WO2008071829A1 - MATERIAL SUPERCONDUCTOR NANOESTRUCTURADO TIPO REBa2Cu3O7 (RE=TIERRA RARA O YTRIO) CON UNA ELEVADA DENSIDAD DE CENTROS DE ANCLAJE DE VÓRTICES Y SU MÉTODO DE PREPARACIÓN - Google Patents

MATERIAL SUPERCONDUCTOR NANOESTRUCTURADO TIPO REBa2Cu3O7 (RE=TIERRA RARA O YTRIO) CON UNA ELEVADA DENSIDAD DE CENTROS DE ANCLAJE DE VÓRTICES Y SU MÉTODO DE PREPARACIÓN Download PDF

Info

Publication number
WO2008071829A1
WO2008071829A1 PCT/ES2007/070204 ES2007070204W WO2008071829A1 WO 2008071829 A1 WO2008071829 A1 WO 2008071829A1 ES 2007070204 W ES2007070204 W ES 2007070204W WO 2008071829 A1 WO2008071829 A1 WO 2008071829A1
Authority
WO
WIPO (PCT)
Prior art keywords
defects
nanoparticles
superconducting material
metal
superconducting
Prior art date
Application number
PCT/ES2007/070204
Other languages
English (en)
French (fr)
Inventor
Xavier Obradors Berenguer
Teresa Puig Molina
Susana RICART MIRÓ
Alberto Pomar Barbeito
Felip Sandiumenge Ortiz
Narcis Mestres Andreu
Anna LLORDÉS GIL
Marta GIBERT GUTIÉRREZ
Jofre Gutierrez Royo
Jaume GÁZQUEZ ALABART
Neus Roma Buyreu
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Priority to US12/519,359 priority Critical patent/US20100144536A1/en
Priority to JP2009540797A priority patent/JP2010513180A/ja
Priority to EP20070858288 priority patent/EP2104151B1/en
Publication of WO2008071829A1 publication Critical patent/WO2008071829A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/006Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1264Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing rare earth, e.g. La1-xCaxMnO3, LaMnO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/002Compounds containing, besides ruthenium, rhodium, palladium, osmium, iridium, or platinum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • C04B35/4508Type 1-2-3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/6325Organic additives based on organo-metallic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0324Processes for depositing or forming copper oxide superconductor layers from a solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0828Introducing flux pinning centres
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • C04B2235/3282Cuprates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention refers to sheets of superconducting material with high density of nanometric defects in its structure, suitable for effectively anchoring the vortices in an almost isotropic manner, and to the processes that effectively develop said defect structure.
  • the objects of the present invention are of special relevance in the following sectors:
  • Chemical Sector Soluble complex metalorganic chemical precursors.
  • Ceramic-metallurgical sector Deposition and growth of nanocomposite ceramic coatings on metal or ceramic substrates. Generation of functional nanostructures on ceramic or metal substrates
  • Energy, Electromechanical and Transport Sector Improvement of the efficiency of existing electrical equipment for the generation, transport, distribution and use of electrical energy, development of new power electrical equipment, powerful magnets for diverse applications (including nuclear fusion), Powerful and light electric motors for Aeronautics or Nautical.
  • Biomedicine and Pharmaceutical Sector New equipment, more powerful and capable of operating at higher temperatures, magnetic resonance imaging and new NMR spectrometers for molecular design.
  • New devices passive or active, that work in the microwave range and that are of interest in the field of Telecommunications STATE OF THE TECHNIQUE
  • High temperature superconducting materials have great potential to be used in very diverse technologies but for this it is an indispensable requirement to develop methodologies for obtaining conductors with high performance, in particular that they can transport high electrical currents without losses, even under high magnetic fields .
  • the first high temperature drivers that were developed were based on phases type BiSrCaCuO and these were called conductors I to generation (IG).
  • IG conductors I to generation
  • Synthesis methodologies based on metallurgical chemical solutions have demonstrated their potential as low-cost techniques for manufacturing thin and multilayer sheets of functional oxides and superconducting tapes with good performance but have not yet been practically used to obtain nanocomposite systems.
  • Recently thin film deposition techniques based on vacuum techniques laser ablation, sputtering, evaporation, ...) have shown that they can be used to obtain superconducting nanocomposites with second non-superconducting phases (JL Macmanus-Driscoll, SR Foltyn, QX Jia, H. Wang, A. Serquis, L. Civale, B.
  • the second crystalline phase is segregated in the form of a textured nanoparticle and can be distributed randomly or forming nanopillars that cross perpendicularly to the sheet.
  • a particular object of the invention is a system formed by the superconducting material of the invention and a substrate on which the superconducting material is deposited.
  • a particular embodiment of the invention is a system formed by the superconducting material of the invention and a rigid monocrystalline substrate sheet substrate.
  • Another particular object of the invention is the process for obtaining superconductors of the invention in which in step a) any anhydride corresponding to another organic acid that dissolves the oxide powders is used.
  • a particular embodiment of the invention is the process for obtaining superconductors of the invention in which in step a) trifluoroacetic anhydride ((CFsCO) 2 O) and a small amount of trifluoro acetic acid (CF 3 COOH) are used (5 % by volume) as the reaction catalyst.
  • step a) trifluoroacetic anhydride ((CFsCO) 2 O) and a small amount of trifluoro acetic acid (CF 3 COOH) are used (5 % by volume) as the reaction catalyst.
  • Another particular object of the present invention is the process for obtaining superconductors of the invention in which the substrate used in step b) has previously been coated with a layer of metal oxide nanoparticles (BaZrO 3 ,
  • Another object of the invention is the use of the superconducting material of the invention in electronic devices.
  • Another object of the invention is the use of the superconducting material of the invention in electrical systems, improving the existing one for the generation, transport and distribution of the use of electrical energy.
  • the performance of superconducting materials at high temperatures and low magnetic fields is determined by the ability to effectively anchor the vortices (quantum magnetic flux) existing in these materials and this process is optimal when there is a dense and homogeneous distribution of defects.
  • Superconductors with nanometric dimensions The crystalline defects that can give rise to this beneficial effect of anchoring vortices can be of a very diverse nature and must be considered at least the secondary phase nanoparticles, dislocations, stacking defects, non-superconducting phase intercropping, twinning planes , the residual tensions generated by all of them, etc.
  • the present invention refers to sheets of superconducting material with high density of nanometric defects in its structure, suitable for effectively anchoring the vortices almost isotropically, and to the processes that effectively develop said defect structure.
  • Nanometric defects are understood as nanoparticles, dislocations, partial dislocations surrounding some stacking defects, stacking defects or twinning planes.
  • the fact that the average separation between the nanometric defects of these materailes is only a few tens of nm allows the superconducting vortices to be practically anchored continuously along their entire length in said defects.
  • the high density of defects is what gives increased efficiency to the vortex anchoring process when high magnetic fields are applied in which its density is also high.
  • the anisotropy values of the critical current depend above all on the magnetic field and more weakly on the temperature.
  • the superconducting material of the invention at a magnetic field of 1 T when the orientation of the magnetic field is modified, shows variations of the critical current with a ratio between the maximum and the minimum of 1.5-1.8, which is a reduction of 100 % with respect to thin sheets of REBa 2 Cu 3 Oy prepared without secondary phases.
  • a particular object of the invention is a system formed by the superconducting material of the invention and a substrate on which the first one has been deposited.
  • a particular embodiment of the invention is the superconducting material of the invention deposited on rigid sheets of monocrystalline substrate.
  • Another particular object of the invention is the process for obtaining superconductors of the invention in which the alkali metal, alkaline earth, rare earth and / or transition metal salts used in step a) are organic salts such as acetates, trifluoroacetates, acetylacetonates , soluble ethylhexanoates or propionates in the reaction medium to prevent the formation of precipitates.
  • Another particular object of the invention is the process for obtaining superconductors of the invention in which in step a) complex anhydrous solutions of trifluoroacetates of RE, Ba and Cu are obtained, with various salts of Zr, Ce, Sn, Ru, La , Mn, Sr, Ca.
  • Another particular object of the invention is the process for obtaining superconductors of the invention in which in step a) any anhydride corresponding to another organic acid that dissolves the oxide powders is used.
  • a particular embodiment of the invention is the process for obtaining superconductors of the invention in which in step a) trifluoroacetic anhydride ((CFsCO) 2 O) and a small amount of trifluoro acetic acid (CF 3 COOH) are used (5 % by volume) as the reaction catalyst.
  • step a) trifluoroacetic anhydride ((CFsCO) 2 O) and a small amount of trifluoro acetic acid (CF 3 COOH) are used (5 % by volume) as the reaction catalyst.
  • step c) The choice of the maximum temperature during the heat treatment of step c) will be determined by the substrate used, as well as the minor secondary phase that is to be obtained in the material. Such heat treatment conditions will also be decisive for the generation of a suitable defect structure in the superconduct.
  • Said nanoparticles will be used as templates and on which the solutions of metallic trifluoroacetates prepared under anhydrous or partially hydrolyzed conditions will be deposited and decomposed and the object of their introduction is that they act as nucleating centers of defects in the superconducting layers deposited on them.
  • the process of formation of the nanoplantillas of oxides or metals consists of stages similar to those described above (deposition, pyrolysis and growth) but the concentrations of the metalorganic solutions of the oxides that are desired to be obtained are lower (0.003 to 0.02 M) with the so that they only partially cover the substrate.
  • the duration of the heat treatment and the atmosphere and temperature at which it is carried out will determine the size and morphology of the nanoparticles obtained.
  • the difference in crystalline lattice parameters between the oxide that grows in the form of a nanoparticle and the corresponding substrate constitutes a determining parameter.
  • Such an approach to the formation of nanoparticles will lead to epitaxial structures with a well-determined crystalline orientation. On the contrary, the previously synthesized nanoparticles will be randomly oriented.
  • the reason that explains the extraordinary improvement of superconducting performance lies in the formation of the high concentration of defects (10 3 -10 4 defects / ⁇ m 3 ) in the REBa 2 Cu 3 Oy matrix. This is because the secondary nanoparticles are randomly oriented, without any crystallographic relationship with the matrix, and therefore the interface has a high energy that acts as a driving force for the generation of defects.
  • the reason that the secondary phases are randomized is that their formation is prior to the crystallization of REBa 2 Cu 3 Oy and consequently all those that are located outside the interface with the substrate do not have any reason to orient according to an orientation crystallographic determined. This characteristic distinguishes the materials obtained from all those previously prepared by vacuum deposition techniques in which both phases crystallize simultaneously.
  • an added advantage of the described invention objects is that they have a reduced anisotropy of the critical currents. This is due to the fact that the defects generated have an isotropic character and because the angular distribution of the mosaic structure of the layers increases. Said decrease in anisotropy will allow greater flexibility in the design of superconducting coils based on the tapes that are manufactured based on the new process described in the present invention.
  • Another object of the invention is the use of the superconducting material of the invention in electronic devices.
  • Another object of the invention is the use of the superconducting material of the invention in electrical systems, improving the existing one for the generation, transport and distribution of the use of electrical energy.
  • Figure 1 Transversal image of transmission electron microscopy of a layer of YBa 2 Cu 3 O 7 with 5% by weight of BaZrO 3 nanoparticles.
  • Figure 2 Transmission electron microscopy image of a layer of YBa 2 Cu 3 O 7 with BaZrO 3 nanoparticles in which the large concentration of defects generated by them in the YBa 2 Cu 3 O 7 matrix can be observed.
  • Figure 6 Optical microscopy image of a layer of YBa 2 Cu 3 O 7 with 5% by weight of BaZrO 3 nanoparticles after the pyrolysis process.
  • Figure 7. X-ray diffraction spectrum ⁇ -2 ⁇ of a layer of YBa 2 Cu 3 O 7 with 5% by weight of BaZrO 3 nanoparticles.
  • Figure 8 Angular dependence of the critical current density at 77K as a function of the angle formed between the applied magnetic field and the substrate for a standard TFA-YBCO layer and a TFA-YBCO layer with BZO nanoparticles.
  • Figure 9. Optical microscopy image of a YBa 2 Cu 3 O 7 layer with 5% by weight of Y 2 O 3 nanoparticles after the pyrolysis process.
  • Figure 12 X-ray diffraction spectrum ⁇ -2 ⁇ of a layer of YBa 2 Cu 3 O 7 with 5% by weight of nanoparticles of Gd 2 O 3 .
  • Figure 13 Optical microscopy image of a layer of YBa 2 Cu 3 O 7 with 5% by weight of Au nanoparticles after the pyrolysis process.
  • Figure 16 Images obtained by Atomic Forces Microscopy of (a) nanpoints and (b) self-assembled nanobars of CeO 2 oxide grown on a monocrystalline substrate.
  • the mixture was heated at 5O 0 C for 72 hours under an inert atmosphere (Ar). It was then cooled to room temperature and filtered through a 0.45 ⁇ m filter. The resulting solution was then evaporated under pressure reduced using a rotary evaporator, first at room temperature (2 hours) and then progressively heating to 8O 0 C, obtaining the trifluoroacetates of Y, Ba and Cu. A part of the solid obtained was dissolved in acetone and another in methanol, both solutions being kept in closed vials and in an inert atmosphere. This solution was deposited by a spin coating technique on a monocrystalline substrate of SrTiO 3 of dimensions 5mm * 5mm, thickness 0.5mm and orientation (100).
  • Said humidity is achieved by passing the gas through some washing jars provided with a porous plate in its inner lower part, to divide the gas into small drops, thus increasing the surface of contact with the water.
  • the sample was stored in a desiccator.
  • the sample was characterized by scanning electron microscopy and X-ray diffraction ( Figure 10) where it is observed that Y 2 O 3 nanoparticles have been formed.
  • Example I From the solution of example I of the trifluoroacetates of Y, Ba and Cu to which 5% by weight of HAuCl 4 was added, it was deposited (14 ⁇ l) on a substrate of LaAlO 3 (of dimensions 5mm * 5mm, thickness 0.5 mm and orientation (100)) using the Spin-coating technique.
  • the deposited sample was decomposed following a pyrolysis process as described in Example I.
  • the sample thus pyrolized was characterized by Optical Microscopy to verify that it is homogeneous and free of cracks and roughness. ( Figure 13).
  • the heat treatment described in Example III was carried out from the pyrolized sample to achieve the formation of the YBa 2 Cu 3 O 7 and Au phases.
  • the sample was characterized by scanning electron microscopy ( Figure 14) and X-ray diffraction ( Figure 15) where it is observed that Au nanoparticles have been formed.
  • the resulting layer may have thicknesses in the range 300-800
  • a solution of Ce and Gd propionates was prepared, with molar proportions between 0 and 15% Gd, in isopropanol in concentrations between 0.02 M and 0.003 M and 14 ⁇ l were deposited on SrTiO 3 or LaAlO 3 substrates (orientation ( 100)) by spin coating.
  • a solution of Ba acetate and Zr acetylacetonate in stoichiometric 1: 1 molar ratios was also prepared. The deposited samples were decomposed following a pyrolysis process followed by a high temperature growth process (900 0 C-IOOO 0 C) with varying durations (5-30 minutes).
  • the atmosphere during growth can be O 2 or an Ar-5% H 2 mixture and the temperature rise ramp was set at ° C / h.
  • the morphology and size of the resulting self-assembled nanostructures were controlled by Atomic Forces Microscopy and some typical examples are shown in Figure 16. In these figures the nanometric dimensions of the structures generated from the Cei -x Gd x óxido2 oxide can be observed, thus as important modifications of its morphology (nanpoints, nanobars). These substrates constitute excellent templates for the deposition of superconducting sheets with improved performance.
  • Example II From the solution of example I of the trifluoroacetates of Y, Ba and Cu, (14 ⁇ l) was deposited in LaAlO 3 or SrTiO 3 substrates with self-assembled nanostructures obtained according to Example VII (dimensions 5mm * 5mm, thickness 0.5mm and orientation (10O)) by Spin-coating technique.
  • the deposited sample was decomposed following a pyrolysis process as described in Example I.
  • the sample thus pyrolized was characterized by Optical Microscopy to verify that it is homogeneous and free of cracks and roughness. From the pyrolized layers, heat treatment was performed to achieve the formation of the YBa 2 Cu 3 O 7 phase.
  • the carrier gas was changed to dry O 2 1 bar pressure and maintained at this temperature for 90 minutes. Then a ramp was made at 300 ° C / h to room temperature. The resulting layer is approximately 200-300 nm thick.
  • the sample was characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy and its critical currents were measured by inductive or transport techniques.
  • a typical TEM image is shown in Figure 17, showing that a BaZrO 3 nanoparticle induces defects in the REBa 2 Cu 3 O 7 matrix.
  • Figure 18 shows the dependence of critical currents with the 77K magnetic field on two samples grown on a nanostructured and a normal substrate. As can be seen there is an improvement in the critical current at high magnetic fields due to the defects induced in the REBa 2 Cu 3 O 7 matrix.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

La presente invención se refiere a un material superconductor nanoestructurado tipo REBa2Cu3O7, donde RE= Tierra Rara o Ytrio, que comprende dos fases, una matriz principal de REBa2Cu3O7 y una fase secundaria de BaZrO3, CeO2, BaSnO3, BaCeO3, SrRuO3, La1-x Mx MnO3 (M=Ca, Sr, Ba), RE2 O3 y/o RE2Cu2O5 ). La fase secundaria se encuentra distribuida al azar en el seno de la matriz de forma que proporciona una alta densidad de defectos nanométricos en la estructura del material, aumentando la capacidad de anclar eficazmente los vórtices. Otro objeto de la invención es el procedimiento por el cual se obtienen estos materiales superconductores.

Description

TITULO
Material superconductor nanoestructurado tipo REBa2Cu3O7 (RE=Tierra Rara o Ytrio) con una elevada densidad de centros de anclaje de vórtices y su método de preparación
SECTOR DE LA TÉCNICA
La presente invención hacer referencia a láminas de material superconductor con alta densidad de defectos nanométricos en su estructura, adecuada para anclar eficazmente los vórtices de forma casi isótropa, y a los procesos que desarrollan eficazmente dicha estructura de defectos. Los objetos de la presente invención son de especial relevancia en los siguientes sectores:
Sector Químico: Precursores químicos metalorgánicos complejos solubles.
Sector Cerámico-metalúrgico: Deposición y crecimiento de recubrimientos cerámicos nanocomposite sobre substratos metálicos o cerámicos. Generación de nanoestructuras funcionales sobre substratos cerámicos o metálicos
Sector Energético, Electromecánico y de Transporte: Mejora de la eficiencia del aparataje eléctrico existente para la generación, transporte, distribución y uso de la energía eléctrica, desarrollo de nuevos equipos eléctricos de potencia, imanes potentes para aplicaciones diversas (incluida la fusión nuclear), motores eléctricos potentes y ligeros para la Aeronáutica o la Náutica.
Sector Biomedicina y Farmacéutico: Nuevos equipos, más potentes y capaces de funcionar a temperaturas mayores, de diagnóstico por resonancia magnética y nuevos espectrómetros de RMN para diseño molecular.
Sector Electrónica: Nuevos dispositivos , pasivos o activos, que trabajan en el rango de las microondas y que son de interés en el campo de las Telecomunicaciones ESTADO DE LA TÉCNICA
Los materiales superconductores de alta temperatura tienen un gran potencial para ser usados en tecnologías muy diversas pero para ello es un requisito indispensable desarrollar metodologías de obtención de conductores con elevadas prestaciones, en particular que puedan transportar elevadas corrientes eléctricas sin pérdidas, incluso bajo campos magnéticos elevados. Los primeros conductores de alta temperatura que se desarrollaron se basaban en las fases tipo BiSrCaCuO y a éstos se les denominó conductores de Ia generación (IG). El desarrollo de estos materiales se vio profundamente revolucionado con el descubrimiento de una nueva metodología de preparación de una segunda generación (2G) de conductores, basados en materiales tipo REBa2Cu3Ov (donde RE= Tierra Rara o Ytrio), denominados conductores superconductores epitaxiales (CSE o "coated conductors").
Por otro lado, las tecnologías de Telecomunicaciones que trabajan en el rango de las microondas requieren el uso de láminas delgadas superconductoras debido a su baja resistencia superficial lo cual confiere unas mayores prestaciones a los dispositivos que se basan en dichos materiales. En particular es reseñable la necesidad de mejorar las corrientes críticas de las láminas superconductoras a fin de disminuir los efectos de no- linealidad a potencias elevadas. Para dichas aplicaciones los substratos necesarios son monocristales con bajas pérdidas en el rango de las microondas. Durante los últimos años se han desarrollado diversas metodologías de obtención de los CSE basándose en diversas arquitecturas multicapa con un alto potencial para aplicaciones a alto-campo, alta-temperatura y alta corriente. Se han seguido varias estrategias para la preparación de estos conductores 2G basadas principalmente en metodologías de deposición en vacío de capas epitaxiales en sustratos metálicos. Estos sustratos pueden tener o una lámina tampón con óxido texturado depositada por Ion Beam Deposition (IBAD) en un sustrato policristalino o pueden estar compuestos de capas tampón texturadas que replican la textura lograda en los sustratos via Rolling Assisted Biaxial Texturing (RABiTs) obtenida por medio de procesos termomecánicos. Otros enfoques interesantes son también aquellos donde la capa tampón texturada se logra por Oxidación Superficial Epitaxial (Surface oxidation epitaxy, SOE) o mediante depósito por evaporación inclinada (Inclined Surface Deposition, ISD). Una vez obtenidos dichos substratos texturados se lleva a cabo la deposición de óxidos epitaxiales en forma de multicapa que actúan como tampón a la difusión atómica y la oxidación y de la capa superconductora REBa2Cu3Oy que es la que transporta la corriente eléctrica. Para preparar dichas estructuras multicapa pueden utilizarse técnicas de deposición en vacío (evaporación, ablación láser, sputtering) o técnicas de depósito basadas en soluciones químicas metalorgánicas (CSD). Estas segundas son particularmente interesantes debido a sus posibilidades para desarrollar CSE con un bajo coste. Los precursores metalorgánicos más prometedores para aplicar la técnica CSD al crecimiento de láminas superconductores son los Trifluoroacetatos.
La demostración de la posibilidad de utilizar precursores de Trifluoroacetatos (TFA) para crecer el superconductor de REBa2Cu3Oy ha sido ampliamente descrito como un paso hacia delante muy relevante (A. Gupta, R. Jagannathan, E.I.Cooper, E.A.Giess, J.I.Landman, B.W.Hussey, "Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors" Appl. Phys. Lett. 52, 1988, 2077. P. C. Mclntyre, M. J. Cima, and M. F. Ng, "Metalorganic deposition of high-J Ba2YCu3Oy thin films from trifluoroacetate precursors onto (100) SrTiO3," /. Appl. Phys., 68, 1990, 4183). Estos precursores tienen BaF2, Y2O3 y CuO como productos finales después de la descomposición de los precursores metal-orgánicos y evitan, por lo tanto, la formación de BaCO3 lo cual permite crecer las películas delgadas de YBCO a temperaturas más bajas. Recientemente ha sido descrita una nueva metodología para la obtención de precursores anhidros de TFA que permiten obtener láminas de elevada calidad, a la vez que se reduce el tiempo requerido para el procesado de las láminas y se aumenta la estabilidad de la solución de los precursores (X. Obradors, T. Puig, S. Ricart, N. Roma, J.M. Moretó, A. Pomar, K. Zalamova, J. Gázquez and F. Sandiumenge, "Preparación de precursores metalorgánicos anhidros y uso para la deposición y crecimiento de capas y cintas superconductoras" 2005, Patente 200500749 España; N.Roma, S.Morlens, S. Ricart, K. Zalamova, J.M.Moreto, A. Pomar,T. Puig and X. Obradors, "Acid anhydrides: a simple route to highly puré organometallic solutions for superconducting films" Supercond. ScL Technol. 2006, 19, 521). Dichos precursores han sido usados ampliamente para obtener láminas y multicapas de elevada calidad cristalina y buenas propiedades superconductoras (X. Obradors, T. Puig, A. Pomar, F. Sandiumenge, N. Mestres, M. CoIl, A. Cavallaro, Roma, J. Gázquez, J. C. González, O. Castaño, J. Gutiérrez, A. Palau, K. Zalamova, S. Morlens, A. Hassini, M. Gibert, S. Ricart, J.M. Moretó, S. Pinol, D. Isfort, J. Bock. "Progress towards all chemical superconducting YBCO coated conductors" Supercond. ScL Technol. 2006 19 S 13).
Sin embargo, el avance más significativo requerido actualmente en el campo de las CSE es el desarrollo de metodologías radicalmente innovadoras para la generación de nanoestructuras embebidas en las películas epitaxiales de YBCO. El motivo científico para construir esta nueva clase de CSE nanocomposite radica en la necesidad de desarrollar centros de anclaje de vórtices eficientes. La capacidad de los materiales superconductores para soportar corrientes grandes en campos magnéticos sin pérdidas está controlada por su habilidad para atrapar los vórtices en defectos no- superconductores. La densidad de corriente crítica Jc se alcanza cuando los vórtices se liberan y dejan de estar inmovilizados por los defectos nanométricos. Si se consigue el anclaje eficiente de los vórtices será posible el desarrollo de sistemas electrotécnicos a temperaturas altas (60-77 K) y altos campos magnéticos (1-5 Tesla). Los centros de anclaje ideales deben tener un diámetro de 10-50 nm y una elevada densidad para maximizar el volumen del núcleo del vórtice anclado. No es necesario sin embargo conseguir orden a largo alcance de los defectos.
La irrupción de las estrategias bottom-up en la Nanotecnología ha revolucionado esta disciplina a causa de su gran potencial como una metodología de bajo coste que puede ser fácilmente trasladada a la producción a gran escala aumentada de materiales avanzados nano-estructurados. Esta estrategia permite implementar ideas radicalmente nuevas para desarrollar materiales nanocomposite o nano-estructurados que exhiban nuevas o mejores funcionalidades. Hasta ahora la nanoestructuración de superconductores sólo se había conseguido usando técnicas de litografiado en vacío clásicas. Estos materiales nanoestructurados exhiben propiedades físicas muy atrayentes tales como los fenómenos de anclaje de vórtices, no obstante estas técnicas de nanoestructuración top-down están limitadas a áreas pequeñas debido a su alto costo. Las metodologías de síntesis basadas en soluciones químicas metalorgánicas (CSD) han demostrado su potencial como técnicas de bajo coste para fabricar láminas delgadas y multicapas de óxidos funcionales y cintas superconductoras con buenas prestaciones pero no han sido aún prácticamente utilizadas para la obtención de sistemas nanocomposite. Recientemente las técnicas de deposición de láminas delgadas basadas en técnicas de vacio (ablación láser, sputtering, evaporación,...) han demostrado que pueden ser utilizadas para obtener nanocomposites superconductores con segundas fases no superconductoras (J. L. Macmanus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. P. Maley, and D. E. Peterson, "Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3Oy-X + BaZrO3" Nature Mat. 2004 3, 439 ; A.Goyal, S.Kang, K. J. Leonard, P.M.Martin, A. A. Gapud, M.Varela, M. Paranthaman, A. O. Ijaduola, E. D. Specht, J. R. Thompson, D. K. Christen, S. J. Pennycook and F. A. List, "Irradiation-free, columnar defects comprised of self- assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7-X films" Supercond. ScL Technol. 2005 18 1533; Y. Yamada, K. Takahashi, H. Kobayashi, M. Konishi, T. Watanabe, A. Ibi,T. Muroga, and S. Miyata T. Kato, T. Hirayama, Y. Shiohara, "Epitaxial nanostructure and defects effective for pinning in (Y,RE)Ba2Cu307-x coated conductors" Applied Physics Letters. 2005, 87, 132502 ). La segunda fase cristalina se segrega en forma de nanopartícula texturada y puede estar distribuida al azar o formando nanopilares que atraviesan perpendicularmente a la lámina. Dichas nanoestructuras han mostrado un cierto éxito en la mejora de las propiedades superconductoras, en particular su corriente crítica, dependiendo tanto de sus dimensiones en la escala nanométrica como de si son capaces de generar defectos en la matriz superconductora de YBCO. La mejora se produce principalmente cuando el campo magnético está orientado a lo largo de los defectos columnares creados. No obstante, a pesar de que dichos trabajos han sugerido una vía prometedora para obtener nuevos conductores con prestaciones mejoradas, no han sido aún capaces de introducir cambios drásticos (M.W.Rupich, T.Kodenkandath, N.Grafton, W.Zhang, X.Li. "Oxide films with nanodot flux pinning centres", US Patent 2005 /0159298 Al).
DESCRIPTIVA DE LA INVENCIÓN
Descripción breve
Un objeto de la presente invención es un material superconductor nanoestructurado tipo REBa2Cu3O7, donde RE= Tierra Rara o Ytrio, en adelante material superconductor de la invención, caracterizado por una estuctura que comprende:
" dos fases: o Una matriz principal de REBa2Cu3Oy o Una fase secundaria de BaZrO3, CeO2, BaSnO3, BaCeO3, SrRuO3, Lai. JVlxMnO3 (M=Ca, Sr, Ba), RE2O3 y/o RE2Cu2O5) distribuida al azar en el seno de la matriz de forma que modifica profundamente la nanoestructura del superconductor.
" y con una densidad de defectos nanométricos en su estructura en el rango de 103-104 defectos/μm3, de forma que la separación entre defectos se reduce a unas decenas de nm.
" y una reducción de la anisotropía de la corriente crítica, por debajo del valor de las láminas delgadas de REBa2Cu3Oy preparadas sin fases secundarias, causada por los defectos generados.
Un objeto particular de la invención es un sistema formado por el material superconductor de la invención y un subtrato sobre el cual se deposita el material superconductor. Una realización particular de la invención es un sistema formado por el material superconductor de la invención y un subtrato de láminas rígidas de substrato monocristalino.
Otra realización particular de la invención es un sistema formado por el material superconductor de la invención y un subtrato de cintas metálicas flexibles. Otro objeto de la invención es el procedimiento para obtener capas delgadas de óxidos superconductores nanoestructurados tipo REBa2Cu3O7 y que comprende las etapas de: a) Preparación de una solución precursora tipo trifluoroacetato, b) Deposición de la solución en un substrato mediante cualquier método que permita controlar el grosor de la lámina de forma homogénea, c) Descomposición de los precursores metalorgánicos mediante tratamiento térmico en atmósfera controlada, d) Tratamiento térmico a alta temperatura y en atmósfera controlada para la cristalización de la lámina superconductora, en adelante procedimiento para obtener superconductores de la invención, en el que la solución precursora de la etapa a) contiene proporciones variables de sales de metales alcalinos, alcalino tórreos, tierras raras y/o metales de transición
Otro objeto particular de la invención es el procedimiento para obtener superconductores de la invención en el que las sales de metales alcalinos, alcalino tórreos, tierras raras y/o metales de transición utilizadas en la etapa a) son sales orgánicas como acetatos, trifluoroacetatos, acetilacetonatos, etilhexanoatos o propionatos solubles en el medio de reacción para evitar la formación de precipitados.
Otro objeto particular de la invención es el procedimiento para obtener superconductores de la invención en el que en la etapa a) se obtienen soluciones anhidras complejas de trifluoroacetatos de RE, Ba y Cu, con sales diversas de Zr, Ce, Sn, Ru, La, Mn, Sr, Ca.
Otro objeto particular de la invención es el procedimiento para obtener superconductores de la invención en el que en la etapa a) se utiliza cualquier anhídrido correspondiente a otro ácido orgánico que disuelva los polvos de óxido.
Un realización particular de la invención es el procedimiento para obtener superconductores de la invención en el que en la etapa a) se utilizan el anhídrido trifluoroacético ((CFsCO)2O) y una pequeña cantidad de ácido trifluoro acético (CF3COOH) (5% en volumen) como catalizador de la reacción. Otro objeto particular de la presente invención es el procedimiento para obtener superconductores de la invención en el que en la etapa a) se utilizan soluciones de trifluoroacetatos metálicos con proporciones variables de nanopartículas de metales (Ag, Au) u óxidos metálicos (BaZrO3, CeO2, BaSnO3, BaCeO3, SrRuO3, Lai-xMxMn03 (M=Ca, Sr, Ba), RE2O3) en las que dichas nanopartículas han sido preparadas mediante reacciones de oxidación-reducción, precipitación y estabilización utilizando tensioactivos, polímeros o especies orgánicas capaces de unirse a la superficie de las mismas evitando su agregación.
Otro objeto particular de la presente invención es el procedimiento para obtener superconductores de la invención en el que el sustrato utilizado en la etapa b) ha sido previamente recubierto de una capa de nanopartículas de óxidos metálicos (BaZrO3,
CeO2, BaSnO3, BaCeO3, SrRuO3, Lai-xMxMn03 (M=Ca, Sr, Ba), RE2O3) mediante procesos de autoensamblado basados en el crecimiento a partir de soluciones metaloorgánicas o en el depósito de nanopartículas previamente sintetizadas.
Otro objeto de la invención es el uso del material superconductor de la invención en dispositivos electrónicos. Otro objeto de la invención es el uso del material superconductor de la invención en sistemas eléctricos, mejorando el existente para la generación, transporte y distribución del uso de la energía eléctrica.
Descripción detallada Las prestaciones de los materiales superconductores a altas temperaturas y bajos campos magnéticos vienen determinadas por la capacidad de anclar eficazmente los vórtices (cuantos de flujo magnético) existentes en estos materiales y dicho proceso es óptimo cuando existe una distribución densa y homogénea de defectos no superconductores con dimensiones nanométricas. Los defectos cristalinos que pueden dar lugar a este efecto beneficioso de anclar vórtices pueden ser de naturaleza muy diversa y deben considerarse como mínimo las nanopartículas de fases secundarias, las dislocaciones, los defectos de apilamiento, los intercrecimientos de fases no superconductoras, los planos de macla, las tensiones residuales generadas por todos ellos, etc. La densidad de corriente crítica en los materiales superconductores es normalmente anisótropa debido a su estructura cristalográfica, es decir depende de la orientación del campo magnético H respecto a los ejes cristalográficos del material superconductor. Para la mayoría de aplicaciones electrotécnicas es deseable minimizar dicha anisotropía y por lo tanto el desarrollo de métodos para la fabricación de materiales como los que se describen en la presente invención que reducen dicha anisotropía son de un gran interés práctico.
La presente invención hacer referencia a láminas de material superconductor con alta densidad de defectos nanométricos en su estructura, adecuada para anclar eficazmente los vórtices de forma casi isótropa, y a los procesos que desarrollan eficazmente dicha estructura de defectos. Un objeto de la presente invención es un material superconductor nanoestructurado tipo REBa2Cu3Oy, donde RE= Tierra Rara o Ytrio, en adelante material superconductor de la invención, caracterizado por una estructura que comprende:
" dos fases: o Una matriz principal de REBa2Cu3Oy o Una fase secundaria de BaZrO3, CeO2, BaSnO3, BaCeO3, SrRuO3, Lai. JVlxMnO3 (M=Ca, Sr, Ba), RE2O3 y/o RE2Cu2O5) distribuida al azar en el seno de la matriz de forma que modifica profundamente la nanoestructura del superconductor. " y con una densidad de defectos nanométricos en su estructura en el rango de
103-104 defectos/μm3, de forma que la separación entre defectos se reduce a unas decenas de nm.
" y una reducción de la anisotropía de la corriente crítica, por debajo del valor de las láminas delgadas de REBa2Cu3Oy preparadas sin fases secundarias, causada por los defectos generados.
Se entiende por defectos nanométricos las nanopartículas, dislocaciones, dislocaciones parciales que rodean a algunos defectos de apilamiento, defectos de apilamiento o planos de macla. El hecho de que la separación media entre los defectos nanométricos de estos materailes sea sólo de unas decenas de nm permite que los vórtices superconductores prácticamente puedan anclarse de forma continua a lo largo de toda su longitud en dichos defectos. La alta densidad de defectos es la que confiere una eficacia aumentada al proceso de anclaje de vórtices cuando se aplican campos magnéticos elevados en los cuales su densidad es asimismo elevada.
Los valores de anisotropía de la corriente crítica dependen sobretodo del campo magnético y más débilmente de la temperatura. El material superconductor de la invención a un campo magnético de 1 T, cuando se modifica la orientación del campo magnético, muestra variaciones de la corriente crítica con un cociente entre el máximo y el mínimo de 1.5-1.8, lo cual es una reducción de 100% respecto a las láminas delgadas de REBa2Cu3Oy preparadas sin fases secundarias. Un objeto particular de la invención es un sistema formado por el material superconductor de la invención y un substrato sobre el cual se ha depositado el primero. Una realización particular de la invención es el material superconductor de la invención depositado sobre láminas rígidas de substrato monocristalino.
Otra realización particular de la invención es el material superconductor de la invención depositado sobre cintas metálicas flexibles. Otro objeto de la invención es el procedimiento para obtener capas delgadas de óxidos superconductores nanoestructurados tipo REBa2Cu3Oy y que comprende las etapas de: a) Preparación de una solución precursora tipo Trifluoroacetato, b) Deposición de la solución en un substrato mediante cualquier método que permita controlar el grosor de la lámina de forma homogénea, c) Descomposición de los precursores metalorgánicos mediante tratamiento térmico en atmósfera controlada, d) Tratamiento térmico a alta temperatura y en atmósfera controlada para la cristalización de la lámina superconductora, en adelante procedimiento para obtener superconductores de la invención, en el que la solución precursora de la etapa a) contiene proporciones variables de sales de metales alcalinos, alcalino térreos, tierras raras y/o metales de transición
La diferencia fundamental de este método, con respecto al método descrito por la solicitud de patente PCT/ ES2005/070056 radica en la utilización de sales de metales alcalinos, alcalinoterreos, tierras traras y/o metales de transición en el precursor. Estas sales conducen a la formación de una fase secundaria (BaZrO3, CeO2, BaSnO3, BaCeO3, SrRuO3, Lai-xMxMn03 (M=Ca, Sr, Ba), RE2O3, RE2Cu2O5) dentro de la matriz principal de REBa2Cu3Oy proporcionando una alta densidad de defectos nanométricos en la estructura del material, aumentando la capacidad de anclar eficazmente los vórtices. Otro objeto particular de la invención es el procedimiento para obtener superconductores de la invención en el que las sales de metales alcalinos, alcalino térreos, tierras raras y/o metales de transición utilizadas en la etapa a) son sales orgánicas como acetatos, trifluoroacetatos, acetilacetonatos, etilhexanoatos o propionatos solubles en el medio de reacción para evitar la formación de precipitados . Otro objeto particular de la invención es el procedimiento para obtener superconductores de la invención en el que en la etapa a) se obtienen soluciones anhidras complejas de trifluoroacetatos de RE, Ba y Cu, con sales diversas de Zr, Ce, Sn, Ru, La, Mn, Sr, Ca. Otro objeto particular de la invención es el procedimiento para obtener superconductores de la invención en el que en la etapa a) se utiliza cualquier anhídrido correspondiente a otro ácido orgánico que disuelva los polvos de óxido.
Un realización particular de la invención es el procedimiento para obtener superconductores de la invención en el que en la etapa a) se utilizan el anhídrido trifluoroacético ((CFsCO)2O) y una pequeña cantidad de ácido trifluoro acético (CF3COOH) (5% en volumen) como catalizador de la reacción.
La elección de la temperatura máxima durante el tratamiento térmico de la etapa c) vendrá determinada por el substrato utilizado, así como la fase secundaria minoritaria que quiere obtenerse en el material. Dichas condiciones de tratamiento térmico serán asimismo determinantes para la generación de una estructura de defectos adecuada en el superconducto.
Otro objeto particular de la presente invención es el procedimiento para obtener superconductores de la invención en el que en la etapa a) se utilizan soluciones de trifluoroacetatos metálicos con proporciones variables de nanopartículas de metales (Ag, Au) u óxidos metálicos (BaZrO3, CeO2, BaSnO3, BaCeO3, SrRuO3, Lai-xMxMn03 (M=Ca, Sr, Ba), RE2O3) en las que dichas nanopartículas han sido preparadas mediante reacciones de oxidación-reducción, precipitación y estabilización utilizando tensioactivos, polímeros o especies orgánicas capaces de unirse a la superficie de las mismas evitando su agregación (ácido oleico y derivados del mismo, dodecilamina, PVP, PEG, tioles de cadena larga). Estas partículas estarán preparadas en forma de solución de concentración conocida compatible con el disolvente utilizado en la solución de los trifuoroacetatos metálicos.
Otro objeto particular de la presente invención es el procedimiento para obtener superconductores de la invención en el que el sustrato utilizado en la etapa b) ha sido previamente recubierto de una capa de nanopartículas de óxidos metálicos (BaZrO3, CeO2, BaSnO3, BaCeO3, SrRuO3, Lai-xMxMn03 (M=Ca, Sr, Ba), RE2O3) mediante procesos de autoensamblado basados en el crecimiento a partir de soluciones metaloorgánicas o en el depósito de nanopartículas previamente sintetizadas. Dichas nanopartículas serán usadas como plantillas y sobre los que se depositarán y descompondrán las soluciones de trifluoroacetatos metálicos preparados en condiciones anhidras o parcialmente hidrolizadas y el objeto de su introducción es que actúen como centros nucleadores de defectos en las capas superconductoras depositadas sobre ellas.
El proceso de formación de las nanoplantillas de óxidos o metales consta de etapas similares a las descritas anteriormente (deposición, pirólisis y crecimiento) pero las concentraciones de las soluciones metalorgánicas de los óxidos que se desean obtener son menores (0.003 a 0.02 M) con el fin de que sólo cubran parcialmente el substrato. La duración del tratamiento térmico y la atmósfera y temperatura en la que se realiza determinarán el tamaño y morfología de las nanopartículas que se obtengan. Asimismo constituye un parámetro determinante la diferencia de los parámetros de red cristalina entre el óxido que crece en forma de nanopartícula y el substrato correspondiente. Dicha aproximación a la formación de nanopartículas conducirá a estructuras epitaxiales con una orientación cristalina bien determinada. Por el contrario las nanopartículas previamente sintetizadas estarán orientadas al azar.
En todos los objetos de invención descritos anteriormente la particularidad que confiere una utilidad práctica a los superconductores emana del hecho de haber creado mediante una adecuada selección de composición y proceso una densa estructura de defectos en la matriz de REBa2Cu3Oy que anclan eficazmente a los vórtices. En las Figura 1 y Figura 2 se muestran imágenes de Microscopía Electrónica de Transmisión en las cuales se aprecia que la red cristalina de REBa2Cu3Oy está fuertemente desordenada cuando se han introducido nanopartículas de BaZrO3. Particularmente se identifican las propias nanopartículas y diversos tipos de deformaciones de la red tales como intercrecimientos y dislocaciones los cuales conducen a un intenso vadeo de los planos cristalográficos. El éxito con el que se generen dichas estructuras desordenadas es el que determinará la mejora de las prestaciones del material superconductor bajo campos magnéticos intensos.
La razón que explica la extraordinaria mejora de prestaciones superconductoras radica en la formación de la elevada concentración de defectos (103-104 defectos/μm3) en la matriz de REBa2Cu3Oy. Ello es debido a las nanopartículas secundarias están orientadas al azar, sin ninguna relación cristalográfica con la matriz, y por ello la interfase tiene una elevada energía que actúa como fuerza motriz para la generación de defectos. La razón de que las fases secundarias estén distribuidas al azar es que su formación es previa a la cristalización de REBa2Cu3Oy y en consecuencia todas aquellas que se localicen fuera de la interfase con el substrato no poseen ninguna razón para orientarse según una orientación cristalográfica determinada. Esta característica distingue a los materiales obtenidos de todos aquellos previamente preparados por técnicas de deposición en vacio en las cuales ambas fases cristalizan simultáneamente.
Por todo ello es particularmente importante controlar el tamaño de las nanopartículas secundarias lo cual redundará en un control de la concentración de los defectos generados. Debe evitarse por otra parte la formación de un exceso de volumen de fase no superconductora (por ejemplo con precipitados o poros de tamaño micrométrico o superior ya que ello conduciría a un efecto pernicioso de blocaje de la circulación de la corriente y por tanto a una disminución de sus prestaciones eléctricas. Es por ello que el mantenimiento del tamaño nanométrico de los defectos creados es de una gran relevancia.
Finalmente una ventaja añadida de los objetos de invención descritos es que presentan una anisotropía disminuida de las corrientes críticas. Ello es debido a que los defectos generados tienen un carácter isotrópico y a que aumenta la distribución angular de la estructura en mosaico de las capas. Dicha disminución de la anisotropía permitirá una mayor flexibilidad en el diseño de bobinas superconductoras basadas en las cintas que se fabriquen basándose en el nuevo proceso descrito en la presente invención.
Otro objeto de la invención es el uso del material superconductor de la invención en dispositivos electrónicos.
Otro objeto de la invención es el uso del material superconductor de la invención en sistemas eléctricos, mejorando el existente para la generación, transporte y distribución del uso de la energía eléctrica. Descripción de las Figuras:
Figura 1 Imagen transversal de microscopía electrónica de transmisión de una capa de YBa2Cu3O7 con un 5% en peso de nanopartículas de BaZrO3.
Figura 2 Imagen de microscopía electrónica de transmisión de una capa de YBa2Cu3O7 con nanopartículas de BaZrO3 en la que puede observarse la gran concentración de defectos generados por éstas en la matriz de YBa2Cu3O7.
Figura 3 Corriente crítica a 65K en función del campo magnético aplicado perpendicular al sustrato de una capa de referencia de YBa2Cu3O7 y una capa de YBa2Cu3O7 con 10%molar de nanopartículas de BaZrO3. Figura 4. Corriente crítica a 77K en función del campo magnético aplicado perpendicular al sustrato de una capa de referencia de YBa2Cu3O7 y una capa de YBa2Cu3O7 con 10%molar de nanopartículas de BaZrO3.
Figura 5. Fuerza de pinning a 77K, FP=JCB en función del campo magnético aplicado perpendicularmente al sustrato de una capa TFA-YBCO standard y de una capa TFA- YBCO con nanopartículas de BZO. Por comparación también se muestra la dependencia de la fuerza de pinning de un hilo superconductor convencional de NbTi a 4.2K.
Figura 6. Imagen de microscopía óptica de una capa de YBa2Cu3O7 con 5% en peso de nanopartículas de BaZrO3 después del proceso de pirólisis. Figura 7. Espectro de difracción de rayos X Θ-2Θ de una capa de YBa2Cu3O7 con 5% en peso de nanopartículas de BaZrO3.
Figura 8. Dependencia angular de la densidad de corriente crítica a 77K en función del ángulo formado entre el campo magnético aplicado y el sustrato para una capa TFA- YBCO standard y una capa TFA-YBCO con nanopartículas de BZO. Figura 9. Imagen de microscopía óptica de una capa de YBa2Cu3O7 con un 5% en peso de nanopartículas de Y2O3 después del proceso de pirólisis.
Figura 10. Espectro de difracción de rayos X Θ-2Θ de una capa de YBa2Cu3O7 con 5% en peso de nanopartículas de Y2O3. Figura 11 Imagen de microscopía óptica de una capa de YBa2Cu3Oy con 5% en peso de nanopartículas de Gd2O3 después del proceso de pirólisis.
Figura 12. Espectro de difracción de rayos X Θ-2Θ de una capa de YBa2Cu3O7 con 5% en peso de nanopartículas de Gd2O3. Figura 13. Imagen de microscopía óptica de una capa de YBa2Cu3O7 con 5% en peso de nanopartículas de Au después del proceso de pirólisis.
Figura 14. Imagen de microscopía electrónica de barrido de una capa de YBa2Cu3O7 con 5% en peso de nanopartículas de Au.
Figura 15. Espectro de difracción de rayos X Θ-2Θ de una capa de YBa2Cu3O7 con 5% en peso de nanopartículas de Au.
Figura 16 Imágenes obtenidas mediante Microscopía de Fuerzas Atómicas de (a) nanopuntos y (b) nanobarras autoensambladas del óxido CeO2 crecidos sobre un substrato monocristalino.
Figura 17. Defectos inducidos por los nanopuntos interfaciales de BaZrO3 en la matriz de YBCO (TEM)
Figura 18 Corrientes crítica en función del campo magnético a 77 K de YBCO crecido sobre nanoplantillas autoensambladas (círculos rojos). Por comparación también se muestran los resultados para una capa de YBCO standard (círculos azules).
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN Ejemplo I
Se preparó una solución de 50 mL de trifluoroacetatos de Y, Ba y Cu con una concentración total de metales de 1.5M (relación Y:Ba:Cu de 1:2:3). Para ello se pesaron 8.334 g (0.0125moles) de YBa2Cu3O7 comercial en un matraz esférico de 250 mL, acoplado a un refrigerante Dimroth y provisto de agitación magnética. Se añadieron además 25 mL de acetona seca recién destilada, 22 mL de anhídrido trifluoroacético (0.00015 ornóles) (adición lenta para evitar sobrecalentamientos) y 5mL de ácido trifluoroacético. La mezcla se calentó a 5O0C durante 72 horas en atmósfera inerte (Ar). Seguidamente se enfrió a temperatura ambiente y se filtró a través de un filtro de 0.45 μm. Se procedió entonces a evaporar la solución resultante a presión reducida utilizando un evaporador rotatorio, primero a temperatura ambiente (2 horas) y calentando luego progresivamente a 8O0C, obteniéndose los trifluoroacetatos de Y, Ba y Cu. Una parte del sólido obtenido se disolvió en acetona y otra en metanol manteniéndose ambas soluciones en viales cerrados y en atmósfera inerte. Esta solución se depositó por una técnica de spin coating en un sustrato monocristalino de SrTiO3 de dimensiones 5mm*5mm, grosor 0.5mm y orientación (100). A continuación se realizó la pirólisis, consistente en la descomposición de la materia orgánica. Para ello se utilizó un crisol de alúmina (donde se pone el sustrato) que se introdujo en un tubo de cuarzo de 23mm de diámetro, el cual se puso en el interior de un horno. El programa seguido por el horno consiste en una rampa de 300°C/h hasta una temperatura máxima de 31O0C, la cual se mantuvo durante 30 minutos. Se necesita el uso de una atmósfera controlada en el interior del horno, para ello se trabajó con una presión de oxígeno de 1 bar, un flujo de 0.051/min y una presión de agua de 24 mbar. Dicha humedad se consigue haciendo pasar el gas por unos frascos lavadores dotados de una placa porosa en su parte inferior interna, para dividir el gas en pequeñas gotas, aumentando así la superficie de contacto con el agua. Al finalizar el proceso, la muestra se guardó en un desecador.
A partir de la capas pirolizada, se realizó el tratamiento térmico para conseguir la formación de la fase YBa2Cu3O7. Se trabajó con un horno, al que se le aplicó una subida rápida de temperatura (25°C/min) hasta llegar a temperaturas en el rango 790°C-815°C. Dicha temperatura se mantuvo durante 180 minutos (los 30 últimos minutos en seco) y luego se aplicó una rampa a una velocidad de 2.5 °C/min hasta la temperatura ambiente. En este caso se utilizó 0.2 mbar de O2 y 7 mbar de presión de agua. El flujo del gas fue el que permite el controlador másico de flujo utilizado (Bronkhorst High-Tech) para realizar la mezcla con un rango de 0.012 a 0.6 1/min para el N2 y de entre 0.006 y 0.03 1/min para el O2. Sin sacar la muestra del horno, se realizó la oxigenación de dicha muestra utilizando la misma atmósfera seca. Se subió a 4500C, se cambió el gas portador por O2 seco a 1 bar de presión y se mantuvo a esta temperatura por un tiempo de 90 minutos. A continuación se realizó una rampa a 300°C/h hasta temperatura ambiente. La capa resultante puede tener espesores en el rango de aproximadamente 300-800 nm. La caracterización de la muestra se realizó mediante difracción de rayos X, imágenes de SEM, y mediciones de la corriente crítica a 77K (J c = 3.5 x 106 A/cm2). Como valores de referencia, se caracterizó la dependencia de la corriente crítica en función del campo magnético aplicado perpendicular al sustrato a 65K (Figura 3) y 77K (Figura 4). Se encontró que a H=I T, Jc = 0.45 x 106 A/cm2 a 65K. En ausencia de campo aplicado, Jc =4.2 x l06 A/cm2 a 65K
La obtención de estos valores de corriente crítica permiten calcular la fuerza de pinning a 77 K
Figure imgf000019_0001
(Figura 5). Finalmente, se caracterizó asimismo la anisotropía de la corriente crítica Jc(θ) cuando el campo magnético sufre una rotación desde la orientación H//c a H//ab (Figura 8).
Ejemplo II
En un vial con tapón tipo septum se pesaron 21.3 mg de Ba(TFA)2 (5.9 10"6 moles) y 28.6 mg de Zr(acac)4 (5.9 10"6 moles) sobre ellos se adicionaron 2mL de la solución metano lica de YBCO preparada como en el ejemplo I, se agitó la mezcla a temperatura ambiente y se filtró a través de un filtro de 0.45 μm. La mezcla así preparada se conservó en atmósfera de Ar.
Se realizaron análisis de ICP con el objeto de verificar que había cambiado la relación estequiométrica inicial pasando a contener el % en exceso esperado (5%) de sales de bario y zirconio.
A partir de esta solución trifluoroacetatos de Y, Ba y Cu, que contenían un 5% en exceso de sales de Ba y Zr se realizó su depósito en un sustrato de SrTiO3 en las mismas condiciones que las indicadas en el Ejemplo I. La muestra depositada se descompuso siguiendo un proceso de pirólisis como el descrito en el Ejemplo I. La muestra así pirolizada se caracterizó por Microscopía Óptica para comprobar que es homogénea y libre de grietas y rugosidades. (Figura 6).
A partir de la muestra pirolizada se realizó el tratamiento térmico descrito en el Ejemplo I para conseguir la formación de las fases de YBa2Cu3O7 y BaZrO3. La capa resultante puede tener espesores en el rango de 200-800 nm. La muestra se caracterizó por Microscopía electrónica de barrido y por difracción de rayos X (Figura 7) donde se observan que nanopartículas de BaZrO3 han sido formadas. Además las nanopartículas así formadas de BaZrO3 se observaron mediante Microscopía Electrónica de transmisión al mismo tiempo que se aprecia la formación de una alta densidad de defectos en la matriz de YBCO circundante a las nanopartículas (Figura 1 y Figura 2 ). Para estudiar la influencia de las nanopartículas así formadas de BaZrO3, así como de los defectos que generan, la corriente crítica de transporte de la muestra se midió por una técnica standard de cuatro puntas a 65K (Figura 3) y a 77K (Figura 4). Se obtuvo un valor a 77K de Jc= 6.5 xlO6 A/cm2 en ausencia de campo magnético aplicado y de Jc= 2.2 xlO6 A/cm2 en campo magnético de H=IT perpendicular al sustrato. A 65 K, se obtuvo Jc= 15 xlO6 A/cm2 en ausencia de campo magnético aplicado y Jc=6 xlO6 A/cm2 en campo magnético de H=IT perpendicular al sustrato. La obtención de estos valores de corriente crítica permiten calcular la fuerza de pinning a 77 K FP(B)=JCB y compararla con los valores conocidos en hilos superconductores convencionales como el NbTi a 4.2 K (Figura 5). Como puede observarse los valores obtenidos son muy superiores a los que existían actualmente y también mejoran a los de los superconductores de baja temperatura. Finalmente, se caracterizó asimismo la anisotropía de la corriente crítica Jc(θ) cuando el campo magnético sufre una rotación desde la orientación H//c a H//ab (Figura 8). Como puede observarse el comportamiento de dicha magnitud con la orientación es bastante suave. En concreto el cociente entre los valores máximo y mínimo es de aproximadamente 1.5 mientras que en los procesos convencionales podía llegar a ser de 6-7.
Ejemplo III
A partir de la solución del ejemplo I de los trifluoroacetatos de Y, Ba y Cu a la que se adicionó un 5% en peso de trifluoroacetato de Ytrio se depositó (14μl) en un sustrato de LaAlO3 (de dimensiones 5mm*5mm, grosor 0.5mm y orientación (100)) mediante la técnica de Spin-coating. La muestra depositada se descompuso siguiendo un proceso de pirólisis como el descrito en el Ejemplo I. La muestra así pirolizada se caracterizó por Microscopía Óptica para comprobar que es homogénea y libre de grietas y rugosidades. (Figura 9). A partir de la capas pirolizada, se realizó el tratamiento térmico para conseguir la formación de las fases YBa2Cu3Oy y Y2O3. Se trabajó con un horno, al que se le aplicó una subida rápida de temperatura (25°C/min) hasta llegar a 790°C-840°C. Dicha temperatura se mantuvo durante 180 minutos (los 30 últimos minutos en seco) y luego se aplicó una rampa a una velocidad de 2.5 °C/min hasta la temperatura ambiente. En este caso se utilizó 0.2 mbar de O2 y 7 mbar de presión de agua. El flujo del gas fue el que permite el controlador másico de flujo utilizado (Bronkhorst High-Tech) para realizar la mezcla con un rango de 0.012 a 0.6 1/min para el N2 y de entre 0.006 y 0.03 1/min para el O2. Sin sacar la muestra del horno, se realizó la oxigenación de dicha muestra utilizando la misma atmósfera seca. Se subió a 4500C, se cambió el gas portador por O2 seco a 1 bar de presión y se mantuvo a esta temperatura por un tiempo de 90 minutos. A continuación se realizó una rampa a 300°C/h hasta temperatura ambiente. La capa resultante es de aproximadamente 275 nm de espesor.
La muestra se caracterizó por Microscopía electrónica de barrido y por difracción de rayos X (Figura 10) donde se observan que nanopartículas de Y2O3 han sido formadas.
Ejemplo IV
A partir de la solución del ejemplo I de los trifluoroacetatos de Y, Ba y Cu a la que se adicionó un 5% en peso de acetilacetonato de Gadolinio se depositó (14μl) en un sustrato de SrTiO3 (de dimensiones 5mm*5mm, grosor 0.5mm y orientación (100)) mediante la técnica de Spin-coating. La muestra depositada se descompuso siguiendo un proceso de pirólisis como el descrito en el Ejemplo I. La muestra así pirolizada se caracterizó por Microscopía Óptica para comprobar que es homogénea y libre de grietas y rugosidades. (Figura 11). A partir de la muestra pirolizada se realizó el tratamiento térmico descrito en el Ejemplo I para conseguir la formación de las fases de YBa2Cu3O7 y Gd2O3. La capa resultante puede tener grosores en el rango 300-800 nm. La muestra se caracterizó por Microscopía electrónica de barrido y por difracción de rayos X (Figura 12) donde se observan que nanopartículas de Gd2O3 han sido formadas, asimismo las medidas de las corrientes críticas confirman que su dependencia con el campo magnético se suaviza en el material nanocomposite. Ejemplo V
A partir de la solución del ejemplo I de los trifluoroacetatos de Y, Ba y Cu a la que se adicionó un 5% en peso de HAuCl4 se depositó (14μl) en un sustrato de LaAlO3 (de dimensiones 5mm*5mm, grosor 0.5mm y orientación (100)) mediante la técnica de Spin-coating. La muestra depositada se descompuso siguiendo un proceso de pirólisis como el descrito en el Ejemplo I. La muestra así pirolizada se caracterizó por Microscopía Óptica para comprobar que es homogénea y libre de grietas y rugosidades. (Figura 13). A partir de la muestra pirolizada se realizó el tratamiento térmico descrito en el Ejemplo III para conseguir la formación de las fases de YBa2Cu3O7 y Au. La muestra se caracterizó por Microscopía electrónica de barrido (Figura 14) y por difracción de rayos X (Figura 15) donde se observan que nanopartículas de Au han sido formadas. La capa resultante puede tener grosores en el rango 300-800 nm.
Ejemplo VI
Se preparó una solución de propionatos de Ce y Gd, con proporciones molares comprendidas entre 0 y 15 % de Gd, en isopropanol en concentraciones comprendidas entre 0.02 M y 0.003 M y se depositaron 14 μl sobre substratos de SrTiO3 o LaAlO3 (orientación (100)) mediante spin coating. También se preparó una solución de acetato de Ba y acetilacetonato de Zr en proporciones molares estequiométricas 1:1. Las muestras depositadas se descompusieron siguiendo un proceso de pirólisis seguido de un proceso de crecimiento a altas temperaturas (9000C-IOOO0C) con duraciones variables (5-30 minutos). La atmósfera durante el crecimiento puede ser de O2 o una mezcla Ar-5% H2 y la rampa de aumento de temperatura se fijó a °C/h. La morfología y tamaño de las nanoestructuras autoensambladas que resultan se controlaron mediante Microscopía de Fuerzas Atómicas y algunos ejemplos típicos se muestran en la Figura 16. En dichas figuras pueden observarse las dimensiones nanométricas de las estructuras generadas del óxido Cei-xGdxθ2, así como modificaciones importantes de su morfología (nanopuntos, nanobarras). Dichos substratos constituyen unas excelentes plantillas para el depósito de láminas superconductoras con prestaciones mejoradas. Ejemplo VII
A partir de la solución del ejemplo I de los trifluoroacetatos de Y, Ba y Cu se depositó (14μl) en sustratos de LaAlO3 o SrTiO3 con nanoestructuras autoensambladas obtenidas según el Ejemplo VII (de dimensiones 5mm*5mm, grosor 0.5mm y orientación (10O)) mediante la técnica de Spin-coating. La muestra depositada se descompuso siguiendo un proceso de pirólisis como el descrito en el Ejemplo I. La muestra así pirolizada se caracterizó por Microscopía Óptica para comprobar que es homogénea y libre de grietas y rugosidades. A partir de la capas pirolizada, se realizó el tratamiento térmico para conseguir la formación de la fase YBa2Cu3O7. Se trabajó con un horno, al que se le aplicó una subida rápida de temperatura (25°C/min) hasta llegar a 790°C-840°C. Dicha temperatura se mantuvo durante 180 minutos (los 30 últimos minutos en seco) y luego se aplicó una rampa a una velocidad de 2.5 °C/min hasta la temperatura ambiente. En este caso se utilizó 0.2 mbar de O2 y 7 mbar de presión de agua. El flujo del gas fue el que permite el controlador másico de flujo utilizado (Bronkhorst High-Tech) para realizar la mezcla con un rango de 0.012 a 0.6 1/min para el N2 y de entre 0.006 y 0.03 1/min para el O2. Sin sacar la muestra del horno, se realizó la oxigenación de dicha muestra utilizando la misma atmósfera seca. Se subió a 4500C, se cambió el gas portador por O2 seco a 1 bar de presión y se mantuvo a esta temperatura por un tiempo de 90 minutos. A continuación se realizó una rampa a 300°C/h hasta temperatura ambiente. La capa resultante es de aproximadamente 200-300 nm de espesor.
La muestra se caracterizó por Microscopía electrónica de barrido, por difracción de rayos X, por Microscopía electrónica de Transmisión y sus corrientes críticas se midieron mediante técnicas inductivas o de transporte. En la Figura 17 se indica una imagen típica de TEM en la que se observa que una nanopartícula de BaZrO3 induce defectos en la matriz de REBa2Cu3O7. En la Figura 18 se muestra la dependencia de las corrientes críticas con el campo magnético a 77K en dos muestras crecidas sobre un substrato nanoestructurado y uno normal. Como puede apreciarse se produce una mejora de la corriente crítica a campos magnéticos elevados debido a los defectos inducidos en la matriz de REBa2Cu3O7.

Claims

REIVINDICACIONES
1.- Material superconductor nanoestructurado tipo REBa2Cu3Oy, donde RE= Tierra Rara o Ytrio caracterizado por una estructura que comprende:
• dos fases: o Una matriz principal de REBa2Cu3Oy o Una fase secundaria de BaZrO3, CeO2, BaSnO3, BaCeO3, SrRuO3, Lai. xMxMn03 (M=Ca, Sr, Ba), RE2O3 y/o RE2Cu2O5) distribuida al azar en el seno de la matriz de forma que modifica profundamente la nanoestructura del superconductor. " y con una densidad de defectos nanométricos en su estructura en el rango de
103-104 defectos/μm3, de forma que la separación entre defectos se reduce a unas decenas de nm.
" y una reducción de la anisotropía de la corriente crítica, por debajo del valor de las láminas delgadas de REBa2Cu3Oy preparadas sin fases secundarias, causada por los defectos generados.
2.- Sistema formado por el material superconductor descrito en la reivindicación 1 y un sustrato sobre el cual se ha depositado el primero.
3.- Sistema según reivindicación 2 caracterizado por que el substrato utilizado es una lámina rígida monocristalina.
4.- Sistema según reivindicación 2 caracterizado por que el substrato utilizado es una cinta metálica flexible.
5.- Procedimiento para obtener el material superconductor nano-estructurado descrito en las reivindicaciones 1-4 que comprende las etapas de: a) Preparación de una solución precursora tipo Trifluoroacetato, b) Deposición de la solución en un substrato mediante cualquier método que permita controlar el grosor de la lámina de forma homogénea, c) Descomposición de los precursores metalorgánicos mediante tratamiento térmico en atmósfera controlada, d) Tratamiento térmico a alta temperatura y en atmósfera controlada para la cristalización de la lámina superconductora, caracterizado por que la solución precursora de la etapa a) contiene proporciones variables de sales de metales alcalinos, alcalino tórreos, tierras raras y/o metales de transición
6.- Procedimiento según reivindicación 4 caracterizado por que las sales de metales alcalinos, alcalino tórreos, tierras raras y/o metales de transición utilizadas en la etapa a) son sales orgánicas como acetatos, trifluoroacetatos, acetilacetonatos, etilhexanoatos o propionatos solubles en el medio de reacción para evitar la formación de precipitados.
7.- Procedimiento según reivindicación 4 caracterizado por que en la etapa a) se obtienen soluciones anhidras complejas de trifluoroacetatos de RE, Ba y Cu, con sales diversas de Zr, Ce, Sn, Ru, La, Mn, Sr, Ca.
8.- Procedimiento según reivindicación 4 caracterizado por que en la etapa a) se utiliza cualquier anhídrido correspondiente a otro ácido orgánico que disuelva los polvos de óxido.
9.- Procedimiento según reivindicación 7 en el que en la etapa a) se utilizan el anhídrido trifluoroacético ((CFsCO)2O) y una pequeña cantidad de ácido trifluoro acético (CF3COOH) (5% en volumen) como catalizador de la reacción.
10.- Procedimiento según reivindicación 4 en el que en la etapa a) se utilizan soluciones de trifluoroacetatos metálicos con proporciones variables de nanopartículas de metales u óxidos metálicos en las que dichas nanopartículas han sido preparadas mediante reacciones de oxidación-reducción, precipitación y estabilización utilizando tensioactivos, polímeros o especies orgánicas capaces de unirse a la superficie de las mismas evitando su agregación.
11. Procedimiento según reivindicaciones 4-9 en el que el sustrato utilizado en la etapa b) ha sido previamente recubierto de una capa de nanopartículas de óxidos metálicos (BaZrO3, CeO2, BaSnO3, BaCeO3, SrRuO3, Lai-xMxMn03 (M=Ca, Sr, Ba), RE2O3) mediante procesos de autoensamblado basados en el crecimiento a partir de soluciones metaloorgánicas o en el depósito de nanopartículas previamente sintetizadas.
12. Uso del material superconductor nano-estructurado descrito en reivindicaciones 1-4 en dispositivos electrónicos.
13. Uso del material superconductor nano-estructurado descrito en reivindicaciones 1-4 en sistemas eléctricos.
PCT/ES2007/070204 2006-12-14 2007-12-05 MATERIAL SUPERCONDUCTOR NANOESTRUCTURADO TIPO REBa2Cu3O7 (RE=TIERRA RARA O YTRIO) CON UNA ELEVADA DENSIDAD DE CENTROS DE ANCLAJE DE VÓRTICES Y SU MÉTODO DE PREPARACIÓN WO2008071829A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/519,359 US20100144536A1 (en) 2006-12-14 2007-12-05 NANOSTRUCTURED SUPERCONDUCTING MATERIAL OF TYPE REBa2Cu3O7 (RE = RARE EARTH OR YTTRIUM) WITH A HIGH DENSITY OF VORTEX ANCHORING CENTRES AND PREPARATION METHOD THEREOF
JP2009540797A JP2010513180A (ja) 2006-12-14 2007-12-05 高密度の渦固定中心を有するREBa2Cu3O7(RE=希土類元素またはイットリウム)型のナノ構造超伝導材料およびその調製方法
EP20070858288 EP2104151B1 (en) 2006-12-14 2007-12-05 Nanostructured superconducting material of type reba2cu3o7 (re=rare earth or yttrium) with a high density of vortex anchoring centres and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200603172 2006-12-14
ES200603172A ES2302637B1 (es) 2006-12-14 2006-12-14 Material superconductor nanoestructurado tipo reba2cu3o7(re=tierra rara o ytrio) con una elevada densidad de centros de anclaje de vortices y su metodo de preparacion.

Publications (1)

Publication Number Publication Date
WO2008071829A1 true WO2008071829A1 (es) 2008-06-19

Family

ID=39511296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/070204 WO2008071829A1 (es) 2006-12-14 2007-12-05 MATERIAL SUPERCONDUCTOR NANOESTRUCTURADO TIPO REBa2Cu3O7 (RE=TIERRA RARA O YTRIO) CON UNA ELEVADA DENSIDAD DE CENTROS DE ANCLAJE DE VÓRTICES Y SU MÉTODO DE PREPARACIÓN

Country Status (7)

Country Link
US (1) US20100144536A1 (es)
EP (1) EP2104151B1 (es)
JP (1) JP2010513180A (es)
KR (1) KR20090094121A (es)
CN (1) CN101606249A (es)
ES (1) ES2302637B1 (es)
WO (1) WO2008071829A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140158950A1 (en) * 2012-12-06 2014-06-12 The Regents Of The University Of California Surface chemical modification of nanocrystals

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102834879B (zh) * 2010-04-26 2014-10-15 株式会社藤仓 氧化物超导导体及其制造方法
JP5981346B2 (ja) 2010-11-02 2016-08-31 古河電気工業株式会社 超電導線材用基材、超電導線材及び超電導線材の製造方法
US9059371B2 (en) * 2011-02-18 2015-06-16 Solar-Tectic Llc Enhancing critical current density of cuprate superconductors
WO2013109065A1 (en) * 2012-01-17 2013-07-25 Sunam Co., Ltd. Superconducting wire and method of forming the same
CN102627453B (zh) * 2012-04-23 2014-08-13 清华大学 非水基化学溶液制备钇钡铜氧高温超导膜的方法
RU2580213C1 (ru) * 2015-02-02 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный университет им. Ф.М. Достоевского" Способ формирования сверхпроводящей тонкой пленки с локальными областями переменной толщины
WO2017193011A1 (en) * 2016-05-05 2017-11-09 The Florida State University Research Foundation, Inc. Defect-irrelevant high temperature superconductor (hts) magnet
JP6788152B1 (ja) * 2018-12-28 2020-11-18 株式会社フジクラ 酸化物超電導線材及びその製造方法
CN115417441B (zh) * 2022-08-29 2023-11-21 兰州大学 一种热分解法制备片状纳米氟化钡的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050159298A1 (en) 2004-01-16 2005-07-21 American Superconductor Corporation Oxide films with nanodot flux pinning centers
WO2006103303A1 (es) 2005-04-01 2006-10-05 Consejo Superior De Investigaciones Científicas Preparación de precursores metalorgánicos anhidros y su uso para la deposición y crecimiento de capas y cintas superconductoras

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3556586B2 (ja) * 2000-09-05 2004-08-18 株式会社東芝 酸化物超電導体の製造方法、酸化物超電導体用原料、および酸化物超電導体用原料の製造方法
US7687436B2 (en) * 2005-12-02 2010-03-30 University Of Dayton Flux pinning enhancements in superconductive REBa2CU3O7-x (REBCO) films and method of forming thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050159298A1 (en) 2004-01-16 2005-07-21 American Superconductor Corporation Oxide films with nanodot flux pinning centers
WO2005081710A2 (en) * 2004-01-16 2005-09-09 American Superconductor Corporation Oxide films with nanodot flux pinning centers
WO2006103303A1 (es) 2005-04-01 2006-10-05 Consejo Superior De Investigaciones Científicas Preparación de precursores metalorgánicos anhidros y su uso para la deposición y crecimiento de capas y cintas superconductoras
ES2259919A1 (es) 2005-04-01 2006-10-16 Consejo Superior Investig. Cientificas Preparacion de precursores metalorganicos anhidros y su uso para la deposicion y crecimiento de capas y cintas superconductoras.

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
A. GOYAL ET AL.: "Irradiation-free, columnar defects comprised of self- assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu307-x films", SUPERCOND. SCI. TECHNOL., vol. 18, 2005, pages 1533, XP020088024, DOI: doi:10.1088/0953-2048/18/11/021
A. GUPTA ET AL.: "Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors", APPL. PHYS. LETT., vol. 52, 1988, pages 2077
GUTIERREZ J. ET AL.: "Strong isotropic flux pinning in solution-derived YBA2Cu2O7_X nanocomposite superconductor films", NATURE MATERIALS, vol. 6, 22 April 2007 (2007-04-22), pages 367 - 373, XP008110110 *
J.L. MACMANUS-DRISCOLL ET AL.: "Strongly enhanced current densities in superconducting coated conductors of YBa2Cu307-x + BaZr03", NATURE MAT., vol. 3, 2004, pages 439, XP002629385, DOI: doi:10.1038/nmat1156
N. ROMA ET AL.: "Acid anhydrides: a simple route to highly pure organometallic solutions for superconducting films", SUPERCOND. SCI. TECHNOL., vol. 19, 2006, pages 521, XP020100972, DOI: doi:10.1088/0953-2048/19/6/019
OBRADORS X. ET AL.: "Progress towards all-chemical superconducting YBa2CuO7-coated conductors", SCIENCE AND TECHNOLOGY, vol. 19, 20 January 2006 (2006-01-20), pages S13 - S26, XP020100846 *
P.C. MCINTYRE; M.J. CIMA; M.F. NG: "Metalorganic deposition of high-J Ba2YCu307 thin films from trifluoroacetate precursors onto (100) SrTi03", J. APPL. PHYS., vol. 68, 1990, pages 4183, XP001032053, DOI: doi:10.1063/1.346233
See also references of EP2104151A4
X. OBRADORS ET AL.: "Progress towards all chemical superconducting YBCO coated conductors", SUPERCOND. SCI. TECHNOL., vol. 19, 2006, pages S13
Y. YAMADA ET AL.: "Epitaxial nanostructure and defects effective for pinning in (Y,RE)Ba2Cu307-x coated conductors", APPLIED PHYSICS LETTERS, vol. 87, 2005, pages 132502, XP012075802, DOI: doi:10.1063/1.2061874

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140158950A1 (en) * 2012-12-06 2014-06-12 The Regents Of The University Of California Surface chemical modification of nanocrystals
US9595363B2 (en) * 2012-12-06 2017-03-14 The Regents Of The University Of California Surface chemical modification of nanocrystals

Also Published As

Publication number Publication date
ES2302637A1 (es) 2008-07-16
EP2104151A1 (en) 2009-09-23
US20100144536A1 (en) 2010-06-10
CN101606249A (zh) 2009-12-16
EP2104151B1 (en) 2013-07-17
ES2302637B1 (es) 2009-06-05
EP2104151A4 (en) 2011-12-21
KR20090094121A (ko) 2009-09-03
JP2010513180A (ja) 2010-04-30

Similar Documents

Publication Publication Date Title
ES2302637B1 (es) Material superconductor nanoestructurado tipo reba2cu3o7(re=tierra rara o ytrio) con una elevada densidad de centros de anclaje de vortices y su metodo de preparacion.
US8536098B2 (en) High performance superconducting devices enabled by three dimensionally ordered nanodots and/or nanorods
KR100815000B1 (ko) 나노도트 플럭스 피닝 센터가 있는 산화물 막
EP1198847B1 (en) Method of making a multi-layer superconductor article
US7902120B2 (en) High temperature superconductors having planar magnetic flux pinning centers and methods for making the same
Cayado et al. Large critical current densities and pinning forces in CSD-grown superconducting GdBa2Cu3O7− x-BaHfO3 nanocomposite films
US20130196856A1 (en) Iron based superconducting structures and methods for making the same
WO2011017439A1 (en) Critical current density enhancement via incorporation of nanoscale ba2renbo6 in rebco films
Shi et al. Deposition of REBCO with different rare earth elements on CeO2 buffered technical substrates by fluorine-free metal organic decomposition route
US20110034338A1 (en) CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)TaO6 IN REBCO FILMS
Piperno et al. CeO2-based buffer layers via chemical solution deposition: Critical issues and latest developments
ES2259919B1 (es) Preparacion de precursores metalorganicos anhidros y su uso para la deposicion y crecimiento de capas y cintas superconductoras.
Rijckaert et al. Superconducting YBa 2 Cu 3 O 7− δ Nanocomposite Films Using Preformed ZrO 2 Nanocrystals via Chemical Solution Deposition
Miura et al. Magnetic Field Dependence of Critical Current and Microstructure in TFA-MOD ${\rm Y} _ {1-x}{\rm Sm} _ {x}{\rm Ba} _ {2}{\rm Cu} _ {3}{\rm O} _ {y} $ With Nanoparticles for Coated Conductors
ES2259564B1 (es) Cintas superconductoras multicapa preparadas mediante deposicion de disoluciones quimicas.
Tang Development of a fluorine-free chemical solution deposition route for rare-earth cuprate superconducting tapes and its application to reel-to-reel processing
Rijckaert et al. Superconducting Nanocomposite Films YBa2 Using Cu3O Preformed
ES2355222B1 (es) Cintas superconductoras formadas a partir de soluciones metalorgánicas que contienen dos metales de transición.
JP2011201712A (ja) 配向酸化物膜の製造方法および配向酸化物膜、酸化物超電導体
Amemiya et al. Preparation of Y-Ba-Cu-O superconducting tape by pyrolysis of organic acid salts
WO2016059264A1 (es) Cintas, capas o láminas superconductoras y su método de fabricación a partir de disoluciones precursoras sin flúor con elevadas velocidades de crecimiento
Takahashi et al. Development of large scale YBa2Cu3O7-x superconductor with plastic forming
Liu et al. YBCO Films With ${\rm Zr}^{4+} $ Doping Grown by MOD Method
Vandaele YBa2Cu3O7 coatings based on trifluoro-acetic acid precursors
Wang Chemical solution deposition for YBCO superconducting films and Sm2O3 buffer layers on single crystal and biaxially textured metallic substrates

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780050739.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07858288

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009540797

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097013571

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007858288

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12519359

Country of ref document: US