WO2008075637A1 - Gas for plasma reaction, dry etching method, and method for forming fluorocarbon film - Google Patents

Gas for plasma reaction, dry etching method, and method for forming fluorocarbon film Download PDF

Info

Publication number
WO2008075637A1
WO2008075637A1 PCT/JP2007/074213 JP2007074213W WO2008075637A1 WO 2008075637 A1 WO2008075637 A1 WO 2008075637A1 JP 2007074213 W JP2007074213 W JP 2007074213W WO 2008075637 A1 WO2008075637 A1 WO 2008075637A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
plasma reaction
plasma
dry etching
methylenecyclopentene
Prior art date
Application number
PCT/JP2007/074213
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuya Sugimoto
Masahiro Nakamura
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Publication of WO2008075637A1 publication Critical patent/WO2008075637A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C23/00Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic ring
    • C07C23/02Monocyclic halogenated hydrocarbons
    • C07C23/08Monocyclic halogenated hydrocarbons with a five-membered ring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • H01L21/0212Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC the material being fluoro carbon compounds, e.g.(CFx) n, (CHxFy) n or polytetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching

Definitions

  • the present invention relates to a plasma reaction gas useful in the field of manufacturing semiconductor devices.
  • the present invention relates to a plasma reaction gas containing a perfluorocyclic compound having an exomethylene group, a dry etching method using the same, and a method for forming a fluorocarbon film.
  • saturated fluorocarbon gases such as carbon tetrafluoride and octafluorocyclobutane have been mainly used so far.
  • Patent Document 1 discloses force, such as hexafluorobenzene: CxFy (x and y represent natural numbers and y ⁇ x + 2).
  • Fluorocarbon is used as an etching gas under a high-density plasma of 10 11 ions / cm 3 or more, and it has good etching selectivity not only between the silicon oxide film and silicon nitride but also between the resist film It is described that can be obtained. However, the etching selectivity is described specifically as to the etching selectivity.
  • Patent Document 2 uses octafluoro-1,3-pentagen as an etching gas. Examples are described. However, in this embodiment, only the etching result in the case of forming a hole having a diameter of about 0.2111 and a depth of about 1 am is described, and the degree of further microfabrication is unknown.
  • Patent Document 3 describes that high-speed etching is possible by using hexafluoro-2-butyne as an etching gas. However, the selectivity and the effect on the microfabrication of the resist and the substrate to be etched are clearly described!
  • the insulating film formed by such a process has an inherent stress, and there are a number of processes in which heat is applied in the process, so that the stress control is important.
  • an insulating film with a fine pattern is in a state where a small change in stress cannot be ignored. If the stress is far from a certain level, defects such as curvature, cracks, and voids are generated in the insulating film and the underlying substrate. There is a risk.
  • Patent Document 1 USP. 5, 366, 590
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-16050
  • Patent Document 3 Japanese Patent Laid-Open No. 9 191002
  • Patent Document 4 JP-A-9 237783
  • Patent Document 5 Japanese Patent Laid-Open No. 2002-220668
  • the present invention has been made in view of the above-described prior art, and exhibits excellent etching selectivity and fine workability, and even under high-density plasma, etching rate and etching are achieved.
  • a gas for plasma reaction capable of forming a fluorocarbon film having a low balance of selectivity and capable of forming a fluorocarbon film with low stress relaxation even after heat treatment, and a dry etching method and a fluorocarbon film using the same.
  • the purpose is to provide a deposition method.
  • the present inventors have found that a plasma reaction gas containing a perfluoro- (3-methylenecyclopentene) having a cyclic structure and having an exomethylene group is used.
  • the present inventors have found that the above problems can be solved, and have completed the present invention.
  • Plasma reaction for dry etching plasma reaction for CVD, or plasma reaction
  • a dry etching method comprising a step of supplying the plasma reaction gas according to any one of the above (1) to (3) into a processing container and dry etching the substrate to be etched in the container.
  • a method for forming a fluorocarbon film comprising a step of forming a fluorocarbon film on the surface of an object to be processed in the container by a CVD method.
  • the plasma reaction gas of the present invention even when the resist film serving as a mask has a thin film thickness, it exhibits a high selectivity with respect to a semiconductor material and has a fine rectangular shape. Various patterns can be etched. In addition, even in a high-density plasma, etching with a balance in etching speed and selectivity is possible. Furthermore, a fluorocarbon film with small stress relaxation can be formed even if calo-heat treatment is performed.
  • FIG. 1 shows an MS chart of perfluoro- (3 methylenecyclopentene).
  • FIG. 2 shows an MS chart of hexafluoro 1,3 butadiene.
  • the plasma reaction gas of the present invention contains perfluoro- (3-methylenecyclopentene).
  • Perfluoro (3-methylenecyclopentene) used in the present invention has the following formula:
  • the content (corresponding to purity) of perfluoro- (3-methylenecyclopentene) in the plasma reaction gas of the present invention is not particularly limited, but is preferably 99% by volume from the viewpoint of satisfactorily expressing the effects of the present invention. Above, more preferably 99.9% by volume or more.
  • the upper limit of the content of perfluoro- (3-methylenecyclopentene) is usually about 99.999% by volume.
  • the content of perfluoro- (3-methylenecyclopentene) can be measured by gas chromatography using a flame ionization detector (FID) in accordance with the method described in Examples below.
  • the plasma reaction gas of the present invention contains organic trace compounds derived from the raw material of the gas, and impurities such as nitrogen gas, oxygen gas, and moisture. However, it is preferable that the content is as low as possible because it may greatly affect the plasma reaction.
  • Perfluoro- (3-methylenecyclopentene) is a known substance, and its production method is not particularly limited. For example, it can be produced according to the production method described in the literature (Journal of Chemical Society (C), 1971, ⁇ 925).
  • decafluorocyclohexene is used as a starting material, which is photoisomerized and converted to perfluoro (exomethylene) cyclopentane.
  • the obtained perfluoro (exomethylene) cyclopentane was contacted with aluminum chloride in the presence of methyl iodide solvent.
  • 1- (chlorodifluoromethyl) heptafluorocyclopentene is brought into contact with zinc to obtain a target perfluoro- (3-methylenecyclopentene) crude product.
  • the plasma reaction gas of the present invention is in a liquefied state and, if desired, is filled in an arbitrary container, for example, a cylinder or the like in the same manner as a conventional semiconductor gas. It is used for plasma reaction.
  • the plasma reaction gas of the present invention include a plasma reaction dry etching gas, a plasma reaction CVD gas, and a plasma reaction ashing gas.
  • the plasma reaction gas of the present invention is capable of dry etching with an excellent balance of etching selectivity, fine workability, etching rate and etching selectivity under high-density plasma, and heating. Since it is possible to form a fluorocarbon film with low stress relaxation even after the treatment, it is more suitable to use it for dry etching as a gas for plasma reaction dry etching and for CVD method as a gas for plasma reaction CVD. is there.
  • the dry etching method of the present invention includes the steps of supplying the plasma reaction gas of the present invention into a processing container and dry etching the substrate to be etched in the container.
  • Dry etching is a material that uses reactive gas (etching gas), ions, and radicals.
  • dry etching include, but are not limited to, cylindrical plasma etching, reactive ion etching (RIE), and ECR ion flow etching.
  • an etching chamber of a dry etching apparatus is mentioned. It is done.
  • the method for supplying the plasma reaction gas of the present invention into the processing vessel is not particularly limited.
  • the inside of the processing vessel including the piping system is decompressed and the plasma reaction gas of the present invention is drawn into the processing vessel, or perfluoro (3-methylenecyclopentene). ) Is gasified under heating, and the plasma reaction gas of the present invention is supplied into the processing vessel, the latter being preferred.
  • the perfluoro (3-methylenecyclopentene) used in the present invention has a boiling point of about 67 ° C. Therefore, depending on the usage mode of the plasma reaction gas of the present invention, a part of the gas is liquefied, resulting in a bias in the content of perfluoro- (3-methylenecyclopentene) in the gas, The supply of plasma reaction gas may become unstable.
  • Perfluoro- (3-methylenecyclopentene) is gasified under heating through a vessel or piping system filled with a plasma reaction gas, so that the plasma reaction gas can be stably supplied into the processing vessel. And good reproducibility can be secured in the dry etching operation.
  • the heating temperature may be appropriately adjusted according to the pressure state of the piping system or the like, but is usually in the range of 40 ° C to; 150 ° C is preferred. The range of 50 ° C to 100 ° C is preferred. More preferred. At that time, reduce the pressure inside the processing vessel including the piping system.
  • the plasma reaction gas of the present invention is used as a plasma reaction dry etching gas
  • helium, neon, argon, xenon, and krypton are used to control the concentration of etching species generated in the plasma and the control of ion energy.
  • At least one inert gas selected from the group consisting of may be added.
  • the addition amount of the inert gas is such that the total amount of the inert gas with respect to perfluoro- (3-methylenecyclopentene) is 2 to 200 in volume ratio [inert gas / perfluoro- (3-methylenecyclopentene)]. It is more preferable to be 5 to 150.
  • the total amount of o and o with respect to the ten) is the capacity ratio [( ⁇ and / or o) / perfluoro- (
  • 3-Methylenecyclopentene)) is preferably between 0 ⁇ 50 and preferably between 0.5 and 30 More preferred.
  • CO and / or CO may be added in order to improve the selectivity with respect to a mask such as a resist or polysilicon.
  • the amount of CO and / or CO added is perfluoro
  • the total amount of CO and CO to one (3-methylenecyclopentene) is the volume ratio [(CO and
  • At least one kind of group force selected from CHF, CHF, CF, CF, and CF forces is selected.
  • Gas X may be added.
  • the amount of gas X to be added is the total quantity force S of gas X with respect to perfluoro- (3-methylenecyclopentene), and the volume ratio [gas X / perfluoro- (3-methylenecyclopentene)]. S, preferably 0.;! ⁇ 0 ⁇ 5.
  • Examples of the substrate to be etched include a glass substrate, a silicon single crystal wafer, a substrate such as gallium arsenide, and the like provided with a thin film layer of a material to be etched.
  • Examples of etching materials include silicon oxide films; TEOS films, BPSG films, PSG films, and SOGfe; H3 ⁇ 4Q (Hydrogen silsesquioxane; I3 ⁇ 4; MSQ (Methyl silsesquioxane) films; PCB films; SiOC films; SiOF films; Although there is a porous film of the above film, a silicon oxide film is particularly preferable.
  • the plasma density in the dry etching step is not particularly limited, but the plasma density is preferably 10 12 ions from the viewpoint of better expressing the effects of the present invention. It is desirable to perform dry etching in a high-density plasma atmosphere at 10 3 / cm 3 or more, more preferably 10 12 to 10 13 ions / cm 3 .
  • the plasma reaction gas of the present invention when used, even if the plasma density is set to a high density of 10 12 ions / cm 3 or more, the selectivity that occurs when a conventional fluorine-containing compound is used decreases. Is unlikely to occur. Therefore, while ensuring high selectivity, etching can be performed at a high etching rate, and a fine pattern can be efficiently formed.
  • Plasma generators include helicon wave method, high frequency induction method, parallel plate type, Forces including devices such as the Guntron method and the microwave method Since the plasma generation in the high density region is easy, helicon wave method, high frequency induction method and microwave method devices are preferably used.
  • the pressure at the time of dry etching is not particularly limited.
  • the plasma reaction gas of the present invention, together with other gas components, if desired, is put into an etching chamber in an etching chamber deaerated to a vacuum. It is introduced so that the inside is preferably from 0.0013 to 1300 Pa, more preferably from 0.13 to L3Pa.
  • the temperature reached by the substrate to be etched during dry etching is not particularly limited, but is preferably 0 to 300 ° C, more preferably 60 to 250 ° C, and still more preferably 80 to 200 ° C. It is a range.
  • the substrate temperature may or may not be controlled by cooling or the like.
  • the dry etching time is generally 5 to 10 minutes.
  • the plasma reaction gas of the present invention can be etched at a high speed, so that the productivity can be improved in 2 to 5 minutes.
  • the method for forming a fluorocarbon film of the present invention comprises the steps of supplying the plasma reaction gas of the present invention into a processing vessel and depositing the fluorocarbon film on the surface of the object to be processed in the vessel by the CVD method.
  • the CVD method generally refers to a process of synthesizing a solid material such as a thin film or fine particles through a chemical reaction from a gas raw material.
  • it particularly refers to a technique for activating and polymerizing a plasma reaction gas by plasma discharge to form a thin fluorocarbon film on the surface of various objects to be processed.
  • An example of the processing container is a reaction chamber of a CVD apparatus.
  • the plasma reaction gas of the present invention may be supplied into the processing vessel in the same manner as in the dry etching method of the present invention.
  • a method in which perfluoro- (3-methylenecyclopentene) is gasified under heating and the plasma reaction gas of the present invention is supplied into the processing vessel is preferable.
  • the supply of the plasma reaction gas of the present invention into the processing vessel is performed by gasifying perfluoro (3-methylenecyclopentene) under heating, whereby CVD is performed. Good reproducibility can be assured in operation.
  • the gas for plasma reaction of the present invention is used as a gas for plasma reaction CVD
  • helium, neon, argon, xenon are used to control the concentration of active species generated in the plasma and promote dissociation of the source gas.
  • at least one inert gas selected from the group consisting of krypton may be added.
  • the addition amount of the inert gas is such that the total amount of the inert gas with respect to perfluoro- (3 methylenecyclopentene) is 2 to 200 in volume ratio [inert gas / perfluoro- (3-methylenecyclopentene)]. Is more preferably 5 to 150.
  • a parallel plate CVD apparatus is generally used as an apparatus for plasma CVD, but a microwave CVD apparatus, an ECR-CVD apparatus, an inductively coupled plasma (ICP) CVD apparatus, and a high-density plasma CVD apparatus (helicon) Wave system or high frequency induction system).
  • the plasma generation conditions are not particularly limited, but when a parallel plate type CVD apparatus is used as an example, the high frequency power applied to the upper electrode (shower head) of the parallel plate is usually used. 10 kW to 10 kW, the temperature of the object to be treated is 0 to 500 ° C, and the reaction chamber pressure is 0.0 133 Pa to 13.3 kPa.
  • the thickness of the deposited film is usually in the range of 0.01 to 10 m.
  • the object to be treated is not particularly limited! /, But in the semiconductor manufacturing field, the electronic / electrical field, the precision machine field, and other fields, insulation, water repellency, corrosion resistance, acid resistance, lubricity, light Articles and members that require functions or properties such as anti-reflective properties, etc., preferably articles and members that require insulation in the semiconductor manufacturing field and the electronic and electrical field, and substrates used in those fields are particularly preferable.
  • preferable substrates include silicon films such as a single crystal silicon film, a polycrystalline silicon film and an amorphous silicon film; a silicide film made of tungsten, molybdenum, titanium, tantalum, etc .; SiN, SiON, SiO, BSG (Boron-silicate glass), PSG (phosphorus
  • silicon-containing insulating films such as TiN and TaN; gallium arsenide substrates; diamond-like carbon films and aluminum Plate; soda-lime glass; alumina film; zirconium oxide film; and ceramics made of aluminum nitride and aluminum oxide.
  • the plasma reaction gas of the present invention can be suitably used in an ashing operation.
  • Ashing means activating plasma reaction gas by plasma discharge to ash and remove contaminants in the chamber of a dry etching apparatus or CVD apparatus. It also means removing contaminants on the surface of the object to be processed by dry etching or CVD with active species, and further polishing and planarizing the surface of the object to be processed with active species. Particularly preferred are those used for removing unnecessary polymer components deposited in the chamber, removing an oxide film from the semiconductor device substrate, and removing the resist from the semiconductor device.
  • the plasma generation conditions for the ashing are not particularly limited as long as the generation of active species by plasma decomposition is ensured, and the plasma reaction conditions therefor may be appropriately selected.
  • the content of the fluorine-containing compound in the plasma reaction gas is determined by the following analysis method.
  • Carrier gas Nitrogen (flow rate lmL / min)
  • Detector FID
  • a glass reactor equipped with a dropping funnel, a condenser and a stirrer was charged with 10 parts of powdered zinc, 3 parts of acetic acid, and 70 parts of diethylene glycol dimethyl ether, and heated to 100 ° C.
  • a solution prepared by dissolving 26 parts of 1 (chlorodifluoromethyl) heptafluorosic pentene obtained above in 30 parts of diethylene glycol dimethyl ether was dropped, and after completion of the dropping, the reaction was carried out for 5 hours.
  • the reaction mixture was once cooled to room temperature and the product was collected in a trap under reduced pressure.
  • 9 parts of the purified product of the desired perfluoro- (3-methylenecyclopentene) was obtained.
  • a SUS316 cylinder having a capacity of 150 mL is dried under reduced pressure, and the operation is performed on the cylinder.
  • the purified product of perfluoro- (3-methylenecyclopentene) obtained by repeating the above was packed through a filter.
  • This cylinder was immersed in a refrigerant maintained at 70 ° C, and the valve nut was connected to the vacuum line. The valve was opened for 5 seconds to remove nitrogen and oxygen inside the cylinder, once the cylinder was returned to room temperature, and immersed in a refrigerant maintained at 70 ° C again to remove nitrogen and oxygen five times.
  • a gas for plasma reaction was obtained in a liquefied state filled in a cylinder.
  • the content of perfluoro (3-methylenecyclopentene) in the plasma reaction gas was determined by gas chromatography analysis and found to be 99.2% by volume.
  • EI-MS Electro Impact Mass Spectrometry
  • perfluoro- (3-methylenecyclopentene) strongly observes C F in which one fluorine is dissociated from the parent molecule, and the force and CF peak from which CF is dissociated.
  • (cyclopentene) forms more high molecular weight fragments than the parent molecule compared to hexafluoro-1,3-butadiene.
  • plasma activation of perfluoro- (3-methylenecyclopentene) generates a high molecular weight fragment derived from a ring structure. Therefore, when the compound is used as a plasma reaction dry etching gas, a low-molecular active species is bonded to the fragment to form a strong fluorocarbon film on the substrate to be etched, and the low-molecular active species.
  • a kind of CF, CF radical, etc. is used to etch the substrate.
  • a part of the perfluoro- (3-methylenecyclopentene) molecule is present in the plasma without being dissociated, but since it has two double bonds, the reaction point that can participate in the bond is a normal olefin. It is presumed that it forms a strong fluorocarbon film by binding to active species in the same manner as compared with many compounds.
  • This resist solution was applied by spin coating on an 8-inch silicon substrate on which a silicon oxide film having a thickness of about 2 ⁇ m was formed, and pre-betaning was performed on a hot plate at 120 ° C to obtain a film thickness. A 3000 nm resist film was formed. This resist film was exposed through an X-ray exposure apparatus through a mask pattern. Then, post-beta was performed at 130 ° C, and 2. development was performed at 25 ° C for 60 seconds using 38% tetramethylammonium hydroxide aqueous solution, followed by drying to form a lOOnm contact hole pattern.
  • the substrate on which the contact hole pattern was formed was set in an etching chamber of a parallel plate plasma etching apparatus, and the system was evacuated.
  • the container filled with the plasma reaction gas obtained in Example 1 in a liquefied state is heated to 85 ° C. to obtain perfluorocarbon.
  • a plasma reaction gas in which raw (3-methylenecyclopentene) was gasified was introduced into the etching chamber at a rate of 15 sccm, and oxygen and argon were introduced at a rate of 15 sccm and 400 sccm, respectively.
  • the pressure inside the system was maintained at 0.667 Pa (5 mTorr), and dry etching was performed at a plasma density of 10 12 ions / cm 3 .
  • Table 1 shows the etching rate and the selectivity for the resist. The etching rate was measured at the center of the silicon substrate, and the selectivity was calculated using the etching rate.
  • Example 2 Dry etching was carried out in the same manner as in Example 1 except that hexafluoro-1,3-pentagen was used as the plasma reaction gas in place of perfluoro (3-methylenecyclopentene) used in Example 1. Table 1 shows the etching rate and selectivity for the resist.
  • Example 2 When using a conventional product Compared to (Comparative Example 1), it is more selective, can form a pattern with a good shape, and even when the plasma density is in a high density region, it is high. It can be seen that the etching can be performed without significantly reducing the selectivity.
  • Plasma CVD Film formation by plasma CVD was performed using the plasma reaction gas obtained in Example 1. Using a silicon oxide film wafer partially vapor-deposited as a substrate, a plasma CVD device is used. A microwave CVD apparatus was used. Plasma CVD conditions were as follows: Flow rate of plasma reaction gas: lOOsccm
  • Reaction chamber wall temperature 200 ° C
  • a film having a thickness of 0.3 am was obtained on the substrate treated under the above conditions. This film was dense and uniform with no voids, and had good adhesion to the substrate. The relative dielectric constant of the film was 2.2.
  • the formed silicon wafer was subjected to a laser internal stress measuring device (FLX-2320, manufactured by Tencor), and the internal stress was measured in the range of room temperature (25 ° C) to 350 ° C.
  • the rate of change of internal stress per unit temperature in this temperature range was 14 ppm / K.
  • a film was formed by plasma CVD in the same manner as in Example 3 except that hexafluororeoro 1,3-butadiene was used as the plasma reaction gas instead of the plasma reaction gas obtained in Example 1.
  • the relative dielectric constant of the film was 2.4.
  • the internal stress was measured in the range of room temperature (25 ° C) to 350 ° C by applying force to the deposited silicon wafer with a laser single internal stress measuring instrument (FLX-2320, manufactured by Tencor). The rate of change of internal stress per unit temperature in this temperature range was 40 ppm / K.

Abstract

Disclosed is a gas for plasma reactions, which contains perfluoro-(3-methylenecyclopentene). Also disclosed is a dry etching method having a step for dry etching an object base to be etched within a process chamber by supplying the gas for plasma reactions into the chamber. Further disclosed is a method for forming a fluorocarbon film by CVD on the surface of an object to be processed within a process chamber by supplying the gas for plasma reactions into the chamber. The gas for plasma reactions exhibits high selectivity for semiconductor materials and enables to form a finer pattern having a good rectangular shape even when the resist as a mask is thin. The gas for plasma reactions enables to perform an etching having a good balance between etching rate and selectivity even with a high-density plasma. In addition, the gas for plasma reactions enables to form a fluorocarbon film having low stress relaxation even after a heat treatment.

Description

明 細 書  Specification
プラズマ反応用ガス、ドライエ 'ング方法およびフノレオ口カーボン膜の 成膜方法  Gas for plasma reaction, dry-enhancing method, and film formation method for funnelio carbon film
技術分野  Technical field
[0001] 本発明は、半導体装置の製造分野において有用なプラズマ反応用ガスに関する。  The present invention relates to a plasma reaction gas useful in the field of manufacturing semiconductor devices.
さらに詳しくは、ェキソメチレン基を有するパーフルォロ環状化合物を含有してなるプ ラズマ反応用ガス、並びにこれを用いるドライエッチング方法およびフルォロカーボン 膜の成膜方法に関する。  More specifically, the present invention relates to a plasma reaction gas containing a perfluorocyclic compound having an exomethylene group, a dry etching method using the same, and a method for forming a fluorocarbon film.
[0002] 本願 (ま、 2006年 12月 18曰 ίこ曰本国 ίこ出願された特願 2006— 339300号 ίこ基 づき優先権を主張し、その内容をここに援用する。  [0002] This application (May 18, 2006, Japanese Patent Application No. 2006-339300, filed in Japanese Patent Application No. 2006-339300) Priority is claimed on this basis, the contents of which are incorporated herein by reference.
背景技術  Background art
[0003] 近年の VLSI (大規模集積回路)、 ULSI (超大規模集積回路)などに見られるように 、半導体装置の高集積化及び高性能化が進展するに伴い、これらの半導体装置の 製造に用いられるプラズマ反応用ガスに対する技術的要求がますます厳しくなつてき ている。  [0003] As seen in recent VLSI (Large Scale Integrated Circuit), ULSI (Ultra Large Scale Integrated Circuit), etc., with the progress of higher integration and higher performance of semiconductor devices, these semiconductor devices have been manufactured. The technical requirements for the plasma reaction gas used are becoming increasingly stringent.
[0004] プラズマ反応用ガスとしては、これまで、四フッ化炭素、ォクタフルォロシクロブタン などの飽和フルォロカーボンガスが主に用いられてきた。  [0004] As the plasma reaction gas, saturated fluorocarbon gases such as carbon tetrafluoride and octafluorocyclobutane have been mainly used so far.
しかしながら、これらのガスは大気中での寿命が数千年以上と極めて長ぐ地球温 暖化への悪影響が指摘されており、使用制限が加えられようとしている。  However, these gases have an extremely long life in the atmosphere of thousands of years and have been pointed out to have an adverse effect on global warming.
そのため、その代替物として、種々の新しい含フッ素化合物が開発されてきている。  Therefore, various new fluorine-containing compounds have been developed as alternatives.
[0005] 力、かる含フッ素化合物として、例えば、特許文献 1には、へキサフルォロベンゼンな どの式: CxFy (x、 yは自然数を表し、 y≤x+ 2である。 )で表されるフルォロカーボン を、 1011イオン/ cm3以上の高密度プラズマ下でエッチングガスとして使用し、シリコ ン酸化膜と窒化シリコンとの間のみならず、レジスト膜との間にも良好なエッチング選 択性が得られる旨が記載されている。し力、しながら、そのエッチング選択性について 具体的には記載されてレ、なレ、。 [0005] For example, Patent Document 1 discloses force, such as hexafluorobenzene: CxFy (x and y represent natural numbers and y≤x + 2). Fluorocarbon is used as an etching gas under a high-density plasma of 10 11 ions / cm 3 or more, and it has good etching selectivity not only between the silicon oxide film and silicon nitride but also between the resist film It is described that can be obtained. However, the etching selectivity is described specifically as to the etching selectivity.
[0006] 特許文献 2には、ォクタフルオロー 1 , 3—ペンタジェンをエッチングガスとして用い た例が記載されている。しかしながら、その実施例においては、直径 0. 2 111、深さ 1 a m程度のホールを形成する場合のエッチング結果が記載されているのみであり、さ らなる微細加工の程度は不明である。 [0006] Patent Document 2 uses octafluoro-1,3-pentagen as an etching gas. Examples are described. However, in this embodiment, only the etching result in the case of forming a hole having a diameter of about 0.2111 and a depth of about 1 am is described, and the degree of further microfabrication is unknown.
[0007] 特許文献 3には、へキサフルオロー 2—ブチンをエッチングガスに用いることにより 高速エッチングが可能と記載されている。しかしながら、レジスト及び被エッチング基 体の選択性や微細加工に対する効果は明確には記載されて!/、なレ、。  Patent Document 3 describes that high-speed etching is possible by using hexafluoro-2-butyne as an etching gas. However, the selectivity and the effect on the microfabrication of the resist and the substrate to be etched are clearly described!
[0008] 近年、 1012イオン/ cm3以上の高密度プラズマ下でのエッチングを可能にするエツ チング装置が開発されてきている。この装置によれば、エッチング速度を高くすること ができ、エッチング時間の短縮を図ることができる。し力、しながら、このような高密度プ ラズマ下で実際にエッチングを行うと、エッチングに使用する分子がばらばらに解離 し過ぎ、解離した活性種の攻撃を受けてレジストも削れてしまい、選択性を確保でき ない場合があった。 [0008] In recent years, an etching apparatus that enables etching under a high-density plasma of 10 12 ions / cm 3 or more has been developed. According to this apparatus, the etching rate can be increased and the etching time can be shortened. However, if etching is actually performed under such a high-density plasma, the molecules used for etching will dissociate too much, and the resist will also be scraped off by the attack of the dissociated active species. In some cases, it was not possible to secure the sex.
したがって、高密度プラズマ下でエッチングを行う場合であっても、高い選択性を得 ることができるエッチングガスの開発が要望されている。  Therefore, there is a demand for the development of an etching gas capable of obtaining high selectivity even when etching is performed under high-density plasma.
[0009] 近年、メタル配線がアルミニウムから銅配線へ変更が進み、多層配線構造の一構 成部材をなす層間絶縁膜には、配線間幅をより狭ぐかつ、層間容量をより低減させ る技術の開発が求められている。  [0009] In recent years, the metal wiring has been changed from aluminum to copper wiring, and for the interlayer insulating film forming a component of the multilayer wiring structure, a technique for narrowing the width between wirings and further reducing the interlayer capacitance Development is required.
[0010] また、近年の半導体装置の製造においては、絶縁膜を何層にも積層するプロセス が構築されてきて!/、る。このようなプロセスで形成される絶縁膜は固有の応力を有し ており、プロセス上、熱が加わる工程が幾つも存在するため、応力の制御が重要とな る。とりわけ、微細なパターンを有する絶縁膜においては、小さな応力の変化も無視 できない状況にあり、応力がある水準とかけ離れてしまうと絶縁膜やその下地の基板 に湾曲、ひび割れ、ボイドなどの欠陥を発生するおそれがある。  [0010] Further, in recent manufacturing of semiconductor devices, a process for stacking multiple insulating films has been established! The insulating film formed by such a process has an inherent stress, and there are a number of processes in which heat is applied in the process, so that the stress control is important. In particular, an insulating film with a fine pattern is in a state where a small change in stress cannot be ignored. If the stress is far from a certain level, defects such as curvature, cracks, and voids are generated in the insulating film and the underlying substrate. There is a risk.
[0011] このため、配線間幅をより狭ぐかつ、層間容量をより低減させることを可能とし、ま た、多層に積層する場合であっても、絶縁膜やその下地の基板に湾曲、ひび割れ、 ボイドなどの欠陥が発生することがな!/、、低誘電率の絶縁材料が種々検討されてレ、 る。なかでも、化学気相成長法〔CVD (ケミカル ·ベーパー 'デポジション)法〕により形 成されるフルォロカーボン膜 (フッ素化アモルファスカーボン膜)が低誘電率の材料と して脚光を浴びてきている。 [0011] Therefore, it is possible to narrow the width between wirings and reduce the interlayer capacitance, and even in the case of stacking in multiple layers, the insulating film and the underlying substrate are bent or cracked. There is no possibility of generating defects such as voids! /, And various low dielectric constant insulating materials have been studied. In particular, a fluorocarbon film (fluorinated amorphous carbon film) formed by chemical vapor deposition (CVD (chemical vapor) deposition) is a low dielectric constant material. And has been in the limelight.
[0012] 力、かるフルォロカーボン膜を形成する成膜用ガスとしては、特許文献 4に記載され たへキサフルオロー 1 , 3 ブタジエン、へキサフルオロー 2 ブチン、特許文献 5に 記載されたへキサフルオロー 2—ブチンを始めとする含三重結合フッ素化合物が知 られている。 [0012] As the gas for forming a fluorocarbon film, hexafluoro-1,3-butadiene, hexafluoro-2-butyne described in Patent Document 4, and hexafluoro-2-butyne described in Patent Document 5 are used. The first triple bond-containing fluorine compounds are known.
[0013] 特許文献 1 : USP. 5, 366, 590 [0013] Patent Document 1: USP. 5, 366, 590
特許文献 2:特開 2002— 16050号公報  Patent Document 2: Japanese Patent Laid-Open No. 2002-16050
特許文献 3:特開平 9 191002号公報  Patent Document 3: Japanese Patent Laid-Open No. 9 191002
特許文献 4 :特開平 9 237783号公報  Patent Document 4: JP-A-9 237783
特許文献 5:特開 2002— 220668号公報  Patent Document 5: Japanese Patent Laid-Open No. 2002-220668
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] 本発明は、上述した従来技術の実情に鑑みてなされたものであり、優れたエツチン グ選択性及び微細加工性を示し、高密度プラズマ下におレ、てもエッチング速度とェ ツチング選択性のバランスに優れたドライエッチングが可能であり、かつ、加熱処理を 施しても、応力緩和の小さいフルォロカーボン膜を成膜可能なプラズマ反応用ガス、 並びにこれを用いるドライエッチング方法およびフルォロカーボン膜の成膜方法を提 供することを目的とする。  [0014] The present invention has been made in view of the above-described prior art, and exhibits excellent etching selectivity and fine workability, and even under high-density plasma, etching rate and etching are achieved. A gas for plasma reaction capable of forming a fluorocarbon film having a low balance of selectivity and capable of forming a fluorocarbon film with low stress relaxation even after heat treatment, and a dry etching method and a fluorocarbon film using the same. The purpose is to provide a deposition method.
課題を解決するための手段  Means for solving the problem
[0015] 本発明者らは、上記課題を解決すべく鋭意検討した結果、環状構造を有し、かつ ェキソメチレン基を有するパーフルオロー(3—メチレンシクロペンテン)を含有するプ ラズマ反応ガス用ガスによれば、前記課題を解決し得ることを見出し、本発明を完成 させるに至った。  As a result of intensive studies to solve the above problems, the present inventors have found that a plasma reaction gas containing a perfluoro- (3-methylenecyclopentene) having a cyclic structure and having an exomethylene group is used. The present inventors have found that the above problems can be solved, and have completed the present invention.
[0016] 力べして本発明の第 1によれば、下記(1)〜(3)プラズマ反応用ガスが提供される。  [0016] In summary, according to the first aspect of the present invention, the following (1) to (3) plasma reaction gas is provided.
(1)パーフルォロ一 (3—メチレンシクロペンテン)を含有してなるプラズマ反応用ガス。  (1) A gas for plasma reaction containing perfluoro (3-methylenecyclopentene).
(2)パーフルオロー (3—メチレンシクロペンテン)の含有量が 99容量0 /0以上である(1 )に記載のプラズマ反応用ガス。 (2) perfluoro chromatography (3-methylene-cyclopentene) plasma reaction gas according to content is 99 volume 0/0 above (1).
(3)プラズマ反応ドライエッチング用、プラズマ反応 CVD用、又はプラズマ反応アツ シング用である( 1 )又は(2)に記載のプラズマ反応用ガス。 (3) Plasma reaction for dry etching, plasma reaction for CVD, or plasma reaction The gas for plasma reaction according to (1) or (2), which is used for singing.
[0017] 本発明の第 2によれば、下記 (4)〜(6)のドライエッチング方法が提供される。 [0017] According to the second aspect of the present invention, the following dry etching methods (4) to (6) are provided.
(4)前記(1 )〜(3)の!/、ずれかに記載のプラズマ反応用ガスを処理容器内に供給し 、該容器内で被エッチング基体をドライエッチングする工程を有するドライエッチング 方法。  (4) A dry etching method comprising a step of supplying the plasma reaction gas according to any one of the above (1) to (3) into a processing container and dry etching the substrate to be etched in the container.
(5)プラズマ反応用ガスを処理容器内へ供給する際に、パーフルォロ— (3—メチレン シクロペンテン)が加熱によりガス化されて!/、る (4)に記載のドライエッチング方法。 (5) The dry etching method according to (4), wherein perfluoro- (3-methylenecyclopentene) is gasified by heating when supplying the plasma reaction gas into the processing vessel.
(6)ドライエッチング工程において、プラズマ密度が 1012/cm3以上である(4)又は( 5)に記載のドライエッチング方法。 (6) The dry etching method according to (4) or (5), wherein in the dry etching step, the plasma density is 10 12 / cm 3 or more.
[0018] 本発明の第 3によれば、下記(7)、 (8)のフルォロカーボン膜の成膜方法が提供さ れる。  [0018] According to the third aspect of the present invention, the following (7) and (8) fluorocarbon film forming methods are provided.
(7)前記(1)〜(3)の!/、ずれかに記載のプラズマ反応用ガスを処理容器内に供給し (7) Supply the plasma reaction gas according to any one of! / Of (1) to (3) into the processing vessel.
、該容器内で被処理物の表面に CVD法によりフルォロカーボン膜を成膜する工程を 有する、フルォロカーボン膜の成膜方法。 A method for forming a fluorocarbon film, comprising a step of forming a fluorocarbon film on the surface of an object to be processed in the container by a CVD method.
(8)プラズマ反応用ガスを処理容器内へ供給する際に、パーフルォロ— (3—メチレン シクロペンテン)が加熱によりガス化されている(7)に記載のフルォロカーボン膜の成 膜方法。  (8) The method for forming a fluorocarbon film according to (7), wherein perfluoro- (3-methylenecyclopentene) is gasified by heating when supplying the plasma reaction gas into the processing vessel.
発明の効果  The invention's effect
[0019] 本発明のプラズマ反応用ガスによれば、マスクであるレジストの膜厚が薄い場合に おいても、半導体材料に対し高選択性を発現し、かつ形状の良好な矩形を有する微 細なパターンをエッチングすることができる。また、高密度プラズマ下においてもエツ チング速度と選択性においてバランスの取れたエッチングが可能である。さらに、カロ 熱処理を施しても応力緩和の小さいフルォロカーボン膜を成膜することができる。 図面の簡単な説明  [0019] According to the plasma reaction gas of the present invention, even when the resist film serving as a mask has a thin film thickness, it exhibits a high selectivity with respect to a semiconductor material and has a fine rectangular shape. Various patterns can be etched. In addition, even in a high-density plasma, etching with a balance in etching speed and selectivity is possible. Furthermore, a fluorocarbon film with small stress relaxation can be formed even if calo-heat treatment is performed. Brief Description of Drawings
[0020] [図 1]パーフルオロー(3 メチレンシクロペンテン)の MSチャートを示す。  [0020] FIG. 1 shows an MS chart of perfluoro- (3 methylenecyclopentene).
[図 2]へキサフルォロ 1 , 3 ブタジエンの MSチャートを示す。  FIG. 2 shows an MS chart of hexafluoro 1,3 butadiene.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明を、 1)プラズマ反応用ガス、 2)ドライエッチング方法、 3)フルォロカー ボン膜の成膜方法、及び、 4)プラズマ反応用ガスのアツシング用途に項分けして、詳 細に説明する。 [0021] Hereinafter, the present invention is described as follows: 1) a gas for plasma reaction, 2) a dry etching method, 3) a fluorocar Details will be described in terms of the method for forming the Bonn film, and 4) the plasma reaction gas ashing application.
[0022] 1)プラズマ反応用ガス [0022] 1) Plasma reaction gas
本発明のプラズマ反応用ガスは、パーフルオロー(3—メチレンシクロペンテン)を含 有してなるものである。  The plasma reaction gas of the present invention contains perfluoro- (3-methylenecyclopentene).
本発明に用いるパーフルォロ一(3—メチレンシクロペンテン)は、下記式  Perfluoro (3-methylenecyclopentene) used in the present invention has the following formula:
[0023] [化 1] [0023] [Chemical 1]
Figure imgf000006_0001
Figure imgf000006_0001
[0024] で示される化合物である。  [0024]
本発明のプラズマ反応用ガス中のパーフルオロー(3—メチレンシクロペンテン)の 含有量 (純度に相当)は、特に制限はないが、本発明の効果を良好に発現させる観 点から、好ましくは 99容量%以上、より好ましくは 99. 9容量%以上である。  The content (corresponding to purity) of perfluoro- (3-methylenecyclopentene) in the plasma reaction gas of the present invention is not particularly limited, but is preferably 99% by volume from the viewpoint of satisfactorily expressing the effects of the present invention. Above, more preferably 99.9% by volume or more.
[0025] パーフルオロー(3—メチレンシクロペンテン)の含有量の上限は、通常、 99. 999 容量%程度である。パーフルォロ—(3—メチレンシクロペンテン)の含有量は、後述 の実施例に記載の方法に従い、水素炎イオン化検出器 (FID)を用いるガスクロマト グラフィ一により測定することができる。  [0025] The upper limit of the content of perfluoro- (3-methylenecyclopentene) is usually about 99.999% by volume. The content of perfluoro- (3-methylenecyclopentene) can be measured by gas chromatography using a flame ionization detector (FID) in accordance with the method described in Examples below.
[0026] 本発明のプラズマ反応用ガスには、パーフルオロー(3—メチレンシクロペンテン) 以外に、該ガスの原料に由来する有機系の微量化合物や、窒素ガス、酸素ガス及び 水分などの不純物が含まれ得るが、プラズマ反応に大きく影響する場合があるため、 その含有量はできる限り少なレ、のが好ましレ、。  [0026] In addition to perfluoro- (3-methylenecyclopentene), the plasma reaction gas of the present invention contains organic trace compounds derived from the raw material of the gas, and impurities such as nitrogen gas, oxygen gas, and moisture. However, it is preferable that the content is as low as possible because it may greatly affect the plasma reaction.
[0027] パーフルオロー(3—メチレンシクロペンテン)は公知物質であり、その製造方法は 特に限定されない。例えば、文献 (Journal of Chemical Society (C) , 1971年 , ρ925)に記載されている製造方法に従って製造することができる。  [0027] Perfluoro- (3-methylenecyclopentene) is a known substance, and its production method is not particularly limited. For example, it can be produced according to the production method described in the literature (Journal of Chemical Society (C), 1971, ρ925).
[0028] すなわち、出発原料としてデカフルォロシクロへキセンを用い、これを光異性化させ てパーフルォロ(ェキソメチレン)シクロペンタンに変換する。得られたパーフルォロ( ェキソメチレン)シクロペンタンをヨウ化メチル溶媒存在下に塩化アルミニウムと接触さ せることにより、 1 (クロロジフルォロメチル)ヘプタフルォロシクロペンテンに変換す る。次に、 1— (クロロジフルォロメチル)ヘプタフルォロシクロペンテンを亜鉛と接触さ せることにより、 目的物であるパーフルオロー(3—メチレンシクロペンテン)の粗製物 を得る。次いで、得られたパーフノレオ口一(3—メチレンシクロペンテン)の粗製物から 蒸留や吸着等の公知の精製手段により不純物を除去することにより、パーフルオロー (3—メチレンシクロペンテン)の精製物を得る。 That is, decafluorocyclohexene is used as a starting material, which is photoisomerized and converted to perfluoro (exomethylene) cyclopentane. The obtained perfluoro (exomethylene) cyclopentane was contacted with aluminum chloride in the presence of methyl iodide solvent. To 1 (chlorodifluoromethyl) heptafluorocyclopentene. Next, 1- (chlorodifluoromethyl) heptafluorocyclopentene is brought into contact with zinc to obtain a target perfluoro- (3-methylenecyclopentene) crude product. Subsequently, impurities are removed from the obtained crude product of perfnoreo mouth (3-methylenecyclopentene) by a known purification means such as distillation or adsorption to obtain a purified product of perfluoro- (3-methylenecyclopentene).
以上のようにして得られた精製物のガスを本発明のプラズマ反応用ガスとして用い ること力 Sでさる。  The use of the purified gas obtained as described above as the plasma reaction gas of the present invention can be achieved with the force S.
[0029] 本発明のプラズマ反応用ガスは、液化した状態で、所望により、任意の容器、例え ば、従来の半導体用ガスと同様にシリンダー等の容器に充填されて、半導体装置の 製造工程などでのプラズマ反応に供される。  [0029] The plasma reaction gas of the present invention is in a liquefied state and, if desired, is filled in an arbitrary container, for example, a cylinder or the like in the same manner as a conventional semiconductor gas. It is used for plasma reaction.
[0030] 本発明のプラズマ反応用ガスの好適な具体例としては、プラズマ反応ドライエッチ ング用ガス、プラズマ反応 CVD用ガス、及びプラズマ反応アツシング用ガスが挙げら れる。 [0030] Preferable specific examples of the plasma reaction gas of the present invention include a plasma reaction dry etching gas, a plasma reaction CVD gas, and a plasma reaction ashing gas.
[0031] 本発明のプラズマ反応用ガスは、エッチング選択性、微細加工性、及び高密度ブラ ズマ下でのエッチング速度とエッチング選択性のバランスに優れたドライエッチング が可能であること、また、加熱処理を施しても応力緩和の小さいフルォロカーボン膜 を成膜可能であることから、プラズマ反応ドライエッチング用ガスとしてドライエツチン グに、また、プラズマ反応 CVD用ガスとして CVD法に、それぞれ用いるのがより好適 である。  [0031] The plasma reaction gas of the present invention is capable of dry etching with an excellent balance of etching selectivity, fine workability, etching rate and etching selectivity under high-density plasma, and heating. Since it is possible to form a fluorocarbon film with low stress relaxation even after the treatment, it is more suitable to use it for dry etching as a gas for plasma reaction dry etching and for CVD method as a gas for plasma reaction CVD. is there.
[0032] 2)ドライエッチング方法  [0032] 2) Dry etching method
本発明のドライエッチング方法は、本発明のプラズマ反応用ガスを処理容器内に供 給し、該容器内で被エッチング基体をドライエッチングする工程を有する。  The dry etching method of the present invention includes the steps of supplying the plasma reaction gas of the present invention into a processing container and dry etching the substrate to be etched in the container.
[0033] ドライエッチングは、反応性の気体 (エッチングガス)やイオン、ラジカルによって材料 [0033] Dry etching is a material that uses reactive gas (etching gas), ions, and radicals.
(被エツチンング基体)をエッチングする方法である。ドライエッチングとしては、特に 限定されないが、円筒型プラズマエッチング、反応性イオンエッチング (RIE)、 ECR イオン流エッチングなどが挙げられる。  This is a method of etching a substrate to be etched. Examples of dry etching include, but are not limited to, cylindrical plasma etching, reactive ion etching (RIE), and ECR ion flow etching.
[0034] また、前記処理容器としては、ドライエッチング装置のエッチングチャンバ一が挙げ られる。 [0034] Further, as the processing container, an etching chamber of a dry etching apparatus is mentioned. It is done.
[0035] 本発明のプラズマ反応用ガスを処理容器内へ供給する方法は、特に限定されない 。例えば、従来の半導体用ガスのように、配管系を含め処理容器内を減圧して、本発 明のプラズマ反応用ガスを処理容器内へ引き込むことにより行う方法や、パーフルォ ロー(3—メチレンシクロペンテン)を加熱下にガス化させて、本発明のプラズマ反応 用ガスを処理容器内へ供給する方法が挙げられ、後者が好ましい。  The method for supplying the plasma reaction gas of the present invention into the processing vessel is not particularly limited. For example, as in the case of conventional semiconductor gases, the inside of the processing vessel including the piping system is decompressed and the plasma reaction gas of the present invention is drawn into the processing vessel, or perfluoro (3-methylenecyclopentene). ) Is gasified under heating, and the plasma reaction gas of the present invention is supplied into the processing vessel, the latter being preferred.
[0036] 本発明に使用するパーフルォロ一(3—メチレンシクロペンテン)は約 67°Cの沸点を 有する。そのため、本発明のプラズマ反応用ガスの使用態様によっては、該ガス中、 一部が液化して、該ガス中のパーフルオロー(3—メチレンシクロペンテン)の含有量 に偏りを生じ、処理容器内へのプラズマ反応用ガスの供給が不安定になる可能性が ある。プラズマ反応用ガスが充填された容器や配管系を介してパーフルオロー(3— メチレンシクロペンテン)を加熱下にガス化させておくことにより、処理容器内へプラズ マ反応用ガスを安定に供給することができ、ドライエッチング操作において良好な再 現性を確保し得る。  [0036] The perfluoro (3-methylenecyclopentene) used in the present invention has a boiling point of about 67 ° C. Therefore, depending on the usage mode of the plasma reaction gas of the present invention, a part of the gas is liquefied, resulting in a bias in the content of perfluoro- (3-methylenecyclopentene) in the gas, The supply of plasma reaction gas may become unstable. Perfluoro- (3-methylenecyclopentene) is gasified under heating through a vessel or piping system filled with a plasma reaction gas, so that the plasma reaction gas can be stably supplied into the processing vessel. And good reproducibility can be secured in the dry etching operation.
[0037] 加熱温度は、配管系等の圧力状態に応じて適宜調節すればよいが、通常、 40°C 〜; 150°Cの範囲が好ましぐ 50°C〜; 100°Cの範囲がより好ましい。その際、配管系を 含め処理容器内を減圧にしておレ、てもよレ、。  [0037] The heating temperature may be appropriately adjusted according to the pressure state of the piping system or the like, but is usually in the range of 40 ° C to; 150 ° C is preferred. The range of 50 ° C to 100 ° C is preferred. More preferred. At that time, reduce the pressure inside the processing vessel including the piping system.
[0038] 本発明のプラズマ反応用ガスをプラズマ反応ドライエッチング用ガスとして使用する 場合、プラズマ中で発生するエッチング種の濃度制御やイオンエネルギーの制御の ために、ヘリウム、ネオン、アルゴン、キセノン及びクリプトンからなる群から選択される 少なくとも 1種の不活性ガスを添加してもよい。  [0038] When the plasma reaction gas of the present invention is used as a plasma reaction dry etching gas, helium, neon, argon, xenon, and krypton are used to control the concentration of etching species generated in the plasma and the control of ion energy. At least one inert gas selected from the group consisting of may be added.
[0039] 不活性ガスの添加量は、パーフルオロー(3—メチレンシクロペンテン)に対する不 活性ガスの合計量が、容量比〔不活性ガス/パーフルオロー(3—メチレンシクロペン テン)〕で 2〜200となることが好ましぐ 5〜150となることがより好ましい。  [0039] The addition amount of the inert gas is such that the total amount of the inert gas with respect to perfluoro- (3-methylenecyclopentene) is 2 to 200 in volume ratio [inert gas / perfluoro- (3-methylenecyclopentene)]. It is more preferable to be 5 to 150.
[0040] エッチングストップを緩和するために O及び/又は Oを本発明のプラズマ反応用  [0040] In order to mitigate the etching stop, O and / or O is used for the plasma reaction of the present invention.
2 3  twenty three
ガスに添加してもよい。〇や〇の添加量は、パーフルオロー(3—メチレンシクロペン  It may be added to the gas. The addition amount of ○ and ○ is perfluoro- (3-methylenecyclopen
2 3  twenty three
テン)に対する oと oの合計量が、容量比〔(〇及び/又は o ) /パーフルオロー(  The total amount of o and o with respect to the ten) is the capacity ratio [(○ and / or o) / perfluoro- (
2 3 2 3  2 3 2 3
3—メチレンシクロペンテン)〕で 0· 1〜50となることカ好ましく、 0. 5〜30となることカ より好ましい。 3-Methylenecyclopentene))] is preferably between 0 · 50 and preferably between 0.5 and 30 More preferred.
[0041] また、レジストやポリシリコンなどのマスクに対する選択性を向上させるために、 CO 及び/又は COを添加してもよい。 CO及び/又は COの添加量は、パーフルォロ  [0041] Further, CO and / or CO may be added in order to improve the selectivity with respect to a mask such as a resist or polysilicon. The amount of CO and / or CO added is perfluoro
2 2  twenty two
一(3—メチレンシクロペンテン)に対する COと COの合計量が、容量比〔(CO及び  The total amount of CO and CO to one (3-methylenecyclopentene) is the volume ratio [(CO and
2  2
/又は C〇)/パーフルオロー(3—メチレンシクロペンテン)〕で 5〜150となることが  / Or C〇) / perfluoro- (3-methylenecyclopentene)]
2  2
好ましく、 10〜; 100となることがより好ましい。  Preferably, 10 to; more preferably 100.
[0042] さらに、エッチング時のパターン形状を良くしたり、エッチング速度を向上させるため に、 CHF 、 CH F 、 CF 、 C F及び C F力、らなる群力、ら選択される少なくとも 1種の [0042] Furthermore, in order to improve the pattern shape at the time of etching or improve the etching rate, at least one kind of group force selected from CHF, CHF, CF, CF, and CF forces is selected.
3 2 2 4 2 6 3 8  3 2 2 4 2 6 3 8
ガス Xを添加してもよい。前記ガス Xの添加量は、パーフルオロー(3—メチレンシクロ ペンテン)に対するガス Xの合計量力 S、容量比〔ガス X/パーフルオロー(3—メチレン シクロペンテン)〕で、 0· 01〜;!となること力 S好ましく、 0. ;!〜 0· 5となることがより好ま しい。  Gas X may be added. The amount of gas X to be added is the total quantity force S of gas X with respect to perfluoro- (3-methylenecyclopentene), and the volume ratio [gas X / perfluoro- (3-methylenecyclopentene)]. S, preferably 0.;! ~ 0 · 5.
[0043] 被エッチング基体としては、例えば、ガラス基板、シリコン単結晶ウェハー、ガリウム ーヒ素などの基板上に被エッチング材料の薄膜層を備えたものが挙げられる。被エツ チング材料としては、例えば、酸化シリコン膜; TEOS膜、 BPSG膜、 PSG膜、及び S OGfe ; H¾Q (Hydrogen silsesquioxane; I¾; MSQ (Methyl silsesquioxane)膜 ; PCB膜; SiOC膜; SiOF膜;あるいは上記膜のポーラス状膜があるが、酸化シリコン 膜が特に好ましい。  [0043] Examples of the substrate to be etched include a glass substrate, a silicon single crystal wafer, a substrate such as gallium arsenide, and the like provided with a thin film layer of a material to be etched. Examples of etching materials include silicon oxide films; TEOS films, BPSG films, PSG films, and SOGfe; H¾Q (Hydrogen silsesquioxane; I¾; MSQ (Methyl silsesquioxane) films; PCB films; SiOC films; SiOF films; Although there is a porous film of the above film, a silicon oxide film is particularly preferable.
[0044] 本発明のドライエッチング方法において、ドライエッチング工程におけるプラズマ密 度としては、特に限定はないが、本発明の効果をより良好に発現させる観点から、プ ラズマ密度が、好ましくは 1012イオン/ cm3以上、より好ましくは 1012〜1013イオン/ cm3の高密度プラズマ雰囲気下にドライエッチングを行うのが望ましい。 In the dry etching method of the present invention, the plasma density in the dry etching step is not particularly limited, but the plasma density is preferably 10 12 ions from the viewpoint of better expressing the effects of the present invention. It is desirable to perform dry etching in a high-density plasma atmosphere at 10 3 / cm 3 or more, more preferably 10 12 to 10 13 ions / cm 3 .
[0045] 本発明のプラズマ反応用ガスを用いる場合には、プラズマ密度を 1012イオン/ cm3 以上の高密度としても、従来の含フッ素化合物を使用する場合に生じる選択性が低 下する現象が生じ難い。したがって、高い選択性を確保しつつ、かつ高いエッチング 速度でエッチングを行うことができ、微細なパターンを効率的に形成することができる[0045] When the plasma reaction gas of the present invention is used, even if the plasma density is set to a high density of 10 12 ions / cm 3 or more, the selectivity that occurs when a conventional fluorine-containing compound is used decreases. Is unlikely to occur. Therefore, while ensuring high selectivity, etching can be performed at a high etching rate, and a fine pattern can be efficiently formed.
Yes
[0046] プラズマ発生装置としては、ヘリコン波方式、高周波誘導方式、平行平板タイプ、マ グネトロン方式及びマイクロ波方式等の装置が挙げられる力 高密度領域のプラズマ 発生が容易なことから、ヘリコン波方式、高周波誘導方式及びマイクロ波方式の装置 が好適に使用される。 [0046] Plasma generators include helicon wave method, high frequency induction method, parallel plate type, Forces including devices such as the Guntron method and the microwave method Since the plasma generation in the high density region is easy, helicon wave method, high frequency induction method and microwave method devices are preferably used.
[0047] ドライエッチング時の圧力は特に限定されるものではなぐ通常、真空に脱気したェ ツチングチャンバ一内に、本発明のプラズマ反応用ガスを、所望によりその他のガス 成分と共に、エッチングチャンバ一内が好ましくは 0.0013〜; 1300Pa、より好ましくは 0.13〜; L3Paになるように導入する。  [0047] The pressure at the time of dry etching is not particularly limited. Usually, the plasma reaction gas of the present invention, together with other gas components, if desired, is put into an etching chamber in an etching chamber deaerated to a vacuum. It is introduced so that the inside is preferably from 0.0013 to 1300 Pa, more preferably from 0.13 to L3Pa.
[0048] ドライエッチング時における被エッチング基体の到達温度は、特に限定されるもの ではないが、好ましくは 0〜300°C、より好ましくは 60〜250°C、さらに好ましくは 80 〜200°Cの範囲である。  [0048] The temperature reached by the substrate to be etched during dry etching is not particularly limited, but is preferably 0 to 300 ° C, more preferably 60 to 250 ° C, and still more preferably 80 to 200 ° C. It is a range.
基体の温度は冷却等により制御しても、制御しなくてもよい。  The substrate temperature may or may not be controlled by cooling or the like.
ドライエッチングの時間は、一般的には 5〜; 10分間である力 本発明のプラズマ反 応用ガスは、高速エッチングが可能なので、 2〜5分間として生産性を向上させること ができる。  The dry etching time is generally 5 to 10 minutes. The plasma reaction gas of the present invention can be etched at a high speed, so that the productivity can be improved in 2 to 5 minutes.
[0049] 3)フルォロカーボン膜の成膜方法  [0049] 3) Method for forming fluorocarbon film
本発明のフルォロカーボン膜の成膜方法は、本発明のプラズマ反応用ガスを処理 容器内に供給し、該容器内で被処理物の表面に CVD法によりフルォロカーボン膜 を成膜する工程を有する。  The method for forming a fluorocarbon film of the present invention comprises the steps of supplying the plasma reaction gas of the present invention into a processing vessel and depositing the fluorocarbon film on the surface of the object to be processed in the vessel by the CVD method.
[0050] CVD法とは、一般的には、気体原料から化学反応を経て、薄膜や微粒子などの固 体材料を合成するプロセスをいう。本発明においては、特に、プラズマ放電によりブラ ズマ反応用ガスを活性化ならびに重合させ、各種の被処理物表面に薄いフルォロカ 一ボン膜を形成せしめる技術をいう。また、前記処理容器としては、 CVD装置の反応 チャンバ一が挙げられる。  [0050] The CVD method generally refers to a process of synthesizing a solid material such as a thin film or fine particles through a chemical reaction from a gas raw material. In the present invention, it particularly refers to a technique for activating and polymerizing a plasma reaction gas by plasma discharge to form a thin fluorocarbon film on the surface of various objects to be processed. An example of the processing container is a reaction chamber of a CVD apparatus.
[0051] 本発明のプラズマ反応用ガスの処理容器内への供給は、本発明のドライエツチン グ方法と同様にして行えばよい。なかでも、パーフルオロー(3—メチレンシクロペンテ ン)を加熱下にガス化させて、本発明のプラズマ反応用ガスを処理容器内へ供給す る方法が好ましい。本発明のプラズマ反応用ガスの処理容器内への供給を、パーフ ルオロー(3—メチレンシクロペンテン)を加熱下にガス化させて行うことにより、 CVD 操作にぉレ、て良好な再現性を確保し得る。 [0051] The plasma reaction gas of the present invention may be supplied into the processing vessel in the same manner as in the dry etching method of the present invention. Among them, a method in which perfluoro- (3-methylenecyclopentene) is gasified under heating and the plasma reaction gas of the present invention is supplied into the processing vessel is preferable. The supply of the plasma reaction gas of the present invention into the processing vessel is performed by gasifying perfluoro (3-methylenecyclopentene) under heating, whereby CVD is performed. Good reproducibility can be assured in operation.
[0052] 本発明のプラズマ反応用ガスをプラズマ反応 CVD用ガスとして使用する場合、ブラ ズマ中で発生する活性種の濃度制御や原料ガスの解離促進のために、ヘリウム、ネ オン、アルゴン、キセノン及びクリプトンからなる群から選択される少なくとも 1種の不 活性ガスを添加してもよい。  [0052] When the gas for plasma reaction of the present invention is used as a gas for plasma reaction CVD, helium, neon, argon, xenon are used to control the concentration of active species generated in the plasma and promote dissociation of the source gas. And at least one inert gas selected from the group consisting of krypton may be added.
[0053] 不活性ガスの添加量は、パーフルオロー(3 メチレンシクロペンテン)に対する不 活性ガスの合計量が、容量比〔不活性ガス/パーフルオロー(3—メチレンシクロペン テン)〕で 2〜200となることが好ましぐ 5〜150となることがより好ましい。  [0053] The addition amount of the inert gas is such that the total amount of the inert gas with respect to perfluoro- (3 methylenecyclopentene) is 2 to 200 in volume ratio [inert gas / perfluoro- (3-methylenecyclopentene)]. Is more preferably 5 to 150.
[0054] プラズマ CVDに用いる装置としては、平行平板 CVD装置が一般的であるが、マイ クロ波 CVD装置、 ECR— CVD装置、誘導結合プラズマ(ICP) CVD装置、及び高 密度プラズマ CVD装置 (ヘリコン波方式又は高周波誘導方式)が挙げられる。  [0054] A parallel plate CVD apparatus is generally used as an apparatus for plasma CVD, but a microwave CVD apparatus, an ECR-CVD apparatus, an inductively coupled plasma (ICP) CVD apparatus, and a high-density plasma CVD apparatus (helicon) Wave system or high frequency induction system).
[0055] プラズマ発生条件としては、特に限定されるものではないが、平行平板型 CVD装 置を使用する場合を例にとると、通常、平行平板の上部電極 (シャワーヘッド)に印加 する高周波電力は 10W〜; 10kW、被処理物温度は 0〜500°C、反応室圧力は 0. 0 133Pa~13. 3kPa力 用される。  [0055] The plasma generation conditions are not particularly limited, but when a parallel plate type CVD apparatus is used as an example, the high frequency power applied to the upper electrode (shower head) of the parallel plate is usually used. 10 kW to 10 kW, the temperature of the object to be treated is 0 to 500 ° C, and the reaction chamber pressure is 0.0 133 Pa to 13.3 kPa.
堆積する膜の厚さは、通常、 0. 01〜; 10 mの範囲である。  The thickness of the deposited film is usually in the range of 0.01 to 10 m.
[0056] 被処理物は特に限定されな!/、が、半導体製造分野、電子電気分野、精密機械分 野、その他の分野で絶縁性、撥水性、耐腐食性、耐酸性、潤滑性、光の反射防止性 等の機能又は性質が要求される物品ゃ部材であり、好ましくは半導体製造分野及び 電子電気分野における絶縁性が要求される物品ゃ部材であり、それらの分野で用い られる基板が特に好ましい。  [0056] The object to be treated is not particularly limited! /, But in the semiconductor manufacturing field, the electronic / electrical field, the precision machine field, and other fields, insulation, water repellency, corrosion resistance, acid resistance, lubricity, light Articles and members that require functions or properties such as anti-reflective properties, etc., preferably articles and members that require insulation in the semiconductor manufacturing field and the electronic and electrical field, and substrates used in those fields are particularly preferable.
[0057] 好ましい基板の具体例としては、単結晶シリコン膜、多結晶シリコン膜及びァモルフ ァスシリコン膜などのシリコン膜;タングステン、モリブデン、チタン及びタンタノレなどか らなるシリサイド膜; SiN、 SiON、 SiO、 BSG (ボロン一シリケートガラス)、 PSG (リン  Specific examples of preferable substrates include silicon films such as a single crystal silicon film, a polycrystalline silicon film and an amorphous silicon film; a silicide film made of tungsten, molybdenum, titanium, tantalum, etc .; SiN, SiON, SiO, BSG (Boron-silicate glass), PSG (phosphorus
2  2
ーシリケートガラス)、 BPSG (ボロン リンーシリケートガラス)、 AsSG (砒素シリケ一 トガラス)、 SbSG (アンチモンシリケートガラス)、 NSG (窒素ーシリケートガラス)、 Pb SG (鉛—シリケートガラス)及び SOG (スピンオングラス)などのシリコン含有絶縁膜; TiN及び TaNなどの導電性膜;ガリウム 砒素基板;ダイヤモンド状炭素膜やアルミ 板;ソーダ石灰ガラス;アルミナ膜;酸化ジルコニウム膜;並びに、窒化アルミニウム及 び酸化アルミニウムからなるセラミックス;などが挙げられる。 -Silicate glass), BPSG (boron phosphorus-silicate glass), AsSG (arsenic silicate glass), SbSG (antimony silicate glass), NSG (nitrogen-silicate glass), Pb SG (lead-silicate glass) and SOG (spin-on glass) ) And other silicon-containing insulating films; conductive films such as TiN and TaN; gallium arsenide substrates; diamond-like carbon films and aluminum Plate; soda-lime glass; alumina film; zirconium oxide film; and ceramics made of aluminum nitride and aluminum oxide.
[0058] 4)プラズマ反応用ガスのアツシング用途 [0058] 4) Plasma reaction gas ashing application
本発明のプラズマ反応用ガスはアツシング操作においても好適に使用することがで きる。  The plasma reaction gas of the present invention can be suitably used in an ashing operation.
アツシングとは、プラズマ放電によりプラズマ反応用ガスを活性化させて、ドライエツ チング装置や CVD装置のチャンバ一内にある汚染物質を灰化除去することをいう。 また、ドライエッチングや CVDの処理対象物表面にある汚染物質を活性種で除去す ること、さらには処理対象物の表面を活性種で研磨して平坦化することなどをもいう。 特に好適には、チャンバ一内に堆積した不要なポリマー成分の除去、半導体装置基 板の酸化膜除去、半導体装置のレジスト剥離に用いられるものである。  Ashing means activating plasma reaction gas by plasma discharge to ash and remove contaminants in the chamber of a dry etching apparatus or CVD apparatus. It also means removing contaminants on the surface of the object to be processed by dry etching or CVD with active species, and further polishing and planarizing the surface of the object to be processed with active species. Particularly preferred are those used for removing unnecessary polymer components deposited in the chamber, removing an oxide film from the semiconductor device substrate, and removing the resist from the semiconductor device.
[0059] アツシングを行う際のプラズマ発生条件として、プラズマ分解による活性種の発生が 確保されれば特に限定されるものではなぐそのためのプラズマ反応条件を適宜選 択すればよい。 [0059] The plasma generation conditions for the ashing are not particularly limited as long as the generation of active species by plasma decomposition is ensured, and the plasma reaction conditions therefor may be appropriately selected.
実施例  Example
[0060] 以下、実施例により、本発明を具体的に説明するが、本発明はこれらの実施例によ つて制限されるものではない。以下、特段の事情がない限り、「部」は「重量部」を、「 [0060] Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited by these examples. Unless otherwise specified, “part” means “part by weight”, “
%」は「重量%」をそれぞれ表す。 “%” Represents “% by weight”.
[0061] なお、プラズマ反応用ガス中の含フッ素ジェン化合物の含有量は以下の分析法に より求 [0061] The content of the fluorine-containing compound in the plasma reaction gas is determined by the following analysis method.
めた。  I tried.
(ガスクロマトグラフィー分析法)  (Gas chromatography analysis method)
装置名: HP— 6890 (ヒューレット 'パッカード社製)  Device name: HP— 6890 (Hewlett Packard)
カラム: Frontier Lab Ultra ALLOY"― 1 (s)  Column: Frontier Lab Ultra ALLOY "― 1 (s)
(60m X I. DO. 25 ^ 111, 0. 4 μ mdf )  (60m X I. DO. 25 ^ 111, 0.4 μmdf)
カラム温度: 40°C → [20°C/分] → 240°C  Column temperature: 40 ° C → [20 ° C / min] → 240 ° C
インジェクション温度: 200°C  Injection temperature: 200 ° C
キヤリヤーガス:窒素(流量 lmL/分) 検出器: FID Carrier gas: Nitrogen (flow rate lmL / min) Detector: FID
内部標準物質: n ブタン  Internal reference material: n butane
[0062] [実施例 1]プラズマ反応用ガスの製造 [Example 1] Production of plasma reaction gas
Journal of Chemical Society (C) , 1971年, ρ925ίこ記載の方法 ίこ従って、 パーフルォロ—(3—メチレンシクロペンテン)を合成し、当該化合物の精製物を得た Journal of Chemical Society (C), 1971, ρ925ί The method described in this document. Therefore, perfluoro- (3-methylenecyclopentene) was synthesized to obtain a purified product of the compound.
Yes
[0063] 高圧水銀ランプ (ゥシォ電機社製、 UM- 102)を付した耐圧ガラス反応器内に、デ 力フルォロシクロへキセン(シンクエスト社製) 300部を仕込み、室温下に 70時間、 U V光を照射した。反応終了後、内容物を真空ラインを介してドライアイス/アセトン浴 に浸したガラス製トラップに捕集した。トラップ内の内容物は理論段数 50段のスルー ザ一型精留塔 (東科精機社製)にて精製を行った。蒸留の結果、パーフルオロー(1 —メチレンシクロペンタン)が 31部得られた。  [0063] In a pressure-resistant glass reactor equipped with a high-pressure mercury lamp (manufactured by Usio Electric Co., Ltd., UM-102), 300 parts of strong fluorocyclohexene (manufactured by Synquest) were charged and UV light was applied for 70 hours at room temperature Was irradiated. After completion of the reaction, the contents were collected in a glass trap immersed in a dry ice / acetone bath through a vacuum line. The contents in the trap were refined with a through-the-column rectification tower (manufactured by Toshin Seiki Co., Ltd.) having a theoretical plate number of 50. As a result of distillation, 31 parts of perfluoro- (1-methylenecyclopentane) was obtained.
[0064] 次に、ガラス製反応器に乾燥させたヨウ化メチル 100部と塩化アルミニウム 50部を 仕込み、 0°Cに冷却した。そこへ、上記で得たパーフルオロー(1ーメチレンシクロぺ ンタン) 30部を反応器内に滴下ロートからゆっくりと滴下した。滴下終了後、 0°Cで 1 時間反応させた後、減圧下に揮発性物質を除去し、さらに、 5°Cに保持してガラス 製反応器内の内容物を 2層分離させた。下層を分取して、理論段数 30段の KS型精 留塔 (東科精機社製)にて精製を行った。蒸留の結果、 1— (クロロジフルォロメチル) ヘプタフルォロシクロペンテンが 28部得られた。  [0064] Next, 100 parts of dried methyl iodide and 50 parts of aluminum chloride were charged into a glass reactor and cooled to 0 ° C. Thereto, 30 parts of perfluoro- (1-methylenecyclopentane) obtained above was slowly dropped from a dropping funnel into the reactor. After completion of the dropping, the reaction was carried out at 0 ° C for 1 hour, and then the volatile substances were removed under reduced pressure. Further, the contents in the glass reactor were separated into two layers by keeping at 5 ° C. The lower layer was separated and purified by a KS type rectification tower (manufactured by Toshin Seiki Co., Ltd.) having 30 theoretical plates. As a result of distillation, 28 parts of 1- (chlorodifluoromethyl) heptafluorocyclopentene was obtained.
[0065] 滴下ロート、冷却管及び攪拌機を取り付けたガラス製反応器に、粉末亜鉛 10部、 酢酸 3部、及びジエチレングリコールジメチルエーテル 70部を仕込み、 100°Cにカロ 温した。滴下ロートより、上記で得た 1 (クロロジフルォロメチル)ヘプタフルォロシク 口ペンテン 26部をジエチレングリコールジメチルエーテル 30部に溶解させた溶液を 滴下し、滴下終了後、 5時間反応を行った。反応混合物を一旦室温まで冷却し、減 圧下に生成物をトラップに捕集した。内容物を回転式蒸留装置 (東科精機社製)にて 蒸留したところ、 目的とするパーフルオロー(3—メチレンシクロペンテン)の精製物が 9部得られた。  [0065] A glass reactor equipped with a dropping funnel, a condenser and a stirrer was charged with 10 parts of powdered zinc, 3 parts of acetic acid, and 70 parts of diethylene glycol dimethyl ether, and heated to 100 ° C. From the dropping funnel, a solution prepared by dissolving 26 parts of 1 (chlorodifluoromethyl) heptafluorosic pentene obtained above in 30 parts of diethylene glycol dimethyl ether was dropped, and after completion of the dropping, the reaction was carried out for 5 hours. The reaction mixture was once cooled to room temperature and the product was collected in a trap under reduced pressure. When the contents were distilled with a rotary distillation apparatus (manufactured by Toshin Seiki Co., Ltd.), 9 parts of the purified product of the desired perfluoro- (3-methylenecyclopentene) was obtained.
[0066] 容量 150mLの SUS316製シリンダーを減圧乾燥し、当該シリンダーに、前記操作 を繰り返して得られたパーフルオロー(3—メチレンシクロペンテン)の精製物をフィル ターを介して充填した。このシリンダーを一 70°Cに保った冷媒中に浸し、バルブァゥ トを真空ラインに接続した。 5秒間バルブを開けてシリンダー内部の窒素及び酸素を 抜き、一旦シリンダーを室温まで戻し、再度 70°Cに保った冷媒中に浸して窒素及 び酸素を抜く操作を 5回実施した。以上の操作により、液化した状態にてシリンダー に充填した形でプラズマ反応用ガスを得た。別途、プラズマ反応用ガス中のパーフ ルオロー(3—メチレンシクロペンテン)の含有量をガスクロマトグラフィー分析法により 求めたところ、 99. 2容量%であった。 [0066] A SUS316 cylinder having a capacity of 150 mL is dried under reduced pressure, and the operation is performed on the cylinder. The purified product of perfluoro- (3-methylenecyclopentene) obtained by repeating the above was packed through a filter. This cylinder was immersed in a refrigerant maintained at 70 ° C, and the valve nut was connected to the vacuum line. The valve was opened for 5 seconds to remove nitrogen and oxygen inside the cylinder, once the cylinder was returned to room temperature, and immersed in a refrigerant maintained at 70 ° C again to remove nitrogen and oxygen five times. By the above operation, a gas for plasma reaction was obtained in a liquefied state filled in a cylinder. Separately, the content of perfluoro (3-methylenecyclopentene) in the plasma reaction gas was determined by gas chromatography analysis and found to be 99.2% by volume.
[0067] [参考例 1] パーフルオロー(3—メチレンシクロペンテン)をプラズマ活性化させた際 の活性種及びその挙動についての考察 [0067] [Reference Example 1] Consideration of active species and their behavior when perfluoro- (3-methylenecyclopentene) is plasma activated
プラズマ中の解離したフラグメントの同定'定量についてはさまざまな報告がなされ ているが、その観測は非常に困難で、かつ特殊な装置を必要とする場合が多いため 、一般には難しい作業である。そこで、簡易的に、プラズマ活性化させた化合物の解 離状態に比較的近い状態を観察可能と推測される EI— MS (電子衝撃質量分析)を 用い、パーフルオロー(3—メチレンシクロペンテン)をプラズマ活性化させた際の活 性種について測定し、考察を行った。なお、測定にはアジレント社(旧ヒューレットパッ カード社)製 5973NETWORKを使用し、 EI— MS (70eV)の条件で測定を行つ た。  Various reports have been made on the identification and quantification of dissociated fragments in plasma, but observation is very difficult and often requires special equipment, which is generally a difficult task. Therefore, EI-MS (Electron Impact Mass Spectrometry), which is presumed to be able to observe a state that is relatively close to the released state of a plasma-activated compound, can be used to activate perfluoro- (3-methylenecyclopentene) with plasma activity. The active species at the time of crystallization were measured and discussed. For measurement, 5973NETWORK manufactured by Agilent (formerly Hewlett-Packard) was used, and measurement was performed under the conditions of EI-MS (70eV).
[0068] パーフルオロー(3 メチレンシクロペンテン)の測定と、比較としてへキサフルォロ  [0068] Measurement of perfluoro- (3 methylenecyclopentene) and comparison with hexafluoro
1 , 3 ブタジエンの測定を行った。それらの MSチャートを図 1及び 2に示す。  1,3 Butadiene was measured. Their MS charts are shown in Figs.
[0069] パーフルオロー(3—メチレンシクロペンテン)及びへキサフルオロー 1 , 3—ブタジ ェンの親分子はそれぞれ、 m/z = 224及び 162である。  [0069] The parent molecules of perfluoro- (3-methylenecyclopentene) and hexafluoro-1,3-butadiene are m / z = 224 and 162, respectively.
図 1、 2中、パーフルオロー(3—メチレンシクロペンテン)では、親分子からフッ素が 1つ解離した C F、また、そこ力、ら CFが解離した C Fのピークがいずれも強く観測  In Figs. 1 and 2, perfluoro- (3-methylenecyclopentene) strongly observes C F in which one fluorine is dissociated from the parent molecule, and the force and CF peak from which CF is dissociated.
6 7 2 5 5  6 7 2 5 5
された。一方、へキサフルオロー 1 , 3—ブタジエンでは、親分子から CFが解離した  It was done. On the other hand, in hexafluoro-1,3-butadiene, CF was dissociated from the parent molecule.
3  Three
と見られる C Fのみが強く観測された。これらのことから、パーフルォロ一(3—メチレ  Only C F, which seems to be, was observed strongly. From these facts, perfluoro (3-methyle)
3 3  3 3
ンシクロペンテン)はへキサフルオロー 1 , 3—ブタジエンと比較して、親分子以外の 高分子量フラグメントを多く形成することが分かる。 [0070] パーフルオロー(3—メチレンシクロペンテン)をプラズマ活性化させると、環構造由 来の高分子量のフラグメントが生成するものと考えられる。したがって、プラズマ反応 ドライエッチング用ガスとして当該化合物を用いた場合、該フラグメントに低分子の活 性種が結合して、被エッチング基体上に強固なフルォロカーボン膜を形成すると共 に、低分子活性種の一種である CFや CFラジカル等が該基体をエッチングする活 It can be seen that (cyclopentene) forms more high molecular weight fragments than the parent molecule compared to hexafluoro-1,3-butadiene. [0070] It is considered that plasma activation of perfluoro- (3-methylenecyclopentene) generates a high molecular weight fragment derived from a ring structure. Therefore, when the compound is used as a plasma reaction dry etching gas, a low-molecular active species is bonded to the fragment to form a strong fluorocarbon film on the substrate to be etched, and the low-molecular active species. A kind of CF, CF radical, etc. is used to etch the substrate.
2 3  twenty three
性種として働くものと推測される。  Presumed to work as a sex species.
[0071] パーフルオロー(3—メチレンシクロペンテン)分子の一部は未解離のままプラズマ 中に存在するが、二重結合を 2つ有しているために、結合に関与できる反応点が通 常のォレフィン系化合物等と比較して多ぐ同様に活性種と結合して、やはり強固な フルォロカーボン膜を形成するものと推測される。  [0071] A part of the perfluoro- (3-methylenecyclopentene) molecule is present in the plasma without being dissociated, but since it has two double bonds, the reaction point that can participate in the bond is a normal olefin. It is presumed that it forms a strong fluorocarbon film by binding to active species in the same manner as compared with many compounds.
[0072] また、プラズマ反応 CVD用ガスとして前記化合物を用いた場合にもプラズマ活性 化させた際に同様の状態が形成されると考えられ、上述したように高分子量フラグメ ントに起因すると思われる強固なフルォロカーボン膜が形成されるものと推測される。  [0072] Also, when the above-mentioned compound is used as a plasma reaction CVD gas, it is considered that the same state is formed when the plasma is activated, and is considered to be caused by the high molecular weight fragment as described above. It is estimated that a strong fluorocarbon film is formed.
[0073] [実施例 2] び t—ブチルメタタリレートからなる三元共重合体〔共重合比: 0· 4 : 0. 35 : 0. 25 (モ ル比)、重量平均分子量(Mw) = 8, 700〕 10部、及び酸発生剤であるトリフエニルス ノレホニゥムメタンスルホネート 0. 15部をプロピレングリコールモノメチルエーテルァセ テート 70部に溶解し、孔径 lOOnmのフィルターでろ過し、レジスト溶液を調製した。  [0073] [Example 2] and a terpolymer comprising t-butylmetatalylate (copolymerization ratio: 0 · 4: 0.35: 0.25 (molar ratio), weight average molecular weight (Mw)) = 8, 700] 10 parts and 0.15 parts of triphenylnorthomethane methanesulfonate, an acid generator, are dissolved in 70 parts of propylene glycol monomethyl etherate, filtered through a filter with a pore size of lOOnm, and the resist solution is removed. Prepared.
[0074] このレジスト溶液を、厚さ約 2 μ mのシリコン酸化膜を形成した 8インチのシリコン基 板上にスピンコート法により塗布し、ホットプレート上で 120°Cでプリベータを行って膜 厚 3000nmのレジスト膜を形成した。このレジスト膜に X線露光装置によりマスクバタ ーンを介して露光した。その後、 130°Cにてポストベータを行い、 2. 38%のテトラメチ ルアンモニゥムヒドロキシド水溶液を用いて 25°Cで 60秒間現像し、乾燥して lOOnm のコンタクトホールパターンを形成した。 [0074] This resist solution was applied by spin coating on an 8-inch silicon substrate on which a silicon oxide film having a thickness of about 2 μm was formed, and pre-betaning was performed on a hot plate at 120 ° C to obtain a film thickness. A 3000 nm resist film was formed. This resist film was exposed through an X-ray exposure apparatus through a mask pattern. Then, post-beta was performed at 130 ° C, and 2. development was performed at 25 ° C for 60 seconds using 38% tetramethylammonium hydroxide aqueous solution, followed by drying to form a lOOnm contact hole pattern.
[0075] コンタクトホールパターンが形成された基板を平行平板型プラズマエッチング装置 のエッチングチャンバ一内にセットし、系内を真空にした。次に、実施例 1にて得たプ ラズマ反応用ガスを液化した状態にて充填した容器を 85°Cに加温して、パーフルォ ロー (3—メチレンシクロペンテン)をガス化させた状態としたプラズマ反応用ガスを 15s ccmの速度で、さらに、酸素及びアルゴンをそれぞれ 15sccm及び 400sccmの速度 でエッチングチャンバ一内にそれぞれ導入した。次いで、系内の圧力を 0. 667Pa (5 mTorr)に維持し、 1012イオン/ cm3のプラズマ密度でドライエッチングを行った。そ のときのエッチング速度及びレジストに対する選択性を第 1表に示す。なお、エツチン グ速度はシリコン基板の中央部分において測定し、選択比は当該エッチング速度を 用いて計算した。 [0075] The substrate on which the contact hole pattern was formed was set in an etching chamber of a parallel plate plasma etching apparatus, and the system was evacuated. Next, the container filled with the plasma reaction gas obtained in Example 1 in a liquefied state is heated to 85 ° C. to obtain perfluorocarbon. A plasma reaction gas in which raw (3-methylenecyclopentene) was gasified was introduced into the etching chamber at a rate of 15 sccm, and oxygen and argon were introduced at a rate of 15 sccm and 400 sccm, respectively. Next, the pressure inside the system was maintained at 0.667 Pa (5 mTorr), and dry etching was performed at a plasma density of 10 12 ions / cm 3 . Table 1 shows the etching rate and the selectivity for the resist. The etching rate was measured at the center of the silicon substrate, and the selectivity was calculated using the etching rate.
[0076] [比較例 1] [0076] [Comparative Example 1]
前記実施例 1で使用したパーフルォロ(3—メチレンシクロペンテン)に代えて、プラ ズマ反応用ガスとしてへキサフルオロー 1 , 3—ペンタジェンを用いた以外は実施例 1 と同様にしてドライエッチングを実施した。そのときのエッチング速度及びレジストに対 する選択性を第 1表に示す。  Dry etching was carried out in the same manner as in Example 1 except that hexafluoro-1,3-pentagen was used as the plasma reaction gas in place of perfluoro (3-methylenecyclopentene) used in Example 1. Table 1 shows the etching rate and selectivity for the resist.
[0077] [表 1] [0077] [Table 1]
¾ 1 表  ¾ 1 table
Figure imgf000016_0001
Figure imgf000016_0001
選択比 = (シリコン酸化膜に対する^チン 速度) / (レシ 'ストに対する^チン Γ速度)  Selectivity = (^ Chin speed for silicon oxide film) / (^ Chin Γ speed for resist)
[0078] 第 1表の結果より、本発明のプラズマ反応用ガスを用いてドライエッチングした場合 [0078] From the results in Table 1, when dry etching was performed using the plasma reaction gas of the present invention
(実施例 2)、従来品を用いた場合 (比較例 1)と比較して、より選択性に優れ、また、 形状の良いパターンが形成でき、プラズマ密度が高密度領域にある場合でも、高い エッチング速度で選択性をそれほど低下させずに加工可能なことが分かる。  (Example 2) When using a conventional product Compared to (Comparative Example 1), it is more selective, can form a pattern with a good shape, and even when the plasma density is in a high density region, it is high. It can be seen that the etching can be performed without significantly reducing the selectivity.
[0079] [実施例 3]  [0079] [Example 3]
実施例 1で得たプラズマ反応用ガスを使ってプラズマ CVDによる成膜を実施した。 基板として一部アルミ蒸着したシリコン酸化膜ウェハを用い、プラズマ CVD装置とし てマイクロ波 CVD装置を用いた。プラズマ CVDの条件は以下とした: プラズマ反応用ガスの流量: lOOsccm Film formation by plasma CVD was performed using the plasma reaction gas obtained in Example 1. Using a silicon oxide film wafer partially vapor-deposited as a substrate, a plasma CVD device is used. A microwave CVD apparatus was used. Plasma CVD conditions were as follows: Flow rate of plasma reaction gas: lOOsccm
アルゴンの流量: 250sccm  Argon flow rate: 250sccm
反応チャンバ一内圧力: 6. 6Pa  Pressure inside reaction chamber: 6.6 Pa
RF出力(周波数 2. 45GHz) : 2000W  RF output (frequency 2.45GHz): 2000W
シャワーヘッド温度: 280°C  Shower head temperature: 280 ° C
基板温度: 100°C  Substrate temperature: 100 ° C
反応チャンバ一壁温度: 200°C  Reaction chamber wall temperature: 200 ° C
[0080] 上記条件で処理した基板上に厚さ 0. 3 a mの膜を得た。この膜はボイドの発生もな く緻密で均一であり、基板への密着性も良好であった。膜の比誘電率は 2. 2であつ た。 A film having a thickness of 0.3 am was obtained on the substrate treated under the above conditions. This film was dense and uniform with no voids, and had good adhesion to the substrate. The relative dielectric constant of the film was 2.2.
成膜したシリコンウェハを、レーザー内部応力測定器 (Tencor社製、 FLX— 2320 )にかけて、室温(25°C)〜350°Cの範囲で内部応力を測定した。この温度範囲での 単位温度あたりの内部応力変化割合は 14ppm/Kであった。  The formed silicon wafer was subjected to a laser internal stress measuring device (FLX-2320, manufactured by Tencor), and the internal stress was measured in the range of room temperature (25 ° C) to 350 ° C. The rate of change of internal stress per unit temperature in this temperature range was 14 ppm / K.
[0081] [比較例 2] [0081] [Comparative Example 2]
実施例 1で得たプラズマ反応用ガスに代えて、プラズマ反応用ガスとしてへキサフ ノレオロー 1 , 3—ブタジエンを用いた以外は実施例 3と同様にしてプラズマ CVDによ る成膜を実施した。膜の比誘電率は 2. 4であった。成膜したシリコンウェハをレーザ 一内部応力測定器 (Tencor社製、 FLX— 2320)に力、けて、室温(25°C)〜350°C の範囲で内部応力を測定した。この温度範囲での単位温度あたりの内部応力変化 割合は 40ppm/Kであった。  A film was formed by plasma CVD in the same manner as in Example 3 except that hexafluororeoro 1,3-butadiene was used as the plasma reaction gas instead of the plasma reaction gas obtained in Example 1. The relative dielectric constant of the film was 2.4. The internal stress was measured in the range of room temperature (25 ° C) to 350 ° C by applying force to the deposited silicon wafer with a laser single internal stress measuring instrument (FLX-2320, manufactured by Tencor). The rate of change of internal stress per unit temperature in this temperature range was 40 ppm / K.
[0082] 以上の結果から、本発明のプラズマ反応用ガスを用いた場合(実施例 3)には、従 来品を用いた場合(比較例 2)と比較して、加熱処理を施しても応力緩和の小さいフ ノレォロカーボン膜を成膜可能であることが分かる。 [0082] From the above results, when the plasma reaction gas of the present invention was used (Example 3), heat treatment was performed compared to the case of using the conventional product (Comparative Example 2). It can be seen that a fluorocarbon film with low stress relaxation can be formed.

Claims

請求の範囲 The scope of the claims
[1] パーフノレオロー (3—メチレンシクロペンテン)を含有してなるプラズマ反応用ガス。  [1] A gas for plasma reaction containing perfonoreo (3-methylenecyclopentene).
[2] パーフルォロ一 (3—メチレンシクロペンテン)の含有量が 99容量%以上である請求 項 1記載のプラズマ反応用ガス。 [2] The plasma reaction gas according to [1], wherein the content of perfluoro (3-methylenecyclopentene) is 99% by volume or more.
[3] プラズマ反応ドライエッチング用、プラズマ反応 CVD用、又はプラズマ反応アツシン グ用である請求項 1又は 2記載のプラズマ反応用ガス。 [3] The plasma reaction gas according to claim 1 or 2, which is used for plasma reaction dry etching, plasma reaction CVD, or plasma reaction ashing.
[4] 請求項 1〜3いずれかに記載のプラズマ反応用ガスを処理容器内に供給し、該容 器内で被エッチング基体をドライエッチングする工程を有するドライエッチング方法。 [4] A dry etching method comprising a step of supplying the plasma reaction gas according to any one of claims 1 to 3 into a processing vessel and dry etching the substrate to be etched in the container.
[5] プラズマ反応用ガスを処理容器内へ供給する際に、パーフルォロ— (3—メチレンシ クロペンテン)が加熱によりガス化されている請求項 4記載のドライエッチング方法。  5. The dry etching method according to claim 4, wherein perfluoro- (3-methylenecyclopentene) is gasified by heating when supplying the plasma reaction gas into the processing vessel.
[6] ドライエッチング工程において、プラズマ密度が 1012/cm3以上である請求項 4又 は 5記載のドライエッチング方法。 6. The dry etching method according to claim 4 or 5, wherein in the dry etching step, the plasma density is 10 12 / cm 3 or more.
[7] 請求項 1〜3いずれかに記載のプラズマ反応用ガスを処理容器内に供給し、該容 器内で被処理物の表面に CVD法によりフルォロカーボン膜を成膜する工程を有す る、フルォロカーボン膜の成膜方法。 [7] The method includes the step of supplying the plasma reaction gas according to any one of claims 1 to 3 into a processing vessel and forming a fluorocarbon film on the surface of the object to be processed in the container by a CVD method. A method for forming a fluorocarbon film.
[8] プラズマ反応用ガスを処理容器内へ供給する際に、パーフルォロ— (3—メチレンシ クロペンテン)が加熱によりガス化されている請求項 7記載のフルォロカーボン膜の成 膜方法。 8. The method for forming a fluorocarbon film according to claim 7, wherein perfluoro- (3-methylenecyclopentene) is gasified by heating when supplying the plasma reaction gas into the processing vessel.
PCT/JP2007/074213 2006-12-18 2007-12-17 Gas for plasma reaction, dry etching method, and method for forming fluorocarbon film WO2008075637A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006339300A JP2010045058A (en) 2006-12-18 2006-12-18 Plasma reaction gas
JP2006-339300 2006-12-18

Publications (1)

Publication Number Publication Date
WO2008075637A1 true WO2008075637A1 (en) 2008-06-26

Family

ID=39536267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074213 WO2008075637A1 (en) 2006-12-18 2007-12-17 Gas for plasma reaction, dry etching method, and method for forming fluorocarbon film

Country Status (3)

Country Link
JP (1) JP2010045058A (en)
TW (1) TW200839031A (en)
WO (1) WO2008075637A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5266648B2 (en) * 2007-02-27 2013-08-21 日本ゼオン株式会社 Process for producing perfluoro (exomethylenecycloalkene) compound

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338479A (en) * 1993-03-31 1994-12-06 Tokyo Electron Ltd Etching method
WO2001081287A1 (en) * 2000-04-21 2001-11-01 Daikin Industries, Ltd. Process for the preparation of perfluoroalkanones

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06338479A (en) * 1993-03-31 1994-12-06 Tokyo Electron Ltd Etching method
WO2001081287A1 (en) * 2000-04-21 2001-11-01 Daikin Industries, Ltd. Process for the preparation of perfluoroalkanones

Also Published As

Publication number Publication date
TW200839031A (en) 2008-10-01
JP2010045058A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
US7807579B2 (en) Hydrogen ashing enhanced with water vapor and diluent gas
JP5022116B2 (en) Semiconductor device manufacturing method and manufacturing apparatus
JP6485972B2 (en) Chemicals for TSV / MEMS / Power Device Etching
JP3400770B2 (en) Etching method, semiconductor device and manufacturing method thereof
KR101184072B1 (en) Method for depositing an amorphous carbon film with improved density and step coverage
US6699784B2 (en) Method for depositing a low k dielectric film (K>3.5) for hard mask application
TW200405467A (en) An oxide etching process for etching an oxide layer over a nitride layer
JP5671253B2 (en) Manufacturing method of semiconductor device
US20080153311A1 (en) Method for depositing an amorphous carbon film with improved density and step coverage
US20110206857A1 (en) Ultra low dielectric materials using hybrid precursors containing silicon with organic functional groups by plasma-enhanced chemical vapor deposition
KR20130113958A (en) Ultra high selectivity ashable hard mask film
WO2007061134A1 (en) Method for forming porous insulating film, apparatus for manufacturing semiconductor device, method for manufacturing semiconductor device and semiconductor device
JP2010093235A (en) Semiconductor device and method of manufacturing the same
JP2002009058A (en) Etching method
KR20030051786A (en) Dry etching gas and method for dry etching
JP4015510B2 (en) Interlayer insulating film for multilayer wiring of semiconductor integrated circuit and manufacturing method thereof
JPH08236517A (en) Fluorinated amorphous carbon film material and manufacture thereof and semiconductor device
JP2006156539A (en) Gas for plasma reaction
WO2000071497A1 (en) Gas for plasma reaction and method for production thereof
TW202117058A (en) Silicon compounds and methods for depositing films using same
JP2007013173A (en) Method of forming silicon-containing insulation film having low dielectric constant and low diffusion coefficient
US20050101157A1 (en) Method for manufacturing semiconductor device
WO2008075637A1 (en) Gas for plasma reaction, dry etching method, and method for forming fluorocarbon film
JP4618086B2 (en) Si-containing film and manufacturing method thereof
Li et al. Plasma etching of thick polynorbornene layers for electronic packaging applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07850701

Country of ref document: EP

Kind code of ref document: A1