WO2008072514A1 - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition Download PDF

Info

Publication number
WO2008072514A1
WO2008072514A1 PCT/JP2007/073467 JP2007073467W WO2008072514A1 WO 2008072514 A1 WO2008072514 A1 WO 2008072514A1 JP 2007073467 W JP2007073467 W JP 2007073467W WO 2008072514 A1 WO2008072514 A1 WO 2008072514A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin composition
fiber
parts
mass
Prior art date
Application number
PCT/JP2007/073467
Other languages
French (fr)
Japanese (ja)
Inventor
Kazumasa Kusudo
Takashi Katayama
Eiji Iwasa
Seiichi Taeda
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to JP2008549255A priority Critical patent/JPWO2008072514A1/en
Publication of WO2008072514A1 publication Critical patent/WO2008072514A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings

Definitions

  • the present invention relates to a thermoplastic resin composition having practical heat resistance, impact resistance, moldability, and a high degree of biomass.
  • heat resistance of 65 ° C or higher is required for use in electrical 'electronic parts, automobile parts, or sports' leisure parts.
  • a heat deflection temperature of 65 ° C or higher is required at the load deflection temperature measured under high load (1.80 MPa).
  • polylactic acid is also a crystalline resin, and it is known that heat resistance improves when crystallized.
  • heat treatments such as annealing, where crystallization is slow, it is difficult to obtain a practical molded product due to deformation during the treatment process or time required for molding.
  • the heat resistance of crystallized polylactic acid has practical heat resistance at a load deflection temperature of 70 ° C or higher under low load (0.45MPa), but the deflection temperature under high load (1.80MPa). Is less than 60 ° C, which is not enough.
  • Heat resistance is known to improve to some extent by adding glass fiber to crystalline resin!
  • heat resistance is slightly increased, but there are many problems such as increased specific gravity and difficulty in disposal of glass fiber. Glass fibers are prone to warping of the molded product, which may impair the quality of the molded product.
  • polylactic acid has low impact resistance. As described above, when crystallized to increase heat resistance, the impact resistance decreases.
  • the rubber component may be added to improve this impact resistance. There are problems such as poor releasability during molding and reduced heat resistance of the molded product.
  • Patent Document 1 describes that natural plant fiber spun yarn is 40 to 65% by mass and a synthetic organic fiber that can satisfy all of continuous productivity, quality stability as a molding material, and strength properties as a molded product.
  • a fiber-reinforced thermoplastic resin pellet in which 2 to 20% by mass is substantially aligned in the longitudinal direction of the thermoplastic resin pellet and a method for producing the same have been proposed.
  • the twisted natural fiber and synthetic fiber are pelletized at the same time, not only is the degree of freedom of the blending amount low, but the cut length suitable for each fiber cannot be obtained. Sufficient moldability is difficult to obtain.
  • Patent Document 2 is formed by molding a resin composition in which 1 to 350 parts by weight of a natural organic filler is blended with 100 parts by weight of a plant resource-derived resin such as a polylactic acid resin.
  • An automobile part is further disclosed which is composed of 0.01 to 10 parts by weight of a carboxyl-terminal reactive end-blocking agent and 0.0 to 30 parts by weight of a crystallization accelerator.
  • Patent Document 3 discloses a fiber-reinforced molded article that is mainly composed of a plant-derived raw material and has substantially non-biodegradable heat resistance, strength, rigidity, and durability, as well as automobile parts or household appliance parts.
  • a biodegradable resin A mainly composed of a lactic acid resin, an aramid fiber and / or LCP fiber (B), and a hydrolysis inhibitor (C), and
  • Patent Document 4 discloses a biodegradable resin composition having a kenaf fiber content of 10 to 50% by mass as a kenaf fiber reinforced resin composition that can be used as an exterior material for electrical and electronic equipment products. Is disclosed. However, as shown in the example, the heat deformation temperature at a load of 1.80 MPa is 72 to; a force of 122 ° C, and the Izod impact strength with a notch is 3 ⁇ 6 to 4 ⁇ 2 kj / m 2 The practical heat resistance is insufficient.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-60502
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-8712
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-23250
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-105245
  • the present invention aims to develop a thermoplastic resin composition having practical heat resistance, sufficient impact resistance and capable of being molded with a practical molding cycle while maintaining a high degree of biomass. To do.
  • thermoplastic resin 100 parts by mass, cellulosic fiber (B) 5-50 parts by mass, polyarylate fiber (C) l. It has been found that the above object can be achieved by adding 2 to 20 parts by mass of the agent (D), the hydrolysis inhibitor (E) and the flexibility-imparting agent (F).
  • the present invention comprises (1) plant-derived thermoplastic resin (A) 100 parts by mass, cellulose fiber (B) 5-50 parts by mass, polyarylate fiber (C) 1.5-50 parts by mass, organic A nucleating agent (D), a hydrolysis inhibitor (E), and a flexibility-imparting agent (F) 2 to 20 parts by mass of a thermoplastic resin composition, (2) plant-derived heat
  • the thermoplastic resin composition according to (3), wherein the hemp-based fibers are jute
  • the thermoplastic resin composition according to (4), wherein the jute has a fiber length of 3 to 8 mm.
  • thermoplastic resin composition according to any one of (1) to (5) above, wherein the organic nucleating agent (D) is an isoindolinone compound or a phenylphosphonic acid metal salt, 7) Water The thermoplastic resin composition according to any one of the above (1) to (6), wherein the anti-decompressant (E) is an aromatic carpositimide compound or an aliphatic carpositimide compound, (8) a flexibility imparting agent (F ) Is at least one selected from a polyolefin compound, a polyurethane compound, an acrylic compound, a rosin compound, and an ethylene acetate butyl compound. 1.
  • thermoplastic resin composition according to any one of (1) to (6) according to (9 S075-1, 1, 2 (JI S K7191-1, 2)) 1.
  • Load measured under a load of 80 MPa The thermoplastic resin composition according to any one of (1) to (8), wherein the deflection temperature is 65 ° C or higher and the deflection temperature under load measured at a load of 0.45 MPa is 130 ° C or higher;
  • the thermoplastic resin composition of the present invention comprises a plant-derived thermoplastic resin (A) 100 parts by mass, a cellulosic fiber (B) 5 to 50 parts by mass, and a polyarylate fiber (C) l. It is characterized by containing 40 parts by mass, an organic nucleating agent (D), a hydrolysis inhibitor (E), and a flexibility-imparting agent (F).
  • A plant-derived thermoplastic resin
  • B cellulosic fiber
  • C polyarylate fiber
  • D organic nucleating agent
  • E hydrolysis inhibitor
  • F flexibility-imparting agent
  • thermoplastic resin composition of the present invention of the present invention the blending amount of each element of (B) to (F) means parts by mass with respect to 100 parts by mass of the plant-derived thermoplastic resin (A).
  • Examples of the plant-derived thermoplastic resin (A) in the present invention include polylactic acid, polybutylene succinate, polyethylene succinate, modified polyethylene terephthalate, polyhydroxybutyrate, modified starch, and polystrength prolatathone. You can use a single species or a combination of two or more species! /.
  • polylactic acid is suitable, and crystalline polylactic acid having an optical purity of 95% by mass or more is particularly suitable from the viewpoint of crystallization.
  • Polylactic acid is a homopolymer of L-lactic acid, a copolymer of L-lactic acid and D-lactic acid, a copolymer of L-lactic acid and hydroxycarboxylic acid, or a mixture thereof, and also a mixture of L-lactic acid and D-lactic acid.
  • a stereo complex may be used.
  • the weight average molecular weight (Mw) of polylactic acid is preferably 70,000 to 200,000. If it is less than 70,000, the strength of the molded product is inferior and hydrolysis tends to proceed. If it exceeds 200,000, the crystallization rate is slow and it is difficult to obtain a practical molding cycle. More preferably, it is 70,000 to 160,000.
  • polylactic acid examples include “LACEA” (trade name; manufactured by Mitsui Chemicals), rNature Works (trade name; manufactured by Nature Works), and “Toyota Eco Plastic Use (U'z)” (trade name).
  • LACEA trade name; manufactured by Mitsui Chemicals
  • rNature Works trade name; manufactured by Nature Works
  • Toyota Eco Plastic Use U'z
  • Manufactured by Toyota Motor Corporation, "Revoda” trade name; Kaisho Biological Materials Co., Ltd.) Etc.
  • Cellulosic fibers (B) used in the present invention include plant fibers such as hemp fiber, cotton fiber, bamboo fiber, wood fiber, kenaf fiber, jute fiber, banana fiber, coconut fiber, or the like. Plant fiber strength Processed pulp and cellulose fiber are listed.
  • the addition amount of the cellulosic fiber is more preferably 15 parts by mass or more, more preferably 10 parts by mass or more from the viewpoint of improving heat resistance, which is preferably 5 to 50 parts by mass. When the amount is 50 parts by mass or more, the physical properties of the molded product are deteriorated and the heat resistance is not improved.
  • jute is particularly excellent in terms of physical properties, supply stability, and cost, while hemp fibers are preferred.
  • Kenaf and hemp are known to have strength S and jute, and kenaf has a low fiber strength and tends to decrease the strength of deformed and molded products such as breaking during kneading. Hemp is difficult to use due to restrictions on cultivation, but hemp can also be used if it is not illegal and can be obtained stably.
  • cotton and rayon are not necessarily preferable because the fiber properties are weak and the strength of the molded product is significantly reduced.
  • the fiber length of the yarn is 3 to 12 mm, preferably 3 to 10 mm, more preferably S to 10 mm, and particularly preferably 5 to 8 mm.
  • the addition amount of the jute is more preferably 15 parts by mass or more, more preferably 10 parts by mass or more from the viewpoint of improving heat resistance, which is preferably 5 to 50 parts by mass. If it is 50 parts by mass or more, the physical properties of the molded product are deteriorated, and the heat resistance is not improved.
  • the polyarylate fiber (C) is 1.5 to 40 parts by mass, preferably 2 to 30 parts by mass, more preferably, in order to improve impact resistance. 2. Add 5 to 20 parts by weight. If the amount added is less than 1.5 parts by mass, the improvement in impact resistance is not significant. Even if the amount exceeds 40 parts by mass, no further improvement in impact resistance is observed! /.
  • the fineness of the polyarylate fiber is preferably from! To 30 dtex, more preferably from 1.5 to 15 dtex, and further from 1.7 to!
  • the fiber length is preferably 2 to 10 mm, more preferably 2 to 6 mm, and more preferably 2 to 6 mm.
  • polyarylate fibers include hydroxybenzoic acid and hydroxynaphthalene Examples include “Vectran” made by Kuraray Co., Ltd., which consists of rubonic acid, and “Econol fiber” made by Sumitomo Chemical Co., Ltd., which is mainly composed of hydroxybenzoic acid.
  • an organic nucleating agent (D) is added to increase the crystallization rate.
  • Organic nucleating agents include isoindolinone compounds, trimesic acid tricyclamide compounds, diketopyrrolopyrrole compounds, copper phthalocyanine compounds, melamine compounds, phenylphosphonic acid metal salts, sebacic acid dibenzoic acid hydrazide, D-lactic acid polymer compounds, Polylactic acid stereocomplexes are suitable, and among them, isoindolinone compounds or phenylphosphonic acid metal salts are particularly excellent from the viewpoint of the effect of improving the crystallization speed.
  • the addition amount of the nucleating agent is preferably 0.05-2.0 parts by mass, more preferably 0.2 to 1.0 parts by mass. 2. Even if added over 0 parts by mass, the effect is poor. If it is less than 0.05 parts by mass, the effect of improving the crystallization speed is small and the molding cycle cannot be shortened sufficiently.
  • sufficient heat resistance cannot be obtained simply by adding a nucleating agent to an aliphatic polyester such as polylactic acid and crystallizing it. Therefore, cellulosic fibers and polyarylate fibers are added. Improved heat resistance.
  • thermoplastic resin composition of the present invention contains a hydrolysis inhibitor (E). Since the present invention uses cellulosic fibers, which are hydrophilic fibers, there is provided a hydrolysis-resistant stabilizer for suppressing hydrolysis of aliphatic polyester, that is, a hydrolysis inhibitor, which easily brings moisture into the resin composition. is necessary.
  • the hydrolysis inhibitor (E) used in the present invention is an aromatic polycarbon from the viewpoint that it can be melt kneaded with a plant-derived thermoplastic resin and can suppress hydrolysis of the plant-derived thermoplastic resin with a small amount of addition.
  • Diimide compounds or aliphatic polycarbopositimide compounds are suitable.
  • Polycarposimide is preferable because aromatics are not deteriorated by ultraviolet rays.
  • the addition amount of the hydrolysis inhibitor is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the plant-derived thermoplastic resin (A) from the viewpoint of the addition effect and the addition efficiency. If it is added in an amount of 10 parts by mass or more, sufficient heat resistance cannot be obtained.
  • polycarbopositimide compound examples include poly (1, 6-hexamethylene carpositimide), poly
  • Examples of the flexibility-imparting agent (F) include polypropylene, polyethylene homopolymers, and copolymers (copolymers), ethylene-propylene copolymers, ethylene-butene 1 copolymers, polyolefins such as polybutadiene and methylpentene resins.
  • Polyurethane compounds such as polyurethane resins and polyurethane thermoplastic elastomers; various acrylic rubbers, ethylene acrylic acid copolymers, ethylene acrylic acid ethylene copolymers, ethylene butyl acrylate copolymers Any acrylic compound, polyester elastomer, polyamide elastomer, stearic acid, lauric acid, soybean oil, castor oil, pine oil, glycerin fatty acid ester derivative, stearyl alcohol, sorbitan tristearate, sorbitan fatty acid ester, polyethylene glycol, Examples include dibenzilate, natural rubber, thiocol rubber, polysulfide rubber, rosin compound, and ethylene acetate butyl compound.
  • the flexibility-imparting agent (F) is at least one selected from a polyolefin compound, a polyurethane compound, an acrylic compound, a pyridine compound and an ethylene acetate butyl compound, and a plant-derived thermoplastic resin such as polylactic acid. It is preferable from the viewpoint of compatibility and softening effect.
  • the addition amount of the flexibility-imparting agent is preferably 2 to 20 parts by mass with respect to 100 parts by mass of the plant-derived thermoplastic resin (A) from the viewpoint of the addition effect and the addition efficiency. Less than 2 parts by mass, flexibility The effect of is not sufficiently obtained, and if it exceeds 20 parts by mass, sufficient heat resistance cannot be obtained!
  • the thermoplastic resin composition of the present invention includes an inorganic filler such as My strength, talc, glass fiber, carbon fiber, calcium carbonate, calcium hydroxide, and magnesium hydroxide, aluminum hydroxide, Add auxiliary agents such as flame retardants such as phosphoric ester amide, plasticizers, heat stabilizers, light stabilizers, UV absorbers, mold release agents, antistatic agents, surface wetting modifiers, pigments, lubricants, etc. Can do.
  • an inorganic filler such as My strength, talc, glass fiber, carbon fiber, calcium carbonate, calcium hydroxide, and magnesium hydroxide, aluminum hydroxide
  • Add auxiliary agents such as flame retardants such as phosphoric ester amide, plasticizers, heat stabilizers, light stabilizers, UV absorbers, mold release agents, antistatic agents, surface wetting modifiers, pigments, lubricants, etc. Can do.
  • the method for producing the thermoplastic resin composition of the present invention is not particularly limited, but the following two methods are particularly preferred.
  • cellulose fiber and polyarylate fiber having a predetermined length, a nucleating agent, a hydrolysis inhibitor and a flexibility-imparting agent, and a plant-derived thermoplastic resin have a predetermined mass ratio.
  • a twin screw extruder or a melt mixer to produce a compound.
  • the plant-derived thermoplastic resin is melted, and then the fibers are fed from the middle of the twin screw extruder with a side feeder or the like.
  • the second method continuous filaments and continuous staple yarns are unwound, a plant-derived thermoplastic resin is extruded from a crosshead die, and simultaneously the fibers are coated and impregnated and then cut.
  • LFT Long Fiber Reinforced Thermoplastics
  • the nucleating agent and hydrolysis inhibitor may be combined with a plant-derived thermoplastic resin in advance.
  • thermoplastic resin composition of the present invention is obtained by using IS075-1,
  • Deflection temperature measured under a load of 80 MPa is 65 ° C or more, and 0.
  • the deflection temperature under load measured under a load of 45 MPa is preferably 130 ° C or higher from the viewpoint of the physical properties of the molded product.
  • thermoplastic resin composition of the present invention has a notched Charpy impact strength of 5 kj / m 2 or more measured on a notched specimen prepared according to IS0179 QIS K7111) according to JIS K7111. it is preferable from the viewpoint of impact resistance of the molded article tool 10 kJ / m 2 or more More preferably.
  • a cellulose-based fiber and a polyarylate-based fiber, an organic nucleating agent (D), a hydrolysis inhibitor (E), and a flexibility-imparting agent (F) are added to a plant-derived thermoplastic resin.
  • calpositimide “Calpolite LA_1” manufactured by Nisshinbo Industries, Ltd.
  • flexibility-imparting agent F
  • ethylene acetate bur resin “Evaflex EV45—LX” manufactured by Mitsui DuPont Chemical Co., Ltd.
  • Mitsui A propylene-based elastomer “Tuffmer XM-7070” manufactured by Chemical Co., Ltd. and a glycerin fatty acid ester derivative “Tirabazole VR-01” manufactured by Taiyo Kagaku Co., Ltd.
  • a jute fiber (average diameter 30 m, fiber length 6 mm) was used as the cellulosic fiber (B), and “Vectran” (fiber length 3 mm) manufactured by Kuraray Co., Ltd. was used as the polyarylate fiber (C). These are compounded in the proportions shown in Tables 1 and 2, and melt-kneaded and extruded at 200 ° C (double-screw extruder, manufactured by Nippon Steel Co., Ltd., “TEX30a”, screw diameter: 32 mm). A composition (pellet) was obtained.
  • Power that is impossible with a cooling time of 30 seconds Molding was possible with a cooling time of 40 to 50 seconds.
  • Molding was possible in a cooling time of 50 to 60 seconds.
  • Cooling time takes 60 seconds or more or remarkably inferior in formability.
  • thermoplastic resin compositions of Examples 1 to 10 shown in Table 1 are excellent in moldability, impact resistance, and hydrolysis resistance, and are measured in a load of 80 MPa. Deflection temperature is 65 ° C or higher, and the deflection temperature under load measured at a load of 0.45MPa is 130 ° C or higher. Excellent heat resistance, no cracking due to bending test, and practical molding cycle. It is a thermoplastic resin composition that can be molded with.
  • Comparative Examples 1 to 3 without addition of jute (B) and arylate fiber (C) as cellulosic fibers are inferior in moldability and impact resistance.
  • Example 1 the polyarylate fiber is not added! /,
  • the deflection temperature under load when the composition is mixed with the length of the jute fiber as 3 mm, 5 mm, 8 mm, 12 mm is as described in (5) above. Measured and compared by the method. The highest deflection temperature under load was obtained when the fiber length was 8 mm. The results are shown in Table 3.
  • thermoplastic resin composition of the present invention has practical heat resistance, can be molded in a practical molding cycle while having sufficient impact resistance and a high degree of biomass, and thus has a desired shape. It can be used for bonding, injection molding, extrusion molding, blow molding and the like.
  • the resin composition of the present invention is used for office equipment, housings and interior parts of home appliances, and automobile doors.
  • Inner parts such as mu-quater trim and exterior parts such as wheel caps, buttons and buckles, latching parts such as slide fasteners and hook-and-loop fasteners, medical equipment, daily goods, pharmaceutical and cosmetic cases, food packaging materials, dishes, spoons, trays
  • latching parts such as slide fasteners and hook-and-loop fasteners, medical equipment, daily goods, pharmaceutical and cosmetic cases, food packaging materials, dishes, spoons, trays
  • molded products such as agricultural, forestry and fisheries materials and civil engineering materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

The invention is directed to a thermoplastic resin composition comprising 100 parts by mass of a thermoplastic resin derived from a plant (A), 5 to 50 parts by mass of a cellulose fiber (B), 1.5 to 40 parts by mass of a polyarylate fiber (C), an organic nucleating agent (D), a hydrolysis inhibitor (E) and a flexibility imparting agent (F) and can provide a thermoplastic resin composition which enables molding in a practical molding cycle while having practical heat resistance, sufficient impact resistance and high biomass content.

Description

明 細 書  Specification
熱可塑性樹脂組成物  Thermoplastic resin composition
技術分野  Technical field
[0001] 本発明は実用的な耐熱性、耐衝撃性、成形性、及び高いバイオマス度を有する熱 可塑性樹脂組成物に関する。  The present invention relates to a thermoplastic resin composition having practical heat resistance, impact resistance, moldability, and a high degree of biomass.
背景技術  Background art
[0002] 環境問題がひつ迫化しており、廃棄物処理、地球温暖化、石油などの枯渴性資源 の省エネ化などでバイオマスから誘導されるバイオマスプラスチックの普及が求めら れるようになって来ている力 現在供給の面で普及段階にある生分解性樹脂はポリ 乳酸だけである力 ポリ乳酸は耐熱性が低いため、成形品として使用することが難し い。  [0002] Environmental problems are becoming more and more demanding for the spread of biomass plastics derived from biomass due to waste disposal, global warming, and energy conservation of dry resources such as oil. The power of biodegradable resin that is currently in widespread use in terms of supply is the power of only polylactic acid. Polylactic acid has low heat resistance and is difficult to use as a molded product.
例えば、電気'電子部品、自動車部品、あるいはスポーツ 'レジャー部品などで使用 するには、 65°C以上の耐熱性が必要とされている。特に車両などの耐久用途では、 高荷重(1. 80MPa)で測定による荷重たわみ温度で 65°C以上の熱変形温度が必 要とされている。  For example, heat resistance of 65 ° C or higher is required for use in electrical 'electronic parts, automobile parts, or sports' leisure parts. Particularly in endurance applications such as vehicles, a heat deflection temperature of 65 ° C or higher is required at the load deflection temperature measured under high load (1.80 MPa).
しかし、非結晶化ポリ乳酸の耐熱性は 55°C程度であるために、使用される用途が 限られている。  However, since the heat resistance of non-crystallized polylactic acid is around 55 ° C, the applications used are limited.
一方、ポリ乳酸は結晶性の樹脂でもあり結晶化させると耐熱性が向上することは知 られている。し力、しながら結晶化が遅ぐアニーリングなどの熱処理では、処理工程で 変形したり成形に時間力かかり実用的な成形品は得がたい。  On the other hand, polylactic acid is also a crystalline resin, and it is known that heat resistance improves when crystallized. However, in heat treatments such as annealing, where crystallization is slow, it is difficult to obtain a practical molded product due to deformation during the treatment process or time required for molding.
結晶化したポリ乳酸の耐熱性は低荷重(0. 45MPa)での荷重たわみ温度は 70°C 以上で実用的な耐熱性を備えているが、高荷重(1. 80MPa)での荷重たわみ温度 は 60°C以下であり、十分とは言えない。  The heat resistance of crystallized polylactic acid has practical heat resistance at a load deflection temperature of 70 ° C or higher under low load (0.45MPa), but the deflection temperature under high load (1.80MPa). Is less than 60 ° C, which is not enough.
耐熱性は結晶性樹脂にガラス繊維を添加することである程度改善することが知られ て!/、る。し力、しながらポリ乳酸にガラス繊維を複合すると耐熱性は若干上がるものの 比重が重くなることや、ガラス繊維の廃棄処理が難しくなるなど問題が多い。またガラ ス繊維は成形品の反りを発生し易く成形品の品位を損なうことがある。 さらに、ポリ乳酸は耐衝撃性が低ぐ前述のように耐熱性を上げるために結晶化さ せると耐衝撃性は低下する。 Heat resistance is known to improve to some extent by adding glass fiber to crystalline resin! However, when glass fiber is compounded with polylactic acid, heat resistance is slightly increased, but there are many problems such as increased specific gravity and difficulty in disposal of glass fiber. Glass fibers are prone to warping of the molded product, which may impair the quality of the molded product. Furthermore, polylactic acid has low impact resistance. As described above, when crystallized to increase heat resistance, the impact resistance decreases.
この耐衝撃性改善するためゴム成分を添加する場合がある力 成形時における離 形性が悪くなつたり、成形品の耐熱性が下がるなどの問題がある。  The rubber component may be added to improve this impact resistance. There are problems such as poor releasability during molding and reduced heat resistance of the molded product.
[0003] 特許文献 1には、連続生産性、成形材料としての品質安定性、成形品としての強度 特性などを全て満たし得るものとして、天然植物繊維紡績糸 40〜 65質量%と合成有 機繊維 2〜20質量%が、熱可塑性樹脂ペレットの長手方向に略整列状態とした繊維 強化熱可塑性樹脂ペレットとその製造方法が提案されている。しかし、天然繊維と合 成繊維を撚つたものを同時にペレット化するため配合量の自由度が低いばかりでなく 、各繊維それぞれに適したカット長にすることができないため、流動性と物性のバラン スがとりにくぐ十分な成形性が得られない。  [0003] Patent Document 1 describes that natural plant fiber spun yarn is 40 to 65% by mass and a synthetic organic fiber that can satisfy all of continuous productivity, quality stability as a molding material, and strength properties as a molded product. A fiber-reinforced thermoplastic resin pellet in which 2 to 20% by mass is substantially aligned in the longitudinal direction of the thermoplastic resin pellet and a method for producing the same have been proposed. However, since the twisted natural fiber and synthetic fiber are pelletized at the same time, not only is the degree of freedom of the blending amount low, but the cut length suitable for each fiber cannot be obtained. Sufficient moldability is difficult to obtain.
[0004] 特許文献 2には、ポリ乳酸樹脂などの植物資源由来の樹脂 100重量部に対して、 天然由来の有機充填剤 1〜350重量部を配合してなる樹脂組成物を成形してなる自 動車部品、さらにカルボキシル末端反応性末端封鎖剤を 0. 01〜; 10重量部、結晶 化促進剤を 0. 0;!〜 30重量部を配合してなる自動車部品が開示されている。  [0004] Patent Document 2 is formed by molding a resin composition in which 1 to 350 parts by weight of a natural organic filler is blended with 100 parts by weight of a plant resource-derived resin such as a polylactic acid resin. An automobile part is further disclosed which is composed of 0.01 to 10 parts by weight of a carboxyl-terminal reactive end-blocking agent and 0.0 to 30 parts by weight of a crystallization accelerator.
[0005] 特許文献 3には、植物由来原料を主成分とし、実質的に非生分解性の耐熱性、強 度、剛性、耐久性に優れる繊維強化成形体、並びに、自動車部品又は家電部品を 提供することを目的として、乳酸系樹脂を主成分とする生分解性樹脂 (A)と、ァラミド 繊維及び/又は LCP繊維 (B)と、加水分解防止剤(C)とを含有し、 A: B = 60 : 40〜 99 : 1 (質量比)、かつ、 (A+B) : C = 100 : 0· 1— 100 : 5. 0 (質量比)である繊維強 化成形体が提案されている。しかし、適切な結晶化促進剤が選定されておらず、(B) のセグメントの耐衝撃性改善にガラス転移転点 Tgが 0°C以下のものを選定している ため、射出成形時に金型内で短時間に結晶化させることができず、成形性及び生産 性が不十分であった。  [0005] Patent Document 3 discloses a fiber-reinforced molded article that is mainly composed of a plant-derived raw material and has substantially non-biodegradable heat resistance, strength, rigidity, and durability, as well as automobile parts or household appliance parts. For the purpose of providing, it contains a biodegradable resin (A) mainly composed of a lactic acid resin, an aramid fiber and / or LCP fiber (B), and a hydrolysis inhibitor (C), and A: Fiber strengthened molded bodies with B = 60:40 to 99: 1 (mass ratio) and (A + B): C = 100: 0 · 1—100: 5.0 (mass ratio) have been proposed. . However, an appropriate crystallization accelerator was not selected, and a glass transition transition point Tg of 0 ° C or less was selected to improve the impact resistance of the segment (B). It was impossible to crystallize within a short time, and the moldability and productivity were insufficient.
[0006] 特許文献 4には、電気 ·電子機器製品用の外装材に使用可能なケナフ繊維強化樹 脂組成物として、ケナフ繊維の含有量が 10〜50質量%である生分解性樹脂組成物 が開示されている。しかし、実施例で示された、荷重 1. 80MPaにおける熱変形温度 は、 72〜; 122°Cである力 ノッチ付きアイゾット衝撃強度は 3· 6〜4· 2kj/m2であり 、実用上の耐熱性が不十分である。 [0006] Patent Document 4 discloses a biodegradable resin composition having a kenaf fiber content of 10 to 50% by mass as a kenaf fiber reinforced resin composition that can be used as an exterior material for electrical and electronic equipment products. Is disclosed. However, as shown in the example, the heat deformation temperature at a load of 1.80 MPa is 72 to; a force of 122 ° C, and the Izod impact strength with a notch is 3 · 6 to 4 · 2 kj / m 2 The practical heat resistance is insufficient.
[0007] 以上、実用的な耐熱性、耐衝撃性、成形性、を備えた植物由来の熱可塑性樹脂組 成物は未だ得られて!/、な!/、。 [0007] As described above, a plant-derived thermoplastic resin composition having practical heat resistance, impact resistance, and moldability has not yet been obtained!
[0008] 特許文献 1:特開 2002— 60502号公報 [0008] Patent Document 1: Japanese Patent Application Laid-Open No. 2002-60502
特許文献 2:特開 2005— 8712号公報  Patent Document 2: Japanese Patent Laid-Open No. 2005-8712
特許文献 3:特開 2005— 23250号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-23250
特許文献 4 :特開 2005— 105245号公報  Patent Document 4: Japanese Patent Laid-Open No. 2005-105245
発明の開示  Disclosure of the invention
[0009] 本発明は、高いバイオマス度を維持しながら、実用的な耐熱性を持ち、十分な耐衝 撃性及び実用的な成形サイクルで成形が可能な熱可塑性樹脂組成物の開発を目的 とする。  [0009] The present invention aims to develop a thermoplastic resin composition having practical heat resistance, sufficient impact resistance and capable of being molded with a practical molding cycle while maintaining a high degree of biomass. To do.
本発明者らは、植物由来の熱可塑性樹脂 (A) 100質量部に、セルロース系繊維( B) 5〜50質量部、ポリアリレート系繊維(C) l . 5〜40質部、有機系核剤(D)、加水 分解抑制剤 (E)及び柔軟性付与剤 (F) 2〜20質量部を含有せしめることにより上記 目的を達成できることを見出した。  We have plant-derived thermoplastic resin (A) 100 parts by mass, cellulosic fiber (B) 5-50 parts by mass, polyarylate fiber (C) l. It has been found that the above object can be achieved by adding 2 to 20 parts by mass of the agent (D), the hydrolysis inhibitor (E) and the flexibility-imparting agent (F).
すなわち本発明は、(1)植物由来の熱可塑性樹脂 (A) 100質量部に、セルロース 系繊維(B) 5〜50質量部、ポリアリレート系繊維(C) l . 5〜50質量部、有機系核剤( D)、加水分解抑制剤 (E)及び柔軟性付与剤 (F) 2〜20質量部を含有せしめてなる ことを特徴とする熱可塑性樹脂組成物、(2)植物由来の熱可塑性樹脂 (A)が、ポリ 乳酸である前記(1)記載の熱可塑性樹脂組成物、 (3)セルロース系繊維 (B)が麻系 繊維である前記(1)又は(2)記載の熱可塑性樹脂組成物、 (4)麻系繊維がジユート である前記(3)記載の熱可塑性樹脂組成物、 (5)ジユートの繊維長が 3〜8mmであ る前記 (4)記載の熱可塑性樹脂組成物、 (6)有機系核剤 (D)がイソインドリノン化合 物又はフエニルホスホン酸金属塩である前記(1)〜(5)の!/、ずれかに記載の熱可塑 性樹脂組成物、(7)加水分解抑制剤 (E)が芳香族カルポジイミド化合物又は脂肪族 カルポジイミド化合物である前記(1)〜(6)の!/、ずれかに記載の熱可塑性樹脂組成 物、 (8)柔軟性付与剤(F)がポリオレフイン化合物、ポリウレタン化合物、アクリル化合 物、ロジン系化合物及びエチレン酢酸ビュル化合物から選ばれる少なくとも 1種であ る前記(1)〜(6)のいずれかに記載の熱可塑性樹脂組成物、(9 S075— 1、 2 (JI S K7191— 1、 2)に準じ、 1. 80MPaの荷重下で測定した荷重たわみ温度が 65°C 以上、かつ 0. 45MPaの荷重下で測定した荷重たわみ温度が 130°C以上である前 記(1)〜(8)のいずれかに記載の熱可塑性樹脂組成物、及び(10) ISO179 (JIS K 7111)に基づいて作製したノッチ付き試験片を JIS K7111に準拠して測定した、ノッ チ付きシャルピー衝撃強度が 5kj/m2以上である前記(1)〜(9)のいずれかに記載 の熱可塑性樹脂組成物、を提供するものである。 That is, the present invention comprises (1) plant-derived thermoplastic resin (A) 100 parts by mass, cellulose fiber (B) 5-50 parts by mass, polyarylate fiber (C) 1.5-50 parts by mass, organic A nucleating agent (D), a hydrolysis inhibitor (E), and a flexibility-imparting agent (F) 2 to 20 parts by mass of a thermoplastic resin composition, (2) plant-derived heat The thermoplastic resin composition as described in (1) above, wherein the plastic resin (A) is polylactic acid, (3) the thermoplastic as described in (1) or (2) above, wherein the cellulosic fiber (B) is hemp fiber (4) The thermoplastic resin composition according to (3), wherein the hemp-based fibers are jute, (5) The thermoplastic resin composition according to (4), wherein the jute has a fiber length of 3 to 8 mm. (6) The thermoplastic resin composition according to any one of (1) to (5) above, wherein the organic nucleating agent (D) is an isoindolinone compound or a phenylphosphonic acid metal salt, 7) Water The thermoplastic resin composition according to any one of the above (1) to (6), wherein the anti-decompressant (E) is an aromatic carpositimide compound or an aliphatic carpositimide compound, (8) a flexibility imparting agent (F ) Is at least one selected from a polyolefin compound, a polyurethane compound, an acrylic compound, a rosin compound, and an ethylene acetate butyl compound. 1. The thermoplastic resin composition according to any one of (1) to (6), according to (9 S075-1, 1, 2 (JI S K7191-1, 2)) 1. Load measured under a load of 80 MPa The thermoplastic resin composition according to any one of (1) to (8), wherein the deflection temperature is 65 ° C or higher and the deflection temperature under load measured at a load of 0.45 MPa is 130 ° C or higher; (10) The notched Charpy impact strength measured based on ISO 179 (JIS K 7111) according to JIS K7111 and having a notch Charpy impact strength of 5 kj / m 2 or more (1) to (9) A thermoplastic resin composition according to any one of the above.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明の熱可塑性樹脂組成物は、植物由来の熱可塑性樹脂 (A) 100質量部に、 セルロース系繊維(B) 5〜50質量部、ポリアリレート系繊維(C) l. 5〜40質量部、有 機系核剤(D)、加水分解抑制剤(E)及び柔軟性付与剤(F)を含有せしめてなること を特徴とする。 [0010] The thermoplastic resin composition of the present invention comprises a plant-derived thermoplastic resin (A) 100 parts by mass, a cellulosic fiber (B) 5 to 50 parts by mass, and a polyarylate fiber (C) l. It is characterized by containing 40 parts by mass, an organic nucleating agent (D), a hydrolysis inhibitor (E), and a flexibility-imparting agent (F).
以下、本発明の本発明の熱可塑性樹脂組成物において、(B)〜(F)の各要素の 配合量は、植物由来の熱可塑性樹脂 (A) 100質量部に対する質量部を意味する。  Hereinafter, in the thermoplastic resin composition of the present invention of the present invention, the blending amount of each element of (B) to (F) means parts by mass with respect to 100 parts by mass of the plant-derived thermoplastic resin (A).
[0011] 本発明における植物由来の熱可塑性樹脂 (A)としては、ポリ乳酸、ポリブチレンサ クシネート、ポリエチレンサクシネート、変性ポリエチレンテレフタレート、ポリヒドロキシ ブチレート、変性デンプン、ポリ力プロラタトンなどが挙げられ、これらは 1種単独でも 2 種以上を組み合わせて用いてもよ!/、。 [0011] Examples of the plant-derived thermoplastic resin (A) in the present invention include polylactic acid, polybutylene succinate, polyethylene succinate, modified polyethylene terephthalate, polyhydroxybutyrate, modified starch, and polystrength prolatathone. You can use a single species or a combination of two or more species! /.
これらの中でポリ乳酸が適しており、特に光学純度 95質量%以上の結晶性ポリ乳 酸が結晶化の面から適している。ポリ乳酸は、 L—乳酸のホモポリマー、 L—乳酸と D 乳酸との共重合体、または L 乳酸とヒドロキシカルボンの共重合体、あるいはこれ らの混合物、さらには、 L乳酸と D乳酸を混合したステレオコンプレックスでも良い。 ポリ乳酸の重量平均分子量 (Mw)としては、 7万〜 20万が好適である。 7万未満で は、成形品の強度が劣り加水分解が進行し易ぐ 20万を超えると、結晶化速度が遅く 実用的な成形サイクルが得にくい。より、好ましくは 7万から 16万である。  Among these, polylactic acid is suitable, and crystalline polylactic acid having an optical purity of 95% by mass or more is particularly suitable from the viewpoint of crystallization. Polylactic acid is a homopolymer of L-lactic acid, a copolymer of L-lactic acid and D-lactic acid, a copolymer of L-lactic acid and hydroxycarboxylic acid, or a mixture thereof, and also a mixture of L-lactic acid and D-lactic acid. A stereo complex may be used. The weight average molecular weight (Mw) of polylactic acid is preferably 70,000 to 200,000. If it is less than 70,000, the strength of the molded product is inferior and hydrolysis tends to proceed. If it exceeds 200,000, the crystallization rate is slow and it is difficult to obtain a practical molding cycle. More preferably, it is 70,000 to 160,000.
ポリ乳酸の具体例としては、「LACEA」(商品名;三井化学株式会社製)、 rNature Works」(商品名; Nature Works社製)、「トヨタェコプラスチックユーズ (U'z)」(商 品名;トヨタ自動車株式会社製)、「レヴオダ」(商品名;海正生物材料股分有限公司 製)などが市販されている。 Specific examples of polylactic acid include “LACEA” (trade name; manufactured by Mitsui Chemicals), rNature Works (trade name; manufactured by Nature Works), and “Toyota Eco Plastic Use (U'z)” (trade name). Manufactured by Toyota Motor Corporation, "Revoda" (trade name; Kaisho Biological Materials Co., Ltd.) Etc.) are commercially available.
[0012] 本発明に用いられるセルロース系繊維 (B)としては、麻繊維、綿繊維、竹繊維、木 材繊維、ケナフ繊維、ジユート繊維、バナナ繊維、ココナッツ繊維などの植物繊維もし くはこれらの植物繊維力 加工されたパルプやセルロース繊維などが挙げられる。 セルロース系繊維の添加量は、 5〜50質量部が好ましぐ耐熱性向上の観点から 1 0質量部以上がより好ましぐ 15質量部以上が更に好ましい。 50質量部以上では、 成形品の物性が低下し、また耐熱性の向上も見られなレ、。 [0012] Cellulosic fibers (B) used in the present invention include plant fibers such as hemp fiber, cotton fiber, bamboo fiber, wood fiber, kenaf fiber, jute fiber, banana fiber, coconut fiber, or the like. Plant fiber strength Processed pulp and cellulose fiber are listed. The addition amount of the cellulosic fiber is more preferably 15 parts by mass or more, more preferably 10 parts by mass or more from the viewpoint of improving heat resistance, which is preferably 5 to 50 parts by mass. When the amount is 50 parts by mass or more, the physical properties of the molded product are deteriorated and the heat resistance is not improved.
セルロース系繊維の中でも特に、麻系の繊維が好ましぐ中でもジユート(黄麻)が 物性、供給安定性、及びコストなどの点で優れている。他に、ケナフ、ヘンプ(***) が知られている力 S、ジユートに比べケナフは繊維強度が低く混練時に折れるなど変形 しゃすく成形品の強度が低下する傾向がある。ヘンプは栽培規制があるために使用 し難いが、違法性がなく安定的に入手できる場合には、ヘンプも使用できる。また、 綿やレーヨンは繊維物性が弱いために成形品の強度低下が著しぐ必ずしも好ましく ない。  Among cellulosic fibers, jute is particularly excellent in terms of physical properties, supply stability, and cost, while hemp fibers are preferred. In addition, Kenaf and hemp (cannabis) are known to have strength S and jute, and kenaf has a low fiber strength and tends to decrease the strength of deformed and molded products such as breaking during kneading. Hemp is difficult to use due to restrictions on cultivation, but hemp can also be used if it is not illegal and can be obtained stably. In addition, cotton and rayon are not necessarily preferable because the fiber properties are weak and the strength of the molded product is significantly reduced.
ジユートの繊維長は、より高い引張強度を得る観点から繊維長は 3〜; 12mmが好ま しぐ 3〜; 10mm力 Sより好ましく、 5〜8mmが特に好ましい。  From the viewpoint of obtaining a higher tensile strength, the fiber length of the yarn is 3 to 12 mm, preferably 3 to 10 mm, more preferably S to 10 mm, and particularly preferably 5 to 8 mm.
ジユートの添加量は、 5〜50質量部が好ましぐ耐熱性向上の観点から 10質量部 以上がより好ましぐ 15質量部以上が更に好ましい。 50質量部以上では、成形品の 物性が低下し、また耐熱性の向上も見られない。  The addition amount of the jute is more preferably 15 parts by mass or more, more preferably 10 parts by mass or more from the viewpoint of improving heat resistance, which is preferably 5 to 50 parts by mass. If it is 50 parts by mass or more, the physical properties of the molded product are deteriorated, and the heat resistance is not improved.
[0013] 本発明の熱可塑性樹脂組成物においては、耐衝撃性を向上させるためにポリアリ レート系繊維(C)が、 1. 5〜40質量部、好ましくは 2〜30質量部、より好ましくは 2. 5 〜20質量部添加される。添加量が 1. 5質量部未満では、耐衝撃性の向上が顕著で なぐ 40質量部を超えて添加してもそれ以上の耐衝撃性の向上は認められな!/、。 ポリアリレート系繊維の繊度としては、均一分散性の観点から;!〜 30dtex、より好ま しくは 1. 5〜; 15dtex、さらに 1. 7〜; !Odtexカ好ましい。 [0013] In the thermoplastic resin composition of the present invention, the polyarylate fiber (C) is 1.5 to 40 parts by mass, preferably 2 to 30 parts by mass, more preferably, in order to improve impact resistance. 2. Add 5 to 20 parts by weight. If the amount added is less than 1.5 parts by mass, the improvement in impact resistance is not significant. Even if the amount exceeds 40 parts by mass, no further improvement in impact resistance is observed! /. The fineness of the polyarylate fiber is preferably from! To 30 dtex, more preferably from 1.5 to 15 dtex, and further from 1.7 to!
繊維長は、耐衝撃性向上の観点から、;!〜 15mmが好ましぐより好ましくは 2〜10 mm、さらに 2〜6mmがより好ましい。  From the viewpoint of improving impact resistance, the fiber length is preferably 2 to 10 mm, more preferably 2 to 6 mm, and more preferably 2 to 6 mm.
ポリアリレート系繊維の具体例としては、ヒドロキシ安息香酸とヒドロキシナフタレン力 ルボン酸からなる株式会社クラレ製の「ベクトラン」、ヒドロキシ安息香酸を主成分とし た住友化学工業株式会社製の「ェコノール繊維」を挙げられる。 Specific examples of polyarylate fibers include hydroxybenzoic acid and hydroxynaphthalene Examples include “Vectran” made by Kuraray Co., Ltd., which consists of rubonic acid, and “Econol fiber” made by Sumitomo Chemical Co., Ltd., which is mainly composed of hydroxybenzoic acid.
[0014] 本発明の熱可塑性樹脂組成物においては、結晶化速度を上げるために有機系核 剤(D)が添加される。有機系核剤としてはイソインドリノン化合物、トリメシン酸トリシク ロアミド化合物、ジケトピロロピロール化合物、銅フタロシアニン化合物、メラミン系化 合物、フエニルホスホン酸金属塩、セバシン酸ジ安息香酸ヒドラジド、 D乳酸ポリマー 化合物、ポリ乳酸ステレオコンプレックスが適しており、これらの中で結晶化速度向上 効果の観点から、イソインドリノン化合物又はフエニルホスホン酸金属塩が特に優れ ている。 [0014] In the thermoplastic resin composition of the present invention, an organic nucleating agent (D) is added to increase the crystallization rate. Organic nucleating agents include isoindolinone compounds, trimesic acid tricyclamide compounds, diketopyrrolopyrrole compounds, copper phthalocyanine compounds, melamine compounds, phenylphosphonic acid metal salts, sebacic acid dibenzoic acid hydrazide, D-lactic acid polymer compounds, Polylactic acid stereocomplexes are suitable, and among them, isoindolinone compounds or phenylphosphonic acid metal salts are particularly excellent from the viewpoint of the effect of improving the crystallization speed.
核剤の添加量は、 0. 05-2. 0質量部が好ましぐ 0. 2〜; 1. 0質量部が更に好まし い。 2. 0質量部を超えて添加しても効果が乏しい。また 0. 05質量部未満では結晶 化速度向上効果の効果が小さく成形サイクルを十分短縮化することが出来ない。 なお、本発明では、ポリ乳酸などの脂肪族ポリエステルに核剤を添加して結晶化さ せただけでは十分な耐熱性が得られな!/、ため、セルロース系繊維及びポリアリレート 繊維を添加し耐熱性を向上させてレ、る。  The addition amount of the nucleating agent is preferably 0.05-2.0 parts by mass, more preferably 0.2 to 1.0 parts by mass. 2. Even if added over 0 parts by mass, the effect is poor. If it is less than 0.05 parts by mass, the effect of improving the crystallization speed is small and the molding cycle cannot be shortened sufficiently. In the present invention, sufficient heat resistance cannot be obtained simply by adding a nucleating agent to an aliphatic polyester such as polylactic acid and crystallizing it. Therefore, cellulosic fibers and polyarylate fibers are added. Improved heat resistance.
[0015] 本発明の熱可塑性樹脂組成物には、加水分解抑制剤(E)が含まれる。本発明は 親水性繊維であるセルロース系繊維を用いるため、樹脂組成物内に水分を持ち込み 易ぐ脂肪族ポリエステルの加水分解を抑制するための耐加水分解安定剤、すなわ ち加水分解抑制剤が必要である。 [0015] The thermoplastic resin composition of the present invention contains a hydrolysis inhibitor (E). Since the present invention uses cellulosic fibers, which are hydrophilic fibers, there is provided a hydrolysis-resistant stabilizer for suppressing hydrolysis of aliphatic polyester, that is, a hydrolysis inhibitor, which easily brings moisture into the resin composition. is necessary.
本発明に用いられる加水分解抑制剤(E)としては、植物由来の熱可塑性樹脂と溶 融混練でき、少量の添加で植物由来の熱可塑性樹脂の加水分解を抑制できる観点 から、芳香族ポリカルポジイミド化合物または脂肪族ポリカルポジイミド化合物が適し ている。ポリカルポジイミドは芳香族系が紫外線劣化が無いので好ましい。加水分解 抑制剤の添加量は、添加効果と添加効率の観点から植物由来の熱可塑性樹脂 (A) 100質量部に対して 0. 5〜5質量部が好ましい。 10質量部以上添加すると十分な耐 熱性が得られない。  The hydrolysis inhibitor (E) used in the present invention is an aromatic polycarbon from the viewpoint that it can be melt kneaded with a plant-derived thermoplastic resin and can suppress hydrolysis of the plant-derived thermoplastic resin with a small amount of addition. Diimide compounds or aliphatic polycarbopositimide compounds are suitable. Polycarposimide is preferable because aromatics are not deteriorated by ultraviolet rays. The addition amount of the hydrolysis inhibitor is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the plant-derived thermoplastic resin (A) from the viewpoint of the addition effect and the addition efficiency. If it is added in an amount of 10 parts by mass or more, sufficient heat resistance cannot be obtained.
[0016] ポリカルポジイミド化合物としては、ポリ(1 , 6—へキサメチレンカルポジイミド)、ポリ  [0016] Examples of the polycarbopositimide compound include poly (1, 6-hexamethylene carpositimide), poly
(4, A' ーメチレンビスシクロへキシルカルポジイミド)、ポリ(1 , 3—シクロへキシレン カルポジイミド)、ポリ(1 , 4ーシクロへキシレンカルポジイミド)、ポリ(ジイソプロピル力 ルポジイミド)などの脂肪族ポリカルポジイミド化合物、ポリ(4, 4' ージフエニルメタン カルポジイミド)、ポリ(3, 3' —ジメチルー 4, 4' ージフエニルメタンカルポジイミド) 、ポリ(ナフチレンカルポジイミド)、ポリ(p—フエ二レンカルポジイミド)、ポリ(m—フエ 二レンカルポジイミド)、ポリ(トリルカルポジイミド)、、ポリ(メチルージイソプロピルフエ 二レンカルポジイミド)、ポリ(トリェチルフエ二レンカルポジイミド)、ポリ(トリイソプロピ ルフエ二レンカルポジイミド)などの芳香族ポリカルポジイミド化合物などが挙げられる(4, A'-methylenebiscyclohexyl carpositimide), poly (1,3-cyclohexylene) (Caliposimide), poly (1,4-cyclohexylenecarpositimide), poly (diisopropylstreptimide), and other poly (4,4'-diphenylmethane carpositimide), poly (3,3 '— Dimethyl-4,4'-diphenylmethane positimide), poly (naphthylene carbopositimide), poly (p-phenylene carbopositimide), poly (m-phenylene carbopositimide), poly (tolyl carbopositimide), And aromatic polycarbopositimide compounds such as poly (methyldiisopropylphenylene carbopositimide), poly (triethyl phenylene carbopositimide), poly (triisopropylphenylene carbopositimide), and the like.
Yes
[0017] 柔軟性付与剤(F)としては、例えばポリプロピレン、ポリエチレンのホモポリマー、及 び共重合体(コポリマー)、エチレン プロピレン共重合体、エチレンーブテン 1共 重合体、ポリブタジエン、メチルペンテン樹脂などのポリオレフイン化合物;スチレン ブタジエンランダム共重合体、スチレン ブタジエンブロック共重合体、スチレンーブ タジェンースチレンブロック共重合体、スチレン イソプレン スチレンブロック共重 合体、スチレン イソプレンランダム共重合体などのジェンとビュル単量体との共重 合体;ポリウレタン系樹脂、ポリウレタン系熱可塑性エラストマ一などのポリウレタン化 合物;各種アクリルゴム、エチレン アクリル酸共重合体、エチレン アクリル酸ェチ ル共重合体、エチレン アクリル酸ブチル共重合体などのアクリル化合物、ポリエス テル系エラストマ一、ポリアミド系エラストマ一、ステアリン酸、ラウリル酸、大豆油、ひ まし油、松根油、グリセリン脂肪酸エステル誘導体、ステアリルアルコール、ソルビタン トリステアート、ソルビタン脂肪酸エステル、ポリエチレングリコール、ジベンジユート、 天然ゴム、チォコールゴム、多硫化ゴム、ロジン系化合物及びエチレン酢酸ビュル化 合物などを挙げることができる。  [0017] Examples of the flexibility-imparting agent (F) include polypropylene, polyethylene homopolymers, and copolymers (copolymers), ethylene-propylene copolymers, ethylene-butene 1 copolymers, polyolefins such as polybutadiene and methylpentene resins. Compounds: Styrene-butadiene random copolymers, styrene-butadiene block copolymers, styrene-butadiene-styrene block copolymers, styrene isoprene, styrene block copolymers, styrene isoprene random copolymers, etc. Copolymers; Polyurethane compounds such as polyurethane resins and polyurethane thermoplastic elastomers; various acrylic rubbers, ethylene acrylic acid copolymers, ethylene acrylic acid ethylene copolymers, ethylene butyl acrylate copolymers Any acrylic compound, polyester elastomer, polyamide elastomer, stearic acid, lauric acid, soybean oil, castor oil, pine oil, glycerin fatty acid ester derivative, stearyl alcohol, sorbitan tristearate, sorbitan fatty acid ester, polyethylene glycol, Examples include dibenzilate, natural rubber, thiocol rubber, polysulfide rubber, rosin compound, and ethylene acetate butyl compound.
[0018] 柔軟性付与剤(F)がポリオレフイン化合物、ポリウレタン化合物、アクリル化合物、口 ジン系化合物及びエチレン酢酸ビュル化合物から選ばれる少なくとも 1種であること 、ポリ乳酸など植物由来の熱可塑性樹脂との相溶性、柔軟化効果の観点から好ま しい。  [0018] The flexibility-imparting agent (F) is at least one selected from a polyolefin compound, a polyurethane compound, an acrylic compound, a pyridine compound and an ethylene acetate butyl compound, and a plant-derived thermoplastic resin such as polylactic acid. It is preferable from the viewpoint of compatibility and softening effect.
柔軟性付与剤の添加量は、添加効果と添加効率の観点から植物由来の熱可塑性 樹脂 (A) 100質量部に対して 2〜20質量部が好ましい。 2質量部未満では、柔軟性 の効果が十分得られず、 20質量部を超えて添加すると十分な耐熱性が得られな!/、。 The addition amount of the flexibility-imparting agent is preferably 2 to 20 parts by mass with respect to 100 parts by mass of the plant-derived thermoplastic resin (A) from the viewpoint of the addition effect and the addition efficiency. Less than 2 parts by mass, flexibility The effect of is not sufficiently obtained, and if it exceeds 20 parts by mass, sufficient heat resistance cannot be obtained!
[0019] 本発明の熱可塑性樹脂組成物には、 目的に応じて、マイ力やタルク、ガラス繊維、 炭素繊維、炭酸カルシウムや水酸化カルシウム、水酸化マグネシウムなどの無機フィ ラー、水酸化アルミニウム、リン酸エステルアミドなどの難燃剤、可塑剤、熱安定剤、 光安定剤、紫外線吸収剤、離形剤、帯電防止剤、表面ぬれ改質剤、顔料、滑剤など の補助剤を適宜添加することができる。 [0019] The thermoplastic resin composition of the present invention includes an inorganic filler such as My strength, talc, glass fiber, carbon fiber, calcium carbonate, calcium hydroxide, and magnesium hydroxide, aluminum hydroxide, Add auxiliary agents such as flame retardants such as phosphoric ester amide, plasticizers, heat stabilizers, light stabilizers, UV absorbers, mold release agents, antistatic agents, surface wetting modifiers, pigments, lubricants, etc. Can do.
[0020] 本発明の熱可塑性樹脂組成物を製造する方法は、特に限定されないが、とりわけ 以下の 2つの方法が好ましい。一つ目の方法は、あらかじめ所定の長さを有するセル ロース系繊維及びポリアリレート系繊維、核剤、加水分解抑制剤及び柔軟性付与剤 と植物由来の熱可塑性樹脂を所定の質量比になるように準備し、必要に応じて乾燥 した後、 2軸押出機や溶融ミキサーを用いて、混練してコンパウンドを作製する方法 である。この時、繊維を押出機にフィードするにあたり、まず植物由来の熱可塑性樹 脂のみを溶融させた後、サイドフィーダ一などで 2軸押出機の半ばから繊維をフィー ド'してあよレヽ。 [0020] The method for producing the thermoplastic resin composition of the present invention is not particularly limited, but the following two methods are particularly preferred. In the first method, cellulose fiber and polyarylate fiber having a predetermined length, a nucleating agent, a hydrolysis inhibitor and a flexibility-imparting agent, and a plant-derived thermoplastic resin have a predetermined mass ratio. Prepared, and dried as necessary, and then kneaded using a twin screw extruder or a melt mixer to produce a compound. At this time, when feeding the fibers to the extruder, only the plant-derived thermoplastic resin is melted, and then the fibers are fed from the middle of the twin screw extruder with a side feeder or the like.
[0021] また、二つ目の方法は、連続フィラメントや連続ステープルヤーンを巻き出し、植物 由来の熱可塑性樹脂をクロスヘッドダイから押し出すと同時に繊維に樹脂を、被覆- 含浸させた後にカットしてペレット化するいわゆる LFT (Long Fiber Reinforced T hermoplastics)方式が分散性や繊維長の調整、及び繊維長の保持などの点で優 れている。この場合、核剤や加水分解抑制剤は予め植物由来の熱可塑性樹脂に配 合しておけばよい。  [0021] In the second method, continuous filaments and continuous staple yarns are unwound, a plant-derived thermoplastic resin is extruded from a crosshead die, and simultaneously the fibers are coated and impregnated and then cut. The so-called LFT (Long Fiber Reinforced Thermoplastics) method for pelletization is superior in terms of dispersibility, adjustment of fiber length, and retention of fiber length. In this case, the nucleating agent and hydrolysis inhibitor may be combined with a plant-derived thermoplastic resin in advance.
[0022] 本発明の熱可塑性樹脂組成物は、射出成形された試験片について、 IS075— 1、  [0022] The thermoplastic resin composition of the present invention is obtained by using IS075-1,
2 (JIS K7191 - 1 , 2) ίこ基づ!/ヽて、 L80mmX W10mm X t4mmの試験片の 1. 80 MPaの荷重下で測定した荷重たわみ温度が 65°C以上で、かつ、 0. 45MPaの荷重 下で測定した荷重たわみ温度が 130°C以上とすることが、成形品の物性の観点から 好ましい。  2 (JIS K7191-1, 2) ί BASE! / Travel, L80mmX W10mm X t4mm test piece 1. Deflection temperature measured under a load of 80 MPa is 65 ° C or more, and 0. The deflection temperature under load measured under a load of 45 MPa is preferably 130 ° C or higher from the viewpoint of the physical properties of the molded product.
また、本発明の熱可塑性樹脂組成物は、 IS0179 QIS K7111)に基づいて作製し たノッチ付き試験片を JIS K7111に準拠して測定した、ノッチ付きシャルピー衝撃強 度が 5kj/m2以上であることが成形品の耐衝撃性の観点から好ましぐ 10kj/m2以 上であることがより好ましい。 The thermoplastic resin composition of the present invention has a notched Charpy impact strength of 5 kj / m 2 or more measured on a notched specimen prepared according to IS0179 QIS K7111) according to JIS K7111. it is preferable from the viewpoint of impact resistance of the molded article tool 10 kJ / m 2 or more More preferably.
[0023] 本発明によれば、植物由来の熱可塑性樹脂に、セルロース系繊維及びポリアリレ ート系繊維、有機系核剤 (D)、加水分解抑制剤 (E)及び柔軟性付与剤 (F)を含有 せしめることで高!/、植物度を維持しながら、優れた成形性を有する熱可塑性樹脂組 成物が得られ、該熱可塑性樹脂組成物を加熱溶融成形すれば、耐熱性、耐衝撃性 及び高いバイオマス度をもつ成形体を得ることができる。 [0023] According to the present invention, a cellulose-based fiber and a polyarylate-based fiber, an organic nucleating agent (D), a hydrolysis inhibitor (E), and a flexibility-imparting agent (F) are added to a plant-derived thermoplastic resin. By adding selenium, it is possible to obtain a thermoplastic resin composition having excellent moldability while maintaining plantiness, and if the thermoplastic resin composition is heated and melt molded, heat resistance and impact resistance are obtained. And a molded body having a high degree of biomass can be obtained.
実施例  Example
[0024] 以下に本発明の実施例を示すが、本発明はこれらに何ら拘束されるものではない。  [0024] Examples of the present invention are shown below, but the present invention is not limited thereto.
[0025] 実施例;!〜 10、比較例;!〜 10  [0025] Examples;! -10, comparative examples;!-10
植物由来の熱可塑性樹脂(A)として Nature Works社製のポリ乳酸「Nature Work s 6201D (重量平均分子量 15万)」を用い、核剤(D)としてチバ 'スペシャルティケミカ ノレズ社製のイソインドリノン化合物「ィルガジン Yellow3RLTN」又は日産化学工業株式 会社製のフエニルホスホン酸金属塩「ェコプロモート」を用いた。また、加水分解抑制 剤(E)として日清紡績株式会社製のカルポジイミド「カルポジライト LA_1」、柔軟性付 与剤(F)として三井デュポンケミカル社製のエチレン 酢酸ビュル樹脂「エバフレック ス EV45— LX」、三井化学株式会社製のプロピレン系エラストマ一「タフマー XM— 7 070」、及び太陽化学株式会社製のグリセリン脂肪酸エステル誘導体「チラバゾール VR— 01」を用いた。さらに、セルロース系繊維(B)としてジユート繊維(平均直径 30 m、繊維長 6mm)及びポリアリレート系繊維(C)として株式会社クラレ製「ベクトラン 」(繊維長 3mm)を用いた。これらを、表 1及び表 2に示す割合で配合し、 200°Cにて 溶融混練押出(2軸押出機、株式会社日本製鋼所製、「TEX30 a」、スクリュー直径 32mm)して熱可塑性樹脂組成物(ペレット)を得た。  Polylactic acid “Nature Work s 6201D (weight average molecular weight 150,000)” manufactured by Nature Works is used as the plant-derived thermoplastic resin (A), and isoindolinone manufactured by Ciba “Specialty Chemica Norrez” is used as the nucleating agent (D). The compound “ilgadine Yellow3RLTN” or a metal salt of phenylphosphonic acid “Ecopromote” manufactured by Nissan Chemical Industries, Ltd. was used. In addition, as a hydrolysis inhibitor (E), calpositimide “Calpolite LA_1” manufactured by Nisshinbo Industries, Ltd., and as a flexibility-imparting agent (F), ethylene acetate bur resin “Evaflex EV45—LX” manufactured by Mitsui DuPont Chemical Co., Ltd., Mitsui A propylene-based elastomer “Tuffmer XM-7070” manufactured by Chemical Co., Ltd. and a glycerin fatty acid ester derivative “Tirabazole VR-01” manufactured by Taiyo Kagaku Co., Ltd. were used. Furthermore, a jute fiber (average diameter 30 m, fiber length 6 mm) was used as the cellulosic fiber (B), and “Vectran” (fiber length 3 mm) manufactured by Kuraray Co., Ltd. was used as the polyarylate fiber (C). These are compounded in the proportions shown in Tables 1 and 2, and melt-kneaded and extruded at 200 ° C (double-screw extruder, manufactured by Nippon Steel Co., Ltd., “TEX30a”, screw diameter: 32 mm). A composition (pellet) was obtained.
[0026] 得られた樹脂組成物(ペレット)を、東芝機械株式会社製射出成形機「EC7575NII - 2AJ (型締力 75トン)、 IS03167規格に準拠した多目的試験片 A型の金型を用い て射出成形し試験片を得た。射出成形条件は、シリンダー温度 190°C、金型温度 10 5°C、冷却時間 30秒で所定の試験片を成形し、物性、成形性を以下に示す評価方 法によって確認した。冷却時間が 30秒で不足の場合は、適宜延長し、成形可能な冷 却時間及び成形性を観察した。 評価方法 [0026] Using the resin composition (pellet) obtained, Toshiba Machine Co., Ltd. injection molding machine "EC7575NII-2AJ (clamping force 75 tons), multi-purpose test piece A type mold conforming to IS03167 standard Test specimens were obtained by injection molding, and the injection molding conditions were as follows: the test specimens were molded at a cylinder temperature of 190 ° C, a mold temperature of 105 ° C, and a cooling time of 30 seconds. When the cooling time was insufficient in 30 seconds, the cooling time and formability that could be molded were observed. Evaluation methods
(1)成形性  (1) Formability
◎:冷却時間 30秒で問題なく良好に成形できた。  (Double-circle): It shape | molded satisfactorily without a problem in cooling time 30 seconds.
〇:冷却時間 30秒では無理だ力 冷却時間 40〜50秒で成形できた。  ◯: Power that is impossible with a cooling time of 30 seconds Molding was possible with a cooling time of 40 to 50 seconds.
△:冷却時間 50〜60秒で成形できた。  Δ: Molding was possible in a cooling time of 50 to 60 seconds.
X:冷却時間が 60秒以上かかるか、著しく成形性に劣る。  X: Cooling time takes 60 seconds or more or remarkably inferior in formability.
(2)耐衝撃性  (2) Impact resistance
株式会社東洋精機製デジタル衝撃試験機「DG— CB」を用い、 JIS K7111試験法 に基づいて L80mm XW10mmX t4mmの試験片のノッチ付き試験片のシャルピー 衝撃強度を 23°Cで測定した。  Using a digital impact tester “DG-CB” manufactured by Toyo Seiki Co., Ltd., the Charpy impact strength of the L80mm XW10mmX t4mm notched specimen was measured at 23 ° C based on the JIS K7111 test method.
(3)曲げ弾性率及び曲げたわみ  (3) Flexural modulus and flexural deflection
株式会社島津製作所製「オートグラフ AG/R」を用い、 IS0178 QIS K7171)に 準拠して、 23°Cで測定した。最大荷重時のたわみを「曲げたわみ (mm)」とした。  Using “Autograph AG / R” manufactured by Shimadzu Corporation, measurement was performed at 23 ° C. according to IS0178 QIS K7171). The deflection at the maximum load was defined as “bending deflection (mm)”.
(4)クラック発生観察  (4) Observation of crack occurrence
前記曲げ弾性率及び曲げたわみの測定時にぉレ、て、試験片でのクラックの発生の 程度を観察した。なお、本評価において、 ISO 0178 (JIS K7171)に準拠して、 23 °Cで最大荷重時のたわみを測定した後の試験片について、株式会社キーエンス製「 デジタルマイクロスコープ VHX— 10」を用い、 25倍率にて表面のクラック幅を測定し  At the time of measuring the bending elastic modulus and bending deflection, the degree of cracking in the test piece was observed. In this evaluation, in accordance with ISO 0178 (JIS K7171), the test piece after measuring the deflection at the maximum load at 23 ° C, using `` Digital Microscope VHX-10 '' manufactured by Keyence Corporation, Measure the surface crack width at 25x magnification
〇:最大荷重時までに試験片の表面に曲げクラックの発生が全くない。 ◯: No bending cracks are generated on the surface of the test piece by the maximum load.
X:最大荷重時までに試験片の表面に曲げクラックが発生する。  X: Bending cracks occur on the surface of the test piece by the maximum load.
(5)耐熱性 (荷重たわみ温度)  (5) Heat resistance (deflection temperature under load)
株式会社安田精機製作所製「No. 148— HDPCヒートデストーシヨンテスターを用 レヽ、 IS075— 1、 2 (JIS K7191— 1、 2) ίこ基づ!/ヽて L80mm XW10mm X t4mmの 試験片の荷重たわみ温度(HDT)の測定を行った。測定は、フラットワイズ法、支点 間距離 80 ± 2. 0mm、試験応力 1. 80MPa (高荷重)及び 0. 45MPa (低荷重)、加 熱速度 120°C/hr、たわみ量 0. 34mmの条件で行った。  Yasuda Seiki Seisakusho Co., Ltd. “No. 148—Uses HDPC Heat Destination Tester, IS075—1, 2 (JIS K7191—1, 2) ί 基基! / ヽ L80mm XW10mm X t4mm test piece The deflection temperature under load (HDT) was measured using the flatwise method, distance between fulcrums 80 ± 2.0 mm, test stress 1. 80 MPa (high load) and 0.45 MPa (low load), heating rate 120 The measurement was performed under the conditions of ° C / hr and a deflection amount of 0.34 mm.
(6)耐加水分解性 (衝撃強度保持率) JIS K7191に基づいて L80mm XW10mmX t4mmの試験片を作製し、タバイ株 式会社製の恒温恒湿乾燥装置を用いて、 85°C— 80%RHで lOOhr処理前後の耐 衝撃性を、前記(2)と同一の装置を用い同様にして、ノッチ付き試験片のシャルピー 衝撃強度を 23°Cで測定した。 (6) Hydrolysis resistance (impact strength retention) Based on JIS K7191, L80mm XW10mmX t4mm test specimens were prepared, and the impact resistance before and after lOOhr treatment at 85 ° C-80% RH using a constant temperature and humidity dryer manufactured by Tabai Co., Ltd. (2 In the same manner, the Charpy impact strength of the notched specimen was measured at 23 ° C.
評価の結果を表 1及び表 2に示す。  The evaluation results are shown in Tables 1 and 2.
[表 1] [table 1]
Figure imgf000013_0001
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000014_0001
D¾00922 [0030] 表 1に示す実施例 1〜; 10の熱可塑性樹脂組成物は、レ、ずれも、成形性、耐衝撃性 、耐加水分解性に優れ、 1. 80MPaの荷重下で測定した荷重たわみ温度が 65°C以 上で、かつ、 0. 45MPaの荷重下で測定した荷重たわみ温度が 130°C以上で、耐熱 性に優れ、曲げ試験によるクラックの発生もなく、実用的な成形サイクルで成形が可 能な熱可塑性樹脂組成物である。 D¾00922 [0030] The thermoplastic resin compositions of Examples 1 to 10 shown in Table 1 are excellent in moldability, impact resistance, and hydrolysis resistance, and are measured in a load of 80 MPa. Deflection temperature is 65 ° C or higher, and the deflection temperature under load measured at a load of 0.45MPa is 130 ° C or higher. Excellent heat resistance, no cracking due to bending test, and practical molding cycle. It is a thermoplastic resin composition that can be molded with.
一方、表 2の結果より、セルロース系繊維としてのジユート(B)及びァリレート繊維( C)の添加がない比較例 1〜3では、成形性、耐衝撃性に劣る。  On the other hand, from the results shown in Table 2, Comparative Examples 1 to 3 without addition of jute (B) and arylate fiber (C) as cellulosic fibers are inferior in moldability and impact resistance.
また、繊維としてジユート(B)のみを添加した比較例 4〜6では、成形性、荷重たわ み温度の向上が見られるが、曲げ試験によるクラックの発生が著しい。  Further, in Comparative Examples 4 to 6 in which only Jute (B) was added as a fiber, the moldability and the deflection temperature under load were improved, but the occurrence of cracks in the bending test was remarkable.
ポリアリレート繊維(C)のみを添加した比較例 7〜9は、成形性、耐衝撃性の向上は 著しいが、クラックの発生の問題がある。  In Comparative Examples 7 to 9 to which only the polyarylate fiber (C) is added, the moldability and impact resistance are remarkably improved, but there is a problem of generation of cracks.
ジユート(B) 10質量部及びポリアリレート繊維(C)を 1質量部添加した比較例 10で は、耐衝撃性に劣り、また低荷重での荷重たわみ温度が低い。  In Comparative Example 10 in which 10 parts by mass of jute (B) and 1 part by mass of polyarylate fiber (C) were added, the impact resistance was poor and the deflection temperature under low load was low.
[0031] ジユート繊維長の掄討 [0031] Debate of the jute fiber length
実施例 1におレ、てポリアリレート系繊維を添加しな!/、組成で、ジユート繊維長を 3m m、 5mm、 8mm、 12mmとして配合した場合の荷重たわみ温度を前記(5)に記載の 方法で測定し比較した。繊維長 8mmが一番高い荷重たわみ温度が得られた。結果 を表 3に示す。  In Example 1, the polyarylate fiber is not added! /, The deflection temperature under load when the composition is mixed with the length of the jute fiber as 3 mm, 5 mm, 8 mm, 12 mm is as described in (5) above. Measured and compared by the method. The highest deflection temperature under load was obtained when the fiber length was 8 mm. The results are shown in Table 3.
[0032] [表 3] 表 3
Figure imgf000015_0001
産業上の利用可能性
[0032] [Table 3] Table 3
Figure imgf000015_0001
Industrial applicability
[0033] 本発明の熱可塑性樹脂組成物は、実用的な耐熱性を持ち、十分な耐衝撃性及び 高いバイオマス度を有しながら実用的な成形サイクルで成形が可能なので、所望す る形状に合わせ、射出成形、押出成形、ブロー成形などに利用できる。  [0033] The thermoplastic resin composition of the present invention has practical heat resistance, can be molded in a practical molding cycle while having sufficient impact resistance and a high degree of biomass, and thus has a desired shape. It can be used for bonding, injection molding, extrusion molding, blow molding and the like.
本発明の樹脂組成物は、 OA機器、家電製品の筐体や内部部品、自動車のドアトリ ムゃクオタートリムなど内装及びホイールキャップなどの外装部品、ボタンやバックル 、スライドファスナーや面ファスナーなどの掛止部品、医療機器、 日用雑貨、医薬品 や化粧のケース、食品包装材ゃ食器、スプーン、トレーなどや農林水産資材や土木 資材などの成形品の用途に利用できる。 The resin composition of the present invention is used for office equipment, housings and interior parts of home appliances, and automobile doors. Inner parts such as mu-quater trim and exterior parts such as wheel caps, buttons and buckles, latching parts such as slide fasteners and hook-and-loop fasteners, medical equipment, daily goods, pharmaceutical and cosmetic cases, food packaging materials, dishes, spoons, trays It can be used for molded products such as agricultural, forestry and fisheries materials and civil engineering materials.

Claims

請求の範囲 The scope of the claims
[1] 植物由来の熱可塑性樹脂 (A) 100質量部に、セルロース系繊維 (B) 5〜50質量 部、ポリアリレート系繊維 (C) l . 5〜40質量部、有機系核剤 (D)、加水分解抑制剤( E)及び柔軟性付与剤(F) 2〜20質量部を含有せしめてなることを特徴とする熱可塑 性樹脂組成物。  [1] Plant-derived thermoplastic resin (A) 100 parts by mass, cellulose fiber (B) 5-50 parts by mass, polyarylate fiber (C) l. 40-40 parts by mass, organic nucleating agent (D ), A hydrolysis inhibitor (E), and a flexibility-imparting agent (F) in an amount of 2 to 20 parts by mass.
[2] 植物由来の熱可塑性樹脂 (A)がポリ乳酸である請求項 1記載の熱可塑性樹脂組 成物。  [2] The thermoplastic resin composition according to claim 1, wherein the plant-derived thermoplastic resin (A) is polylactic acid.
[3] セルロース系繊維 (B)が麻系繊維である請求項 1又は 2記載の熱可塑性樹脂組成 物。  [3] The thermoplastic resin composition according to claim 1 or 2, wherein the cellulosic fiber (B) is hemp fiber.
[4] 麻系繊維がジユートである請求項 3記載の熱可塑性樹脂組成物。  4. The thermoplastic resin composition according to claim 3, wherein the hemp fiber is jute.
[5] ジユートの繊維長が 3〜8mmである請求項 4記載の熱可塑性樹脂組成物。  5. The thermoplastic resin composition according to claim 4, wherein the fiber length of the jute is 3 to 8 mm.
[6] 有機系核剤(D)がイソインドリノン化合物又はフエニルホスホン酸金属塩である請 求項 1〜5のいずれかに記載の熱可塑性樹脂組成物。  [6] The thermoplastic resin composition according to any one of claims 1 to 5, wherein the organic nucleating agent (D) is an isoindolinone compound or a phenylphosphonic acid metal salt.
[7] 加水分解抑制剤 (E)が芳香族カルポジイミド化合物又は脂肪族カルポジイミド化合 物である請求項 1〜6のいずれかに記載の熱可塑性樹脂組成物。 7. The thermoplastic resin composition according to any one of claims 1 to 6, wherein the hydrolysis inhibitor (E) is an aromatic carpositimide compound or an aliphatic carpositimide compound.
[8] 柔軟性付与剤(F)がポリオレフイン化合物、ポリウレタン化合物、アクリル化合物、口 ジン系化合物及びエチレン酢酸ビュル化合物から選ばれる少なくとも 1種である請求 項 1〜7のいずれかに記載の熱可塑性樹脂組成物。 [8] The thermoplastic resin according to any one of [1] to [7], wherein the flexibility-imparting agent (F) is at least one selected from a polyolefin compound, a polyurethane compound, an acrylic compound, a pyridine compound, and an ethylene acetate butyl compound. Resin composition.
[9] IS075— 1、 2 QIS K7191— 1、 2)に準じ、 1. 80MPaの荷重下で測定した荷重 たわみ温度が 65°C以上、かつ 0. 45MPaの荷重下で測定した荷重たわみ温度が 1[9] IS075—1, 2 According to QIS K7191—1, 2) 1. The deflection temperature measured under a load of 80 MPa is 65 ° C or higher and the deflection temperature measured under a load of 0.45 MPa is 1
30°C以上である請求項 1〜8のいずれかに記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 8, which is 30 ° C or higher.
[10] IS0179 QIS K7111)に基づいて作製したノッチ付き試験片を JIS K7111に準拠 して測定した、ノッチ付きシャルピー衝撃強度が 5kj/m2以上である請求項 1〜9の[10] The notched Charpy impact strength measured according to JIS K7111 for a notched specimen prepared according to IS0179 QIS K7111) is 5 kj / m 2 or more.
V、ずれかに記載の熱可塑性樹脂組成物。 V, The thermoplastic resin composition according to any one of the above.
PCT/JP2007/073467 2006-12-11 2007-12-05 Thermoplastic resin composition WO2008072514A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008549255A JPWO2008072514A1 (en) 2006-12-11 2007-12-05 Thermoplastic resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006333790 2006-12-11
JP2006-333790 2006-12-11

Publications (1)

Publication Number Publication Date
WO2008072514A1 true WO2008072514A1 (en) 2008-06-19

Family

ID=39511535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073467 WO2008072514A1 (en) 2006-12-11 2007-12-05 Thermoplastic resin composition

Country Status (3)

Country Link
JP (1) JPWO2008072514A1 (en)
TW (1) TW200838929A (en)
WO (1) WO2008072514A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150492A (en) * 2006-12-18 2008-07-03 Daicel Polymer Ltd Resin composition
EP2096142A1 (en) * 2008-02-29 2009-09-02 Sony Corporation Resin composition
JP2010121074A (en) * 2008-11-20 2010-06-03 Kao Corp Method for manufacturing pellet
JP2010143995A (en) * 2008-12-17 2010-07-01 Wintech Polymer Ltd Polyester resin composition and molded article thereof
JP2010214702A (en) * 2009-03-16 2010-09-30 Toyota Auto Body Co Ltd Fiber molding
JP2010215789A (en) * 2009-03-17 2010-09-30 Sony Corp Resin composition and molded article thereof, and method for producing the same
JP2011241317A (en) * 2010-05-19 2011-12-01 Nishikawa Rubber Co Ltd Resin composition
WO2014034071A1 (en) * 2012-08-31 2014-03-06 東レ株式会社 Thermoplastic resin composition and molded article
WO2017144502A1 (en) * 2016-02-22 2017-08-31 Basf Se Nucleating agent for compact thermoplastic polyurethanes
JP2019521208A (en) * 2016-06-29 2019-07-25 ボレアリス エージー Fiber reinforced polypropylene composite material
WO2019146421A1 (en) 2018-01-23 2019-08-01 ボスティック・ニッタ株式会社 Photocurable sealing material
CN113646367A (en) * 2019-03-28 2021-11-12 积水化成品工业株式会社 Plant-derived polyamide elastomer foam molded body, method for producing same, and foam particle thereof
WO2024055237A1 (en) * 2022-09-15 2024-03-21 Dic Corporation Composition containing phenylphosphonic acid zinc salt and zinc phosphate complex, method for producing the same, use of the same as crystal nucleating agent, and moisture-curable hotmelt urethane resin adhesive

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151310A (en) * 1995-08-30 1997-06-10 Shin Etsu Chem Co Ltd Polymer composition having biodegradability and shrink film
JP2002060605A (en) * 2000-08-18 2002-02-26 Mitsui Chemicals Inc Lactic acid-based polymer molded product
WO2004022649A1 (en) * 2002-09-09 2004-03-18 Sony Corporation Resin composition
WO2004063282A1 (en) * 2003-01-10 2004-07-29 Nec Corporation Kenaf-fiber-reinforced resin composition
JP2006089587A (en) * 2004-09-24 2006-04-06 Toyo Ink Mfg Co Ltd Resin composition for lactic acid-based resin and its utilization
JP2006289769A (en) * 2005-04-11 2006-10-26 Toray Ind Inc Fibrous board and its manufacturing method
JP2006328284A (en) * 2005-05-30 2006-12-07 Kuraray Co Ltd Resin composition and molded product
JP2006328369A (en) * 2005-04-26 2006-12-07 Toray Ind Inc Polylactic acid-based molded article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09151310A (en) * 1995-08-30 1997-06-10 Shin Etsu Chem Co Ltd Polymer composition having biodegradability and shrink film
JP2002060605A (en) * 2000-08-18 2002-02-26 Mitsui Chemicals Inc Lactic acid-based polymer molded product
WO2004022649A1 (en) * 2002-09-09 2004-03-18 Sony Corporation Resin composition
WO2004063282A1 (en) * 2003-01-10 2004-07-29 Nec Corporation Kenaf-fiber-reinforced resin composition
JP2006089587A (en) * 2004-09-24 2006-04-06 Toyo Ink Mfg Co Ltd Resin composition for lactic acid-based resin and its utilization
JP2006289769A (en) * 2005-04-11 2006-10-26 Toray Ind Inc Fibrous board and its manufacturing method
JP2006328369A (en) * 2005-04-26 2006-12-07 Toray Ind Inc Polylactic acid-based molded article
JP2006328284A (en) * 2005-05-30 2006-12-07 Kuraray Co Ltd Resin composition and molded product

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150492A (en) * 2006-12-18 2008-07-03 Daicel Polymer Ltd Resin composition
EP2096142A1 (en) * 2008-02-29 2009-09-02 Sony Corporation Resin composition
JP2010121074A (en) * 2008-11-20 2010-06-03 Kao Corp Method for manufacturing pellet
JP2010143995A (en) * 2008-12-17 2010-07-01 Wintech Polymer Ltd Polyester resin composition and molded article thereof
JP2010214702A (en) * 2009-03-16 2010-09-30 Toyota Auto Body Co Ltd Fiber molding
JP2010215789A (en) * 2009-03-17 2010-09-30 Sony Corp Resin composition and molded article thereof, and method for producing the same
JP2011241317A (en) * 2010-05-19 2011-12-01 Nishikawa Rubber Co Ltd Resin composition
JP5527489B1 (en) * 2012-08-31 2014-06-18 東レ株式会社 Thermoplastic resin composition and molded article
WO2014034071A1 (en) * 2012-08-31 2014-03-06 東レ株式会社 Thermoplastic resin composition and molded article
WO2017144502A1 (en) * 2016-02-22 2017-08-31 Basf Se Nucleating agent for compact thermoplastic polyurethanes
US10927253B2 (en) 2016-02-22 2021-02-23 Basf Se Nucleating agent for compact thermoplastic polyurethanes
JP2019521208A (en) * 2016-06-29 2019-07-25 ボレアリス エージー Fiber reinforced polypropylene composite material
US20190315954A1 (en) * 2016-06-29 2019-10-17 Borealis Ag Fiber reinforced polypropylene composite
WO2019146421A1 (en) 2018-01-23 2019-08-01 ボスティック・ニッタ株式会社 Photocurable sealing material
CN113646367A (en) * 2019-03-28 2021-11-12 积水化成品工业株式会社 Plant-derived polyamide elastomer foam molded body, method for producing same, and foam particle thereof
WO2024055237A1 (en) * 2022-09-15 2024-03-21 Dic Corporation Composition containing phenylphosphonic acid zinc salt and zinc phosphate complex, method for producing the same, use of the same as crystal nucleating agent, and moisture-curable hotmelt urethane resin adhesive

Also Published As

Publication number Publication date
TW200838929A (en) 2008-10-01
JPWO2008072514A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
WO2008072514A1 (en) Thermoplastic resin composition
JP5292614B2 (en) Biodegradable resin composition, method for producing the same, and molded article using the same
CA2900596C (en) Microstructured composite material, method for the production thereof, moulded articles made hereof and also purposes of use
JP4922124B2 (en) Polylactic acid resin composition and molded article thereof
WO2005123831A1 (en) Polylactic acid-containing resin composition and molded body obtained from same
KR101526742B1 (en) A resin composition of carbon fiber reinforced polypropylene with excellent molding property
JP5469322B2 (en) Environmentally friendly thermoplastic resin composition
JP5126940B2 (en) Aliphatic polyester resin composition and molded article thereof
JP2006328117A (en) Impact-resistant environmental material, method for producing the same, and molded article
CA2917356A1 (en) Heat resistant polylactic acid
de Carvalho et al. Rice husk/poly (propylene‐co‐ethylene) composites: Effect of different coupling agents on mechanical, thermal, and morphological properties
WO2018101022A1 (en) Composition for fiber-reinforced resin, production method therefor, fiber-reinforced resin, and molded object
WO2014034636A1 (en) Polylactic acid-type resin composition, and molded article produced by molding said composition
KR20200071817A (en) 3-dimension printer polylactic acid filament eggshell composition which has excellent heat resistance and mechanical property and filament for 3-dimension printer using the same
JP2010018694A (en) Thermoplastic resin composition and its manufacturing method, and thermoplastic resin molded item
JP2007091790A (en) Organic fiber-reinforced polylactic acid resin composition and molded article
KR101275451B1 (en) polylactic acid resin composition
JP2008201863A (en) Method for producing molded article of polylactic acid resin
JP2009209234A (en) Resin composition and molded article obtained by molding the same
JP5004068B2 (en) Polylactic acid resin composition and method for producing polylactic acid resin composition
WO2016001012A1 (en) Reinforced thermoplastic polymer composition
KR20120051489A (en) Polypropylene composite containing nano-size kenaf fiber
JP5460308B2 (en) Fiber-reinforced polylactic acid-containing resin composition and molded article thereof
JP2014105234A (en) Polylactic acid-based resin composition
JP2011132477A (en) Fiber-reinforced polylactic acid-containing resin composition and injection-molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850109

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008549255

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850109

Country of ref document: EP

Kind code of ref document: A1