WO2008075574A1 - Radiating material - Google Patents

Radiating material Download PDF

Info

Publication number
WO2008075574A1
WO2008075574A1 PCT/JP2007/073667 JP2007073667W WO2008075574A1 WO 2008075574 A1 WO2008075574 A1 WO 2008075574A1 JP 2007073667 W JP2007073667 W JP 2007073667W WO 2008075574 A1 WO2008075574 A1 WO 2008075574A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat dissipation
thermal conductivity
material according
resin
Prior art date
Application number
PCT/JP2007/073667
Other languages
French (fr)
Japanese (ja)
Inventor
Michiaki Yajima
Atsushi Fujita
Takayuki Suzuki
Tomonori Seki
Yoshinori Uchiyama
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to JP2008550104A priority Critical patent/JPWO2008075574A1/en
Publication of WO2008075574A1 publication Critical patent/WO2008075574A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat dissipation material.
  • the characteristics required as a heat radiating material are good thermal conductivity! /, Low cost, excellent durability, heat resistance and weather resistance, and can be produced in a desired shape. It is lightweight and small.
  • a heat sink made of aluminum copper having a high thermal conductivity has been proposed (see, for example, JP-A-05-074992), but these aluminum and copper were used. In this case, the weight reduction requirement could not be satisfied.
  • metallic materials such as aluminum and copper have a glossy surface, there is a drawback in that the emissivity is low and it is difficult to obtain a heat radiation effect by heat radiation.
  • post-processing such as, for example, applying a black coating to the surface of the metal material or oxidizing the surface of the metal material has been studied (for example, JP 2005-153296 A and No. 2000-282292), increasing the number of processing steps has hindered cost reduction.
  • An object of the present invention is to provide a heat dissipating material that is lightweight, has high! /, Has an emissivity, and has excellent heat dissipating characteristics. That is.
  • the present invention relates to (1) a heat radiating material including a high heat conductive material and a resin, wherein the heat radiating material contains 50 to 95% by mass of the high heat conductive material.
  • the present invention provides (2) the above (1), wherein the high thermal conductivity material contains graphite.
  • the present invention provides: (3) The heat dissipation material according to (1) or (2), wherein a bulk density of the heat dissipation material is 1.2 to 2.2 g / cm 3 . About.
  • the present invention provides: (4) the emissivity power of the radiation surface at 60 ° C of the heat radiating material is 0.40 or more; It relates to the heat radiating material described in the above item.
  • the present invention provides (5) any one of the above (1) to (4), wherein the heat conductivity in the thickness direction of the heat dissipating material is 10 W / mK or more. It relates to the heat dissipating material.
  • the present invention provides (6) the thermal conductivity in the surface direction of the heat dissipating material is 30 W / mK or more, as described in any one of (1) to (5), Related to heat dissipation material.
  • the present invention provides (7) the above (1), wherein the heat dissipating material has a fin structure.
  • the present invention also relates to (8) the heat radiating material according to (7), wherein a height of the fin is 30 to 95% of a height of the entire heat radiating material.
  • the present invention relates to (9) the heat dissipation material according to (7) or (8), wherein the fin groove has a tapered shape and a taper angle is !!-30 °. .
  • the present invention relates to (10) the heat radiating material according to any one of (1) to (9), wherein a height of the entire heat radiating material is 1 mm or more. .
  • the specific heat of the heat dissipating material is 0.85 j / gK or less. It relates to the described heat dissipation material.
  • the invention also relates to (12) wherein, wherein the heat dissipating material surface direction of the thermal expansion coefficient force 8 X 10- 6 / ° is C (1) to; any of (11) It relates to the heat dissipation material according to one item.
  • the present invention provides (13) the heat dissipation material according to any one of (1) to (; 12) above, wherein the volume specific resistance of the heat dissipation material is 200 ⁇ or less. About.
  • the present invention provides that (14) the heat radiating material has flame retardancy of V-0 according to UL-94 standards. It is related with the thermal radiation material as described in any one of said (1)-(; 13) characterized.
  • the present invention provides (15) the adhesive layer on the surface opposite to the heat radiating surface of the heat radiating material, as described in any one of (1) to (; 14) above. It relates to heat dissipation material.
  • the present invention also relates to (16) the heat dissipation material according to (15), wherein the adhesive layer has a thickness of 150 in or less.
  • the present invention also relates to (17) the heat dissipation material according to (15) or (16) above, wherein the adhesive layer has a thermal conductivity of 0.5 W / mK or more.
  • FIG. 1 is a front view showing a heat dissipating material having a tapered fin structure.
  • FIG. 2 is a schematic diagram showing a heat dissipation characteristic evaluation test method.
  • FIG. 3 is a front view showing the shape in the surface direction of the heat dissipating material used in Examples;! To 8, Comparative Example 2 and Reference Example 1.
  • FIG. 4 is a front view showing the shape of the heat dissipating material used in Comparative Example 3 in the surface direction.
  • the heat dissipating material of the present invention includes a high heat conductive material and a resin, and is characterized by containing the high heat conductive material in an amount of 50 to 95% by mass during heat dissipation.
  • the content of the high thermal conductivity material in the heat dissipation material is preferably 60 to 95% by mass, more preferably 70 to 95% by mass.
  • the content of the high thermal conductivity material is less than 50% by mass, the heat transfer characteristics of the heat dissipation material are deteriorated, and sufficient heat dissipation characteristics cannot be obtained.
  • the content of the high thermal conductivity material exceeds 95% by mass, the moldability of the heat radiating material is lowered, and a heat radiating material having a desired shape cannot be obtained.
  • the high thermal conductivity material used in the present invention is not particularly limited, and may be any known thermal conductivity filler for the heat radiating material, but has a thermal conductivity of 10 to 1000 W / mK. preferable.
  • high thermal conductivity materials include inorganic fillers such as silica, graphite, alumina, aluminum hydroxide, aluminum nitride, silicon carbide and magnesium hydroxide, metals such as aluminum, copper, silver and gold.
  • inorganic fillers such as silica, graphite, alumina, aluminum hydroxide, aluminum nitride, silicon carbide and magnesium hydroxide, metals such as aluminum, copper, silver and gold.
  • metals such as aluminum, copper, silver and gold.
  • One example is a filler.
  • These high thermal conductivity materials can be used alone or in combination of two or more! /.
  • graphite is preferable in terms of weight reduction and heat dissipation characteristics! / .
  • the graphite for example, natural graphite powder, artificial graphite powder, expanded graphite, or expanded graphite powder obtained by pulverizing expanded graphite sheet is used. Of these, natural or artificial graphite powder is preferred.
  • the shape of these graphites is spherical, lump, scale, dendritic, etc.
  • the average particle size is preferably 5 to 500 111.
  • the average particle size of these graphites can be measured using a laser diffraction particle size distribution measuring device. The average particle diameter is 50% D.
  • thermoelectric material that is light in weight and excellent in heat dissipation characteristics by mixing the powder of the high thermal conductivity material with a resin.
  • high heat conductive materials such as graphite and metal fillers can be mixed with resin to prevent short circuit inside the electronic equipment due to particle detachment.
  • the resin used in the present invention is preferably a thermoplastic resin or a thermosetting resin! /.
  • the thermoplastic resin include polyethylene, polypropylene, polymethylpentene, polybutene, crystallized polybutadiene, polystyrene, polybutadiene, styrene butadiene resin, polychloride butyl, polyacetate butyl, polyvinylidene chloride, ethylene / butyl acetate copolymer ( EVA), acrylonitrile 'styrene copolymer (AS), acrylonitrile' butadiene 'styrene copolymer (ABS), ionomer, acrylonitrile' acrylic rubber 'styrene copolymer (AAS), chlorinated polyethylene' acrylonitrile 'styrene copolymer Copolymer (ACS), Polymethylmetatalylate, Polymethyl Atrylylate, Polytetrafluoroethylene
  • the thermosetting resin may be, for example, a phenol resin, a thermosetting resin containing a dihydrobenzoxazine ring that is polymerized by ring-opening polymerization, an amino resin (a urea resin, a melamine resin).
  • Benzoguanamine resin unsaturated polyester resin, diallyl phthalate resin, alkyd resin, epoxy resin, urethane resin, and key resin.
  • phenol resins thermosetting resins containing dihydrobenzoxazine rings that are polymerized by ring-opening polymerization, and epoxy resins are used for heat resistance, moldability, and mold releasability. Is done. These resins may be used alone or in combination of two or more.
  • the "thermosetting resin containing a dihydrobenzoxazine ring that is polymerized by ring-opening polymerization” refers to a resin synthesized from a compound having a phenolic hydroxyl group, formaldehydes, and primary amines. This resin causes a ring-opening polymerization reaction by heating, and forms a crosslinked structure having excellent characteristics without generating volatile matter.
  • Resins containing a structural moiety represented by the following general formula (I) are particularly excellent in heat resistance and are cured by an addition reaction. This is a preferable resin because a uniform and dense resin layer is formed without the occurrence of.
  • thermosetting resin containing a dihydrobenzoxazine ring examples include the following general formulas (A) and (B),
  • R 1 is a hydrocarbon group, and the hydrogen bonded to the aromatic ring may be substituted with a substituent
  • the substituent in the chemical structural unit represented by the general formula (A) and the general formula (B) is not particularly limited, but an alkyl group such as a methyl group or an ethyl group is preferable. Can be mentioned.
  • one of the ortho positions of the hydroxyl group preferably has hydrogen for the curing reaction.
  • the number of each chemical structural unit is m ⁇ 1, n ⁇ 1 and m + n ⁇ where m is the number of general formula (A) contained in one molecule and n is the number of general formula (B). 2 is acceptable, but a number average of 10 ⁇ m + n ⁇ 3 is preferred in terms of the properties of the cured product, for example, heat resistance.
  • Each chemical structural unit may be bonded via an organic group which may be directly bonded to each other.
  • the organic group include an alkylene group and a xylylene group.
  • Preferred examples of the alkylene group include
  • R 2 represents a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a phenyl group or a substituted phenyl group
  • a chain alkyl group having 5 to 20 carbon atoms examples include a len group. This can be selected depending on the type of the compound having a phenolic hydroxyl group used as a raw material.
  • Examples of the compound having a phenolic hydroxyl group which is a raw material of a thermosetting resin containing a dihydrobenzoxazine ring, include phenol nopolac resin, resol resin, phenol modified xylene resin, alkyl phenol resin, melamine phenol resin, Examples thereof include phenol resins such as polybutadiene-modified phenol resin, bisphenol compounds, biphenol compounds, trisphenol compounds, and tetraphenol compounds.
  • formaldehyde which is a raw material of the thermosetting resin containing a dihydrobenzoxazine ring
  • those generating formaldehyde such as paraformaldehyde and hexamethylenetetramine can be used.
  • the primary amine that is a raw material of the thermosetting resin containing a dihydrobenzoxazine ring is specifically an aromatic amine such as methylamine, ethylamine, propylamine, cyclohexylamine, aniline, substituted aniline or the like.
  • aromatic amines are preferred from the viewpoint of heat resistance that aliphatic amines are preferred from the viewpoint of curability.
  • Each material includes a phenolic hydroxyl group-containing compound, formaldehyde, and primary amine, and the primary amine is 0.2 to 0.9 mole per mole of the hydroxyl group of the phenolic hydroxyl group-containing compound. It is preferable in terms of adhesiveness of the resulting resin that formaldehyde is reacted at a ratio of at least twice the molar amount of primary amine.
  • the heat dissipating material of the present invention may contain components such as a resin curing agent, a curing accelerator, an internal mold release agent, and a lubricant in addition to the high thermal conductivity material and the resin.
  • thermosetting resin containing a dihydrobenzoxazine ring using each of the above materials a mixture of a compound having a phenolic hydroxyl group and a primary amine is preferably used. Is preferably added to formaldehyde heated to 70 ° C or higher, preferably (70 to 110; 110 ° C, more preferably (90 to 100 ° C, preferably 20 to 120 minutes). It can be synthesized by drying under reduced pressure at a temperature of preferably 120 ° C. or lower.
  • thermosetting resin containing a dihydrobenzoxazine ring is also available as an addition reaction type thermosetting resin, trade name “HR1060” manufactured by Hitachi Chemical Co., Ltd.
  • the phenol resin used in the present invention is not particularly limited. It is preferable to use a resol phenol resin represented by the formula ( ⁇ ).
  • the resin is preferably in the form of a powder in terms of mixing with a high thermal conductivity material, and the particle size of 200 m or less is more preferably 100 m or less. Even better.
  • Heat dissipating material is force, the density 1. 2 ⁇ 2. 2g / cm 3 and it is preferable tool from 1.5 to 2. It forces Ri preferably 2g / cm 3, 1. 7 ⁇ 2. 2g More preferably, it is / cm 3 .
  • the bulk density is less than 1.2 g / cm 3
  • air acting as a heat insulating layer is included inside the heat dissipation material, which tends to decrease the thermal conductivity and decrease the heat dissipation characteristics of the heat dissipation material. .
  • the bulk density can be measured by dividing the mass of the heat dissipation material by the volume.
  • a sufficiently kneaded material may be hot-pressed at a sufficient pressure and temperature.
  • the heat dissipation material of the present invention preferably has an emissivity of the heat dissipation surface at 60 ° C of 0.40 or more, more preferably 0.60 or more, and 0.80 or more. Is more preferable. When the emissivity is less than 0.40, the heat dissipation effect due to thermal radiation tends to be difficult to obtain. Since the theoretical upper limit of emissivity is 1.0, the upper limit of the present invention is also less than 1.0.
  • the emissivity of the heat dissipating surface of the heat dissipating material at 60 ° C can be measured, for example, by a method called FT-IR method.
  • This method measures the spectral radiant intensity of the radiation surface of a blackbody furnace (at two different temperatures) and the measurement sample (heat release material) using an FT-IR (Fourier transform infrared spectrophotometer). From the radiant intensity and the theoretical value of the spectral radiant intensity of the blackbody furnace, the spectral emissivity of the measurement sample is obtained, and this integral emissivity is calculated.
  • This integrated emissivity is called emissivity in the present invention.
  • the value at 60 ° C is used in the present invention.
  • the heat dissipating material is molded using a rough mold, or the surface of the heat dissipating material is formed using a blast machine or the like. It should be rough.
  • the heat dissipation material of the present invention preferably has a thermal conductivity in the thickness direction of 10 W / mK or more.
  • the heat from the heat source can be dissipated using the heat radiation from the heat dissipation surface (the surface with fins if it has a fin structure). There is a tendency to disappear.
  • the heat dissipation material of the present invention preferably has a thermal conductivity in the plane direction of 30 W / mK or more, more preferably 50 W / mK or more, and even more preferably 100 W / mK or more. In order to obtain higher heat dissipation characteristics, the higher the thermal conductivity, the better. However, the upper limit is 200 W / mK, and in order to obtain a thermal conductivity exceeding 200 W / mK, the resin content must be extremely high. This makes it difficult to form.
  • the thermal conductivity in the thickness direction is calculated from the product of specific heat and bulk density obtained by laser flash, xenon flash, etc., by measuring the thermal diffusivity by a half-time method using laser flash, xenon flash, etc. be able to. It is also possible to calculate the thermal conductivity in the thickness direction directly by the temperature gradient method.
  • a thermal constant measuring device TC 3000 type or TC 7000 type manufactured by Vacuum Riko Co., Ltd., NanoflashLFA447 manufactured by NETZSCH or the like can be used.
  • the thermal conductivity in the plane direction is called lamellar method, and a surface is formed by chopping and stacking samples, and a laser flash or xenon flash is applied perpendicularly to this plane in the thickness direction by the half-time method. It can be measured by the temperature gradient method by calculating in the same way as thermal conductivity or by cutting and stacking samples to create a surface, and adding a temperature difference perpendicular to this surface.
  • a material containing 50% or more of the high thermal conductivity material in the heat dissipation material is sufficiently kneaded and sufficiently Hot pressing may be performed at an appropriate pressure and temperature.
  • a material containing 50% or more of the high thermal conductivity material in the heat dissipation material is sufficiently kneaded to obtain sufficient pressure and temperature. And hot pressing.
  • the heat dissipation material of the present invention preferably has a specific heat of 0.85 j / gK or less, more preferably 0.80 j / gK or less, and further preferably 0.75 j / gK or less. preferable. This is because when the specific heat is 0.85 j / gK or less, the temperature responsiveness is superior to that of a heat-radiating material using aluminum having a specific heat of 0.88 j / gK, which has been conventionally used as a heat-dissipating material.
  • heat dissipating material of the present invention is preferably thermal expansion coefficient in the planar direction is less than 8 X 10- 6 / ° C instrument
  • the heat dissipation material of the present invention preferably has a volume resistivity of 200 ⁇ ⁇ or less.
  • the power is preferably ⁇ or less, and more preferably 100 ⁇ or less. This is because when the volume resistivity of the heat dissipating material is 200 ⁇ or less, it is possible to ground through the heat dissipating material.
  • Hot-press molding may be performed at the temperature.
  • the heat dissipating material of the present invention preferably has flame retardancy of V-0 according to UL-94 standards.
  • the heat dissipating material of the present invention preferably has a fin structure on the heat dissipating surface side in order to improve heat dissipation.
  • the shape of the fin is not particularly limited as long as it has a shape that increases the surface area so that heat can be easily diffused.
  • the height of the fins is preferably 40 to 95%, more preferably 50 to 95%, preferably 30 to 95% of the total height of the heat dissipation material.
  • the height of the fin is less than 30% of the total heat dissipation material, the heat dissipation characteristics tend to deteriorate.
  • the height of the fins exceeds 95% of the total heat dissipation material, it tends to be difficult to mold the fins, and the strength of the heat dissipation material tends to decrease.
  • the fin portion has a tapered shape so that the fin thickness gradually increases from the tip portion of the fin toward the root portion in order to increase heat dissipation efficiency.
  • the taper angle is preferably 1 to 30 °.
  • the force S is preferable;! Is preferably 20 to 20 °; the force S is more preferably! To 10 °.
  • the taper angle is less than, release from the mold tends to be difficult.
  • the taper angle exceeds 30 °, the width of the fin base portion becomes large and the pitch between the fins cannot be reduced, so that there is a tendency for the heat dissipation characteristics to decrease due to the reduction of the heat dissipation area.
  • Figure 1 shows an example of a tapered heat dissipation material.
  • the structure of the heat dissipating material of the present invention can be formed in a desired shape as described above by selecting a mold for forming the heat dissipating material.
  • the overall height of the heat dissipating material of the present invention varies depending on the application and the mounted part, but when used in electronic devices such as personal computers and plasma televisions, it is 1 mm or more in terms of heat capacity and heat transfer in the surface direction of the heat dissipating material. More preferably, it is 2 mm or more, and more preferably 3 mm or more.
  • the overall heat dissipation material is less than lmm, the heat capacity and heat transfer in the surface direction of the heat dissipation material decrease, and effective heat dissipation tends not to be obtained.
  • the upper limit of the overall height of the heat dissipating material is about 150 mm, and if it exceeds this, molding may become difficult.
  • a mixture of a high thermal conductivity material and a resin is used as a kneader, a lykai machine, a Henschel mixer, a planetary mixer
  • the mixture obtained through the steps of stirring, mixing, kneading, rolling, etc. in a roll machine etc. for example, it can be produced by molding into a desired shape by a known plastic molding method such as injection molding, extrusion molding or press molding.
  • the heat dissipating material of the present invention preferably has an adhesive layer on the surface opposite to the heat dissipating surface in order to enhance the adhesiveness with the heat source.
  • the material of the adhesive layer is not particularly limited as long as it can adhere the heat radiation material of the present invention and a heat source such as a CPU.
  • an adhesive material such as an acrylic adhesive, a rubber adhesive, or a silicone adhesive is used. It is preferable to use an adhesive film having an adhesive material on both sides of the support in terms of workability and cost reduction.
  • an adhesive film for example, a high molecular film such as PET (polyethylene terephthalate) or a metal foil such as aluminum or copper is used as a support, and an adhesive film having an adhesive on both surfaces of the support.
  • the thickness of the adhesive layer is preferably 150 m or less, more preferably 100 m or less, and more preferably 50 m or less, in order to suppress thermal resistance. When the thickness of the adhesive layer exceeds 150 in, the thermal resistance increases, and it tends to be difficult to efficiently transfer heat to the heat dissipation material. From the viewpoint of the strength and adhesive strength of the adhesive layer, the lower limit value of the thickness of the adhesive layer is preferably 5 m or more.
  • the thermal conductivity of the material forming the adhesive layer of the heat dissipation material is 0.5 W / mK or more. 1. More preferred to be OW / m K or more! /.
  • the heat dissipating material of the present invention can be used as a heat dissipating device for suppressing a temperature rise due to CPU, a heat source of a plasma television, etc. in an electronic device such as a personal computer or a plasma television.
  • Expanded graphite crushed powder obtained by pulverizing expanded graphite sheet (trade name: HGF-L, manufactured by Hitachi Chemical Co., Ltd.) and powder containing dihydrobenzoxazine ring addition reaction type thermosetting resin (Hitachi Chemical Co., Ltd.)
  • a product made by company, product name: HR1060) is mixed at a mass ratio of 55/45, and molded using a hot press under a pressing condition of 30MPa, molding temperature 200 ° C, molding time 5 minutes.
  • a heat dissipating material having a fin structure of the shape shown was produced.
  • Figure 3 is free It is a front view which shows the shape of the surface direction of a heat material.
  • the emissivity of the radiation surface of the heat dissipation material was measured by the FT-IR method using a JIR-5500 type Fourier transform infrared spectrophotometer and a radiation measurement unit JRR-200 manufactured by JEOL Ltd. Calculated and used as emissivity.
  • the thermal conductivity was calculated from the product of specific heat, force, and density by measuring the thermal diffusivity using TC 7000 model manufactured by Vacuum Riko Co., Ltd.
  • the specific heat was measured by DSC (Differential Scanning Calorimetry) method using DSC-7 model manufactured by Perkin-Elmer.
  • the coefficient of thermal expansion was measured using an SS 5200 type thermomechanical analyzer (TMA) manufactured by Seiko Corporation.
  • Volume resistivity was measured by a four-terminal method using a model PAB type current-voltage generator from KIKUE ELECTRONICS.
  • the copper plate 3 is placed on a 10 mm square ceramic heater 2 (manufactured by Sakaguchi Electric Heat Co., Ltd.), and the heat dissipating material 1 is pasted on the copper plate 3 so that the adhesive layer of the heat dissipating material 1 is in contact.
  • Cerami A constant output of 2.5 W / cm 2 (at 150 ° C) was passed through the heat heater 2 and the temperature at the center of the copper plate 3 was measured with a thermologger (manufactured by Anri Keiki Co., Ltd., product name: AM-8060K). .
  • the temperature of the copper plate 3 between the ceramic heater 2 and the heat dissipating material 1 was measured.
  • the temperature of the copper plate was measured 20 minutes after the start of the test, and the difference between the copper plate temperature T1 and the environmental temperature T2 (Tl-T2) was defined as the evaluation temperature in order to avoid the influence of the surrounding environmental temperature. The results are shown in Table 1.
  • Natural graphite powder (made by Nippon Graphite Co., Ltd., trade name: F48) is used in place of expanded graphite pulverized powder, and the mass ratio of natural graphite powder and addition reaction type thermosetting resin is 90/10.
  • a heat dissipation material was produced in the same manner as in Example 1.
  • heat conductive grease manufactured by Sannoyato Co., Ltd., trade name: SCH-20, thermal conductivity 0.84 W / mK
  • Example 6 Except for using artificial graphite powder (trade name: ks5-75, manufactured by Timcal Co., Ltd.) instead of expanded graphite pulverized powder, the mass ratio of artificial graphite powder and addition reaction type thermosetting resin is 90/10.
  • a heat radiating material was produced in the same manner as in Example 1.
  • heat conductive grease manufactured by Sannoyato Co., Ltd., trade name: SCH-20, thermal conductivity 0.84 W / mK
  • the same evaluation as in Example 1 was performed, and the results are shown in Table 1.
  • thermosetting resin (trade name: HP-190R, manufactured by Hitachi Chemical Co., Ltd.) instead of addition reaction type thermosetting resin, the mass ratio of expanded graphite pulverized powder to phenol resin is 90/10.
  • a heat dissipation material was produced in the same manner as in Example 1.
  • thermal conductive grease (Sannoyato Co., Ltd., trade name: SCH-20, thermal conductivity 0.84W / mK) to the bottom surface, which is the opposite side of the fin of the heat dissipation material. It was made to adhere to a copper plate.
  • the same evaluation as in Example 1 was performed, and the results are shown in Table 1.
  • Natural graphite powder (Nippon Graphite Co., Ltd., trade name: F48) is used instead of expanded graphite pulverized powder, and phenol resin (Hitachi Chemical Industry Co., Ltd., trade name: HP) is used instead of addition reaction type thermosetting resin.
  • a heat radiating material was produced in the same manner as in Example 1 except that 190R) was used and the mass ratio of natural graphite powder to phenol resin was 90/10.
  • heat conductive grease (Sannoyato Co., Ltd., trade name: SC H-20, thermal conductivity 0.84 W / mK) is applied to the bottom surface, which is the surface opposite to the fins of the heat dissipation material, It was made to adhere to a copper plate.
  • the same evaluation as in Example 1 was performed, and the results are shown in Table 1.
  • Comparative Example 2 Except that the mass ratio of the expanded graphite pulverized powder and the addition reaction type thermosetting resin was 45/55, a heat-radiating material with an adhesive layer was prepared in the same manner as in Example 1, and the same evaluation was performed. The results are shown in Table 2.
  • a heat radiating material was produced in the same manner as in Example 1 except that the mass ratio of the expanded graphite pulverized powder and the addition reaction type thermosetting resin was 45/55 and the shape shown in FIG.
  • heat conductive grease manufactured by Sannoyato Co., Ltd., trade name: SCH-20, thermal conductivity 0.84 W / mK
  • the same evaluation as in Example 1 was performed, and the results are shown in Table 2.
  • the heat dissipation material with the shape shown in Fig. 3 was made of aluminum.
  • heat conductive grease manufactured by Sannoyato Co., Ltd., trade name: SCH-20, thermal conductivity 0.84 W / mK
  • SCH-20 thermal conductivity 0.84 W / mK
  • the temperature of the copper plate was measured without using a heat dissipation material.
  • a copper plate 3 is placed on a 10 mm square ceramic heater 1 (manufactured by Sakaguchi Electric Heat Co., Ltd.), and a constant output of 2.5 W / cm 2 (at 150 ° C) is passed through the ceramic heater 2 to produce a copper plate.
  • the temperature at the center of 3 was measured with a thermologger.
  • the difference (T1 T2) between the copper plate temperature T1 and the ambient temperature T2 was defined as the evaluation temperature.
  • Table 2 The results are shown in Table 2.
  • the heat dissipating material of the present invention is lightweight, has high emissivity, and has excellent heat dissipating characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A radiating material comprising a highly thermally conductive material and a resin, the highly thermally conductive material being contained in an amount of 50-95 mass%. The radiating material has excellent radiating properties. The radiating material especially preferably is one in which the highly thermally conductive material is a material comprising graphite and having a bulk density of 1.2-2.2 g/cm3 and which has a radiation ratio of the radiating surface as measured at 60°C of 0.40 or higher, a thickness-direction thermal conductivity of 10 W/mK or higher, a plane-direction thermal conductivity of 30 W/mK or higher, a shape of a fin structure, an overall height of 1 mm or larger, and a specific heat of 0.85 J/gK or less and has a pressure-sensitive adhesive layer on the side opposite to the radiating surface, the pressure-sensitive adhesive layer having a thermal conductivity of 0.5 W/mK or higher.

Description

明 細 書  Specification
放熱材  Heat dissipation material
技術分野  Technical field
[0001] 本発明は、放熱材に関する。 [0001] The present invention relates to a heat dissipation material.
背景技術  Background art
[0002] 近年、電子機器分野にお!/、て、その電子機器の温度上昇を抑制する冷却(放熱) 技術が重要になってきている。特に、パーソナルコンピュータ(PC)においてはその 容積が減少の傾向にあるにも関わらず、 CPU (中央演算処理装置)の動作周波数の 増加に伴い、発熱量は急激に上昇してきており、 CPU以外の部品についても発熱 量は増加傾向に有る。  [0002] In recent years, cooling (heat radiation) technology that suppresses the temperature rise of electronic devices has become important in the field of electronic devices. In particular, although the volume of personal computers (PCs) tends to decrease, the amount of heat generation increases rapidly with the increase in the operating frequency of the CPU (central processing unit). The calorific value of parts is also increasing.
[0003] また、これらに加えて静音化、消費電力低減の要求もあることから、ファンによる空 冷にできるだけ頼らな!/、放熱システムが求められてレ、る。  [0003] In addition to these, there is also a demand for noise reduction and power consumption reduction. Therefore, it is necessary to rely on fans for air cooling as much as possible!
[0004] 冷却技術においては「経済的な冷却効果の達成」が最重要項目であるため、低コ ストで効率の良!/、冷却を達成すべく、様々な検討がなされて!/、る。  [0004] Since “achieving an economical cooling effect” is the most important item in cooling technology, various studies have been made to achieve low efficiency and high efficiency! .
[0005] 放熱材として要求される特性は、熱伝導性がよ!/、こと、安価であること、耐久性、耐 熱性及び耐候性に優れていること、所望の形状に作製可能であること、軽量であるこ と、小型であること等が挙げられる。従来の放熱材としては、熱伝導率の高いアルミ二 ゥムゃ銅を材料としたヒートシンクが提案されているが(例えば、特開平 05— 07499 2号公報参照)、これらアルミニウムや銅を用いた場合は軽量化の要件を満足するこ とができなかった。また、アルミニウムや銅のような金属材料は表面に光沢があるため 、放射率が低く熱輻射による放熱効果が得られにくいといった欠点もある。これを解 決するために、例えば、金属材料の表面に黒色コーティングを施すか又は金属材料 表面を酸化処理する等の後処理が検討されているが(例えば、特開 2005— 15329 6号公報及び特開 2000— 282292号公報参照)、処理工程が増えることで低コスト 化の障害となっている。  [0005] The characteristics required as a heat radiating material are good thermal conductivity! /, Low cost, excellent durability, heat resistance and weather resistance, and can be produced in a desired shape. It is lightweight and small. As a conventional heat dissipation material, a heat sink made of aluminum copper having a high thermal conductivity has been proposed (see, for example, JP-A-05-074992), but these aluminum and copper were used. In this case, the weight reduction requirement could not be satisfied. In addition, since metallic materials such as aluminum and copper have a glossy surface, there is a drawback in that the emissivity is low and it is difficult to obtain a heat radiation effect by heat radiation. In order to solve this problem, post-processing such as, for example, applying a black coating to the surface of the metal material or oxidizing the surface of the metal material has been studied (for example, JP 2005-153296 A and No. 2000-282292), increasing the number of processing steps has hindered cost reduction.
発明の開示  Disclosure of the invention
[0006] 本発明の目的は、軽量で高!/、放射率を有し、放熱特性に優れる放熱材を提供する ことである。 [0006] An object of the present invention is to provide a heat dissipating material that is lightweight, has high! /, Has an emissivity, and has excellent heat dissipating characteristics. That is.
[0007] 本発明は、(1)高熱伝導性材料及び樹脂を含む放熱材であって、高熱伝導性材 料を放熱材中に 50〜95質量%含有することを特徴とする放熱材に関する。  [0007] The present invention relates to (1) a heat radiating material including a high heat conductive material and a resin, wherein the heat radiating material contains 50 to 95% by mass of the high heat conductive material.
[0008] また、本発明は、(2)前記高熱伝導性材料が、黒鉛を含むことを特徴とする前記(1[0008] Further, the present invention provides (2) the above (1), wherein the high thermal conductivity material contains graphite.
)記載の放熱材に関する。 ).
[0009] また、本発明は、(3)前記放熱材のかさ密度が、 1. 2〜2. 2g/cm3であることを特 徴とする前記(1)又は(2)記載の放熱材に関する。 [0009] In addition, the present invention provides: (3) The heat dissipation material according to (1) or (2), wherein a bulk density of the heat dissipation material is 1.2 to 2.2 g / cm 3 . About.
[0010] また、本発明は、(4)前記放熱材の 60°Cにおける放射面の放射率力 0. 40以上 であることを特徴とする前記(1)〜(3)の!/、ずれか一項に記載の放熱材に関する。 [0010] In addition, the present invention provides: (4) the emissivity power of the radiation surface at 60 ° C of the heat radiating material is 0.40 or more; It relates to the heat radiating material described in the above item.
[0011] また、本発明は、(5)前記放熱材の厚さ方向の熱伝導率が、 10W/mK以上であ ることを特徴とする前記(1)〜(4)のいずれか一項に記載の放熱材に関する。 [0011] Further, the present invention provides (5) any one of the above (1) to (4), wherein the heat conductivity in the thickness direction of the heat dissipating material is 10 W / mK or more. It relates to the heat dissipating material.
[0012] また、本発明は、(6)前記放熱材の面方向の熱伝導率が、 30W/mK以上である ことを特徴とする前記(1)〜(5)のいずれか一項に記載の放熱材に関する。 [0012] Further, the present invention provides (6) the thermal conductivity in the surface direction of the heat dissipating material is 30 W / mK or more, as described in any one of (1) to (5), Related to heat dissipation material.
[0013] また、本発明は、(7)前記放熱材が、フィン構造を有することを特徴とする前記(1)[0013] Further, the present invention provides (7) the above (1), wherein the heat dissipating material has a fin structure.
〜(6)の!/、ずれか一項に記載の放熱材に関する。 To (6)! /, Or to the heat radiating material described in one item.
[0014] また、本発明は、(8)前記フィンの高さが、放熱材全体の高さの 30〜95%であるこ とを特徴とする前記(7)記載の放熱材に関する。 [0014] The present invention also relates to (8) the heat radiating material according to (7), wherein a height of the fin is 30 to 95% of a height of the entire heat radiating material.
[0015] また、本発明は、(9)前記フィンの溝部がテーパ状であり、テーパ角度が;!〜 30° であることを特徴とする前記(7)又は(8)記載の放熱材に関する。 [0015] In addition, the present invention relates to (9) the heat dissipation material according to (7) or (8), wherein the fin groove has a tapered shape and a taper angle is !!-30 °. .
[0016] また、本発明は、(10)前記放熱材全体の高さが、 1mm以上であることを特徴とす る前記(1)〜(9)のいずれか一項に記載の放熱材に関する。 [0016] Further, the present invention relates to (10) the heat radiating material according to any one of (1) to (9), wherein a height of the entire heat radiating material is 1 mm or more. .
[0017] また、本発明は、(11)前記放熱材の比熱が、 0. 85j/gK以下であることを特徴と する前記(1)〜(; 10)の!/、ずれか一項に記載の放熱材に関する。 [0017] Further, in the present invention, (11) The specific heat of the heat dissipating material is 0.85 j / gK or less. It relates to the described heat dissipation material.
[0018] また、本発明は、(12)前記放熱材面方向の熱膨張率力 8 X 10— 6/°C以下である ことを特徴とする前記(1)〜(; 11)のいずれか一項に記載の放熱材に関する。 [0018] The invention also relates to (12) wherein, wherein the heat dissipating material surface direction of the thermal expansion coefficient force 8 X 10- 6 / ° is C (1) to; any of (11) It relates to the heat dissipation material according to one item.
[0019] また、本発明は、(13)前記放熱材の体積固有抵抗が 200 Ω πι以下であることを 特徴とする前記(1)〜(; 12)のいずれか一項に記載の放熱材に関する。 [0019] Further, the present invention provides (13) the heat dissipation material according to any one of (1) to (; 12) above, wherein the volume specific resistance of the heat dissipation material is 200 Ωπι or less. About.
[0020] また、本発明は、(14)前記放熱材が UL— 94規格で V— 0の難燃性を有することを 特徴とする前記(1)〜(; 13)いずれか一項に記載の放熱材に関する。 [0020] Further, the present invention provides that (14) the heat radiating material has flame retardancy of V-0 according to UL-94 standards. It is related with the thermal radiation material as described in any one of said (1)-(; 13) characterized.
[0021] また、本発明は、(15)前記放熱材の放熱面の反対側の面に粘着層を有することを 特徴とする前記(1)〜(; 14)のいずれか一項に記載の放熱材に関する。 [0021] Further, the present invention provides (15) the adhesive layer on the surface opposite to the heat radiating surface of the heat radiating material, as described in any one of (1) to (; 14) above. It relates to heat dissipation material.
[0022] また、本発明は、(16)前記粘着層の厚さが、 150 in以下であることを特徴とする 前記(15)記載の放熱材に関する。 [0022] The present invention also relates to (16) the heat dissipation material according to (15), wherein the adhesive layer has a thickness of 150 in or less.
[0023] また、本発明は、(17)前記粘着層の熱伝導率が、 0. 5W/mK以上であることを 特徴とする前記(15)又は(16)記載の放熱材に関する。 [0023] The present invention also relates to (17) the heat dissipation material according to (15) or (16) above, wherein the adhesive layer has a thermal conductivity of 0.5 W / mK or more.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]テーパ形状のフィン構造を有する放熱材を示す正面図である。  FIG. 1 is a front view showing a heat dissipating material having a tapered fin structure.
[図 2]放熱特性評価試験方法を示す概略図である。  FIG. 2 is a schematic diagram showing a heat dissipation characteristic evaluation test method.
[図 3]実施例;!〜 8、比較例 2及び参考例 1で用レ、た放熱材の面方向の形状を示す正 面図である。  FIG. 3 is a front view showing the shape in the surface direction of the heat dissipating material used in Examples;! To 8, Comparative Example 2 and Reference Example 1.
[図 4]比較例 3で用いた放熱材の面方向の形状を示す正面図である。  FIG. 4 is a front view showing the shape of the heat dissipating material used in Comparative Example 3 in the surface direction.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 本発明の放熱材は、高熱伝導性材料及び樹脂を含み、高熱伝導性材料を放熱在 中に 50〜95質量%含有することを特徴としている。前記放熱材中の高熱伝導性材 料の含有量は、 60〜95質量%が好ましぐ 70〜95質量%がより好ましい。前記高 熱伝導性材料の含有量が 50質量%未満である場合は、放熱材の伝熱特性が低下 し、充分な放熱特性が得られない。一方、前記高熱伝導性材料の含有量が 95質量 %を超える場合は、放熱材の成形性が低下し、所望の形状の放熱材を得ることがで きない。 [0025] The heat dissipating material of the present invention includes a high heat conductive material and a resin, and is characterized by containing the high heat conductive material in an amount of 50 to 95% by mass during heat dissipation. The content of the high thermal conductivity material in the heat dissipation material is preferably 60 to 95% by mass, more preferably 70 to 95% by mass. When the content of the high thermal conductivity material is less than 50% by mass, the heat transfer characteristics of the heat dissipation material are deteriorated, and sufficient heat dissipation characteristics cannot be obtained. On the other hand, if the content of the high thermal conductivity material exceeds 95% by mass, the moldability of the heat radiating material is lowered, and a heat radiating material having a desired shape cannot be obtained.
[0026] 本発明で用いられる高熱伝導性材料は特に制限されず、放熱材の熱伝導性フイラ 一として公知のものであれば構わないが、熱伝導率が 10〜1000W/mKであるもの が好ましい。高熱伝導性材料の一例として、シリカ、黒鉛、アルミナ、水酸化アルミ二 ゥム、チッ化アルミニウム、炭化ケィ素、水酸化マグネシウム等の無機フィラー、アルミ 二ゥム、銅、銀、金等の金属フイラ一等が挙げられる。これら高熱伝導性材料は 1種 類で用いても、 2種類以上を組み合わせて用いても良!/、。  [0026] The high thermal conductivity material used in the present invention is not particularly limited, and may be any known thermal conductivity filler for the heat radiating material, but has a thermal conductivity of 10 to 1000 W / mK. preferable. Examples of high thermal conductivity materials include inorganic fillers such as silica, graphite, alumina, aluminum hydroxide, aluminum nitride, silicon carbide and magnesium hydroxide, metals such as aluminum, copper, silver and gold. One example is a filler. These high thermal conductivity materials can be used alone or in combination of two or more! /.
[0027] 前記高熱伝導性材料の例示のなかでも、軽量化と放熱特性の点で黒鉛が好まし!/、 。黒鉛としては、例えば、天然黒鉛粉末、人造黒鉛粉末、膨張黒鉛または膨張黒鉛 シートを粉砕した膨張黒鉛粉末等が用いられる。これらのなかでも天然もしくは人造 黒鉛粉末が好ましい。これらの黒鉛の形状は、球形、塊状、鱗片、樹枝状等であり、 特に、制限はないが、平均粒径が 5〜500 111であることが好ましい。これら黒鉛の 平均粒径はレーザー回折式粒度分布測定装置を用いて測定することができる。なお 、平均粒径は 50%Dの値とする。 [0027] Among the examples of the high thermal conductivity material, graphite is preferable in terms of weight reduction and heat dissipation characteristics! / . As the graphite, for example, natural graphite powder, artificial graphite powder, expanded graphite, or expanded graphite powder obtained by pulverizing expanded graphite sheet is used. Of these, natural or artificial graphite powder is preferred. The shape of these graphites is spherical, lump, scale, dendritic, etc. There is no particular limitation, but the average particle size is preferably 5 to 500 111. The average particle size of these graphites can be measured using a laser diffraction particle size distribution measuring device. The average particle diameter is 50% D.
[0028] 本発明では、前記高熱伝導性材料の粉末を樹脂と混合することにより、軽量で、放 熱特性に優れる放熱材を得ることが可能である。また、黒鉛や金属フイラ一等の高熱 導電性材料は、樹脂と混合することにより粒子脱離による電子機器内部のショート発 生を防ぐことが可能となる。  In the present invention, it is possible to obtain a heat dissipation material that is light in weight and excellent in heat dissipation characteristics by mixing the powder of the high thermal conductivity material with a resin. In addition, high heat conductive materials such as graphite and metal fillers can be mixed with resin to prevent short circuit inside the electronic equipment due to particle detachment.
[0029] 本発明にお!/、て用いられる樹脂は、熱可塑性樹脂または熱硬化性樹脂が好まし!/、 。熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリメチルペンテン、 ポリブテン、結晶生ポリブタジエン、ポリスチレン、ポリブタジエン、スチレンブタジエン 樹脂、ポリ塩化ビュル、ポリ酢酸ビュル、ポリ塩化ビニリデン、エチレン ·酢酸ビュル共 重合体(EVA)、アクリロニトリル 'スチレン共重合体(AS)、アクリロニトリル'ブタジェ ン 'スチレン共重合体(ABS)、アイオノマー、アクリロニトリル 'アクリルゴム'スチレン 共重合体 (AAS)、塩素化ポリエチレン 'アクリロニトリル 'スチレン共重合体 (ACS)、 ポリメチルメタタリレート、ポリメチルアタリリレート、ポリテトラフルォロエチレン、ェチレ ン 'ポリテトラフルォロエチレン共重合体、ポリアセタール (ポリオキシメチレン)、ポリア ミド、ポリカーボネート、ポリフエ二レンエーテル、ポリエチレンテレフタレート、ポリブチ レンテレフタレート、ポリアリレー HUポリマー(登録商標))、ポリスチレン、ポリエーテ ルスノレホン、ポリイミド、ポリアミドイミド、ポリフエ二レンスルフイド、ポリオキシベンゾィ ル、ポリエーテルエーテルケトン、ポリエーテルイミド、その他液晶ポリエステル等が挙 げられる。  [0029] The resin used in the present invention is preferably a thermoplastic resin or a thermosetting resin! /. Examples of the thermoplastic resin include polyethylene, polypropylene, polymethylpentene, polybutene, crystallized polybutadiene, polystyrene, polybutadiene, styrene butadiene resin, polychloride butyl, polyacetate butyl, polyvinylidene chloride, ethylene / butyl acetate copolymer ( EVA), acrylonitrile 'styrene copolymer (AS), acrylonitrile' butadiene 'styrene copolymer (ABS), ionomer, acrylonitrile' acrylic rubber 'styrene copolymer (AAS), chlorinated polyethylene' acrylonitrile 'styrene copolymer Copolymer (ACS), Polymethylmetatalylate, Polymethyl Atrylylate, Polytetrafluoroethylene, Ethylene 'Polytetrafluoroethylene Copolymer, Polyacetal (Polyoxymethylene), Polyamide, Polycarbonate Polyphenylene ether, polyethylene terephthalate, polybutylene terephthalate, polyarylene HU polymer (registered trademark), polystyrene, polyether selephone, polyimide, polyamide imide, polyphenylene sulfide, polyoxybenzoyl, polyether ether ketone, polyether imide, Other liquid crystal polyesters are listed.
[0030] また、熱硬化性樹脂としては、例えば、フエノール樹脂、開環重合により重合するジ ヒドロべンゾォキサジン環を含む熱硬化性樹脂、ァミノ樹脂 (ユリア樹脂、メラミン樹脂 [0030] The thermosetting resin may be, for example, a phenol resin, a thermosetting resin containing a dihydrobenzoxazine ring that is polymerized by ring-opening polymerization, an amino resin (a urea resin, a melamine resin).
、ベンゾグアナミン樹脂)、不飽和ポリエステル樹脂、ジァリルフタレート樹脂、アルキ ド樹脂、エポキシ樹脂、ウレタン樹脂、ケィ素樹脂等が挙げられる。 [0031] これら樹脂のなかでも、耐熱性、成形性、金型との離型性の点でフエノール樹脂、 開環重合により重合するジヒドロべンゾォキサジン環を含む熱硬化性樹脂、エポキシ 樹脂が賞用される。また、これら樹脂は単独で用いても、 2種類以上を併用してもよいBenzoguanamine resin), unsaturated polyester resin, diallyl phthalate resin, alkyd resin, epoxy resin, urethane resin, and key resin. [0031] Among these resins, phenol resins, thermosetting resins containing dihydrobenzoxazine rings that are polymerized by ring-opening polymerization, and epoxy resins are used for heat resistance, moldability, and mold releasability. Is done. These resins may be used alone or in combination of two or more.
Yes
[0032] なお、「開環重合により重合するジヒドロべンゾォキサジン環を含む熱硬化性樹脂」 とは、フエノール性水酸基を有する化合物、ホルムアルデヒド類及び第 1級ァミンから 合成される樹脂のことである。この樹脂は、加熱により開環重合反応を起こし、揮発 分を発生させることなく優れた特性を持つ架橋構造を形成する。  [0032] The "thermosetting resin containing a dihydrobenzoxazine ring that is polymerized by ring-opening polymerization" refers to a resin synthesized from a compound having a phenolic hydroxyl group, formaldehydes, and primary amines. This resin causes a ring-opening polymerization reaction by heating, and forms a crosslinked structure having excellent characteristics without generating volatile matter.
[0033] 下記一般式 (I)で示される構造部位 (すなわち、ジヒドロべンゾォキサジン環)を含 む樹脂は、特に、耐熱性に優れ、付加反応により硬化が進行するため、揮発性副生 成物が発生せず、均一で緻密な樹脂層が形成されることから、好ましい樹脂である。  [0033] Resins containing a structural moiety represented by the following general formula (I) (that is, a dihydrobenzoxazine ring) are particularly excellent in heat resistance and are cured by an addition reaction. This is a preferable resin because a uniform and dense resin layer is formed without the occurrence of.
[化 1]  [Chemical 1]
Figure imgf000006_0001
Figure imgf000006_0001
[0034] ジヒドロべンゾォキサジン環を含む熱硬化性樹脂としては、下記一般式 (A)及び一 般式 (B)、 [0034] Examples of the thermosetting resin containing a dihydrobenzoxazine ring include the following general formulas (A) and (B),
[化 2]  [Chemical 2]
Figure imgf000006_0002
Figure imgf000006_0002
(式中、芳香環に結合する水素はヒドロキシル基のオルト位の一つを除き置換基で置 換されていてもよい) [化 3] (In the formula, the hydrogen bonded to the aromatic ring may be substituted with a substituent except for one of the ortho positions of the hydroxyl group) [Chemical 3]
Figure imgf000007_0001
Figure imgf000007_0001
[0036] (式中、 R1は炭化水素基であり、芳香環に結合する水素は、置換基で置換されてい てもよい) (Wherein R 1 is a hydrocarbon group, and the hydrogen bonded to the aromatic ring may be substituted with a substituent)
に示す化学構造単位を含むものが揮発性ガスを抑制する効果が高く好ましぐ一般 式 (A) /—般式 (B)のモル比で 4/;!〜 1/9で含むものが耐熱性等の点でより好ま しい。これは用いる材料の比率等により調整できる。  Those containing the chemical structural unit shown in Table 1 have a high effect of suppressing volatile gases, and are preferred in terms of the molar ratio of the general formula (A) /-general formula (B) of 4 /;! To 1/9. It is more preferable in terms of sex. This can be adjusted by the ratio of the materials used.
[0037] なお、上記一般式 (A)及び一般式 (B)で示される化学構造単位における、置換基 については特に制限はないが、メチル基、ェチル基等のアルキル基等が好ましいも のとして挙げられる。また、一般式 (A)において、ヒドロキシル基のオルト位の一つは 硬化反応のために、水素をもつことが好ましい。前記各化学構造単位の数は、 1分子 中に含まれる一般式 (A)の数を m、一般式 (B)の数を nとするとき、 m≥ 1、 n≥ 1かつ m + n≥2であればよいが、数平均で 10≥m + n≥3であることが硬化物の特性、例 えば耐熱性等の点で好ましレ、。  [0037] The substituent in the chemical structural unit represented by the general formula (A) and the general formula (B) is not particularly limited, but an alkyl group such as a methyl group or an ethyl group is preferable. Can be mentioned. In general formula (A), one of the ortho positions of the hydroxyl group preferably has hydrogen for the curing reaction. The number of each chemical structural unit is m≥ 1, n≥ 1 and m + n≥ where m is the number of general formula (A) contained in one molecule and n is the number of general formula (B). 2 is acceptable, but a number average of 10≥m + n≥3 is preferred in terms of the properties of the cured product, for example, heat resistance.
[0038] 上記各化学構造単位は、互いに直接に結合していてもよぐ有機の基を介して結 合していてもよい。前記有機の基としては、アルキレン基、キシリレン基等が好ましい ものとして挙げられ、アルキレン基としては、  [0038] Each chemical structural unit may be bonded via an organic group which may be directly bonded to each other. Examples of the organic group include an alkylene group and a xylylene group. Preferred examples of the alkylene group include
[化 4]
Figure imgf000007_0002
[Chemical 4]
Figure imgf000007_0002
で示される基(ただし、 R2は、水素原子、メチル基、ェチル基、プロピル基、イソプロピ ル基、フエニル基又は置換フエ二ル基を示す)、炭素原子数が 5〜20の鎖状アルキ レン基等が挙げられる。これは、原料として用いるフエノール性水酸基を有する化合 物の種類等により選択できる。 (Wherein R 2 represents a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a phenyl group or a substituted phenyl group), a chain alkyl group having 5 to 20 carbon atoms. Examples include a len group. This can be selected depending on the type of the compound having a phenolic hydroxyl group used as a raw material.
[0040] ジヒドロべンゾォキサジン環を含む熱硬化性樹脂の原料である前記フエノール性水 酸基を有する化合物としては、フエノールノポラック樹脂、レゾール樹脂、フエノール 変性キシレン樹脂、アルキルフエノール樹脂、メラミンフエノール樹脂、ポリブタジエン 変性フエノール樹脂等のフエノール樹脂、ビスフエノール化合物、ビフヱノール化合 物、トリスフェノール化合物、テトラフエノール化合物等を挙げることができる。  [0040] Examples of the compound having a phenolic hydroxyl group, which is a raw material of a thermosetting resin containing a dihydrobenzoxazine ring, include phenol nopolac resin, resol resin, phenol modified xylene resin, alkyl phenol resin, melamine phenol resin, Examples thereof include phenol resins such as polybutadiene-modified phenol resin, bisphenol compounds, biphenol compounds, trisphenol compounds, and tetraphenol compounds.
[0041] ジヒドロべンゾォキサジン環を含む熱硬化性樹脂の原料であるホルムアルデヒド類 としては、ホルムアルデヒドの他、パラホルムアルデヒド、へキサメチレンテトラミンのよ うなホルムアルデヒドを発生するもの等を用いることができる。  [0041] As the formaldehyde which is a raw material of the thermosetting resin containing a dihydrobenzoxazine ring, in addition to formaldehyde, those generating formaldehyde such as paraformaldehyde and hexamethylenetetramine can be used.
[0042] ジヒドロべンゾォキサジン環を含む熱硬化性樹脂の原料である第 1級ァミンとしては 、具体的にメチルァミン、ェチルァミン、プロピルァミン、シクロへキシルァミン等の脂 肪族ァミン、ァニリン、置換ァニリン等の芳香族ァミンが挙げられる。硬化性の点から は脂肪族ァミンが好ましぐ耐熱性の点からは芳香族ァミンが好ましい。  [0042] The primary amine that is a raw material of the thermosetting resin containing a dihydrobenzoxazine ring is specifically an aromatic amine such as methylamine, ethylamine, propylamine, cyclohexylamine, aniline, substituted aniline or the like. The tribe Amamine is mentioned. Aromatic amines are preferred from the viewpoint of heat resistance that aliphatic amines are preferred from the viewpoint of curability.
[0043] 各材料は、フエノール性水酸基を有する化合物、ホルムアルデヒド類及び第 1級ァ ミンを、フエノール性水酸基を有する化合物の水酸基 1モルに対し第 1級ァミンを 0. 2 〜0. 9モル、ホルムアルデヒドを第 1級ァミンの 2倍モル量以上の比で反応させること 、得られる樹脂の接着性等の面で好ましい。  [0043] Each material includes a phenolic hydroxyl group-containing compound, formaldehyde, and primary amine, and the primary amine is 0.2 to 0.9 mole per mole of the hydroxyl group of the phenolic hydroxyl group-containing compound. It is preferable in terms of adhesiveness of the resulting resin that formaldehyde is reacted at a ratio of at least twice the molar amount of primary amine.
[0044] 本発明の放熱材は、高熱伝導性材料及び樹脂の他に、樹脂硬化剤、硬化促進剤 、内部離型剤、滑剤等の成分を含んでいてもよい。  [0044] The heat dissipating material of the present invention may contain components such as a resin curing agent, a curing accelerator, an internal mold release agent, and a lubricant in addition to the high thermal conductivity material and the resin.
[0045] 本発明にお!/、て、上記各材料を用いてジヒドロべンゾォキサジン環を含む熱硬化 性樹脂を作る方法としては、フエノール性水酸基を有する化合物と第 1級ァミンとの 混合物を好ましくは 70°C以上に加熱したホルムアルデヒド類中に添加して、好ましく (ま 70〜; 110°C、より好ましく (ま 90〜; 100°Cで、好ましく (ま 20〜; 120分反応させ、その 後好ましくは 120°C以下の温度で減圧乾燥することにより合成することができる。  [0045] In the present invention, as a method for producing a thermosetting resin containing a dihydrobenzoxazine ring using each of the above materials, a mixture of a compound having a phenolic hydroxyl group and a primary amine is preferably used. Is preferably added to formaldehyde heated to 70 ° C or higher, preferably (70 to 110; 110 ° C, more preferably (90 to 100 ° C, preferably 20 to 120 minutes). It can be synthesized by drying under reduced pressure at a temperature of preferably 120 ° C. or lower.
[0046] ジヒドロべンゾォキサジン環を含む熱硬化性樹脂は、 日立化成工業 (株)製の付加 反応型熱硬化性樹脂、商品名「HR1060」として入手も可能である。  A thermosetting resin containing a dihydrobenzoxazine ring is also available as an addition reaction type thermosetting resin, trade name “HR1060” manufactured by Hitachi Chemical Co., Ltd.
[0047] 本発明に用いられるフエノール樹脂は特に限定はされないが、例えば、下記一般 式 (π)で示されるレゾール系フエノール樹脂を用いることが好ましい。 [0047] The phenol resin used in the present invention is not particularly limited. It is preferable to use a resol phenol resin represented by the formula (π).
[化 5]  [Chemical 5]
Figure imgf000009_0001
Figure imgf000009_0001
[0048] (式 II中、 aは 1以上の整数とする。 ) [0048] (In formula II, a is an integer of 1 or more.)
本発明にお!/、ては、高熱伝導性材料との混合性の点で前記樹脂は粉末状である ことが好ましぐ粒径 200 m以下がより好ましぐ 100 m以下であることがさらに好 ましい。放熱材は、力、さ密度が 1. 2〜2. 2g/cm3であることが好ましぐ 1. 5〜2. 2g /cm3であること力 り好ましく、 1. 7〜2. 2g/cm3であることがさらに好ましい。かさ 密度が 1. 2g/cm3未満である場合は、放熱材の内部に断熱層として作用する空気 が含まれることになり、熱伝導率が低下し放熱材の放熱特性が低下する傾向がある。 一方、力、さ密度が 2. 2g/cm3を超える場合は、軽量な放熱材を得ることができなくな る傾向がある。かさ密度は、放熱材の質量を体積で除すことにより測定できる。 In the present invention, the resin is preferably in the form of a powder in terms of mixing with a high thermal conductivity material, and the particle size of 200 m or less is more preferably 100 m or less. Even better. Heat dissipating material is force, the density 1. 2~2. 2g / cm 3 and it is preferable tool from 1.5 to 2. It forces Ri preferably 2g / cm 3, 1. 7~2. 2g More preferably, it is / cm 3 . When the bulk density is less than 1.2 g / cm 3 , air acting as a heat insulating layer is included inside the heat dissipation material, which tends to decrease the thermal conductivity and decrease the heat dissipation characteristics of the heat dissipation material. . On the other hand, when the force and density exceed 2.2 g / cm 3 , there is a tendency that a lightweight heat dissipation material cannot be obtained. The bulk density can be measured by dividing the mass of the heat dissipation material by the volume.
[0049] 本発明の放熱材のかさ密度を 1. 2〜2. 2g/cm3にするには充分に混練した材料 を充分な圧力、温度で熱圧成形すればよい。 [0049] In order to make the bulk density of the heat-dissipating material of the present invention 1.2-2 to 2.2 g / cm 3 , a sufficiently kneaded material may be hot-pressed at a sufficient pressure and temperature.
[0050] 本発明の放熱材は、 60°Cにおける放熱面の放射率が 0. 40以上であることが好ま しぐ 0. 60以上であることがより好ましぐ 0. 80以上であることがさらに好ましい。放 射率が 0.40未満である場合は、熱輻射による放熱効果が得られにくい傾向にある。 放射率の理論的上限値は 1. 0であるため、本発明の上限も 1. 0未満となる。  [0050] The heat dissipation material of the present invention preferably has an emissivity of the heat dissipation surface at 60 ° C of 0.40 or more, more preferably 0.60 or more, and 0.80 or more. Is more preferable. When the emissivity is less than 0.40, the heat dissipation effect due to thermal radiation tends to be difficult to obtain. Since the theoretical upper limit of emissivity is 1.0, the upper limit of the present invention is also less than 1.0.
[0051] 放熱材の 60°Cにおける放熱面の放射率は、例えば、 FT— IR法と呼ばれる方法で 測定すること力できる。この方法は、黒体炉 (異なる任意 2点の温度)と測定試料 (放 熱材)の放射面の分光放射強度を FT— IR (フーリエ変換赤外分光光度計)によって 測定し、これらの分光放射強度と黒体炉の分光放射強度理論値から、測定試料の分 光放射率を求め、これ力 積分放射率を算出するものであり、この積分放射率を本発 明では放射率と称する。なお、放射率は測定試料の温度に依存するため(温度依存 性は材料により異なる挙動を示す)、本発明においては 60°Cでの値を使用する。 [0052] 本発明の放熱材の 60°Cにおける放熱面の放射率を 0.40以上にするには、粗した 金型を用いて放熱材を成形する、もしくはブラスト機等を用いて放熱材表面を粗くす れば良い。 [0051] The emissivity of the heat dissipating surface of the heat dissipating material at 60 ° C can be measured, for example, by a method called FT-IR method. This method measures the spectral radiant intensity of the radiation surface of a blackbody furnace (at two different temperatures) and the measurement sample (heat release material) using an FT-IR (Fourier transform infrared spectrophotometer). From the radiant intensity and the theoretical value of the spectral radiant intensity of the blackbody furnace, the spectral emissivity of the measurement sample is obtained, and this integral emissivity is calculated. This integrated emissivity is called emissivity in the present invention. Since emissivity depends on the temperature of the sample to be measured (temperature dependence shows different behavior depending on the material), the value at 60 ° C is used in the present invention. [0052] In order to increase the emissivity of the heat dissipating surface at 60 ° C of the heat dissipating material of the present invention to 0.40 or more, the heat dissipating material is molded using a rough mold, or the surface of the heat dissipating material is formed using a blast machine or the like. It should be rough.
[0053] 本発明の放熱材は、厚さ方向の熱伝導率が 10W/mK以上であることが好ましぐ  [0053] The heat dissipation material of the present invention preferably has a thermal conductivity in the thickness direction of 10 W / mK or more.
20W/mK以上であることがより好ましぐ 30W/mK以上であることがさらに好まし い。厚さ方向の熱伝導率が 10W/mK未満である場合は、熱源からの熱を放熱面( フィン構造を有する場合はフィンがある面)からの熱輻射を利用して放散することがで きなくなる傾向がある。また、本発明の放熱材は面方向の熱伝導率が 30W/mK以 上であることが好ましぐ 50W/mK以上であることがより好ましぐ 100W/mK以上 であることがさらに好ましい。より高い放熱特性を得るためには、熱伝導率は高けれ ば高いほど好ましいが上限としては 200W/mKであり、 200W/mKを超える熱伝 導率を得るためには、樹脂の含有量を極端に減らす必要があるため成形が困難なも のとなる。  More preferred is 20 W / mK or more. More preferred is 30 W / mK or more. If the thermal conductivity in the thickness direction is less than 10 W / mK, the heat from the heat source can be dissipated using the heat radiation from the heat dissipation surface (the surface with fins if it has a fin structure). There is a tendency to disappear. Further, the heat dissipation material of the present invention preferably has a thermal conductivity in the plane direction of 30 W / mK or more, more preferably 50 W / mK or more, and even more preferably 100 W / mK or more. In order to obtain higher heat dissipation characteristics, the higher the thermal conductivity, the better. However, the upper limit is 200 W / mK, and in order to obtain a thermal conductivity exceeding 200 W / mK, the resin content must be extremely high. This makes it difficult to form.
[0054] 厚さ方向の熱伝導率は、例えば、レーザーフラッシュ、キセノンフラッシュ等による ハーフタイム法により熱拡散率を測定し、レーザーフラッシュ、キセノンフラッシュ等で 求めた比熱とかさ密度の積から算出することができる。また温度傾斜法により直接、 厚さ方向の熱伝導率を算出することも可能である。ハーフタイム法による測定には、 例えば、真空理工株式会社製の熱定数測定装置 TC 3000型、 TC 7000型や、 NETZSCH社製の NanoflashLFA447等を使用することができる。  [0054] The thermal conductivity in the thickness direction is calculated from the product of specific heat and bulk density obtained by laser flash, xenon flash, etc., by measuring the thermal diffusivity by a half-time method using laser flash, xenon flash, etc. be able to. It is also possible to calculate the thermal conductivity in the thickness direction directly by the temperature gradient method. For the measurement by the half-time method, for example, a thermal constant measuring device TC 3000 type or TC 7000 type manufactured by Vacuum Riko Co., Ltd., NanoflashLFA447 manufactured by NETZSCH or the like can be used.
[0055] また、面方向の熱伝導率は、ラメラー法と呼ばれる、試料を細裁し積み重ねて面を 作り、この面に垂直にレーザーフラッシュや、キセノンフラッシュを当てハーフタイム法 により厚さ方向の熱伝導率と同様にして算出する方法又は試料を細裁し積み重ねて 面を作り、この面に垂直に温度差を付けて温度傾斜法により測定することができる。  [0055] In addition, the thermal conductivity in the plane direction is called lamellar method, and a surface is formed by chopping and stacking samples, and a laser flash or xenon flash is applied perpendicularly to this plane in the thickness direction by the half-time method. It can be measured by the temperature gradient method by calculating in the same way as thermal conductivity or by cutting and stacking samples to create a surface, and adding a temperature difference perpendicular to this surface.
[0056] 本発明の放熱材の厚さ方向の熱伝導率を 10W/mK以上にするには、高熱伝導 性材料を放熱材中に質量比で 50%以上含む材料を充分に混練し、充分な圧力、温 度で熱圧成形すればよい。面方向の熱伝導率を 30W/mK以上にするには、厚さ 方向と同様に高熱伝導性材料を放熱材中に質量比で 50 %以上含む材料を充分に 混練し、充分な圧力、温度で熱圧成形すればよい。 [0057] 本発明の放熱材は、比熱が 0. 85j/gK以下であることが好ましぐ 0. 80j/gK以 下であること力 り好ましく、 0. 75j/gK以下であることがさらに好ましい。比熱が 0. 85j/gK以下である場合は、従来より放熱材として使用されている比熱 0. 88j/gK のアルミニウムを用いた放熱材と比較して温度応答性に優れるからである。 [0056] In order to increase the thermal conductivity in the thickness direction of the heat dissipation material of the present invention to 10 W / mK or more, a material containing 50% or more of the high thermal conductivity material in the heat dissipation material is sufficiently kneaded and sufficiently Hot pressing may be performed at an appropriate pressure and temperature. In order to increase the thermal conductivity in the plane direction to 30 W / mK or more, as in the thickness direction, a material containing 50% or more of the high thermal conductivity material in the heat dissipation material is sufficiently kneaded to obtain sufficient pressure and temperature. And hot pressing. [0057] The heat dissipation material of the present invention preferably has a specific heat of 0.85 j / gK or less, more preferably 0.80 j / gK or less, and further preferably 0.75 j / gK or less. preferable. This is because when the specific heat is 0.85 j / gK or less, the temperature responsiveness is superior to that of a heat-radiating material using aluminum having a specific heat of 0.88 j / gK, which has been conventionally used as a heat-dissipating material.
[0058] 本発明の放熱材の比熱を 0. 85j/gK以下にするには、高熱伝導性材料を放熱材 中に質量比で 50%以上含む材料を充分に混練し、充分な圧力、温度で熱圧成形す れば'よい。  [0058] In order to reduce the specific heat of the heat-dissipating material of the present invention to 0.85 j / gK or less, a material containing 50% or more of a high thermal conductivity material in the heat-dissipating material is sufficiently kneaded, and sufficient pressure and temperature are obtained. You can do hot pressing with
[0059] 本発明の放熱材は、面方向の熱膨張率が 8 X 10— 6/°C以下であることが好ましぐ [0059] heat dissipating material of the present invention is preferably thermal expansion coefficient in the planar direction is less than 8 X 10- 6 / ° C instrument
7 X 10— 6/°C以下であることがより好ましぐ 6 X 10— 6/°C以下であることがさらに好ま しい。前記熱膨張率が 8 X 10— 6/°C以下であると、従来より放熱材として使用されて いる熱膨張率 25 X 10— 6/°Cのアルミニウムを用いた放熱材と比較して、加熱時の寸 法変化が少なぐ熱衝撃による破損が発生しづらいからである。 7 X 10- 6 / ° further preferred arbitrary that it C or less is not more than more preferably tool 6 X 10- 6 / ° C. When the thermal expansion coefficient is not more than 8 X 10- 6 / ° C, as compared to the heat dissipation material using the aluminum conventionally been used as a heat radiation material coefficient of thermal expansion 25 X 10- 6 / ° C, This is because damage due to thermal shock is less likely to occur due to small dimensional changes during heating.
[0060] 本発明の放熱材面方向の熱膨張率を 8 X 10— 6/°C以下にするには、高熱伝導性 材料を放熱材中に質量比で 50%以上含む材料を充分に混練し、充分な圧力、温度 で熱圧成形すればよい。 [0060] To the thermal expansion coefficient of the heat dissipating material surface direction of the present invention to 8 X 10- 6 / ° C or less, sufficiently kneaded material containing 50% or more at a mass ratio of high thermal conductivity material into the radiation material However, hot pressing may be performed at a sufficient pressure and temperature.
[0061] 本発明の放熱材は体積固有抵抗が 200 Ω πι以下であることが好ましぐ 150  [0061] The heat dissipation material of the present invention preferably has a volume resistivity of 200 Ω πι or less.
Ω πι以下であること力 り好ましく、 100〃 Ω πι以下であることがさらに好ましい。前記 放熱材の体積固有抵抗が 200 Ω πι以下であると、放熱材を通して接地することが 可能となるからである。  The power is preferably Ωπι or less, and more preferably 100〃Ωπι or less. This is because when the volume resistivity of the heat dissipating material is 200 Ωπι or less, it is possible to ground through the heat dissipating material.
[0062] 本発明の放熱材の体積固有抵抗を 200 ^ Ω πι以下にするには、高熱伝導性材料 を放熱材中に質量比で 50%以上含む材料を充分に混練し、充分な圧力、温度で熱 圧成形すればよい。  [0062] In order to reduce the volume resistivity of the heat dissipation material of the present invention to 200 ^ Ωπι or less, a material containing 50% or more by mass of the high thermal conductivity material in the heat dissipation material is sufficiently kneaded, and sufficient pressure, Hot-press molding may be performed at the temperature.
[0063] 本発明の放熱材は、 UL— 94規格で V— 0の難燃性を有していることが好ましい。  [0063] The heat dissipating material of the present invention preferably has flame retardancy of V-0 according to UL-94 standards.
本発明品は電子部品として使用されるため、安全上難燃性を有していることが必要 であるからである。  This is because the product of the present invention is used as an electronic component and therefore needs to have flame retardancy for safety.
[0064] 本発明の放熱材が V— 0の難燃性を得るためには、高熱伝導性材料を放熱材中に 質量比で 50%以上含む材料を充分に混練し、充分な圧力、温度で熱圧成形すれば よい。 [0065] 本発明の放熱材は、放熱性を高めるために放熱面側にフィン構造を有することが 好ましい。ここで、フィンの形状は、熱を拡散しやすいように表面積が大きくなるような 形状のものであれば特に限定されず、例えば、短冊状や円筒状等の櫛歯型、円錐 状等のピン型等が挙げられる。フィンの本数、方向、間隔、配置等は、用途や適用対 象等に応じて適宜設定される。 [0064] In order for the heat dissipating material of the present invention to obtain flame retardancy of V-0, a material containing 50% or more by mass of a high thermal conductivity material in the heat dissipating material is sufficiently kneaded, and sufficient pressure and temperature Hot press molding can be used. [0065] The heat dissipating material of the present invention preferably has a fin structure on the heat dissipating surface side in order to improve heat dissipation. Here, the shape of the fin is not particularly limited as long as it has a shape that increases the surface area so that heat can be easily diffused. For example, a pin having a strip shape or a cylindrical shape, a pin having a conical shape, or the like. Examples include molds. The number, direction, spacing, arrangement, etc. of the fins are appropriately set according to the usage and application target.
[0066] 前記フィンの高さは、放熱材全体の高さの 30〜95%であることが好ましぐ 40-95 %であること力 り好ましく、 50〜95%であることがさらに好ましい。フィンの高さが放 熱材全体の高さの 30%未満である場合は、放熱特性が低下する傾向がある。一方、 フィンの高さが放熱材全体の高さの 95%を超える場合は、フィンの成形が困難にな る傾向があり、放熱材の強度が低下する傾向がある。  [0066] The height of the fins is preferably 40 to 95%, more preferably 50 to 95%, preferably 30 to 95% of the total height of the heat dissipation material. When the height of the fin is less than 30% of the total heat dissipation material, the heat dissipation characteristics tend to deteriorate. On the other hand, if the height of the fins exceeds 95% of the total heat dissipation material, it tends to be difficult to mold the fins, and the strength of the heat dissipation material tends to decrease.
[0067] 前記フィンは、放熱効率を上げるためにフィンの厚さがフィンの先端部から根元部 に向かって漸増するように、溝部がテーパ状であることが好ましい。テーパ角度は 1 〜30° であること力 S好ましく、;!〜 20° であること力 り好ましく、;!〜 10° であること 力 Sさらに好ましい。前記テーパ角度が 未満である場合は、金型からの離型が困難 になる傾向がある。一方、前記テーパ角度が 30° を超える場合は、フィンの根元部 の幅が大きくなり、フィン間のピッチを細くすることが出来なくなるため、放熱面積減少 による放熱特性低下の傾向がある。テーパ形状の放熱材例を図 1に示す。  [0067] It is preferable that the fin portion has a tapered shape so that the fin thickness gradually increases from the tip portion of the fin toward the root portion in order to increase heat dissipation efficiency. The taper angle is preferably 1 to 30 °. The force S is preferable;! Is preferably 20 to 20 °; the force S is more preferably! To 10 °. When the taper angle is less than, release from the mold tends to be difficult. On the other hand, when the taper angle exceeds 30 °, the width of the fin base portion becomes large and the pitch between the fins cannot be reduced, so that there is a tendency for the heat dissipation characteristics to decrease due to the reduction of the heat dissipation area. Figure 1 shows an example of a tapered heat dissipation material.
[0068] 本発明の放熱材の構造を上記のごとく所望の形状にするには、放熱材を成形する 時の金型を選定することにより行なわれる。本発明の放熱材全体の高さは、用途、搭 載部分によって異なるが、パソコン、プラズマテレビ等の電子機器に使用する場合、 熱容量および放熱材の面方向の伝熱の点から lmm以上であることが好ましぐ 2m m以上であることがより好ましぐ 3mm以上であることがさらに好ましい。前記放熱材 全体の高さが lmm未満である場合は、熱容量および放熱材の面方向の伝熱が低下 し、効果的な放熱を得ることができなくなる傾向にある。一方、前記放熱材全体の高 さの上限は 150mm程度であり、これを超えると成形が困難になる可能性がある。  [0068] The structure of the heat dissipating material of the present invention can be formed in a desired shape as described above by selecting a mold for forming the heat dissipating material. The overall height of the heat dissipating material of the present invention varies depending on the application and the mounted part, but when used in electronic devices such as personal computers and plasma televisions, it is 1 mm or more in terms of heat capacity and heat transfer in the surface direction of the heat dissipating material. More preferably, it is 2 mm or more, and more preferably 3 mm or more. When the overall heat dissipation material is less than lmm, the heat capacity and heat transfer in the surface direction of the heat dissipation material decrease, and effective heat dissipation tends not to be obtained. On the other hand, the upper limit of the overall height of the heat dissipating material is about 150 mm, and if it exceeds this, molding may become difficult.
[0069] 本発明の放熱材の製造法につ!/、ては特に制限はな!/、が、例えば、高熱伝導性材 料と樹脂の混合物をニーダー、ライカイ機、ヘンシェルミキサー、プラネタリーミキサ 一、ロール機等で攪拌、混合、混練、圧延等の工程を経て、得られた混合物を、例え ば、射出成形、押出成形、プレス成形等の公知のプラスチック成形方法で所望の形 状に成形して作製することができる。 [0069] Although there is no particular limitation on the manufacturing method of the heat dissipation material of the present invention! /, For example, a mixture of a high thermal conductivity material and a resin is used as a kneader, a lykai machine, a Henschel mixer, a planetary mixer For example, the mixture obtained through the steps of stirring, mixing, kneading, rolling, etc. in a roll machine etc. For example, it can be produced by molding into a desired shape by a known plastic molding method such as injection molding, extrusion molding or press molding.
[0070] 本発明の放熱材は、熱源との接着性を高めるために放熱面の反対側の面に粘着 層を有することが好ましい。粘着層の材料としては本発明の放熱材と CPU等の熱源 を接着できるものであれば特に制限されず、例えば、アクリル系粘着材、ゴム系粘着 材、シリコーン系粘着材等の粘着材を使用することができ、支持体の両面に粘着材 を有する粘着フィルムを使用することが作業性、低コスト化の点で好ましい。かかる粘 着フィルムとしては、例えば、支持体として PET (ポリエチレンテレフタレート)等の高 分子フィルムやアルミニウム、銅等の金属箔を使用し、前記支持体の両面に粘着材 を有する粘着フィルムが挙げられる。粘着層の厚さは、熱抵抗を抑えるために、 150 〃m以下とすることが好ましぐ 100 m以下とすること力 Sより好ましく、 50 m以であ ることがさらに好ましい。前記粘着層の厚さが 150 inを超える場合は、熱抵抗が増 加し、熱を効率よく放熱材に伝えることが困難となる傾向がある。粘着層の強度、粘 着力の点から、粘着層の厚さの下限値は 5 m以上であることが好ましい。また、放 熱材が粘着層を有することによる熱伝導率の低下を抑えるために、放熱材の粘着層 を形成する材料の熱伝導率は、 0. 5W/mK以上であることが好ましぐ 1. OW/m K以上であることがより好まし!/、。 [0070] The heat dissipating material of the present invention preferably has an adhesive layer on the surface opposite to the heat dissipating surface in order to enhance the adhesiveness with the heat source. The material of the adhesive layer is not particularly limited as long as it can adhere the heat radiation material of the present invention and a heat source such as a CPU. For example, an adhesive material such as an acrylic adhesive, a rubber adhesive, or a silicone adhesive is used. It is preferable to use an adhesive film having an adhesive material on both sides of the support in terms of workability and cost reduction. As such an adhesive film, for example, a high molecular film such as PET (polyethylene terephthalate) or a metal foil such as aluminum or copper is used as a support, and an adhesive film having an adhesive on both surfaces of the support. The thickness of the adhesive layer is preferably 150 m or less, more preferably 100 m or less, and more preferably 50 m or less, in order to suppress thermal resistance. When the thickness of the adhesive layer exceeds 150 in, the thermal resistance increases, and it tends to be difficult to efficiently transfer heat to the heat dissipation material. From the viewpoint of the strength and adhesive strength of the adhesive layer, the lower limit value of the thickness of the adhesive layer is preferably 5 m or more. In addition, in order to suppress a decrease in thermal conductivity due to the heat dissipation material having an adhesive layer, it is preferable that the thermal conductivity of the material forming the adhesive layer of the heat dissipation material is 0.5 W / mK or more. 1. More preferred to be OW / m K or more! /.
[0071] 本発明の放熱材は、例えば、パソコン、プラズマテレビ等の電子機器において、 CP U、プラズマテレビの熱源等による温度上昇を抑制するための放熱装置として使用す ること力 Sでさる。 [0071] The heat dissipating material of the present invention can be used as a heat dissipating device for suppressing a temperature rise due to CPU, a heat source of a plasma television, etc. in an electronic device such as a personal computer or a plasma television.
実施例  Example
[0072] 以下、実施例により、本発明を具体的に説明する。  [0072] The present invention will be specifically described below with reference to examples.
[0073] 実施例 1 [0073] Example 1
膨張黒鉛をシート化したものを粉砕した膨張黒鉛粉砕粉(日立化成工業株式会社 製、商品名: HGF— L)及びジヒドロべンゾォキサジン環を含む粉末の付加反応型熱 硬化性樹脂(日立化成工業株式会社製、商品名: HR1060)を質量比 55/45で粉 体混合し、熱プレスを用いて面圧 30MPa、成形温度 200°C、成形時間 5分のプレス 条件で成形して、図 3に示す形状のフィン構造を有する放熱材を作製した。図 3は放 熱材の面方向の形状を示す正面図である。 Expanded graphite crushed powder obtained by pulverizing expanded graphite sheet (trade name: HGF-L, manufactured by Hitachi Chemical Co., Ltd.) and powder containing dihydrobenzoxazine ring addition reaction type thermosetting resin (Hitachi Chemical Co., Ltd.) A product made by company, product name: HR1060) is mixed at a mass ratio of 55/45, and molded using a hot press under a pressing condition of 30MPa, molding temperature 200 ° C, molding time 5 minutes. A heat dissipating material having a fin structure of the shape shown was produced. Figure 3 is free It is a front view which shows the shape of the surface direction of a heat material.
[0074] 次に、上記で得られた放熱材のフィンとは反対側の面である底面に、厚さ 5 H mの P[0074] Next, on the bottom surface, which is the surface opposite to the fins of the heat dissipation material obtained above, P having a thickness of 5 H m
ETフィルムの両面に 5 a mのアクリルゴム粘着材を有する厚さ 15 μ mの粘着フィルム15 μm thick adhesive film with 5 am acrylic rubber adhesive on both sides of ET film
(日立化成ポリマー株式会社製、商品名:ハイボン、熱伝導率 0. 2W/mK)を貼り付 け、粘着層付き放熱材を作製した。 (Hitachi Chemical Polymer Co., Ltd., trade name: Hibon, thermal conductivity 0.2 W / mK) was attached to produce a heat dissipation material with an adhesive layer.
[0075] 得られた放熱材の力、さ密度、 60°Cにおける放射面の放射率、熱伝導率、比熱、熱 膨張率、および体積固有抵抗を以下の方法により測定した。結果を表 1に示す。 [0075] The force, the density, the emissivity of the radiation surface at 60 ° C, the thermal conductivity, the specific heat, the thermal expansion coefficient, and the volume resistivity of the obtained heat-dissipating material were measured by the following methods. The results are shown in Table 1.
[0076] (かさ密度の測定) [0076] (Measurement of bulk density)
放熱材の質量を体積で除すことで算出した。  It was calculated by dividing the mass of the heat dissipation material by the volume.
[0077] (放射率の測定) [0077] (Measurement of emissivity)
放熱材の放射面の放射率は、 日本電子株式会社製の JIR 5500型フーリエ変換赤 外分光光度計及び放射測定ユニット JRR— 200を使用して FT— IR法で測定し、積 分放射率を算出して放射率とした。  The emissivity of the radiation surface of the heat dissipation material was measured by the FT-IR method using a JIR-5500 type Fourier transform infrared spectrophotometer and a radiation measurement unit JRR-200 manufactured by JEOL Ltd. Calculated and used as emissivity.
[0078] (熱伝導率の測定) [0078] (Measurement of thermal conductivity)
熱伝導率は真空理工株式会社製 TC 7000型を用いて熱拡散率を測定し、比熱と 力、さ密度の積から算出した。  The thermal conductivity was calculated from the product of specific heat, force, and density by measuring the thermal diffusivity using TC 7000 model manufactured by Vacuum Riko Co., Ltd.
[0079] (比熱の測定) [0079] (Measurement of specific heat)
比熱は Perkin-Elmer社製の DSC— 7型を用いた DSC (示差走差熱量計)法により測 定した。  The specific heat was measured by DSC (Differential Scanning Calorimetry) method using DSC-7 model manufactured by Perkin-Elmer.
[0080] (熱膨張率の測定) [0080] (Measurement of thermal expansion coefficient)
熱膨張率はセイコー株式会社製の SS 5200型熱機械分析装置 (TMA)を用いて測 定した。  The coefficient of thermal expansion was measured using an SS 5200 type thermomechanical analyzer (TMA) manufactured by Seiko Corporation.
[0081] (体積固有抵抗の測定)  [0081] (Measurement of volume resistivity)
体積固有抵抗は KIKUE ELECTRONICS社の MODEL PAB型電流電圧発生 器を用いて 4端子法により測定した。  Volume resistivity was measured by a four-terminal method using a model PAB type current-voltage generator from KIKUE ELECTRONICS.
[0082] 得られた放熱材の放熱特性を以下の方法により評価した。 [0082] The heat dissipation characteristics of the obtained heat dissipation material were evaluated by the following methods.
[0083] 図 2に示すように 10mm角のセラミックヒーター 2 (坂口電熱株式会社製)上に銅板 3 を載置し、放熱材 1の粘着層が接するように銅板 3上に放熱材 1を貼り付けた。セラミ ックヒーター 2に一定出力: 2· 5W/cm2 (150°C時)の電流を流し、銅板 3の中心部 の温度をサーモロガー (安立計器株式会社製、製品名: AM— 8060K)により測定し た。セラミックヒーター 2の温度低下を直接測定することは困難であるため、セラミック ヒーター 2と放熱材 1との間の銅板 3の温度を測定した。銅板の温度の測定は、試験 開始 20分後に行い、周囲の環境温度の影響を避けるため、銅板の温度 T1と環境温 度 T2との差 (Tl -T2)を評価温度と定義した。結果を表 1に示す。 [0083] As shown in Fig. 2, the copper plate 3 is placed on a 10 mm square ceramic heater 2 (manufactured by Sakaguchi Electric Heat Co., Ltd.), and the heat dissipating material 1 is pasted on the copper plate 3 so that the adhesive layer of the heat dissipating material 1 is in contact. I attached. Cerami A constant output of 2.5 W / cm 2 (at 150 ° C) was passed through the heat heater 2 and the temperature at the center of the copper plate 3 was measured with a thermologger (manufactured by Anri Keiki Co., Ltd., product name: AM-8060K). . Since it is difficult to directly measure the temperature drop of the ceramic heater 2, the temperature of the copper plate 3 between the ceramic heater 2 and the heat dissipating material 1 was measured. The temperature of the copper plate was measured 20 minutes after the start of the test, and the difference between the copper plate temperature T1 and the environmental temperature T2 (Tl-T2) was defined as the evaluation temperature in order to avoid the influence of the surrounding environmental temperature. The results are shown in Table 1.
[0084] 実施例 2 [0084] Example 2
膨張黒鉛粉砕粉と付加反応型熱硬化性樹脂の質量比を 70/30とすること以外は 、実施例 1と同様に操作して粘着層付き放熱材を作製し、同様の評価を行なった。結 果を表 1に示す。  Except that the mass ratio of the expanded graphite pulverized powder and the addition reaction type thermosetting resin was 70/30, a heat dissipation material with an adhesive layer was prepared in the same manner as in Example 1, and the same evaluation was performed. The results are shown in Table 1.
[0085] 実施例 3 [0085] Example 3
膨張黒鉛粉砕粉と付加反応型熱硬化性樹脂の質量比を 90/10とすること以外は 、実施例 1と同様に操作して粘着層付き放熱材を作製し、同様の評価を行なった。結 果を表 1に示す。  Except for setting the mass ratio of the expanded graphite pulverized powder and the addition reaction type thermosetting resin to 90/10, a heat dissipation material with an adhesive layer was produced in the same manner as in Example 1, and the same evaluation was performed. The results are shown in Table 1.
[0086] 実施例 4 [0086] Example 4
膨張黒鉛粉砕粉に代えて天然黒鉛粉(日本黒鉛株式会社製、商品名: F48)を用 い、天然黒鉛粉と付加反応型熱硬化性樹脂の質量比を 90/10とすること以外は、 実施例 1と同様に操作して放熱材を作製した。次いで、放熱材のフィンとは反対側の 面である底面に熱伝導性グリース(サンノヽャト株式会社製、商品名: SCH— 20、熱 伝導率 0. 84W/mK)を塗布し、銅板と密着させた。実施例 1と同様の評価を行な い、結果を表 1に示した。  Natural graphite powder (made by Nippon Graphite Co., Ltd., trade name: F48) is used in place of expanded graphite pulverized powder, and the mass ratio of natural graphite powder and addition reaction type thermosetting resin is 90/10. A heat dissipation material was produced in the same manner as in Example 1. Next, heat conductive grease (manufactured by Sannoyato Co., Ltd., trade name: SCH-20, thermal conductivity 0.84 W / mK) was applied to the bottom surface, which is the surface opposite to the fin of the heat dissipation material, and the copper plate And stuck. The same evaluation as in Example 1 was performed, and the results are shown in Table 1.
[0087] 実施例 5 [0087] Example 5
膨張黒鉛粉砕粉に代えて人造黒鉛粉 (ティムカル社製、商品名: ks5— 75)を用い 、人造黒鉛粉と付加反応型熱硬化性樹脂の質量比を 90/10とすること以外は、実 施例 1と同様に操作して放熱材を作製した。次いで、放熱材のフィンとは反対側の面 である底面に熱伝導性グリース(サンノヽャト株式会社製、商品名: SCH— 20、熱伝 導率 0. 84W/mK)を塗布し、銅板と密着させた。実施例 1と同様の評価を行ない、 結果を表 1に示した。 [0088] 実施例 6 Except for using artificial graphite powder (trade name: ks5-75, manufactured by Timcal Co., Ltd.) instead of expanded graphite pulverized powder, the mass ratio of artificial graphite powder and addition reaction type thermosetting resin is 90/10. A heat radiating material was produced in the same manner as in Example 1. Next, heat conductive grease (manufactured by Sannoyato Co., Ltd., trade name: SCH-20, thermal conductivity 0.84 W / mK) is applied to the bottom surface, which is the surface opposite to the fins of the heat dissipation material, It was made to adhere to a copper plate. The same evaluation as in Example 1 was performed, and the results are shown in Table 1. [0088] Example 6
付加反応型熱硬化性樹脂に代えてフエノール樹脂(日立化成工業株式会社製、商 品名: HP— 190R)を用い、膨張黒鉛粉砕粉とフエノール樹脂の質量比を 90/10と すること以外は、実施例 1と同様に操作して放熱材を作製した。次いで、放熱材のフ インとは反対側の面である底面に熱伝導性グリース(サンノヽャト株式会社製、商品名 : SCH— 20、熱伝導率 0. 84W/mK)を塗布し、銅板と密着させた。実施例 1と同 様の評価を行ない、結果を表 1に示した。  Except for using phenol resin (trade name: HP-190R, manufactured by Hitachi Chemical Co., Ltd.) instead of addition reaction type thermosetting resin, the mass ratio of expanded graphite pulverized powder to phenol resin is 90/10. A heat dissipation material was produced in the same manner as in Example 1. Next, apply thermal conductive grease (Sannoyato Co., Ltd., trade name: SCH-20, thermal conductivity 0.84W / mK) to the bottom surface, which is the opposite side of the fin of the heat dissipation material. It was made to adhere to a copper plate. The same evaluation as in Example 1 was performed, and the results are shown in Table 1.
[0089] 実施例 7 [0089] Example 7
膨張黒鉛粉砕粉に代えて人造黒鉛粉 (ティムカル社製、商品名: ks5— 75)を用い 、付加反応型熱硬化性樹脂に代えてフエノール樹脂(日立化成工業株式会社製、商 品名: HP— 190R)を用い、人造黒鉛粉とフエノール樹脂の質量比を 90/10とする こと以外は、実施例 1と同様に操作して放熱材を作製した。次いで、放熱材のフィンと は反対側の面である底面に熱伝導性グリース(サンノヽャト株式会社製、商品名: SC H— 20、熱伝導率 0. 84W/mK)を塗布し、銅板と密着させた。実施例 1と同様の 評価を行ない、結果を表 1に示した。  Artificial graphite powder (trade name: ks5-75, manufactured by Timcal Co., Ltd.) was used instead of expanded graphite pulverized powder, and phenol resin (manufactured by Hitachi Chemical Co., Ltd., trade name: HP—) instead of addition reaction type thermosetting resin. 190R), and the heat dissipation material was produced in the same manner as in Example 1 except that the mass ratio of the artificial graphite powder and the phenol resin was 90/10. Next, apply thermal conductive grease (Sannoyato Co., Ltd., trade name: SC H-20, thermal conductivity 0.84 W / mK) to the bottom surface, which is the opposite side of the fin of the heat dissipation material, It was made to adhere to a copper plate. The same evaluation as in Example 1 was performed, and the results are shown in Table 1.
[0090] 実施例 8 [0090] Example 8
膨張黒鉛粉砕粉に代えて天然黒鉛粉(日本黒鉛株式会社製、商品名: F48)を用 い、付加反応型熱硬化性樹脂に代えてフエノール樹脂(日立化成工業株式会社製、 商品名: HP— 190R)を用い、天然黒鉛粉とフエノール樹脂の質量比を 90/10とす ること以外は、実施例 1と同様に操作して放熱材を作製した。次いで、放熱材のフィン とは反対側の面である底面に熱伝導性グリース(サンノヽャト株式会社製、商品名: SC H— 20、熱伝導率 0. 84W/mK)を塗布し、銅板と密着させた。実施例 1と同様の 評価を行ない、結果を表 1に示した。  Natural graphite powder (Nippon Graphite Co., Ltd., trade name: F48) is used instead of expanded graphite pulverized powder, and phenol resin (Hitachi Chemical Industry Co., Ltd., trade name: HP) is used instead of addition reaction type thermosetting resin. — A heat radiating material was produced in the same manner as in Example 1 except that 190R) was used and the mass ratio of natural graphite powder to phenol resin was 90/10. Next, heat conductive grease (Sannoyato Co., Ltd., trade name: SC H-20, thermal conductivity 0.84 W / mK) is applied to the bottom surface, which is the surface opposite to the fins of the heat dissipation material, It was made to adhere to a copper plate. The same evaluation as in Example 1 was performed, and the results are shown in Table 1.
[0091] 比較例 1 [0091] Comparative Example 1
膨張黒鉛粉砕粉と付加反応型熱硬化性樹脂の質量比を 96/4とすること以外は、 実施例 1と同様に操作したところ、混合物の粘度が上昇し成形できず、放熱材を作製 することができなかった。  Except for setting the mass ratio of expanded graphite pulverized powder and addition reaction type thermosetting resin to 96/4, the same operation as in Example 1 was carried out. I couldn't.
[0092] 比較例 2 膨張黒鉛粉砕粉と付加反応型熱硬化性樹脂の質量比を 45/55とすること以外は 、実施例 1と同様に操作して粘着層付き放熱材を作製し、同様の評価を行なった。結 果を表 2に示す。 [0092] Comparative Example 2 Except that the mass ratio of the expanded graphite pulverized powder and the addition reaction type thermosetting resin was 45/55, a heat-radiating material with an adhesive layer was prepared in the same manner as in Example 1, and the same evaluation was performed. The results are shown in Table 2.
[0093] 比較例 3 [0093] Comparative Example 3
膨張黒鉛粉砕粉と付加反応型熱硬化性樹脂の質量比を 45/55とし、図 4に示す 形状とすること以外は、実施例 1と同様に操作して放熱材を作製した。次いで、放熱 材のフィンとは反対側の面である底面に熱伝導性グリース(サンノヽャト株式会社製、 商品名: SCH— 20、熱伝導率 0. 84W/mK)を塗布し、銅板と密着させた。実施例 1と同様の評価を行ない、結果を表 2に示した。  A heat radiating material was produced in the same manner as in Example 1 except that the mass ratio of the expanded graphite pulverized powder and the addition reaction type thermosetting resin was 45/55 and the shape shown in FIG. Next, heat conductive grease (manufactured by Sannoyato Co., Ltd., trade name: SCH-20, thermal conductivity 0.84 W / mK) is applied to the bottom surface, which is the surface opposite to the fins of the heat dissipation material, and the copper plate And stuck. The same evaluation as in Example 1 was performed, and the results are shown in Table 2.
[0094] 参考例 1 [0094] Reference Example 1
図 3に示す形状の放熱材をアルミニウムで作製した。次いで、放熱材のフィンとは反 対側の面である底面に熱伝導性グリース(サンノヽャト株式会社製、商品名: SCH— 2 0、熱伝導率 0. 84W/mK)を塗布し、銅板と密着させた。実施例 1と同様の評価を 行ない、結果を表 2に示した。  The heat dissipation material with the shape shown in Fig. 3 was made of aluminum. Next, heat conductive grease (manufactured by Sannoyato Co., Ltd., trade name: SCH-20, thermal conductivity 0.84 W / mK) is applied to the bottom surface, which is the surface opposite to the fins of the heat dissipation material. It was made to adhere to a copper plate. The same evaluation as in Example 1 was performed, and the results are shown in Table 2.
[0095] 参考例 2 [0095] Reference Example 2
放熱材を用いずに、銅板の温度を測定した。すなわち、 10mm角のセラミックヒータ 一 2 (坂口電熱株式会社製)上に銅板 3を載置し、セラミックヒーター 2に一定出力: 2 . 5W/cm2 (150°C時)の電流を流し、銅板 3の中心部の温度をサーモロガーにより 測定した。銅板の温度 T1と環境温度 T2との差 (T1 T2)を評価温度と定義した。結 果を表 2に示す。 The temperature of the copper plate was measured without using a heat dissipation material. In other words, a copper plate 3 is placed on a 10 mm square ceramic heater 1 (manufactured by Sakaguchi Electric Heat Co., Ltd.), and a constant output of 2.5 W / cm 2 (at 150 ° C) is passed through the ceramic heater 2 to produce a copper plate. The temperature at the center of 3 was measured with a thermologger. The difference (T1 T2) between the copper plate temperature T1 and the ambient temperature T2 was defined as the evaluation temperature. The results are shown in Table 2.
[表 1] [table 1]
Figure imgf000018_0001
Figure imgf000018_0001
Figure imgf000018_0002
Figure imgf000018_0002
Figure imgf000019_0001
Figure imgf000019_0001
産業上の利用可能性 Industrial applicability
本発明の放熱材は、 軽量で高い放射率を有し、 放熱特性に優れるものである。  The heat dissipating material of the present invention is lightweight, has high emissivity, and has excellent heat dissipating characteristics.
差替え用紙漏 1126) Replacement paper leakage 1126)

Claims

請求の範囲  The scope of the claims
[I] 高熱伝導性材料及び樹脂を含む放熱材であって、高熱伝導性材料を放熱材中に 50〜95質量%含有することを特徴とする放熱材。  [I] A heat dissipating material comprising a high heat conductive material and a resin, wherein the heat dissipating material contains 50 to 95% by mass of the high heat conductive material.
[2] 前記高熱伝導性材料が、黒鉛を含むことを特徴とする請求項 1記載の放熱材。  2. The heat dissipating material according to claim 1, wherein the high thermal conductivity material includes graphite.
[3] 前記放熱材のかさ密度が、 1. 2〜2. 2g/cm3であることを特徴とする請求項 1又 は 2記載の放熱材。 [3] The heat radiation material according to claim 1 or 2, wherein a bulk density of the heat radiation material is 1.2 to 2.2 g / cm 3 .
[4] 前記放熱材の 60°Cにおける放射面の放射率力 0. 40以上であることを特徴とす る請求項 1〜3のいずれか一項に記載の放熱材。  [4] The heat radiation material according to any one of claims 1 to 3, wherein the heat radiation material has an emissivity of 0.40 or more at a radiation surface at 60 ° C.
[5] 前記放熱材の厚さ方向の熱伝導率が、 10W/mK以上であることを特徴とする請 求項 1〜4のいずれか一項に記載の放熱材。 [5] The heat dissipation material according to any one of claims 1 to 4, wherein the heat dissipation material in the thickness direction has a thermal conductivity of 10 W / mK or more.
[6] 前記放熱材の面方向の熱伝導率が、 30W/mK以上であることを特徴とする請求 項 1〜 5のいずれか一項に記載の放熱材。 [6] The heat radiation material according to any one of claims 1 to 5, wherein the heat conductivity in the surface direction of the heat radiation material is 30 W / mK or more.
[7] 前記放熱材が、フィン構造を有することを特徴とする請求項 1〜6のいずれか一項 に記載の放熱材。 [7] The heat dissipation material according to any one of [1] to [6], wherein the heat dissipation material has a fin structure.
[8] 前記フィンの高さが、放熱材全体の高さの 30〜95%であることを特徴とする請求項 7記載の放熱材。  [8] The heat radiation material according to claim 7, wherein the height of the fin is 30 to 95% of the total height of the heat radiation material.
[9] 前記フィンの溝部がテーパ状であり、テーパ角度が;!〜 30° であることを特徴とす る請求項 7又は 8記載の放熱材。  [9] The heat radiation material according to claim 7 or 8, wherein the groove portion of the fin is tapered and the taper angle is from !! to 30 °.
[10] 前記放熱材全体の高さが、 1mm以上であることを特徴とする請求項 1〜9のいずれ か一項に記載の放熱材。 [10] The heat radiation material according to any one of claims 1 to 9, wherein the overall heat radiation material has a height of 1 mm or more.
[I I] 前記放熱材の比熱が、 0. 85j/gK以下であることを特徴とする請求項 1〜; 10のい ずれか一項に記載の放熱材。  [I I] The heat dissipation material according to any one of claims 1 to 10, wherein the heat dissipation material has a specific heat of 0.85 j / gK or less.
[12] 前記放熱材面方向の熱膨張率が、 8 X 10— 6/°C以下であることを特徴とする請求 項;!〜 11の!/ヽずれか一項に記載の放熱材。 [12] The heat radiating member surface direction of the thermal expansion coefficient, claims, characterized in that at most 8 X 10- 6 / ° C; heat dissipating material according to the ~ 11 /ヽdeviation or claim!.
[13] 前記放熱材の体積固有抵抗が 200 Ω πι以下であることを特徴とする請求項 1〜[13] The volume resistivity of the heat dissipating material is 200 Ωπι or less,
12のいずれか一項に記載の放熱材。 The heat dissipating material according to any one of 12 above.
[14] 前記放熱材が UL— 94規格で V— 0の難燃性を有することを特徴とする請求項 1〜[14] The heat dissipation material has flame retardancy of V-0 according to UL-94 standard.
13いずれか一項に記載の放熱材。 The heat dissipation material according to any one of 13 above.
[15] 前記放熱材の放熱面の反対側の面に粘着層を有することを特徴とする請求項;!〜[15] The adhesive according to claim 15, further comprising an adhesive layer on a surface opposite to a heat dissipation surface of the heat dissipation material;
14の!/、ずれか一項に記載の放熱材。 14! /, Heat dissipation material as described in one item.
[16] 前記粘着層の厚さが、 150 in以下であることを特徴とする請求項 15記載の放熱 材。 16. The heat radiation material according to claim 15, wherein the adhesive layer has a thickness of 150 in or less.
[17] 前記粘着層の熱伝導率が、 0. 5W/mK以上であることを特徴とする請求項 15又 は 16記載の放熱材。  17. The heat dissipating material according to claim 15 or 16, wherein the adhesive layer has a thermal conductivity of 0.5 W / mK or more.
PCT/JP2007/073667 2006-12-19 2007-12-07 Radiating material WO2008075574A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008550104A JPWO2008075574A1 (en) 2006-12-19 2007-12-07 Heat dissipation material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006341088 2006-12-19
JP2006-341088 2006-12-19
JP2007052839 2007-03-02
JP2007-052839 2007-03-02

Publications (1)

Publication Number Publication Date
WO2008075574A1 true WO2008075574A1 (en) 2008-06-26

Family

ID=39536207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073667 WO2008075574A1 (en) 2006-12-19 2007-12-07 Radiating material

Country Status (3)

Country Link
JP (1) JPWO2008075574A1 (en)
TW (1) TW200837108A (en)
WO (1) WO2008075574A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001540A (en) * 2009-05-20 2011-01-06 Sekisui Chem Co Ltd Chlorine-containing hydrocarbon resin composition and molded article
JP2011080031A (en) * 2009-03-25 2011-04-21 Sekisui Chem Co Ltd Chlorine-containing hydrocarbon resin composition and molding
JP2014207540A (en) * 2013-04-12 2014-10-30 パナソニック株式会社 Antenna duplexer and electronic apparatus using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102150484A (en) * 2008-09-26 2011-08-10 派克汉尼芬公司 Thermally conductive gel packs
KR101156151B1 (en) * 2009-04-09 2012-06-18 스미또모 가가꾸 가부시키가이샤 Metal-based circuit board and method for producing same
TW201343359A (en) * 2012-04-20 2013-11-01 Shuoen Tech Co Ltd Manufacturing method of carbon heat sink

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637218A (en) * 1992-07-20 1994-02-10 Fujitsu Ltd Semiconductor device
JP2002069392A (en) * 2000-08-31 2002-03-08 Polymatech Co Ltd Heat-conductive adhesive film, method for producing the same and electronic part
JP2002216788A (en) * 2001-01-24 2002-08-02 Shin Kobe Electric Mach Co Ltd Method of producing carbonaceous molding
JP2003037227A (en) * 2001-07-23 2003-02-07 Nippon Leakless Corp Heat sink made of expansible graphite

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637218A (en) * 1992-07-20 1994-02-10 Fujitsu Ltd Semiconductor device
JP2002069392A (en) * 2000-08-31 2002-03-08 Polymatech Co Ltd Heat-conductive adhesive film, method for producing the same and electronic part
JP2002216788A (en) * 2001-01-24 2002-08-02 Shin Kobe Electric Mach Co Ltd Method of producing carbonaceous molding
JP2003037227A (en) * 2001-07-23 2003-02-07 Nippon Leakless Corp Heat sink made of expansible graphite

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080031A (en) * 2009-03-25 2011-04-21 Sekisui Chem Co Ltd Chlorine-containing hydrocarbon resin composition and molding
JP2011001540A (en) * 2009-05-20 2011-01-06 Sekisui Chem Co Ltd Chlorine-containing hydrocarbon resin composition and molded article
JP2014207540A (en) * 2013-04-12 2014-10-30 パナソニック株式会社 Antenna duplexer and electronic apparatus using the same

Also Published As

Publication number Publication date
JPWO2008075574A1 (en) 2010-04-08
TW200837108A (en) 2008-09-16

Similar Documents

Publication Publication Date Title
TWI429708B (en) Resin composition, resin sheet, and cured resin and method of producing the same
TWI457387B (en) Electrically insulating and thermally conductive composition and electronic device
Hong et al. High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers
WO2008075574A1 (en) Radiating material
JP4144998B2 (en) Material for heat dissipation
JP5390202B2 (en) Heat dissipation structure
JP6136952B2 (en) Thermally conductive composite silicone rubber sheet
JP2007083716A (en) Thermally conductive sheet
JP3654743B2 (en) Heat dissipation spacer
TW201826465A (en) Thermally conductive sheet and semiconductor device
WO2020095902A1 (en) Thermally conductive composition, thermally conductive member, method for producing thermally conductive member, heat dissipation structure, heat generating composite member, and heat dissipating composite member
He et al. Enhancing the thermal conductivities of aluminum nitride‐polydimethylsiloxane composites via tailoring of thermal losses in filler networks
CN106587970A (en) Radiation radiating LED (Light-Emitting Diode) ceramic substrate and preparation method thereof
JP2010043229A (en) Thermally conductive resin composition and resin molding of the composition
JP5015450B2 (en) Thermally conductive molded body
US20240120254A1 (en) Thermally-conductive sheet and electronic device
CN107573446A (en) Boron nitride nanosheet and carbopol gel composite heat interfacial material and preparation method
CN113261398A (en) Method for preparing radiating fin
JP2008106126A (en) Thermally conductive material, heat releasing substrate using this and its manufacturing method
Liang et al. High thermal conductive underfill materials for flip-chip application
JP7153828B1 (en) thermally conductive sheet
KR20080092216A (en) Base substrate and pcb and the same manufacturing method
JP2005042096A (en) Thermally conductive composition, and putty-like heat radiating sheet and heat radiating structure using the same
CN110835432A (en) Polymer-based heat-conducting composite material and preparation method and application thereof
JP2004363272A (en) Heat-dissipating member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07859745

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008550104

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07859745

Country of ref document: EP

Kind code of ref document: A1