやミス トの状態で、 前駆体を基板上に接触させる方法 がある。 前駆体をガスに含有させる方法としては、 特に制限はない が、 例えば前駆体中にガスをバブリング等により接触させる方法が 挙げられる。  11 As a method of bringing the precursor into contact with the substrate in a gas phase, there is a method of bringing the precursor into contact with the substrate in the state of a gas or a mist containing the precursor. The method of incorporating the precursor into the gas is not particularly limited, and examples thereof include a method of bringing the gas into contact with the precursor by bubbling or the like.
本発明において、 常圧下に気相状態で基板上に接触させる場合、 常圧とは一般的に大気圧のことをいい、 強制的に加圧もしくは減圧 しない状態のことをいう。  In the present invention, when the substrate is brought into contact with the substrate in a gas phase under normal pressure, the normal pressure generally means atmospheric pressure, and means a state where the pressure is not forcibly increased or decreased.
前駆体を含有するガスとしては、 不活性ガスが望ましい。 不活性 ガスとしては、 窒素、 アルゴン、 ヘリウム、 二酸化炭素、 一酸化炭 素等が挙げられる。 不活性ガスは単独で用いても、 2種類以上の混 合物で用いても構わない。 不活性ガス中の酸素濃度は、 3体積%以 下、 好ましくは 1体積%以下、 さらに好ましくは 0 . 5体積%以下 であることが望ましい。  The gas containing the precursor is preferably an inert gas. Examples of the inert gas include nitrogen, argon, helium, carbon dioxide, and carbon monoxide. The inert gas may be used alone or in a mixture of two or more. The oxygen concentration in the inert gas is desirably 3% by volume or less, preferably 1% by volume or less, and more preferably 0.5% by volume or less.
基板上に接触している前駆体を、 加熱処理することによって、 n 型カーボン半導体膜に変換して基板上に固定化することができる。 加熱処理の温度は、 2 0 0 °C〜 9 0 0 °C、 好ましくは 3 0 0 °C〜 8 0 0 °Cである。 温度が高くなり過ぎると、 ラマン分光スぺク トル の積分強度比 I ( D ) / I ( G ) 比が小さくなる。 また、 温度が低 すぎると、 粉末 X線図形に 0 0 2回折線が認められない、 二トリル 基が検出される、 ラマン分光スペク トルの Iバンド、 Dパンドが観 測されなくなる傾向がある。  The precursor in contact with the substrate can be converted into an n-type carbon semiconductor film by heat treatment and immobilized on the substrate. The temperature of the heat treatment is 2100 ° C to 900 ° C, preferably 3200 ° C to 800 ° C. If the temperature becomes too high, the integral intensity ratio I (D) / I (G) ratio of the Raman spectroscopic spectrum decreases. If the temperature is too low, no 0 2 diffraction lines are observed in the powder X-ray pattern, nitrile groups are detected, and the I-band and D-pand of the Raman spectroscopic spectrum tend not to be observed.
n型半導体膜の前駆体として、 含窒素複素環類、 アミン類、 ニト リル類等の含窒素炭化水素類を用いた場合、 一般的に加熱処理の過 程では一般的に二トリル基が生成する。 本発明の n型カーボン半導 体膜においては、 前駆体に含窒素炭化水素類を用いた場合において も、 膜中には実質的に二トリル基が存在しないのが好適である。 こ のためには、 原料の構造に合わせて、 加熱処理条件を制御すること により、 生成物中に二トリル基が含有されないようにすることが重 要である。 膜中に実質的に二トリル基が含有されないことは、 例え ば、 赤外分光スペク トル測定において、 二トリル基の吸収帯であるWhen nitrogen-containing hydrocarbons such as nitrogen-containing heterocycles, amines, and nitriles are used as precursors for n-type semiconductor films, nitrile groups are generally generated during the heat treatment process. To do. In the n-type carbon semiconductor film of the present invention, even when nitrogen-containing hydrocarbons are used as the precursor, it is preferable that the film is substantially free of nitrile groups. This Therefore, it is important to prevent the nitrile group from being contained in the product by controlling the heat treatment conditions according to the structure of the raw material. The fact that nitrile groups are not substantially contained in the film is, for example, an absorption band of nitrile groups in infrared spectroscopic measurement.
、 2 1 3 0 c m - 1付近に、 吸収スぺク トルが実質的に観測されな いことにより、 確認できる。 二トリル基は、 C一 N≡重結合を有す る極性の官能基であり、 半導体のキヤリァ輸送に悪影響を及ぼしゃ すいからである。 It can be confirmed by the fact that no absorption spectrum is observed in the vicinity of 2 1 3 0 cm-1. This is because the nitrile group is a polar functional group having a C 1 N≡ heavy bond and may adversely affect the carrier transport of the semiconductor.
加熱処理は不活性ガス雰囲気下で行う ことが好ましい。 不活性ガ スとしては、 窒素、 アルゴン、 ヘリウム、 二酸化炭素、 一酸化炭素 等が挙げられる。 不活性ガスは単独で用いても、 2種類以上の混合 物で用いても構わない。 不活性ガス中の酸素濃度は、 3体積%以下 、 好ましくは 1体積%以下、 さらに好ましくは 0 . 5体積%以下で あることが望ましい。  The heat treatment is preferably performed in an inert gas atmosphere. Examples of the inert gas include nitrogen, argon, helium, carbon dioxide, carbon monoxide and the like. The inert gas may be used alone or in a mixture of two or more. The oxygen concentration in the inert gas is desirably 3% by volume or less, preferably 1% by volume or less, and more preferably 0.5% by volume or less.
加熱処理の温度が 6 0 0 °C以下の場合には、 空気のような分子状 酸素を含有する不活性ガス雰囲気下でも構わない。 不活性ガスとし ては、 窒素、 アルゴン、 ヘリウム、 二酸化炭素、 一酸化炭素等が挙 げられる。 このときの分子状酸素の濃度は、 0 . 5体積%以上、 好 ましくは 1体積%以上、 さらに好ましくは 3体積%以上である。 前駆体を気相状態で基板に接触させる場合には、 前駆体を含有す るガスを基板に接触させた状態のまま、 加熱処理しても構わない。 加熱処理の処理時間は、 n型カーボン半導体膜の膜厚、 有機化合 物の種類、 温度にもよるが、 通常、 0 . 1秒から 1 0 0時間程度で ある。  When the temperature of the heat treatment is 600 ° C. or lower, an inert gas atmosphere containing molecular oxygen such as air may be used. Examples of the inert gas include nitrogen, argon, helium, carbon dioxide, and carbon monoxide. At this time, the concentration of molecular oxygen is 0.5% by volume or more, preferably 1% by volume or more, and more preferably 3% by volume or more. In the case where the precursor is brought into contact with the substrate in a gas phase state, heat treatment may be performed while the gas containing the precursor is kept in contact with the substrate. Although the heat treatment time depends on the film thickness of the n-type carbon semiconductor film, the type of organic compound, and the temperature, it is usually about 0.1 seconds to 100 hours.
膜厚は目的に応じて選定し得るが、 通常 l〜 1 0 0 0 n m、 好ま しくは 5〜 5 0 0 n mである。  The film thickness can be selected according to the purpose, but is usually 1 to 100 nm, and preferably 5 to 500 nm.
基板としては、 目的に応じて適宜選定されうるが、 例えば、 シリ コン基板等の半導体基板、 ステンレス、 ニッケル等の金属基板、 ガ ラス、 アルミナ、 窒化ガリウム、 酸化インジウム、 酸化亜鉛等の絶 縁基板、 セラミック基板を用いることができる。 これらの基板上に 別の化合物等がコーティングされていて、 その上に本発明の n型力 —ボン半導体膜を形成させてもよい。 基板は使用する前に、 フッ水 素酸等で表面処理することが望ましい。 The substrate can be appropriately selected according to the purpose. Semiconductor substrates such as copper substrates, metal substrates such as stainless steel and nickel, insulating substrates such as glass, alumina, gallium nitride, indium oxide, and zinc oxide, and ceramic substrates can be used. Another compound or the like may be coated on these substrates, and the n-type force-bon semiconductor film of the present invention may be formed thereon. It is desirable to treat the substrate with hydrofluoric acid before use.
本発明の n型カーボン半導体膜の製造においては、 通常用いられ る n型ド一パントを添加する必要はないが、 さらに適宜添加するこ とも排除されない。  In the production of the n-type carbon semiconductor film of the present invention, it is not necessary to add a commonly used n-type dopant, but it is not excluded to add it as appropriate.
本発明の n型カーボン半導体の電気伝導度は通常 1 0 0 S / c m 以上である。  The electrical conductivity of the n-type carbon semiconductor of the present invention is usually 100 S / cm or more.
本発明における P型カーボン半導体は、 p型半導体膜の前駆体と なる炭化水素を、 液相状態、 もしくは常圧下に気相状態で基板に接 触させた後、 加熱処理することによって製造する。  The P-type carbon semiconductor in the present invention is produced by contacting a hydrocarbon, which is a precursor of a p-type semiconductor film, with a substrate in a liquid phase state or a gas phase state under normal pressure, followed by heat treatment.
本発明の P型半導体膜は、 主に炭素六員環の集合体からなる P型 カーボン半導体膜が用いられる。 そして、 特に好適にはラマン分光 法によるスペク トルにおいて、 1 3 0 0 c nr1付近の Dバンド (通 常 1 2 0 0〜 1 4 0 0 c m-1におけるブロードなバンド) と 1 6 0 0 c m— 1付近の Gバンド (通常 1 4 5 0〜 1 7 0 0 c m— 1における ブロードなバンド) の積分強度比 I (D) / I (G) が 0. 3〜 3 . 0、 好ましくは 0. 5〜 2. 5、 である p型力一ボン半導体膜が 用いられうる。 積分強度比 I (D) II (G) が 0. 3未満である と、 半金属となるため半導体として機能せず、 一方、 積分強度比 I (D) / I (G) が 3. 0 を超えると、 集合した炭素六員環の数が 少なく絶縁性を示し、 電気伝導性が得られない。 また、 本発明にお ける P型カーボン半導体膜は、 好適には粉末 X線図形に 0 0 2回折 線が認められる。 P T/JP2007/059821 As the P-type semiconductor film of the present invention, a P-type carbon semiconductor film mainly composed of an aggregate of carbon six-membered rings is used. Especially preferably, in the spectrum by Raman spectroscopy, the D band near 1 30 0 c nr 1 (normally a broad band in 1 2 0 0 to 1 4 0 0 cm- 1 ) and 1 60 The integrated intensity ratio I (D) / I (G) of the G band near 0 cm— 1 (usually a broad band in the range of 1 45 0 to 1 700 cm — 1 ) is 0.3 to 3.0, preferably A p-type force single-bon semiconductor film having a thickness of 0.5 to 2.5 can be used. If the integrated intensity ratio I (D) II (G) is less than 0.3, it will be a semi-metal and will not function as a semiconductor, while the integrated intensity ratio I (D) / I (G) will be 3.0. If exceeded, the number of aggregated carbon six-membered rings is small and insulation is exhibited, and electrical conductivity cannot be obtained. Further, the P-type carbon semiconductor film in the present invention preferably has 0. 02 diffraction lines in the powder X-ray pattern. PT / JP2007 / 059821
14 前駆体の炭化水素は特に制限はないが、 メタン、 ェタン、 プロパ ン、 ブタン、 ブテン、 ペンタン、 へキサン、 オクタン等の脂肪族鎖 状炭化水素、 シクロペンタン、 シクロへキサン、 シクロオクタン等 の脂肪族環状炭化水素、 ベンゼン、 トルエン、 キシレン、 ェチルベ ンゼン、 スチレン、 ナフ夕レン、 アントラセン等の非へテロ系の単 環もしくは多環式芳香族炭化水素、 ナフサ、 ガソリ ン、 軽油、 重油 、 石油系または石炭系のタールもしくはピッチ等、 広く用いること ができる。 これらの前駆体は単独で用いても構わないし、 2種類以 上の任意の組み合わせ及び比率で用いても構わない。  14 Precursor hydrocarbons are not particularly limited, but aliphatic chain hydrocarbons such as methane, ethane, propane, butane, butene, pentane, hexane, and octane, cyclopentane, cyclohexane, cyclooctane, etc. Non-heterocyclic monocyclic or polycyclic aromatic hydrocarbons such as aliphatic cyclic hydrocarbons, benzene, toluene, xylene, ethylbenzene, styrene, naphthenolene, anthracene, naphtha, gasolin, light oil, heavy oil, petroleum Can be widely used, such as tar or pitch based on coal or coal. These precursors may be used alone or in any combination and ratio of two or more.
前駆体を液相状態で基板上に接触させる方法としては、 前駆体を 実質的にそのまま単独で、 もしくは溶液または分散液の状態から、 塗布法、 キャスティング法、 プレードコート法、 ワイヤバー法、 ス ピンコート法、 ディップコート法、 スプレーコ一ト法等のコ一ティ ング方法 ; 公知の方法を用いることができる。  As a method of bringing the precursor into contact with the substrate in a liquid phase state, the precursor is substantially as it is, or from the state of a solution or dispersion, a coating method, a casting method, a blade coating method, a wire bar method, a spin coating method. Coating methods such as a method, a dip coating method, and a spray coating method; publicly known methods can be used.
前駆体の溶媒としては、 特に制限はなく、 前駆体を溶解もしくは 分散し得るものであれば、 一般的な有機溶媒等や水を用いることが できる。  The precursor solvent is not particularly limited, and a common organic solvent or water can be used as long as it can dissolve or disperse the precursor.
有機溶媒の例としては、 へキサン、 ヘプタン、 オクタン等の脂肪 族炭化水素 ; トルエン、 キシレン、 ベンゼン、 クロ口ベンゼン等の 芳香族炭化水素 ; メタノール、 エタノール、 プロパノール、 ブ夕ノ ール等のアルコール類 ; アセトン、 メチルェチルケトン、 シクロべ ン夕ノン、 シクロへキサノン等のケトン類 ; ジェチルエーテル、 ジ ォキサン、 テトラヒ ドロフラン等のエーテル類 ; 酢酸ェチル、 酢酸 プチル、 酢酸プロピレングリコールメチルエーテル等のエステル類 ; ピリジン、 キノ リ ン等の含窒素芳香族炭化水素 ; クロ口ホルム、 塩化メチレン、 ジクロロェタン、 トリクロロェタン、 トリクロロェ チレン等のハロゲン化炭化水素 ; N, N —ジメチルホルムアミ ド、 N , N—ジメチルァセトアミ ド、 N—メチルピロリ ドン、 N, N— ジメチルイミダゾリジノン等のアミ ド類、 ジメチルスルホキシド、 二硫化炭素等の含硫黄溶媒等を用いることができる。 Examples of organic solvents include aliphatic hydrocarbons such as hexane, heptane and octane; aromatic hydrocarbons such as toluene, xylene, benzene and black benzene; alcohols such as methanol, ethanol, propanol and butyl alcohol Ketones such as acetone, methyl ethyl ketone, cyclobennone, cyclohexanone, etc .; Ethers such as jetyl ether, dioxane, tetrahydrofuran, etc .; Ethyl acetate, butyl acetate, propylene glycol methyl ether, etc. Esters: Nitrogen-containing aromatic hydrocarbons such as pyridine and quinoline; Halogenated hydrocarbons such as chloroform, methylene chloride, dichloroethane, trichloroethane, and trichloroethylene; N, N —dimethylformamide, Amides such as N, N-dimethylacetamide, N-methylpyrrolidone, N, N-dimethylimidazolidinone, sulfur-containing solvents such as dimethylsulfoxide and carbon disulfide can be used.
これらの有機溶媒は、 いずれか一種を単独で用いてもよく、 2種 類以上を任意の組み合わせおよび比率で用いてもよい。 前駆体を溶 解もしくは分散させる方法としては、 攪拌等一般的な方法が用いら れる。 溶解や分散を促進させるために、 加熱しながら溶解させても よい。 前駆体の溶解状態や分散状態を安定化させるために、 界面活 性剤が共存してもよい。 界面活性剤としては、 カチオン系、 ァニォ ン系、 ノニオン系が挙げられる。  One of these organic solvents may be used alone, or two or more thereof may be used in any combination and ratio. As a method for dissolving or dispersing the precursor, a general method such as stirring is used. In order to promote dissolution and dispersion, dissolution may be performed while heating. In order to stabilize the dissolved state and dispersed state of the precursor, a surfactant may coexist. Examples of the surfactant include a cationic system, an anionic system, and a nonionic system.
溶液中の、 前駆体の濃度は、 特に制限はなく、 基板の種類や基板 への接触方法に応じて、 任意の比率で用いることができる。  The concentration of the precursor in the solution is not particularly limited, and can be used in any ratio depending on the type of substrate and the method of contacting the substrate.
前駆体を基板上に液相状態で接触させた後、 必要に応じて、 溶媒 または分散媒を除去しても構わない。 溶媒又は分散剤の除去は、 常 圧もしくは減圧下に加熱したり、 気流に同伴させて除去する等の一 般的な方法を用いることができる。  After the precursor is brought into contact with the substrate in a liquid phase state, the solvent or the dispersion medium may be removed as necessary. The removal of the solvent or dispersant can be performed by a general method such as heating under normal pressure or reduced pressure, or removing the solvent or dispersant accompanied by an air stream.
前駆体を気相状態で基板上に接触させる方法としては、 前駆体を 含有するガスやミス トの状態で、 前駆体を基板上に接触させる方法 がある。 前駆体をガスに含有させる方法としては、 特に制限はない が、 例えば前駆体中にガスをバブリング等により接触させる方法が 挙げられる。  As a method of bringing the precursor into contact with the substrate in a gas phase state, there is a method in which the precursor is brought into contact with the substrate in the state of a gas or a mist containing the precursor. The method of incorporating the precursor into the gas is not particularly limited, and examples thereof include a method of bringing the gas into contact with the precursor by bubbling or the like.
本発明において、 常圧下に気相状態で基板上に接触させる場合、 常圧とは一般的に大気圧下のことをいい、 強制的に加圧もしくは減 圧しない状態のことをいう。  In the present invention, when the substrate is brought into contact with the substrate in the gas phase under normal pressure, the normal pressure generally refers to the atmospheric pressure, and refers to the state where the pressure is not forcibly increased or decreased.
ガスとしては、 不活性ガスが望ましい。 不活性ガスとしては、 窒 素、 アルゴン、 ヘリウム、 二酸化炭素、 一酸化炭素等が挙げられる 。 不活性ガスは単独で用いても、 2種類以上の混合物で用いても構 T/JP2007/059821 The gas is preferably an inert gas. Examples of the inert gas include nitrogen, argon, helium, carbon dioxide, and carbon monoxide. The inert gas may be used alone or in a mixture of two or more. T / JP2007 / 059821
16 わない。 不活性ガス中の酸素濃度は、 3体積%以下、 好ましくは 1 体積%以下、 さらに好ましくは 0. 5体積%以下であることが望ま しい。  16 Not sure. The oxygen concentration in the inert gas is desirably 3% by volume or less, preferably 1% by volume or less, and more preferably 0.5% by volume or less.
基板上に接触している前駆体を、 加熱処理することによって、 P 型カーボン半導体膜に変換して基板上に固定化することができる。 加熱処理の温度は、 2 0 0 °Cから 9 0 0 °C、 好ましくは 3 0 0 °C 〜 8 0 0 °Cである。 温度が高くなり過ぎると、 ラマン分光スぺク ト ルの積分強度比 I (D) / I (G) 比が小さくなる。 温度は、 目的 とする積分強度比 I (D) / I (G) の値に応じて、 選定されうる 加熱処理は不活性ガス雰囲気下で行う ことが好ましい。 不活性ガ スとしては、 窒素、 アルゴン、 ヘリウム、 二酸化炭素、 一酸化炭素 等が挙げられる。 不活性ガスは単独で用いても、 2種類以上の混合 物で用いても構わない。 不活性ガス中の酸素濃度は、 3体積%以下 、 好ましくは 1体積%以下、 さらに好ましくは 0. 5体積%以下で あることが望ましい。  The precursor in contact with the substrate can be converted into a P-type carbon semiconductor film by heat treatment and immobilized on the substrate. The temperature for the heat treatment is from 200 ° C. to 90 ° C., preferably from 300 ° C. to 80 ° C. If the temperature gets too high, the integrated intensity ratio I (D) / I (G) ratio of the Raman spectrum will become smaller. The temperature can be selected according to the value of the desired integral intensity ratio I (D) / I (G). The heat treatment is preferably performed in an inert gas atmosphere. Examples of the inert gas include nitrogen, argon, helium, carbon dioxide, carbon monoxide and the like. The inert gas may be used alone or in a mixture of two or more. The oxygen concentration in the inert gas is desirably 3% by volume or less, preferably 1% by volume or less, and more preferably 0.5% by volume or less.
加熱処理の温度が 6 0 0 °C以下の場合には、 空気のような分子状 酸素を含有する不活性ガス雰囲気下でも構わない。 不活性ガスとし ては、 窒素、 アルゴン、 ヘリウム、 二酸化炭素、 一酸化炭素等が挙 げられる。 このときの分子状酸素の濃度は、 0. 5体積%以上、 好 ましくは 1体積%以上、 さらに好ましくは 3体積%以上である。  When the temperature of the heat treatment is 600 ° C. or lower, an inert gas atmosphere containing molecular oxygen such as air may be used. Examples of the inert gas include nitrogen, argon, helium, carbon dioxide, and carbon monoxide. At this time, the concentration of molecular oxygen is 0.5% by volume or more, preferably 1% by volume or more, and more preferably 3% by volume or more.
前駆体を気相状態で基板に接触させる場合には、 前駆体を含有す るガスを基板に接触させた状態のまま、 加熱処理しても構わない。 処理時間は、 n型カーボン半導体膜の膜厚、 有機化合物の種類、 温度にもよるが、 通常、 0. 1秒から 1 0 0時間程度である。 膜厚 は目的に応じて選定し得るが、 通常 l〜 1 0 0 0 nm、 好ましくは 5〜 5 0 0 n mである。 基板としては、 目的に応じて適宜選定されうるが、 例えば、 シリ コン基板等の半導体基板、 ステンレス、 ニッケル等の金属基板、 ガ ラス、 アルミナ、 窒化ガリウム、 酸化インジウム、 酸化亜鉛等の絶 縁基板、 セラミ ック基板を用いることができる。 これらの基板上に 別の化合物等がコーティングされていて、 その上に本発明の P型力 —ボン半導体膜を形成させてもよい。 基板は使用する前に、 フッ水 素酸等で表面処理することが望ましい。 In the case where the precursor is brought into contact with the substrate in a gas phase state, heat treatment may be performed while the gas containing the precursor is kept in contact with the substrate. The treatment time depends on the film thickness of the n-type carbon semiconductor film, the type of organic compound, and the temperature, but is usually about 0.1 seconds to 100 hours. The film thickness can be selected according to the purpose, but is usually 1 to 100 nm, preferably 5 to 500 nm. The substrate can be appropriately selected according to the purpose. For example, a semiconductor substrate such as a silicon substrate, a metal substrate such as stainless steel or nickel, an insulating substrate such as glass, alumina, gallium nitride, indium oxide, or zinc oxide. A ceramic substrate can be used. Another compound or the like may be coated on these substrates, and the P-type force-bon semiconductor film of the present invention may be formed thereon. It is desirable to treat the substrate with hydrofluoric acid before use.
また、 基板上に、 本発明の n型カーボン半導体膜を形成させた後 に、 本発明の p型半導体膜を形成させてもよい。 逆に、 基板上に、 本発明の P型力一ボン半導体膜を形成させた後に、 本発明の n型力 —ボン半導体膜を形成させてもよい。  Further, the p-type semiconductor film of the present invention may be formed after the n-type carbon semiconductor film of the present invention is formed on the substrate. Conversely, the n-type force-bon semiconductor film of the present invention may be formed after forming the p-type force-bon semiconductor film of the present invention on the substrate.
このように、 本発明の n型力一ボン半導体膜、 p型カーボン半導 体膜は、 前駆体の溶液等の液相状態から、 公知の様々な塗布方法で 調製することができる。 また、 前駆体を、 加圧や減圧を必要としな い、 常圧下での気相状態から調製することができる。 加熱処理も、 一般的な加熱炉等を用いることができる。 本発明の方法によれば、 容易に大面積の半導体膜を低コス トで製造することができる。  As described above, the n-type force semiconductor film and the p-type carbon semiconductor film of the present invention can be prepared from a liquid phase state such as a precursor solution by various known coating methods. In addition, the precursor can be prepared from a gas phase under normal pressure without requiring pressurization or decompression. For the heat treatment, a general heating furnace or the like can be used. According to the method of the present invention, a semiconductor film having a large area can be easily produced at a low cost.
本発明の n型カーボン半導体膜は、 半導体素子の材料として用い られる。 例えば、 p型半導体膜と n型半導体膜とによる p n接合を 有する半導体素子の n型半導体膜として好適に用いられうる。 p n 接合体とは、 半導体中で p型の領域と n型の領域が接している部分 のことである。 p n接合体の形成自体は常法によることができる。 さらに、 p i n接合とすることもできる。 ここで、 p型半導体膜と しては、 公知の S i等の p型半導体膜を使用しうるが、 好適には主 に炭素六員環の集合体からなる本発明の P型カーボン半導体膜が用 いられる。  The n-type carbon semiconductor film of the present invention is used as a material for semiconductor elements. For example, it can be suitably used as an n-type semiconductor film of a semiconductor element having a pn junction composed of a p-type semiconductor film and an n-type semiconductor film. A p n junction is a part of a semiconductor where a p-type region and an n-type region are in contact. The formation of the pn conjugate itself can be performed by a conventional method. Furthermore, it can also be a pin junction. Here, as the p-type semiconductor film, a known p-type semiconductor film such as Si can be used, but preferably the P-type carbon semiconductor film of the present invention mainly composed of an aggregate of carbon six-membered rings. Is used.
本発明の n型カーボン半導体と本発明の p型カーボン半導体から P n接合体を形成する方法は特に限定はないが、 例えば、 ニッケル や透明性導電酸化物基板上に、 本発明の p型カーボン半導体膜を形 成させた後、 その上に本発明の n型カーボン半導体を形成させる、 等の方法が挙げられる。 基板上に先に n型カーボン半導体膜を形成 させた後に、 p型カーボン半導体膜を形成させてもよい。 From the n-type carbon semiconductor of the present invention and the p-type carbon semiconductor of the present invention The method for forming the P n bonded body is not particularly limited. For example, after the p-type carbon semiconductor film of the present invention is formed on nickel or a transparent conductive oxide substrate, the n-type of the present invention is formed thereon. For example, forming a type carbon semiconductor. After forming the n-type carbon semiconductor film on the substrate first, the p-type carbon semiconductor film may be formed.
本発明の n型カーボン半導体膜を用いた半導体素子は、 上記のよ うに p型半導体と n型半導体との接合構造である p n接合体として 、 ダイオード、 トランジスタ、 光電変換素子や各種センサ等の素子 の一部として、 種々の電子回路中に組み込み得るが、 特に太陽電池 のための半導体素子として好適に使用され得る。 すなわち、 たとえ ばシリコン基板上に上記の n型カーボン半導体膜および p型カーボ ン半導体膜を積層し、 p n接合体を形成して光電変換層とし、 電極 等を有する公知の構成の太陽電池に組み込むことにより、 太陽光が 入射すると十の電気を有する正孔 (電子が抜けた孔) と一の電気を 有する電子が発生し、 p n接合体により分けられ電流となる。  The semiconductor device using the n-type carbon semiconductor film of the present invention is a device such as a diode, a transistor, a photoelectric conversion device, or various sensors as a pn junction which is a junction structure of a p-type semiconductor and an n-type semiconductor as described above. Although it can be incorporated into various electronic circuits, it can be suitably used as a semiconductor element particularly for solar cells. That is, for example, the above-mentioned n-type carbon semiconductor film and p-type carbon semiconductor film are stacked on a silicon substrate, and a pn junction is formed as a photoelectric conversion layer, which is incorporated into a solar cell having a known configuration having electrodes and the like. As a result, when sunlight is incident, a hole having ten electricity (a hole from which an electron has escaped) and an electron having one electricity are generated, which are separated by a pn junction and become a current.
本発明における n型カーボン半導体膜を用いた半導体素子が使わ れた太陽電池は、 例えば、 ゾーラ一シュミ レータ A M 1 . 5 Gモ一 ドで測定した場合、 エネルギー効率 0 . 0 5 %以上の性能が得られ る。  The solar cell using the semiconductor element using the n-type carbon semiconductor film according to the present invention has, for example, a performance with an energy efficiency of 0.05% or more when measured in a solar simulator AM 1.5 G mode. Is obtained.
以下、 実施例により本発明をさらに詳細に説明するが、 本発明は これらの実施例に限定されるものではない。  EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
実施例 1 Example 1
希薄フッ化水素酸で表面処理した P型 S i ( 1 0 0 ) 基板 ( 2 X 2 c m ) (三菱マテリアル (株) 製) を石英製環状電気炉に入れ、 ピ リジン蒸気を含む窒素ガス流通下、 7 0 0 °Cで、 1 0時間加熱した 。 このピリジン蒸気を含む窒素ガスとしては、 ピリジンを導入し、 2 0 °Cに保持した容器に 5 0 m L/分の窒素ガスを吹き込み、 容器か 2007/059821 P-type Si (100) substrate (2 X 2 cm) (Mitsubishi Materials Co., Ltd.) surface-treated with dilute hydrofluoric acid was placed in a quartz annular electric furnace, and nitrogen gas containing pyridine vapor was distributed. Under heating at 700 ° C. for 10 hours. As the nitrogen gas containing pyridine vapor, pyridine was introduced, nitrogen gas was blown into the container kept at 20 ° C, and 50 ml / min was blown into the container. 2007/059821
19 ら導出される窒素—ピリジンガスを用いた。  19 Nitrogen-pyridine gas derived from the above was used.
加熱により得られた基板上には約 3 0 n mのカーボン薄膜が形成 されていることを走査型電子顕微鏡で確認した。 この基板上のカー ボンのラマン分光スペク トルを、 ラマン分光装置 「日本分光 N R S 2 1 0 0」 により測定したところ、 1 3 0 0 c m— 1付近の Dバンド と 1 6 0 0 c m—1付近の Gバンドの 2つが検出され、 この 2つのピ ークの積分強度比 I (D) / I (G) は 1. 6であった。 また、 X 線光電子分光スぺク トルにおいて、 このカーボン薄膜における窒素 原子と炭素原子の比率は 0. 1 0であった。 さらに、 得られたカー ボン薄膜は、 粉末 X線図形に 0 0 2回折線が認めら、 赤外分光スぺ ク トルにおいて、 2 1 3 0 c m- 1付近には吸収ピークは認められな かった。 It was confirmed with a scanning electron microscope that a carbon thin film of about 30 nm was formed on the substrate obtained by heating. The car Bonn Raman spectrum on the substrate, was measured by Raman spectroscopy device "JASCO NRS 2 1 0 0", 1 3 0 0 cm- 1 near D band and 1 6 0 0 cm- 1 near Two G bands were detected, and the integrated intensity ratio I (D) / I (G) of these two peaks was 1.6. In the X-ray photoelectron spectroscopy spectrum, the ratio of nitrogen atoms to carbon atoms in this carbon thin film was 0.10. In addition, the obtained carbon thin film showed 0 0 2 diffraction lines in the powder X-ray pattern, and no absorption peak was observed in the vicinity of 2 1 30 cm -1 in the infrared spectrum. won.
得られた試料基板の S i基板面側を研磨し、 図 1 に示す半導体デ バイスを構築した。 図 1は、 その断面概略図であり、 導通を得るた めに、 基板 ( 1 ) 上のカーボン薄膜 ( 2 ) 上に数十 nmの金のスパ ッ夕膜 ( 3 ) が形成されており ( ( 4 ) はリード線である) 、 電気 的測定の結果、 本デバイスは p nの順方向バイアスに対して光起電 力、 光電流が確認され、 カーボン薄膜は n型半導体として機能する ことが明らかになった。 ゾーラ一シュミレー夕 「三永電機製作所 X E S 3 0 1 S」 を用いて、 AM I . 5 Gモードで測定した結果、 こ のデバイスは 0 CV: 340mV、 Jsc: 6. 2 mA/c m 2 > エネルギー 変換効率 : 2 %の太陽電池として作動することが確認された。 The Si substrate surface side of the obtained sample substrate was polished, and the semiconductor device shown in Fig. 1 was constructed. Figure 1 is a schematic cross-sectional view of this structure. To obtain electrical continuity, a tens of nanometer gold sputtering film (3) is formed on a carbon film (2) on a substrate (1) ( (4) is the lead wire) As a result of electrical measurement, this device has been confirmed to have photovoltaic and photocurrent against the forward bias of pn, and it is clear that the carbon thin film functions as an n-type semiconductor. Became. As a result of measuring in AM I .5 G mode using “Zora Ishirei XES 3 0 1 S”, this device has 0 CV: 340 mV, Jsc: 6.2 mA / cm 2 > energy Conversion efficiency: It was confirmed to operate as a 2% solar cell.
実施例 2 Example 2
希薄フッ化水素酸で表面処理した n型 Si ( 1 0 0 ) 基板 ( 2 X 2 c m) (三菱マテリアル (株) 製) を石英製環状電気炉に入れ、 ベ ンゼン蒸気を含む窒素ガス流通下、 6 0 0 °Cで、 1 0時間加熱した 。 このベンゼン蒸気を含む窒素ガスとしては、 ベンゼンを導入し、 2007/059821 An n-type Si (100) substrate (2 X 2 cm) (Mitsubishi Materials Co., Ltd.) surface-treated with dilute hydrofluoric acid was placed in a quartz annular electric furnace under nitrogen gas flow containing benzene vapor. And heated at 600 ° C. for 10 hours. As nitrogen gas containing this benzene vapor, benzene is introduced, 2007/059821
20  20
2 O t:に保持した容器に 5 0 mL/分の窒素ガスを吹き込み、 容器か ら導出される窒素—ベンゼンガスを用いた。 Nitrogen gas was blown into the container held at 2 Ot: at 50 mL / min, and nitrogen-benzene gas derived from the container was used.
加熱により得られた基板上には約 3 0 n mのカーボン薄膜が形成 されていることを走査型電子顕微鏡で確認した。 この基板上のカー ボンのラマン分光スペク トルを、 ラマン分光装置 「日本分光 NR S 2 1 0 0」 により測定したところ、 1 3 0 0 c m—1付近の Dバンド と 1 6 0 0 c m— 1付近の Gバンドの 2つが検出され、 この 2つのピ ークの積分強度比 I (D) / I (G) は 1. 0であった。 また、 X 線光電子分光スぺク トルにおいて、 このカーボン薄膜における窒素 原子と炭素原子の比率は 0. 1 0であった。 さらに、 得られたカー ボン薄膜は、 粉末 X線図形に 0 0 2回折線が認められ、 赤外分光ス ぺク トルにおいて、 2 1 3 0 c m— 1付近の吸収ピークは認められな かった。 It was confirmed with a scanning electron microscope that a carbon thin film of about 30 nm was formed on the substrate obtained by heating. The car Bonn Raman spectrum on the substrate, was measured by Raman spectroscopy device "JASCO NR S 2 1 0 0", 1 3 0 0 cm- 1 near D band and 1 6 0 0 cm- 1 Two nearby G bands were detected, and the integrated intensity ratio I (D) / I (G) of these two peaks was 1.0. In the X-ray photoelectron spectroscopy spectrum, the ratio of nitrogen atoms to carbon atoms in this carbon thin film was 0.10. Furthermore, the obtained carbon thin film showed 0 0 2 diffraction lines in the powder X-ray pattern, and no absorption peak in the vicinity of 2 1 30 cm- 1 was observed in the infrared spectrum. .
得られた試料基板の S i基板面側を研磨し、 実施例 1 と同様のデ バイスを構築した。 電気的測定の結果、 本デバイスは p nの順方向 バイアスに対して光起電力、 光電流が観測され、 カーボン薄膜は P 型半導体として機能することが明らかになった。 ソーラーシユミ レ 一夕 AM I . 5 Gモードで測定した結果、 このデバイスは 0 CV: 20 OmV、 Jsc: 13.9mA/c m 2 , エネルギー変換効率 : 1.8 %の太陽電 池として作動することが確認された。  The Si substrate surface side of the obtained sample substrate was polished to construct the same device as in Example 1. As a result of electrical measurement, photovoltaic power and photocurrent were observed for the forward bias of pn in this device, and it became clear that the carbon thin film functions as a P-type semiconductor. As a result of measurement in AM I .5 G mode, this device was confirmed to operate as a solar cell with 0 CV: 20 OmV, Jsc: 13.9 mA / cm 2, energy conversion efficiency: 1.8% .
実施例 3 Example 3
研磨した Ni基板 ( 0. 1 X 2 X 2 c m) を石英製環状電気炉に入 れ、 実施例 1 と同様なピリジン蒸気を含む窒素ガス流通下、 7 0 0 °Cで、 1 0時間加熱した。 その後、 実施例 2 と同様にベンゼン蒸気 を含む窒素ガス流通下、 6 0 0 °Cで、 1 0時間加熱した。  A polished Ni substrate (0.1 X 2 X 2 cm) was placed in a quartz annular electric furnace and heated at 70 ° C. for 10 hours under a nitrogen gas flow containing pyridine vapor as in Example 1. did. Thereafter, the sample was heated at 60 ° C. for 10 hours under a nitrogen gas flow containing benzene vapor in the same manner as in Example 2.
加熱により得られた基板上には約 3 O nmの n型カーボン薄膜上 に 3 O nm程度の p型カーボン薄膜が形成されていることが確認さ れた。 この基板上の力一ボンのラマン分光スペク トルでは、 1 3 0 0 c m— 1付近の Dバンドと 1 6 0 0 c nT 1付近の Gバンドの 2つが 検出され、 この 2つのピークの積分強度比 I (D) / I (G) は 1 . 3であった。 さらに、 得られたカーボン薄膜は、 粉末 X線図形に 0 0 2回折線が認められ、 赤外分光スぺク トルにおいて、 2 1 3 0 c m— 1付近には吸収ピークは認められなかった。 It was confirmed that a p-type carbon thin film of about 3 O nm was formed on an n-type carbon thin film of about 3 O nm on the substrate obtained by heating. It was. In force one Bonn Raman spectrum on the substrate, 1 3 0 0 cm- 1 two near the D-band and 1 6 0 0 c nT 1 near G band is detected, the integrated intensity of the two peaks The ratio I (D) / I (G) was 1.3. Further, the obtained carbon thin film showed 0 0 2 diffraction lines in the powder X-ray pattern, and no absorption peak was observed in the vicinity of 2 1 30 cm- 1 in the infrared spectroscopy spectrum.
得られた試料基板の N i基板側を研磨し、 実施例 1 と同様のデバ イスを構築した。 電気的測定の結果、 本デバイスは p nの順方向バ ィァスに対して光起電力、 光電流が観測され、 このデバイスは p n 接合として機能することが明らかになった。 ソーラーシユミレ一タ AM I . 5 Gモードで測定した結果、 このデバイスは 0 CV: lOOmV 、 Jsc: 10. OmA/c m2 、 エネルギー変換効率 : 1.2 %の太陽電池と して作動することが確認された。 The Ni substrate side of the obtained sample substrate was polished, and a device similar to Example 1 was constructed. As a result of electrical measurement, photovoltaic power and photocurrent were observed for this device in the forward direction of pn, and it became clear that this device functions as a pn junction. As measured by solar simulator AM I .5 G mode, this device operates as 0 CV: lOOmV, Jsc: 10. OmA / cm 2 , energy conversion efficiency: 1.2% solar cell It was done.
比較例 1 Comparative Example 1
希薄フッ化水素酸で表面処理した P型 Si ( 1 0 0 ) 基板 ( 2 X 2 c m) (三菱マテリアル (株) 製) を石英製環状電気炉に入れ、 ピ リジン蒸気を含む窒素ガス流通下、 1 0 0 0 °Cで、 1 0時間加熱し た。 このピリジン蒸気を含む窒素ガスとしては、 ピリジンを導入し 、 2 0 °Cに保持した容器に 5 O mL/分の窒素ガスを吹き込み、 容器 から導出される窒素一ピリジンガスを用いた。  P-type Si (1 0 0) substrate (2 X 2 cm) (Mitsubishi Materials Co., Ltd.) surface-treated with dilute hydrofluoric acid was placed in a quartz annular electric furnace under nitrogen gas flow containing pyridine vapor And heated at 100 ° C. for 10 hours. As the nitrogen gas containing pyridine vapor, pyridine was introduced, nitrogen gas of 5 O mL / min was blown into a container maintained at 20 ° C., and nitrogen-pyridine gas derived from the container was used.
加熱により得られた基板上には約 1 0 0 nmの力一ボン薄膜が形 成されていることを走査型電子顕微鏡で確認した。 この基板上の力 一ボンのラマン分光スぺク トルでは、 1 3 0 0 c m-1付近の Dバン ドと 1 6 0 0 c m-1付近の Gバンドの 2つが検出され、 この 2つの ピークの積分強度比 I (D) / I (G) は 3. 1であった。 また、 X線光電子分光スぺク トルにおいて、 このカーボン薄膜における窒 素原子と炭素原子の比率は 0. 0 5未満であった。 さらに、 得られ TJP2007/059821 It was confirmed by a scanning electron microscope that a thin film having a thickness of about 100 nm was formed on the substrate obtained by heating. This force one Bonn Raman spectroscopy scan Bae-vector on the substrate, 1 3 0 0 c two m-1 near the D-band and 1 6 0 0 c m- 1 near G band is detected, the 2 The integrated intensity ratio I (D) / I (G) of the two peaks was 3.1. In the X-ray photoelectron spectroscopy spectrum, the ratio of nitrogen atoms to carbon atoms in this carbon thin film was less than 0.05. Furthermore, obtained TJP2007 / 059821
22 たカーボン薄膜は、 粉末 X線図形に 0 0 2回折線が認められ、 赤外 分光スぺク トルにおいて、 2 1 3 0 c m-1付近の吸収ピークは認め られなかった。 一 The carbon thin film showed 0 0 2 diffraction lines in the powder X-ray pattern, and no absorption peak in the vicinity of 2 1 30 cm -1 was observed in the infrared spectrum. one
得られた試料基板の片面を研磨し、 実施例 1 と同様のデバイスを 構築した。 電気的測定の結果、 カーボン薄膜は導体として機能する ことが明らかになり、 太陽電池として機能しないことが確認された 実施例 4  One side of the obtained sample substrate was polished to construct a device similar to Example 1. As a result of electrical measurement, it was confirmed that the carbon thin film functions as a conductor, and it was confirmed that it does not function as a solar cell. Example 4
研磨した N i基板 ( 0 . 1 X 2 X 2 c m) の片面に C重油を 3 0 0 0 r pmでスピンコートし、 石英製管状電気炉の中で窒素ガス流 通下、 7 0 0 °Cで 5時間加熱した。 加熱後の基板には約 3 0 n mの カーボン薄膜が形成されていることを走査型電子顕微鏡で確認した 。 さらに、 この力一ボン薄膜の上に 5 w t %ポリアクリ ロニトリル の N, N—ジメチルホルムアミ ド溶液を 3回スピンコートして、 石 英製管状電気炉の中で窒素ガス流通下、 7 0 0 °Cで 5時間加熱した 。 加熱後の基板上には、 約 1 0 0 nmのカーボン薄膜が形成されて いることを走査型電子顕微鏡で確認した。 この基板上のカーボン薄 膜のラマン分光スぺク トルでは、 1 3 0 0 cm— 1付近の Dバンドと 1 6 0 0 ciir 1付近の Gバンドの 2つが検出され、 2つのピークの積分 強度比 I (D) / I ( G) は 1. 3であった。 得られた力一ボン薄 膜は、 粉末 X線図形に 0 0 2回折線が認められ、 赤外分光スぺク 卜 ルにおいて、 2 1 3 0 c m— 1付近の吸収ピークは認められなかった 得られた試料基板の、 N i基板側の面を研磨し、 実施例 1 と同様 のデバイスを構築した。 電気的測定の結果、 p nの順方向バイアス に対して光起電力と光電流が観測され、 このデバイスは P n接合と して機能することが明らかになった。 ソーラーシュミレー夕 A M 1 . 5 Gモードで測定した結果、 このデバイスは、 O C V : 9 0 mV 、 J sc : 9. 0 m A · c m2 、 エネルギー変換効率 : 0. 9 %の太 陽電池として作動することが確認された。 One side of a polished Ni substrate (0.1 X 2 X 2 cm) was spin-coated with C heavy oil at 3 00 rpm, and 7 0 0 ° under nitrogen gas flow in a quartz tubular electric furnace. Heated at C for 5 hours. It was confirmed with a scanning electron microscope that a carbon thin film of about 30 nm was formed on the heated substrate. Further, 5 wt% polyacrylonitrile N, N-dimethylformamide solution was spin-coated three times on this striking thin film, and nitrogen gas was circulated in a stone electric tube furnace manufactured by Ishiei. Heated at ° C for 5 hours. A scanning electron microscope confirmed that a carbon thin film of about 100 nm was formed on the heated substrate. In the Raman spectroscopy spectrum of the carbon thin film on this substrate, the D band near 1300 cm- 1 and the G band near 1600 ciir 1 were detected, and the integrated intensity of the two peaks The ratio I (D) / I (G) was 1.3. The resulting force bonbon thin film showed 0 0 2 diffraction lines in the powder X-ray pattern, and no absorption peak in the vicinity of 2 1 30 cm- 1 was observed in the infrared spectroscopic spectrum. The surface of the obtained sample substrate on the Ni substrate side was polished, and a device similar to Example 1 was constructed. As a result of electrical measurement, photovoltaic power and photocurrent were observed for the forward bias of pn, which revealed that the device functions as a Pn junction. Solar Chemille Evening AM 1 As a result of measurement in 5 G mode, this device is confirmed to operate as a solar cell with OCV: 90 mV, J sc: 9.0 mA · cm 2 , energy conversion efficiency: 0.9%. It was.
実施例 5 Example 5
希薄フッ化水素酸で表面処理した P型 S i ( 1 0 0 ) 基板 X ( 2 2 c m : 三菱マテリアル製) を石英製管状電気炉に入れ、 ノルマル ブチルアミン蒸気を含む窒素ガス流通下、 7 0 0 °Cで 5時間加熱し た。 ノルマルプチルァミン蒸気を含む窒素ガスとしては、 15°Cに保 持したノルマルプチルァミンを入れた容器に、 1 0 m 1 / m 1 nで 窒素ガスを吹き込み、 容器から出る窒素一ノルマルブチルアミンガ スを用いた。  P-type S i (1 0 0) substrate X (22 cm, manufactured by Mitsubishi Materials) surface-treated with dilute hydrofluoric acid was placed in a quartz tubular electric furnace, and under a nitrogen gas flow containing normal butylamine vapor, 7 0 Heated at 0 ° C for 5 hours. Nitrogen gas containing normal-peptylamine vapor was blown with nitrogen gas at 10 m 1 / m 1 n into a container containing normal-peptylamine kept at 15 ° C, and nitrogen normal n-butylamine exiting from the container Gas was used.
加熱によって得られた基板上には、 約 3 0 nmのカーボン薄膜が 形成されていることを走查型電子顕微鏡で確認した。 この基板上の 力一ボンのラマン分光スぺク トルでは、 1 3 0 0 c m— 1付近の Dバ ンド、 と 1 6 0 0 c m-1付近の Gバンドの 2つが検出され、 2つの ピークの積分強度比 I (D) / I (G) は 0. 9であった。 また、 X線光電子分光スぺク トル測定の結果、 このカーボン薄膜における 窒素原子と炭素原子の比率は、 0. 1 0であった。 得られたカーボ ン薄膜は、 粉末 X線図形に 0 0 2回折線が認められ、 赤外分光スぺ ク トルにおいて、 2 1 3 0 c m— 1付近の吸収ピークは認められなか つた。 It was confirmed with a scanning electron microscope that a carbon thin film of about 30 nm was formed on the substrate obtained by heating. In the Raman spectroscopic spectrum of force bonbon on this substrate, two bands were detected: a D band near 1300 cm- 1 and a G band near 1600 cm- 1 The integrated intensity ratio I (D) / I (G) of the peak was 0.9. Further, as a result of X-ray photoelectron spectroscopy measurement, the ratio of nitrogen atom to carbon atom in this carbon thin film was 0.10. The obtained carbon thin film showed 0 0 2 diffraction lines in the powder X-ray pattern, and no absorption peak in the vicinity of 2 1 30 cm- 1 was observed in the infrared spectroscopic spectrum.
得られた試料基板の S i基板面側を研磨し、 実施例 1 と同様のデ バイスを構築した。 電気的測定の結果、 p nの順方向バイアスに対 して光起電力と光電流が観測され、 得られたカーボン薄膜は、 n型 半導体として機能することが明らかとなった。 ゾーラ一シユミレー 夕 AM I . 5 Gモードで測定した結果、 このデバイスは、 〇 C V : 2 0 0 m V, J s c : l 1. 9 m A/ c m 2 、 エネルギー変換効率 T/JP2007/059821 The Si substrate surface side of the obtained sample substrate was polished to construct the same device as in Example 1. As a result of electrical measurements, photovoltaic power and photocurrent were observed against the forward bias of pn, and it was revealed that the obtained carbon thin film functions as an n-type semiconductor. As a result of measuring in the Zola Iclay Mill evening AM I. 5 G mode, this device is: 〇 CV: 20 00 mV, J sc: l 1. 9 mA / cm 2 , energy conversion efficiency T / JP2007 / 059821
24  twenty four
: 1. 8 %の太陽電池として作動することが確認された。 : 1. It has been confirmed that it operates as an 8% solar cell.
比較例 2 Comparative Example 2
ノルマルブチルァミン蒸気を含む窒素ガス流通下の加熱を、 1 5 0 °Cで 5時間とし、 窒素ガスの流量を 5 O m l /m i nとした以外 は実施例 4と同様に行った。 加熱によって得られたカーボン薄膜は 、 ラマン分光スペク トルにおいて、 Dバンド、 Gバンドのいずれも 明確な吸収スペク トルは得られなかった。 また、 粉末 X線図形にお いても、 0 0 2回折線は認められず、 赤外分光スぺク トルにおいて も、 二トリル基に対応した 2 2 5 0 c m—1付近に明確な吸収は認め られなかった。 得られた試料基板を実施例 1 と同様のデバイスを構 築して電気化学測定を行ったが、 絶縁体と判明した。 ソーラーシミ ユレ一夕一 AM I . 5 Gモードで測定した結果、 太陽電池としては 機能しないことがわかつた。 Heating under the flow of nitrogen gas containing normal butylamine vapor was carried out in the same manner as in Example 4 except that the heating was performed at 150 ° C. for 5 hours and the flow rate of nitrogen gas was 5 O ml / min. The carbon thin film obtained by heating was not able to obtain a clear absorption spectrum in either the D band or the G band in the Raman spectroscopic spectrum. Also, no X-ray diffraction line was observed in the powder X-ray pattern, and no clear absorption was observed in the vicinity of 2 2500 cm- 1 corresponding to the nitrile group in the infrared spectrum. I was not able to admit. The obtained sample substrate was constructed with the same device as in Example 1 and subjected to electrochemical measurements, but was found to be an insulator. As a result of measurement in AM I .5 G mode, it was found that the solar cell does not function as a solar cell.
実施例 6 Example 6
石英ガラス基板 ( 2 X 2 c m) を石英製管状電気炉に入れて、 ノ ルマルプチルァミン蒸気を含む窒素ガス流通下、 7 0 0 °Cで 5時間 加熱した。 ノルマルプチルァミン蒸気を含む窒素ガスとしては、 15 °Cに保持したピリジンを入れた容器に 1 0 m 1 Zm i nの窒素ガス を吹き込み、 容器から出る窒素一ノルマルプチルァミンガスを用い た。 加熱によって得られた基板上には、 約 3 0 n mの力一ボン薄膜 が形成されていることを走査型電子顕微鏡で確認した。 この基板上 のカーボン薄膜のラマン分光スぺク トルでは、 1300cm— 1付近の Dバ ンドと、 1600cm-1付近の Gバンドの 2つが検出され、 2つのピーク の積分強度比 I (D) Z I (G) は 0. 9であった。 また、 X線電 子分光スぺク トルにおいて、 このカーボン薄膜における窒素原子と 炭素原子の比率は 0. 1 0であった。 A quartz glass substrate (2 × 2 cm) was placed in a quartz tubular electric furnace and heated at 700 ° C. for 5 hours under a nitrogen gas flow containing normal-pylamine vapor. As the nitrogen gas containing normal ptylamin vapor, 10 m 1 Zmin of nitrogen gas was blown into a container containing pyridine maintained at 15 ° C., and nitrogen one-normal ptylamamine gas exiting from the container was used. It was confirmed with a scanning electron microscope that a thin film of about 30 nm was formed on the substrate obtained by heating. The carbon thin film of Raman spectroscopy scan Bae-vector on the substrate, and D bands near 1300Cm- 1, two of the G band near 1600Cm- 1 is detected, the two peaks of the integrated intensity ratio I (D) ZI (G) was 0.9. In the X-ray electron spectroscopy spectrum, the ratio of nitrogen atoms to carbon atoms in this carbon thin film was 0.10.
この基板上の炭素薄膜の電気伝導度を、 van der Pauw法によって 測定した。 その結果、 この炭素薄膜の電気伝導度は、 4 0 0 S / C mであることが確認された。 産業上の利用可能性 The electric conductivity of the carbon thin film on this substrate is calculated by van der Pauw method. It was measured. As a result, it was confirmed that the electrical conductivity of this carbon thin film was 40 0 S / Cm. Industrial applicability
本発明によれば、 低コス トで n型力一ボン半導体を作成し、 それ を用いて高性能、 かつ大面積としうる半導体素子および太陽電池を 提供し得る。  According to the present invention, it is possible to provide a semiconductor element and a solar cell that can produce an n-type power single semiconductor at low cost and that can be used for high performance and a large area.

Claims

1. 主に炭素六員環の集合体からなり、 ラマン分光法によるスぺ ク トルにおいて、 1 3 0 0 c m一1付近の Dバンドと 1 6 0 0 c m- 1 付近の Gバンドの積分強度比 I (D) / I (G) が 0. 3〜 3. 0 であり、 かつ X線光電子請分光法による窒素および/またはィォゥと 炭素との元素比 (Nおよび/または S ) /Cが 0. 0 1〜 0. 4 0で ある n型カーボン半導体膜。 The integrated intensity of 1 near the G band - 1. mainly of aggregate of carbon six-membered ring, in the scan Bae-vector by Raman spectroscopy, 1 3 0 0 cm one 1 near D band and 1 6 0 0 cm The ratio I (D) / I (G) is 0.3 to 3.0, and the elemental ratio (N and / or S) / C of nitrogen and / or io to carbon by X-ray photoelectron spectroscopy is An n-type carbon semiconductor film which is 0.0 1 to 0.40.
2. 粉末 X線図形に 0 0 2回折線が認められる請求項 1 に記載の n型カーボン半導体膜。  2. The n-type carbon semiconductor film according to claim 1, wherein 0 2 diffraction lines are observed in the powder X-ray pattern.
3. 窒素と硫黄の少なく ともどちらか一囲方を含有する有機化合物 を、 液相状態もしくは常圧下気相状態で基板上に接触させた後、 加 熱処理することによって製造された、 請求項 1 もしくは 2に記載の n型カーボン半導体膜。  3. An organic compound containing at least one of nitrogen and sulfur is produced by contacting a substrate in a liquid phase state or a gas phase state under normal pressure, followed by heat treatment. Or n-type carbon semiconductor film according to 2;
4. 窒素と硫黄の少なく ともどちらか一方を含有する有機化合物 が、 含窒素炭化水素類である請求項 3に記載の n型カーボン半導体 膜。 .  4. The n-type carbon semiconductor film according to claim 3, wherein the organic compound containing at least one of nitrogen and sulfur is a nitrogen-containing hydrocarbon. .
5. 実質的に二トリル基を含有しない請求項 4に記載の n型カー ボン半導体膜。  5. The n-type carbon semiconductor film according to claim 4, which contains substantially no nitrile group.
6. 加熱処理の温度が、 2 0 0 °C〜 9 0 0 °Cである請求項 3〜 5 のいずれかに記載の n型力一ボン半導体膜。  6. The n-type vigorous Bonn semiconductor film according to any one of claims 3 to 5, wherein the temperature of the heat treatment is from 20 ° C to 900 ° C.
7. 主に炭素六員環の集合体からなり、 ラマン分光によるスぺク トルにおいて、 1 3 0 0 c m— 1付近の Dバンドと 1 6 0 0 c m— 1付 近の Gバンドの積分強度比 I (D) / I (G) が、 0. 3〜 3. 0 である、 P型カーボン半導体膜。 7. It consists mainly of an assembly of six-membered carbon rings. In the spectrum by Raman spectroscopy, the integrated intensity of the D band near 1 300 cm- 1 and the G band near 1600 cm- 1 A P-type carbon semiconductor film having a ratio I (D) / I (G) of 0.3 to 3.0.
8. 炭化水素類を、 液相状態もしくは常圧下気相状態で基板上に 接触させた後、 加熱処理することによって製造された、 請求項 7に 記載の P型カーボン半導体膜。 8. The method according to claim 7, wherein the hydrocarbons are produced by contacting a substrate in a liquid phase state or a gas phase state under normal pressure and then performing a heat treatment. The P-type carbon semiconductor film described.
9 . 加熱処理の温度が、 2 0 0 °C〜 9 0 0 °Cである請求項 7 もし くは 8に記載の p型カーボン半導体膜。  9. The p-type carbon semiconductor film according to claim 7 or 8, wherein the temperature of the heat treatment is 20 ° C. to 90 ° C.
10. 請求項 1 〜 6のいずれかに記載の n型カーボン半導体膜が含 まれる半導体素子。  10. A semiconductor device comprising the n-type carbon semiconductor film according to any one of claims 1 to 6.
1 1. 半導体素子が請求項 1〜 6のいずれかに記載の n型カーボン 半導体膜が含まれる p n接合を含んでいる請求項 1 0 に記載の半導 体素子。  1 1. The semiconductor element according to claim 10, wherein the semiconductor element includes a pn junction including the n-type carbon semiconductor film according to any one of claims 1 to 6.
12. 請求項 1〜 6のいずれかに記載の n型カーボン半導体膜と、 請求項?〜 9のいずれかに記載の P型カーボン半導体膜が含まれる p n接合を有している請求項 1 0 もしくは 1 1 に記載の半導体素子  12. The n-type carbon semiconductor film according to any one of claims 1 to 6, and claim? The semiconductor element according to claim 10 or 11, which has a pn junction including the P-type carbon semiconductor film according to claim 9.
13. 請求項 1 0〜 1 2のいずれかに記載の半導体素子を含んでな る太陽電池。 13. A solar cell comprising the semiconductor element according to any one of claims 10 to 12.
PCT/JP2007/059821 2007-03-07 2007-05-08 n-TYPE CARBON SEMICONDUCTOR FILM AND SEMICONDUCTOR DEVICE UTILIZING THE SAME WO2008108009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-056652 2007-03-07
JP2007056652A JP2007273970A (en) 2006-03-07 2007-03-07 N-type carbon semiconductor film and semiconductor device using same

Publications (1)

Publication Number Publication Date
WO2008108009A1 true WO2008108009A1 (en) 2008-09-12

Family

ID=39737912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059821 WO2008108009A1 (en) 2007-03-07 2007-05-08 n-TYPE CARBON SEMICONDUCTOR FILM AND SEMICONDUCTOR DEVICE UTILIZING THE SAME

Country Status (1)

Country Link
WO (1) WO2008108009A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246215A (en) * 2011-05-27 2012-12-13 Pohang Univ Of Science & Technology Academy-Industry Cooperation Method for producing carbon thin film, electronic element containing the same, and electrochemical element containing the same
KR20150129108A (en) * 2014-05-08 2015-11-19 주식회사 포스코 Method for manufacturing graphene thin film and graphene thin film manufactured by the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103367A (en) * 1985-10-28 1987-05-13 Nippon Telegr & Teleph Corp <Ntt> Synthesizing method for carbon film
JPH0790588A (en) * 1993-09-24 1995-04-04 Res Dev Corp Of Japan Production of nitrigen containing carbon film
JPH07232978A (en) * 1993-12-29 1995-09-05 Nippon Tungsten Co Ltd Diamond-like carbon film-coated material and its formation
JP2980546B2 (en) * 1994-11-09 1999-11-22 科学技術振興事業団 Semiconductor devices and solar cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103367A (en) * 1985-10-28 1987-05-13 Nippon Telegr & Teleph Corp <Ntt> Synthesizing method for carbon film
JPH0790588A (en) * 1993-09-24 1995-04-04 Res Dev Corp Of Japan Production of nitrigen containing carbon film
JPH07232978A (en) * 1993-12-29 1995-09-05 Nippon Tungsten Co Ltd Diamond-like carbon film-coated material and its formation
JP2980546B2 (en) * 1994-11-09 1999-11-22 科学技術振興事業団 Semiconductor devices and solar cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246215A (en) * 2011-05-27 2012-12-13 Pohang Univ Of Science & Technology Academy-Industry Cooperation Method for producing carbon thin film, electronic element containing the same, and electrochemical element containing the same
KR20150129108A (en) * 2014-05-08 2015-11-19 주식회사 포스코 Method for manufacturing graphene thin film and graphene thin film manufactured by the same
KR101585767B1 (en) 2014-05-08 2016-01-15 주식회사 포스코 Method for manufacturing graphene thin film and graphene thin film manufactured by the same

Similar Documents

Publication Publication Date Title
Yang et al. Ultra‐broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity
US8187915B2 (en) Aryl dicarboxylic acid diimidazole-based compounds as n-type semiconductor materials for thin film transistors
US7629605B2 (en) N-type semiconductor materials for thin film transistors
US8030127B2 (en) Methods of making carbon-containing semiconducting devices by pyrolyzing a polymer including asphalt or petroleum pitch
EP1872416B1 (en) Semiconductor materials for thin film transistors
US7026643B2 (en) Organic n-channel semiconductor device of N,N&#39; 3,4,9,10 perylene tetracarboxylic diimide
JP2009231810A (en) Semiconductor carbon film, semiconductor device, and method of manufacturing semiconductor carbon film
KR20070098807A (en) N-type semiconductor materials for thin film transistors
US20110269966A1 (en) Semiconducting articles
KR20100135895A (en) Pentacene-carbon nanotube composite, method of forming the composite, and semiconductor device including the composite
JP2012251240A (en) Palladium precursor composition
US20110266523A1 (en) Semiconducting devices and methods of preparing
Yin et al. Substrate‐Free Chemical Vapor Deposition of Large‐Scale III–V Nanowires for High‐Performance Transistors and Broad‐Spectrum Photodetectors
WO2014156773A1 (en) Aromatic heterocyclic compound, manufacturing method thereof, organic semiconductor material, and organic semiconductor device
JP2007273970A (en) N-type carbon semiconductor film and semiconductor device using same
US20110269265A1 (en) Methods of preparing semiconductive compositions and devices
Wen et al. Ultrasensitive photodetectors promoted by interfacial charge transfer from layered perovskites to chemical vapor deposition‐grown MoS2
JP5978228B2 (en) Organic semiconductor materials and organic electronic devices
US20130025662A1 (en) Water Soluble Dopant for Carbon Films
WO2008108009A1 (en) n-TYPE CARBON SEMICONDUCTOR FILM AND SEMICONDUCTOR DEVICE UTILIZING THE SAME
JP6647106B2 (en) Organic semiconductor materials and organic semiconductor devices
CN106335874A (en) Pi-conjugated organic semiconductor molecular self-assembly structure and preparation method thereof
US20190256357A1 (en) Polymer for transferring graphene and transfer method of graphene using the same
US20200332133A1 (en) Solvent and method of forming organic film using solvent
KR20160043797A (en) Manufacturing method of graphene laminated structure, and graphene laminated structure using thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743256

Country of ref document: EP

Kind code of ref document: A1