WO2008072914A1 - Polyimide resin and liquid crystal alignment layer and polyimide film using the same - Google Patents

Polyimide resin and liquid crystal alignment layer and polyimide film using the same Download PDF

Info

Publication number
WO2008072914A1
WO2008072914A1 PCT/KR2007/006512 KR2007006512W WO2008072914A1 WO 2008072914 A1 WO2008072914 A1 WO 2008072914A1 KR 2007006512 W KR2007006512 W KR 2007006512W WO 2008072914 A1 WO2008072914 A1 WO 2008072914A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
polyimide
transmittance
aminophenoxy
film
Prior art date
Application number
PCT/KR2007/006512
Other languages
French (fr)
Inventor
Hak Gee Jung
Sang Wook Park
Hyo Jun Park
Original Assignee
Kolon Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020060129009A external-priority patent/KR101167341B1/en
Priority claimed from KR1020060129005A external-priority patent/KR101142692B1/en
Priority claimed from KR1020060128978A external-priority patent/KR101167337B1/en
Application filed by Kolon Industries, Inc. filed Critical Kolon Industries, Inc.
Priority to US12/518,258 priority Critical patent/US20100048861A1/en
Priority to JP2009541229A priority patent/JP4891411B2/en
Publication of WO2008072914A1 publication Critical patent/WO2008072914A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a polyimide resin that is colorless and transparent, and to a liquid crystal alignment layer and a polyimide film using the same.
  • polyimide (PI) resin refers to highly heat-resistant resin obtained by ring closure and dehydration of polyamic acid at high temperature, which is obtained by solution polymerization of aromatic dianhydride and aromatic diamine or aromatic diisocyanate.
  • the aromatic dianhydride includes, for example, pyromellitic dianhydride (PMDA) or biphenyl tetracarboxylic dianhydride (BPDA)
  • the aromatic diamine includes, for example, oxydianiline (ODA) , p-phenylene diamine (p-PDA) , m-phenylene diamine (m- PDA) , methylene dianiline (MDA) , and bisaminophenylhexafluoropropane (HFDA) .
  • polyimide resin which is insoluble, infusible and super high heat resistant, has superior properties, including heat and oxidation resistance, radiation resistance, cryogenic resistance properties, and chemical resistance, it has been used in various fields, including advanced heat resistant materials, such as automobile materials, aircraft materials, or spacecraft materials, and electronic materials, such as insulation coating agents, insulating films, semiconductors, or electrode protective films of TFT-LCDs .
  • advanced heat resistant materials such as automobile materials, aircraft materials, or spacecraft materials
  • electronic materials such as insulation coating agents, insulating films, semiconductors, or electrode protective films of TFT-LCDs .
  • polyimide resin has been used as display materials, such as optical fibers or liquid crystal alignment layers, and transparent electrode films, which are constructed by mixing conductive fillers with polymers or applying conductive fillers to the surface of polymer films .
  • US Patent No. 5053480 discloses a method of using an alicyclic dianhydride component instead of the aromatic dianhydride. Although this method improves transparency and color in a solution phase or a film phase compared to the purification methods, the improvement in transmittance is limited, and therefore high transmittance is not realized, and also, the thermal and mechanical properties thereof are deteriorated.
  • the present invention provides a polyimide resin, which is colorless and transparent and has superior properties, including mechanical properties and heat stability, and also provides a liquid crystal alignment layer and a polyimide film using the same.
  • a polyimide resin which is prepared from a polymer of aromatic dianhydride and aromatic diamine, the aromatic dianhydride comprising 2,2'- bis (3, 4-dicarboxyphenyl) hexafluoropropane dianhydride (6- FDA) and 4- (2, 5-dioxotet.rahydrofuran-3-yl) -1, 2, 3, 4- tetrahydronaphthalene-1, 2-dicarboxylic anhydride (TDA), and the aromatic diamine comprising one or a mixture of two or more selected from among 2, 2' -bis (trifluoromethyl) -4, 4' - diaminobiphenyl (2,2'-TFDB), 3, 3' -bis (trifluoromethyl) - 4, 4' -diaminobiphenyl (3,3'-TFDB), 4, 4' -bis (3- aminophenoxy) diphenylsulfone (
  • the aromatic diamine may further comprise one or a mixture of two or more selected from among 2,2'- bis [4 (4-aminophenoxy) phenyl] hexafluoropropane (4-BDAF) , 2,2' -bis [3 (3-aminophenoxy) phenyl 1 hexafluoropropane (3- BDAF), 1,3-bis (3-aminophenoxy) benzene (APB-133), l,3-bis(4- aminophenoxy) benzene (APB-134), l,4-bis(4- aminophenoxy) benzene (APB-144), and 2, 2-bis [4- (4- aminophenoxy) phenyl] propane (6-HMDA) .
  • 2,2'- bis [4 (4-aminophenoxy) phenyl] hexafluoropropane (4-BDAF)
  • the 2, 2-bis (3,4- dicarboxyphenyl) hexafluoropropane dianhydride may be used in an amount of 1-99 mol%, based on the total amount of the aromatic dianhydride.
  • DBSDA bis (3-aminophenyl)sulfone (3-DDS) , and bis (4- aminophenyl) sulfone (4-DDS) may be used in an amount of
  • a liquid crystal alignment layer comprising the polyimide resin mentioned above ⁇ s provided.
  • the liquid crystal alignment layer according to the second embodiment may have a pretilt angle of 0-2°.
  • a polyimide film comprising the polyimide resin mentioned above is provided.
  • the polyimide film according to the third embodiment may have average transmittance of 85% or more at 380 ⁇ 780 nm and average transmittance of 88% or more at 551-780 nm, according to measurement of transmittance using a UV spectrophotometer, based on a film thickness of 50-100 ⁇ m.
  • the polyimide film according to the third embodiment may have transmittance of 88% or more at 550 nm, transmittance of 85% or more at 500 nm, and transmittance of 50% or more at 420 nm, according to the measurement of transmittance using a UV spectrophotometer, based on the film thickness of 50-100 ⁇ m.
  • the polyimide film according to the third embodiment may have a yellow index of 15 or less based on the film thickness of 50-100 ⁇ m.
  • the polyimide film according to the third embodiment may have a dielectric constant of 3.0 or less at 1 GHz based on the film thickness of 50-100 ⁇ m.
  • the polyimide film according to the third embodiment may have an average coefficient of thermal expansion of 50 ppm or less at 50-200 ° C, based on the film thickness of 50-100 ⁇ m.
  • the polyimide film according to the third embodiment may have a modulus of 3.0 GPa or more, based on the film thickness of 50-100 ⁇ m-
  • the polyimide film according to the third embodiment may have a 50% UV cut-off wavelength of 400 nm or less, based on the film thickness of 50-100 ⁇ m.
  • the present invention can provide a polyimide resin that is colorless and transparent and has superior properties, including mechanical properties and heat stability, and that can thus be used in various fields, including semiconductor insulating films, TFT-LCD insulating films, passivation films, liquid crystal alignment layers, optical communication materials, protective films for solar cells, and flexible display substrates, and also provide a liquid crystal alignment layer and a polyimide film using the same.
  • FIG. 1 illustrates a liquid crystal alignment layer manufactured using the polyimide resin of the present invention.
  • the present invention is directed to a polyimide resin, which is composed of a copolymer of diamine and dianhydride, and a liquid crystal alignment layer and a polyimide film using the same, and, in particular, to a colorless transparent polyimide resin and a liquid crystal alignment layer and a polyimide film using the same.
  • the aromatic dianhydride used in the present invention essentially includes 2,2-bis(3,4- dicarboxyphenyl) hexafluoropropane dianhydride (6-FDA) and 4- (2, 5-dioxotetrahydrofuran-3-yl) -1, 2, 3, 4- tetrahydronaphthalene-1, 2-dicarboxylic anhydride (TDA).
  • the FDA is used in an amount of 1 ⁇ 99 mol%, and preferably 10-90 mol%, based on the total amount of the dianhydride.
  • polyamic acid that is transparent and has high visible light transmittance, a low UV absorption and yellow index, and a high viscosity.
  • the aromatic diamine used in the present invention essentially includes one or a mixture of two or more selected from among 2, 2' -bis (trifluoromethyl) -4, 4' - diaminobiphenyl (2,2'-TFDB), 3, 3' -bis (trifluoromethyl) -
  • aromatic diamine may further include one or a mixture of two or more: selected from among 2,2'- bis [4 (4-aminophenoxy) phenyl] hexaEluoropropane (4-BDAF) , 2, 2' -bis [3 (3-aminophenoxy) phenyl] hexafluoropropane (3-
  • BDAF 1,3-bi s (3-aminophenoxy) benzene
  • APIB-133 1,3-bi s (3-aminophenoxy) benzene
  • APIB-134 1,3-bis(4- aminophenoxy) benzene
  • APIB-144 1,3-bis(4- aminophenoxy) benzene
  • 6-HMDA 2, 2-bis [4- (4- aminophenoxy) phenyl] propane
  • DBSDA bis (3-aminophenyl)sulfone (3-DDS) , and bis (4- aminophenyl) sulfone (4-DDS)
  • DBSDA bis (3-aminophenyl)sulfone
  • 4- aminophenyl) sulfone (4-DDS) may be used in an amount of 10-90 mol%, and preferably 20-80 mol%, based on the total amount of the diamine.
  • the dianhydride and the diamine are dissolved in equivalent molar amounts in an organic solvent and are then reacted, thus preparing a polyamic acid solution.
  • the reaction conditions are not particularly limited, but include a reaction temperature of -20 ⁇ 80 ° C and a reaction time of 2 ⁇ 48 hours. Furthermore, the reaction is preferably conducted in an inert atmosphere of argon or nitrogen.
  • the organic solvent that is used for the solution polymerization of the monomers is not particularly limited, as long as polyamic acid can be dissolved therein.
  • reaction solvents useful are one or more polar solvents selected from among m-cresol, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF) , dimethylacetamide (DMAc) , dimethylsulfoxide (DMSO), acetone, and diethylacetate.
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethylformamide
  • DMAc dimethylacetamide
  • DMSO dimethylsulfoxide
  • acetone and diethylacetate
  • a low-boiling-point solvent such as tetrahydrofuran (THF) or chloroform
  • a low-absorbing- solvent such as ⁇ -butyrolactone
  • the amount of the organic solvent is not particularly limited, but is preferably 50-95 wt%, and more preferably 70-90 wt%, based on the total amount of the polyamic acid solution, in order to realize appropriate molecular weight and viscosity of a polyamic acid solution.
  • the polyamic acid solution thus obtained is imidized to thus prepare a polyimide resin having a glass transition temperature of 200-350TC.
  • the polyamic acid is subjected to spin coating or roll coating on a glass substrate (e.g., ITO glass), and then to thermal curing at 80 ° C for 5min and 250 ° C for 20 min, thus realizing polyimidization during the removal of the solvent. Thereby, a thin film (having a thickness of about 10-1000 run) is formed on the glass substrate.
  • the polyamic acid solution is used in a state of being diluted to have an appropriate coating solution viscosity of 10-50 cps.
  • the solvent used for dilution is not limited to the solvent for polymerization.
  • the known dilution solvent is exemplified by polar solvents, such as N-methyl-2-pyrrolidone (NMP) , dimethylformamide (DMF) , dimethylacetamide (DMAc) , ⁇ - butyrolactone, and 2-n-butoxyethanol, which may be used alone or in mixtures thereof.
  • a coating solution of the polyamic acid prepared from the above monomers may be prepared through one or more processes selected from among the coating solution preparation processes below:
  • the coating solutions prepared through the above processes may be subjected to two or more steps of filtration using filters having a pore size selected within the range of 0.1-5 ⁇ m and an ion filter just before the coating process.
  • pretilt angle indicates an angle by which liquid crystals are previously tilted in order to increase a speed of response to voltage, when voltage is applied to liquid crystals to arrange the liquid crystals in a predetermined orientation.
  • the liquid crystal alignment layer including the polyimide resin of the present invention shows a stable pretilt angle of 0-2°, and may thus be applied to an alignment layer for IPS (En-Plane Switching) modes requiring a pretilt angle of less than 2°.
  • a filler may be added to the polyamic acid solution so as to improve various properties of the polyimide film, including sliding properties, heat conductivity, electrical conductivity, and corona resistance.
  • the filler is not particularly limited, but specific examples thereof include silica, titanium oxide, layered silica, carbon nanotubes, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, and mica.
  • the particle size of the filler may vary depending on the properties of the film to be modified and the type of filler to be added, and is not particularly limited.
  • the average particle size thereof is preferably set within 0.001-50 jMii, more preferably 0.005-25 ⁇ m, and still more preferably 0.01-10 ⁇ m.
  • the polyimide film may be easily and effectively modified and may also exhibit good surfaces properties, electrical conductivity, and mechanical properties .
  • the amount of the filler may vary depending on the properties of the film to be modified and the particle size of the filler, and is not particularly limited.
  • the filler is added in an amount of 0.001-20 parts by weight, and preferably 0., 01-10 parts by weight, based on 100 parts by weight of the polyamic acid solution.
  • the method of adding the filler is not particularly limited, but includes, for instance, adding the filler to the polyamic acid solution before or after polymerization, kneading the filler using a 3 roll mill after completion of the polymerization of polyamic acid, or mixing a dispersion solution containing the filler with the polyamic acid solution.
  • the method of manufacturing the polyimide film from the polyamic acid solution thus obtained is not particularly limited, and any conventionally known methods may be used.
  • the imidization of the polyamic acid solution includes, for example, thermal imidization and chemical imidization. Particularly useful is chemical imidization. Chemical imidization is conducted by adding a dehydrating agent, including acid anhydride, such as acetic anhydride, and an imidization catalyst, including tertiary amine, such as isoquinoline, ⁇ -picoline, or pyridine, to the polyamic acid solution. The chemical imidization may be conducted along with the thermal imidization, and heating conditions may vary depending on the type of polyamic acid solution and the thickness of the film.
  • a dehydrating agent including acid anhydride, such as acetic anhydride
  • an imidization catalyst including tertiary amine, such as isoquinoline, ⁇ -picoline, or pyridine
  • the polyimide film is obtained by heating the polyamic acid solution on a substrate at 80 ⁇ 200 ° C, and preferably 100 ⁇ 180 ° C to activate the dehydrating agent and the imidization catalyst, performing partial curing and drying to obtain a polyamic acid film in a gel state, separating the polyamic acid film from the substrate, and heating the film in a gel state at 200 ⁇ 400 ° C for 5-400 sec.
  • the thickness of the polyimide film thus obtained is not particularly limited, but is preferably set within 10-250 ⁇ m, and more preferably 25-150 IM, in consideration of the application field thereof.
  • the polyimide film manufactured in the present invention has transmittance of 88% or more at 550 nm, 85% or more at 500 nm, and 50% or more at 420 nm, according to measurement of transmittance using a UV spectrophotometer, based on a film thickness of 50-100 ⁇ m. Further, the average transmittance thereof is 85% or more at 380-780 run, and is 88% or more at 551-780 nm.
  • the polyimide film has a yellowing index of 15 or less based on the film thickness of 50-100 ⁇ m.
  • the polyimide film of the present invention satisfying the aforementioned transmittance and yellowing index, may be used in fields requiring transparency, in which it is difficult to apply a conventional polyimide film due to the yellow color thereof, including protective films, or diffusion sheets and coating films of TFT-LCDs, for example, interlayers, gate insulators, and liquid crystal alignment layers of TFT-LCDs.
  • protective films, or diffusion sheets and coating films of TFT-LCDs for example, interlayers, gate insulators, and liquid crystal alignment layers of TFT-LCDs.
  • the transparent polyimide When the transparent polyimide is applied to the liquid crystal alignment layer, it contributes to an increase in porosity, thus enabling the fabrication of a TFT-LCD having a high contrast ratio, and may also be used for flexible display substrates.
  • the polyimide film of the present invention has a dielectric constant of 3.0 or less at 1 GHz, and may thus be used as a semiconductor passivation film.
  • the polyimide film of the present invention has an average coefficient of thermal expansion (average CTE) of
  • the polyimide film may shrink or expand, depending on the variation in process temperatures, when applied to a TFT array process for placing a TFT on the film, resulting in unrealized alignment in an electrode doping process. Further, the film does not remain flat, and thus may warp. Hence, as the CTE is decreased, the TFT process may be more accurately conducted.
  • the polyimide film of the present invention has a modulus of 3.0 GPa or more. In this case, the polyimide film may be more easily applied to a roll-to-roll process for a flexible display substrate. When the polyimide film is used as a substrate film for flexible displays and FCCLs, a roll-to-roll process is conducted. At this time, because the film is subjected to tension when it is wound on and released from the rolls, a film having a modulus of less than 3.0 GPa may break down.
  • the polyimide film of the present invention has a 50% cut-off wavelength of 400 nm or less according to the measurement of transmittance using a UV spectrophotometer. Therefore, the polyimide film of the present invention may be used as a surface protective film for solar cells.
  • Example 1 While nitrogen was passed through a 100 ml three-neck round bottom flask reactor equipped with a stirrer, a nitrogen inlet, a dropping funnel, a temperature controller and a condenser, 33.5386 g of N,N-dimethylacetamide (DMAc) was loaded thereto, and the temperature of the reactor was decreased to 0 ° C. 3.62922 g (0.007 mol) of 4-BDAF and 0.7449 g (0.003 mol) of 3-DDS was dissolved therein. This solution was maintained at 0 ° C.
  • DMAc N,N-dimethylacetamide
  • the polyamic acid solution was spread 500 ⁇ 1000 (M thick on a glass substrate using a doctor blade, and was then dried in a vacuum oven at 40 ° C for 1 hour and at 60 ° C for 2 hours, thus affording a self-supporting film.
  • the film was then cured in a high-temperature oven at 80 ° C for 3 hours, 100 ° C for 1 hour, 200 ° C for 1 hour, and 300 ° C for 30 min at a heating rate of 5 ° C/min, thereby affording polyimide films having a thickness of 50 ⁇ m and 100 ⁇ xa.
  • Example 2 As in Example 1, 2.04631 g (0.007 mol) of APB-133 and 0.7449 g (0.003 mol) of 4-DDS were completely dissolved in 27.20696 g of DMAc. To the solution, 3.10975 g (0.007 mol) of ⁇ -FDA and 0.90078 g (0.003 mol) of TDA were sequentially added and the mixture was stirred for 1 hour till the 6-FDA and TDA were completely dissolved. The solid content of the resulting solution was thus 20 wt%. The solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of 1950 cps at 23 ° C. Thereafter, polyimide films were manufactured in the same manner as in Example 1.
  • Example 6 As in Example 1, 2.24161 g (0.007 mol) of 2,2'-TFDB and 0.7449 g (0.003 mol) of 4-DDS were completely dissolved in 27.98796 g of DMAc. To the solution, 3.1097 g (0.007 mol) of 6-FDA and 0.90078 g (0.003 mol) of TDA were sequentially added and the solubion was stirred for 1 hour till the 6-FDA and TDA were completely dissolved. The solid content was thus 20 wt% . The solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of 2000 cps at 23 ° C. Thereafter, polyimide films were manufactured in the same manner as in Example 1.
  • Example 2 As in Example 1, 5.1846 g (0.01 mol) of 4-BDAF was dissolved in 38.5084 g of DMAc, after which 4.4425 g (0.01 mol) of 6-FDA was added thereto. The solution was stirred for 1 hour till the 6-FDA was completely dissolved. The solid content was thus 20 wt%. The solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of 1300 cps at
  • polyimide films were manufactured in the same manner as in Example 1, and the thicknesses thereof were 25 ⁇ m, 50 ⁇ m, and 100 ⁇ m.
  • Example 2 As in Example 1, 2.9233 g (0.01 mol) of APB-133 was dissolved in 29.4632 g of DMAc, after which 4.4425 g (0.01 mol) of 6-FDA was added thereto. The solution was stirred for 1 hour till the 6-FDA was completely dissolved. The solid content was thus 20 wt%. The solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of 1200 cps at 23 ° C.
  • Example 2 As in Example 1, 2.4830 g (0.01 mol) of 3-DDS was dissolved in 27.702 g of DMAc, after which 4.4425 g (0.01 mol) of 6-FDA was added thereto. The solution was stirred for 1 hour till the 6-FDA was completely dissolved. The solid content was thus 20 wt%. The solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of 1300 cps at 23 ° C.
  • Example 4 As in Example 1, 2.4830 g (0.01 mol) of 4-DDS was dissolved in 27.702 g of DMAc, after which 4.4425 g (0.01 mol) of 6-FDA was added thereto. The solution was stirred for 1 hour till the 6-FDA was completely dissoved. The solid content was thus 20 wt%. The solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of 1400 cps at
  • Example 2.0024 g (0.01 mol) of 3,3'-ODA was dissolved in 25.7796 g of DMAc, after which 4.4425 g (0.01 mol) of 6-FDA was added thereto and the resulting solution was stirred for 1 hour till 6-FDA was completely dissoved. The solid content was thus 20 wt% .
  • the solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of 1600 cps at 23 ° C.
  • Example 2.0024 g (0.01 mol) of 4,4'-ODA was dissolved in 16.7344 g of DMAc, after which 2.1812 g (0.01 mol) of PMDA was added thereto and the resulting solution was stirred for 1 hour till the PMDA was completely dissoved. The solid content was thus 20 wt%.
  • the solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of 2500 poises at 23°C. Thereafter, polyimide films were manufactured in the same manner as in Comparative Example 1.
  • Each of the polyimide films was measured for visible light transmittance and 50% cut-off wavelength using a UV spectrophotometer (Varian, CarylOO) .
  • the yellowing index was measured according to ASTM E313.
  • modulus was measured according to JIS K 6301 using a universal testing machine, Model 1000, available from Instron.
  • the glass transition temperature was measured using a differential scanning calorimeter (DSC, TA Instrument, Q200) .
  • DSC differential scanning calorimeter
  • Q200 TA Instrument, Q200
  • CTE Coefficient of Thermal Expansion
  • the CTE was measured at 50 ⁇ 200 ° C according to a TMA method using a TMA (TA Instrument, Q400) .
  • the polyamic acid solution of each of the examples and comparative examples was diluted to have a solution viscosity of 10-50 cps using ⁇ -butyrolactone as a dilution solvent, filtered using filters having sizes of 2 ⁇ m, 0.45 /zm, and 0.2 /im and then an ion filter, applied on a glass substrate (ITO glass) (application conditions: spin coating, 400-4,000 rpm, 10-40 sec).
  • ITO glass application conditions: spin coating, 400-4,000 rpm, 10-40 sec.
  • Each polyamic solution on the glass substrate was thermally cured at 80 ° C for 5 min and then 250 ° C for 20 min, thus realizing polyimidization during the removal of the solvent. Thereby, a thin film (having a thickness of 100 nm) was formed on the glass substrate.
  • the glass substrate 1, 2 thus coated were positioned for use as upper and lower substrate respectively , after which liquid crystal molecules 4 were introduced into the space between the glass substrate 1, 2, thus affording liquid crystal cells including a liquid crystal layer 5 (FIG. 1) .
  • the pretilt angle of each of the liquid crystal cells was measured through a crystal rotation method. The results are shown in Table 5, below. TABLE 1
  • the polyimide films of the present invention had transmittance of 88% or more at 550 nm, 85% or more at 500 nm, and 50% or more at 420 nm in the visible light range, even though they were 50 ⁇ m or 100 ⁇ m thick. Furthermore, the average transmittance thereof was 85% or more at 380-780 nm and 88% or more at 551-780 nm, and the yellow index thereof was consistently low. Thereby, the polyimide film of the present invention was confirmed to be very transparent .
  • the average transmittance of the film was 85% or more in the visible light range of 380 ⁇ 780 nm, regardless of the thickness thereof.
  • a polyimide film having a thickness of 90 ⁇ m or more could not be manufactured.
  • the polyimide films manufactured in the examples of the present invention had a wavelength of 400 nm or less, at which transmittance was 50%, ultimately realizing a colorless transparent polyimide film having superior visible light transmittance.
  • the polyimide film of the present invention can be used as a surface protective film for solar cells.
  • the polyimide film has an average CTE of 50 ppm or less, it can exhibit high dimensional stability, and furthermore, can manifest film properties, necessary for application to a roll-to- roll process, thanks to the modulus of 3.0 GPa or more thereof.
  • the polyimide film of the present invention can be applied to a TFT process for fabricating flexible display substrates and active displays, and also has a dielectric constant of 3.0 or less, thus enabling it to be used as a semiconductor passivation film.
  • the liquid crystal alignment layer manufactured using the polyimide resin of the present invention has a pretilt angle of 2° or less, and thus can be used as an alignment layer for IPS modes .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Disclosed is a polyimide resin, which is colorless and transparent and has superior properties, including mechanical properties and heat stability, and thus is usable in various fields, including semiconductor insulating films, TFT-LCD insulating films, transparent electrode films, passivation films, liquid crystal alignment layers, optical communication materials, protective films for solar cells, and flexible display substrates. Also, a liquid crystal alignment layer and a polyimide film using the polyimide resin are provided.

Description

[DESCRIPTION]
[invention Title]
POLYIMIDE RESIN AND LIQUID CRYSTAL ALIGNMENT LAYER AND POLYIMIDE FILM USING THE SAME
[Technical Field]
The present invention relates to a polyimide resin that is colorless and transparent, and to a liquid crystal alignment layer and a polyimide film using the same.
[Background Art] Generally, polyimide (PI) resin refers to highly heat-resistant resin obtained by ring closure and dehydration of polyamic acid at high temperature, which is obtained by solution polymerization of aromatic dianhydride and aromatic diamine or aromatic diisocyanate. For the preparation of the polyimide resin, the aromatic dianhydride includes, for example, pyromellitic dianhydride (PMDA) or biphenyl tetracarboxylic dianhydride (BPDA) , and the aromatic diamine includes, for example, oxydianiline (ODA) , p-phenylene diamine (p-PDA) , m-phenylene diamine (m- PDA) , methylene dianiline (MDA) , and bisaminophenylhexafluoropropane (HFDA) .
Since polyimide resin, which is insoluble, infusible and super high heat resistant, has superior properties, including heat and oxidation resistance, radiation resistance, cryogenic resistance properties, and chemical resistance, it has been used in various fields, including advanced heat resistant materials, such as automobile materials, aircraft materials, or spacecraft materials, and electronic materials, such as insulation coating agents, insulating films, semiconductors, or electrode protective films of TFT-LCDs . Recently, polyimide resin has been used as display materials, such as optical fibers or liquid crystal alignment layers, and transparent electrode films, which are constructed by mixing conductive fillers with polymers or applying conductive fillers to the surface of polymer films .
Howeve::, a high aromatic ring density and a charge transfer interaction of polyimide resin cause it to be colored brown or yellow, undesirably resulting in low transmittance in the visible light range. Such yellow or brown color of polyimide resin makes it difficult to apply it to the fields requiring transparency. In order to solve such problems, attempts to realize methods of purifying a monomer and a highly pure solvent in order to be polymerized have been made, but the improvement in transmittance was not large .
US Patent No. 5053480 discloses a method of using an alicyclic dianhydride component instead of the aromatic dianhydride. Although this method improves transparency and color in a solution phase or a film phase compared to the purification methods, the improvement in transmittance is limited, and therefore high transmittance is not realized, and also, the thermal and mechanical properties thereof are deteriorated.
In US Patent Nos. 4595548, 4603061, 4645824, 4895972, 5218083, 5093453, 5218077, 5367046, 5338826, 5986036, and 6232428, and Korean Unexamined Patent Publication No. 2003- 0009437, there have been reports related to the preparation of polyimide, having a novel structure, which is improved in terms of transmittance and color transparency within a range in which the thermal properties are not greatly decreased, using aromatic dianhydride and aromatic diamine monomers, having a linker, such as -O-, -SO2-, or CH2-, a bent structure due to connection not at the p-position but at the m-position, or a substituent, such as -CF3. However, such a polyimide can be confirmed to have mechanical properties, a yellow index, and visible light transmittance insufficient for use in semiconductor insulating films, TFT-LCD insulating films, electrode protective films, and flexible display substrates.
[Disclosure] [Technical Problem]
Accordingly, the present invention provides a polyimide resin, which is colorless and transparent and has superior properties, including mechanical properties and heat stability, and also provides a liquid crystal alignment layer and a polyimide film using the same.
[Technical Solution] According to a first embodiment of the present invention, there is provided a polyimide resin, which is prepared from a polymer of aromatic dianhydride and aromatic diamine, the aromatic dianhydride comprising 2,2'- bis (3, 4-dicarboxyphenyl) hexafluoropropane dianhydride (6- FDA) and 4- (2, 5-dioxotet.rahydrofuran-3-yl) -1, 2, 3, 4- tetrahydronaphthalene-1, 2-dicarboxylic anhydride (TDA), and the aromatic diamine comprising one or a mixture of two or more selected from among 2, 2' -bis (trifluoromethyl) -4, 4' - diaminobiphenyl (2,2'-TFDB), 3, 3' -bis (trifluoromethyl) - 4, 4' -diaminobiphenyl (3,3'-TFDB), 4, 4' -bis (3- aminophenoxy) diphenylsulfone (DBSDA), bis (3- aminophenyl) sulfone (3-DDS) , and bis (4-aminophenyl) sulfone (4-DDS) .
In the polyimide resin according to the first embodiment, the aromatic diamine may further comprise one or a mixture of two or more selected from among 2,2'- bis [4 (4-aminophenoxy) phenyl] hexafluoropropane (4-BDAF) , 2,2' -bis [3 (3-aminophenoxy) phenyl 1 hexafluoropropane (3- BDAF), 1,3-bis (3-aminophenoxy) benzene (APB-133), l,3-bis(4- aminophenoxy) benzene (APB-134), l,4-bis(4- aminophenoxy) benzene (APB-144), and 2, 2-bis [4- (4- aminophenoxy) phenyl] propane (6-HMDA) .
In the first embodiment, the 2, 2-bis (3,4- dicarboxyphenyl) hexafluoropropane dianhydride (β-FDA) may be used in an amount of 1-99 mol%, based on the total amount of the aromatic dianhydride.
In the polyimide resin according to the first embodiment, the one or mixture of two or more selected from among 2,2' -bis (trifluoromethyl) -4, 4' -diaminobiphenyl (2,2'- TFDB), 3, 3' -bis (trifluoromethyl) -4, 4' -diaminobiphenyl
(3,3'-TFDB) , 4, 4' -bis (3-aminophenoxy) diphenylsulfone
(DBSDA), bis (3-aminophenyl)sulfone (3-DDS) , and bis (4- aminophenyl) sulfone (4-DDS) may be used in an amount of
10-90 mol%, based on the total amount of the diamine. According to a second embodiment of the present invention, a liquid crystal alignment layer comprising the polyimide resin mentioned above ±s provided.
The liquid crystal alignment layer according to the second embodiment may have a pretilt angle of 0-2°. According to a third embodiment of the present invention, a polyimide film comprising the polyimide resin mentioned above is provided.
The polyimide film according to the third embodiment may have average transmittance of 85% or more at 380~780 nm and average transmittance of 88% or more at 551-780 nm, according to measurement of transmittance using a UV spectrophotometer, based on a film thickness of 50-100 μm.
The polyimide film according to the third embodiment may have transmittance of 88% or more at 550 nm, transmittance of 85% or more at 500 nm, and transmittance of 50% or more at 420 nm, according to the measurement of transmittance using a UV spectrophotometer, based on the film thickness of 50-100 μm.
The polyimide film according to the third embodiment may have a yellow index of 15 or less based on the film thickness of 50-100 μm.
The polyimide film according to the third embodiment may have a dielectric constant of 3.0 or less at 1 GHz based on the film thickness of 50-100 μm.
The polyimide film according to the third embodiment may have an average coefficient of thermal expansion of 50 ppm or less at 50-200 °C, based on the film thickness of 50-100 μm.
The polyimide film according to the third embodiment may have a modulus of 3.0 GPa or more, based on the film thickness of 50-100 μm-
The polyimide film according to the third embodiment may have a 50% UV cut-off wavelength of 400 nm or less, based on the film thickness of 50-100 μm.
[Advantageous Effects] The present invention can provide a polyimide resin that is colorless and transparent and has superior properties, including mechanical properties and heat stability, and that can thus be used in various fields, including semiconductor insulating films, TFT-LCD insulating films, passivation films, liquid crystal alignment layers, optical communication materials, protective films for solar cells, and flexible display substrates, and also provide a liquid crystal alignment layer and a polyimide film using the same.
[Description of Drawing]
FIG. 1 illustrates a liquid crystal alignment layer manufactured using the polyimide resin of the present invention.
* Description of the Reference Numerals in the Drawing * 1, 2: cflass substrate 3: alignment layer 4 : liquid crystal molecules 5: liquid crystal layer α: pretilt angle
[Best Mode]
Hereincifter, a detailed description of the present invention will be given.
The present invention is directed to a polyimide resin, which is composed of a copolymer of diamine and dianhydride, and a liquid crystal alignment layer and a polyimide film using the same, and, in particular, to a colorless transparent polyimide resin and a liquid crystal alignment layer and a polyimide film using the same.
To this end, the aromatic dianhydride used in the present invention essentially includes 2,2-bis(3,4- dicarboxyphenyl) hexafluoropropane dianhydride (6-FDA) and 4- (2, 5-dioxotetrahydrofuran-3-yl) -1, 2, 3, 4- tetrahydronaphthalene-1, 2-dicarboxylic anhydride (TDA).
The FDA is used in an amount of 1~99 mol%, and preferably 10-90 mol%, based on the total amount of the dianhydride.
Thereby, it is possible to prepare polyamic acid that is transparent and has high visible light transmittance, a low UV absorption and yellow index, and a high viscosity.
The aromatic diamine used in the present invention essentially includes one or a mixture of two or more selected from among 2, 2' -bis (trifluoromethyl) -4, 4' - diaminobiphenyl (2,2'-TFDB), 3, 3' -bis (trifluoromethyl) -
4,4'-diaminobiphenyl (3,3'-TFDB), 4, 4' -bis (3- aminophenoxy) diphenylsulfone (DBSDA), bis (3- aminophenyl) sulfone (3-DDS) , and bis (4-aminophenyl) sulfone
(4-DDS) .
In addition, the aromatic diamine may further include one or a mixture of two or more: selected from among 2,2'- bis [4 (4-aminophenoxy) phenyl] hexaEluoropropane (4-BDAF) , 2, 2' -bis [3 (3-aminophenoxy) phenyl] hexafluoropropane (3-
BDAF), 1,3-bi s (3-aminophenoxy) benzene (APB-133) , l,3-bis(4- aminophenoxy) benzene (APB-134), l,4-bis(4- aminophenoxy) benzene (APB-144), and 2, 2-bis [4- (4- aminophenoxy) phenyl] propane (6-HMDA) .
As such, the one or mixture of two or more selected from among 2, 2' -bis (trifluoromethyl) -4, 4' -diaminobiphenyl
(2,2'-TFDB) , 3, 3' -bis (trifluoromethyl) -4, 4' -diaminobiphenyl
(3,3' -TFDB) , 4, 4' -bis (3-aminophenoxy) diphenylsulfone
(DBSDA), bis (3-aminophenyl)sulfone (3-DDS) , and bis (4- aminophenyl) sulfone (4-DDS) may be used in an amount of 10-90 mol%, and preferably 20-80 mol%, based on the total amount of the diamine. Thereby, high transmittance and transparency can be realized, and electrical properties, and thermal properties, and mechanical properties can be improved. The dianhydride and the diamine are dissolved in equivalent molar amounts in an organic solvent and are then reacted, thus preparing a polyamic acid solution.
The reaction conditions are not particularly limited, but include a reaction temperature of -20~80°C and a reaction time of 2~48 hours. Furthermore, the reaction is preferably conducted in an inert atmosphere of argon or nitrogen.
The organic solvent that is used for the solution polymerization of the monomers is not particularly limited, as long as polyamic acid can be dissolved therein. As known reaction solvents, useful are one or more polar solvents selected from among m-cresol, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF) , dimethylacetamide (DMAc) , dimethylsulfoxide (DMSO), acetone, and diethylacetate. In addition, a low-boiling-point solvent, such as tetrahydrofuran (THF) or chloroform, or a low-absorbing- solvent, such as γ-butyrolactone, may be used.
The amount of the organic solvent is not particularly limited, but is preferably 50-95 wt%, and more preferably 70-90 wt%, based on the total amount of the polyamic acid solution, in order to realize appropriate molecular weight and viscosity of a polyamic acid solution.
The polyamic acid solution thus obtained is imidized to thus prepare a polyimide resin having a glass transition temperature of 200-350TC. In order to form a liquid crystal alignment layer using the poLyamic acid prepared from the above monomers, the polyamic acid is subjected to spin coating or roll coating on a glass substrate (e.g., ITO glass), and then to thermal curing at 80°C for 5min and 250°C for 20 min, thus realizing polyimidization during the removal of the solvent. Thereby, a thin film (having a thickness of about 10-1000 run) is formed on the glass substrate. For improvement of coating ability or surface flatness and application to a process, the polyamic acid solution is used in a state of being diluted to have an appropriate coating solution viscosity of 10-50 cps. The solvent used for dilution is not limited to the solvent for polymerization. The known dilution solvent is exemplified by polar solvents, such as N-methyl-2-pyrrolidone (NMP) , dimethylformamide (DMF) , dimethylacetamide (DMAc) , γ- butyrolactone, and 2-n-butoxyethanol, which may be used alone or in mixtures thereof.
Useful for the formation of the liquid crystal alignment layer, a coating solution of the polyamic acid prepared from the above monomers may be prepared through one or more processes selected from among the coating solution preparation processes below:
1. A process of using a polyamic acid solution,
2. A process of subjecting a polyamic acid polymer to thermal curing and/or chemical curing for polyimidization, to precipitation for formation of a resin, and then to dissolution in an organic solvent, thus preparing a solution as a coating solution,
3. A process of subjecting a polyamic acid polymer to thermal curing and/or chemical curing for polyimidization as in 2 (without the formation of a resin) , thus preparing a coating solution,
4. A process of mixing the solutions of 1 and 2 or 3, thus preparing a coating solution, and
5. A process of adding (dissolving) the resin of 2 to the polyamic acid solution of "L, thus preparing a coating solution. The coating solutions prepared through the above processes may be subjected to two or more steps of filtration using filters having a pore size selected within the range of 0.1-5 μm and an ion filter just before the coating process.
In the case where the polyimide resin of the present invention is used to form the liquid crystal alignment layer, a stable pretilt angle is realized. The term "pretilt angle" indicates an angle by which liquid crystals are previously tilted in order to increase a speed of response to voltage, when voltage is applied to liquid crystals to arrange the liquid crystals in a predetermined orientation. The liquid crystal alignment layer including the polyimide resin of the present invention shows a stable pretilt angle of 0-2°, and may thus be applied to an alignment layer for IPS (En-Plane Switching) modes requiring a pretilt angle of less than 2°.
In addition, when a polyimide film is manufactured using the polyamic acid solution, a filler may be added to the polyamic acid solution so as to improve various properties of the polyimide film, including sliding properties, heat conductivity, electrical conductivity, and corona resistance. The filler is not particularly limited, but specific examples thereof include silica, titanium oxide, layered silica, carbon nanotubes, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, and mica.
The particle size of the filler may vary depending on the properties of the film to be modified and the type of filler to be added, and is not particularly limited. The average particle size thereof is preferably set within 0.001-50 jMii, more preferably 0.005-25 μm, and still more preferably 0.01-10 μm. In this case, the polyimide film may be easily and effectively modified and may also exhibit good surfaces properties, electrical conductivity, and mechanical properties .
The amount of the filler may vary depending on the properties of the film to be modified and the particle size of the filler, and is not particularly limited. The filler is added in an amount of 0.001-20 parts by weight, and preferably 0., 01-10 parts by weight, based on 100 parts by weight of the polyamic acid solution.
The method of adding the filler is not particularly limited, but includes, for instance, adding the filler to the polyamic acid solution before or after polymerization, kneading the filler using a 3 roll mill after completion of the polymerization of polyamic acid, or mixing a dispersion solution containing the filler with the polyamic acid solution.
The method of manufacturing the polyimide film from the polyamic acid solution thus obtained is not particularly limited, and any conventionally known methods may be used. The imidization of the polyamic acid solution includes, for example, thermal imidization and chemical imidization. Particularly useful is chemical imidization. Chemical imidization is conducted by adding a dehydrating agent, including acid anhydride, such as acetic anhydride, and an imidization catalyst, including tertiary amine, such as isoquinoline, β-picoline, or pyridine, to the polyamic acid solution. The chemical imidization may be conducted along with the thermal imidization, and heating conditions may vary depending on the type of polyamic acid solution and the thickness of the film.
The polyimide film is obtained by heating the polyamic acid solution on a substrate at 80~200°C, and preferably 100~180°C to activate the dehydrating agent and the imidization catalyst, performing partial curing and drying to obtain a polyamic acid film in a gel state, separating the polyamic acid film from the substrate, and heating the film in a gel state at 200~400°C for 5-400 sec.
The thickness of the polyimide film thus obtained is not particularly limited, but is preferably set within 10-250 μm, and more preferably 25-150 IM, in consideration of the application field thereof.
The polyimide film manufactured in the present invention has transmittance of 88% or more at 550 nm, 85% or more at 500 nm, and 50% or more at 420 nm, according to measurement of transmittance using a UV spectrophotometer, based on a film thickness of 50-100 μm. Further, the average transmittance thereof is 85% or more at 380-780 run, and is 88% or more at 551-780 nm.
The polyimide film has a yellowing index of 15 or less based on the film thickness of 50-100 μm.
The polyimide film of the present invention, satisfying the aforementioned transmittance and yellowing index, may be used in fields requiring transparency, in which it is difficult to apply a conventional polyimide film due to the yellow color thereof, including protective films, or diffusion sheets and coating films of TFT-LCDs, for example, interlayers, gate insulators, and liquid crystal alignment layers of TFT-LCDs. When the transparent polyimide is applied to the liquid crystal alignment layer, it contributes to an increase in porosity, thus enabling the fabrication of a TFT-LCD having a high contrast ratio, and may also be used for flexible display substrates.
The polyimide film of the present invention has a dielectric constant of 3.0 or less at 1 GHz, and may thus be used as a semiconductor passivation film.
The polyimide film of the present invention has an average coefficient of thermal expansion (average CTE) of
50 ppm or less at 50-200°C. In the case where the average
CTE exceeds 50 ppm, the polyimide film may shrink or expand, depending on the variation in process temperatures, when applied to a TFT array process for placing a TFT on the film, resulting in unrealized alignment in an electrode doping process. Further, the film does not remain flat, and thus may warp. Hence, as the CTE is decreased, the TFT process may be more accurately conducted. The polyimide film of the present invention has a modulus of 3.0 GPa or more. In this case, the polyimide film may be more easily applied to a roll-to-roll process for a flexible display substrate. When the polyimide film is used as a substrate film for flexible displays and FCCLs, a roll-to-roll process is conducted. At this time, because the film is subjected to tension when it is wound on and released from the rolls, a film having a modulus of less than 3.0 GPa may break down.
The polyimide film of the present invention has a 50% cut-off wavelength of 400 nm or less according to the measurement of transmittance using a UV spectrophotometer. Therefore, the polyimide film of the present invention may be used as a surface protective film for solar cells.
[Mode for Invention] A better understanding of the present invention may be obtained through the following examples which are set forth to illustrate, but are not to be construed as the limit of the present invention.
<Example 1> While nitrogen was passed through a 100 ml three-neck round bottom flask reactor equipped with a stirrer, a nitrogen inlet, a dropping funnel, a temperature controller and a condenser, 33.5386 g of N,N-dimethylacetamide (DMAc) was loaded thereto, and the temperature of the reactor was decreased to 0°C. 3.62922 g (0.007 mol) of 4-BDAF and 0.7449 g (0.003 mol) of 3-DDS was dissolved therein. This solution was maintained at 0°C. To the solution, 3.1097 g (0.007 mol) of β-FDA and 0.90078 g (0..003 mol) of TDA were added and the mixture was stirred for 1 hour till the 6-FDA and TDA were completely dissolved. The solid content was 20 wt%. The resulting solution was stirred at room temperature for 8 hours, thus producing a polyamic acid solution with a viscosity of 2200 cps at 23°C.
Thereafter, the polyamic acid solution was spread 500~1000 (M thick on a glass substrate using a doctor blade, and was then dried in a vacuum oven at 40°C for 1 hour and at 60°C for 2 hours, thus affording a self-supporting film. The film was then cured in a high-temperature oven at 80 °C for 3 hours, 100°C for 1 hour, 200°C for 1 hour, and 300°C for 30 min at a heating rate of 5°C/min, thereby affording polyimide films having a thickness of 50 μm and 100 μxa.
<ExampLe 2>
As in Example 1, 3.62922 g (0.007 mol) of 4-BDAF was dissolved in 33.5386 g of DMAc, and 0.7449 g (0.003 mol) of
4-DDS was added thereto and completely dissolved. To the solution 3.1097 g (0.007 mol) o£ 6-FDA and 0.90078 g (0.003 mol) of TDA were sequentially added and the solution was stirred for 1 hour till the 6-FDA and TDA were completely dissolved. The solid content of the solution was 20 wt%. The solution was then stirred at room temperature for 8 hours, thus affording a polyamLc acid solution having a viscosity of 2100 cps at 23°C.
Thereafter, polyimide films were manufactured in the same manner as in Example 1.
<ExampLe 3>
As in Example 1, 2.04631 g (0.007 mol) of APB-133 and
0.7449 g (0.003 mol) of 3-DDS were completely dissolved in
27.20696 g of DMAc. To the solution 3.10975 g (0.007 mol) of 6-FDA and 0.90078 g (0.003 mol) of TDA were sequentially added and the resulting solution was stirred for 1 hour till the 6-FDA and TDA were completely dissolved. The solid content of the solution was thus 20 wt%. The solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of
1900 cps at 23°C.
Thereafter, polyimide films were manufactured in the same manner as in Example 1.
<Example 4>
As in Example 1, 2.04631 g (0.007 mol) of APB-133 and 0.7449 g (0.003 mol) of 4-DDS were completely dissolved in 27.20696 g of DMAc. To the solution, 3.10975 g (0.007 mol) of β-FDA and 0.90078 g (0.003 mol) of TDA were sequentially added and the mixture was stirred for 1 hour till the 6-FDA and TDA were completely dissolved. The solid content of the resulting solution was thus 20 wt%. The solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of 1950 cps at 23°C. Thereafter, polyimide films were manufactured in the same manner as in Example 1.
<Example 5>
As in Example 1, 2.24161 g (0.007 mol) of 2,2'-TFDB and 0.7449 g (0.003 mol) of 3-DDS were dissolved in
27.98796 g of DMAc. To the mixture, 3.1097 g (0.007 mol) of
6-FDA and 0.90078 g (0.003 mol) of TDA were sequentially added and then the solution was stirred for 1 hour till the
6-FDA and TDA were completely dissolved. The solid content was thus 20 wt%. The solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of 2000 cps at 23°C.
Thereafter, polyimide films were manufactured in the same manner as in Example 1.
<Example 6> As in Example 1, 2.24161 g (0.007 mol) of 2,2'-TFDB and 0.7449 g (0.003 mol) of 4-DDS were completely dissolved in 27.98796 g of DMAc. To the solution, 3.1097 g (0.007 mol) of 6-FDA and 0.90078 g (0.003 mol) of TDA were sequentially added and the solubion was stirred for 1 hour till the 6-FDA and TDA were completely dissolved. The solid content was thus 20 wt% . The solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of 2000 cps at 23°C. Thereafter, polyimide films were manufactured in the same manner as in Example 1.
<Comparative Example 1>
As in Example 1, 5.1846 g (0.01 mol) of 4-BDAF was dissolved in 38.5084 g of DMAc, after which 4.4425 g (0.01 mol) of 6-FDA was added thereto. The solution was stirred for 1 hour till the 6-FDA was completely dissolved. The solid content was thus 20 wt%. The solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of 1300 cps at
23°C.
Thereafter, polyimide films were manufactured in the same manner as in Example 1, and the thicknesses thereof were 25 μm, 50 μm, and 100 μm.
<Comparative Example 2> As in Example 1, 2.9233 g (0.01 mol) of APB-133 was dissolved in 29.4632 g of DMAc, after which 4.4425 g (0.01 mol) of 6-FDA was added thereto. The solution was stirred for 1 hour till the 6-FDA was completely dissolved. The solid content was thus 20 wt%. The solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of 1200 cps at 23°C.
Thereafter, polyimide films were manufactured in the same manner as in Comparative Example 1.
<Comparative Example 3>
As in Example 1, 2.4830 g (0.01 mol) of 3-DDS was dissolved in 27.702 g of DMAc, after which 4.4425 g (0.01 mol) of 6-FDA was added thereto. The solution was stirred for 1 hour till the 6-FDA was completely dissolved. The solid content was thus 20 wt%. The solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of 1300 cps at 23°C.
Thereafter, polyimide films were manufactured in the same manner as in Comparative Example 1.
<Comparative Example 4> As in Example 1, 2.4830 g (0.01 mol) of 4-DDS was dissolved in 27.702 g of DMAc, after which 4.4425 g (0.01 mol) of 6-FDA was added thereto. The solution was stirred for 1 hour till the 6-FDA was completely dissoved. The solid content was thus 20 wt%. The solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of 1400 cps at
23°C.
Thereafter, polyimide films were manufactured in the same manner as in Comparative Example 1.
<Comparative Example 5>
As in Example 1, 2.0024 g (0.01 mol) of 3,3'-ODA was dissolved in 25.7796 g of DMAc, after which 4.4425 g (0.01 mol) of 6-FDA was added thereto and the resulting solution was stirred for 1 hour till 6-FDA was completely dissoved. The solid content was thus 20 wt% . The solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of 1600 cps at 23°C.
Thereafter, polyimide films were manufactured in the same manner as in Comparative Example 1.
<Compai:ative Example 6>
As in Example 1, 2.0024 g (0.01 mol) of 4,4'-ODA was dissolved in 16.7344 g of DMAc, after which 2.1812 g (0.01 mol) of PMDA was added thereto and the resulting solution was stirred for 1 hour till the PMDA was completely dissoved. The solid content was thus 20 wt%. The solution was then stirred at room temperature for 8 hours, thus affording a polyamic acid solution having a viscosity of 2500 poises at 23°C. Thereafter, polyimide films were manufactured in the same manner as in Comparative Example 1.
The properties of the polyimide films manufactured in the above examples and comparative examples were measured as follows. The results are summarized in Tables 1 to 5 below.
(1) Transmittance and 50% Cut-Off Wavelength
Each of the polyimide films was measured for visible light transmittance and 50% cut-off wavelength using a UV spectrophotometer (Varian, CarylOO) .
(2) Yellowing Index
The yellowing index was measured according to ASTM E313.
(3) Modulus The modulus was measured according to JIS K 6301 using a universal testing machine, Model 1000, available from Instron.
(4) Glass Transition Temperature (Tg)
The glass transition temperature was measured using a differential scanning calorimeter (DSC, TA Instrument, Q200) . (5) Coefficient of Thermal Expansion (CTE)
The CTE was measured at 50~200°C according to a TMA method using a TMA (TA Instrument, Q400) .
(6) Dielectric Constant The dielectric constant was measured according to ASTM Dl50.
(7) Pretilt Angle
The polyamic acid solution of each of the examples and comparative examples was diluted to have a solution viscosity of 10-50 cps using γ-butyrolactone as a dilution solvent, filtered using filters having sizes of 2 μm, 0.45 /zm, and 0.2 /im and then an ion filter, applied on a glass substrate (ITO glass) (application conditions: spin coating, 400-4,000 rpm, 10-40 sec). Each polyamic solution on the glass substrate was thermally cured at 80°C for 5 min and then 250°C for 20 min, thus realizing polyimidization during the removal of the solvent. Thereby, a thin film (having a thickness of 100 nm) was formed on the glass substrate. The glass substrate 1, 2 thus coated were positioned for use as upper and lower substrate respectively , after which liquid crystal molecules 4 were introduced into the space between the glass substrate 1, 2, thus affording liquid crystal cells including a liquid crystal layer 5 (FIG. 1) . The pretilt angle of each of the liquid crystal cells was measured through a crystal rotation method. The results are shown in Table 5, below. TABLE 1
Figure imgf000026_0001
TABLE 2
Figure imgf000026_0002
Figure imgf000026_0003
Figure imgf000027_0001
Figure imgf000027_0002
TABLE 3
Molar Thick
Composition Ratio (IM)
6-FDA/4-BDAF 10:10 25
6-FDA/APB-133 10:10 25
6-FDA/3-DDS 10:10 25
.Ex
6-FDA/4-DDS 10:10 25
6-FDA/3,3'-ODA 10:10 25
PMDA/ODA 10:10 25
6-FDA/4-BDAF 10:10 50 ϊ-FDA/APB-133 10:10 50
6-FDA/3-DDS 10:10 50
.Ex
6-FDA/4-DDS 10:10 50
6-FDA/3,3'-ODA 10:10 50
PMDA/ODA 10:10 50
6-FDA/4-BDAF 10:10 "lob
6-FDA/APB-133 10:10 100
6-FDA/3-DDS 10:10 100
.Ex i-FDA/4-DDS 10:10 100
6-FDA/3,3'-ODA 10:10 100
PMDA/ODA 10:10 100
Figure imgf000027_0003
TABLE 4
Figure imgf000027_0004
Figure imgf000027_0005
Figure imgf000028_0002
Figure imgf000028_0003
TABLE 5
Figure imgf000028_0001
As is apparent from the results of measurement of the properties, including the transmittance and yellowing index, the polyimide films of the present invention had transmittance of 88% or more at 550 nm, 85% or more at 500 nm, and 50% or more at 420 nm in the visible light range, even though they were 50 μm or 100 μm thick. Furthermore, the average transmittance thereof was 85% or more at 380-780 nm and 88% or more at 551-780 nm, and the yellow index thereof was consistently low. Thereby, the polyimide film of the present invention was confirmed to be very transparent .
In the comparative exampLes, there was no case in which the average transmittance of the film was 85% or more in the visible light range of 380~780 nm, regardless of the thickness thereof. In addition, in Comparative Example 6, a polyimide film having a thickness of 90 μm or more could not be manufactured. The polyimide films manufactured in the examples of the present invention had a wavelength of 400 nm or less, at which transmittance was 50%, ultimately realizing a colorless transparent polyimide film having superior visible light transmittance. Thus, the polyimide film of the present invention can be used as a surface protective film for solar cells. In addition, because the polyimide film has an average CTE of 50 ppm or less, it can exhibit high dimensional stability, and furthermore, can manifest film properties, necessary for application to a roll-to- roll process, thanks to the modulus of 3.0 GPa or more thereof. Moreover, the polyimide film of the present invention can be applied to a TFT process for fabricating flexible display substrates and active displays, and also has a dielectric constant of 3.0 or less, thus enabling it to be used as a semiconductor passivation film.
The liquid crystal alignment layer manufactured using the polyimide resin of the present invention has a pretilt angle of 2° or less, and thus can be used as an alignment layer for IPS modes .

Claims

[CLAIMS] [Claim l]
A polyimide resin, which is prepared from a polymer of aromatic dianhydride and aromatic diamine, the aromatic dianhydride comprising 2,2' -bis (3, 4- dicarboxyphenyl) hexafluoropropane dianhydride (6-FDA) and
4- (2, 5-dioxotetrahydrofuran-3-yl) --1, 2,3,4- tetrahydronaphthalene-1, 2-dicarboxylic anhydride (TDA), and the aromatic diamine comprising one or a mixture of two or more selected from among 2, 2' -bis (trifluoromethyl) -4, 4' - diaminobiphenyl (2, 2' -TFDB) , 3, 3' -bis (trifluoromethyl) -
4,4'-diaminobiphenyl (3,3'-TFDB), 4, 4' -bis (3- aminophenoxy) diphenylsulfone (DBSDA), bis (3- aminophenyl) sulfone (3-DDS) , and bis (4-aminophenyl) sulfone (4-DDS) .
[Claim 2]
The polyimide resin according to claim 1, wherein the aromatic diamine further comprises one or a mixture of two or more selected from among 2, 2' -bis [4 (4- aminophenoxy) phenyl] hexafluoropropane (4-BDAF) , 2,2'- bis [3 (3-aminophenoxy) phenyl] hexafluoropropane (3-BDAF) , 1,3-bis (3-aminophenoxy) benzene (APB-133) , l,3-bis(4- aminophenoxy) benzene (APB-134), l,4-bis(4- aminophenoxy) benzene (APB-144), and 2, 2-bis [4- (4- aminophenoxy) phenyl] propane (6-HMDA) . [Claim 3]
The polyimide resin according to claim 1, wherein the 2,2-bis (3, 4-dicarboxyphenyl)hexaEluoropropane dianhydride (6-FDA) is used in an amount of 1-99 mol%, based on a total amount of the aromatic dianhydride.
[Claim 4]
The polyimide resin according to claim 2, wherein the one or mixture of two or more selected from among 2,2'- bis (trifluoromethyl) -4, 4' -diaminobiphenyl (2,2' -TFDB) , 3, 3' -bis (trifluoromethyl) -4, 4' -diaminobiphenyl (3,3'-TFDB), 4, 4' -bis (3-aminophenoxy)diphenylsulfone (DBSDA), bis (3- aminophenyl) sulfone (3-DDS) , and bis (4-aminophenyl) sulfone (4-DDS) is used in an amount of 10-90 mol%, based on a total amount of the diamine.
[Claim 5]
A liquid crystal alignment layer, comprising the polyimide resin of any one of cl aims 1 to 4.
[Claim 6]
The liquid crystal alignment layer according to claim 5, which has a pretilt angle of 0-2°.
[Claim 7] A polyimide film, comprising the polyimide resin of any one of claims 1 to 4.
[Claim 8]
The polyimide film according to claim 7, which has average transmittance of 85% or more at 380~780 ran and average transmittance of 88% or more at 551-780 nm, according to measurement of transmittance using a UV spectrophotometer, based on a film thickness of 50-100 fM.
[Claim 9] The polyimide film according to claim 7, which has transmittance of 88% or more at 550 nm, transmittance of 85% or more at 500 nm, and transmittance of 50% or more at 420 nm, according to measurement of transmittance using a UV spectrophotometer, based on a film thickness of 50~100 m.
[Claim 10]
The polyimide film according to claim 7, which has a yellowing index of 15 or less based on a film thickness of 50-100 μm.
[Claim ll]
The polyimide film according to claim 7, which has a dielectric constant of 3.0 or less at 1 GHz based on a film thickness of 50-100 μm.
[Claim 12]
The polyimide film according to claim 7, which has an average coefficient of thermal expansion of 50 ppm or less at 50~200°C based on a film thickness of 50-100 μm.
[Claim 13]
The poiyimide film accord3.ng to claim 7, which has a modulus of 3.0 GPa or more based on a film thickness of 50-100 μm.
[Claim 14]
The polyimide film according to claim 7, which has a 50% cut-off wavelength of 400 nm or less, according to measurement of transmittance using a UV spectrophotometer, based on the film thickness of 50-100 μxa.
PCT/KR2007/006512 2006-12-15 2007-12-13 Polyimide resin and liquid crystal alignment layer and polyimide film using the same WO2008072914A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/518,258 US20100048861A1 (en) 2006-12-15 2007-12-13 Polyimide resin and liquid crystal alignment layer and polyimide film using the same
JP2009541229A JP4891411B2 (en) 2006-12-15 2007-12-13 Polyimide resin, liquid crystal alignment film and polyimide film using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2006-0129009 2006-12-15
KR1020060129009A KR101167341B1 (en) 2006-12-15 2006-12-15 Colorless polyimide resin, and liquid crystal alignment layer and polyimide film using the same
KR10-2006-0129005 2006-12-15
KR10-2006-0128978 2006-12-15
KR1020060129005A KR101142692B1 (en) 2006-12-15 2006-12-15 Colorless polyimide resin, and liquid crystal alignment layer and polyimide film using the same
KR1020060128978A KR101167337B1 (en) 2006-12-15 2006-12-15 Colorless polyimide resin, and liquid crystal alignment layer and polyimide film using the same

Publications (1)

Publication Number Publication Date
WO2008072914A1 true WO2008072914A1 (en) 2008-06-19

Family

ID=39511883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2007/006512 WO2008072914A1 (en) 2006-12-15 2007-12-13 Polyimide resin and liquid crystal alignment layer and polyimide film using the same

Country Status (3)

Country Link
JP (1) JP4891411B2 (en)
TW (1) TWI376392B (en)
WO (1) WO2008072914A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102886A (en) * 2008-10-22 2010-05-06 Tokyo Kogei Univ Image display, and flexible transparent organic electroluminescence element
JP2010100698A (en) * 2008-10-22 2010-05-06 Nissan Chem Ind Ltd Polyamic acid and polyimide film
JP2010209334A (en) * 2009-03-10 2010-09-24 Lg Chem Ltd Polyimide polymer, its copolymer, and positive photosensitive resin composition containing the same
JP2012503299A (en) * 2008-09-23 2012-02-02 コーロン インダストリーズ インク Transparent electrode
JP2012503701A (en) * 2008-09-26 2012-02-09 コーロン インダストリーズ インク Polyimide film
CN111212868A (en) * 2017-10-11 2020-05-29 株式会社钟化 Polyimide resin and method for producing same, polyimide solution, and polyimide film and method for producing same
US10858482B2 (en) 2015-02-12 2020-12-08 Samsung Electronics Co., Ltd. Composition of preparing poly(imide-benzoxazole) copolymer, poly(imide-benzoxazole) copolymer, article containing poly(imide-benzoxazole) copolymer, and display device including same
CN112062961A (en) * 2020-09-21 2020-12-11 华东理工大学 Preparation method of colorless transparent polyimide liquid crystal alignment film

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015110684A (en) * 2012-03-22 2015-06-18 日産化学工業株式会社 Polyamic acid and polyimide
KR102059703B1 (en) 2012-04-27 2019-12-26 우베 고산 가부시키가이샤 Polyamic acid solution composition and polyimide
JP6622287B2 (en) 2015-03-31 2019-12-18 旭化成株式会社 Polyimide film, polyimide varnish, product using polyimide film, and laminate
KR102097431B1 (en) * 2019-05-13 2020-04-07 에스케이씨코오롱피아이 주식회사 Polyimide and method for preparing the same
KR102224506B1 (en) * 2019-07-05 2021-03-09 피아이첨단소재 주식회사 Polyamic acid composition, method for preparing polyamic acid composition and polyimide comprising the same
KR102224503B1 (en) * 2019-07-05 2021-03-09 피아이첨단소재 주식회사 Polyamic acid composition, method for preparing polyamic acid composition, polyimide comprising the same and coating material comprising the same
KR102224505B1 (en) * 2019-07-05 2021-03-09 피아이첨단소재 주식회사 Polyamic acid composition, method for preparing polyamic acid composition, polyimide comprising the same and coating material comprising the same
KR102224504B1 (en) * 2019-07-05 2021-03-09 피아이첨단소재 주식회사 Polyamic acid composition, method for preparing polyamic acid composition and polyimide comprising the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000020048A (en) * 1998-09-17 2000-04-15 김덕중 Organic electricity luminescence device having enhanced luminescent efficiency
JP2001296525A (en) * 2000-04-12 2001-10-26 Jsr Corp Liquid crystal aligning agent and liquid crystal display device
WO2003022955A1 (en) * 2001-09-11 2003-03-20 Nessdisplay Co., Ltd. Organic electroluminescent device having a polyimide hole transport layer
JP2003107486A (en) * 2001-09-28 2003-04-09 Jsr Corp Liquid crystal aligning agent for transverse electric field system liquid crystal display element and transverse electric field system liquid crystal display element
JP2004093807A (en) * 2002-08-30 2004-03-25 Canon Inc Electrophotographic sensitive body, process cartridge and electrophotographic apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3612751B2 (en) * 1994-10-13 2005-01-19 Jsr株式会社 Liquid crystal alignment agent
JPH08120075A (en) * 1994-10-21 1996-05-14 Sumitomo Chem Co Ltd Production of copolyimide
JP2001064388A (en) * 1999-08-30 2001-03-13 Nissan Chem Ind Ltd Polyimide, polyimide solution and method for forming polyimide film
JP3736494B2 (en) * 2002-04-30 2006-01-18 Jsr株式会社 Polyamic acid and polyimide
KR101167483B1 (en) * 2006-12-15 2012-07-27 코오롱인더스트리 주식회사 Colorless polyimide resin, and liquid crystal alignment layer and polyimide film using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000020048A (en) * 1998-09-17 2000-04-15 김덕중 Organic electricity luminescence device having enhanced luminescent efficiency
JP2001296525A (en) * 2000-04-12 2001-10-26 Jsr Corp Liquid crystal aligning agent and liquid crystal display device
WO2003022955A1 (en) * 2001-09-11 2003-03-20 Nessdisplay Co., Ltd. Organic electroluminescent device having a polyimide hole transport layer
JP2003107486A (en) * 2001-09-28 2003-04-09 Jsr Corp Liquid crystal aligning agent for transverse electric field system liquid crystal display element and transverse electric field system liquid crystal display element
JP2004093807A (en) * 2002-08-30 2004-03-25 Canon Inc Electrophotographic sensitive body, process cartridge and electrophotographic apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503299A (en) * 2008-09-23 2012-02-02 コーロン インダストリーズ インク Transparent electrode
TWI493571B (en) * 2008-09-23 2015-07-21 Kolon Inc Transparent electrode
JP2012503701A (en) * 2008-09-26 2012-02-09 コーロン インダストリーズ インク Polyimide film
JP2010102886A (en) * 2008-10-22 2010-05-06 Tokyo Kogei Univ Image display, and flexible transparent organic electroluminescence element
JP2010100698A (en) * 2008-10-22 2010-05-06 Nissan Chem Ind Ltd Polyamic acid and polyimide film
JP2010209334A (en) * 2009-03-10 2010-09-24 Lg Chem Ltd Polyimide polymer, its copolymer, and positive photosensitive resin composition containing the same
US8669038B2 (en) 2009-03-10 2014-03-11 Lg Chem, Ltd. Polyimide-based polymers, copolymers thereof and positive type photoresist compositions comprising the same
US10858482B2 (en) 2015-02-12 2020-12-08 Samsung Electronics Co., Ltd. Composition of preparing poly(imide-benzoxazole) copolymer, poly(imide-benzoxazole) copolymer, article containing poly(imide-benzoxazole) copolymer, and display device including same
CN111212868A (en) * 2017-10-11 2020-05-29 株式会社钟化 Polyimide resin and method for producing same, polyimide solution, and polyimide film and method for producing same
CN111212868B (en) * 2017-10-11 2022-09-16 株式会社钟化 Polyimide resin and method for producing same, polyimide solution, and polyimide film and method for producing same
CN112062961A (en) * 2020-09-21 2020-12-11 华东理工大学 Preparation method of colorless transparent polyimide liquid crystal alignment film
CN112062961B (en) * 2020-09-21 2021-12-14 华东理工大学 Preparation method of colorless transparent polyimide liquid crystal alignment film

Also Published As

Publication number Publication date
TWI376392B (en) 2012-11-11
TW200842143A (en) 2008-11-01
JP4891411B2 (en) 2012-03-07
JP2010513591A (en) 2010-04-30

Similar Documents

Publication Publication Date Title
US7968670B2 (en) Polyimide resin and liquid crystal alignment layer and polyimide film using the same
US9243119B2 (en) Polyimide film
WO2008072914A1 (en) Polyimide resin and liquid crystal alignment layer and polyimide film using the same
US20100048861A1 (en) Polyimide resin and liquid crystal alignment layer and polyimide film using the same
EP3315534B1 (en) Polyamide-imide precursor, polyamide-imide film, and display device comprising same
US9221954B2 (en) Polyimide film
CN107531902B (en) Polyimide resin and film using the same
WO2009017330A1 (en) Polyimide film with improved thermal stability
KR102093696B1 (en) Polyimide resin composition having improved frictional property and Film thereof
KR101292993B1 (en) Polyimide resin, and liquid crystal alignment layer and polyimide film using the same
KR101211857B1 (en) Colorless polyimide film
WO2008072916A1 (en) Polyimide film
KR101167337B1 (en) Colorless polyimide resin, and liquid crystal alignment layer and polyimide film using the same
KR101142692B1 (en) Colorless polyimide resin, and liquid crystal alignment layer and polyimide film using the same
KR101167339B1 (en) Colorless polyimide resin, and liquid crystal alignment layer and polyimide film using the same
KR101167341B1 (en) Colorless polyimide resin, and liquid crystal alignment layer and polyimide film using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07851483

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12518258

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009541229

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07851483

Country of ref document: EP

Kind code of ref document: A1