WO2008079051A1 - Catalyst for fisher-tropsch synthesis and a method for the production thereof - Google Patents

Catalyst for fisher-tropsch synthesis and a method for the production thereof Download PDF

Info

Publication number
WO2008079051A1
WO2008079051A1 PCT/RU2007/000692 RU2007000692W WO2008079051A1 WO 2008079051 A1 WO2008079051 A1 WO 2008079051A1 RU 2007000692 W RU2007000692 W RU 2007000692W WO 2008079051 A1 WO2008079051 A1 WO 2008079051A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
oxide
metal
carrier
weight
Prior art date
Application number
PCT/RU2007/000692
Other languages
French (fr)
Russian (ru)
Inventor
Vladimir Zalmanovich Mordkovich
Yanina Vladislavovna Mikhailova
Sergei Alexandrovich Svidersky
Lilia Vadimovna Sineva
Igor Grigorevich Solomonik
Original Assignee
Limited Liability Company 'syntop'
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Limited Liability Company 'syntop' filed Critical Limited Liability Company 'syntop'
Publication of WO2008079051A1 publication Critical patent/WO2008079051A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8896Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina

Definitions

  • the invention relates to petrochemistry, gas chemistry, coal chemistry and relates to a Fischer-Tropsch synthesis catalyst and a method for producing said catalyst.
  • the Fischer-Tropsch synthesis proceeds in the presence of catalysts based on metals of group VIII of the Periodic Table of Mendeleev.
  • the composition of the catalyst determines the composition of the resulting products.
  • the Fischer-Tropsch process is exothermic and proceeds at elevated pressure.
  • To maintain the high activity and selectivity of the catalysts in this reaction such an optimization of its composition is necessary that would reduce the likelihood of overheating, which adversely affects the selectivity of the catalyst with respect to the formation of target products, leading to the predominant reaction of direct hydrogenation of CO to methane and catalyst deactivation [B .Jaegeg, R. Espinoza "Advises IP LOW-TEMRETATGE FISCHER-TRORSSH SUPTHESIS", Satal. Todau, 1995, v.23, p. 17-28].
  • the process is carried out in liquid phase conditions.
  • the liquid phase plays the role of a reaction and heat transfer medium at the same time, and the catalyst in the form of a suspension is distributed in the liquid phase.
  • a solid catalyst in the form of granules, rings, etc., forming a fixed layer is placed inside a tube separating the gas space from the catalyst and the liquid phase (water), due to which heat is removed.
  • the thermal conductivity of the solid catalyst plays a large role in the removal of heat.
  • a known catalyst for use in a fixed bed reactor for conversion processes, in particular for the production of hydrocarbons from synthesis gas International application WO 02/07872 Al (2002)].
  • the catalyst is a catalytically active metal of group VIII, deposited on an oxide support, which is coated with a metal core of aluminum, iron, copper, titanium or a mixture thereof.
  • the metal base is in the form of a mesh, honeycomb or sponge.
  • the disadvantage of such catalysts, called "scab" is the complexity of their preparation.
  • the concentration the catalytically active component in the reaction volume is low, which reduces the productivity of the process and leads to an increase in the dimensions of the reactor.
  • a known catalyst for Fischer-Tropsch synthesis which is a ceramic or metal monolithic frame with a system of channels, on the walls of which are deposited an oxide carrier (Al 2 O 3 , SiO 2 , TiO 2 or zeolite), the active component (Co, Fe, Ru, Ni and combinations thereof) and a promoter (Re, Pt, Ir, Rh, Pd, Ru and combinations thereof) [US Patent US 6,211,255 Bl].
  • the active metal and promoter were applied onto the oxide support by impregnation, dried at 95 ° C for 2 days and calcined in air at 300 ° C for 16 hours, the resulting catalyst was ground, mixed with water and applied to a ceramic or metal monolith with a cell density of 400 cells / inch, dried at 130 ° C for 16 h and calcined in air at 400 ° C for 2 h.
  • the disadvantages of such a catalyst include the complexity of preparation, a significant dilution of the catalytically active component by the carrier, and, as a consequence, low synthesis activity ( CO conversion does not exceed 30%). In addition, the process proceeds in the Taylor stream, which complicates heat and mass transfer.
  • a catalyst for the synthesis of aliphatic hydrocarbons from CO and H 2 based on cobalt [RF Patent RU 2256501 Cl (2005)], which contains aluminum metal powder as a carrier, and may also contain a promoter selected from the group metal oxides - ZrO 2 or La 2 O 3 or K 2 O - or metals - Re or Ru or Pd or Pt, and has the following composition in May. %: From 10-50,
  • the promoter is 0.5-3, Al 50-90.
  • the catalyst is prepared by impregnating aluminum powder with an aqueous solution of cobalt nitrate, followed by drying in a water bath and calcining in a stream of air at 450 ° C for 1 h. Hydrogen treatment is carried out at a temperature of 400-600 ° C for 1-5 h and a feed rate of H 2 - 100-3000 h "1. The synthesis is carried out at atmospheric pressure and temperatures of 160-230 ° C from a mixture of the composition: H 2 66-68 mol.% And CO 32-34 mol.%.
  • the disadvantage of this catalyst is its insufficiently high activity, selectivity and performance when operating in an industrial environment.
  • a method of preparing a catalyst for producing hydrocarbons and / or their oxygen-containing derivatives from synthesis gas which consists in the fact that the catalyst is prepared by mixing powders of active, heat-conducting and pore-forming components, followed by shaping the catalyst by tabletting or rolling [International application WO 2004/069407 Al (2004)].
  • Group VIII metal supported on an oxide support is used as the active component.
  • a heat-conducting component metal copper, zinc, aluminum, tin or their alloys are used.
  • pore-forming component an oxide, hydroxide, carbonate, hydroxycarbonate or a salt of one or more metals included in the heat-conducting or catalytically active component is used.
  • the ratio of the mass content of the pore-forming agent to the heat-conducting agent does not exceed 4, and catalytically active to the sum of the heat-conducting and pore-forming agent is not less than 0.25.
  • the content of active metal in the catalytically active agent does not exceed May 2. %
  • the body of the catalyst is shaped like a cylinder of either a perforated cylinder, or a plate, or a perforated plate.
  • Heat treatment is carried out in a stream of hydrogen-containing gas at a temperature above 400 ° C or in two stages: in a stream of inert gas at a temperature above 400 ° C and in a stream of hydrogen-containing gas at a temperature above 300 ° C.
  • the disadvantages of this catalyst are the complexity of its preparation and low activity in the synthesis (CO conversion does not exceed 38%), as well as insufficiently high selectivity for hydrocarbons with a high molecular weight.
  • the problem solved by the claimed inventions is to create a highly efficient catalyst with increased activity and selectivity for hydrocarbons with high molecular weight by increasing its thermal conductivity, as well as a method for producing said catalyst.
  • the catalyst for the Fischer-Tropsch synthesis contains, as an active component, a metal of group VIII of the Periodic Table of D. I. Mendeleev and a carrier containing an oxide component and metallic aluminum in the form of flakes.
  • the use of aluminum metal in the form of flakes can increase the thermal conductivity of the granules, and, consequently, the thermal stability of the catalyst layer as a whole. Since the synthesis of hydrocarbons from CO and H 2 proceeds with a large heat release, properly organized heat removal of the reaction allows increasing the productivity and selectivity of the catalyst for target products at least 1.5 times. At the same time, the selectivity of the formation of the main by-product, methane, decreases by more than 3 times.
  • the content of the active component may be 5-40% by weight of the catalyst.
  • the reaction rate decreases to values that do not justify the use of a catalyst for the synthesis of hydrocarbons according to the Fischer-Tropsch method.
  • An increase in the active metal content above 40% is not justified from an economic point of view.
  • the oxide component may comprise alumina and / or silica and / or titanium oxide and / or zirconium oxide.
  • the catalyst may contain promoters, which can be used zirconium metal or metals of groups VII or VIII of the Periodic Table D.I. Mendeleev and / or their oxides, while the content of promoters is 0.1-5% by weight of the catalyst. The use of promoters also contributes to an increase in activity, productivity and selectivity of the catalyst.
  • the aluminum metal flakes may have a thickness of not more than 5 ⁇ m and a linear surface size of 0.02 mm in the shortest dimension to 3 mm in the longest dimension (preferably, the linear dimension is in the range of 0.02-0.1 mm). Such dimensions of the flakes provide a fairly tight contact with the particles of the oxide carrier and with each other, which creates the most favorable conditions for heat transfer in the catalyst granule.
  • the content of aluminum metal in the form of flakes is 1-25% by weight of the catalyst. This content is optimal for combining the influence of two factors: on the one hand, it is enough to increase the thermal conductivity of the catalyst granules, and on the other hand, it is not enough to adversely affect the strength of such a granule.
  • the method of producing the catalyst for the Fischer-Tropsch synthesis is that the active component is applied by impregnation to a carrier, which is prepared from paste by extrusion, the extrudates are held in air, dried and calcined, while the paste used contains an oxide component, aluminum metal in the form of flakes and a binder.
  • the use of aluminum metal in the form of flakes can increase the thermal conductivity of the granules, and, consequently, the thermal stability of the catalyst layer as a whole. Since the synthesis of hydrocarbons from CO and H 2 proceeds with a large heat release, properly organized heat removal of the reaction allows increasing the productivity and selectivity of the catalyst for target products at least 1.5 times. At the same time, the selectivity of the formation of the main by-product, methane, decreases by more than 3 times.
  • Alumina and / or silicon oxide and / or titanium oxide and / or zirconium oxide can be used as the oxide component.
  • the content of aluminum metal in the form of flakes can be 1-25
  • boehmite can be used in an amount of 5-15% by weight of the catalyst.
  • the paste may contain a plasticizer and / or a pore-forming component.
  • the formation of the carrier can be carried out by extrusion of a paste with subsequent heat treatment and grinding to a fraction of the desired size.
  • the introduction of the active component can be carried out by impregnating the formed support with a solution of salts of the corresponding metals to its content of 5-40% by weight of the catalyst.
  • Promoters can be introduced into the carrier by impregnating the carrier with a solution of their salts to a content of 0.1-5% by weight of the catalyst.
  • promoters zirconium metal or metals of groups VII - VIII of the Periodic Table of D.I. Mendeleev and / or their oxides can be used.
  • the method of producing the catalyst proposed in the present invention is to prepare a paste containing an oxide component, aluminum metal in the form of flakes, dimethyl ether, a binder (boehmite), water, a plasticizer and, if necessary, a pore-forming component, its extrusion, drying and calcination, after which sequential stages of impregnation with a solution of metal salts are carried out to introduce the required amount of active component (for example, 5-40 wt.% cobalt) and, if necessary, 0 , 1-5% of the promoter with intermediate stages of drying and calcination.
  • active component for example, 5-40 wt.% cobalt
  • a carrier is prepared.
  • metallic aluminum in the form of flakes is mixed with dimethyl ether, the oxide component of the carrier, a binder (boehmite) and, if necessary, a pore-forming component with dimethyl ether, distilled water, nitric acid and a plasticizer to a paste state, extruded, kept in air for 8-15 h, dried in an oven at 60-110 ° C and calcined in a stream of air or inert gas at 110-550 ° for 6-20 hours.
  • the active component is introduced by impregnation in several stages from a solution of Group VIII metal salts (nitrate, acetate, formate, acetylacetonate, etc.). At each stage, the sample is dried in a water bath and the resulting catalyst precursor is dried and / or calcined in a stream of air at a temperature of from 100 to 1000 ° C for 0.5-10 hours. If necessary, a metal or oxide promoter is introduced in a similar manner. Before synthesis, the catalyst sample is activated by reduction in a stream of hydrogen (bulk velocity 100-5000 h "1 ) at a temperature of 300-600 ° C for 0.5-5 hours.
  • a stream of hydrogen bulk velocity 100-5000 h "1
  • the synthesis of hydrocarbons from CO: H 2 is carried out in a tubular reactor with a stationary catalyst bed at a pressure of 0.1-4 MPa and a temperature of 150-300 ° C.
  • the molar ratio of CCVH 2 in the synthesis gas is 1 / 1-3.
  • the synthesis gas may contain up to 25 vol.% Nitrogen.
  • a sample of the catalyst composition 30% Co / (Al 2 O 3 + 25% Al) is prepared in the following way.
  • a mixture of 0.45 ml of HNO 3 (64%), 8 ml of distilled water and 0.6 g of triethylene glycol plasticizer (TEG) is added to 2 g of boehmite SB-I. Mix thoroughly until smooth. To the mixture add 1.2 g of the pore-forming component of methylcellulose and mix thoroughly until smooth. TO 3.5 g of a metal powder of aluminum in the form of flakes moistened with 3.5 ml of dimethyl ether are added to the mixture, and thoroughly mixed to a homogeneous mass. Next, 4.5 g of Al 2 O 3 powder is added to the mixture, mixed thoroughly until smooth and placed in an extruder with a 2.5 mm die. Extra dates are kept in air for 10 hours and placed in an oven. Drying mode in an oven: 60 ° C - 2 hours, 80 ° C - 2 hours, 110 ° C - 2 hours.
  • TOG triethylene glycol plasticizer
  • the dried extrudates are loaded into a flowing quartz reactor and calcined in a stream of air, raising the temperature from 110 to 450 ° C at a rate of 3 ⁇ 4 ° C / min. It is held at a temperature of 45 ° C for 4 hours.
  • the extrudates are cooled in a stream of air, discharged from the reactor and crushed to a fraction of 2.5x2-3 mm.
  • Cobalt is applied from an aqueous solution of its nitrate in three consecutive impregnations.
  • the catalyst sample is activated in a stream of hydrogen (r.p. 3000 h "1 ) at 450 0 C for 1 h.
  • a sample of the catalyst composition 30% Co / (Al 2 ⁇ 3 + 14% A1) is prepared in the following way.
  • a mixture of 0.45 ml of HNO 3 (64%), 8 ml of distilled water and 0.6 g of triethylene glycol plasticizer (TEG) is added to 2 g of boehmite SB-I. Mix thoroughly until smooth. To the mixture add 1.2 g of the pore-forming component of methylcellulose and mix thoroughly until smooth. To the mixture, add 2 g of powder of aluminum metal in the form of flakes moistened with 2 ml of dimethyl ether, and mix thoroughly until homogeneous masses. Next, 6 g of Al 2 O 3 powder is added to the mixture, mixed thoroughly until smooth and placed in an extruder with a 2.5 mm die. The extrudates are held in air for 10 hours and placed in an oven.
  • TOG triethylene glycol plasticizer
  • Drying mode in an oven 60 ° C - 2 hours, 80 ° C - 2 hours, 110 ° C - 2 hours.
  • the dried extrudates are loaded into a flowing quartz reactor and calcined in an air stream, raising the temperature from 110 to 450 ° C at a speed 3-4 ° C / min. It is held for 4 hours at 450 ° C.
  • the extrudates are cooled in a stream of air, discharged from the reactor and crushed to a fraction of 2.5x2-3 mm.
  • Cobalt is applied, as in example 1.
  • Activation of the catalyst and synthesis is carried out, as in example 1.
  • a catalyst sample of 30% Co / (Al 2 O 3 + 7% Al) was prepared in the following manner.
  • a mixture of 0.45 ml of HNO 3 (64%), 8 ml of distilled water and 0.6 g of triethylene glycol plasticizer (TEG) is added to 2 g of boehmite SB-I. Mix thoroughly until smooth. To the mixture add 1.2 g of the pore-forming component of methylcellulose and mix thoroughly until smooth. To the mixture was added 1 g of a powder of aluminum metal in the form of flakes moistened with 1 ml of dimethyl ether, and thoroughly mixed until a homogeneous mass. Next, 7 g of Al 2 O 3 powder is added to the mixture, mixed thoroughly until smooth and placed in an extruder with a 2.5 mm die. The extrudates are held in air for 10 hours and placed in an oven.
  • TOG triethylene glycol plasticizer
  • Drying mode in an oven 60 ° C - 2 hours, 80 ° C - 2 hours, 110 ° C - 2 hours.
  • the dried extrudates are loaded into a flowing quartz reactor and calcined in an air stream, raising the temperature from PO to 450 ° C at a speed 3-4 ° C / min. It is held at a temperature of 45 ° C for 4 hours.
  • the extrudates are cooled in a stream of air, discharged from the reactor and crushed to a fraction of 2.5x2-3 mm.
  • Cobalt is applied as in example 1.
  • a sample of the catalyst composition 30% Co / (Al 2 O 3 + 1% A1) is prepared as follows.
  • a mixture of 0.45 ml of HNO 3 (64%), 8 ml of distilled water and 0.6 g of triethylene glycol plasticizer (TEG) is added to 2 g of boehmite SB-I. Carefully mix until smooth.
  • To the mixture add 1.2 g of the pore-forming component of methylcellulose and mix thoroughly until smooth.
  • To the mixture was added 0.15 g of aluminum metal powder in the form of flakes moistened with 1 ml of dimethyl ether, and thoroughly mixed until a homogeneous mass.
  • 7.85 g of Al 2 O 3 powder is added to the mixture, mixed thoroughly until smooth and placed in an extruder with a 2.5 mm die. The extrudates are held in air for 10 hours and placed in an oven.
  • Drying mode in an oven 60 ° C - 2 hours, 80 ° C - 2 hours, 110 ° C - 2 hours.
  • the dried extrudates are loaded into a flowing quartz reactor and calcined in an air stream, raising the temperature from PO to 450 ° C at a speed 3-4 ° C / min. It is held at 450 ° C for 4 hours.
  • the extrudates are cooled in a stream of air, discharged from the reactor and crushed to a fraction of 2.5> ⁇ 2-3 mm.
  • Cobalt is applied as in example 1.
  • a catalyst sample of 10% Co / (Al 2 O 3 + 25% A1) was prepared in the following manner.
  • the media is prepared as in example 1.
  • Cobalt is applied from an aqueous solution of its nitrate. 7.05 g of cobalt nitrate is dissolved in distilled water and added to 10 g of the obtained carrier. The mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes.
  • Example 6 A sample of the catalyst composition 30% Co-0, l% Re / (Al 2 O 3 + 14% A1) is prepared in the following way.
  • the media is prepared as in example 2.
  • Cobalt is applied from an aqueous solution of its nitrate, and rhenium from ammonium perrenate in four consecutive impregnations.
  • 1 impregnation 7.05 g of cobalt nitrate is dissolved in distilled water and added to 10 g of the obtained carrier. The mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes, after which it is calcined in a stream of air at a temperature of 400 ° C for 1 hour. 2 impregnation. Similar to the first. 3 impregnation. 0.015 g of ammonium perrenate is dissolved in distilled water and added to the material obtained in stage 2.
  • the mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes, after which it is calcined at a temperature of 45 ° C for 1 hour. 4 impregnation 7.05 g of cobalt nitrate is dissolved in distilled water and added to the material obtained in stage 2. The mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes.
  • Example 7 A catalyst sample of 30% Co-0.5% Re / (Al 2 O 3 + 14% A1) was prepared in the following manner.
  • the media is prepared as in example 2.
  • Cobalt is applied from an aqueous solution of its nitrate, and rhenium from ammonium perrenate in four consecutive impregnations. 1 impregnation. 7.05 g of cobalt nitrate is dissolved in distilled water and added to 10 g of the obtained carrier. The mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes, after which it is calcined in a stream of air at a temperature of 400 ° C for 1 hour.
  • a sample of the catalyst composition 30% Co-0.5% Pt / (Al 2 ⁇ 3 + 14% A1) is prepared in the following way.
  • the media is prepared as in example 2.
  • Cobalt and platinum are applied, as in example 7.
  • a catalyst sample of 30% Co-5% ZrO 2 / (Al 2 O 3 + 14% A1) was prepared in the following manner.
  • the carrier is prepared as in example 2. Cobalt and zirconium oxide are applied as in example 7.
  • a catalyst sample of 30% Co-3% Fe 2 O 3 / (Al 2 O 3 + 14% Al) was prepared in the following manner.
  • the media is prepared as in example 2.
  • Cobalt and iron oxide are applied, as in example 7.
  • Activation of the catalyst and synthesis is carried out, as in example 1.
  • a catalyst sample of 30% Co / (TiO 2 + 14% Al) was prepared in the following manner.
  • a mixture of 0.45 ml of HNO 3 (64%), 8 ml of distilled water and 0.6 g of triethylene glycol plasticizer (TEG) is added to 2 g of boehmite SB-I. Mix thoroughly until smooth. To the mixture add 1.2 g of the pore-forming component of methylcellulose and mix thoroughly until smooth. To the mixture add 2 g of powder of aluminum metal in the form of flakes moistened with 2 ml of dimethyl ether, and mix thoroughly until smooth. Next, 6 g of TiO 2 powder is added to the mixture, mixed thoroughly until smooth and placed in an extruder with a 2.5 mm die. The extrudates are held in air for 10 hours and placed in an oven.
  • TOG triethylene glycol plasticizer
  • Drying mode in an oven 60 ° C - 2 hours, 8O 0 C - 2 hours, 110 ° C - 2 hours.
  • the dried extrudates are loaded into a flowing quartz reactor and calcined in an air stream, raising the temperature from PO to 45O 0 C at a speed 3-4 ° C / min. It is held for 4 hours at a temperature of 450 ° C.
  • the extrudates are cooled in a stream of air, discharged from the reactor and crushed to a fraction of 2.5x2-3 mm. Cobalt is applied as in example 1.
  • a sample of the catalyst composition 30% Fe / (Al 2 O 3 + 14% Al) is prepared in the following way.
  • the media is prepared as in example 2.
  • Iron is applied from an aqueous solution of its nitrate in three successive impregnations.
  • the catalyst sample is activated in a stream of hydrogen
  • a catalyst sample of 30% Ru / (Al 2 O 3 + 14% A1) was prepared in the following 0 way.
  • the media is prepared as in example 2.
  • Ruthenium is applied from an aqueous solution of its chloride in three consecutive impregnations.
  • the catalyst sample is activated in a stream of hydrogen (r.s. 3000 h " ) at 550 ° C for 1 h.
  • a sample of the catalyst composition 30% Co-0.5% Re / (Al 2 O 3 + 14% A1) is prepared in the following way.
  • the carrier is prepared as in example 2. Cobalt and rhenium are applied as in example 7. Activation of the catalyst is carried out as in example 1.
  • a catalyst sample of 30% Co / (Al 2 O 3 ) was prepared in the following manner. A mixture of 0.45 ml of HNO 3 (64%), 7 ml of distilled water and 0.6 g of triethylene glycol plasticizer (TEG) is added to 2 g of boehmite SB-I. Mix thoroughly until smooth. To the mixture add 1.2 g of the pore-forming component of methylcellulose and mix thoroughly until smooth. Next, 8 g of Al 2 O 3 powder is added to the mixture, mixed thoroughly until smooth and placed in an extruder with a 2.5 mm die. The extrudates are held in air for 10 hours and placed in an oven.
  • TOG triethylene glycol plasticizer
  • Drying mode in an oven 60 ° C - 2 hours, 80 ° C - 2 hours, 110 ° C - 2 hours.
  • the dried extrudates are loaded into a flowing quartz reactor and calcined in an air stream, raising the temperature from 110 to 450 ° C at a speed 3-4 ° C / min. They are held at 450 ° C for 4 hours.
  • the extrudates are cooled in a stream of air, discharged from the reactor and crushed to a fraction of 2.5 ⁇ 2-3 mm.
  • Cobalt is applied, as in example 1.
  • Activation of the catalyst and synthesis is carried out, as in example 1. Table
  • the invention relates to petrochemistry, gas chemistry, coal chemistry and can be used for Fischer-Tropsch synthesis.

Abstract

The invention relates to petrochemistry, gas and coal chemistry, in particular to a catalyst for Fisher-Tropsch synthesis and to a method for the production thereof. The inventive catalyst for Fisher-Tropsch synthesis comprises a metal of the VIII group of the Mendeleev's periodic system of elements and a carrier containing an oxide component and metallic aluminium in the form of scales. The inventive method for producing a catalyst for Fisher-Tropsch synthesis consists in applying by impregnation the active component to the carrier which is prepared from a paste by extrusion, in holding extrudates on air and in drying and in calcinating them, wherein the used paste contains an oxide component, metallic aluminium in the form of scales, a binder and a plasticiser. The invention makes it possible to increase the activity and selectivity of the catalyst in relation to high molecular weight hydrocarbons by increasing the thermal conductivity thereof.

Description

Катализатор для синтеза Фишера-Тропша и способ его получения Fischer-Tropsch catalyst and method for producing it
Область техникиTechnical field
Изобретение относится к нефтехимии, газохимии, углехимии и касается катализатора синтеза Фишера-Тропша и способа получения указанного катализатора.The invention relates to petrochemistry, gas chemistry, coal chemistry and relates to a Fischer-Tropsch synthesis catalyst and a method for producing said catalyst.
Предшествующий уровень техникиState of the art
Синтез Фишера-Тропша протекает в присутствии катализаторов на основе металлов VIII группы Периодической системы Менделеева. Состав катализатора определяет состав получаемых продуктов.The Fischer-Tropsch synthesis proceeds in the presence of catalysts based on metals of group VIII of the Periodic Table of Mendeleev. The composition of the catalyst determines the composition of the resulting products.
Процесс Фишера-Тропша является экзотермическим и протекает при повышенном давлении. Для поддержания высокой активности и селективности катализаторов в данной реакции необходима такая оптимизация его состава, которая позволила бы снизить вероятность перегревов, которые отрицательно влияют на селективность катализатора в отношении образования целевых продуктов, приводя к преобладающему протеканию реакции прямого гидрирования СО в метан и дезактивации катализатора [В.Jаgег, R.Espinoza "Аdvапсеs iп lоw-tеmреrаtuге Fisсhеr- Тrорsсh sупthеsis", Саtаl.Тоdау, 1995, v.23, р. 17-28].The Fischer-Tropsch process is exothermic and proceeds at elevated pressure. To maintain the high activity and selectivity of the catalysts in this reaction, such an optimization of its composition is necessary that would reduce the likelihood of overheating, which adversely affects the selectivity of the catalyst with respect to the formation of target products, leading to the predominant reaction of direct hydrogenation of CO to methane and catalyst deactivation [B .Jaegeg, R. Espinoza "Advises IP LOW-TEMRETATGE FISCHER-TRORSSH SUPTHESIS", Satal. Todau, 1995, v.23, p. 17-28].
Общеизвестны два основных варианта решения отмеченных выше проблем. В одном случае процесс проводят в жидкофазных условиях. При этом жидкая фаза играет роль реакционной и теплопроводящей среды одновременно, а катализатор в виде суспензии распределен в жидкой фазе. В другом — твердый катализатор в виде гранул, колец и т.п., образующих неподвижный слой, помещается внутри трубки, разделяющей газовое пространство с катализатором и жидкую фазу (воду), за счет которой осуществляется отвод тепла. В этом случае большую роль в отводе тепла играет теплопроводность твердого катализатора.Well-known are two main options for solving the above problems. In one case, the process is carried out in liquid phase conditions. In this case, the liquid phase plays the role of a reaction and heat transfer medium at the same time, and the catalyst in the form of a suspension is distributed in the liquid phase. In the other, a solid catalyst in the form of granules, rings, etc., forming a fixed layer, is placed inside a tube separating the gas space from the catalyst and the liquid phase (water), due to which heat is removed. In this case, the thermal conductivity of the solid catalyst plays a large role in the removal of heat.
Известен катализатор для использования в реакторе с неподвижным слоем для конверсионных процессов, в частности, для получения углеводородов из синтез-газа [Международная заявка WO 02/07872 Al (2002)]. Катализатор представляет собой каталитически активный металл VIII группы, нанесенный на оксидный носитель, которым покрыто металлическое ядро из алюминия, железа, меди, титана или их смеси. Металлическая основа имеет форму сетки, сот или губки. Недостатком таких катализаторов, называемых «кopoчкoвыми», является сложность их приготовления. Кроме того, при использовании корочковых катализаторов концентрация каталитически активного компонента в реакционном объеме невысока, что снижает производительность процесса и приводит к увеличению габаритов реактора.A known catalyst for use in a fixed bed reactor for conversion processes, in particular for the production of hydrocarbons from synthesis gas [International application WO 02/07872 Al (2002)]. The catalyst is a catalytically active metal of group VIII, deposited on an oxide support, which is coated with a metal core of aluminum, iron, copper, titanium or a mixture thereof. The metal base is in the form of a mesh, honeycomb or sponge. The disadvantage of such catalysts, called "scab", is the complexity of their preparation. In addition, when using crusty catalysts, the concentration the catalytically active component in the reaction volume is low, which reduces the productivity of the process and leads to an increase in the dimensions of the reactor.
Известен катализатор для синтеза Фишера-Тропша, представляющий собой керамический или металлический монолитный каркас с системой каналов, на стенки которых нанесены оксидный носитель (Al2O3, SiO2, TiO2 или цеолит), активный компонент (Со, Fe, Ru, Ni и их комбинации) и промотор (Re, Pt, Ir, Rh, Pd, Ru и их комбинации) [Патент США US 6,211,255 Bl]. Активный металл и промотор наносили на оксидный носитель пропиткой, высушивали при 95 °C в течение 2 суток и прокаливали на воздухе при 3000C в течение 16 ч, полученный катализатор измельчали, смешивали с водой и наносили на керамический или металлический монолит с плотностью ячеек 400 ячеек/дюйм, сушили при 130°C 16 ч и прокаливали на воздухе при 400°C 2 ч. К недостаткам такого катализатора необходимо отнести сложность приготовления, значительное разбавление каталитически активного компонента носителем и, как следствие, низкую активность в синтезе (конверсия СО не превышает 30%). Кроме того, процесс протекает в Тейлоровском потоке, что затрудняет тепло- и массоперенос.A known catalyst for Fischer-Tropsch synthesis, which is a ceramic or metal monolithic frame with a system of channels, on the walls of which are deposited an oxide carrier (Al 2 O 3 , SiO 2 , TiO 2 or zeolite), the active component (Co, Fe, Ru, Ni and combinations thereof) and a promoter (Re, Pt, Ir, Rh, Pd, Ru and combinations thereof) [US Patent US 6,211,255 Bl]. The active metal and promoter were applied onto the oxide support by impregnation, dried at 95 ° C for 2 days and calcined in air at 300 ° C for 16 hours, the resulting catalyst was ground, mixed with water and applied to a ceramic or metal monolith with a cell density of 400 cells / inch, dried at 130 ° C for 16 h and calcined in air at 400 ° C for 2 h. The disadvantages of such a catalyst include the complexity of preparation, a significant dilution of the catalytically active component by the carrier, and, as a consequence, low synthesis activity ( CO conversion does not exceed 30%). In addition, the process proceeds in the Taylor stream, which complicates heat and mass transfer.
Наиболее близким к предлагаемому в изобретении катализатору является катализатор синтеза алифатических углеводородов из СО и H2 на основе кобальта [Патент РФ RU 2256501 Cl (2005)], который содержит в качестве носителя порошок металлического алюминия, кроме того, может содержать промотор, выбранный из группы оксидов металлов — ZrO2 или La2O3 или K2O — или металлов — Re или Ru или Pd или Pt, и имеет следующий состав в мае. %: Со 10-50,Closest to the catalyst proposed in the invention is a catalyst for the synthesis of aliphatic hydrocarbons from CO and H 2 based on cobalt [RF Patent RU 2256501 Cl (2005)], which contains aluminum metal powder as a carrier, and may also contain a promoter selected from the group metal oxides - ZrO 2 or La 2 O 3 or K 2 O - or metals - Re or Ru or Pd or Pt, and has the following composition in May. %: From 10-50,
Промотор 0,5-3, Al 50-90.The promoter is 0.5-3, Al 50-90.
Катализатор готовят пропиткой порошка алюминия водным раствором нитрата кобальта с последующим высушиванием на водяной бане и прокаливанием в токе воздуха при 450°C в течение 1 ч. Обработку водородом проводят при температуре 400-600°C в течение 1-5 ч и скорости подачи H2 - 100-3000 ч"1. Синтез проводят при атмосферном давлении и температурах 160— 230°C из смеси состава: H2 66-68 мол. % и СО 32-34 мол. %. Недостатком данного катализатора является его недостаточно высокая активность, селективность и производительность при эксплуатации в промышленных условиях. Известен также способ приготовления катализатора для получения углеводородов и/или их кислородсодержащих производных из синтез-газа, заключающийся в том, что катализатор готовят смешением порошков активного, теплопроводящего и порообразующего компонентов с последующим приданием формы катализатору таблетированием или прокаткой [Международная заявка WO 2004/069407 Al (2004)]. В качестве активного компонента используют металл VIII группы, нанесенный на оксидный носитель. В качестве теплопроводящего компонента используют металлическую медь, цинк, алюминий, олово или их сплавы. В качестве порообразующего компонента используют оксид, гидроксид, карбонат, гидроксикарбонат или соль одного или нескольких металлов, входящих в состав теплопроводящего или каталитически активного компонента. Отношение массового содержания порообразующего агента к теплопроводящему не превышает 4, а каталитически активного к сумме теплопроводящего и порообразующего агента — не менее 0,25. Содержание активного металла в каталитически активном агенте не превышает 2 мае. %. Телу катализатора придают форму цилиндра либо перфорированного цилиндра, либо пластины либо перфорированной пластины. Термическую обработку проводят в токе водородсодержащего газа при температуре выше 400°C или в два этапа: в токе инертного газа при температуре выше 400°C и в токе водородсодержащего газа при температуре выше 300°C. Недостатками такого катализатора является сложность его приготовления и низкая активность в синтезе (конверсия СО не превышает 38%), а также недостаточно высокая селективность по углеводородам с высоким молекулярным весом.The catalyst is prepared by impregnating aluminum powder with an aqueous solution of cobalt nitrate, followed by drying in a water bath and calcining in a stream of air at 450 ° C for 1 h. Hydrogen treatment is carried out at a temperature of 400-600 ° C for 1-5 h and a feed rate of H 2 - 100-3000 h "1. The synthesis is carried out at atmospheric pressure and temperatures of 160-230 ° C from a mixture of the composition: H 2 66-68 mol.% And CO 32-34 mol.%. The disadvantage of this catalyst is its insufficiently high activity, selectivity and performance when operating in an industrial environment. There is also known a method of preparing a catalyst for producing hydrocarbons and / or their oxygen-containing derivatives from synthesis gas, which consists in the fact that the catalyst is prepared by mixing powders of active, heat-conducting and pore-forming components, followed by shaping the catalyst by tabletting or rolling [International application WO 2004/069407 Al (2004)]. Group VIII metal supported on an oxide support is used as the active component. As a heat-conducting component, metal copper, zinc, aluminum, tin or their alloys are used. As the pore-forming component, an oxide, hydroxide, carbonate, hydroxycarbonate or a salt of one or more metals included in the heat-conducting or catalytically active component is used. The ratio of the mass content of the pore-forming agent to the heat-conducting agent does not exceed 4, and catalytically active to the sum of the heat-conducting and pore-forming agent is not less than 0.25. The content of active metal in the catalytically active agent does not exceed May 2. % The body of the catalyst is shaped like a cylinder of either a perforated cylinder, or a plate, or a perforated plate. Heat treatment is carried out in a stream of hydrogen-containing gas at a temperature above 400 ° C or in two stages: in a stream of inert gas at a temperature above 400 ° C and in a stream of hydrogen-containing gas at a temperature above 300 ° C. The disadvantages of this catalyst are the complexity of its preparation and low activity in the synthesis (CO conversion does not exceed 38%), as well as insufficiently high selectivity for hydrocarbons with a high molecular weight.
Раскрытие изобретенияDisclosure of invention
Задача, решаемая заявленными изобретениями, состоит в создании высокоэффективного катализатора, обладающего повышенной активностью и селективностью в отношении углеводородов с высоким молекулярным весом за счет повышения его теплопроводности, а также способа получения указанного катализатора.The problem solved by the claimed inventions is to create a highly efficient catalyst with increased activity and selectivity for hydrocarbons with high molecular weight by increasing its thermal conductivity, as well as a method for producing said catalyst.
Поставленная задача решена тем, что катализатор для синтеза Фишера- Тропша содержит в качестве активного компонента металл VIII группы Периодической системы Д.И.Менделеева и носитель, содержащий оксидную составляющую и металлический алюминий в форме чешуек. Использование металлического алюминия в форме чешуек позволяет увеличить теплопроводность гранулы, а, следовательно, и термостабильность катализаторного слоя в целом. Поскольку синтез углеводородов из СО и H2 протекает с большим выделением тепла, то правильно организованный отвод тепла реакции позволяет увеличить производительность и селективность катализатора по целевым продуктам минимум в 1,5 раза. При этом больше, чем в 3 раза снижается селективность образования основного побочного продукта — метана.The problem is solved in that the catalyst for the Fischer-Tropsch synthesis contains, as an active component, a metal of group VIII of the Periodic Table of D. I. Mendeleev and a carrier containing an oxide component and metallic aluminum in the form of flakes. The use of aluminum metal in the form of flakes can increase the thermal conductivity of the granules, and, consequently, the thermal stability of the catalyst layer as a whole. Since the synthesis of hydrocarbons from CO and H 2 proceeds with a large heat release, properly organized heat removal of the reaction allows increasing the productivity and selectivity of the catalyst for target products at least 1.5 times. At the same time, the selectivity of the formation of the main by-product, methane, decreases by more than 3 times.
Содержание активного компонента может составлять 5-40 % от массы катализатора. При более низком содержании активного компонента скорость реакции снижается до значений, не оправдывающих применение катализатора для синтеза углеводородов по способу Фишера-Тропша. Увеличение же содержания активного металла выше 40% не оправдано с экономической точки зрения.The content of the active component may be 5-40% by weight of the catalyst. At a lower content of the active component, the reaction rate decreases to values that do not justify the use of a catalyst for the synthesis of hydrocarbons according to the Fischer-Tropsch method. An increase in the active metal content above 40% is not justified from an economic point of view.
Оксидная составляющая может содержать оксид алюминия и/или оксид кремния и/или оксид титана и/или оксид циркония. Дополнительно катализатор может содержать промоторы, в качестве которых могут использоваться металл цирконий или металлы VII или VIII групп Периодической системы Д.И.Менделеева и/или их окислы, при этом содержание промоторов составляет 0,1-5 % от массы катализатора. Использование промоторов также способствует увеличению активности, производительности и селективности катализатора.The oxide component may comprise alumina and / or silica and / or titanium oxide and / or zirconium oxide. Additionally, the catalyst may contain promoters, which can be used zirconium metal or metals of groups VII or VIII of the Periodic Table D.I. Mendeleev and / or their oxides, while the content of promoters is 0.1-5% by weight of the catalyst. The use of promoters also contributes to an increase in activity, productivity and selectivity of the catalyst.
Чешуйки металлического алюминия могут иметь толщину не выше 5 мкм и линейный размер по поверхности от 0,02 мм в самом коротком измерении до 3 мм в самом длинном измерении (предпочтительно, линейный размер находится в пределах 0,02-0,1 мм). Такие размеры чешуек обеспечивают достаточно плотный контакт с частицами оксидного носителя и между собой, что создает наиболее благоприятные условия для теплопередач в грануле катализатора.The aluminum metal flakes may have a thickness of not more than 5 μm and a linear surface size of 0.02 mm in the shortest dimension to 3 mm in the longest dimension (preferably, the linear dimension is in the range of 0.02-0.1 mm). Such dimensions of the flakes provide a fairly tight contact with the particles of the oxide carrier and with each other, which creates the most favorable conditions for heat transfer in the catalyst granule.
В частном случае содержание металлического алюминия в форме чешуек составляет 1-25 % от массы катализатора. Такое содержание оптимально для сочетания влияния двух факторов: с одной стороны, достаточно для увеличения теплопроводности гранул катализатора, а с другой стороны, недостаточно, чтобы оказать отрицательное воздействие на прочность такой гранулы.In the particular case, the content of aluminum metal in the form of flakes is 1-25% by weight of the catalyst. This content is optimal for combining the influence of two factors: on the one hand, it is enough to increase the thermal conductivity of the catalyst granules, and on the other hand, it is not enough to adversely affect the strength of such a granule.
Поставленная задача решена также тем, что способ получения катализатора для синтеза Фишера-Тропша, заключается в том, что активный компонент наносят пропиткой на носитель, который готовят из пасты посредством экструзии, экструдаты выдерживают на воздухе, высушивают и прокаливают, при этом используемая паста содержит оксидную составляющую, металлический алюминий в виде чешуек и связующее.The problem is also solved by the fact that the method of producing the catalyst for the Fischer-Tropsch synthesis is that the active component is applied by impregnation to a carrier, which is prepared from paste by extrusion, the extrudates are held in air, dried and calcined, while the paste used contains an oxide component, aluminum metal in the form of flakes and a binder.
Использование металлического алюминия в форме чешуек позволяет увеличить теплопроводность гранулы, а, следовательно, и термостабильность катализаторного слоя в целом. Поскольку синтез углеводородов из СО и H2 протекает с большим выделением тепла, то правильно организованный отвод тепла реакции позволяет увеличить производительность и селективность катализатора по целевым продуктам минимум в 1,5 раза. При этом больше, чем в 3 раза снижается селективность образования основного побочного продукта — метана.The use of aluminum metal in the form of flakes can increase the thermal conductivity of the granules, and, consequently, the thermal stability of the catalyst layer as a whole. Since the synthesis of hydrocarbons from CO and H 2 proceeds with a large heat release, properly organized heat removal of the reaction allows increasing the productivity and selectivity of the catalyst for target products at least 1.5 times. At the same time, the selectivity of the formation of the main by-product, methane, decreases by more than 3 times.
В качестве оксидной составляющей может использоваться оксид алюминия и/или оксид кремния и/или оксид титана и/или оксид циркония.Alumina and / or silicon oxide and / or titanium oxide and / or zirconium oxide can be used as the oxide component.
Содержание металлического алюминия в форме чешуек может составлять 1-25The content of aluminum metal in the form of flakes can be 1-25
% от массы катализатора. Такое содержание оптимально для сочетания влияния двух факторов: с одной стороны, достаточно для увеличения теплопроводности гранул катализатора, а с другой стороны, недостаточно, чтобы оказать отрицательное воздействие на прочность такой гранулы.% by weight of the catalyst. This content is optimal for combining the influence of two factors: on the one hand, it is enough to increase the thermal conductivity of the catalyst granules, and on the other hand, it is not enough to adversely affect the strength of such a granule.
В качестве связующего может использоваться бемит в количестве 5-15 % от массы катализатора. Паста может содержать пластификатор и/или порообразующий компонент.As a binder, boehmite can be used in an amount of 5-15% by weight of the catalyst. The paste may contain a plasticizer and / or a pore-forming component.
Формирование носителя может осуществляться экструзией пасты с последующей термической обработкой и измельчением до фракции необходимого размера.The formation of the carrier can be carried out by extrusion of a paste with subsequent heat treatment and grinding to a fraction of the desired size.
Введение активного компонента может осуществляться пропиткой сформированного носителя раствором солей соответствующих металлов до его содержания 5—40 % от массы катализатора.The introduction of the active component can be carried out by impregnating the formed support with a solution of salts of the corresponding metals to its content of 5-40% by weight of the catalyst.
В носитель могут быть введены промоторы пропиткой носителя раствором их солей до содержания 0,1-5 % от массы катализатора. В качестве промоторов могут использоваться металл цирконий или металлы VII - VIII групп Периодической системы Д.И.Менделеева и/или их окислы.Promoters can be introduced into the carrier by impregnating the carrier with a solution of their salts to a content of 0.1-5% by weight of the catalyst. As promoters, zirconium metal or metals of groups VII - VIII of the Periodic Table of D.I. Mendeleev and / or their oxides can be used.
Лучший вариант осуществления изобретенияThe best embodiment of the invention
Способ получения катализатора, предложенный в настоящем изобретении, заключается в приготовлении пасты, содержащей оксидную составляющую, металлический алюминий в форме чешуек, диметиловый эфир, связующее (бемит), воду, пластификатор и, при необходимости, порообразующий компонент, ее экструзии, высушивании и прокаливании, после чего проводят последовательные стадии пропитки раствором солей металлов для внесения требуемого количества активного компонента (например, 5-40 мac.% кобальта) и, по необходимости, 0,1-5% промотора с промежуточными стадиями высушивания и прокаливания.The method of producing the catalyst proposed in the present invention is to prepare a paste containing an oxide component, aluminum metal in the form of flakes, dimethyl ether, a binder (boehmite), water, a plasticizer and, if necessary, a pore-forming component, its extrusion, drying and calcination, after which sequential stages of impregnation with a solution of metal salts are carried out to introduce the required amount of active component (for example, 5-40 wt.% cobalt) and, if necessary, 0 , 1-5% of the promoter with intermediate stages of drying and calcination.
На первой стадии приготовления катализатора готовят носитель. Для этого смешивают металлический алюминий в форме чешуек с диметиловым эфиром, оксидную составляющую носителя, связующее (бемит) и, при необходимости, порообразующий компонент с диметиловым эфиром, дистиллированной водой, азотной кислотой и пластификатором до пастообразного состояния, экструдируют, выдерживают на воздухе 8-15 ч, высушивают в сушильном шкафу при 60-110°C и прокаливают в токе воздуха или инертного газа при 110-550° в течение 6-20 часов. Активный компонент вводят пропиткой в несколько стадий из раствора солей металлов VIII группы (нитрат, ацетат, формиат, ацетилацетонат и т.д.). На каждом этапе образец высушивают на водяной бане и полученный предшественник катализатора сушат и/или прокаливают в токе воздуха при температуре от 100 до 1000°C в течение 0,5-10 часов. При необходимости аналогичным образом вводят металлический или оксидный промотор. Перед проведением синтеза образец катализатора активируют посредством восстановления в токе водорода (объемная скорость 100-5000 ч"1) при температуре 300-600°C в течение 0,5-5 ч.In the first stage of preparation of the catalyst, a carrier is prepared. For this, metallic aluminum in the form of flakes is mixed with dimethyl ether, the oxide component of the carrier, a binder (boehmite) and, if necessary, a pore-forming component with dimethyl ether, distilled water, nitric acid and a plasticizer to a paste state, extruded, kept in air for 8-15 h, dried in an oven at 60-110 ° C and calcined in a stream of air or inert gas at 110-550 ° for 6-20 hours. The active component is introduced by impregnation in several stages from a solution of Group VIII metal salts (nitrate, acetate, formate, acetylacetonate, etc.). At each stage, the sample is dried in a water bath and the resulting catalyst precursor is dried and / or calcined in a stream of air at a temperature of from 100 to 1000 ° C for 0.5-10 hours. If necessary, a metal or oxide promoter is introduced in a similar manner. Before synthesis, the catalyst sample is activated by reduction in a stream of hydrogen (bulk velocity 100-5000 h "1 ) at a temperature of 300-600 ° C for 0.5-5 hours.
Синтез углеводородов из CO:H2 проводят в трубчатом реакторе со стационарным слоем катализатора при давлении 0,1—4 МПа и температуре 150-300°C. Мольное отношение CCVH2 в синтез-газе составляет 1/1-3. Синтез-газ может содержать до 25 oб.% азота.The synthesis of hydrocarbons from CO: H 2 is carried out in a tubular reactor with a stationary catalyst bed at a pressure of 0.1-4 MPa and a temperature of 150-300 ° C. The molar ratio of CCVH 2 in the synthesis gas is 1 / 1-3. The synthesis gas may contain up to 25 vol.% Nitrogen.
Пример 1.Example 1
Образец катализатора состава 30%Co/(Al2O3 + 25% Al) готовят следующим способом.A sample of the catalyst composition 30% Co / (Al 2 O 3 + 25% Al) is prepared in the following way.
К 2 г бемита SB-I добавляют смесь из 0,45 мл HNO3 (64%), 8 мл дистиллированной воды и 0,6 г пластификатора триэтиленгликоля (ТЭГ). Тщательно перемешивают до однородной массы. К смеси добавляют 1,2 г порообразующего компонента метилцеллюлозы и тщательно перемешивают до однородной массы. К смеси добавляют 3,5 г порошка металлического алюминия в форме чешуек, смоченного 3,5 мл диметилового эфира, и тщательно перемешивают до однородной массы. Далее к смеси добавляют 4,5 г порошка Al2O3, тщательно перемешивают до однородной массы и помещают в экструдер с фильерой 2,5 мм. Экстру даты выдерживают на воздухе 10 ч и помещают в сушильный шкаф. Режим высушивания в сушильном шкафу: 60°C — 2 ч, 80°C — 2 ч, 110°C — 2 ч.A mixture of 0.45 ml of HNO 3 (64%), 8 ml of distilled water and 0.6 g of triethylene glycol plasticizer (TEG) is added to 2 g of boehmite SB-I. Mix thoroughly until smooth. To the mixture add 1.2 g of the pore-forming component of methylcellulose and mix thoroughly until smooth. TO 3.5 g of a metal powder of aluminum in the form of flakes moistened with 3.5 ml of dimethyl ether are added to the mixture, and thoroughly mixed to a homogeneous mass. Next, 4.5 g of Al 2 O 3 powder is added to the mixture, mixed thoroughly until smooth and placed in an extruder with a 2.5 mm die. Extra dates are kept in air for 10 hours and placed in an oven. Drying mode in an oven: 60 ° C - 2 hours, 80 ° C - 2 hours, 110 ° C - 2 hours.
Высушенные экструдаты загружают в проточный кварцевый реактор и прокаливают в токе воздуха, поднимая температуру со 110 до 450°C со скоростью 3^4°C/мин. При температуре 45O0C выдерживают 4 ч. Экструдаты охлаждают в токе воздуха, выгружают из реактора и измельчают до фракции 2,5x2-3 мм.The dried extrudates are loaded into a flowing quartz reactor and calcined in a stream of air, raising the temperature from 110 to 450 ° C at a rate of 3 ^ 4 ° C / min. It is held at a temperature of 45 ° C for 4 hours. The extrudates are cooled in a stream of air, discharged from the reactor and crushed to a fraction of 2.5x2-3 mm.
Кобальт наносят из водного раствора его нитрата в три последовательных пропитки.Cobalt is applied from an aqueous solution of its nitrate in three consecutive impregnations.
1 пропитка. 7,05 г нитрата кобальта растворяют в дистиллированной воде и добавляют к 10 г полученного носителя. Смесь помещают в фарфоровую чашку и сушат на водяной бане в течение 30-60 мин, после чего прокаливают в токе воздуха при температуре 4000C в течение 1 ч.1 impregnation. 7.05 g of cobalt nitrate is dissolved in distilled water and added to 10 g of the obtained carrier. The mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes, after which it is calcined in a stream of air at a temperature of 400 0 C for 1 hour.
2 пропитка. Аналогично первой.2 impregnation. Similar to the first.
3 пропитка 7,05 г нитрата кобальта растворяют в дистиллированной воде и добавляют к материалу, полученному на стадии 2. Смесь помещают в фарфоровую чашку и сушат на водяной бане в течение 30-60 мин.3 impregnation 7.05 g of cobalt nitrate is dissolved in distilled water and added to the material obtained in stage 2. The mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes.
Перед проведением синтеза образец катализатора активируют в токе водорода (о.с. 3000 ч"1) при 4500C в течение 1 ч. Синтез углеводородов проводят в трубчатом реакторе со стационарным слоем катализатора при давлении 2 МПа и температуре 160— 2400C с использованием синтез-газа с мольным отношением CO/H2 =1/2 (о.с. 1000 ч"1). Пример 2.Before carrying out the synthesis, the catalyst sample is activated in a stream of hydrogen (r.p. 3000 h "1 ) at 450 0 C for 1 h. The synthesis of hydrocarbons is carried out in a tubular reactor with a stationary catalyst bed at a pressure of 2 MPa and a temperature of 160-240 0 C s using synthesis gas with a molar ratio of CO / H 2 = 1/2 (s.p. 1000 h "1 ). Example 2
Образец катализатора состава 30%Co/(Al2θ3 + 14%A1) готовят следующим способом.A sample of the catalyst composition 30% Co / (Al 2 θ 3 + 14% A1) is prepared in the following way.
К 2 г бемита SB-I добавляют смесь из 0,45 мл HNO3 (64%), 8 мл дистиллированной воды и 0,6 г пластификатора триэтиленгликоля (ТЭГ). Тщательно перемешивают до однородной массы. К смеси добавляют 1,2 г порообразующего компонента метилцеллюлозы и тщательно перемешивают до однородной массы. К смеси добавляют 2 г порошка металлического алюминия в форме чешуек, смоченного 2 мл диметилового эфира, и тщательно перемешивают до однородной массы. Далее к смеси добавляют 6 г порошка Al2O3, тщательно перемешивают до однородной массы и помещают в экструдер с фильерой 2,5 мм. Экструдаты выдерживают на воздухе 10 ч и помещают в сушильный шкаф. Режим высушивания в сушильном шкафу: 60°C — 2 ч, 80°C — 2 ч, 110°C — 2 ч. Высушенные экструдаты загружают в проточный кварцевый реактор и прокаливают в токе воздуха, поднимая температуру со 110 до 450°C со скоростью 3— 4°C/мин. При температуре 450°C выдерживают 4 ч. Экструдаты охлаждают в токе воздуха, выгружают из реактора и измельчают до фракции 2,5x2-3 мм.A mixture of 0.45 ml of HNO 3 (64%), 8 ml of distilled water and 0.6 g of triethylene glycol plasticizer (TEG) is added to 2 g of boehmite SB-I. Mix thoroughly until smooth. To the mixture add 1.2 g of the pore-forming component of methylcellulose and mix thoroughly until smooth. To the mixture, add 2 g of powder of aluminum metal in the form of flakes moistened with 2 ml of dimethyl ether, and mix thoroughly until homogeneous masses. Next, 6 g of Al 2 O 3 powder is added to the mixture, mixed thoroughly until smooth and placed in an extruder with a 2.5 mm die. The extrudates are held in air for 10 hours and placed in an oven. Drying mode in an oven: 60 ° C - 2 hours, 80 ° C - 2 hours, 110 ° C - 2 hours. The dried extrudates are loaded into a flowing quartz reactor and calcined in an air stream, raising the temperature from 110 to 450 ° C at a speed 3-4 ° C / min. It is held for 4 hours at 450 ° C. The extrudates are cooled in a stream of air, discharged from the reactor and crushed to a fraction of 2.5x2-3 mm.
Кобальт наносят, как в примере 1. Активацию катализатора и синтез проводят, как в примере 1. Пример 3.Cobalt is applied, as in example 1. Activation of the catalyst and synthesis is carried out, as in example 1. Example 3.
Образец катализатора состава 30%Co/( Al2O3 + 7% Al) готовят следующим способом.A catalyst sample of 30% Co / (Al 2 O 3 + 7% Al) was prepared in the following manner.
К 2 г бемита SB-I добавляют смесь из 0,45 мл HNO3 (64%), 8 мл дистиллированной воды и 0,6 г пластификатора триэтиленгликоля (ТЭГ). Тщательно перемешивают до однородной массы. К смеси добавляют 1,2 г порообразующего компонента метилцеллюлозы и тщательно перемешивают до однородной массы. К смеси добавляют 1 г порошка металлического алюминия в форме чешуек, смоченного 1 мл диметилового эфира, и тщательно перемешивают до однородной массы. Далее к смеси добавляют 7 г порошка Al2O3, тщательно перемешивают до однородной массы и помещают в экструдер с фильерой 2,5 мм. Экструдаты выдерживают на воздухе 10 ч и помещают в сушильный шкаф. Режим высушивания в сушильном шкафу: 60°C — 2 ч, 80°C — 2 ч, 110°C — 2 ч. Высушенные экструдаты загружают в проточный кварцевый реактор и прокаливают в токе воздуха, поднимая температуру со ПО до 450°C со скоростью 3— 4°C/мин. При температуре 45O0C выдерживают 4 ч. Экструдаты охлаждают в токе воздуха, выгружают из реактора и измельчают до фракции 2,5x2-3 мм.A mixture of 0.45 ml of HNO 3 (64%), 8 ml of distilled water and 0.6 g of triethylene glycol plasticizer (TEG) is added to 2 g of boehmite SB-I. Mix thoroughly until smooth. To the mixture add 1.2 g of the pore-forming component of methylcellulose and mix thoroughly until smooth. To the mixture was added 1 g of a powder of aluminum metal in the form of flakes moistened with 1 ml of dimethyl ether, and thoroughly mixed until a homogeneous mass. Next, 7 g of Al 2 O 3 powder is added to the mixture, mixed thoroughly until smooth and placed in an extruder with a 2.5 mm die. The extrudates are held in air for 10 hours and placed in an oven. Drying mode in an oven: 60 ° C - 2 hours, 80 ° C - 2 hours, 110 ° C - 2 hours. The dried extrudates are loaded into a flowing quartz reactor and calcined in an air stream, raising the temperature from PO to 450 ° C at a speed 3-4 ° C / min. It is held at a temperature of 45 ° C for 4 hours. The extrudates are cooled in a stream of air, discharged from the reactor and crushed to a fraction of 2.5x2-3 mm.
Кобальт наносят, как в примере 1.Cobalt is applied as in example 1.
Активацию катализатора и синтез проводят, как в примере 1. Пример 4.Activation of the catalyst and synthesis is carried out as in example 1. Example 4.
Образец катализатора состава 30%Co/( Al2O3 + 1%A1) готовят следующим способом.A sample of the catalyst composition 30% Co / (Al 2 O 3 + 1% A1) is prepared as follows.
К 2 г бемита SB-I добавляют смесь из 0,45 мл HNO3 (64%), 8 мл дистиллированной воды и 0,6 г пластификатора триэтиленгликоля (ТЭГ). Тщательно перемешивают до однородной массы. К смеси добавляют 1,2 г порообразующего компонента метилцеллюлозы и тщательно перемешивают до однородной массы. К смеси добавляют 0,15 г порошка металлического алюминия в форме чешуек, смоченного 1 мл диметилового эфира, и тщательно перемешивают до однородной массы. Далее к смеси добавляют 7,85 г порошка Al2O3, тщательно перемешивают до однородной массы и помещают в экструдер с фильерой 2,5 мм. Экструдаты выдерживают на воздухе 10 ч и помещают в сушильный шкаф. Режим высушивания в сушильном шкафу: 60°C — 2 ч, 80°C — 2 ч, 110°C — 2 ч. Высушенные экструдаты загружают в проточный кварцевый реактор и прокаливают в токе воздуха, поднимая температуру со ПО до 450°C со скоростью 3-4°C/мин. При температуре 450°C выдерживают 4 ч. Экструдаты охлаждают в токе воздуха, выгружают из реактора и измельчают до фракции 2,5><2-3 мм.A mixture of 0.45 ml of HNO 3 (64%), 8 ml of distilled water and 0.6 g of triethylene glycol plasticizer (TEG) is added to 2 g of boehmite SB-I. Carefully mix until smooth. To the mixture add 1.2 g of the pore-forming component of methylcellulose and mix thoroughly until smooth. To the mixture was added 0.15 g of aluminum metal powder in the form of flakes moistened with 1 ml of dimethyl ether, and thoroughly mixed until a homogeneous mass. Next, 7.85 g of Al 2 O 3 powder is added to the mixture, mixed thoroughly until smooth and placed in an extruder with a 2.5 mm die. The extrudates are held in air for 10 hours and placed in an oven. Drying mode in an oven: 60 ° C - 2 hours, 80 ° C - 2 hours, 110 ° C - 2 hours. The dried extrudates are loaded into a flowing quartz reactor and calcined in an air stream, raising the temperature from PO to 450 ° C at a speed 3-4 ° C / min. It is held at 450 ° C for 4 hours. The extrudates are cooled in a stream of air, discharged from the reactor and crushed to a fraction of 2.5><2-3 mm.
Кобальт наносят, как в примере 1.Cobalt is applied as in example 1.
Активацию катализатора и синтез проводят, как в примере 1. Пример 5.Activation of the catalyst and synthesis is carried out as in example 1. Example 5.
Образец катализатора состава 10%Co/( Al2O3 + 25%A1) готовят следующим способом.A catalyst sample of 10% Co / (Al 2 O 3 + 25% A1) was prepared in the following manner.
Носитель готовят, как в примере 1.The media is prepared as in example 1.
Кобальт наносят из водного раствора его нитрата. 7,05 г нитрата кобальта растворяют в дистиллированной воде и добавляют к 10 г полученного носителя. Смесь помещают в фарфоровую чашку и сушат на водяной бане в течение 30-60 мин.Cobalt is applied from an aqueous solution of its nitrate. 7.05 g of cobalt nitrate is dissolved in distilled water and added to 10 g of the obtained carrier. The mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes.
Активацию катализатора и синтез проводят, как в примере 1. Пример 6. Образец катализатора состава 30%Co-0,l%Re/( Al2O3 + 14%A1) готовят следующим способом.The activation of the catalyst and the synthesis is carried out as in Example 1. Example 6. A sample of the catalyst composition 30% Co-0, l% Re / (Al 2 O 3 + 14% A1) is prepared in the following way.
Носитель готовят, как в примере 2.The media is prepared as in example 2.
Кобальт наносят из водного раствора его нитрата, а рений — из перрениата аммония в четыре последовательных пропитки. 1 пропитка. 7,05 г нитрата кобальта растворяют в дистиллированной воде и добавляют к 10 г полученного носителя. Смесь помещают в фарфоровую чашку и сушат на водяной бане в течение 30-60 мин, после чего прокаливают в токе воздуха при температуре 400°C в течение 1 ч. 2 пропитка. Аналогично первой. 3 пропитка. 0,015 г перрениата аммония растворяют в дистиллированной воде и добавляют к материалу, полученному на стадии 2. Смесь помещают в фарфоровую чашку и сушат на водяной бане в течение 30-60 мин, после чего прокаливают при температуре 45O0C в течение 1 ч. 4 пропитка 7,05 г нитрата кобальта растворяют в дистиллированной воде и добавляют к материалу, полученному на стадии 2. Смесь помещают в фарфоровую чашку и сушат на водяной бане в течение 30-60 мин.Cobalt is applied from an aqueous solution of its nitrate, and rhenium from ammonium perrenate in four consecutive impregnations. 1 impregnation. 7.05 g of cobalt nitrate is dissolved in distilled water and added to 10 g of the obtained carrier. The mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes, after which it is calcined in a stream of air at a temperature of 400 ° C for 1 hour. 2 impregnation. Similar to the first. 3 impregnation. 0.015 g of ammonium perrenate is dissolved in distilled water and added to the material obtained in stage 2. The mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes, after which it is calcined at a temperature of 45 ° C for 1 hour. 4 impregnation 7.05 g of cobalt nitrate is dissolved in distilled water and added to the material obtained in stage 2. The mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes.
Активацию катализатора и синтез проводят, как в примере 1.Activation of the catalyst and synthesis is carried out as in example 1.
Пример 7. Образец катализатора состава 30%Co-0,5%Re/( Al2O3 + 14%A1) готовят следующим способом.Example 7. A catalyst sample of 30% Co-0.5% Re / (Al 2 O 3 + 14% A1) was prepared in the following manner.
Носитель готовят, как в примере 2.The media is prepared as in example 2.
Кобальт наносят из водного раствора его нитрата, а рений — из перрениата аммония в четыре последовательных пропитки. 1 пропитка. 7,05 г нитрата кобальта растворяют в дистиллированной воде и добавляют к 10 г полученного носителя. Смесь помещают в фарфоровую чашку и сушат на водяной бане в течение 30-60 мин, после чего прокаливают в токе воздуха при температуре 400°C в течение 1 ч.Cobalt is applied from an aqueous solution of its nitrate, and rhenium from ammonium perrenate in four consecutive impregnations. 1 impregnation. 7.05 g of cobalt nitrate is dissolved in distilled water and added to 10 g of the obtained carrier. The mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes, after which it is calcined in a stream of air at a temperature of 400 ° C for 1 hour.
2 пропитка. Аналогично первой. 3 пропитка. 0,07 г перрениата аммония растворяют в дистиллированной воде и добавляют к материалу, полученному на стадии 2. Смесь помещают в фарфоровую чашку и сушат на водяной бане в течение 30-60 мин, после чего прокаливают при температуре 45O0C в течение 1 ч.2 impregnation. Similar to the first. 3 impregnation. 0.07 g of ammonium perrenate is dissolved in distilled water and added to the material obtained in stage 2. The mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes, after which it is calcined at a temperature of 45 ° C for 1 hour.
4 пропитка 7,05 г нитрата кобальта растворяют в дистиллированной воде и добавляют к материалу, полученному на стадии 2. Смесь помещают в фарфоровую чашку и сушат на водяной бане в течение 30-60 мин.4 impregnation 7.05 g of cobalt nitrate is dissolved in distilled water and added to the material obtained in stage 2. The mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes.
Активацию катализатора и синтез проводят, как в примере 1. Пример 8.Activation of the catalyst and synthesis is carried out as in example 1. Example 8.
Образец катализатора состава 30%Co-0,5%Pt/(Al2θ3 + 14%A1) готовят следующим способом.A sample of the catalyst composition 30% Co-0.5% Pt / (Al 2 θ 3 + 14% A1) is prepared in the following way.
Носитель готовят, как в примере 2.The media is prepared as in example 2.
Кобальт и платину наносят, как в примере 7.Cobalt and platinum are applied, as in example 7.
Активацию катализатора и синтез проводят, как в примере 1. Пример 9.Activation of the catalyst and synthesis is carried out as in example 1. Example 9
Образец катализатора состава 30%Co-5%ZrO2/(Al2O3 + 14%A1) готовят следующим способом.A catalyst sample of 30% Co-5% ZrO 2 / (Al 2 O 3 + 14% A1) was prepared in the following manner.
Носитель готовят, как в примере 2. Кобальт и оксид циркония наносят, как в примере 7.The carrier is prepared as in example 2. Cobalt and zirconium oxide are applied as in example 7.
Активацию катализатора и синтез проводят, как в примере 1. Пример 10.Activation of the catalyst and synthesis is carried out as in example 1. Example 10.
Образец катализатора состава 30%Co-3%Fe2O3/( Al2O3 + 14% Al) готовят следующим способом. Носитель готовят, как в примере 2.A catalyst sample of 30% Co-3% Fe 2 O 3 / (Al 2 O 3 + 14% Al) was prepared in the following manner. The media is prepared as in example 2.
Кобальт и оксид железа наносят, как в примере 7. Активацию катализатора и синтез проводят, как в примере 1. Пример 11.Cobalt and iron oxide are applied, as in example 7. Activation of the catalyst and synthesis is carried out, as in example 1. Example 11.
Образец катализатора состава 30%Co/(TiO2 + 14% Al) готовят следующим способом.A catalyst sample of 30% Co / (TiO 2 + 14% Al) was prepared in the following manner.
К 2 г бемита SB-I добавляют смесь из 0,45 мл HNO3 (64%), 8 мл дистиллированной воды и 0,6 г пластификатора триэтиленгликоля (ТЭГ). Тщательно перемешивают до однородной массы. К смеси добавляют 1,2 г порообразующего компонента метилцеллюлозы и тщательно перемешивают до однородной массы. К смеси добавляют 2 г порошка металлического алюминия в форме чешуек, смоченного 2 мл диметилового эфира, и тщательно перемешивают до однородной массы. Далее к смеси добавляют 6 г порошка TiO2, тщательно перемешивают до однородной массы и помещают в экструдер с фильерой 2,5 мм. Экструдаты выдерживают на воздухе 10 ч и помещают в сушильный шкаф. Режим высушивания в сушильном шкафу: 60°C — 2 ч, 8O0C — 2 ч, 110°C — 2 ч. Высушенные экструдаты загружают в проточный кварцевый реактор и прокаливают в токе воздуха, поднимая температуру со ПО до 45O0C со скоростью 3-4°C/мин. При температуре 4500C выдерживают 4 ч. Экструдаты охлаждают в токе воздуха, выгружают из реактора и измельчают до фракции 2,5x2-3 мм. Кобальт наносят, как в примере 1.A mixture of 0.45 ml of HNO 3 (64%), 8 ml of distilled water and 0.6 g of triethylene glycol plasticizer (TEG) is added to 2 g of boehmite SB-I. Mix thoroughly until smooth. To the mixture add 1.2 g of the pore-forming component of methylcellulose and mix thoroughly until smooth. To the mixture add 2 g of powder of aluminum metal in the form of flakes moistened with 2 ml of dimethyl ether, and mix thoroughly until smooth. Next, 6 g of TiO 2 powder is added to the mixture, mixed thoroughly until smooth and placed in an extruder with a 2.5 mm die. The extrudates are held in air for 10 hours and placed in an oven. Drying mode in an oven: 60 ° C - 2 hours, 8O 0 C - 2 hours, 110 ° C - 2 hours. The dried extrudates are loaded into a flowing quartz reactor and calcined in an air stream, raising the temperature from PO to 45O 0 C at a speed 3-4 ° C / min. It is held for 4 hours at a temperature of 450 ° C. The extrudates are cooled in a stream of air, discharged from the reactor and crushed to a fraction of 2.5x2-3 mm. Cobalt is applied as in example 1.
Активацию катализатора и синтез проводят, как в примере 1. Пример 12.Activation of the catalyst and synthesis is carried out as in example 1. Example 12.
Образец катализатора состава 30%Fe/( Al2O3 + 14% Al) готовят следующим способом. Носитель готовят, как в примере 2.A sample of the catalyst composition 30% Fe / (Al 2 O 3 + 14% Al) is prepared in the following way. The media is prepared as in example 2.
Железо наносят из водного раствора его нитрата в три последовательных пропитки.Iron is applied from an aqueous solution of its nitrate in three successive impregnations.
1 пропитка. 10,31 г нитрата железа растворяют в дистиллированной воде и 5 добавляют к 10 г полученного носителя. Смесь помещают в фарфоровую чашку и сушат на водяной бане в течение 30-60 мин, после чего прокаливают в токе воздуха при температуре 450°C в течение 1 ч.1 impregnation. 10.31 g of iron nitrate are dissolved in distilled water and 5 is added to 10 g of the obtained carrier. The mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes, after which it is calcined in a stream of air at a temperature of 450 ° C for 1 hour.
2 пропитка. Аналогично первой.2 impregnation. Similar to the first.
3 пропитка 10,31 г нитрата железа растворяют в дистиллированной воде и 10 добавляют к материалу, полученному на стадии 2. Смесь помещают в фарфоровую чашку и сушат на водяной бане в течение 30-60 мин.3 impregnation 10.31 g of iron nitrate is dissolved in distilled water and 10 is added to the material obtained in stage 2. The mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes.
Перед проведением синтеза образец катализатора активируют в токе водородаBefore the synthesis, the catalyst sample is activated in a stream of hydrogen
(о.с. 3000 ч" ) при 450°C в течение 1 ч. Синтез углеводородов проводят в трубчатом реакторе со стационарным слоем катализатора при давлении 2 МПа и температуре(r.s. 3000 h " ) at 450 ° C for 1 h. The synthesis of hydrocarbons is carried out in a tubular reactor with a stationary catalyst bed at a pressure of 2 MPa and a temperature
15 160-240°C с использованием синтез-газа с мольным отношением CO/H2 =1/2 (о.с.15 160-240 ° C using synthesis gas with a molar ratio CO / H 2 = 1/2 (r.s.
1000 ч"1).1000 hours "1 ).
Пример 13.Example 13
Образец катализатора состава 30%Ru/( Al2O3 + 14%A1) готовят следующим 0 способом.A catalyst sample of 30% Ru / (Al 2 O 3 + 14% A1) was prepared in the following 0 way.
Носитель готовят, как в примере 2.The media is prepared as in example 2.
Рутений наносят из водного раствора его хлорида в три последовательных пропитки.Ruthenium is applied from an aqueous solution of its chloride in three consecutive impregnations.
1 пропитка. 2,94 г хлорида рутения растворяют в дистиллированной воде и 5 добавляют к 10 г полученного носителя. Смесь помещают в фарфоровую чашку и сушат на водяной бане в течение 30-60 мин, после чего прокаливают в токе азота при температуре 450°C в течение 1 ч.1 impregnation. 2.94 g of ruthenium chloride is dissolved in distilled water and 5 is added to 10 g of the obtained carrier. The mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes, after which it is calcined in a stream of nitrogen at a temperature of 450 ° C for 1 h.
2 пропитка. Аналогично первой.2 impregnation. Similar to the first.
3 пропитка 2,94 г хлорида рутения растворяют в дистиллированной воде и 0 добавляют к материалу, полученному на стадии 2. Смесь помещают в фарфоровую чашку и сушат на водяной бане в течение 30-60 мин.3 impregnation 2.94 g of ruthenium chloride are dissolved in distilled water and 0 is added to the material obtained in stage 2. The mixture is placed in a porcelain cup and dried in a water bath for 30-60 minutes.
Перед проведением синтеза образец катализатора активируют в токе водорода (о.с. 3000 ч" ) при 550°C в течение 1 ч. Синтез углеводородов проводят в трубчатом реакторе со стационарным слоем катализатора при давлении 2 МПа и температуре 160-2400C с использованием синтез-газа с мольным отношением CCVH2 =1/2 (о. с.Before the synthesis, the catalyst sample is activated in a stream of hydrogen (r.s. 3000 h " ) at 550 ° C for 1 h. The synthesis of hydrocarbons is carried out in a tubular reactor with a stationary catalyst bed at a pressure of 2 MPa and a temperature 160-240 0 C using synthesis gas with a molar ratio of CCVH 2 = 1/2 (r.s.
1000 ч"1). Пример 14.1000 h. "1 ). Example 14.
Образец катализатора состава 30%Co-0,5%Re/(Al2O3 + 14%A1) готовят следующим способом.A sample of the catalyst composition 30% Co-0.5% Re / (Al 2 O 3 + 14% A1) is prepared in the following way.
Носитель готовят, как в примере 2. Кобальт и рений наносят, как в примере 7. Активацию катализатора проводят, как в примере 1.The carrier is prepared as in example 2. Cobalt and rhenium are applied as in example 7. Activation of the catalyst is carried out as in example 1.
Синтез углеводородов проводят в трубчатом реакторе со стационарным слоем катализатора при давлении 2 МПа и температуре 170-250°C с использованием синтез-газа с мольным отношением CO/H2 =1/2 (о.с. 2000 ч"1). Пример 15 (Сравнение).The synthesis of hydrocarbons is carried out in a tubular reactor with a stationary catalyst bed at a pressure of 2 MPa and a temperature of 170-250 ° C using synthesis gas with a molar ratio of CO / H 2 = 1/2 (r.p. 2000 h "1 ). Example 15 (Comparison).
Образец катализатора состава 30%Co/( Al2O3) готовят следующим способом. К 2 г бемита SB-I добавляют смесь из 0,45 мл HNO3 (64%), 7 мл дистиллированной воды и 0,6 г пластификатора триэтиленгликоля (ТЭГ). Тщательно перемешивают до однородной массы. К смеси добавляют 1,2 г порообразующего компонента метилцеллюлозы и тщательно перемешивают до однородной массы. Далее к смеси добавляют 8 г порошка Al2O3, тщательно перемешивают до однородной массы и помещают в экструдер с фильерой 2,5 мм. Экструдаты выдерживают на воздухе 10 ч и помещают в сушильный шкаф. Режим высушивания в сушильном шкафу: 60°C — 2 ч, 80°C — 2 ч, 110°C — 2 ч. Высушенные экструдаты загружают в проточный кварцевый реактор и прокаливают в токе воздуха, поднимая температуру со 110 до 450°C со скоростью 3-4°C/мин. При температуре 450°C выдерживают 4 ч. Экструдаты охлаждают в токе воздуха, выгружают из реактора и измельчают до фракции 2,5χ2-3 мм. Кобальт наносят, как в примере 1. Активацию катализатора и синтез проводят, как в примере 1. ТаблицаA catalyst sample of 30% Co / (Al 2 O 3 ) was prepared in the following manner. A mixture of 0.45 ml of HNO 3 (64%), 7 ml of distilled water and 0.6 g of triethylene glycol plasticizer (TEG) is added to 2 g of boehmite SB-I. Mix thoroughly until smooth. To the mixture add 1.2 g of the pore-forming component of methylcellulose and mix thoroughly until smooth. Next, 8 g of Al 2 O 3 powder is added to the mixture, mixed thoroughly until smooth and placed in an extruder with a 2.5 mm die. The extrudates are held in air for 10 hours and placed in an oven. Drying mode in an oven: 60 ° C - 2 hours, 80 ° C - 2 hours, 110 ° C - 2 hours. The dried extrudates are loaded into a flowing quartz reactor and calcined in an air stream, raising the temperature from 110 to 450 ° C at a speed 3-4 ° C / min. They are held at 450 ° C for 4 hours. The extrudates are cooled in a stream of air, discharged from the reactor and crushed to a fraction of 2.5 χ 2-3 mm. Cobalt is applied, as in example 1. Activation of the catalyst and synthesis is carried out, as in example 1. Table
Показатели синтеза Фишера-Тропша, проведенного с использованием образцов катализаторов, соответствующих изобретениюThe performance of the Fischer-Tropsch synthesis carried out using samples of the catalysts corresponding to the invention
Конверсия Ceлeктив- Селектив- Производи- [I?' Conversion Selective - Selective - - [I ? ''
Пример CO, % H r°' 0/ ность тельность, пaPaФfы по CH4, /о пo C5+; 0/o кгC5+3 кaтCl l+J; мac.%Example CO,% H r ° ' Tb 0 / ness, pa P a Фf s for CH 4 , / о for C5 +; 0 / o kg C 5+ / m 3 cat / h Cl l + J; wt.%
1 65 8 85 93 931 65 8 85 93 93
2 70 6 88 105 862 70 6 88 105 86
3 73 7 87 106 863 73 7 87 106 86
4 64 12 75 85 754 64 12 75 85 75
5 60 10 82 91 835 60 10 82 91 83
6 75 7 88 108 956 75 7 88 108 95
7 81 6 90 112 967 81 6 90 112 96
8 83 7 89 ПО 938 83 7 89 software 93
9 80 7 85 100 809 80 7 85 100 80
10 82 7 84 102 8510 82 7 84 102 85
11 75 10 80 89 7711 75 10 80 89 77
12 70 11 75 77 7512 70 11 75 77 75
13 50 9 86 95 9013 50 9 86 95 90
14 48 8 85 90 9614 48 8 85 90 96
15 54 32 63 62 5915 54 32 63 62 59
Промышленная применимостьIndustrial applicability
Изобретение относится к нефтехимии, газохимии, углехимии и может быть использовано для синтеза Фишера-Тропша. The invention relates to petrochemistry, gas chemistry, coal chemistry and can be used for Fischer-Tropsch synthesis.

Claims

Формула изобретения Claim
1. Катализатор для синтеза Фишера-Тропша, содержащий в качестве активного компонента металл VIII группы Периодической системы Д.И.Менделеева и носитель, содержащий оксидную составляющую и металлический алюминий в форме чешуек.1. The catalyst for the Fischer-Tropsch synthesis, containing as an active component a metal of group VIII of the Periodic Table of D. I. Mendeleev and a carrier containing an oxide component and metallic aluminum in the form of flakes.
2. Катализатор по п.l, отличающийся тем, что содержание активного компонента составляет 5-40 % от массы катализатора.2. The catalyst according to claim 1, characterized in that the content of the active component is 5-40% by weight of the catalyst.
3. Катализатор по п.l, отличающийся тем, что оксидная составляющая содержит оксид алюминия и/или оксид кремния и/или оксид титана и/или оксид циркония.3. The catalyst according to claim 1, characterized in that the oxide component contains aluminum oxide and / or silicon oxide and / or titanium oxide and / or zirconium oxide.
4. Катализатор по п. 1, отличающийся тем, что дополнительно содержит промоторы в качестве которых используются металл цирконий или металлы VII - VIII групп Периодической системы Д.И.Менделеева и/или их окислы. 4. The catalyst according to claim 1, characterized in that it further comprises promoters which use zirconium metal or metals of groups VII - VIII of the Periodic Table of D. I. Mendeleev and / or their oxides.
5. Катализатор по п. 4, отличающийся тем, что содержание промоторов составляет 0,1-5 % от массы катализатора.5. The catalyst according to claim 4, characterized in that the content of promoters is 0.1-5% by weight of the catalyst.
6. Катализатор по п.l, отличающийся тем, что чешуйки металлического алюминия имеют толщину не выше 5 мкм и линейный размер по поверхности от 0,02 мм в самом коротком измерении до 3 мм в самом длинном измерении.6. The catalyst according to claim 1, characterized in that the aluminum metal flakes have a thickness of not higher than 5 μm and a linear surface size from 0.02 mm in the shortest dimension to 3 mm in the longest dimension.
7. Катализатор по п.l, отличающийся тем, что содержание металлического алюминия в форме чешуек составляет 1-25 % от массы катализатора.7. The catalyst according to claim 1, characterized in that the content of aluminum metal in the form of flakes is 1-25% by weight of the catalyst.
8. Способ получения катализатора для синтеза Фишера-Тропша по п.l, заключающийся в том, что активный компонент наносят пропиткой на носитель, который готовят из пасты посредством экструзии, экструдаты выдерживают на воздухе, высушивают и прокаливают, при этом используемая паста содержит оксидную составляющую, металлический алюминий в виде чешуек, связующее и пластификатор.8. The method of producing the catalyst for the Fischer-Tropsch synthesis according to claim 1, wherein the active component is applied by impregnation to a carrier prepared from a paste by extrusion, the extrudates are held in air, dried and calcined, while the paste used contains an oxide component , metal aluminum in the form of flakes, a binder and a plasticizer.
9. Способ по п.8, отличающийся тем, что в качестве оксидной составляющей используют оксид алюминия и/или оксид кремния и/или оксид титана и/или оксид циркония.9. The method according to claim 8, characterized in that the oxide component is aluminum oxide and / or silicon oxide and / or titanium oxide and / or zirconium oxide.
10. Способ по п.8, отличающийся тем, что содержание металлического алюминия в форме чешуек составляет 1-25 % от массы катализатора. 10. The method according to claim 8, characterized in that the content of aluminum metal in the form of flakes is 1-25% by weight of the catalyst.
11. Способ по п. 8, отличающийся тем, что в качестве связующего используют бемит в количестве 5-15 % от массы катализатора.11. The method according to p. 8, characterized in that as a binder use boehmite in an amount of 5-15% by weight of the catalyst.
12. Способ по п. 8, отличающийся тем, что паста дополнительно содержит порообразующий компонент. 12. The method according to p. 8, characterized in that the paste further comprises a pore-forming component.
13. Способ по п. 8, отличающийся тем, что введение активного компонента осуществляют пропиткой сформированного носителя раствором солей металлов VIII группы до его содержания 5—40 % от массы катализатора.13. The method according to p. 8, characterized in that the introduction of the active component is carried out by impregnating the formed carrier with a solution of Group VIII metal salts to its content of 5-40% by weight of the catalyst.
14. Способ по п. 8, отличающийся тем, что дополнительно осуществляют пропитку носителя раствором солей промоторов, в качестве которых используются металл цирконий или металлы VII-VIII групп Периодической системы Д.И.Менделеева и/или их окислы.14. The method according to p. 8, characterized in that it additionally carry out the impregnation of the carrier with a solution of salts of promoters, which are used zirconium metal or metals of groups VII-VIII of the Periodic Table of D. I. Mendeleev and / or their oxides.
15. Способ по п. 14, отличающийся тем, что пропитку носителя раствором солей промоторов осуществляют до содержания промоторов 0,1-5 % от массы катализатора. 15. The method according to p. 14, characterized in that the carrier is impregnated with a solution of the salts of the promoters to a content of promoters of 0.1-5% by weight of the catalyst.
PCT/RU2007/000692 2006-12-27 2007-12-11 Catalyst for fisher-tropsch synthesis and a method for the production thereof WO2008079051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2006146576/04A RU2326732C1 (en) 2006-12-27 2006-12-27 Catalyst for fischer-tropsch synthesis and method for its producing
RU2006146576 2006-12-27

Publications (1)

Publication Number Publication Date
WO2008079051A1 true WO2008079051A1 (en) 2008-07-03

Family

ID=39562740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2007/000692 WO2008079051A1 (en) 2006-12-27 2007-12-11 Catalyst for fisher-tropsch synthesis and a method for the production thereof

Country Status (2)

Country Link
RU (1) RU2326732C1 (en)
WO (1) WO2008079051A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016759A1 (en) * 2009-08-04 2011-02-10 Limited Liability Company "Infra Technologies" Support for catalyst of exothermic processes and catalyst prepared thereon
WO2010147513A3 (en) * 2009-06-16 2011-02-24 Limited Liability Company "Infra Technologies" Catalyst for synthesis of hydrocarbons from co and h2 and preparation method thereof
US8445550B2 (en) 2010-11-23 2013-05-21 Chevron U.S.A. Inc. Ruthenium hybrid fischer-tropsch catalyst, and methods for preparation and use thereof
US20130210942A1 (en) * 2012-02-14 2013-08-15 Chevron U.S.A Inc. Modified fischer-tropsch monolith catalysts and methods for preparation and use thereof
US8865613B2 (en) 2009-10-29 2014-10-21 Infra XTL Technology Limited Catalyst for synthesis of hydrocarbons from CO and H2 and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2524217C2 (en) * 2012-08-07 2014-07-27 ИНФРА ИксТиЭл ТЕКНОЛОДЖИ ЛИМИТЕД Catalyst for direct production of isoparaffin-rich synthetic oil and method for production thereof
RU2493913C1 (en) * 2012-08-24 2013-09-27 Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" Method of producing cobalt catalyst for fischer-tropsch synthesis of liquid hydrocarbons
RU2493914C1 (en) * 2012-08-24 2013-09-27 Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" Method of producing cobalt catalyst
US9878314B2 (en) 2013-11-26 2018-01-30 Infra XTL Technology Ltd. Catalyst for direct production of isoparaffins-rich synthetic oil and a method for preparing the catalyst
RU2566781C1 (en) * 2014-06-26 2015-10-27 Общество с ограниченной ответственностью "Объединенный центр исследований и разработок" (ООО "РН-ЦИР") Method of producing short carbon nanofibres, catalyst therefor and method of producing catalyst
RU2611618C1 (en) * 2015-10-22 2017-02-28 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Alumina carrier and method of producing thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2017517C1 (en) * 1987-10-23 1994-08-15 Ден Норске Статс Ольесельскап А.С. Catalyst for conversion of synthesis gas to hydrocarbons and method for formation of the latter
US6262132B1 (en) * 1999-05-21 2001-07-17 Energy International Corporation Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems
RU2207188C2 (en) * 1997-07-03 2003-06-27 Аджип Петроли С.П.А. Fischer-tropsch process-suitable catalytic composition
WO2004035511A2 (en) * 2002-10-16 2004-04-29 Conocophillips Company Fischer-tropsch processes and catalysts using stabilized supports
RU2256501C1 (en) * 2004-03-01 2005-07-20 Институт органической химии им. Н.Д. Зелинского РАН Catalyst for synthesis of hydrocarbons from co and h2

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2017517C1 (en) * 1987-10-23 1994-08-15 Ден Норске Статс Ольесельскап А.С. Catalyst for conversion of synthesis gas to hydrocarbons and method for formation of the latter
RU2207188C2 (en) * 1997-07-03 2003-06-27 Аджип Петроли С.П.А. Fischer-tropsch process-suitable catalytic composition
US6262132B1 (en) * 1999-05-21 2001-07-17 Energy International Corporation Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems
WO2004035511A2 (en) * 2002-10-16 2004-04-29 Conocophillips Company Fischer-tropsch processes and catalysts using stabilized supports
RU2256501C1 (en) * 2004-03-01 2005-07-20 Институт органической химии им. Н.Д. Зелинского РАН Catalyst for synthesis of hydrocarbons from co and h2

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147513A3 (en) * 2009-06-16 2011-02-24 Limited Liability Company "Infra Technologies" Catalyst for synthesis of hydrocarbons from co and h2 and preparation method thereof
JP2012529986A (en) * 2009-06-16 2012-11-29 インフラ・テクノロジーズ・リミテッド Catalyst for synthesizing hydrocarbons from CO and H2 and method for producing the same
US8735317B2 (en) 2009-06-16 2014-05-27 Infra XTL Technology Limited Catalyst for synthesis of hydrocarbons from CO and H2 and preparation method thereof
AU2010260609B2 (en) * 2009-06-16 2016-09-15 Infra XTL Technology Limited Catalyst for synthesis of hydrocarbons from CO and H2 and preparation method thereof
WO2011016759A1 (en) * 2009-08-04 2011-02-10 Limited Liability Company "Infra Technologies" Support for catalyst of exothermic processes and catalyst prepared thereon
JP2013500859A (en) * 2009-08-04 2013-01-10 インフラ・テクノロジーズ・リミテッド Exothermic catalyst carrier and catalyst produced from the carrier
AU2010279755B2 (en) * 2009-08-04 2016-07-07 Infra XTL Technology Limited Support for catalyst of exothermic processes and catalyst prepared thereon
US9446396B2 (en) 2009-08-04 2016-09-20 Infra XTL Technology Limited Support for catalyst of exothermic processes and catalyst prepared thereon
US8865613B2 (en) 2009-10-29 2014-10-21 Infra XTL Technology Limited Catalyst for synthesis of hydrocarbons from CO and H2 and preparation method thereof
US8445550B2 (en) 2010-11-23 2013-05-21 Chevron U.S.A. Inc. Ruthenium hybrid fischer-tropsch catalyst, and methods for preparation and use thereof
US20130210942A1 (en) * 2012-02-14 2013-08-15 Chevron U.S.A Inc. Modified fischer-tropsch monolith catalysts and methods for preparation and use thereof

Also Published As

Publication number Publication date
RU2326732C1 (en) 2008-06-20

Similar Documents

Publication Publication Date Title
RU2326732C1 (en) Catalyst for fischer-tropsch synthesis and method for its producing
AU2001262578B2 (en) Cobalt catalysts
RU2405625C1 (en) Catalyst for synthesis of hydrocarbons from co and h2 and method of preparing said catalyst
RU2414296C1 (en) Catalyst for synthesis of hydrocarbons from co and h2 and preparation method thereof
US9527061B2 (en) Catalysts
RU2414300C1 (en) Exothermic process catalyst support and catalyst based on said support
EP2586528A1 (en) Catalyst having monolithic structure for manufacturing ethylene glycol by oxalate hydrogenation, preparation method and application thereof
US20070036710A1 (en) Zirconia extrudates
RU2605092C2 (en) Catalysts
EA008584B1 (en) Process for preparing cobalt catalysts on titania support
AU2001262578A1 (en) Cobalt catalysts
CN101143325A (en) Method for preparing catalyst and application thereof
CN106552645B (en) Supported catalyst, preparation method and application thereof, and Fischer-Tropsch synthesis method
EP2664605A1 (en) Method for producing glycol from polyhydric alcohol
CN109382143B (en) Carrier and preparation method thereof, Fischer-Tropsch synthesis catalyst and Fischer-Tropsch synthesis method
EA025257B1 (en) Catalytic process for the conversion of a synthesis gas to hydrocarbons
CN108855094B (en) Supported catalyst, preparation method thereof and method for preparing synthesis gas by dry reforming of methane
EP3233764B1 (en) Method for preparing a catalyst
RU2325226C1 (en) Catalyst for fischer tropsch synthesis and method of its preparation
WO2014182020A1 (en) Monolith catalyst for carbon dioxide reforming reaction, production method for same, and production method for synthesis gas using same
CN108855058B (en) Ruthenium-based catalyst, preparation method thereof and Fischer-Tropsch synthesis method
CN110773170A (en) Methane reforming catalyst, preparation method thereof and methane reforming method
US8053482B2 (en) Fischer-tropsch catalyst
RU2788375C1 (en) Method for producing a catalyst for the fischer-tropsch synthesis
AU2019239617B2 (en) A supported cobalt-containing Fischer-Tropsch catalyst, process for preparing the same and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07866945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 07866945

Country of ref document: EP

Kind code of ref document: A1