WO2008069263A1 - Egg quality index examination device - Google Patents

Egg quality index examination device Download PDF

Info

Publication number
WO2008069263A1
WO2008069263A1 PCT/JP2007/073553 JP2007073553W WO2008069263A1 WO 2008069263 A1 WO2008069263 A1 WO 2008069263A1 JP 2007073553 W JP2007073553 W JP 2007073553W WO 2008069263 A1 WO2008069263 A1 WO 2008069263A1
Authority
WO
WIPO (PCT)
Prior art keywords
egg
light
quality index
parallel light
light receiving
Prior art date
Application number
PCT/JP2007/073553
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuo Nambu
Kuniyuki Yokose
Original Assignee
Nabel Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006332285A external-priority patent/JP4858838B2/en
Application filed by Nabel Co., Ltd. filed Critical Nabel Co., Ltd.
Publication of WO2008069263A1 publication Critical patent/WO2008069263A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/08Eggs, e.g. by candling
    • G01N33/085Eggs, e.g. by candling by candling

Definitions

  • the present invention relates to an egg quality index inspection apparatus capable of automatically inspecting a How 'unit, which is an egg quality index, and an egg yolk coefficient in a non-contact manner.
  • the How 'unit is a quality index that pays attention to the property that when the egg freshness decreases, the egg white height becomes lower when the egg is split into a flat plate due to waterification of the thick egg white.
  • the yolk coefficient is a quality index focusing on the property that the calaza layer is easily peeled off from the yolk as the yolk membrane becomes weaker with time, and the yolk becomes flat.
  • the inspection apparatus is provided with an ultrasonic transmission / reception unit at a position immediately above the egg white height measurement point of the inspection tray, and first, the height of the surface of the empty inspection tray is determined by the ultrasonic transmission / reception unit. Measure, transmit ultrasonic waves to the egg white height measurement point of the egg breaker placed on the inspection tray, receive the reflected wave from the egg white surface with the receiving sensor, and process the output with the calculation unit.
  • the How 'unit of the egg to be inspected is automatically determined (see, for example, JP-A-9 178 728 (page 26 (Claim 1), FIG. 1) (Patent Document 1)) .)
  • an operator may use a predetermined inspection procedure for yolk. Measure the yolk height and yolk diameter on the test plate with a straight ruler, etc., and divide the measured yolk height by the yolk diameter.
  • the egg yolk coefficient of the target egg is determined (for example, edited by Yasutoshi Sato, “Science and Utilization of Eggs” Co., Ltd., published on February 20, 1980, p. 116 (Non-Patent Document 2)
  • Patent Document 1 JP-A-9 178728 (Page 2-6 (Claim 1), Fig. 1)
  • Non-Patent Document 1 Ryo Nakamura, “The Science of Eggs” published by Asakura Shoten, published on January 25, 1998, p.
  • Non-Patent Document 2 Yasushi Sato, “Science and Utilization of Eggs” Co., Ltd., published by Gekisha, February 20th, 1980, p. 116
  • Non-Patent Document 1 and Non-Patent Document 2 have the following problems. In other words, not only does it take a lot of time to determine the contact between the gauge gauge probe and the thick egg white, to determine the top of the yolk with a straight ruler, and to measure the diameter of the yolk with a straight ruler. In addition, the operator may misread the scale, so the obtained judgment results may vary.
  • the egg white height can be automatically measured in a non-contact manner using ultrasound, so that the subjectivity of the operator can be eliminated and quantitative inspection can be performed. It becomes possible.
  • the surface of the thick egg white looks smooth at first glance. Actually, since the surface is finely uneven, the reflection surface (the egg white part to be measured) is reflected when the reflection surface is not flat. Sound could not be received, leaving room for improvement in terms of inspection accuracy.
  • the inspection apparatus disclosed in Patent Document 1 has a power that cannot determine both the how unit and egg yolk coefficient, which are egg quality indicators.
  • the purpose of this is the How 'unit, which is the quality index of the egg to be examined, and the yolk It is an object of the present invention to provide an egg quality index inspection apparatus capable of automatically inspecting numbers without contact and capable of performing inspection of the quality index with high accuracy in a short time. Means for solving the problem
  • a mounting table in which an upper surface on which the divided egg to be inspected is mounted is formed horizontally;
  • a light projecting means for emitting parallel light distributed in the vertical direction; and
  • a light receiving means for receiving the parallel light distributed in the vertical direction emitted from the light projecting means.
  • the light projecting means and the light receiving means have a predetermined interval.
  • a drive means for horizontally moving one of the light emitting means and the light receiving means in a horizontal direction. As either one of the light projecting unit and the light receiving unit moves horizontally, the light receiving unit detects a change in the amount of parallel light after passing through the egg to be inspected, and is obtained from the light receiving unit.
  • arithmetic processing means for calculating the side shape of the egg to be inspected, comprising quality index calculating means for determining the quality index of the egg based on the side shape data of the inspection target egg calculated by the arithmetic processing means. It is characterized by being.
  • the quality index calculation means calculates the height of egg white based on the side shape data of the egg to be inspected that has been calculated by the calculation processing means. The How 'unit is determined by using the calculated egg white height data and the egg weight data of the egg to be tested measured in advance.
  • the quality index calculation means is based on the side shape data of the egg to be inspected which is calculated by the calculation processing means!
  • the egg yolk coefficient is determined using the obtained egg yolk height data and egg yolk diameter data.
  • the driving means outputs either a moving table or a unit of the light projecting means and the light receiving means while outputting a movement distance signal. It is characterized by horizontally moving.
  • the light projecting means and the light receiving means is provided with a telecentric lens.
  • the light projecting means reflects the light emitted from the light source by a polygon mirror and a reflection mirror, and then collimates the collimated lens into parallel light. It is characterized in that it converts and emits the parallel light.
  • the light projecting means emits light formed in a line shape by distributing linear light in a vertical direction. It is.
  • the apparatus includes a measuring direction variable means for rotating either the mounting table or the unit of the light projecting means and the light receiving means in the horizontal direction. It is characterized by that.
  • the placing table on which the upper surface on which the divided egg to be inspected is placed is horizontally formed, and the parallel light distributed in the vertical direction is provided.
  • the light projecting means and the light receiving means are configured to transmit parallel light of the light projecting means.
  • the emitting direction and the incident direction of the parallel light of the light receiving means are arranged in parallel, and on the optical path between the light projecting means and the light receiving means, there is one reflecting plate and another reflecting plate.
  • the parallel light emitted from the light projecting means is opposed to each other and the traveling direction thereof is reflected by the reflecting surface of one reflecting plate disposed at an angle of 45 degrees with respect to the traveling direction of the emitted parallel light.
  • the parallel light whose traveling direction is changed by 90 degrees and whose traveling direction is changed by 90 degrees is The traveling direction is further changed by 90 degrees by the reflecting surface of the other reflecting plate disposed at an angle of 45 degrees with respect to the row direction, and the incident light enters the light receiving means.
  • Another reflecting plate unit or driving means for horizontally moving either one of the mounting tables, and the driving means, and the one reflecting plate and the other reflecting plate unit or the mounting table by the driving means.
  • the amount of parallel light transmitted through the egg to be inspected positioned on the optical path of parallel light traveling from one reflector to the other reflector is changed.
  • Detected by the light receiving means and calculates the side shape of the egg to be inspected based on the electrical signal obtained from the light receiving means. It is characterized by comprising: an arithmetic processing means; and a quality index calculating means for determining an egg quality index based on the egg-side shape data to be inspected which has been arithmetically processed by the arithmetic processing means. .
  • the quality index calculation means is adapted to determine the height of egg white based on the side shape data of the egg to be inspected that has been arithmetically processed by the arithmetic processing means. Is calculated, and the how's unit is determined using the obtained egg white height data and the egg weight data of the egg to be inspected measured in advance.
  • the quality index calculation means is based on the side shape data of the egg to be inspected which is arithmetically processed by the arithmetic processing means!
  • the yolk height and the yolk diameter are calculated, and the yolk coefficient is determined using the obtained yolk height data and the yolk diameter data.
  • the driving means outputs one moving plate while another reflecting plate and another reflecting plate unit or mounting. It is characterized by horizontally moving either one of the stand!
  • the invention of the egg quality index inspection apparatus is characterized in that at least one of the light projecting means and the light receiving means is provided with a telecentric lens.
  • the light projecting means reflects the light emitted from the light source by a polygon mirror and a reflecting mirror, and then collimates the collimated light into parallel light. It is characterized in that it converts and emits the parallel light.
  • the light projecting means emits light formed in a line shape by distributing linear light in a vertical direction. It is.
  • the one reflector and the unit of the other reflector, or the mounting table is rotated in the horizontal direction. It is characterized by comprising a measuring direction variable means.
  • the egg quality index inspection apparatus is particularly A light projecting means for emitting parallel light distributed in the vertical direction and a light receiving means for receiving parallel light distributed in the vertical direction emitted from the light projecting means are arranged opposite to each other at a predetermined interval, and the mounting table or the Either one of the light projecting unit and the light receiving unit is moved horizontally, and the change in the light quantity of the parallel light after the light receiving unit passes through the test target egg in accordance with the horizontal movement of either one of them. Then, the side shape of the egg to be inspected is calculated based on the electrical signal obtained from the light receiving means, and the egg quality index is determined based on the acquired side shape data of the egg to be inspected.
  • the egg white height is calculated based on the acquired side shape data of the egg to be inspected, and the obtained egg white height data is measured in advance.
  • the unit of the egg to be examined is determined using the egg weight data of the egg to be examined.
  • the egg yolk coefficient the height of the yolk and the diameter of the yolk are calculated based on the acquired side shape data of the egg to be inspected, and the obtained yolk height data and the yolk
  • the structure is such that the yolk coefficient of the egg to be examined is determined using the diameter data.
  • the light projecting means and the light receiving means further include an emission direction of parallel light of the light projecting means and incidence of parallel light of the light receiving means.
  • the reflectors are arranged in parallel with each other, and one reflector and the other reflector are arranged opposite to each other on the optical path between the light projecting unit and the light receiver.
  • the traveling direction of the parallel light emitted from the light projecting means is changed by 90 degrees by the reflection surface of one reflector arranged at an angle of 45 degrees with respect to the traveling direction of the emitted parallel light.
  • the parallel light whose traveling direction is changed by 90 degrees is further advanced by 90 degrees by the reflecting surface of the other reflector arranged at an angle of 45 degrees with respect to the traveling direction of the parallel light. It is modified so that it is incident on the light receiving means, and the unit of the one reflecting plate and the other reflecting plate or the mounting table is moved horizontally. [0031] Therefore, when the mounting table on which the test target egg is placed is moved horizontally, the test target egg on the mounting table is in a semi-liquid state.
  • the egg quality index inspection apparatus according to the present invention particularly has one reflector and one other reflector unit on the mounting table. By adopting a horizontal movement configuration, it is possible to eliminate the shaking of the inspection target egg, so that the inspection of the quality index of the inspection target egg E can be performed with high accuracy.
  • the configuration of the light projecting means is such that, for example, laser light emitted from a light source is reflected by a polygon mirror and a reflection mirror, and then converted into parallel light by a collimator lens, and the parallel light is emitted.
  • the inspection accuracy is improved, and a visible laser beam locus is drawn on the surface of the egg to be inspected, so that the measurement site can be easily confirmed.
  • the inspection apparatus main body can be simply configured, thereby reducing the apparatus cost. That's the power S.
  • the measurement direction changing means is configured so that the side surface shape data having the highest egg white is selected from the plurality of side surface shape data of the obtained egg to be examined. It can be employed as a “measurement point”. If the finally adopted data is used for the housing determination, it becomes possible to inspect the housing unit with higher accuracy.
  • FIG. 1 is a schematic front view for explaining a first embodiment of an egg quality index inspection apparatus T according to the present invention.
  • FIG. 2 is a schematic sectional view taken along line II-II in FIG.
  • FIG. 3 is a diagram for explaining a side image of an acquired egg E to be examined.
  • FIG. 4 is a schematic diagram illustrating a state in which emitted parallel light moves horizontally.
  • FIG. 5 is a schematic diagram for explaining a modification of the egg quality index inspection device T according to the first embodiment.
  • FIG. 6 is a schematic diagram for explaining another modification of the egg quality index inspection apparatus T according to the first embodiment.
  • FIG. 7 is a schematic plan view for explaining a second embodiment of an egg quality index inspection device T according to the present invention.
  • FIG. 8 is a schematic front view of the quality index inspection apparatus T viewed from the VIII direction in FIG.
  • FIG. 1 is a schematic front view for explaining an egg quality index inspection device T
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. 1, and FIG. It is a figure explaining the side image.
  • FIG. 4 is a schematic diagram for explaining a state in which the emitted parallel light moves horizontally
  • FIG. 5 is a schematic diagram for explaining a modification of the egg quality index inspection apparatus T according to the first embodiment. Explains another variation of the egg quality index inspection device T according to the first embodiment.
  • FIG. 4 is a schematic diagram for explaining a state in which the emitted parallel light moves horizontally
  • FIG. 5 is a schematic diagram for explaining a modification of the egg quality index inspection apparatus T according to the first embodiment.
  • FIG. 5 is a schematic diagram for explaining a modification of the egg quality index inspection apparatus T according to the first embodiment.
  • this egg quality index inspection device T (hereinafter simply referred to as “inspection device T”) generally includes a mounting table 1 on which a split egg to be inspected is placed, Light projecting means 2 and light receiving means 3 arranged opposite to each other with a predetermined interval so as to sandwich the mounting table 1, a driving means 4 for horizontally moving the mounting table 1, and a hardware part mainly composed of a CPU, a storage device, etc. and an inspection
  • the calculation control means 5 comprises an operation program of the apparatus T and the like, and the quality index calculation means 6 for calculating the quality index of the egg to be inspected.
  • Reference numeral 7 is an egg weight input means used to determine the how 'unit of the egg to be inspected
  • reference numeral 8 is a CRT or liquid crystal display for displaying the determination result of the how' unit or the yolk coefficient. Display means.
  • the mounting table 1 has a horizontal upper surface for holding the divided egg to be inspected.
  • a material for the mounting table 1. For example, metal materials such as stainless steel plates and materials such as glass plates and acrylic plates are preferred.
  • the driving means 4 provided on the lower surface of the mounting table 1 includes a pulse motor 41 and a screw 42, and the pulse motor 41 and the screw 42 2 Due to the drive, the mounting table 1 can move horizontally in the X—X ′ direction with respect to the light projecting means 2 and the light receiving means 3.
  • the Norse motor 41 is configured so that the mounting table 1 moves in the X direction or X ′ by rotating the motor based on a Norse signal given from the CPU 51 of the arithmetic control means 5 described later.
  • the position information when the mounting table 1 is moved horizontally is output to the CPU 51.
  • the light projecting means 2 is a light source comprising, for example, a visible light semiconductor laser element, a solid light emitting element such as an LED (for example, an LED having a peak near a wavelength of 575 nm), and a halogen lamp. 21 and a collimator lens 22.
  • the light receiving means 3 is disposed opposite to the light projecting means 2 so as to sandwich the mounting table 1. Thus, the parallel light distributed in the vertical direction emitted from the light projecting means 2 is received.
  • the light receiving means 3 includes, for example, a one-dimensional CCD image sensor 31 in which 5000 elements of a 7 m mouth (rectangular side of 7 m) are arranged in a vertical row, up to a width of 35 mm in the vertical direction. So that it can receive the parallel light.
  • the one-dimensional CCD image sensor 31 detects the brightness of the parallel light after passing through the egg to be inspected, and accumulates a charge amount corresponding to the amount of received light for each pixel according to the brightness position. Based on the data acquisition signal output from the CPU 51 of the arithmetic control means 5 to be described later, it is controlled to output the charge for each pixel stored in each element to the CPU 51.
  • the arithmetic control means 5 is provided with a CPU 51 for controlling the operation of the inspection apparatus T main body.
  • the CCU 51 controls each component of the inspection apparatus T as follows.
  • a control signal is output to the light source 21 so that the light projecting means 2 always emits parallel light.
  • a control signal is given to the Norse motor 41 of the mounting table 1 on which the test subject egg is mounted, and the mounting table 1 is controlled to move horizontally in the X direction or the X ′ direction.
  • the electric charge corresponding to the amount of received light output from the one-dimensional CCD image sensor 31 is converted into an electric signal, and the number of bits of the changing portion of the amount of received light of the one-dimensional CCD image sensor 31 is calculated.
  • the required processing is performed to perform calculation processing related to the dimension measurement of the measurement target region in the test target egg, and the calculated dimension measurement data is stored in a memory (not shown).
  • the horizontal axis in Fig. 3 indicates the distance in the horizontal direction of the egg to be examined, and the vertical axis indicates the distance in the vertical direction.
  • Symbols S to S (0 ⁇ i ⁇ j: natural number) indicate the mounting table. 1 is the direction of the paper, water to the left
  • the measurement site of the egg to be inspected is directed toward the paper surface, and moves to the right.
  • the thickness of parallel light is exaggerated for easy understanding.
  • the quality index calculating means 6 is a means for determining a housing unit or egg yolk coefficient, which is a quality index of the test target egg, based on the side image data of the test target egg output from the CPU 51 of the calculation control means 5.
  • the quality index calculation means 6 calculates the difference between the maximum height and the minimum height of the egg to be inspected in the measurement unit S as shown in Fig. 3, and stores the result in the memory.
  • the difference is calculated, and the result is stored in a memory (not shown). Thereafter, the above calculation and the process of storing in the memory are repeated until the measurement site S, which is the measurement end point.
  • the quality index calculation means 6 performs a process of extracting the position that is the maximum difference from the difference data of each measurement site of the test target egg stored in the memory. Specifically, as shown in FIG. 3, processing is performed to extract the position that becomes the maximum difference in the uphill region Up and the position that becomes the maximum difference in the downhill region Dn. At this time, the region Ex (the yolk portion of the egg to be examined) specified from the steep ascending slope part to the descending slope part is excluded from the extraction target of the maximum difference.
  • the quality index calculation means 6 compares the egg white height at the position where the maximum difference is obtained with the upward gradient excluding the region Ex with the egg white height at the position where the maximum difference is obtained with the downward gradient. The highest part of egg white is adopted as the “measurement point of egg white height”.
  • the quality index calculation means 6 calculates the housing unit by the following equation using the determined egg white height data and the egg weight data previously input to the egg weight input means 7. Then, the calculation result is displayed on the display means 8.
  • H in the above formula represents egg white height (mm), and W represents egg weight (g).
  • the quality index calculating means 6 calculates the distance of the region L (corresponding to the diameter of the yolk) from the side image (shaded portion) of the yolk as shown in FIG. ,
  • the egg yolk coefficient is calculated by the following formula using the vertical distance (corresponding to the yolk height) of the position P, which is the maximum height of the egg E, and the calculation result is displayed on the display means 8.
  • Yolk coefficient yolk height (mm) / yolk diameter (mm)
  • the quality index of the egg to be inspected is calculated by the inspection apparatus T according to the present invention.
  • a measurement start button (not shown) is pressed, light is emitted from the light source 21 on the basis of a control signal output from the CPU 51 of the arithmetic control means 5, and is collimated by the collimator lens 22. Parallel light that is converted into light and distributed in the vertical direction is emitted to the light receiving means 3.
  • the light receiving means 3 receives the parallel light distributed in the vertical direction emitted from the light projecting means 2.
  • the light receiving means 3 receives the total amount of parallel light emitted from the light projecting means 2. Note that this figure is also drawn with exaggerated thickness of parallel light for easy understanding, as in FIG.
  • the mounting table 1 moves horizontally in the X direction by a distance corresponding to the number of pulses, and the mounting table 1 moves horizontally.
  • the position information at that time is output to the CPU 51.
  • the mounting table 1 is moved leftward toward the paper surface to project light onto the measurement site S of the egg E to be inspected.
  • the parallel light emitted from the means 2 is positioned.
  • the one-dimensional CCD image sensor 31 of the light receiving means 3 is inspected.
  • the brightness of the parallel light after passing through the target egg E is detected, and light is received for each pixel according to the brightness.
  • the amount of charge corresponding to the amount is accumulated.
  • the CPU 51 of the arithmetic control means 5 outputs a data acquisition signal to the one-dimensional CCD image sensor 31, and is accumulated in each element according to the brightness of the parallel light after passing through the egg E to be examined. Control to read the charge.
  • the CPU 51 of the arithmetic control means 5 converts the electric charge according to the received light amount output from the one-dimensional CCD image sensor 31 into an electric signal, and changes the received light amount of the one-dimensional CCD image sensor 31. Performs processing to find the number of bits in the part. Then, a calculation process related to the dimension measurement of the measurement site S in the test target egg E is performed, and the dimension measurement data of the measurement site S subjected to the calculation process is stored in a memory (not shown).
  • the CPU 51 of the calculation control means 5 processes the dimension measurement data of the plurality of side surfaces stored in the memory (not shown), After performing the dimensioning process, a side image of the egg to be inspected (see Fig. 3) is created, and the side shape data of this egg E to be inspected is controlled to be output to the quality index calculation means 6
  • the quality index calculation means 6 calculates the difference between the maximum height and the minimum height of the test object egg at the measurement site S, as shown in FIG. The result is stored in a memory (not shown). Next, the difference between the maximum height and the minimum height of the test object egg at the measurement site S is calculated, and the result is stored in a memory (not shown). Thereafter, the above calculation and the process of storing in the memory are repeated up to the measurement site S which is the measurement end point.
  • the quality index calculation means 6 performs a process of extracting the position that is the maximum difference from the difference data of each measurement site of the test target egg stored in the memory. Specifically, as shown in FIG. 3, processing is performed to extract the position that becomes the maximum difference in the uphill area Up and the position that becomes the maximum difference in the downhill area Dn. At this time, the region Ex (the yolk portion of the egg to be inspected) specified from the steep ascending slope part to the descending slope part is excluded from the maximum difference extraction target. [0068] The quality index calculation means 6 further compares the egg white height at the position where the maximum difference is obtained with the upward gradient excluding the region Ex with the egg white height at the position where the maximum difference is obtained with the downward gradient. The highest part of egg white is adopted as the “measurement point of egg white height”.
  • the quality index calculating means 6 calculates the How 'unit according to a predetermined formula using the determined height of the thick egg white and the egg weight data input to the egg weight input means 7 in advance. The result is displayed on the display means 8.
  • the quality index calculating means 6 calculates the distance of the region L (the yolk size) from the side image (shaded area) of the yolk as shown in FIG. (Corresponding to the diameter) and the vertical distance (corresponding to the height of the yolk) of the position P, which is the maximum height of the egg E to be examined, The calculation result is displayed on display means 8.
  • the present invention is not limited to this. Provide a drive mechanism in the unit so that the light projecting means 2 and light receiving means 3 units move horizontally with respect to the mounting table 1!
  • a telecentric lens 32 is built in the light receiving means 3 as shown in FIG.
  • at least one of the light projecting means 2 and the light receiving means 3 is provided with the telecentric lens, so that unnecessary light is cut off from the parallel light after passing through the test object egg E, and pure light is supplied. Since only parallel light can be guided to the light receiving element 31, an error between the dimension of the acquired side surface shape of the egg E to be inspected and the actual dimension can be extremely small.
  • the light projecting means 2 includes a light source 21 of a semiconductor laser, a collimator lens 22, a polygon mirror 23, and a reflection mirror 24.
  • the measurement accuracy is increased, and a visible laser beam trajectory is drawn on the surface of the test egg E, so that the measurement site can be easily confirmed.
  • the light emitted from the light source 21 is collimated by the collimator lens 22.
  • the present invention is not limited to this.
  • a plurality of light emitting elements such as light emitting diodes are arranged in a vertical line to form line-shaped light.
  • one linear light may be reciprocated in the vertical direction at intervals of several seconds so that apparently light formed in a line shape is emitted.
  • the mounting table 1 is horizontally moved in a predetermined direction to acquire the side surface shape of the test object egg E.
  • the egg E to be inspected is held on the mounting table 1, the egg E to be inspected will be cast in one direction.
  • a measurement direction variable means (not shown) for horizontally rotating the mounting table 1 or any one of the light projecting / receiving unit composed of the light projecting means 2 and the light receiving means 3.
  • the mounting table 1 (which will be described as an example in which the mounting table 1 is rotated in this description) is rotated by, for example, 120 degrees to obtain the side shape of the test object egg E.
  • the side surface shape data with the highest concentration of the thick egg white is adopted as the “measurement point of egg white height”, and this is used for the calculation of the node unit. If used, it becomes possible to inspect the housing unit with higher accuracy!
  • FIG. 7 is a schematic plan view for explaining the egg quality index inspection apparatus T according to the second embodiment
  • FIG. 8 is a schematic front view seen from the direction VIII of FIG.
  • the same components as those in the egg quality index inspection apparatus T according to the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a characteristic configuration of the egg quality index inspection apparatus T (hereinafter simply referred to as the inspection apparatus T) according to the second embodiment will be described.
  • the inspection device T is mounted on the upper surface on the right side of the T-shaped base plate 9 with the mounting table 1 facing sideways.
  • the light projecting means 2 and the light receiving means 3 are attached to the upper surface of the base plate 9 on the left side of the paper surface. As shown in FIG. 7, the light projecting means 2 and the light receiving means 3 are defined by the parallel light emitting direction of the light projecting means 2 and the incident direction of the parallel light of the light receiving means 3, respectively. Are arranged in parallel.
  • a rectangular support plate 10 for supporting a unit of one reflecting plate 11 and another reflecting plate 12 described later is disposed below the mounting table 1 side of the base plate 9.
  • a reflecting plate 11 made of, for example, a glass mirror and another reflecting plate 12 held by holding members 13 and 14 are opposed to each other. Yes.
  • the parallel light emitted from the light projecting means 2 is reflected by the reflecting surface 1 la of one reflecting plate 11 disposed at an angle of 45 degrees with respect to the traveling direction of the emitted parallel light.
  • the parallel light whose traveling direction has been changed by 90 degrees and whose traveling direction has been changed by 90 degrees is the reflection surface of the other reflector 12 disposed at an angle of 45 degrees with respect to the traveling direction of the parallel light.
  • the traveling direction is further changed by 90 degrees by 12a and is configured to enter the light receiving means 3.
  • a driving means 4 is provided below the support plate 10, and one reflecting plate 11 is driven by driving a pulse motor 41 and a screw 42 of the driving means 4.
  • the other reflector 12 unit moves horizontally relative to the mounting table 1 in the direction of X—X ′.
  • the unit of one reflector 11 and the other reflector 12 is moved horizontally in the X direction by the driving means 4 in, for example, 2 seconds (when measuring the test object egg E).
  • the driving means 4 for example, it becomes a mechanism that moves horizontally in the X 'direction (when returning to the original position) in 1 second! /.
  • the inspection object egg E on the mounting table 1 is in a semi-liquid state.
  • the inspection target egg E may be shaken by the vibration, which may reduce the inspection accuracy.
  • the inspection apparatus T according to this embodiment eliminates the shake of the inspection target egg E by having the above-described configuration. Therefore, the quality index of the egg E to be inspected can be inspected with high accuracy.
  • the example in which the units of the one reflecting plate 11 and the other reflecting plate 12 are moved horizontally with respect to the mounting table 1 has been described.
  • the egg E to be inspected is held on the mounting table 1, the egg E to be inspected will be cast in one direction, so in particular, in the case of inspection of the unit, it will be inspected from one direction.
  • a measuring direction variable means (not shown) for rotating the mounting table 1 in the horizontal direction is provided between the mounting table 1 and the base plate 9, and the mounting table 1 is, for example, 120 degrees each. You may make it acquire the side surface shape data of the test object egg E by rotating.
  • the side surface shape data with the highest concentration of thick egg white is adopted as the “measurement point of egg white height”, and this is used for the calculation of the node unit. If used, it becomes possible to inspect the housing unit with higher accuracy!
  • the present invention is not limited to this. 1 may be moved horizontally with respect to the unit of one reflector 11 and the other reflector 12.
  • the other components of the inspection device T according to the second embodiment, the internal configuration of each component, and the modification of the present embodiment are the same as those of the inspection device described in the first embodiment. Description is omitted.
  • the present invention is effectively used for egg quality inspection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Light projecting means (2) and light receiving means (3) are so disposed that the exiting direction of a parallel light beam from the light projection means (2) is parallel to the entering direction of the parallel light beam into the light receiving means (3), and a reflector (11) and another reflector (12) are opposedly disposed on the optical path. The traveling direction of the parallel light beam emitted from the light projection means (2) is deflected by 90 degrees by the reflecting surface of the reflector (11). Thereafter, the traveling direction of the parallel light beam is further deflected by 90 degrees by the reflecting surface of the another reflector (12), and the parallel light beam enters the receiving means (3). The unit of the reflector (11) and the another reflector (12) moves horizontally with respect to a stage (1). With this, the Haugh unit and the yolk index which are egg-quality indexes can be contactlessly and automatically examined and the examination on the quality indexes can be made in a short time and with high accuracy.

Description

明 細 書  Specification
卵の品質指標検査装置  Egg quality index inspection device
技術分野  Technical field
[0001] 本発明は、卵の品質指標であるハウ'ユニットおよび卵黄係数を非接触で自動的に 検査することのできる卵の品質指標検査装置に関するものである。  [0001] The present invention relates to an egg quality index inspection apparatus capable of automatically inspecting a How 'unit, which is an egg quality index, and an egg yolk coefficient in a non-contact manner.
背景技術  Background art
[0002] 市場で販売されている卵には、品質 (鮮度)の高さが求められる。そのような卵の品 質を数値で示す指標として、ハウ.ユニット(Haugh Unit)や卵黄係数 (Yolk Inde x)が知られている。  [0002] Eggs sold in the market are required to have high quality (freshness). The Haugh Unit and the yolk index are known as numerical indicators of such egg quality.
[0003] ハウ'ユニットは、卵の鮮度が低下すると、濃厚卵白の水様化によって、平板に卵を 割ったときに卵白の高さが低くなつていくという性質に着目した品質指標である。また 、卵黄係数は、時間経過とともに卵黄膜の脆弱化に伴ってカラザ層が卵黄から剥が れやすくなり、卵黄が扁平化するという性質に着目した品質指標である。  [0003] The How 'unit is a quality index that pays attention to the property that when the egg freshness decreases, the egg white height becomes lower when the egg is split into a flat plate due to waterification of the thick egg white. The yolk coefficient is a quality index focusing on the property that the calaza layer is easily peeled off from the yolk as the yolk membrane becomes weaker with time, and the yolk becomes flat.
[0004] 前記ハウ'ユニットの検査方法としては、例えば、作業者が卵を割って所定の検査 プレートの上に載せ、割卵体の上方からダイヤルゲージの接触子を濃厚卵白部分の 所定測定位置に接触させて濃厚卵白の高さを計測し、所定の算出式に計測された 濃厚卵白の高さと卵重とを代入することにより、得られた算出結果から検査対象卵の ハウ'ユニットを判定するものである(例えば、中村 良 著、「卵の科学」朝倉書店出 版、 1998年 1月 25日発行、 p. 109— 110 (非特許文献 1)を参照。)。  [0004] As an inspection method for the How 'unit, for example, an operator breaks an egg and places it on a predetermined inspection plate, and a dial gauge contact is placed from above the egg breaking body at a predetermined measurement position of the thick egg white portion. Measure the height of the thick egg white by touching it, and substitute the measured thick egg white height and egg weight into the predetermined calculation formula to determine the unit of the egg to be inspected from the obtained calculation result. (See, for example, Ryo Nakamura, “The Science of Eggs”, published by Asakura Shoten, published on January 25, 1998, p. 109-110 (Non-Patent Document 1)).
[0005] 他方、近年、非接触でハウ'ユニットを自動的に検査する装置も提案されている。そ の検査装置は、検査トレーの卵白高測定点に対応する直上の位置に超音波送/受 信部を設け、先ず、前記超音波送/受信部によって空の検査トレーの表面の高さを 計測しておき、前記検査トレー上に載置された割卵体の卵白高測定点に超音波を発 信し、卵白表面からの反射波を受信センサで受信し、その出力を演算部で処理して 検査対象卵のハウ'ユニットを自動的に判定するものである(例えば、特開平 9 178 728号公報 (第 2 6頁 (請求項 1)、第 1図)(特許文献 1)を参照。)。 [0005] On the other hand, in recent years, an apparatus for automatically inspecting a housing unit in a non-contact manner has also been proposed. The inspection apparatus is provided with an ultrasonic transmission / reception unit at a position immediately above the egg white height measurement point of the inspection tray, and first, the height of the surface of the empty inspection tray is determined by the ultrasonic transmission / reception unit. Measure, transmit ultrasonic waves to the egg white height measurement point of the egg breaker placed on the inspection tray, receive the reflected wave from the egg white surface with the receiving sensor, and process the output with the calculation unit Thus, the How 'unit of the egg to be inspected is automatically determined (see, for example, JP-A-9 178 728 (page 26 (Claim 1), FIG. 1) (Patent Document 1)) .)
[0006] また、前記卵黄係数の検査方法としては、例えば、作業者が卵黄を所定の検査プ レートに載せ、該検査プレート上の卵黄の高さおよび卵黄の直径を直定規等で計測 し、計測された卵黄の高さを卵黄の直径で除算することにより、得られた算出結果か ら検査対象卵の卵黄係数を判定するものである(例えば、佐藤 泰 編著、「食卵の 科学と利用」株式会社 地球社出版、 1980年 2月 20日発行、 p. 116 (非特許文献 2[0006] In addition, as an inspection method of the yolk coefficient, for example, an operator may use a predetermined inspection procedure for yolk. Measure the yolk height and yolk diameter on the test plate with a straight ruler, etc., and divide the measured yolk height by the yolk diameter. The egg yolk coefficient of the target egg is determined (for example, edited by Yasutoshi Sato, “Science and Utilization of Eggs” Co., Ltd., published on February 20, 1980, p. 116 (Non-Patent Document 2)
)を参照。)。 See). ).
特許文献 1 :特開平 9 178728号公報 (第 2— 6頁 (請求項 1)、第 1図)  Patent Document 1: JP-A-9 178728 (Page 2-6 (Claim 1), Fig. 1)
非特許文献 1 :中村 良 著、「卵の科学」朝倉書店出版、 1998年 1月 25日発行、 p. Non-Patent Document 1: Ryo Nakamura, “The Science of Eggs” published by Asakura Shoten, published on January 25, 1998, p.
109—110 109-110
非特許文献 2 :佐藤 泰 編著、「食卵の科学と利用」株式会社 地球社出版、 1980 年 2月 20曰発行、 p. 116  Non-Patent Document 2: Yasushi Sato, “Science and Utilization of Eggs” Co., Ltd., published by Gekisha, February 20th, 1980, p. 116
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] しかしながら、前記非特許文献 1および非特許文献 2に開示されているハウ'ュニッ トゃ卵黄係数の検査方法においては、次のような問題があった。すなわち、ダイヤノレ ゲージの測定子と濃厚卵白との接触を見極める作業や、卵黄の頂点を直定規で見 極める作業並びに卵黄の直径を直定規で計測する作業等には多くの時間を要する のみならず、作業者による目盛りの読み間違いも発生するため、得られた判定結果 にばらつきが生じてしまう可能性がある。  [0007] However, the method for examining the egg yolk coefficient disclosed in Non-Patent Document 1 and Non-Patent Document 2 has the following problems. In other words, not only does it take a lot of time to determine the contact between the gauge gauge probe and the thick egg white, to determine the top of the yolk with a straight ruler, and to measure the diameter of the yolk with a straight ruler. In addition, the operator may misread the scale, so the obtained judgment results may vary.
[0008] また、前記特許文献 1に開示されている検査装置においては、卵白高を超音波に より非接触で自動的に計測できるため、作業者の主観等を排除できて定量的な検査 が可能となる。し力もながら、濃厚卵白表面は一見すると滑らかに見える力 実際に は、その表面は細かな凹凸状となっているので、超音波の性質上、反射面(計測する 卵白部分)が平らでないと反射音を受信できない場合があり、検査精度の面で改善 の余地が残されていた。  [0008] In addition, in the inspection apparatus disclosed in Patent Document 1, the egg white height can be automatically measured in a non-contact manner using ultrasound, so that the subjectivity of the operator can be eliminated and quantitative inspection can be performed. It becomes possible. However, the surface of the thick egg white looks smooth at first glance. Actually, since the surface is finely uneven, the reflection surface (the egg white part to be measured) is reflected when the reflection surface is not flat. Sound could not be received, leaving room for improvement in terms of inspection accuracy.
[0009] さらに、前記特許文献 1に開示されている検査装置では、卵の品質指標であるハウ •ユニット並びに卵黄係数の両方を判定することができな力、つた。  [0009] Further, the inspection apparatus disclosed in Patent Document 1 has a power that cannot determine both the how unit and egg yolk coefficient, which are egg quality indicators.
[0010] したがって、本発明は、前記問題点を解決することを課題としてなされたものであり [0010] Therefore, the present invention has been made to solve the above problems.
、その目的とするところは、検査対象卵の品質指標であるハウ'ユニット並びに卵黄係 数を非接触で自動的に検査することができるとともに、当該品質指標の検査を短時 間で高精度に行なうことができる卵の品質指標検査装置を提供するものである。 課題を解決するための手段 The purpose of this is the How 'unit, which is the quality index of the egg to be examined, and the yolk It is an object of the present invention to provide an egg quality index inspection apparatus capable of automatically inspecting numbers without contact and capable of performing inspection of the quality index with high accuracy in a short time. Means for solving the problem
[0011] 前記課題を解決するために、請求項 1に記載の卵の品質指標検査装置における発 明では、割卵された検査対象卵を載置する上面が水平に形成された載置台と、鉛直 方向に分布する平行光を出射する投光手段と、前記投光手段から出射された鉛直 方向に分布する平行光を受光する受光手段を備え、前記投光手段と受光手段とは、 所定間隔をもって対向配置されており、前記載置台、あるいは、前記投光手段およ び受光手段のユニットのレ、ずれか一方を水平移動させる駆動手段を備え、前記駆動 手段により前記載置台、あるいは、前記投光手段および受光手段のユニットのいず れか一方が水平移動するのに応じて、前記受光手段が検査対象卵を透過した後の 平行光の光量の変化を検出し、当該受光手段から得られた電気信号に基づいて、 検査対象卵の側面形状を演算処理する演算処理手段を備え、前記演算処理手段 により演算処理された検査対象卵の側面形状データに基づいて卵の品質指標を判 定する品質指標演算手段から構成されていることを特徴としたものである。 [0011] In order to solve the above-described problem, in the invention in the egg quality index inspection apparatus according to claim 1, a mounting table in which an upper surface on which the divided egg to be inspected is mounted is formed horizontally; A light projecting means for emitting parallel light distributed in the vertical direction; and a light receiving means for receiving the parallel light distributed in the vertical direction emitted from the light projecting means. The light projecting means and the light receiving means have a predetermined interval. And a drive means for horizontally moving one of the light emitting means and the light receiving means in a horizontal direction. As either one of the light projecting unit and the light receiving unit moves horizontally, the light receiving unit detects a change in the amount of parallel light after passing through the egg to be inspected, and is obtained from the light receiving unit. Based on measured electrical signal Comprising arithmetic processing means for calculating the side shape of the egg to be inspected, comprising quality index calculating means for determining the quality index of the egg based on the side shape data of the inspection target egg calculated by the arithmetic processing means. It is characterized by being.
[0012] 請求項 2に記載の卵の品質指標検査装置における発明では、前記品質指標演算 手段は、前記演算処理手段により演算処理された検査対象卵の側面形状データに 基づいて卵白の高さを演算し、得られた卵白の高さデータと、予め測定された当該検 查対象卵の卵重データとを用いてハウ'ユニットを判定することを特徴としたものであ  [0012] In the invention of the egg quality index inspection apparatus according to claim 2, the quality index calculation means calculates the height of egg white based on the side shape data of the egg to be inspected that has been calculated by the calculation processing means. The How 'unit is determined by using the calculated egg white height data and the egg weight data of the egg to be tested measured in advance.
[0013] 請求項 3に記載の卵の品質指標検査装置における発明では、前記品質指標演算 手段は、前記演算処理手段により演算処理された検査対象卵の側面形状データに 基づ!/、て卵黄の高さ並びに卵黄の直径を演算し、得られた卵黄の高さデータ並びに 卵黄の直径データを用いて卵黄係数を判定することを特徴としたものである。 [0013] In the invention of the egg quality index inspection device according to claim 3, the quality index calculation means is based on the side shape data of the egg to be inspected which is calculated by the calculation processing means! The egg yolk coefficient is determined using the obtained egg yolk height data and egg yolk diameter data.
[0014] 請求項 4に記載の卵の品質指標検査装置における発明では、前記駆動手段は、 移動距離信号を出力しながら載置台、あるいは、前記投光手段および受光手段のュ ニットのいずれか一方を水平移動させることを特徴としたものである。  [0014] In the invention of the egg quality index inspection apparatus according to claim 4, the driving means outputs either a moving table or a unit of the light projecting means and the light receiving means while outputting a movement distance signal. It is characterized by horizontally moving.
[0015] 請求項 5に記載の卵の品質指標検査装置における発明では、前記投光手段およ び受光手段のうち、少なくとも一方にテレセントリックレンズを備えたことを特徴とした ものである。 [0015] In the invention of the egg quality index inspection apparatus according to claim 5, the light projecting means and In addition, at least one of the light receiving means is provided with a telecentric lens.
[0016] 請求項 6に記載の卵の品質指標検査装置における発明では、前記投光手段は、 光源から放射された光をポリゴンミラーおよび反射ミラーで反射したのち、コリメ一タレ ンズにより平行光に変換して当該平行光を出射することを特徴としたものである。  [0016] In the invention of the egg quality index inspection apparatus according to claim 6, the light projecting means reflects the light emitted from the light source by a polygon mirror and a reflection mirror, and then collimates the collimated lens into parallel light. It is characterized in that it converts and emits the parallel light.
[0017] 請求項 7に記載の卵の品質指標検査装置における発明では、前記投光手段は、 線状光を鉛直方向に分布させてライン状に形成した光を出射することを特徴としたも のである。  [0017] In the invention of the egg quality indicator inspection apparatus according to claim 7, the light projecting means emits light formed in a line shape by distributing linear light in a vertical direction. It is.
[0018] 請求項 8に記載の卵の品質指標検査装置における発明では、前記載置台、または 、前記投光手段および受光手段のユニットのいずれか一方を水平方向に回転させる 測定方向可変手段を備えたことを特徴としたものである。  [0018] In the invention of the egg quality index inspection apparatus according to claim 8, the apparatus includes a measuring direction variable means for rotating either the mounting table or the unit of the light projecting means and the light receiving means in the horizontal direction. It is characterized by that.
[0019] 請求項 9に記載の卵の品質指標検査装置における発明では、割卵された検査対 象卵を載置する上面が水平に形成された載置台と、鉛直方向に分布する平行光を 出射する投光手段と、前記投光手段から出射された鉛直方向に分布する平行光を 受光する受光手段を備え、前記投光手段と前記受光手段とは、当該投光手段の平 行光の出射方向と当該受光手段の平行光の入射方向とが平行となるよう配置されて おり、前記投光手段と受光手段との光路上には、一の反射板と他の一の反射板とが 対向配置されており、前記投光手段から出射された平行光は、該出射された平行光 の進行方向に対して 45度の角度で配置された一の反射板の反射面によって進行方 向が 90度変更されるとともに、進行方向が 90度変更された前記平行光は、該平行 光の進行方向に対して 45度の角度で配置された他の一の反射板の反射面によって さらに進行方向が 90度変更されて前記受光手段に入射するよう構成され、さらに、 前記一の反射板並びに他の一の反射板のユニット、あるいは、前記載置台のいずれ か一方を水平移動させる駆動手段と、前記駆動手段により前記一の反射板並びに 他の一の反射板のユニット、あるいは、前記載置台のいずれか一方が水平移動する のに応じて、一の反射板から他の一の反射板に進行する平行光の光路上に位置付 けられる検査対象卵を透過した平行光の光量の変化を受光手段にて検出し、前記 受光手段から得られた電気信号に基づいて検査対象卵の側面形状を演算処理する 演算処理手段と、前記演算処理手段により演算処理された検査対象卵側面形状デ ータに基づいて卵の品質指標を判定する品質指標演算手段とを備えていることを特 徴としたものである。 [0019] In the invention of the egg quality index inspection apparatus according to claim 9, the placing table on which the upper surface on which the divided egg to be inspected is placed is horizontally formed, and the parallel light distributed in the vertical direction is provided. And a light receiving means for receiving parallel light distributed in the vertical direction emitted from the light projecting means. The light projecting means and the light receiving means are configured to transmit parallel light of the light projecting means. The emitting direction and the incident direction of the parallel light of the light receiving means are arranged in parallel, and on the optical path between the light projecting means and the light receiving means, there is one reflecting plate and another reflecting plate. The parallel light emitted from the light projecting means is opposed to each other and the traveling direction thereof is reflected by the reflecting surface of one reflecting plate disposed at an angle of 45 degrees with respect to the traveling direction of the emitted parallel light. The parallel light whose traveling direction is changed by 90 degrees and whose traveling direction is changed by 90 degrees is The traveling direction is further changed by 90 degrees by the reflecting surface of the other reflecting plate disposed at an angle of 45 degrees with respect to the row direction, and the incident light enters the light receiving means. Another reflecting plate unit or driving means for horizontally moving either one of the mounting tables, and the driving means, and the one reflecting plate and the other reflecting plate unit or the mounting table by the driving means. As one of these moves horizontally, the amount of parallel light transmitted through the egg to be inspected positioned on the optical path of parallel light traveling from one reflector to the other reflector is changed. Detected by the light receiving means and calculates the side shape of the egg to be inspected based on the electrical signal obtained from the light receiving means. It is characterized by comprising: an arithmetic processing means; and a quality index calculating means for determining an egg quality index based on the egg-side shape data to be inspected which has been arithmetically processed by the arithmetic processing means. .
[0020] 請求項 10に記載の卵の品質指標検査装置における発明では、前記品質指標演 算手段は、前記演算処理手段により演算処理された検査対象卵の側面形状データ に基づいて卵白の高さを演算し、得られた卵白の高さデータと、予め測定された当該 検査対象卵の卵重データとを用いてハウ'ユニットを判定することを特徴としたもので ある。  [0020] In the invention of the egg quality index inspection device according to claim 10, the quality index calculation means is adapted to determine the height of egg white based on the side shape data of the egg to be inspected that has been arithmetically processed by the arithmetic processing means. Is calculated, and the how's unit is determined using the obtained egg white height data and the egg weight data of the egg to be inspected measured in advance.
[0021] 請求項 11に記載の卵の品質指標検査装置における発明では、前記品質指標演 算手段は、前記演算処理手段により演算処理された検査対象卵の側面形状データ に基づ!/、て卵黄の高さ並びに卵黄の直径を演算し、得られた卵黄の高さデータ並び に卵黄の直径データを用いて卵黄係数を判定することを特徴としたものである。  [0021] In the invention of the egg quality index inspection apparatus according to claim 11, the quality index calculation means is based on the side shape data of the egg to be inspected which is arithmetically processed by the arithmetic processing means! The yolk height and the yolk diameter are calculated, and the yolk coefficient is determined using the obtained yolk height data and the yolk diameter data.
[0022] 請求項 12に記載の卵の品質指標検査装置における発明では、前記駆動手段は、 移動距離信号を出力しながら一の反射板並びに他の一の反射板のユニット、あるい は、載置台の!/ヽずれか一方を水平移動させることを特徴としたものである。  [0022] In the invention of the egg quality index inspection apparatus according to claim 12, the driving means outputs one moving plate while another reflecting plate and another reflecting plate unit or mounting. It is characterized by horizontally moving either one of the stand!
[0023] 請求項 13に記載の卵の品質指標検査装置における発明では、前記投光手段およ び受光手段のうち、少なくとも一方にテレセントリックレンズを備えたことを特徴とした ものである。  [0023] The invention of the egg quality index inspection apparatus according to claim 13 is characterized in that at least one of the light projecting means and the light receiving means is provided with a telecentric lens.
[0024] 請求項 14に記載の卵の品質指標検査装置における発明では、前記投光手段は、 光源から放射された光をポリゴンミラーおよび反射ミラーで反射したのち、コリメ一タレ ンズにより平行光に変換して当該平行光を出射することを特徴としたものである。  [0024] In the invention of the egg quality index inspection apparatus according to claim 14, the light projecting means reflects the light emitted from the light source by a polygon mirror and a reflecting mirror, and then collimates the collimated light into parallel light. It is characterized in that it converts and emits the parallel light.
[0025] 請求項 15に記載の卵の品質指標検査装置における発明では、前記投光手段は、 線状光を鉛直方向に分布させてライン状に形成した光を出射することを特徴としたも のである。  [0025] In the invention of the egg quality index inspection apparatus according to claim 15, the light projecting means emits light formed in a line shape by distributing linear light in a vertical direction. It is.
[0026] 請求項 16に記載の卵の品質指標検査装置における発明では、前記一の反射板並 びに他の一の反射板のユニット、あるいは、前記載置台のいずれか一方を水平方向 に回転させる測定方向可変手段を備えたことを特徴としたものである。  [0026] In the invention of the egg quality indicator inspection apparatus according to claim 16, the one reflector and the unit of the other reflector, or the mounting table is rotated in the horizontal direction. It is characterized by comprising a measuring direction variable means.
[0027] 以上の説明から明らかなように、本発明にかかる卵の品質指標検査装置は、特に、 鉛直方向に分布する平行光を出射する投光手段と、投光手段から出射された鉛直 方向に分布する平行光を受光する受光手段とを所定間隔をもって対向配置し、前記 載置台、あるいは、前記投光手段および受光手段のユニットのいずれか一方を水平 移動させ、それらのいずれか一方が水平移動するのに応じて、前記受光手段が検査 対象卵を透過した後の平行光の光量の変化を検出し、当該受光手段から得られた 電気信号に基づいて検査対象卵の側面形状を演算するとともに、取得された検査対 象卵の側面形状データに基づいて卵の品質指標を判定する。 [0027] As is apparent from the above description, the egg quality index inspection apparatus according to the present invention is particularly A light projecting means for emitting parallel light distributed in the vertical direction and a light receiving means for receiving parallel light distributed in the vertical direction emitted from the light projecting means are arranged opposite to each other at a predetermined interval, and the mounting table or the Either one of the light projecting unit and the light receiving unit is moved horizontally, and the change in the light quantity of the parallel light after the light receiving unit passes through the test target egg in accordance with the horizontal movement of either one of them. Then, the side shape of the egg to be inspected is calculated based on the electrical signal obtained from the light receiving means, and the egg quality index is determined based on the acquired side shape data of the egg to be inspected.
[0028] そして、ハウ'ユニット判定するにあっては、前記取得された検査対象卵の側面形 状データに基づいて卵白の高さを演算し、得られた卵白の高さデータと、予め測定さ れた当該検査対象卵の卵重データとを用いて検査対象卵のハウ'ユニットを判定す る。また、卵黄係数を判定するにあっては、前記取得された検査対象卵の側面形状 データに基づいて卵黄の高さ並びに卵黄の直径を演算し、得られた卵黄の高さデー タ並びに卵黄の直径データを用いて検査対象卵の卵黄係数を判定する構成となつ ている。 [0028] Then, in determining the How 'unit, the egg white height is calculated based on the acquired side shape data of the egg to be inspected, and the obtained egg white height data is measured in advance. The unit of the egg to be examined is determined using the egg weight data of the egg to be examined. In determining the egg yolk coefficient, the height of the yolk and the diameter of the yolk are calculated based on the acquired side shape data of the egg to be inspected, and the obtained yolk height data and the yolk The structure is such that the yolk coefficient of the egg to be examined is determined using the diameter data.
[0029] したがって、検査対象卵の品質指標であるハウ 'ユニット並びに卵黄係数を非接触 で自動的に検査することができるとともに、当該品質指標の検査を短時間で高精度 に行なうことができるという効果を奏する。しかも、 1台の検査装置で卵の品質指標で ある「ハウ'ユニット」および「卵黄係数」の両方を判定することができる。  [0029] Accordingly, it is possible to automatically inspect the How 'unit and the yolk coefficient, which are quality indicators of the egg to be inspected, in a non-contact manner, and to inspect the quality indicator in a short time with high accuracy. There is an effect. Moreover, it is possible to determine both the “how 'unit” and the “yolk coefficient”, which are egg quality indicators, with a single inspection device.
[0030] また、本発明にかかる卵の品質指標検査装置は、さらに、前記投光手段と前記受 光手段とは、当該投光手段の平行光の出射方向と当該受光手段の平行光の入射方 向とが平行となるよう配置されているとともに、前記投光手段と受光手段との光路上に は、一の反射板と他の一の反射板とが対向配置されている。そして、前記投光手段 力、ら出射された平行光は、該出射された平行光の進行方向に対して 45度の角度で 配置された一の反射板の反射面によって進行方向が 90度変更されるとともに、進行 方向が 90度変更された前記平行光は、該平行光の進行方向に対して 45度の角度 で配置された他の一の反射板の反射面によってさらに進行方向が 90度変更されて 前記受光手段に入射するよう構成され、さらに、前記一の反射板並びに他の一の反 射板のユニット、あるいは、前記載置台のいずれか一方を水平移動させるようにした [0031] したがって、検査対象卵が載置された載置台を水平移動させる場合、載置台上の 検査対象卵は半液状であるため、前記載置台の水平移動時の微細な振動によって 検査対象卵が揺れてしまい、検査精度を低下させる恐れがあつたが、本発明にかか る卵の品質指標検査装置は、特に、一の反射板並びに他の一の反射板のユニットを 載置台に対して水平移動させる構成とすることにより、前記検査対象卵の揺れを排除 することができるので検査対象卵 Eの品質指標の検査を高精度に行なうことができる [0030] Further, in the egg quality index inspection apparatus according to the present invention, the light projecting means and the light receiving means further include an emission direction of parallel light of the light projecting means and incidence of parallel light of the light receiving means. The reflectors are arranged in parallel with each other, and one reflector and the other reflector are arranged opposite to each other on the optical path between the light projecting unit and the light receiver. The traveling direction of the parallel light emitted from the light projecting means is changed by 90 degrees by the reflection surface of one reflector arranged at an angle of 45 degrees with respect to the traveling direction of the emitted parallel light. In addition, the parallel light whose traveling direction is changed by 90 degrees is further advanced by 90 degrees by the reflecting surface of the other reflector arranged at an angle of 45 degrees with respect to the traveling direction of the parallel light. It is modified so that it is incident on the light receiving means, and the unit of the one reflecting plate and the other reflecting plate or the mounting table is moved horizontally. [0031] Therefore, when the mounting table on which the test target egg is placed is moved horizontally, the test target egg on the mounting table is in a semi-liquid state. However, the egg quality index inspection apparatus according to the present invention particularly has one reflector and one other reflector unit on the mounting table. By adopting a horizontal movement configuration, it is possible to eliminate the shaking of the inspection target egg, so that the inspection of the quality index of the inspection target egg E can be performed with high accuracy.
[0032] また、載置台上の検査対象卵の揺れを考慮する必要がないので平行光の水平方 向における走査を高速化することができ、より短時間で品質指標の検査を行なうこと が可能になる。さらに、投光手段および受光手段を水平移動させる必要がないので 当該投受光手段に接続されている信号線等のケーブル類の損傷や切断等のトラブ ノレを回避することカできる。 [0032] Further, since it is not necessary to consider the shaking of the egg to be inspected on the mounting table, the scanning in the horizontal direction of the parallel light can be speeded up, and the quality index can be inspected in a shorter time. become. Further, since it is not necessary to horizontally move the light projecting means and the light receiving means, it is possible to avoid troubles such as damage and disconnection of cables such as signal lines connected to the light projecting / receiving means.
[0033] 投光手段および受光手段のうち、少なくとも一方にテレセントリックレンズを備える構 成とすることにより、検査対象卵を透過した平行光から不要な光をカットし、純粋な平 行光のみを受光素子に導くことができるので、取得された検査対象卵の側面形状の 寸法と、実際寸法との誤差を極めて小さくすることができる。  [0033] By adopting a configuration in which at least one of the light projecting means and the light receiving means is provided with a telecentric lens, unnecessary light is cut from the parallel light transmitted through the egg to be inspected, and only pure parallel light is received. Since it can be guided to the element, the error between the obtained dimension of the side shape of the egg to be inspected and the actual dimension can be made extremely small.
[0034] また、投光手段の構成を、光源から放射された例えば、レーザ光をポリゴンミラーお よび反射ミラーで反射したのち、コリメータレンズにより平行光に変換し、当該平行光 を出射するようにすれば、検査精度が高くなるほか、検査対象卵の表面に視認可能 なレーザ光の軌跡が描かれるので測定部位を容易に確認することができる。  [0034] Further, the configuration of the light projecting means is such that, for example, laser light emitted from a light source is reflected by a polygon mirror and a reflection mirror, and then converted into parallel light by a collimator lens, and the parallel light is emitted. As a result, the inspection accuracy is improved, and a visible laser beam locus is drawn on the surface of the egg to be inspected, so that the measurement site can be easily confirmed.
[0035] さらに、投光手段の構成を、線状光を鉛直方向に分布させてライン状に形成した光 を出射するようにすれば、検査装置本体が簡易に構成できるので装置コストを抑制 すること力 Sでさる。  [0035] Furthermore, if the configuration of the light projecting unit is such that linear light is distributed in the vertical direction and light formed in a line shape is emitted, the inspection apparatus main body can be simply configured, thereby reducing the apparatus cost. That's the power S.
[0036] 載置台または投光手段および受光手段のユニットの!/、ずれか一方、あるいは、一 の反射板と他の一の反射板とのユニットまたは載置台のいずれか一方を水平方向に 回転させる測定方向可変手段を備える構成とすることにより、取得された検査対象卵 の複数の側面形状データのうちから卵白の最も高い側面形状データを「卵白高さの 測定点」として採用することができる。そして、最終的に採用したデータをハウ'ュニッ トの判定に用いるようにすれば、より精度の高レ、ハウ ·ユニットの検査を行なうことが可 能となる。 [0036] Rotate either the mounting table or the unit of the light projecting means and the light receiving means! /, Or one of the unit of the reflecting plate and the other reflecting plate or the mounting table in the horizontal direction. The measurement direction changing means is configured so that the side surface shape data having the highest egg white is selected from the plurality of side surface shape data of the obtained egg to be examined. It can be employed as a “measurement point”. If the finally adopted data is used for the housing determination, it becomes possible to inspect the housing unit with higher accuracy.
図面の簡単な説明  Brief Description of Drawings
[0037] [図 1]本発明にかかる卵の品質指標検査装置 Tの第一実施形態を説明する概略正 面図である。  FIG. 1 is a schematic front view for explaining a first embodiment of an egg quality index inspection apparatus T according to the present invention.
[図 2]図 1の II一 II線における概略断面図である。  FIG. 2 is a schematic sectional view taken along line II-II in FIG.
[図 3]取得された検査対象卵 Eの側面画像を説明する図である。  FIG. 3 is a diagram for explaining a side image of an acquired egg E to be examined.
[図 4]出射される平行光が水平移動する状態を説明する概略図である。  FIG. 4 is a schematic diagram illustrating a state in which emitted parallel light moves horizontally.
[図 5]第一実施形態の卵の品質指標検査装置 Tの変形例を説明する概略図である。  FIG. 5 is a schematic diagram for explaining a modification of the egg quality index inspection device T according to the first embodiment.
[図 6]第一実施形態の卵の品質指標検査装置 Tの他の変形例を説明する概略図で ある。  FIG. 6 is a schematic diagram for explaining another modification of the egg quality index inspection apparatus T according to the first embodiment.
[図 7]本発明にかかる卵の品質指標検査装置 Tの第二実施形態を説明する概略平 面図である。  FIG. 7 is a schematic plan view for explaining a second embodiment of an egg quality index inspection device T according to the present invention.
[図 8]図 7の VIII方向から見た品質指標検査装置 Tの概略正面図である。  FIG. 8 is a schematic front view of the quality index inspection apparatus T viewed from the VIII direction in FIG.
符号の説明  Explanation of symbols
[0038] 1 載置台、 2 投光手段、 3 受光手段、 4 駆動手段、 5 演算制御手段、 6 品質 指標演算手段、 7 卵重入力手段、 8 表示手段、 9 ベースプレート、 10 支持プレ ート、 11 一の反射板、 12 他の一の反射板、 21 光源、 22 コリメータレンズ、 31 1次元 CCDイメージセンサー、 E 検査対象卵。  [0038] 1 mounting table, 2 light projecting means, 3 light receiving means, 4 drive means, 5 calculation control means, 6 quality index calculation means, 7 egg weight input means, 8 display means, 9 base plate, 10 support plate, 11 one reflector, 12 other reflector, 21 light source, 22 collimator lens, 31 1D CCD image sensor, E egg to be examined.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0039] 次に、本発明にかかる卵の品質指標検査装置の第一実施形態を添付図面に従つ て説明する。 [0039] Next, a first embodiment of an egg quality index inspection apparatus according to the present invention will be described with reference to the accompanying drawings.
[0040] 図 1は、卵の品質指標検査装置 Tを説明する概略正面図、図 2は、図 1の II一 II線 における概略断面図であり、図 3は、取得された検査対象卵 Eの側面画像を説明す る図である。図 4は、出射される平行光が水平移動する状態を説明する概略図、図 5 は、第一実施形態にかかる卵の品質指標検査装置 Tの変形例を説明する概略図で あり、図 6は、第一実施形態にかかる卵の品質指標検査装置 Tの他の変形例を説明 する概略図である。 [0040] FIG. 1 is a schematic front view for explaining an egg quality index inspection device T, FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. 1, and FIG. It is a figure explaining the side image. FIG. 4 is a schematic diagram for explaining a state in which the emitted parallel light moves horizontally, and FIG. 5 is a schematic diagram for explaining a modification of the egg quality index inspection apparatus T according to the first embodiment. Explains another variation of the egg quality index inspection device T according to the first embodiment. FIG.
[0041] 図 1に示すように、この卵の品質指標検査装置 T (以降、単に検査装置 Tと記す。 ) は、大略、割卵した検査対象卵を載置する載置台 1と、前記載置台 1を挟むように所 定間隔をもって対向配置された投光手段 2および受光手段 3と、載置台 1を水平移動 させる駆動手段 4と、主に CPU、記憶装置等からなるハードウェア部分と検査装置 T の作動プログラム等からなる演算制御手段 5と、検査対象卵の品質指標を演算する 品質指標演算手段 6とから構成されている。  As shown in FIG. 1, this egg quality index inspection device T (hereinafter simply referred to as “inspection device T”) generally includes a mounting table 1 on which a split egg to be inspected is placed, Light projecting means 2 and light receiving means 3 arranged opposite to each other with a predetermined interval so as to sandwich the mounting table 1, a driving means 4 for horizontally moving the mounting table 1, and a hardware part mainly composed of a CPU, a storage device, etc. and an inspection The calculation control means 5 comprises an operation program of the apparatus T and the like, and the quality index calculation means 6 for calculating the quality index of the egg to be inspected.
[0042] なお、符号 7は、検査対象卵のハウ 'ユニットを判定する際に用いる卵重入力手段 であり、符号 8は、ハウ'ユニットあるいは卵黄係数の判定結果を表示する CRTや液 晶ディスプレイ等の表示手段である。  [0042] Reference numeral 7 is an egg weight input means used to determine the how 'unit of the egg to be inspected, and reference numeral 8 is a CRT or liquid crystal display for displaying the determination result of the how' unit or the yolk coefficient. Display means.
[0043] 載置台 1は、割卵された検査対象卵を保持する上面が水平に形成されている。また 、載置台 1の素材としては。例えば、ステンレス製の板等の金属製の素材や、ガラス 板やアクリル板等の素材であることが好ましレ、。  [0043] The mounting table 1 has a horizontal upper surface for holding the divided egg to be inspected. As a material for the mounting table 1. For example, metal materials such as stainless steel plates and materials such as glass plates and acrylic plates are preferred.
[0044] また、図 2に示すように、前記載置台 1の下面に設けられている駆動手段 4は、パル スモータ 41とスクリュウ 42とで構成されており、このパルスモータ 41およびスクリュウ 4 2の駆動により載置台 1は、投光手段 2および受光手段 3に対して X— X'方向に水平 移動することが可能となって!/、る。  Further, as shown in FIG. 2, the driving means 4 provided on the lower surface of the mounting table 1 includes a pulse motor 41 and a screw 42, and the pulse motor 41 and the screw 42 2 Due to the drive, the mounting table 1 can move horizontally in the X—X ′ direction with respect to the light projecting means 2 and the light receiving means 3.
[0045] 具体的に説明すると、ノ ルスモータ 41は、後述する演算制御手段 5の CPU51から 与えられたノ ルス信号に基づいてモータが回転することにより、載置台 1が X方向あ るいは X'方向に水平移動し、当該載置台 1が水平移動した時の位置情報が前記 CP U51に出力される仕組みとなっている。  More specifically, the Norse motor 41 is configured so that the mounting table 1 moves in the X direction or X ′ by rotating the motor based on a Norse signal given from the CPU 51 of the arithmetic control means 5 described later. The position information when the mounting table 1 is moved horizontally is output to the CPU 51.
[0046] 図 1に示すように、投光手段 2は、例えば、可視光半導体レーザ素子、 LED (例え ば、波長 575nm付近にピークを有する LED)等の固体発光素子並びにハロゲンラ ンプ等からなる光源 21と、コリメータレンズ 22とから構成されている。  As shown in FIG. 1, the light projecting means 2 is a light source comprising, for example, a visible light semiconductor laser element, a solid light emitting element such as an LED (for example, an LED having a peak near a wavelength of 575 nm), and a halogen lamp. 21 and a collimator lens 22.
[0047] そして、後述する演算制御手段 5の CPU51から出力されてくる制御信号に基づい て光源 21から光が放射されるとともに、それがコリメータレンズ 22により平行光に変 換され、鉛直方向に分布する平行光が受光手段 3に出射される。  [0047] Then, light is emitted from the light source 21 based on a control signal output from the CPU 51 of the arithmetic control means 5 described later, and is converted into parallel light by the collimator lens 22 and distributed in the vertical direction. Parallel light is emitted to the light receiving means 3.
[0048] 受光手段 3は、載置台 1を挟むように前記投光手段 2に対して対向に配置されてお り、投光手段 2から出射された鉛直方向に分布する平行光を受光する構成となって いる。本実施例では、受光手段 3に例えば、 7 m口(一辺 7 mの矩形)の素子が縦 一列に 5000個配置された 1次元 CCDイメージセンサー 31が内蔵されており、鉛直 方向の幅 35mmまでの平行光を受光できるようになつている。 [0048] The light receiving means 3 is disposed opposite to the light projecting means 2 so as to sandwich the mounting table 1. Thus, the parallel light distributed in the vertical direction emitted from the light projecting means 2 is received. In this embodiment, the light receiving means 3 includes, for example, a one-dimensional CCD image sensor 31 in which 5000 elements of a 7 m mouth (rectangular side of 7 m) are arranged in a vertical row, up to a width of 35 mm in the vertical direction. So that it can receive the parallel light.
[0049] 前記 1次元 CCDイメージセンサー 31は、検査対象卵を透過した後の平行光の明 喑を検出するとともに、その明暗位置に応じて 1画素毎に受光量に応じた電荷量を 蓄積し、後述する演算制御手段 5の CPU51から出力されてくるデータ取得信号に基 づレ、て、各素子に蓄積されてレ、る画素毎の電荷を CPU51に出力するよう制御される [0049] The one-dimensional CCD image sensor 31 detects the brightness of the parallel light after passing through the egg to be inspected, and accumulates a charge amount corresponding to the amount of received light for each pixel according to the brightness position. Based on the data acquisition signal output from the CPU 51 of the arithmetic control means 5 to be described later, it is controlled to output the charge for each pixel stored in each element to the CPU 51.
[0050] 次に、演算制御手段 5について説明する。図 1に示すように、この演算制御手段 5 には、検査装置 T本体の作動を制御するための CPU51が備えられている。前記 CP U51は、検査装置 Tの各構成機器を次のように制御する。 Next, the calculation control means 5 will be described. As shown in FIG. 1, the arithmetic control means 5 is provided with a CPU 51 for controlling the operation of the inspection apparatus T main body. The CCU 51 controls each component of the inspection apparatus T as follows.
(a)光源 21に制御信号を出力して投光手段 2から常時平行光を出射させるよう制御 する。  (a) A control signal is output to the light source 21 so that the light projecting means 2 always emits parallel light.
(b)検査対象卵が載置された載置台 1のノ ルスモータ 41にノ ルス信号を与え、当該 載置台 1を X方向あるいは X'方向に水平移動させるよう制御する。  (b) A control signal is given to the Norse motor 41 of the mounting table 1 on which the test subject egg is mounted, and the mounting table 1 is controlled to move horizontally in the X direction or the X ′ direction.
(c)前記載置台 1が水平移動した時の水平方向の位置情報を取得する。  (c) The horizontal position information when the table 1 is moved horizontally is acquired.
(d)受光手段 3の 1次元 CCDイメージセンサー 31にデータ取得信号を出力し、検査 対象卵を透過した後の平行光の明暗に応じて各素子に蓄積されている画素毎の電 荷を読み取るよう制御する。  (d) Output a data acquisition signal to the one-dimensional CCD image sensor 31 of the light receiving means 3, and read the charge for each pixel accumulated in each element according to the brightness of the parallel light after passing through the egg to be inspected Control as follows.
(e) 1次元 CCDイメージセンサー 31から出力されてきた、受光量に応じた電荷を電 気信号に変換するとともに、当該 1次元 CCDイメージセンサー 31の受光量の変化し ている部分の bit数を求める処理を行ない、検査対象卵における測定対象部位の寸 法計測にかかる演算処理を実施し、演算処理された寸法計測データをメモリ(図示せ ず)に記† する。  (e) The electric charge corresponding to the amount of received light output from the one-dimensional CCD image sensor 31 is converted into an electric signal, and the number of bits of the changing portion of the amount of received light of the one-dimensional CCD image sensor 31 is calculated. The required processing is performed to perform calculation processing related to the dimension measurement of the measurement target region in the test target egg, and the calculated dimension measurement data is stored in a memory (not shown).
(f)上記(a)から(e)の工程を繰り返す。  (f) The steps (a) to (e) are repeated.
(g)前記メモリ(図示せず)に記憶された複数の側面形状の寸法計測データを加工し て二次元化処理を実施した後、検査対象卵の側面画像(図 3参照)を作成し、作成さ れた検査対象卵の側面形状データを後述する品質指標演算手段 6に出力するよう 制御する。 (g) After processing the dimension measurement data of a plurality of side shapes stored in the memory (not shown) and performing a two-dimensional process, create a side image of the egg to be examined (see Fig. 3), Created Control is performed so as to output the side shape data of the inspection target egg to the quality index calculation means 6 described later.
[0051] なお、図 3の横軸は検査対象卵の水平方向の距離、縦軸は垂直方向の距離を示し ており、符号 S〜S〜S (0< i<j :自然数)は載置台 1が紙面に向力、つて左方向へ水  [0051] The horizontal axis in Fig. 3 indicates the distance in the horizontal direction of the egg to be examined, and the vertical axis indicates the distance in the vertical direction. Symbols S to S (0 <i <j: natural number) indicate the mounting table. 1 is the direction of the paper, water to the left
1 i j  1 i j
平移動するのに伴って検査対象卵の測定部位が紙面に向力、つて右方向へ推移して 行く様子を示している。また、本図では理解しやすいように平行光の厚みを誇張して 描いている。  As the plane moves, the measurement site of the egg to be inspected is directed toward the paper surface, and moves to the right. In this figure, the thickness of parallel light is exaggerated for easy understanding.
[0052] 次に、品質指標演算手段 6について説明する。品質指標演算手段 6は、演算制御 手段 5の CPU51から出力されてきた検査対象卵の側面画像データに基づいて検査 対象卵の品質指標であるハウ 'ユニットや卵黄係数を判定する手段である。  Next, the quality index calculating means 6 will be described. The quality index calculating means 6 is a means for determining a housing unit or egg yolk coefficient, which is a quality index of the test target egg, based on the side image data of the test target egg output from the CPU 51 of the calculation control means 5.
[0053] 品質指標演算手段 6は、ハウ 'ュニットを判定する場合、図 3に示すように、測定部 位 Sにおける検査対象卵の最大高さと最小高さの差分を演算し、その結果をメモリ(  [0053] When determining the unit, the quality index calculation means 6 calculates the difference between the maximum height and the minimum height of the egg to be inspected in the measurement unit S as shown in Fig. 3, and stores the result in the memory. (
3  Three
図示せず)に記憶する。次に、測定部位 Sにおける検査対象卵の最大高さと最小高  (Not shown). Next, the maximum height and minimum height of the egg to be examined at measurement site S
4  Four
さの差分を演算し、その結果をメモリ(図示せず)に記憶する。以降、前述の演算とメ モリへ記憶する処理を測定終了地点である測定部位 Sまで繰り返す。  The difference is calculated, and the result is stored in a memory (not shown). Thereafter, the above calculation and the process of storing in the memory are repeated until the measurement site S, which is the measurement end point.
J  J
[0054] 前記品質指標演算手段 6は、前記メモリに記憶された検査対象卵の各測定部位の 差分データのうち、最大差分となる位置を抽出する処理を実施する。具体的には、図 3に示すように上り勾配の領域 Upでの最大差分となる位置と、下り勾配の領域 Dnで の最大差分となる位置を抽出する処理を行なう。このとき、急激な上り勾配部分から 下り勾配部分で特定される領域 Ex (検査対象卵の卵黄部分)については最大差分 の抽出の対象から除外される。  [0054] The quality index calculation means 6 performs a process of extracting the position that is the maximum difference from the difference data of each measurement site of the test target egg stored in the memory. Specifically, as shown in FIG. 3, processing is performed to extract the position that becomes the maximum difference in the uphill region Up and the position that becomes the maximum difference in the downhill region Dn. At this time, the region Ex (the yolk portion of the egg to be examined) specified from the steep ascending slope part to the descending slope part is excluded from the extraction target of the maximum difference.
[0055] さらに、品質指標演算手段 6は、領域 Exを除ぐ上り勾配での最大差分となる位置 の卵白高さと、下り勾配での最大差分となる位置の卵白高さとを相互に比較して卵白 の最も高い部分を「卵白高さの測定点」として採用する。  [0055] Further, the quality index calculation means 6 compares the egg white height at the position where the maximum difference is obtained with the upward gradient excluding the region Ex with the egg white height at the position where the maximum difference is obtained with the downward gradient. The highest part of egg white is adopted as the “measurement point of egg white height”.
[0056] そして、品質指標演算手段 6は、決定された卵白の高さデータと、事前に卵重入力 手段 7に入力された卵重データとを用いて下式によりハウ 'ユニットを演算するととも に、その演算結果を表示手段 8に表示させる。  [0056] Then, the quality index calculation means 6 calculates the housing unit by the following equation using the determined egg white height data and the egg weight data previously input to the egg weight input means 7. Then, the calculation result is displayed on the display means 8.
(数 1) HU= 1001og (H- l . 7W°- 37 + 7. 6) (Number 1) HU = 1001og (H- l. 7W ° -37 + 7. 6)
ここで、上式の Hは卵白の高さ(mm)、 Wは卵重(g)を示す。  Here, H in the above formula represents egg white height (mm), and W represents egg weight (g).
[0057] また、品質指標演算手段 6は、卵黄係数を判定する場合、図 3に示すように、卵黄 の側面画像 (網掛け部分)から、領域 Lの距離 (卵黄の直径に相当する)と、検査対象 卵 Eの最大の高さとなる位置 Pの垂直方向の距離 (卵黄の高さに相当する)とを用い て下式により卵黄係数を演算するとともに、その演算結果を表示手段 8に表示させる[0057] In addition, when determining the yolk coefficient, the quality index calculating means 6 calculates the distance of the region L (corresponding to the diameter of the yolk) from the side image (shaded portion) of the yolk as shown in FIG. , The egg yolk coefficient is calculated by the following formula using the vertical distance (corresponding to the yolk height) of the position P, which is the maximum height of the egg E, and the calculation result is displayed on the display means 8. Make
Yes
(数 2)  (Equation 2)
卵黄係数 =卵黄の高さ(mm) /卵黄の直径 (mm)  Yolk coefficient = yolk height (mm) / yolk diameter (mm)
次に、本発明にかかる検査装置 Tにより検査対象卵の品質指標を演算する作動例 について説明する。先ず、検査を行なう卵を殻付きのまま重量を測定し、卵重入力手 段 7にその重量を入力する。そして、検査を行なう卵の殻を割り、割卵した検査対象 卵 E (以降、検査対象卵 Eと記す。)載置台 1に載せ、これを保持させる。  Next, an operation example in which the quality index of the egg to be inspected is calculated by the inspection apparatus T according to the present invention will be described. First, weigh the egg to be inspected with its shell on, and enter the weight in the egg weight input means 7. Then, the egg shell to be inspected is divided, and the divided egg to be inspected E (hereinafter referred to as “inspection egg E”) is placed on the mounting table 1 and held.
[0058] 測定開始釦(図示せず)を押すと、演算制御手段 5の CPU51から出力されてくる制 御信号に基づいて光源 21から光が放射されるとともに、それがコリメータレンズ 22に より平行光に変換され、鉛直方向に分布する平行光が受光手段 3に出射される。受 光手段 3は、投光手段 2から出射された鉛直方向に分布する平行光を受光する。  When a measurement start button (not shown) is pressed, light is emitted from the light source 21 on the basis of a control signal output from the CPU 51 of the arithmetic control means 5, and is collimated by the collimator lens 22. Parallel light that is converted into light and distributed in the vertical direction is emitted to the light receiving means 3. The light receiving means 3 receives the parallel light distributed in the vertical direction emitted from the light projecting means 2.
[0059] 図 4に示すように、この時点(測定部位 S )では投光手段 2と受光手段 3との間に遮  [0059] As shown in FIG. 4, at this point (measurement site S), the light is blocked between the light projecting means 2 and the light receiving means 3.
1  1
蔽物がないので受光手段 3は投光手段 2から出射された平行光の全光量を受光する ことになる。なお、本図も図 3と同様に、理解しやすいように平行光の厚みを誇張して 描いている。  Since there is no obstruction, the light receiving means 3 receives the total amount of parallel light emitted from the light projecting means 2. Note that this figure is also drawn with exaggerated thickness of parallel light for easy understanding, as in FIG.
[0060] 次に、演算制御手段 5の CPU51からパルスモータ 41にパルス信号が与えられると 、載置台 1がパルス数に応じた距離だけ X方向に水平移動するとともに、当該載置台 1が水平移動した時の位置情報が前記 CPU51に出力される。そして、載置台 1が紙 面に向かって左方向へ水平移動することにより、検査対象卵 Eの測定部位 Sに投光  Next, when a pulse signal is given from the CPU 51 of the arithmetic control means 5 to the pulse motor 41, the mounting table 1 moves horizontally in the X direction by a distance corresponding to the number of pulses, and the mounting table 1 moves horizontally. The position information at that time is output to the CPU 51. Then, the mounting table 1 is moved leftward toward the paper surface to project light onto the measurement site S of the egg E to be inspected.
3 手段 2から出射された平行光が位置付けられる。  3 The parallel light emitted from the means 2 is positioned.
[0061] 前記測定部位 Sにおいて、受光手段 3の 1次元 CCDイメージセンサー 31は、検査 [0061] At the measurement site S, the one-dimensional CCD image sensor 31 of the light receiving means 3 is inspected.
3  Three
対象卵 Eを透過した後の平行光の明暗を検出し、その明暗に応じて 1画素毎に受光 量に対応した電荷量を蓄積する。 The brightness of the parallel light after passing through the target egg E is detected, and light is received for each pixel according to the brightness. The amount of charge corresponding to the amount is accumulated.
[0062] そして、演算制御手段 5の CPU51は、 1次元 CCDイメージセンサー 31にデータ取 得信号を出力し、検査対象卵 Eを透過した後の平行光の明暗に応じて各素子に蓄 積されてレ、る電荷を読み取るよう制御する。  [0062] Then, the CPU 51 of the arithmetic control means 5 outputs a data acquisition signal to the one-dimensional CCD image sensor 31, and is accumulated in each element according to the brightness of the parallel light after passing through the egg E to be examined. Control to read the charge.
[0063] 演算制御手段 5の CPU51は、 1次元 CCDイメージセンサー 31から出力されてきた 前記受光量に応じた電荷を電気信号に変換するとともに、当該 1次元 CCDイメージ センサー 31の受光量の変化している部分の bit数を求める処理を行なう。そして、検 查対象卵 Eにおける測定部位 Sの寸法計測にかかる演算処理が実施され、演算処 理された測定部位 Sの寸法計測データがメモリ(図示せず)に記憶される。  [0063] The CPU 51 of the arithmetic control means 5 converts the electric charge according to the received light amount output from the one-dimensional CCD image sensor 31 into an electric signal, and changes the received light amount of the one-dimensional CCD image sensor 31. Performs processing to find the number of bits in the part. Then, a calculation process related to the dimension measurement of the measurement site S in the test target egg E is performed, and the dimension measurement data of the measurement site S subjected to the calculation process is stored in a memory (not shown).
[0064] 以降、載置台 1が紙面に向かって左方向へ水平移動するのに応じて検査対象卵 E における複数の測定部位の寸法計測に力、かる演算が実施され、演算処理された各 測定部位の寸法計測データがメモリ(図示せず)に順次記憶される。  [0064] Thereafter, as the mounting table 1 horizontally moves leftward toward the plane of the paper, calculations are performed for measuring the dimensions of a plurality of measurement sites in the test egg E, and each calculation processed is performed. The dimension measurement data of the part is sequentially stored in a memory (not shown).
[0065] 検査対象卵 Eにおける全ての測定部位の寸法計測が完了すると、演算制御手段 5 の CPU51は、メモリ(図示せず)に記憶された複数の側面形状の寸法計測データを 加工して二次元化処理を実施した後、検査対象卵の側面画像(図 3参照)を作成し、 この検査対象卵 Eの側面形状データを品質指標演算手段 6に出力するよう制御する  [0065] When the dimension measurement of all the measurement sites in the test egg E is completed, the CPU 51 of the calculation control means 5 processes the dimension measurement data of the plurality of side surfaces stored in the memory (not shown), After performing the dimensioning process, a side image of the egg to be inspected (see Fig. 3) is created, and the side shape data of this egg E to be inspected is controlled to be output to the quality index calculation means 6
[0066] 品質指標演算手段 6は、検査対象卵 Eのハウ'ユニットを判定する場合、図 3に示す ように、測定部位 Sにおける検査対象卵の最大高さと最小高さの差分を演算し、その 結果をメモリ(図示せず)に記憶する。次に、測定部位 Sにおける検査対象卵の最大 高さと最小高さの差分を演算し、その結果をメモリ(図示せず)に記憶する。以降、前 述の演算とメモリへ記憶する処理を測定終了地点である測定部位 Sまで繰り返す。 [0066] When determining the How 'unit of the test object egg E, the quality index calculation means 6 calculates the difference between the maximum height and the minimum height of the test object egg at the measurement site S, as shown in FIG. The result is stored in a memory (not shown). Next, the difference between the maximum height and the minimum height of the test object egg at the measurement site S is calculated, and the result is stored in a memory (not shown). Thereafter, the above calculation and the process of storing in the memory are repeated up to the measurement site S which is the measurement end point.
j  j
[0067] 品質指標演算手段 6は、前記メモリに記憶された検査対象卵の各測定部位の差分 データのうち、最大差分となる位置を抽出する処理を実施する。具体的には、図 3に 示すように上り勾配の領域 Upでの最大差分となる位置と、下り勾配の領域 Dnでの最 大差分となる位置を抽出する処理を行なう。このとき、急激な上り勾配部分から下り勾 配部分で特定される領域 Ex (検査対象卵の卵黄部分)については最大差分の抽出 の対象から除外される。 [0068] 品質指標演算手段 6は、さらに、領域 Exを除ぐ上り勾配での最大差分となる位置 の卵白高さと、下り勾配での最大差分となる位置の卵白高さとを相互に比較して卵白 の最も高い部分を「卵白高さの測定点」として採用する。 [0067] The quality index calculation means 6 performs a process of extracting the position that is the maximum difference from the difference data of each measurement site of the test target egg stored in the memory. Specifically, as shown in FIG. 3, processing is performed to extract the position that becomes the maximum difference in the uphill area Up and the position that becomes the maximum difference in the downhill area Dn. At this time, the region Ex (the yolk portion of the egg to be inspected) specified from the steep ascending slope part to the descending slope part is excluded from the maximum difference extraction target. [0068] The quality index calculation means 6 further compares the egg white height at the position where the maximum difference is obtained with the upward gradient excluding the region Ex with the egg white height at the position where the maximum difference is obtained with the downward gradient. The highest part of egg white is adopted as the “measurement point of egg white height”.
[0069] 品質指標演算手段 6は、決定された濃厚卵白の高さと、事前に卵重入力手段 7に 入力された卵重データとを用いて所定式によりハウ'ユニットを演算するとともに、その 演算結果を表示手段 8に表示させる。  [0069] The quality index calculating means 6 calculates the How 'unit according to a predetermined formula using the determined height of the thick egg white and the egg weight data input to the egg weight input means 7 in advance. The result is displayed on the display means 8.
[0070] また、品質指標演算手段 6は、検査対象卵 Eの卵黄係数を演算する場合、図 3に示 すように、卵黄の側面画像 (網掛け部分)から、領域 Lの距離 (卵黄の直径に相当す る)と、検査対象卵 Eの最大の高さとなる位置 Pの垂直方向の距離 (卵黄の高さに相 当する)とを用いて所定式により卵黄係数を演算するとともに、その演算結果を表示 手段 8に表示させる。  [0070] When calculating the yolk coefficient of the test egg E, the quality index calculating means 6 calculates the distance of the region L (the yolk size) from the side image (shaded area) of the yolk as shown in FIG. (Corresponding to the diameter) and the vertical distance (corresponding to the height of the yolk) of the position P, which is the maximum height of the egg E to be examined, The calculation result is displayed on display means 8.
[0071] 本第一実施形態では、載置台 1が投光手段 2および受光手段 3に対して水平移動 する例を説明したが、これに限らず、例えば、投光手段 2および受光手段 3のユニット に駆動機構を設けて、当該投光手段 2および受光手段 3のユニットを、載置台 1に対 して水平移動させるようにしてあよ!/ヽ。  In the first embodiment, the example in which the mounting table 1 moves horizontally with respect to the light projecting unit 2 and the light receiving unit 3 has been described. However, the present invention is not limited to this. Provide a drive mechanism in the unit so that the light projecting means 2 and light receiving means 3 units move horizontally with respect to the mounting table 1!
[0072] 次に、本実施の形態にかかる卵の品質指標検査装置 Tの変形例を説明する。この 変形例では、図 5に示すように、受光手段 3内にテレセントリックレンズ 32が内蔵され ている。このように、投光手段 2および受光手段 3のうち、少なくとも一方にテレセントリ ックレンズを備える構成とすることにより、検査対象卵 Eを透過した後の平行光から不 要な光をカットし、純粋な平行光のみを受光素子 31に導くことができるので、取得さ れた検査対象卵 Eの側面形状の寸法と、実際寸法との誤差を極めて小さくすることが できる。  Next, a modification of the egg quality index inspection apparatus T according to the present embodiment will be described. In this modification, a telecentric lens 32 is built in the light receiving means 3 as shown in FIG. As described above, at least one of the light projecting means 2 and the light receiving means 3 is provided with the telecentric lens, so that unnecessary light is cut off from the parallel light after passing through the test object egg E, and pure light is supplied. Since only parallel light can be guided to the light receiving element 31, an error between the dimension of the acquired side surface shape of the egg E to be inspected and the actual dimension can be extremely small.
[0073] さらに、本実施の形態にかかる卵の品質指標検査装置 Tの他の変形例を説明する 。この変形例では、図 6に示すように、投光手段 2は、半導体レーザの光源 21と、コリ メータレンズ 22と、ポリゴンミラー 23と、反射ミラー 24とから構成されている。このよう な構成とすることにより、測定精度が高くなるほか、検査対象卵 Eの表面に視認可能 なレーザ光の軌跡が描かれるので測定部位を容易に確認することができる。  Furthermore, another modified example of the egg quality index inspection apparatus T according to the present embodiment will be described. In this modification, as shown in FIG. 6, the light projecting means 2 includes a light source 21 of a semiconductor laser, a collimator lens 22, a polygon mirror 23, and a reflection mirror 24. With such a configuration, the measurement accuracy is increased, and a visible laser beam trajectory is drawn on the surface of the test egg E, so that the measurement site can be easily confirmed.
[0074] また、本実施例では、光源 21から放射された光をコリメータレンズ 22により平行光 に変換し、むらのない平行光を出射する例を説明した力 これに限らず、例えば、発 光ダイオード等の複数の発光素子を縦一列に配列させてライン状の光を形成し、こ れを出射するようにしてもよいし、例えば、数 secの間隔で一の線状光を鉛直方向 に往復させて、見かけ上、ライン状に形成された光を出射するようにしてもよい。 In the present embodiment, the light emitted from the light source 21 is collimated by the collimator lens 22. However, the present invention is not limited to this. For example, a plurality of light emitting elements such as light emitting diodes are arranged in a vertical line to form line-shaped light. Alternatively, for example, one linear light may be reciprocated in the vertical direction at intervals of several seconds so that apparently light formed in a line shape is emitted.
[0075] また、本実施例では、載置台 1を所定方向に水平移動させて検査対象卵 Eの側面 形状を取得する例を説明した。し力もながら、検査対象卵 Eを載置台 1に保持させる と、検査対象卵 Eは一の方向に偏って流延してしまうため、特に、ハウ'ユニットを計 測する場合、一方向から検査対象卵 Eの側面形状を取得するよりも、複数の方向か ら検査対象卵 Eの側面形状を取得した方が望まし!/、。  In the present embodiment, the example in which the mounting table 1 is horizontally moved in a predetermined direction to acquire the side surface shape of the test object egg E has been described. However, if the egg E to be inspected is held on the mounting table 1, the egg E to be inspected will be cast in one direction. Rather than acquiring the side shape of the target egg E, it is preferable to acquire the side shape of the test egg E from multiple directions!
[0076] したがって、載置台 1、あるいは、投光手段 2および受光手段 3からなる投受光ュニ ットのいずれか一方を、水平方向に回転させる測定方向可変手段(図示せず)を設け るようにし、載置台 1 (この説明では載置台 1を回転させる例で説明する。)を例えば、 120度ずつ回転させて検査対象卵 Eの側面形状を取得する。  Therefore, there is provided a measurement direction variable means (not shown) for horizontally rotating the mounting table 1 or any one of the light projecting / receiving unit composed of the light projecting means 2 and the light receiving means 3. In this way, the mounting table 1 (which will be described as an example in which the mounting table 1 is rotated in this description) is rotated by, for example, 120 degrees to obtain the side shape of the test object egg E.
[0077] そして、取得された 3つの角度からの側面形状データのうち、濃厚卵白の最も高い 側面形状データを「卵白高さの測定点」として採用し、これをノ、ゥ 'ユニットの演算に 用いるようにすれば、より精度の高!/、ハウ ·ユニットの検査を行なうことが可能となる。  [0077] Among the acquired side surface shape data from the three angles, the side surface shape data with the highest concentration of the thick egg white is adopted as the “measurement point of egg white height”, and this is used for the calculation of the node unit. If used, it becomes possible to inspect the housing unit with higher accuracy!
[0078] 次に、本発明にかかる卵の品質指標検査装置の第二実施形態を図 7〜図 8に従つ て説明する。図 7は、第二実施形態にかかる卵の品質指標検査装置 Tを説明する概 略平面図であり、図 8は、図 7の VIII方向から見た概略正面図である。なお、前述の 第一実施形態にかかる卵の品質指標検査装置 Tと同一構成部分については同一符 号を付して詳細な説明を省略する。  Next, a second embodiment of the egg quality index inspection apparatus according to the present invention will be described with reference to FIGS. FIG. 7 is a schematic plan view for explaining the egg quality index inspection apparatus T according to the second embodiment, and FIG. 8 is a schematic front view seen from the direction VIII of FIG. The same components as those in the egg quality index inspection apparatus T according to the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
[0079] 第二実施形態にかかる卵の品質指標検査装置 T (以降、単に検査装置 Tと記す。 ) の特徴的な構成を説明する。この検査装置 Tは、図 7に示すように、載置台 1が横向 きの T字状のベースプレート 9の、紙面に向かって右側の上面に取り付けられている  A characteristic configuration of the egg quality index inspection apparatus T (hereinafter simply referred to as the inspection apparatus T) according to the second embodiment will be described. As shown in FIG. 7, the inspection device T is mounted on the upper surface on the right side of the T-shaped base plate 9 with the mounting table 1 facing sideways.
[0080] また、前記ベースプレート 9の、紙面に向かって左側の上面には、投光手段 2と受 光手段 3とが取り付けられている。図 7に示すように、前記投光手段 2と受光手段 3と は、当該投光手段 2の平行光の出射方向と当該受光手段 3の平行光の入射方向と が平行となるよう配置されてレ、る。 In addition, the light projecting means 2 and the light receiving means 3 are attached to the upper surface of the base plate 9 on the left side of the paper surface. As shown in FIG. 7, the light projecting means 2 and the light receiving means 3 are defined by the parallel light emitting direction of the light projecting means 2 and the incident direction of the parallel light of the light receiving means 3, respectively. Are arranged in parallel.
[0081] さらに、前記ベースプレート 9における載置台 1側の下方には、後述する一の反射 板 11並びに他の一の反射板 12のユニットを支持するための矩形状の支持プレート 1 0が配置されており、当該支持プレート 10の両端部には、保持部材 13、 14により保 持された例えば、ガラス製の鏡からなる一の反射板 11と他の一の反射板 12とが対向 配置されている。 Further, a rectangular support plate 10 for supporting a unit of one reflecting plate 11 and another reflecting plate 12 described later is disposed below the mounting table 1 side of the base plate 9. At one end of the support plate 10, a reflecting plate 11 made of, for example, a glass mirror and another reflecting plate 12 held by holding members 13 and 14 are opposed to each other. Yes.
[0082] そして、前記投光手段 2から出射された平行光は、該出射された平行光の進行方 向に対して 45度の角度で配置された一の反射板 11の反射面 1 laによって進行方向 が 90度変更されるとともに、進行方向が 90度変更された前記平行光は、該平行光の 進行方向に対して 45度の角度で配置された他の一の反射板 12の反射面 12aによつ てさらに進行方向が 90度変更されて前記受光手段 3に入射するよう構成されている Then, the parallel light emitted from the light projecting means 2 is reflected by the reflecting surface 1 la of one reflecting plate 11 disposed at an angle of 45 degrees with respect to the traveling direction of the emitted parallel light. The parallel light whose traveling direction has been changed by 90 degrees and whose traveling direction has been changed by 90 degrees is the reflection surface of the other reflector 12 disposed at an angle of 45 degrees with respect to the traveling direction of the parallel light. The traveling direction is further changed by 90 degrees by 12a and is configured to enter the light receiving means 3.
Yes
[0083] 図 7および図 8に示すように、前記支持プレート 10の下部には、駆動手段 4が設け られており、この駆動手段 4のパルスモータ 41およびスクリュウ 42の駆動により一の 反射板 11並びに他の一の反射板 12のユニットが載置台 1に対して X— X'方向に水 平移動する仕組みになっている。  As shown in FIG. 7 and FIG. 8, a driving means 4 is provided below the support plate 10, and one reflecting plate 11 is driven by driving a pulse motor 41 and a screw 42 of the driving means 4. In addition, the other reflector 12 unit moves horizontally relative to the mounting table 1 in the direction of X—X ′.
[0084] 詳述すると、一の反射板 11並びに他の一の反射板 12のユニットは、駆動手段 4に より、例えば、 2秒で X方向へ水平移動(検査対象卵 Eの測定時)し、例えば、 1秒で X '方向へ水平移動(元の位置に戻る時)する仕組みになって!/、る。  More specifically, the unit of one reflector 11 and the other reflector 12 is moved horizontally in the X direction by the driving means 4 in, for example, 2 seconds (when measuring the test object egg E). For example, it becomes a mechanism that moves horizontally in the X 'direction (when returning to the original position) in 1 second! /.
[0085] したがって、検査対象卵 Eが載置された載置台 1を水平移動させる場合、載置台 1 上の検査対象卵 Eは半液状であるため、前記載置台 1の水平移動時の微細な振動 によって検査対象卵 Eが揺れてしまい、検査精度を低下させる恐れがあつたが、本実 施形態の検査装置 Tは、上述のように構成したことにより、前記検査対象卵 Eの揺れ を排除することができるので検査対象卵 Eの品質指標の検査を高精度に行なうことが できる。  [0085] Therefore, when the mounting table 1 on which the test object egg E is mounted is moved horizontally, the inspection object egg E on the mounting table 1 is in a semi-liquid state. The inspection target egg E may be shaken by the vibration, which may reduce the inspection accuracy. However, the inspection apparatus T according to this embodiment eliminates the shake of the inspection target egg E by having the above-described configuration. Therefore, the quality index of the egg E to be inspected can be inspected with high accuracy.
[0086] また、載置台 1上の検査対象卵 Eの揺れを考慮する必要がないので、一の反射板 1 1と他の一の反射板 12との反射で形成された平行光の水平方向における走査を高 速化することができ、より短時間で検査対象卵 Eの品質指標の検査を行なうことが可 能になる。さらに、投光手段 2および受光手段 3を水平移動させる必要がないので当 該投光手段 2および受光手段 3に接続されている信号線等のケーブル類の損傷や 切断等のトラブルを回避することができる。 [0086] Further, since it is not necessary to consider the swing of the egg E to be inspected on the mounting table 1, the horizontal direction of the parallel light formed by the reflection of the one reflecting plate 11 and the other reflecting plate 12 The quality index of the egg E to be inspected can be inspected in a shorter time. Become capable. Furthermore, since it is not necessary to move the light projecting means 2 and the light receiving means 3 horizontally, troubles such as damage and disconnection of signal lines and other cables connected to the light projecting means 2 and the light receiving means 3 should be avoided. Can do.
[0087] 本第二実施形態では、一の反射板 11並びに他の一の反射板 12のユニットを載置 台 1に対して水平移動させる例を説明した。し力もながら、検査対象卵 Eを載置台 1に 保持させると、検査対象卵 Eは一の方向に偏って流延してしまうため、特に、ハウ 'ュ ニットの検査の場合、一方向から検査対象卵 Eの側面形状データを取得するよりも、 複数の方向から検査対象卵 Eの側面形状データを取得した方が望ましい。  In the second embodiment, the example in which the units of the one reflecting plate 11 and the other reflecting plate 12 are moved horizontally with respect to the mounting table 1 has been described. However, if the egg E to be inspected is held on the mounting table 1, the egg E to be inspected will be cast in one direction, so in particular, in the case of inspection of the unit, it will be inspected from one direction. Rather than acquiring the side shape data of the target egg E, it is preferable to acquire the side shape data of the test egg E from multiple directions.
[0088] したがって、載置台 1とベースプレート 9との間に、載置台 1を水平方向に回転させ る測定方向可変手段(図示せず)を設けるようにし、当該載置台 1を例えば、 120度 ずつ回転させて検査対象卵 Eの側面形状データを取得するようにしてもよい。  Therefore, a measuring direction variable means (not shown) for rotating the mounting table 1 in the horizontal direction is provided between the mounting table 1 and the base plate 9, and the mounting table 1 is, for example, 120 degrees each. You may make it acquire the side surface shape data of the test object egg E by rotating.
[0089] そして、取得された 3つの角度からの側面形状データのうち、濃厚卵白の最も高い 側面形状データを「卵白高さの測定点」として採用し、これをノ、ゥ 'ユニットの演算に 用いるようにすれば、より精度の高!/、ハウ ·ユニットの検査を行なうことが可能となる。  [0089] Then, among the acquired side surface shape data from three angles, the side surface shape data with the highest concentration of thick egg white is adopted as the “measurement point of egg white height”, and this is used for the calculation of the node unit. If used, it becomes possible to inspect the housing unit with higher accuracy!
[0090] なお、本第二実施形態では、一の反射板 11並びに他の一の反射板 12のユニット を載置台 1に対して水平移動させる例を説明したが、これに限らず、載置台 1を一の 反射板 11並びに他の一の反射板 12のユニットに対して水平移動させてもよい。本第 二実施形態にかかる検査装置 Tのその他の構成要素、各構成要素の内部構成並び に本実施形態の変形例については、前述の第一実施形態で説明した検査装置丁と 同様であるので説明を省略する。  In the second embodiment, the example in which the unit of one reflecting plate 11 and the other reflecting plate 12 is horizontally moved with respect to the mounting table 1 is described. However, the present invention is not limited to this. 1 may be moved horizontally with respect to the unit of one reflector 11 and the other reflector 12. The other components of the inspection device T according to the second embodiment, the internal configuration of each component, and the modification of the present embodiment are the same as those of the inspection device described in the first embodiment. Description is omitted.
[0091] 今回、開示された実施の形態は例示であってこれに制限されるものではない。本発 明は、上記で説明した範囲ではなぐ請求の範囲によって示され、請求の範囲と均等 の意味および範囲での全ての変更が含まれることが意図される。  [0091] The embodiment disclosed this time is an example, and the present invention is not limited to this. The present invention is defined by the scope of the claims outside the scope described above, and is intended to include any modifications within the scope and meaning equivalent to the scope of the claims.
産業上の利用可能性  Industrial applicability
[0092] 本発明は卵の品質検査に有効に利用される。 The present invention is effectively used for egg quality inspection.

Claims

請求の範囲 The scope of the claims
[1] 割卵された検査対象卵(E)を載置する上面が水平に形成された載置台(1)と、 鉛直方向に分布する平行光を出射する投光手段(2)と、  [1] A mounting table (1) on which an upper surface on which the egg to be inspected (E) is placed is horizontally formed; a light projecting means (2) for emitting parallel light distributed in a vertical direction;
前記投光手段(2)から出射された鉛直方向に分布する平行光を受光する受光手 段 (3)を備え、  A light receiving means (3) for receiving parallel light distributed in the vertical direction emitted from the light projecting means (2);
前記投光手段(2)と受光手段(3)とは、所定間隔をもって対向配置されており、 前記載置台(1)、あるいは、前記投光手段(2)および受光手段(3)のユニットのい ずれか一方を水平移動させる駆動手段 (4)を備え、  The light projecting means (2) and the light receiving means (3) are arranged to face each other at a predetermined interval, and the mounting table (1) or the unit of the light projecting means (2) and the light receiving means (3) is provided. Drive means (4) to move either one horizontally,
前記駆動手段(4)により前記載置台(1)、あるいは、前記投光手段(2)および受光 手段(3)のユニットのいずれか一方が水平移動するのに応じて、前記受光手段(3) が検査対象卵(E)を透過した後の平行光の光量の変化を検出し、当該受光手段(3 )から得られた電気信号に基づ!/、て、検査対象卵(E)の側面形状を演算処理する演 算処理手段(5)を備え、  In response to the horizontal movement of either the mounting table (1) or the light projecting means (2) or the light receiving means (3) by the driving means (4), the light receiving means (3) Detects the change in the amount of parallel light after passing through the egg to be examined (E), and based on the electrical signal obtained from the light receiving means (3), the side of the egg to be examined (E) Computation processing means (5) for computing the shape,
前記演算処理手段(5)により演算処理された検査対象卵(E)の側面形状データに 基づいて卵の品質指標を判定する品質指標演算手段(6)から構成されていることを 特徴とする、卵の品質指標検査装置。  It is composed of quality index calculation means (6) for determining an egg quality index based on side shape data of the egg to be examined (E) calculated by the calculation processing means (5), Egg quality index inspection device.
[2] 前記品質指標演算手段(6)は、前記演算処理手段(5)により演算処理された検査 対象卵(E)の側面形状データに基づいて卵白の高さを演算し、得られた卵白の高さ データと、予め測定された当該検査対象卵(E)の卵重データとを用いてハウ'ュニッ トを判定することを特徴とする、請求の範囲第 1項に記載の卵の品質指標検査装置。  [2] The quality index calculating means (6) calculates the egg white height based on the side shape data of the egg to be examined (E) calculated by the calculation processing means (5), and the obtained egg white The egg quality according to claim 1, characterized in that the unit is determined using the height data of the egg and the egg weight data of the egg to be examined (E) measured in advance. Indicator inspection device.
[3] 前記品質指標演算手段(6)は、前記演算処理手段(5)により演算処理された検査 対象卵(E)の側面形状データに基づいて卵黄の高さ並びに卵黄の直径を演算し、 得られた卵黄の高さデータ並びに卵黄の直径データを用いて卵黄係数を判定するこ とを特徴とする、請求の範囲第 1項に記載の卵の品質指標検査装置。  [3] The quality index calculation means (6) calculates the height of egg yolk and the diameter of egg yolk based on the side shape data of the egg to be examined (E) calculated by the calculation processing means (5), 2. The egg quality index inspection apparatus according to claim 1, wherein the egg yolk coefficient is determined using the obtained egg yolk height data and egg yolk diameter data.
[4] 前記駆動手段 (4)は、移動距離信号を出力しながら載置台(1)、あるいは、前記投 光手段(2)および受光手段(3)のユニットのレゝずれか一方を水平移動させることを特 徴とする、請求の範囲第 1項に記載の卵の品質指標検査装置。  [4] The drive means (4) horizontally moves either the mounting table (1) or the displacement of the unit of the light projecting means (2) and the light receiving means (3) while outputting a movement distance signal. The egg quality index inspection device according to claim 1, characterized in that
[5] 前記投光手段(2)および受光手段(3)のうち、少なくとも一方にテレセントリックレン ズを備えたことを特徴とする、請求の範囲第 1項に記載の卵の品質指標検査装置。 [5] At least one of the light projecting means (2) and the light receiving means (3) has a telecentric lens. The egg quality index inspection apparatus according to claim 1, wherein the egg quality index inspection apparatus is provided.
[6] 前記投光手段(2)は、光源(21)から放射された光をポリゴンミラーおよび反射ミラ 一で反射したのち、コリメータレンズ (22)により平行光に変換して当該平行光を出射 することを特徴とする、請求の範囲第 1項に記載の卵の品質指標検査装置。 [6] The light projecting means (2) reflects the light emitted from the light source (21) by a polygon mirror and a reflection mirror, and then converts the light into parallel light by a collimator lens (22) to emit the parallel light. The egg quality index inspection apparatus according to claim 1, wherein
[7] 前記投光手段(2)は、線状光を鉛直方向に分布させてライン状に形成した光を出 射することを特徴とする、請求の範囲第 1項に記載の卵の品質指標検査装置。 [7] The egg quality according to claim 1, wherein the light projecting means (2) emits light formed in a line by distributing linear light in a vertical direction. Indicator inspection device.
[8] 前記載置台(1)、または、前記投光手段(2)および受光手段(3)のユニットのいず れか一方を水平方向に回転させる測定方向可変手段を備えたことを特徴とする、請 求の範囲第 1項に記載の卵の品質指標検査装置。 [8] It is characterized by comprising a measuring direction changing means for rotating either one of the mounting table (1) or the light projecting means (2) and the light receiving means (3) in the horizontal direction. The egg quality index inspection apparatus according to claim 1 of the claim scope.
[9] 割卵された検査対象卵(E)を載置する上面が水平に形成された載置台(1)と、 鉛直方向に分布する平行光を出射する投光手段(2)と、 [9] A mounting table (1) on which the upper surface on which the divided egg to be examined (E) is mounted is formed horizontally, a light projecting means (2) for emitting parallel light distributed in the vertical direction,
前記投光手段(2)から出射された鉛直方向に分布する平行光を受光する受光手 段 (3)を備え、  A light receiving means (3) for receiving parallel light distributed in the vertical direction emitted from the light projecting means (2);
前記投光手段(2)と前記受光手段(3)とは、当該投光手段(2)の平行光の出射方 向と当該受光手段(3)の平行光の入射方向とが平行となるよう配置されており、 前記投光手段(2)と受光手段(3)との光路上には、一の反射板(11)と他の一の反 射板(12)とが対向配置されており、  The light projecting means (2) and the light receiving means (3) are arranged so that the parallel light emitting direction of the light projecting means (2) and the incident direction of the parallel light of the light receiving means (3) are parallel to each other. On the optical path between the light projecting means (2) and the light receiving means (3), one reflecting plate (11) and the other reflecting plate (12) are arranged to face each other. ,
前記投光手段(2)から出射された平行光は、該出射された平行光の進行方向に対 して 45度の角度で配置された一の反射板(11)の反射面によって進行方向が 90度 変更されるとともに、進行方向が 90度変更された前記平行光は、該平行光の進行方 向に対して 45度の角度で配置された他の一の反射板(12)の反射面によってさらに 進行方向が 90度変更されて前記受光手段(3)に入射するよう構成され、  The traveling direction of the parallel light emitted from the light projecting means (2) is reflected by the reflecting surface of one reflecting plate (11) arranged at an angle of 45 degrees with respect to the traveling direction of the emitted parallel light. The parallel light whose traveling direction is changed by 90 degrees and whose traveling direction is changed by 90 degrees is the reflecting surface of the other reflecting plate (12) arranged at an angle of 45 degrees with respect to the traveling direction of the parallel light. Is further configured to change the traveling direction by 90 degrees and enter the light receiving means (3),
さらに、前記一の反射板(11)並びに他の一の反射板(12)のユニット、あるいは、 前記載置台(1)の!、ずれか一方を水平移動させる駆動手段(4)と、  And a drive means (4) for horizontally moving the unit of the one reflector (11) and the other reflector (12), or the!
前記駆動手段(4)により前記一の反射板(11)並びに他の一の反射板(12)のュニ ット、あるいは、前記載置台(1)のいずれか一方が水平移動するのに応じて、一の反 射板(11)から他の一の反射板(12)に進行する平行光の光路上に位置付けられる 検査対象卵(E)を透過した平行光の光量の変化を受光手段(3)にて検出し、前記受 光手段(3)から得られた電気信号に基づ!/、て検査対象卵(E)の側面形状を演算処 理する演算処理手段(5)と、 Depending on the horizontal movement of either the unit of the one reflector (11) and the other reflector (12) or the mounting table (1) by the drive means (4). The change in the amount of parallel light transmitted through the test object egg (E) positioned on the optical path of the parallel light traveling from one reflector (11) to the other reflector (12) is received by the light receiving means ( 3) Based on the electrical signal obtained from the optical means (3)! /, An arithmetic processing means (5) for calculating the side shape of the egg to be examined (E),
前記演算処理手段(5)により演算処理された検査対象卵(E)の側面形状データに 基づいて卵の品質指標を判定する品質指標演算手段(6)とを備えていることを特徴 とする、卵の品質指標検査装置。  Quality index calculation means (6) for determining an egg quality index based on side shape data of the egg to be examined (E) calculated by the calculation processing means (5), Egg quality index inspection device.
[10] 前記品質指標演算手段(6)は、前記演算処理手段(5)により演算処理された検査 対象卵(E)の側面形状データに基づいて卵白の高さを演算し、得られた卵白の高さ データと、予め測定された当該検査対象卵(E)の卵重データとを用いてハウ'ュニッ トを判定することを特徴とする、請求の範囲第 9項に記載の卵の品質指標検査装置。  [10] The quality index calculation means (6) calculates the height of egg white based on the side shape data of the egg to be inspected (E) calculated by the calculation processing means (5), and the obtained egg white The egg quality according to claim 9, characterized in that the unit is determined using the height data of the egg and the egg weight data of the egg to be examined (E) measured in advance. Indicator inspection device.
[11] 前記品質指標演算手段(6)は、前記演算処理手段(5)により演算処理された検査 対象卵(E)の側面形状データに基づいて卵黄の高さ並びに卵黄の直径を演算し、 得られた卵黄の高さデータ並びに卵黄の直径データを用いて卵黄係数を判定するこ とを特徴とする、請求の範囲第 9項に記載の卵の品質指標検査装置。  [11] The quality index calculation means (6) calculates the height of egg yolk and the diameter of egg yolk based on the side shape data of the egg to be examined (E) calculated by the calculation processing means (5), 10. The egg quality index inspection apparatus according to claim 9, wherein the egg yolk coefficient is determined using the obtained egg yolk height data and egg yolk diameter data.
[12] 前記駆動手段 (4)は、移動距離信号を出力しながら一の反射板(11)並びに他の 一の反射板(12)のユニット、あるいは、載置台(1)のいずれか一方を水平移動させ ることを特徴とする、請求の範囲第 9項に記載の卵の品質指標検査装置。  [12] The drive means (4) outputs either the unit of one reflector (11) and the other reflector (12) or the mounting table (1) while outputting the movement distance signal. 10. The egg quality index inspection device according to claim 9, wherein the egg quality index inspection device is moved horizontally.
[13] 前記投光手段(2)および受光手段(3)のうち、少なくとも一方にテレセントリックレン ズを備えたことを特徴とする、請求の範囲第 9項に記載の卵の品質指標検査装置。  13. The egg quality index inspection device according to claim 9, wherein at least one of the light projecting means (2) and the light receiving means (3) is provided with a telecentric lens.
[14] 前記投光手段(2)は、光源(21)から放射された光をポリゴンミラーおよび反射ミラ 一で反射したのち、コリメータレンズ (22)により平行光に変換して当該平行光を出射 することを特徴とする、請求の範囲第 9項に記載の卵の品質指標検査装置。  [14] The light projecting means (2) reflects the light emitted from the light source (21) by a polygon mirror and a reflection mirror, and then converts the light into parallel light by a collimator lens (22) to emit the parallel light. 10. The egg quality index inspection device according to claim 9, wherein
[15] 前記投光手段(2)は、線状光を鉛直方向に分布させてライン状に形成した光を出 射することを特徴とする、請求の範囲第 9項に記載の卵の品質指標検査装置。  [15] The egg quality according to claim 9, wherein the light projecting means (2) emits light formed in a line shape by distributing linear light in a vertical direction. Indicator inspection device.
[16] 前記一の反射板(11)並びに他の一の反射板(12)のユニット、あるいは、前記載 置台(1)のいずれか一方を水平方向に回転させる測定方向可変手段を備えたことを 特徴とする、請求の範囲第 9項に記載の卵の品質指標検査装置。  [16] The measuring direction changing means for rotating one of the reflecting plate (11) and the other reflecting plate (12) unit or the mounting table (1) in the horizontal direction is provided. The egg quality index inspection apparatus according to claim 9, characterized by the above-mentioned.
PCT/JP2007/073553 2006-12-08 2007-12-06 Egg quality index examination device WO2008069263A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006332285A JP4858838B2 (en) 2006-06-29 2006-12-08 Egg quality index inspection device
JP2006-332285 2006-12-08

Publications (1)

Publication Number Publication Date
WO2008069263A1 true WO2008069263A1 (en) 2008-06-12

Family

ID=39492141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073553 WO2008069263A1 (en) 2006-12-08 2007-12-06 Egg quality index examination device

Country Status (1)

Country Link
WO (1) WO2008069263A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221202A1 (en) * 2017-05-31 2018-12-06 株式会社ナベル Egg quality evaluation method, egg quality evaluation device, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945556U (en) * 1982-09-20 1984-03-26 キユーピー株式会社 Optical disordered egg detection device
JPH07229841A (en) * 1994-02-16 1995-08-29 Kyowa Kikai Kk Apparatus for detecting/discriminating bad liquid egg through image processing
JPH09178728A (en) * 1995-10-26 1997-07-11 Taisei Denki Seisakusho:Kk Automatic inspection equipment for quality of egg
JP2007309856A (en) * 2006-05-19 2007-11-29 Naberu:Kk Noncontact-type egg freshness index inspection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945556U (en) * 1982-09-20 1984-03-26 キユーピー株式会社 Optical disordered egg detection device
JPH07229841A (en) * 1994-02-16 1995-08-29 Kyowa Kikai Kk Apparatus for detecting/discriminating bad liquid egg through image processing
JPH09178728A (en) * 1995-10-26 1997-07-11 Taisei Denki Seisakusho:Kk Automatic inspection equipment for quality of egg
JP2007309856A (en) * 2006-05-19 2007-11-29 Naberu:Kk Noncontact-type egg freshness index inspection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221202A1 (en) * 2017-05-31 2018-12-06 株式会社ナベル Egg quality evaluation method, egg quality evaluation device, and program
JP2018204990A (en) * 2017-05-31 2018-12-27 株式会社ナベル Egg quality evaluation method, egg quality evaluation device, and program
CN110709697A (en) * 2017-05-31 2020-01-17 股份公司南备尔 Egg quality evaluation method, egg quality evaluation device, and program
CN110709697B (en) * 2017-05-31 2022-06-07 股份公司南备尔 Egg quality evaluation method, egg quality evaluation device, and program

Similar Documents

Publication Publication Date Title
US7369250B2 (en) System and method to inspect components having non-parallel surfaces
JP4858838B2 (en) Egg quality index inspection device
KR101485192B1 (en) Systems and methods for determining the shape of glass sheets
JP5265388B2 (en) Contact angle measurement method and apparatus based on the curved surface radius of a droplet obtained by optical distance measurement method
US7194908B2 (en) Device and method for ultrasonic inspection using profilometry data
JP5917039B2 (en) Subject information acquisition device
JP3766210B2 (en) 3D ultrasonic imaging device
US8292817B2 (en) Ultrasonograph
JP2010017427A (en) Optoacoustic measuring instrument
CA2595886A1 (en) Method and device for determining defects on a constructional element of a turbine
CN105849550A (en) Photoacoustic microscope device
JP2011092631A (en) Biological information processor and biological information processing method
EP0649001B1 (en) Procedure to measure the form and/or evenness of a moving material and device for its execution
US6816248B2 (en) Hand-held automatic refractometer
CN101479564A (en) Apparatus and method for measuring sidewall thickness of non-round transparent containers
JP2007309856A (en) Noncontact-type egg freshness index inspection device
WO2008069263A1 (en) Egg quality index examination device
KR101934069B1 (en) Liquid level measuring equipment
CN210720729U (en) Distance measurement imaging device and analysis detection system
JP2014130119A (en) Egg quality index inspection apparatus and egg quality index inspection method
US20220155213A1 (en) Erythrocyte differentiation monitoring apparatus and erythrocyte differentiation monitoring method
WO2007025022A3 (en) Non-contact ultrasound materials systems and measurement techniques
JP5501488B2 (en) Photoacoustic measuring device
EP3758610B1 (en) Method for measuring an ultrasonic attenuation parameter, guided by harmonic elastography; probe; and device for implementing said method
JP2008151576A (en) Sonic wave sensor and viscoelasticity measuring instrument equipped with the sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850169

Country of ref document: EP

Kind code of ref document: A1