WO2008069049A1 - Magnesium alloy material and process for production thereof - Google Patents

Magnesium alloy material and process for production thereof Download PDF

Info

Publication number
WO2008069049A1
WO2008069049A1 PCT/JP2007/072847 JP2007072847W WO2008069049A1 WO 2008069049 A1 WO2008069049 A1 WO 2008069049A1 JP 2007072847 W JP2007072847 W JP 2007072847W WO 2008069049 A1 WO2008069049 A1 WO 2008069049A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
alloy material
elongation
mass
alloy
Prior art date
Application number
PCT/JP2007/072847
Other languages
French (fr)
Japanese (ja)
Inventor
Mamoru Nakata
Yuuichi Yamada
Koji Itakura
Yoshio Okada
Yoshihito Kawamura
Michiaki Yamasaki
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
National University Corporation Kumamoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho, National University Corporation Kumamoto University filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to US12/517,134 priority Critical patent/US20100061882A1/en
Publication of WO2008069049A1 publication Critical patent/WO2008069049A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the present invention is excellent in mechanical properties (tensile strength, 0.2% strength and elongation), and in particular, has high tensile strength and 0.2% strength while maintaining high elongation.
  • the present invention relates to a magnesium alloy material and a manufacturing method thereof.
  • magnesium alloy materials have the lowest density, light weight, and high strength among the alloys in practical use. As a result, chassis of electrical products, automobile wheels, and underbody parts. ), And certain lay- ers (such as around-the-engine parts).
  • Patent Document 1 Japanese Patent Laid-Open No. 06-041701
  • Patent Document 2 JP 2002-256370 A
  • Non-Patent Document 1 Noriaki Yamazaki and 3 others, “A New Mg-Zn-Gd Alloy Forming a Long-Period Laminate Structure by High-Temperature Heat Treatment”, Abstracts of the 108th Spring Meeting of the Japan Institute of Light Metals (2005) The Japan Institute of Light Metals, 2005, p. 43-44
  • Non-Patent Document 2 Kim et al., “Development of high-strength Mg-Zn-Gd alloy using rapid solidification method”, Summary of the 109th Autumn Meeting of the Japan Institute of Light Metals (2005), Japan Institute of Light Metals, 2005 , p. 9-10
  • Non-Patent Document 3 Kim et al., “Mechanical properties of Mg-Zn-Gd rapidly solidified ribbon-solidified moldings with long-period laminate structure”, Abstracts of the 110th Spring Meeting of the Japan Institute of Light Metals (2006), The Japan Institute of Light Metals, 2006, p. 355-356
  • Non-Patent Document 4 Kim and 2 others, "Development of high-strength Mg-Zn-Gd alloy using rapid solidification method” , The Japan Institute of Metals Fall Meeting Summary, Japan Institute of Light Metals, 2005, p. 9-10 Invention Disclosure
  • the above-described magnesium alloy material has a problem in that it has a special manufacturing method! /, And it has high mechanical properties, but requires special equipment and has low productivity. There is also a problem that the members that can be further applied are limited. For example, when applied to parts such as engine pistons, high elongation is required in addition to tensile strength and resistance. In addition, the conventional magnesium alloy material has a problem that the tensile strength and the 0.2% proof stress are insufficient when high elongation is realized.
  • the present invention was devised in view of the above problems, and has excellent mechanical properties, in particular, while maintaining high elongation without using special manufacturing equipment and processes. It is an object of the present invention to provide a magnesium alloy material having a tensile strength and a 0.2% resistance and a method for producing the same.
  • the present invention is configured as the following magnesium alloy material. That is, the magnesium alloy material according to the present invention contains Mg ⁇ : Gd as essential components in a range of ⁇ :;! ⁇ 5 mass%, Gd: 5 ⁇ ; 15 mass%, with the balance being Mg and inevitable impurities.
  • -Zn-based alloy power which has a long-period laminated structure in the alloy structure of the Mg-Gd-Zn alloy, and Mg Gd and / or Mg Zn
  • Gd is 4% or more.
  • the tensile strength and 0.2% resistance of the magnesium alloy material can be improved by having a long-period laminated structure in the alloy structure of the Mg-Gd-Zn alloy. .
  • Mg Gd and / or Mg Zn Gd in the alloy structure,
  • the elongation of the alloy material can be improved.
  • the magnesium alloy material includes the Mg Gd and / or Mg Z in the alloy structure.
  • the area ratio of 33 n Gd is preferably 53% or less.
  • the area ratio of Mg Gd and / or Mg Zn Gd is limited to a predetermined range.
  • the elongation strength s of the magnesium alloy material becomes even more appropriate.
  • the elongation (%) measured by a tensile test specified in JIS is (x) and 0.2% meta (MPa) is (y), (-15. 57x ) +467 ⁇ y ⁇ (-15. 57x) + 5
  • the elongation and the 0.2% resistance to resistance have a predetermined relationship, so that it can be applied to automotive parts having severe mechanical properties such as engine pistons.
  • a method for producing a magnesium alloy material according to the present invention comprises dissolving the Mg-Gd-Zn alloy.
  • a melting and forging step of forging to obtain a forged material and a plastic working step for producing a processed material by subjecting the forged material to hot plastic processing at a predetermined processing speed.
  • the forged material is subjected to hot plastic processing at a predetermined processing speed.
  • the long-period laminated structure formed in the melting and forging process is locally broken (predetermined area ratio), and Mg Gd and / or Mg Zn Gd is precipitated in the broken intragranular portion.
  • the magnesium alloy material according to the present invention has a long-period laminated structure in the alloy structure of the Mg-Zn-Gd-based alloy and has high elongation by including Mg Gd and / or Mg Zn Gd.
  • Gd and / or Mg Zn Gd area ratio is within a specified range, so even higher elongation
  • the magnesium alloy material according to the present invention can be applied to parts with severe mechanical properties such as automotive parts, particularly engine pistons. It becomes possible to apply to.
  • the method for producing a magnesium alloy material according to the present invention includes a magnesium alloy material having improved mechanical properties by a general production facility or process by performing hot plastic working at a predetermined working speed. Can be produced efficiently.
  • FIG. 1 is an optical micrograph showing the alloy structure of a magnesium alloy material (worked material) when the magnesium alloy material according to the present invention is produced at an extrusion rate of 2.5 mm / sec.
  • FIG. 2 is an optical micrograph showing the alloy structure of a magnesium alloy material (worked material) when the magnesium alloy material according to the present invention is produced at an extrusion speed of 5. Omm / sec.
  • FIG. 3 is an optical micrograph showing the alloy structure of a magnesium alloy material (worked material) when the magnesium alloy material according to the present invention is produced at an extrusion speed of 7.5 mm / Sec.
  • FIG. 4 A graph showing the relationship between the elongation of magnesium alloy material (processed material) and 0.2% proof stress.
  • FIG. 5 is a longitudinal sectional view showing an equivalent strain distribution of a magnesium alloy material (processed material) according to the present invention.
  • FIG. 6 is an optical micrograph of a cross section orthogonal to the processing direction of the magnesium alloy material after extrusion (after tensile test).
  • FIG. 7 is an optical micrograph of the photograph of FIG. 6 when image processing was performed in black on a region where Mg Gd and / or Mg Zn Gd was deposited.
  • FIG. 8 An optical micrograph of the image of FIG. 7 when image processing for binarization into black and white was performed.
  • Figures 1 to 3 are optical micrographs showing the alloy structure of the magnesium alloy material (processed material) when the extrusion speed is changed.
  • Figure 1 shows the extrusion speed of 2.5 mm / sec
  • Figure 2 shows the extrusion process.
  • Speed 5 Omm / sec
  • Fig. 3 shows the extrusion speed 7.5 mm / sec.
  • Fig. 4 is a graph showing the relationship between the elongation of the magnesium alloy material and the 0.2% proof stress.
  • Fig. 5 is a longitudinal sectional view showing the equivalent strain distribution of the magnesium alloy material (processed material).
  • Figures 6-8 show Mg Gd
  • FIG. 3 shows the method for calculating the area ratio of Mg Zn Gd.
  • Fig. 8 is an optical micrograph of the image processed to binarize black and white.
  • the magnesium alloy material according to the present invention is a component used in a high temperature atmosphere, for example, a component for an automobile, in particular, a piston, a valve, a lifter (l3 ⁇ 4er), a tappet, a sprocket for an internal combustion engine. ) Etc.
  • the shape of the magnesium alloy material is, for example, a plate shape or a rod shape, and is appropriately selected depending on the shape of the parts used.
  • Magnesium alloy material contains Mg: Gm-Gn-Zn as an essential component, containing Zn:;! ⁇ 5 mass%, Gd: 5 ⁇ ; 15 mass%, with the balance being Mg and inevitable impurities It is made of an alloy. Each component is described in detail below.
  • the Mg-Gd-Zn alloy contains Zn as an essential component in the range of 1 to 5 mass%. If Zn is less than 1% by mass, it is impossible to obtain Mg Gd.
  • the tensile strength and 0.2% resistance (strength) of the aluminum alloy material cannot be obtained. Moreover, even if Zn exceeds 5% by mass, not only will the tensile strength and 0.2% proof stress increase according to the increase in the amount added, but also Mg Gd, Mg Zn Gd, etc. precipitated at the grain boundaries. Increases and elongation decreases.
  • Mg-Gd-Zn alloys contain Gd as an essential component in the range of 5 to 15% by mass. If Zn is less than 1% by mass, it is impossible to obtain Mg Gd.
  • Zr which contributes to miniaturization, in the range of 0.2 to 1.0 mass%. If Zr is less than 0.2% by mass, the effect of miniaturization will decrease, and if it exceeds 1.0% by mass, an increase in tensile strength and 0.2% yield strength will be obtained in accordance with the effect of miniaturization. Peg.
  • Mg—Gd—Zn alloy may contain other components in the range of inevitable impurities in addition to the components described above.
  • Fe, Ni, Cu, Si or the like may be contained in an amount of 0.2% by mass or less.
  • the magnesium alloy material has a long-period laminated structure (LPSO) in the alloy structure of Mg-Gd-Zn alloy, and Mg Gd and / or Mg Zn.
  • LPSO long-period laminated structure
  • a long period stacking ordered structure is a precipitate that precipitates in the grains and in grain boundaries of the magnesium alloy material in the melting and forging process.
  • LPSO long period stacking ordered structure
  • a high-concentration long-period laminate structure is present in the form of a lamella at the grain boundary, and the tensile strength and 0.2% yield strength of the magnesium alloy material are improved by the precipitation of this long-period laminate structure.
  • the long-period laminate structure is locally broken due to processing heat generation, and Mg Gd and / or Mg Zn
  • the long-period stacked structure is, for example, a plurality of ordered lattices arranged again, and a plurality of ordered lattices arranged again through an out-of-phase shift, which is several times to 10 times the original lattice.
  • a structure in which a unit structure is created and its period is long.
  • the long-period laminated structure appears in a slight temperature range between the regular phase and the irregular phase, and the reflection of the regular phase is split in the electron diffraction diagram, resulting in a period of several to ten times. Diffraction spots appear at the corresponding positions.
  • Mg alloys are difficult to plastically process because there are few slip systems.
  • Mg alloy has the characteristic of being easily twinned.
  • the Mg—Gd—Zn alloy of the present invention has a long-period laminated structure on the crystal plane, and cannot be twinned. Therefore, when extrusion is applied, local plastic flow occurs in the alloy because of the small slip system. This Due to the local plastic flow, heat generation due to processing increases, and dynamic recrystallization occurs due to this heat generation. As a result of this dynamic recrystallization, as shown in FIGS. 1 to 3, the long-period laminate structure is locally broken, and Mg Gd and / or Mg Zn Gd is deposited in the broken intragranular portion.
  • Mg Gd and Mg Zn Gd have a very fine size of 100 400 nm
  • Mg Gd and / or Mg Zn Gd has an area ratio of 53% or less of the entire alloy structure
  • Power S is preferable, and 453% is more preferable. If the area ratio exceeds 53%, the decrease in tensile strength and 0.2% proof stress is large. It becomes difficult to obtain the strength required for automotive parts. On the other hand, if it is less than 4%, the required elongation for automotive parts will not be obtained.
  • the area ratio is controlled by the processing speed in the plastic working process when manufacturing the magnesium alloy material, and the area ratio increases as the processing speed increases (see Figs. 1 to 3).
  • the magnesium alloy material according to the present invention has an elongation (%) measured by a tensile test specified in JIS as (X), and a 0.2% resistance (MPa) to ( It is more preferable that (-15. 57x) + 467 ⁇ y ⁇ (-15. 57x) + 555, force, x ⁇ 20 when y).
  • examples of the present invention are data of the results of tests conducted in the manner described in the following examples. A portion of this data is shown in Table 1 in the examples below. “Existing material” is an extruded material of ordinary Mg alloy (AZ31).
  • the magnesium alloy material according to the present invention is applied to automotive parts having severe mechanical property conditions such as engine pistons. Easy to do.
  • the relationship between the elongation and the 0.2% proof stress is based on the area ratio of Mg Gd and / or Mg Zn Gd (analysis) in consideration of the component composition of the magnesium alloy.
  • the method for producing a magnesium alloy material includes a melting and forging step and a plastic working step. Hereinafter, each step will be described.
  • a forged material is obtained by melting and forging a Mg-Gd-Zn-based alloy containing Zn in a range of 1 to 5 mass%, Gd in a range of 5 to 15 mass%, and the balance being Mg and inevitable impurities. Then, by melting and forging, it is precipitated in a long-period laminated structural force S lamellar shape within the grains and at the grain boundaries of the magnesium alloy material. Further, a long-period stacked structure having a high concentration is precipitated at the grain boundary. The precipitation of this long-period laminate structure improves the tensile strength and 0.2% proof stress of the magnesium alloy material.
  • melting is preferably flux scouring.
  • the obtained forged material may be subjected to a homogenization heat treatment! /.
  • a homogenization heat treatment By homogenization heat treatment, the above-mentioned lamellar structure (high-concentration long-period laminated structure) that has precipitated at the grain boundaries of the forged structure disappears, and the tensile strength and elongation of the magnesium alloy material become higher.
  • the temperature of the homogenization heat treatment is preferably 480 ° C or more and the holding time of 1 hour or more.
  • the temperature of the homogenization heat treatment is less than 480 ° C or the holding time is less than 1 hour, the solid solution of the lamellar structure becomes difficult to proceed, and the lamellar structure tends to remain at the grain boundaries of the fabricated structure. Therefore, it becomes difficult to improve the mechanical properties of the magnesium alloy material.
  • the forging material manufactured in the above process or the forging material subjected to the homogenization heat treatment is subjected to hot plastic processing at a predetermined processing speed.
  • the hot plastic working is preferably extrusion and / or forged Karoe.
  • Precipitation amount of Gd that is, the area of Mg Gd and / or Mg Zn Gd in the alloy structure
  • the processing speed of the hot plastic processing is preferably 2.7 to 21 mm / sec in the extrusion process, and the area ratio is small below 2.7 mm / Sec , and the predetermined elongation required for the automotive part is small. It becomes difficult to obtain. If it exceeds 21 mm / sec, the area ratio increases and an increase in elongation is observed, but the tensile strength and 0.2% proof stress decrease, making it difficult to obtain the strength required for automotive parts.
  • the reason for setting the numerical range in which 2.7 to 21 mm / Sec is preferable in the forging process is the same as that in the extrusion process.
  • the workpiece 10 produced by hot plastic working is at least partially a portion 10A having an equivalent strain of 1.5 or more. It is preferable to have If the equivalent strain is less than 1 ⁇ 5, the mechanical properties of the magnesium alloy material will vary greatly. When using processed materials for automobile parts, etc., the parts that require high mechanical properties should be composed of parts 10A with a considerable strain of 1.5 or more. Therefore, it is preferable to perform hot plastic working so that the equivalent strain of 1.5 or more is obtained in all parts of the workpiece 10 so that the portions 10B and 10C having the equivalent strain of less than 1.5 are not formed.
  • the processed material 10 is a free-forged cylindrical forged material
  • FIG. 5 shows the distribution of the equivalent strain in a longitudinal sectional view when the processed material 10 is viewed in plan.
  • Equivalent strain is equivalent strain corresponding to the yield stress of Von Mieses and is calculated by the following equation (1).
  • the equivalent strain is represented by ( ⁇ )
  • the true strain in the length direction is represented by (8)
  • the true strain in the width direction is represented by ( ⁇ )
  • the true strain in the thickness direction is represented by ( ⁇ ).
  • the upper limit of the equivalent strain is not particularly limited, but if the equivalent strain to be applied is too high, the tensile strength, 0.2% resistance, and elongation of the magnesium alloy material will decrease. Preferably less than 3. 1.5 to 2.0 is more preferable.
  • the processing temperature at the time of hot plastic working can be appropriately selected within the range of 300 to 500 ° C according to the processing rate of the forged material. preferable.
  • T (° C) is a forging end temperature
  • E (%) is a processing rate
  • the processing end temperature and the processing rate in the forging process become appropriate, and cracking occurs during forging calorie. It does not occur. In other words, if the forging end temperature (T) does not reach the temperature calculated by adding 210 to the double processing rate (E), forging cracks are likely to occur, which is inappropriate. In addition, if the forging end temperature (T) is too high, fine subgrains generated by plastic working grow by dynamic recrystallization (dynamic treatment process), and the mechanical properties of the magnesium alloy material are increased. Properties tend to deteriorate. Therefore, it is preferable that the upper limit value of the forging end temperature (T) is a temperature calculated by adding 310 to the double processing rate (E).
  • the magnesium alloy material manufacturing method according to the present invention is maintained at 200 to 300 ° C for 10 hours or more for dimensional stabilization of the magnesium alloy material (worked material) after performing the plastic working process.
  • a stabilization treatment process may be added.
  • the magnesium alloy material according to the present invention can be easily applied to products used under the influence of heat, such as pistons, valves, lifters, tappets and sprockets for internal combustion engines. Convenient.
  • each material was weighed so as to have an alloy composition of Mg-Gd (12.9 mass%) _21 (2.7 mass%) _ 2 0.6 mass%), charged into a melting furnace, Dissolution was performed by (flux refining). Subsequently, the heated and melted material was forged into a mold (outer diameter ⁇ 150 mm) to produce an ingot. The forged material was subjected to a homogenized heat treatment at 510 ° C for 4 hours, and machined to obtain a forged material for extrusion. Next, the forged material was charged into an extruder, the magnesium alloy material (Examples 1 to 6, outer diameter ⁇ 6 mm) was manufactured by changing the extrusion speed and performing extrusion. The extrusion temperature was constant at 375 ° C and an extrusion ratio of 9.
  • Example 1 1 50 2. 5 1.5 1.5 395 337 9.6
  • Example 2 1 50 2. 5 1.5 396 340 9.5
  • Example 3 1 50 5 1 9. 1 366 288 1 3.3
  • Example 4 1 50 5 1 9. 1 367 290 1 3. 6
  • Example 5 1 50 7. 5 353 265 1 4.
  • Example 6 1 50 7. 5 352 264 1 4. 6

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Extrusion Of Metal (AREA)

Abstract

Disclosed is a magnesium alloy material which can be produced without the need of employing any specialized production facility or process and has excellent mechanical properties, particularly high elongation. Also disclosed is a process for producing the magnesium alloy material. The magnesium alloy material comprises a Mg-Gd-Zn alloy comprising 1 to 5 mass% of Zn and 5 to 15 mass% of Gd as essential ingredients, with the remainder being Mg and unavoidable impurities, wherein the Mg-Gd-Zn alloy has a long period stacking structure in its alloy structure and also has Mg3Gd and/or Mg3Zn3Gd2. The process for producing the magnesium alloy material comprises a melting/casting step and a forging processing step for subjecting the casted material to a hot forging processing at a predetermined processing rate.

Description

明 細 書  Specification
マグネシウム合金材およびその製造方法  Magnesium alloy material and method for producing the same
技術分野  Technical field
[0001] 本発明は、機械的性質(引張強さ、 0. 2%耐カおよび伸び)に優れ、特に、高い伸 びを維持しながら、高い引張強さおよび 0. 2%耐カを有するマグネシウム合金材ぉ よびその製造方法に関するものである。  [0001] The present invention is excellent in mechanical properties (tensile strength, 0.2% strength and elongation), and in particular, has high tensile strength and 0.2% strength while maintaining high elongation. The present invention relates to a magnesium alloy material and a manufacturing method thereof.
背景技術  Background art
[0002] 一般に、マグネシウム合金材は、実用化されている合金の中で最も密度が低く軽量 で強度も高いため、電気製品の筐体 (chassis)や、自動車のホイールや、足回り部品 underbody parts)や、あるレヽ (ま、ェンンン [HJり 品 (around-the-engine parts)等へ の適用が進められている。  [0002] In general, magnesium alloy materials have the lowest density, light weight, and high strength among the alloys in practical use. As a result, chassis of electrical products, automobile wheels, and underbody parts. ), And certain lay- ers (such as around-the-engine parts).
特に、自動車に関連する用途の部品においては、高い機械的性質が要求されるた め、 Gdや Zn等の元素を添加したマグネシウム合金材として、片ロール法(single roll process)、急速凝固法(rapid solidification process)により特定の形態の材料を製造 することが行われている(例えば、特許文献 1、特許文献 2および非特許文献;!〜 4)。 特許文献 1 :特開平 06-041701号公報  In particular, high mechanical properties are required for parts related to automobiles, so as a magnesium alloy material with elements such as Gd and Zn added, the single roll process and rapid solidification process ( A material of a specific form is manufactured by a rapid solidification process (for example, Patent Document 1, Patent Document 2, and Non-Patent Document;! to 4). Patent Document 1: Japanese Patent Laid-Open No. 06-041701
特許文献 2:特開 2002-256370号公報  Patent Document 2: JP 2002-256370 A
非特許文献 1 :山崎倫昭、他 3名, 「高温熱処理法により長周期積層構造が形成する 新規 Mg-Zn-Gd合金」,軽金属学会第 108回春期大会講演概要(2005) ,社団法 人軽金属学会, 2005年, p. 43-44  Non-Patent Document 1: Noriaki Yamazaki and 3 others, “A New Mg-Zn-Gd Alloy Forming a Long-Period Laminate Structure by High-Temperature Heat Treatment”, Abstracts of the 108th Spring Meeting of the Japan Institute of Light Metals (2005) The Japan Institute of Light Metals, 2005, p. 43-44
非特許文献 2 : Kim、他 2名, 「急速凝固法を用いた高強度 Mg-Zn-Gd合金の開発」 ,軽金属学会第 109回秋期大会講演概要(2005) ,社団法人軽金属学会, 2005年 , p. 9-10  Non-Patent Document 2: Kim et al., “Development of high-strength Mg-Zn-Gd alloy using rapid solidification method”, Summary of the 109th Autumn Meeting of the Japan Institute of Light Metals (2005), Japan Institute of Light Metals, 2005 , p. 9-10
非特許文献 3 : Kim、他 2名, 「長周期積層構造を有する Mg-Zn-Gd系急速凝固薄 帯固化成形材の機械的性質」,軽金属学会第 110回春期大会講演概要(2006) , 社団法人軽金属学会, 2006年, p. 355-356  Non-Patent Document 3: Kim et al., “Mechanical properties of Mg-Zn-Gd rapidly solidified ribbon-solidified moldings with long-period laminate structure”, Abstracts of the 110th Spring Meeting of the Japan Institute of Light Metals (2006), The Japan Institute of Light Metals, 2006, p. 355-356
非特許文献 4 : Kim、他 2名, 「急速凝固法を用いた高強度 Mg-Zn-Gd合金の開発」 , 日本金属学会秋期講演大会概要集,社団法人軽金属学会, 2005年, p. 9-10 発明の開示 Non-Patent Document 4: Kim and 2 others, "Development of high-strength Mg-Zn-Gd alloy using rapid solidification method" , The Japan Institute of Metals Fall Meeting Summary, Japan Institute of Light Metals, 2005, p. 9-10 Invention Disclosure
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかし、前記したマグネシウム合金材は、特定の製造方法にお!/、ては、高!/、機械的 性質が得られるものの、特殊な設備が必要であり生産性も低いという問題があり、更 に適用できる部材が限られるという問題がある。例えば、エンジンピストンのような部 材に適用する場合においては、引張強さ、耐カに加えて、高い伸びも要求される。そ して、従来のマグネシウム合金材では、高い伸びを実現すると、引張強さおよび 0. 2 %耐力が不十分となるという問題があった。  [0003] However, the above-described magnesium alloy material has a problem in that it has a special manufacturing method! /, And it has high mechanical properties, but requires special equipment and has low productivity. There is also a problem that the members that can be further applied are limited. For example, when applied to parts such as engine pistons, high elongation is required in addition to tensile strength and resistance. In addition, the conventional magnesium alloy material has a problem that the tensile strength and the 0.2% proof stress are insufficient when high elongation is realized.
[0004] 本発明は前記の問題に鑑み創案されたものであり、特殊な製造設備およびプロセ スを使用することなしに、機械的性質に優れた、特に、高い伸びを維持しながら、高 い引張強さおよび 0. 2%耐カを有するマグネシウム合金材およびその製造方法を提 供することを課題とする。  [0004] The present invention was devised in view of the above problems, and has excellent mechanical properties, in particular, while maintaining high elongation without using special manufacturing equipment and processes. It is an object of the present invention to provide a magnesium alloy material having a tensile strength and a 0.2% resistance and a method for producing the same.
課題を解決するための手段  Means for solving the problem
[0005] 本発明は、前記課題を解決するために、つぎのようなマグネシウム合金材として構 成した。すなわち、本発明に係るマグネシウム合金材は、必須成分として Ζη :;!〜 5質 量%、 Gd : 5〜; 15質量%の範囲で含有し、残部が Mgと不可避的不純物からなる Mg -Gd-Zn系合金力、ら構成されるマグネシウム合金材であって、前記 Mg-Gd-Zn系合 金の合金組織中に、長周期積層構造を有し、かつ、 Mg Gdおよび/または Mg Zn  [0005] In order to solve the above problems, the present invention is configured as the following magnesium alloy material. That is, the magnesium alloy material according to the present invention contains Mg γ: Gd as essential components in a range of Ζη:;! ~ 5 mass%, Gd: 5 ~; 15 mass%, with the balance being Mg and inevitable impurities. -Zn-based alloy power, which has a long-period laminated structure in the alloy structure of the Mg-Gd-Zn alloy, and Mg Gd and / or Mg Zn
3 3 3 3 3 3
Gdを 4%以上有する。 Gd is 4% or more.
[0006] 前記構成によれば、 Mg-Gd-Zn系合金の合金組織中に長周期積層構造を有する ことで、マグネシウム合金材の引張強さおよび 0. 2%耐カを向上させることができる。 また、合金組織中に Mg Gdおよび/または Mg Zn Gdを有することで、マグネシゥ  [0006] According to the above configuration, the tensile strength and 0.2% resistance of the magnesium alloy material can be improved by having a long-period laminated structure in the alloy structure of the Mg-Gd-Zn alloy. . In addition, by having Mg Gd and / or Mg Zn Gd in the alloy structure,
3 3 3 2  3 3 3 2
ム合金材の伸びを向上させることができる。  The elongation of the alloy material can be improved.
[0007] 前記マグネシウム合金材は、前記合金組織中の前記 Mg Gdおよび/または Mg Z [0007] The magnesium alloy material includes the Mg Gd and / or Mg Z in the alloy structure.
3 3 n Gdの面積率が 53%以下であることが好ましい。  The area ratio of 33 n Gd is preferably 53% or less.
3 2  3 2
[0008] 前記構成によれば、 Mg Gdおよび/または Mg Zn Gdの面積率を所定範囲に限  [0008] According to the above configuration, the area ratio of Mg Gd and / or Mg Zn Gd is limited to a predetermined range.
3 3 3 2  3 3 3 2
定することで、マグネシウム合金材の伸び力 s、より一層適正なものとなる。 [0009] 前記マグネシウム合金材において、 JIS規定の引張試験で測定した伸び(%)を (x) とし、 0. 2%而ォカ(MPa)を(y)としたとき、 (-15. 57x) +467<y< (-15. 57x) + 5By determining, the elongation strength s of the magnesium alloy material becomes even more appropriate. [0009] In the magnesium alloy material, when the elongation (%) measured by a tensile test specified in JIS is (x) and 0.2% meta (MPa) is (y), (-15. 57x ) +467 <y <(-15. 57x) + 5
55、力、つ、 x< 20であることカ好ましい。 55, force, x <20 is preferred.
[0010] 前記構成によれば、伸びと 0. 2%耐カとが所定の関係を有することで、エンジンピ ストン等の機械的性質の条件が厳しい自動車用部品への適用が可能となる。 [0010] According to the above-described configuration, the elongation and the 0.2% resistance to resistance have a predetermined relationship, so that it can be applied to automotive parts having severe mechanical properties such as engine pistons.
[0011] 本発明に係るマグネシウム合金材の製造方法は、前記 Mg-Gd-Zn系合金を溶解[0011] A method for producing a magnesium alloy material according to the present invention comprises dissolving the Mg-Gd-Zn alloy.
、铸造して铸造材を得る溶解铸造工程と、前記铸造材に所定の加工速度で熱間塑 性加工を施して、加工材を製造する塑性加工工程とを含む。 A melting and forging step of forging to obtain a forged material, and a plastic working step for producing a processed material by subjecting the forged material to hot plastic processing at a predetermined processing speed.
[0012] 前記手順によれば、铸造材に所定の加工速度で熱間塑性加工を施すことによって[0012] According to the above procedure, the forged material is subjected to hot plastic processing at a predetermined processing speed.
、溶解铸造工程で形成された長周期積層構造が局部的 (所定の面積率)に壊れ、そ の壊れた粒内部分に Mg Gdおよび/または Mg Zn Gdが析出する。 Then, the long-period laminated structure formed in the melting and forging process is locally broken (predetermined area ratio), and Mg Gd and / or Mg Zn Gd is precipitated in the broken intragranular portion.
3 3 3 2  3 3 3 2
発明の効果  The invention's effect
[0013] 本発明に係るマグネシウム合金材は、 Mg-Zn-Gd系合金の合金組織中に長周期 積層構造を有し、かつ、 Mg Gdおよび/または Mg Zn Gdを有することで、高い伸  [0013] The magnesium alloy material according to the present invention has a long-period laminated structure in the alloy structure of the Mg-Zn-Gd-based alloy and has high elongation by including Mg Gd and / or Mg Zn Gd.
3 3 3 2  3 3 3 2
びを維持しながら、高い引張強さおよび耐カを達成することができると共に、特殊な 製造設備あるいはプロセスを必要としないため、生産性がよいものとなる。また、 Mg  High tensile strength and high resistance can be achieved while maintaining the stability, and no special manufacturing equipment or process is required, resulting in high productivity. Mg
3 Three
Gdおよび/または Mg Zn Gdの面積率が所定範囲であることで、より一層高い伸び Gd and / or Mg Zn Gd area ratio is within a specified range, so even higher elongation
3 3 2  3 3 2
を達成すること力できる。なお、高い伸びを達成できることから、加工性に優れたマグ ネシゥム合金材を得ることができる。さらに、伸びと 0. 2%耐カとが所定の関係を有す ることで、本発明に係るマグネシウム合金材を、例えば、自動車用部品、特に、ェンジ ンピストンなど機械的性質の条件が厳しい部分に適用することが可能となる。  Can achieve the power. In addition, since a high elongation can be achieved, a magnesium alloy material excellent in workability can be obtained. Further, since the elongation and the 0.2% resistance to the resistance have a predetermined relationship, the magnesium alloy material according to the present invention can be applied to parts with severe mechanical properties such as automotive parts, particularly engine pistons. It becomes possible to apply to.
[0014] また、本発明に係るマグネシウム合金材の製造方法は、所定の加工速度で熱間塑 性加工を施すことで、一般的な製造設備あるいはプロセスにより、機械的性質が向上 したマグネシウム合金材を効率よく製造することが可能となる。 [0014] In addition, the method for producing a magnesium alloy material according to the present invention includes a magnesium alloy material having improved mechanical properties by a general production facility or process by performing hot plastic working at a predetermined working speed. Can be produced efficiently.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明に係るマグネシウム合金材において、押出加工速度 2. 5mm/secで製 造した際の、マグネシウム合金材 (加工材)の合金組織を示す光学顕微鏡写真であ [図 2]本発明に係るマグネシウム合金材において、押出加工速度 5. Omm/secで製 造した際の、マグネシウム合金材 (加工材)の合金組織を示す光学顕微鏡写真であ FIG. 1 is an optical micrograph showing the alloy structure of a magnesium alloy material (worked material) when the magnesium alloy material according to the present invention is produced at an extrusion rate of 2.5 mm / sec. FIG. 2 is an optical micrograph showing the alloy structure of a magnesium alloy material (worked material) when the magnesium alloy material according to the present invention is produced at an extrusion speed of 5. Omm / sec.
[図 3]本発明に係るマグネシウム合金材において、押出加工速度 7. 5mm/Secで製 造した際の、マグネシウム合金材 (加工材)の合金組織を示す光学顕微鏡写真であ FIG. 3 is an optical micrograph showing the alloy structure of a magnesium alloy material (worked material) when the magnesium alloy material according to the present invention is produced at an extrusion speed of 7.5 mm / Sec.
[図 4]マグネシウム合金材 (加工材)の伸びと 0. 2%耐力との関係を示すグラフ図であ [Fig. 4] A graph showing the relationship between the elongation of magnesium alloy material (processed material) and 0.2% proof stress.
[図 5]本発明に係るマグネシウム合金材 (加工材)の相当歪み分布を示す縦断面図で ある。 FIG. 5 is a longitudinal sectional view showing an equivalent strain distribution of a magnesium alloy material (processed material) according to the present invention.
[図 6]押出加工後(引張試験後)のマグネシウム合金材の加工方向に直交する断面 の光学顕微鏡写真である。  FIG. 6 is an optical micrograph of a cross section orthogonal to the processing direction of the magnesium alloy material after extrusion (after tensile test).
[図 7]図 6の写真について、 Mg Gdおよび/または Mg Zn Gdの析出した領域を黒 色に画像処理を行なった際の光学顕微鏡写真である。  FIG. 7 is an optical micrograph of the photograph of FIG. 6 when image processing was performed in black on a region where Mg Gd and / or Mg Zn Gd was deposited.
[図 8]図 7の写真について、黒白に 2値化する画像処理を行なった際の光学顕微鏡 写真である。  [FIG. 8] An optical micrograph of the image of FIG. 7 when image processing for binarization into black and white was performed.
符号の説明  Explanation of symbols
[0016] 10A 相当歪み 1. 5以上の領域 [0016] 10A equivalent strain 1.5 or more area
10B 相当歪み 1. 5未満 0. 25以上の領域  10B Equivalent distortion Less than 1.5 Area over 0.25
10C 相当歪み 0. 25未満の領域  10C equivalent strain Less than 0.25 area
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明を実施するための最良の形態について図面を参照して説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
図 1〜図 3は押出加工速度を変化させた際のマグネシウム合金材 (加工材)の合金 組織を示す光学顕微鏡写真で、図 1は押出加工速度 2. 5mm/Sec、図 2は押出加 ェ速度 5. Omm/sec,図 3は押出加工速度 7. 5mm/secである。図 4は、マグネシ ゥム合金材の伸びと 0. 2%耐力との関係を示すグラフ図である。図 5はマグネシウム 合金材 (加工材)の相当歪み分布を示す縦断面図である。図 6〜図 8は、 Mg Gdお Figures 1 to 3 are optical micrographs showing the alloy structure of the magnesium alloy material (processed material) when the extrusion speed is changed. Figure 1 shows the extrusion speed of 2.5 mm / sec , and Figure 2 shows the extrusion process. Speed 5. Omm / sec, Fig. 3 shows the extrusion speed 7.5 mm / sec. Fig. 4 is a graph showing the relationship between the elongation of the magnesium alloy material and the 0.2% proof stress. Fig. 5 is a longitudinal sectional view showing the equivalent strain distribution of the magnesium alloy material (processed material). Figures 6-8 show Mg Gd
3 よび/または Mg Zn Gdの面積率の算出方法を示す光学顕微鏡写真で、図 6は押 出加工後(引張試験後)のマグネシウム合金材の加工方向に直交する断面の光学顕 微鏡写真、図 7は Mg Gdおよび/または Mg Zn Gdの析出した領域を黒色に画像 処理を行なった際の光学顕微鏡写真、図 8は黒白に 2値化する画像処理を行なった 際の光学顕微鏡写真である。 3 and / or an optical micrograph showing the method for calculating the area ratio of Mg Zn Gd. An optical micrograph of the cross-section perpendicular to the processing direction of the magnesium alloy material after extrusion processing (after tensile test), Fig. 7 shows the area where Mg Gd and / or Mg Zn Gd is deposited in black Fig. 8 is an optical micrograph of the image processed to binarize black and white.
[0018] 本発明に係るマグネシウム合金材は、高温雰囲気で使用される部品、例えば、自 動車用部品、特に、内燃機関用ピストン、バルブ、リフター (l¾er)、タペット (tappet)、ス プロケット (sprocket)等に使用される。なお、マグネシウム合金材の形状は、例えば、 板状、棒状等であって、使用される部品の形状によって適宜選択される。 [0018] The magnesium alloy material according to the present invention is a component used in a high temperature atmosphere, for example, a component for an automobile, in particular, a piston, a valve, a lifter (l¾er), a tappet, a sprocket for an internal combustion engine. ) Etc. The shape of the magnesium alloy material is, for example, a plate shape or a rod shape, and is appropriately selected depending on the shape of the parts used.
[0019] マグネシウム合金材は、必須成分として Zn :;!〜 5質量%、 Gd : 5〜; 15質量%の範 囲で含有し、残部が Mgと不可避的不純物からなる Mg-Gd-Zn系合金から構成され てレ、る。以下に各成分につ!/、て詳細に説明する。 [0019] Magnesium alloy material contains Mg: Gm-Gn-Zn as an essential component, containing Zn:;! ~ 5 mass%, Gd: 5 ~; 15 mass%, with the balance being Mg and inevitable impurities It is made of an alloy. Each component is described in detail below.
[0020] [合金成分] [0020] [Alloy components]
(Zn)  (Zn)
Mg-Gd-Zn系合金は、必須成分として Znを 1〜5質量%の範囲において含有して いる。 Znは、 1質量%未満であると、 Mg Gdを得ること力 Sできず、 目的とするマグネシ  The Mg-Gd-Zn alloy contains Zn as an essential component in the range of 1 to 5 mass%. If Zn is less than 1% by mass, it is impossible to obtain Mg Gd.
3  Three
ゥム合金材の引張強さ、 0. 2%耐カ(強度)が得られない。また、 Znは、 5質量%を超 えても、添加量の増加に応じた引張強さおよび 0. 2%耐力の増加が得られなくなる ばかりか、粒界に析出する Mg Gd、 Mg Zn Gd等が多くなり、伸びが低下する。  The tensile strength and 0.2% resistance (strength) of the aluminum alloy material cannot be obtained. Moreover, even if Zn exceeds 5% by mass, not only will the tensile strength and 0.2% proof stress increase according to the increase in the amount added, but also Mg Gd, Mg Zn Gd, etc. precipitated at the grain boundaries. Increases and elongation decreases.
[0021] (Gd)  [0021] (Gd)
Mg-Gd-Zn系合金は、必須成分として Gdを 5〜; 15質量%の範囲において含有し ている。 Znは、 1質量%未満であると、 Mg Gdを得ること力 Sできず、 目的とするマグネ  Mg-Gd-Zn alloys contain Gd as an essential component in the range of 5 to 15% by mass. If Zn is less than 1% by mass, it is impossible to obtain Mg Gd.
3  Three
シゥム合金材の引張強さ、 0. 2%耐カ(強度)が得られない。また、 Znは、 5質量%を 超えても、添加量の増加に応じた引張強さおよび 0. 2%耐力の増加が得られなくな るばかりか、粒界に析出する Mg Gd、 Mg Zn Gd等が多くなり、伸びが低下する。  The tensile strength and 0.2% resistance (strength) of shim alloy material cannot be obtained. In addition, even if Zn exceeds 5% by mass, not only the tensile strength and 0.2% proof stress increase according to the increase of the addition amount, but also Mg Gd, Mg Zn precipitated at the grain boundaries. Gd etc. increase and elongation decreases.
[0022] (選択添加元素)  [0022] (Selective additive element)
Mg-Gd-Zn系合金には、微細化に寄与する Zrを 0. 2〜; 1. 0質量%の範囲で含め ること力 Sできる。 Zrが 0. 2質量%未満では、微細化効果が少なくなりやすぐ 1. 0質 量%を超えると、微細化効果に応じた引張強さおよび 0. 2%耐力の増加が得られに くい。 For Mg-Gd-Zn alloys, it is possible to include Zr, which contributes to miniaturization, in the range of 0.2 to 1.0 mass%. If Zr is less than 0.2% by mass, the effect of miniaturization will decrease, and if it exceeds 1.0% by mass, an increase in tensile strength and 0.2% yield strength will be obtained in accordance with the effect of miniaturization. Peg.
(不可避的不純物)  (Inevitable impurities)
なお、 Mg-Gd-Zn系合金は、前記した成分以外にも、不可避的不純物の範囲で 他の成分を含有しても構わない。例えば、 Fe、 Ni、 Cu、 Si等を各々 0· 2質量%以下 、含んでいても構わない。  Note that the Mg—Gd—Zn alloy may contain other components in the range of inevitable impurities in addition to the components described above. For example, Fe, Ni, Cu, Si or the like may be contained in an amount of 0.2% by mass or less.
[0023] マグネシウム合金材は、図 1〜図 3に示すように、 Mg-Gd-Zn系合金の合金組織中 に長周期積層構造(LPSO)を有し、かつ、 Mg Gdおよび/または Mg Zn Gdを有 [0023] As shown in Fig. 1 to Fig. 3, the magnesium alloy material has a long-period laminated structure (LPSO) in the alloy structure of Mg-Gd-Zn alloy, and Mg Gd and / or Mg Zn. Have Gd
3 3 3 2 する。そして、結晶粒内の Mg Gdおよび/または Mg Zn Gdの面積率が 53%以下  3 3 3 2 And the area ratio of Mg Gd and / or Mg Zn Gd in the crystal grain is 53% or less
3 3 3 2  3 3 3 2
であることが好ましい。  It is preferable that
[0024] (長周期積層構造)  [0024] (Long period laminate structure)
図 1〜図 3に示すように、長周期積層構造(Long Period Stacking Ordered Structur e 略して LPSO)とは、溶解铸造工程において、マグネシウム合金材の粒内および 粒界に析出する析出物であって、特に粒界には濃度の高!ゝ長周期積層構造がラメラ 一状に存在し、この長周期積層構造の析出によって、マグネシウム合金材の引張強 さおよび 0. 2%耐力が向上する。そして、押出加工工程において、加工発熱により局 部的に長周期積層構造が壊れ、壊れた粒内部分に Mg Gdおよび/または Mg Zn  As shown in FIGS. 1 to 3, a long period stacking ordered structure (LPSO for short) is a precipitate that precipitates in the grains and in grain boundaries of the magnesium alloy material in the melting and forging process. In particular, a high-concentration long-period laminate structure is present in the form of a lamella at the grain boundary, and the tensile strength and 0.2% yield strength of the magnesium alloy material are improved by the precipitation of this long-period laminate structure. In the extrusion process, the long-period laminate structure is locally broken due to processing heat generation, and Mg Gd and / or Mg Zn
3 3 3 3 3 3
Gdが析出する。 Gd is precipitated.
2  2
[0025] 長周期積層構造とは、例えば、規則格子 (ordered lattice)が複数個並び、逆位相の ずれを介して、再び規則格子が複数個並び、元の格子の数倍から 10数倍の単位の 構造が作られ、その周期が長い構造のものをいう。そして、長周期積層構造は、規則 相と不規則相との間のわずかな温度範囲に出現し、電子回折した図には規則相の 反射が***して、数倍から 10数倍の周期に対応する位置に回折斑点 (diffraction sp ots)が現れる。  [0025] The long-period stacked structure is, for example, a plurality of ordered lattices arranged again, and a plurality of ordered lattices arranged again through an out-of-phase shift, which is several times to 10 times the original lattice. A structure in which a unit structure is created and its period is long. The long-period laminated structure appears in a slight temperature range between the regular phase and the irregular phase, and the reflection of the regular phase is split in the electron diffraction diagram, resulting in a period of several to ten times. Diffraction spots appear at the corresponding positions.
[0026] (Mg Gdおよび/または Mg Zn Gd )  [0026] (Mg Gd and / or Mg Zn Gd)
3 3 3 2  3 3 3 2
一般に Mg合金は、すべり系が少ないため、塑性加工がしにくい。一方、 Mg合金は 双晶変形 (twinning deformation)がしやすい特徴がある。本発明の Mg-Gd-Zn系合 金は、結晶面に長周期積層構造があるため、双晶変形できない。そのため、押出加 ェを施すと、少ないすべり系のために、合金内で局部的な塑性流動が発生する。こ の局部的塑性流動により、加工による発熱が大きくなり、この発熱によって動的再結 晶が発生する。そして、この動的再結晶により、図 1〜図 3に示すように、長周期積層 構造が局部的に壊れ、壊れた粒内部分に Mg Gdおよび/または Mg Zn Gdが析 In general, Mg alloys are difficult to plastically process because there are few slip systems. On the other hand, Mg alloy has the characteristic of being easily twinned. The Mg—Gd—Zn alloy of the present invention has a long-period laminated structure on the crystal plane, and cannot be twinned. Therefore, when extrusion is applied, local plastic flow occurs in the alloy because of the small slip system. This Due to the local plastic flow, heat generation due to processing increases, and dynamic recrystallization occurs due to this heat generation. As a result of this dynamic recrystallization, as shown in FIGS. 1 to 3, the long-period laminate structure is locally broken, and Mg Gd and / or Mg Zn Gd is deposited in the broken intragranular portion.
3 3 3 2 出する。  3 3 3 2
[0027] Mg Gdおよび Mg Zn Gdは、その大きさが 100 400nmと非常に微細であるもの  [0027] Mg Gd and Mg Zn Gd have a very fine size of 100 400 nm
3 3 3 2  3 3 3 2
の、マトリックスとの整合性は有していない。そのため、マグネシウム合金材の引張強 さおよび 0. 2%耐力の向上には寄与しないが、伸びの向上には寄与する。そして、 Mg Gdおよび/または Mg Zn Gdの析出量が増加することにより、伸びは大幅に向 Does not have consistency with the matrix. Therefore, it does not contribute to the improvement of tensile strength and 0.2% proof stress of magnesium alloy material, but it contributes to the improvement of elongation. Elongation is greatly improved by increasing the precipitation amount of Mg Gd and / or Mg Zn Gd.
3 3 3 2 3 3 3 2
上する。  Up.
[0028] Mg Gdおよび/または Mg Zn Gdは、その面積率が合金組織全体の 53%以下  [0028] Mg Gd and / or Mg Zn Gd has an area ratio of 53% or less of the entire alloy structure
3 3 3 2  3 3 3 2
であること力 S好ましく、 4 53%がさらに好ましい。面積率が 53%を超えると、引張強 さおよび 0. 2%耐力の低下が大きぐ 自動車用部品として必要な強度が得られにくく なる。また、 4%未満であると、自動車用部品として必要な伸びが得られに《なる。そ して、この面積率の制御は、マグネシウム合金材を製造する際の塑性加工工程にお ける加工速度によって行い、加工速度が速くなると面積率も大きくなる(図 1〜図 3参 昭)  Power S is preferable, and 453% is more preferable. If the area ratio exceeds 53%, the decrease in tensile strength and 0.2% proof stress is large. It becomes difficult to obtain the strength required for automotive parts. On the other hand, if it is less than 4%, the required elongation for automotive parts will not be obtained. The area ratio is controlled by the processing speed in the plastic working process when manufacturing the magnesium alloy material, and the area ratio increases as the processing speed increases (see Figs. 1 to 3).
[0029] また、本発明に係るマグネシウム合金材は、図 4に示すように、 JIS規定の引張試験 で測定した伸び(%)を (X)とし、 0· 2%耐カ(MPa)を (y)としたとき、 (-15. 57x) + 467<y< (-15. 57x) + 555、力、つ、 x< 20であること力 さらに好ましい。  [0029] In addition, as shown in Fig. 4, the magnesium alloy material according to the present invention has an elongation (%) measured by a tensile test specified in JIS as (X), and a 0.2% resistance (MPa) to ( It is more preferable that (-15. 57x) + 467 <y <(-15. 57x) + 555, force, x <20 when y).
なお、図 4中、「本発明例」とは、後の実施例で述べるような要領で試験を行った結 果のデータである。このデータの一部が、後の実施例の表 1で示すものである。「既 存材」とは、通常の Mg実用合金 (AZ31)の押出材である。  In FIG. 4, “examples of the present invention” are data of the results of tests conducted in the manner described in the following examples. A portion of this data is shown in Table 1 in the examples below. “Existing material” is an extruded material of ordinary Mg alloy (AZ31).
[0030] 伸びと 0. 2%耐カとが、前記のような関係を満たすことによって、本発明に係るマグ ネシゥム合金材を、エンジンピストン等の機械的性質の条件が厳しい自動車用部品 に適用すること力容易となる。また、伸びと 0. 2%耐力との前記関係は、マグネシウム 合金の成分組成を考慮しながら、 Mg Gdおよび/または Mg Zn Gdの面積率 (析  [0030] By satisfying the above-described relationship between elongation and 0.2% strength, the magnesium alloy material according to the present invention is applied to automotive parts having severe mechanical property conditions such as engine pistons. Easy to do. In addition, the relationship between the elongation and the 0.2% proof stress is based on the area ratio of Mg Gd and / or Mg Zn Gd (analysis) in consideration of the component composition of the magnesium alloy.
3 3 3 2  3 3 3 2
出量)を調整することによって達成される。  This is achieved by adjusting the output).
[0031] 次に、本発明に係るマグネシウム合金材の製造方法について説明する。 マグネシウム合金材の製造方法は、溶解铸造工程と、塑性加工工程とを含むもの である。以下、各工程について説明する。 [0031] Next, a method for producing a magnesium alloy material according to the present invention will be described. The method for producing a magnesium alloy material includes a melting and forging step and a plastic working step. Hereinafter, each step will be described.
(溶解铸造工程)  (Dissolution fabrication process)
Znを 1〜5質量%と、 Gdを 5〜; 15質量%の範囲で含有し、残部が Mgと不可避的 不純物からなる Mg-Gd-Zn系合金を溶解、铸造して铸造材を得る。そして、溶解、 铸造により、マグネシウム合金材の粒内および粒界に、長周期積層構造力 Sラメラー状 に析出する。また、粒界には、濃度の高い長周期積層構造が析出する。この長周期 積層構造の析出によって、マグネシウム合金材の引張強さおよび 0. 2%耐力が向上 する。なお、 Mg-Gd-Zn系合金を铸造すれば、铸造条件は問わず、必ず「長周期積 層構造」が得られる。したがって、溶解、铸造方法は常法に従って行う。また、溶湯か らの酸化物除去のために、溶解はフラックス精練が好ましい。  A forged material is obtained by melting and forging a Mg-Gd-Zn-based alloy containing Zn in a range of 1 to 5 mass%, Gd in a range of 5 to 15 mass%, and the balance being Mg and inevitable impurities. Then, by melting and forging, it is precipitated in a long-period laminated structural force S lamellar shape within the grains and at the grain boundaries of the magnesium alloy material. Further, a long-period stacked structure having a high concentration is precipitated at the grain boundary. The precipitation of this long-period laminate structure improves the tensile strength and 0.2% proof stress of the magnesium alloy material. If a Mg-Gd-Zn alloy is produced, a “long-period layered structure” is always obtained regardless of the production conditions. Therefore, the dissolution and fabrication methods are performed according to conventional methods. In order to remove oxides from the molten metal, melting is preferably flux scouring.
[0032] また、得られた铸造材に均質化熱処理を行なってもよ!/、。均質化熱処理によって、 前述のラメラー組織(高濃度の長周期積層構造)のうち铸造組織の粒界に析出したも のが消失し、マグネシウム合金材の引張強さおよび伸びがより高くなる。この際、均質 化熱処理の温度は 480°C以上、保持時間 1時間以上が好ましい。均質化熱処理の 温度が 480°C未満または保持時間が 1時間未満であると、ラメラー組織の固溶が進 行し難くなり、ラメラー組織が铸造組織の粒界に残存しやすくなる。そのため、マグネ シゥム合金材の機械的性質が向上し難くなる。  [0032] Further, the obtained forged material may be subjected to a homogenization heat treatment! /. By homogenization heat treatment, the above-mentioned lamellar structure (high-concentration long-period laminated structure) that has precipitated at the grain boundaries of the forged structure disappears, and the tensile strength and elongation of the magnesium alloy material become higher. At this time, the temperature of the homogenization heat treatment is preferably 480 ° C or more and the holding time of 1 hour or more. If the temperature of the homogenization heat treatment is less than 480 ° C or the holding time is less than 1 hour, the solid solution of the lamellar structure becomes difficult to proceed, and the lamellar structure tends to remain at the grain boundaries of the fabricated structure. Therefore, it becomes difficult to improve the mechanical properties of the magnesium alloy material.
[0033] (塑性加工工程)  [0033] (Plastic working process)
前記工程で製造された铸造材、または、均質化熱処理された铸造材に所定の加工 速度で熱間塑性加工を施す。ここで、熱間塑性加工は、押出加工および/または鍛 造カロェが好ましい。所定の加工速度で熱間塑性加工を行うことによって、铸造により 生じた長周期積層構造が、加工発熱により局部的に壊れ、すなわち、微細に分断さ れ、点状組織に変化する。そして、長周期積層構造が壊れた粒内部分に Mg Gdお  The forging material manufactured in the above process or the forging material subjected to the homogenization heat treatment is subjected to hot plastic processing at a predetermined processing speed. Here, the hot plastic working is preferably extrusion and / or forged Karoe. By performing hot plastic processing at a predetermined processing speed, the long-period laminated structure generated by forging is locally broken by processing heat generation, that is, finely divided and changed into a point structure. Then, Mg Gd
3 よび/または Mg Zn Gdが析出する。そして、図 1〜図 3に示すように、加工速度が  3 and / or Mg Zn Gd is deposited. And as shown in Figs.
3 3 2  3 3 2
速くなると、長周期積層構造の破壊部分も多くなり、 Mg Gdおよび/または Mg Zn  The faster the number of fractured parts of the long-period stack structure, the more Mg Gd and / or Mg Zn
3 3 3 3 3 3
Gdの析出量、すなわち、合金組織中の Mg Gdおよび/または Mg Zn Gdの面積Precipitation amount of Gd, that is, the area of Mg Gd and / or Mg Zn Gd in the alloy structure
2 3 3 3 2 率も大きくなる。そして、この Mg Gdおよび/または Mg Zn Gdの析出により、マグ ネシゥム合金材の伸びが向上する。 2 3 3 3 2 Rate also increases. Then, the precipitation of Mg Gd and / or Mg Zn Gd Elongation of Nesium alloy material is improved.
[0034] 熱間塑性加工の加工速度は、押出加工においては 2. 7〜21mm/secが好ましい 、2. 7mm/Sec未満では面積率が小さくなり、 自動車用部品として必要な所定の伸 びが得られにくくなる。また、 21mm/secを超えると面積率が大きくなり、伸びの向 上は認められるが、引張強さおよび 0. 2%耐力が低下し、自動車用部品として必要 な強度が得られにくい。鍛造加工においても 2. 7〜21mm/Secが好ましぐ数値範 囲の設定理由は、前記の押出加工と同様である。 [0034] The processing speed of the hot plastic processing is preferably 2.7 to 21 mm / sec in the extrusion process, and the area ratio is small below 2.7 mm / Sec , and the predetermined elongation required for the automotive part is small. It becomes difficult to obtain. If it exceeds 21 mm / sec, the area ratio increases and an increase in elongation is observed, but the tensile strength and 0.2% proof stress decrease, making it difficult to obtain the strength required for automotive parts. The reason for setting the numerical range in which 2.7 to 21 mm / Sec is preferable in the forging process is the same as that in the extrusion process.
[0035] また、本発明に係るマグネシウム合金材の製造方法では、図 5に示すように、熱間 塑性加工により製造された加工材 10が、少なくとも一部に相当歪み 1. 5以上の部分 10Aを有するようにすることが好ましい。相当歪みが 1 · 5未満であると、マグネシウム 合金材の機械的性質のバラツキが大きくなりやすい。そして、加工材を自動車用部 品等に使用する際、高い機械的性質を要求される部分を、相当歪み 1. 5以上の部 分 10Aで構成するようにする。したがって、相当歪み 1. 5未満の部分 10B、 10Cが 形成されないように、加工材 10の全ての部分で相当歪み 1. 5以上となるように熱間 塑性加工を施すことが好ましい。なお、ここで、加工材 10は、円柱形状の铸造材を自 由鍛造したもので、図 5は加工材 10を平面視した際の縦断面図における相当歪みの 分布を示している。  [0035] Further, in the method for producing a magnesium alloy material according to the present invention, as shown in FIG. 5, the workpiece 10 produced by hot plastic working is at least partially a portion 10A having an equivalent strain of 1.5 or more. It is preferable to have If the equivalent strain is less than 1 · 5, the mechanical properties of the magnesium alloy material will vary greatly. When using processed materials for automobile parts, etc., the parts that require high mechanical properties should be composed of parts 10A with a considerable strain of 1.5 or more. Therefore, it is preferable to perform hot plastic working so that the equivalent strain of 1.5 or more is obtained in all parts of the workpiece 10 so that the portions 10B and 10C having the equivalent strain of less than 1.5 are not formed. Here, the processed material 10 is a free-forged cylindrical forged material, and FIG. 5 shows the distribution of the equivalent strain in a longitudinal sectional view when the processed material 10 is viewed in plan.
[0036] 相当歪みとは、 Von Miesesの降伏応力に対応する相当歪みで、下式(1)で計算 される歪みをいう。なお、下式(1)において、相当歪みを(ε )、長さ方向の真歪みを( 8 )、幅方向の真歪みを(ε )、厚さ方向の真歪みを(ε )で示す。  [0036] Equivalent strain is equivalent strain corresponding to the yield stress of Von Mieses and is calculated by the following equation (1). In the following equation (1), the equivalent strain is represented by (ε), the true strain in the length direction is represented by (8), the true strain in the width direction is represented by (ε), and the true strain in the thickness direction is represented by (ε).
1 2 3  one two Three
[0037] [数 1] f 1 2 2 、  [0037] [Equation 1] f 1 2 2,
— ( G I + ε 2 + S 3 ) — ( G I + ε 2 + S 3 )
3 … (1 )  3… (1)
[0038] なお、相当歪みの上限値は特に制限はないが、付与する相当歪みが高すぎると、 マグネシウム合金材の引張強さ、 0. 2%耐カ、伸びが減少してくるため、 2. 3未満と することが好ましい。 1. 5〜2. 0がさらに好ましい。  [0038] The upper limit of the equivalent strain is not particularly limited, but if the equivalent strain to be applied is too high, the tensile strength, 0.2% resistance, and elongation of the magnesium alloy material will decrease. Preferably less than 3. 1.5 to 2.0 is more preferable.
[0039] また、本発明に係るマグネシウム合金材の製造方法では、熱間塑性加工を行うとき の加工温度を 300〜500°Cの範囲で、铸造材の加工率に応じて適宜選択することが 好ましい。 [0039] Further, in the method for producing a magnesium alloy material according to the present invention, the processing temperature at the time of hot plastic working can be appropriately selected within the range of 300 to 500 ° C according to the processing rate of the forged material. preferable.
[0040] 熱間塑性加工が押出加工であるときには、押出温度 300〜500°Cで、押出比 5〜9 . 9の範囲、より好ましくは、 6〜9の範囲で行うと、良好な相当歪が得られ、機械的性 質に優れたマグネシウム合金材を得ることができる。  [0040] When the hot plastic working is extrusion, good equivalent strain is obtained when the extrusion temperature is 300 to 500 ° C and the extrusion ratio is in the range of 5 to 9.9, more preferably in the range of 6 to 9. Thus, a magnesium alloy material having excellent mechanical properties can be obtained.
[0041] 熱間塑性加工が鍛造加工であるときには、下式(2)の条件で行うと、良好な相当歪 が得られ、また、铸造材の割れを防止しつつ、結晶粒の微細化を図ることができる。 また、鍛造加工のみで必要な相当歪みが得られない場合には、鍛造加工に先立つ て、前記の押出加工を行ってもよい。  [0041] When the hot plastic working is a forging process, if it is performed under the condition of the following formula (2), a good equivalent strain can be obtained, and the crystal grains can be refined while preventing cracking of the forged material. You can plan. In addition, when the necessary equivalent strain cannot be obtained only by forging, the above-described extrusion may be performed prior to forging.
[0042] [数 2]  [0042] [Equation 2]
T > 2E + 210 ... (2) T> 2E + 210 ... (2)
[0043] なお、式(2)において、 T (°C)は、鍛造終了温度であり、 E (%)は加工率である。 [0043] In the formula (2), T (° C) is a forging end temperature, and E (%) is a processing rate.
[0044] 鍛造加工で铸造材に相当歪みを与える場合、所定の条件を満たすように鍛造加工 を行うことにより、鍛造加工における加工終了温度と加工率とが適切になり、鍛造カロ ェ時に割れを生じることがない。つまり、鍛造終了温度 (T)が 2倍の加工率 (E)に 21 0を加えて算出される値の温度に達しない場合には、鍛造割れが発生しやすくなり不 適切である。また、鍛造終了温度 (T)が高すぎる場合には、塑性加工により発生した 微細な亜結晶粒 (subgrain)が、動的再結晶 (dynamic treatment process)により成長し て、マグネシウム合金材の機械的性質が低下しやすくなる。したがって、鍛造終了温 度 (T)の上限値は、 2倍の加工率 (E)に 310を加えて算出される値の温度とすること が好ましい。 [0044] When forging is applied to the forged material in a forging process, by performing the forging process so as to satisfy a predetermined condition, the processing end temperature and the processing rate in the forging process become appropriate, and cracking occurs during forging calorie. It does not occur. In other words, if the forging end temperature (T) does not reach the temperature calculated by adding 210 to the double processing rate (E), forging cracks are likely to occur, which is inappropriate. In addition, if the forging end temperature (T) is too high, fine subgrains generated by plastic working grow by dynamic recrystallization (dynamic treatment process), and the mechanical properties of the magnesium alloy material are increased. Properties tend to deteriorate. Therefore, it is preferable that the upper limit value of the forging end temperature (T) is a temperature calculated by adding 310 to the double processing rate (E).
[0045] 本発明に係るマグネシウム合金材の製造方法は、塑性加工工程を行った後に、マ グネシゥム合金材(加工材)の寸法安定化のために、 200〜300°Cで 10時間以上保 持する安定化処理工程 (stabilization treatment process)を加えてもよい。寸法安定性 が向上することにより、本発明に係るマグネシウム合金材を、内燃機関用ピストン、バ ルブ、リフター、タペット、スプロケット等、熱の影響を受けながら使用される製品への 適用が容易となり、好都合である。  [0045] The magnesium alloy material manufacturing method according to the present invention is maintained at 200 to 300 ° C for 10 hours or more for dimensional stabilization of the magnesium alloy material (worked material) after performing the plastic working process. A stabilization treatment process may be added. By improving the dimensional stability, the magnesium alloy material according to the present invention can be easily applied to products used under the influence of heat, such as pistons, valves, lifters, tappets and sprockets for internal combustion engines. Convenient.
[0046] また、塑性加工工程が鍛造加工であったときには、前記した寸法安定化のための 安定化処理工程の後に、必要に応じて内燃機関用ピストン、バルブ、リフター、タぺッ ト、スプロケット等の所定の形状に加工材を切削加工する切削工程を行ってもよ!/、。 実施例 [0046] When the plastic working process is forging, After the stabilization process, you may perform a cutting process to cut the workpiece into a predetermined shape such as pistons, valves, lifters, tappets, sprockets, etc. for internal combustion engines, if necessary! Example
[0047] つぎに、本発明の実施例について説明する。  Next, examples of the present invention will be described.
(実施例;!〜 6)  (Example:! ~ 6)
まず、 Mg-Gd (12. 9質量%) _21 (2. 7質量%) _2 0. 6質量%)の合金組成とな るように各材料を秤量し、溶解炉に装入し、フラックス精鍊 (flux refining)により溶解を 行った。続いて、加熱溶解した材料を、金型(外径 φ 150mm)に鍀造しインゴットを 作製した。铸造材に 510°C、 4時間の均質化熱処理を行い、機械加工にて押出加工 用の铸造材とした。次に、铸造材を押出加工機に装入し、押出加工速度を変化させ 、押出加工により、マグネシウム合金材 (実施例 1〜6、外径 φ 6mm)を製造した。な お、押出加工温度は 375°C、押出比 9で行い、一定とした。  First, each material was weighed so as to have an alloy composition of Mg-Gd (12.9 mass%) _21 (2.7 mass%) _ 2 0.6 mass%), charged into a melting furnace, Dissolution was performed by (flux refining). Subsequently, the heated and melted material was forged into a mold (outer diameter φ 150 mm) to produce an ingot. The forged material was subjected to a homogenized heat treatment at 510 ° C for 4 hours, and machined to obtain a forged material for extrusion. Next, the forged material was charged into an extruder, the magnesium alloy material (Examples 1 to 6, outer diameter φ 6 mm) was manufactured by changing the extrusion speed and performing extrusion. The extrusion temperature was constant at 375 ° C and an extrusion ratio of 9.
[0048] 押出加工後、浸透探傷蛍光試験などで、マグネシウム合金材 (加工材)に割れのな いことを確認し、加工材から JIS4号試験片を切り出し、 JIS規定の引張試験に準じて 、引張強さ、耐カ(0. 2%)、伸び(%)を測定した。その結果を表 1に示す。なお、引 張強さは 250MPa以上のとき、 0. 2%耐カは 150MPa以上のとき、伸びは 8%以上 のとき、自動車用部品としての適用が可能となる。  [0048] After extrusion processing, it was confirmed that the magnesium alloy material (processed material) was not cracked by a penetrant flaw detection fluorescent test, etc., and a JIS No. 4 test piece was cut out from the processed material. Tensile strength, resistance (0.2%), and elongation (%) were measured. The results are shown in Table 1. When tensile strength is 250 MPa or more, 0.2% resistance is 150 MPa or more, and elongation is 8% or more, it can be used as an automotive part.
[0049] また、引張試験後の試験片の押出加工断面を、 120〜; 1000番のサンドぺーパで 研磨後、アルミナ等でパフ研磨して鏡面化し、鏡面化された表面を酢酸ダリコール水 溶液等でエッチングして組織観察面とした。この組織観察面を 400倍で写真撮影し、 その断面写真から Mg Gdおよび/または Mg Zn Gdが占める面積率を画像処理に て算出した。具体的な方法について、図 6〜図 8を参照して、説明する。引張試験後 の断面写真 (図 6)について、 Mg Gdおよび/または Mg Zn Gdが析出した領域を黒 色に画像処理する(図 7)。さらに、画像処理された写真 (図 7)について、黒白に 2値 化する画像処理を行ない(図 8)、 Mg Gdおよび/または Mg Zn Gdが析出した領 域の合金組織全体に対する面積率を算出した。その結果を表 1に示す。なお、 Mg [0049] In addition, the extruded cross section of the test piece after the tensile test was polished with 120-1000 sandpaper and then puffed with alumina or the like to make a mirror surface. Etching was performed to obtain a structure observation surface. This tissue observation surface was photographed at 400 times, and the area ratio occupied by Mg Gd and / or Mg Zn Gd was calculated from the cross-sectional photograph by image processing. A specific method will be described with reference to FIGS. For the cross-sectional photograph after the tensile test (Fig. 6), the area where Mg Gd and / or Mg Zn Gd is deposited is imaged in black (Fig. 7). Furthermore, the image-processed photograph (Fig. 7) is subjected to image processing that binarizes it into black and white (Fig. 8), and the area ratio of the region where Mg Gd and / or Mg Zn Gd is precipitated is calculated for the entire alloy structure did. The results are shown in Table 1. Mg
Gdおよび Ng Zn Gdの確認は TEMにて行った。 Gd and Ng Zn Gd were confirmed by TEM.
[0050] [表 1] 押出 Mg3Gd 引張強さ 0. 2% 伸び 直径 加工速度 および/また 耐カ[0050] [Table 1] Extrusion Mg 3 Gd Tensile strength 0.2% Elongation Diameter Machining speed and / or resistance
(mm) (mm/sec) は (MPa) (MPa) (%) (mm) (mm / sec) is (MPa) (MPa) (%)
Mg3Zn3Gd2 Mg 3 Zn 3 Gd 2
の面積率  Area ratio
( %)  (%)
実施例 1 1 50 2. 5 1 . 5 395 337 9. 6 実施例 2 1 50 2. 5 1 . 5 396 340 9. 5 実施例 3 1 50 5 1 9. 1 366 288 1 3. 3 実施例 4 1 50 5 1 9. 1 367 290 1 3. 6 実施例 5 1 50 7. 5 353 265 1 4. 3 実施例 6 1 50 7. 5
Figure imgf000014_0001
352 264 1 4. 6
Example 1 1 50 2. 5 1.5 1.5 395 337 9.6 Example 2 1 50 2. 5 1.5 396 340 9.5 Example 3 1 50 5 1 9. 1 366 288 1 3.3 Example 4 1 50 5 1 9. 1 367 290 1 3. 6 Example 5 1 50 7. 5 353 265 1 4. 3 Example 6 1 50 7. 5
Figure imgf000014_0001
352 264 1 4. 6
表 1の結果から、本発明に係るマグネシウム合金材(実施例 1〜6)は、高い引張強 さおよび 0. 2%耐カを有すると共に、高い伸びを有していることが確認された。 From the results in Table 1, it was confirmed that the magnesium alloy materials according to the present invention (Examples 1 to 6) had high tensile strength and 0.2% resistance, and high elongation.

Claims

請求の範囲 The scope of the claims
[1] 必須成分として Zn :;!〜 5質量%、 Gd : 5〜; 15質量%の範囲で含有し、残部が Mg と不可避的不純物からなる Mg-Gd-Zn系合金から構成されるマグネシウム合金材で あってゝ  [1] Magnesium composed of Mg: Gd-Zn alloy with Zn:;! ~ 5 mass%, Gd: 5 ~; 15 mass% as the essential components, the balance being Mg and inevitable impurities Alloy material
前記 Mg-Gd-Zn系合金の合金組織中に、長周期積層構造を有し、かつ、 Mg Gd  The alloy structure of the Mg-Gd-Zn alloy has a long-period laminated structure, and Mg Gd
3 および/または Mg Zn Gdを 4%以上有することを特徴とするマグネシウム合金材。  3 and / or magnesium alloy material characterized by having 4% or more of Mg Zn Gd.
3 3 2  3 3 2
[2] 前記合金組織中の前記 Mg Gdおよび/または Mg Zn Gdの面積率が 53%以下  [2] The area ratio of the Mg Gd and / or Mg Zn Gd in the alloy structure is 53% or less
3 3 3 2  3 3 3 2
であることを特徴とする請求項 1に記載のマグネシウム合金材。  The magnesium alloy material according to claim 1, wherein:
[3] 請求項 1に記載のマグネシウム合金材において、 JIS規定の引張試験で測定した伸 び(%)を (X)とし、 0. 2%耐カ(MPa)を (y)としたとき、 [3] In the magnesium alloy material according to claim 1, when the elongation (%) measured in the tensile test specified in JIS is (X) and 0.2% resistance (MPa) is (y),
(-15. 57x) +467<y< (-15. 57x) + 555、力、つ、 x< 20であることを特 ί毁とする マグネシウム合金材。  (-15. 57x) +467 <y <(-15. 57x) + 555, strength, strength, x <20
[4] 請求項 1に記載の Mg-Gd-Zn系合金を溶解、铸造して铸造材を得る溶解铸造ェ 程と、  [4] A melting and forging process in which the Mg—Gd—Zn alloy according to claim 1 is melted and forged to obtain a forged material;
前記铸造材に所定の加工速度で熱間塑性加工を施して、加工材を製造する塑性 加工工程とを含むマグネシウム合金材の製造方法。  A method for producing a magnesium alloy material, comprising: a plastic working step for producing a work material by subjecting the forged material to hot plastic working at a predetermined working speed.
PCT/JP2007/072847 2006-11-30 2007-11-27 Magnesium alloy material and process for production thereof WO2008069049A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/517,134 US20100061882A1 (en) 2006-11-30 2007-11-27 Magnesium alloy material and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006325056A JP5175470B2 (en) 2006-11-30 2006-11-30 Magnesium alloy material and method for producing the same
JP2006-325056 2006-11-30

Publications (1)

Publication Number Publication Date
WO2008069049A1 true WO2008069049A1 (en) 2008-06-12

Family

ID=39491952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072847 WO2008069049A1 (en) 2006-11-30 2007-11-27 Magnesium alloy material and process for production thereof

Country Status (4)

Country Link
US (1) US20100061882A1 (en)
JP (1) JP5175470B2 (en)
CN (1) CN101622366A (en)
WO (1) WO2008069049A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044829A1 (en) * 2007-10-02 2009-04-09 National Institute For Materials Science Magnesium alloy
CN109930045A (en) * 2019-03-29 2019-06-25 南京航空航天大学 High-toughness heat-resistant Mg-Gd alloy and preparation method thereof suitable for gravitational casting

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280565A (en) * 2007-05-09 2008-11-20 Ihi Corp Magnesium alloy and its manufacturing method
CN101787481B (en) * 2010-03-22 2011-07-27 北京工业大学 Quasicrystal intermediate alloy containing Mg-Zn-Gd radical and preparation method thereof
CN103038379A (en) * 2010-05-24 2013-04-10 联邦科学与工业研究组织 Magnesium-based alloy for wrought applications
JP5658609B2 (en) 2011-04-19 2015-01-28 株式会社神戸製鋼所 Magnesium alloy materials and engine parts
CN103184380B (en) * 2013-03-29 2016-05-04 江苏康欣医疗设备有限公司 Biodegradable Mg-Gd-Zn-Sr-Zr series magnesium alloy and preparation method thereof
CN103184379B (en) * 2013-03-29 2015-10-07 江苏康欣医疗设备有限公司 Biodegradable Mg-Gd-Zn-Ag-Zr series magnesium alloy and preparation method thereof
US20150140352A1 (en) * 2013-11-18 2015-05-21 Biotronik Ag Semifinished product and high-strength degradable implant formed therefrom
CN104372225B (en) * 2014-11-20 2017-02-22 上海交通大学 Preparation method of cast-state Mg-Gd-Zn(-Zr) alloy with LPSO structure
CN105112828B (en) * 2015-09-24 2017-03-22 济南大学 Regulating method for LPSO (long period stacking ordered) structure phase of casting Mg-Zn-Y magnesium alloy
CN113528915B (en) * 2021-07-09 2022-02-11 青岛理工大学 Impact-resistant high-strength heat-resistant magnesium rare earth alloy material
CN113943881B (en) * 2021-08-31 2023-02-28 上海航天精密机械研究所 High-temperature-resistant high-strength damping magnesium alloy material and preparation method thereof
CN113862539B (en) * 2021-10-08 2023-02-03 长沙理工大学 Casting process for reducing deformation activation energy of Mg-Gd-Zn magnesium alloy containing LPSO phase
CN114107849A (en) * 2021-11-29 2022-03-01 哈尔滨工业大学 Preparation method of high-strength and high-toughness Mg-Gd-Y-Zn-Zr wrought magnesium alloy

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3308377B2 (en) * 1994-03-09 2002-07-29 大同特殊鋼株式会社 Gear with excellent tooth surface strength and method of manufacturing the same
JP3893889B2 (en) * 2001-03-21 2007-03-14 大同特殊鋼株式会社 Non-tempered steel for hot forging that can be easily separated by fracture
EP1273769A3 (en) * 2001-07-03 2003-10-15 Nissan Motor Co., Ltd. Cam lobe piece of built-up type camshaft
JP3852764B2 (en) * 2001-08-06 2006-12-06 日立粉末冶金株式会社 Wear-resistant sintered alloy and method for producing the same
EP1450056B1 (en) * 2003-02-19 2017-06-07 Nissan Motor Co., Ltd. High-strength connecting rod and method of producing same
ES2458559T3 (en) * 2003-11-26 2014-05-06 Yoshihito Kawamura Magnesium alloy of high strength and high hardness, and method for its production
JP4500916B2 (en) * 2004-09-28 2010-07-14 国立大学法人 熊本大学 Magnesium alloy and manufacturing method thereof
WO2006036033A1 (en) * 2004-09-30 2006-04-06 Yoshihito Kawamura High-strength and high-toughness metal and process for producing the same
JP2007119819A (en) * 2005-10-26 2007-05-17 Nissan Motor Co Ltd Non-heat treated steel for connecting rod, and connecting rod
JP5152775B2 (en) * 2006-03-20 2013-02-27 株式会社神戸製鋼所 Magnesium alloy material and method for producing the same
WO2007111342A1 (en) * 2006-03-20 2007-10-04 National University Corporation Kumamoto University High-strength high-toughness magnesium alloy and method for producing the same
JP5142068B2 (en) * 2006-05-17 2013-02-13 日産自動車株式会社 High strength steel plate for resistance spot welding and joining method thereof
JP5024705B2 (en) * 2006-11-21 2012-09-12 株式会社神戸製鋼所 Magnesium alloy material and method for producing the same
JP4958267B2 (en) * 2006-11-21 2012-06-20 株式会社神戸製鋼所 Magnesium alloy material and method for producing the same
JP2009178293A (en) * 2008-01-30 2009-08-13 Terumo Corp Medical implant

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KIM ET AL.: "Choshuki Sekiso Kozo o Yusuru Kokyodo Kyusoku Gyoko Mg-Zn-Gd Gokin no Soshiki to Kikaiteki Seishitsu", ABSTRACTS OF THE JAPAN INSTITUTE OF METALS, DAI 138 KAI, 21 March 2006 (2006-03-21), pages 113 *
SASAKI ET AL.: "Choshuki Sekiso Kozogata Mg-Zn-Gd Gokin ni Okeru TTT Kyokusen no Sakusei", ABSTRACTS OF THE MEETING OF JAPAN INSTITUTE OF LIGHT METALS, DAI 111 KAI, 18 October 2006 (2006-10-18), pages 167 - 168 *
SASAKI ET AL.: "Choshuki Sekiso Kozoso o Yusuru Mg-Zn-Gd Chuzo Gokin no Soshiki to Kikaiteki Seishitsu ni Oyobosu Netsushori no Eikyo", ABSTRACTS OF THE MEETING OF JAPAN INSTITUTE OF LIGHT METALS, DAI 110 KAI, 13 April 2006 (2006-04-13), pages 345 - 346 *
SASAKI ET AL.: "Koon Jiko ni yoru Choshuki Sekiso Kozogata Mg-Zn-Gd Gokin no Koyodoka", ABSTRACTS OF THE JAPAN INSITUTE OF METALS, DAI 139 KAI, 16 September 2006 (2006-09-16), pages 244 *
SASAKI ET AL.: "Mg-Zn-Gd-kei Gokin ni Okeru Choshuki Sekisoso Keisei ni Oyobosu Netsushori no Eikyo", ABSTRACTS OF JAPAN INSTITUTE OF METALS, DAI 137 KAI, 28 September 2005 (2005-09-28), pages 391 *
YAMASAKI M. ET AL.: "Mechanical properties of warm-extruded MG-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate", SCRIPTA MATERIALIA, vol. 53, no. 7, 15 August 2005 (2005-08-15), pages 799 - 803, XP025398437, DOI: doi:10.1016/j.scriptamat.2005.06.006 *
YAMAZAKI ET AL.: "Mg-Zn-Gd Chuzo Gokin no Koon Jiko ni yoru Sekiso Kekkan to Choshuki Sekiso Kozo no Keisei", ABSTRACTS OF THE MEETING OF JAPAN INSTITUTE OF LIGHT METALS, DAI 111 KAI, 18 October 2006 (2006-10-18), pages 169 - 170 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044829A1 (en) * 2007-10-02 2009-04-09 National Institute For Materials Science Magnesium alloy
JP5424204B2 (en) * 2007-10-02 2014-02-26 独立行政法人物質・材料研究機構 Magnesium alloy
CN109930045A (en) * 2019-03-29 2019-06-25 南京航空航天大学 High-toughness heat-resistant Mg-Gd alloy and preparation method thereof suitable for gravitational casting
CN109930045B (en) * 2019-03-29 2021-07-09 南京航空航天大学 High-strength-toughness heat-resistant Mg-Gd alloy suitable for gravity casting and preparation method thereof

Also Published As

Publication number Publication date
JP2008138249A (en) 2008-06-19
CN101622366A (en) 2010-01-06
JP5175470B2 (en) 2013-04-03
US20100061882A1 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
WO2008069049A1 (en) Magnesium alloy material and process for production thereof
JP5024705B2 (en) Magnesium alloy material and method for producing the same
JP5658609B2 (en) Magnesium alloy materials and engine parts
EP0610006B1 (en) Superplastic aluminum alloy and process for producing same
JP4285916B2 (en) Manufacturing method of aluminum alloy plate for structural use with high strength and high corrosion resistance
EP2274454B1 (en) Alloy composition and preparation thereof
EP2157200A1 (en) Al-Mg-Si aluminum alloy extruded product exhibiting excellent fatigue strength and impact fracture resistance
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
JP4958267B2 (en) Magnesium alloy material and method for producing the same
JP5215710B2 (en) Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same
JP4856597B2 (en) Magnesium alloy excellent in strength and elongation at high temperature and method for producing the same
CN113215459B (en) Al-Cu-Mn nano-structure heat-resistant deformation aluminum alloy and preparation method thereof
CN114787403A (en) Powdered aluminum material
JP4933891B2 (en) Weldable forging aluminum alloy with excellent stress corrosion cracking resistance and forged products using the same
JP2004315938A (en) Forged material of aluminum alloy for structural material in transport aircraft, and manufacturing method therefor
JP4712159B2 (en) Aluminum alloy plate excellent in strength and corrosion resistance and method for producing the same
WO2009038215A1 (en) Magnesium alloy material and method for manufacturing the same
JP2022044919A (en) Aluminum alloy-made forged member and method for producing the same
JP2001181771A (en) High strength and heat resistant aluminum alloy material
JP5607960B2 (en) Heat-resistant magnesium alloy with excellent fatigue strength characteristics and heat-resistant parts for engines
JP2004124152A (en) Rolled wire rod of magnesium based alloy, and its production method
JP2017214870A (en) Piston for internal combustion engine and method of manufacturing the same
JP2004124154A (en) Rolled wire rod of magnesium based alloy, and production method therefor
JP2021095619A (en) Aluminum alloy sheet for cap material and method for producing the same
JP7496106B1 (en) Aluminum alloy screw material, aluminum alloy screw, and manufacturing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780043977.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12517134

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 07832572

Country of ref document: EP

Kind code of ref document: A1