WO2008065702A1 - Heat-insulating material for heat treatment oven, electrical heating unit for heat treatment oven, and heat treatment oven - Google Patents

Heat-insulating material for heat treatment oven, electrical heating unit for heat treatment oven, and heat treatment oven Download PDF

Info

Publication number
WO2008065702A1
WO2008065702A1 PCT/JP2006/323608 JP2006323608W WO2008065702A1 WO 2008065702 A1 WO2008065702 A1 WO 2008065702A1 JP 2006323608 W JP2006323608 W JP 2006323608W WO 2008065702 A1 WO2008065702 A1 WO 2008065702A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
furnace
base material
treatment furnace
heat
Prior art date
Application number
PCT/JP2006/323608
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Uemori
Original Assignee
Koyo Thermo Systems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co., Ltd. filed Critical Koyo Thermo Systems Co., Ltd.
Priority to PCT/JP2006/323608 priority Critical patent/WO2008065702A1/en
Publication of WO2008065702A1 publication Critical patent/WO2008065702A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0006Electric heating elements or system

Definitions

  • the present invention relates to a heat treatment furnace heat insulating material used as a furnace wall of a heat treatment furnace such as a firing furnace, an electric heating unit for a heat treatment furnace in which a heating element is embedded in the heat insulating material, and the heat insulating material. It relates to the heat treatment furnace used.
  • a heat insulating material made of a ceramic fiber having a low cost and a low thermal conductivity is used for a furnace wall of a heat treatment furnace such as a firing furnace.
  • Thermal insulation made of ceramic fiber generates a lot of dust. For this reason, for example, when cleanliness is required as in a heat treatment furnace for electronic components, a heat-resistant glass ceramic plate is placed inside the furnace wall (furnace inner surface), and the space in which the workpiece is transported (See, for example, Patent Document 1)
  • the surface of the insulation ceramic fiber, powdered refractory materials 60 to 90 weight 0/0, 5-30% inorganic binder, and a heat-resistant coating layer consists of thickener mosquitoes also coatings.
  • a method of infiltrating the sewage is also proposed.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-330836
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-192472
  • the surface of the heat insulating material is completely covered with a heat-resistant coating layer, At first glance, it is excellent in low dust generation.
  • the heat-resistant coating layer has a low bonding strength with the surface of the heat insulating material, and the resistance to thermal cracking is low when the temperature rises and falls repeatedly due to the difference in expansion coefficient with the heat insulating material. The dustiness cannot be maintained.
  • the film does not crack due to thermal stress, but the surface of the heat insulating material cannot be reliably covered, so it is impossible to completely prevent dust generation!
  • the object of the present invention is to cover the surface of the heat insulating material of the ceramic fiber with a coating agent having a composition having a strong binding force with the ceramic fiber, thereby reducing the low dust generation property of the heat insulating material over a long period of time. It is an object of the present invention to provide a heat treatment furnace heat insulating material, an electric heating unit for heat treatment furnace, and a heat treatment furnace that can be maintained.
  • the heat insulating material for heat treatment furnace constitutes a furnace wall of the heat treatment furnace, and includes a base material and a coating layer.
  • the base material is a ceramic fiber molded body containing alumina and silica.
  • the coating layer is formed by applying a coating agent composed of a base containing water and water-soluble aluminum phosphate and a silicon carbide pigment to at least the furnace inner surface of the furnace wall in the base material and then drying.
  • a coating layer is formed on the surface of the base material by the coating agent containing aluminum phosphate.
  • aluminum phosphate has a high affinity with alumina constituting the base material.
  • a coating layer is formed on the surface of the base metal with a strong bonding force, and dust generation from the surface of the base material into the furnace is prevented for a long time.
  • the electric heating unit for a heat treatment furnace of the present invention heats the inside of the heat treatment furnace, and includes a base material, a heating element, and a coating layer.
  • the base material is a ceramic fiber molded body containing alumina and silica.
  • the heating element is buried near the inner surface of the furnace in the base metal and generates heat when energized.
  • the coating layer is formed by applying a coating agent composed of a base containing water and water-soluble aluminum phosphate and a silicon carbide pigment to at least the furnace inner surface of the furnace wall of the base material and then drying it. It is formed.
  • a coating layer is formed on the surface of the base material by the coating agent containing aluminum phosphate.
  • aluminum phosphate has a high affinity with alumina constituting the base material.
  • the coating layer is formed on the surface of the base metal with a strong bonding force, and the surface strength of the base material prevents cracking of the coating layer even when heating and cooling are repeated. It is. Further, the surface of the base material is covered with a black coating layer with silicon carbide contained as a pigment, and heat generated from the heating element embedded in the base material is efficiently radiated.
  • the heat treatment furnace of the present invention is used for firing electronic components and the like, and is constituted by a furnace wall provided with a base material and a coating layer.
  • the base material is a ceramic fiber molded body containing alumina and silica.
  • the coating layer is formed by applying a coating agent composed of a base containing water and water-soluble aluminum phosphate and a pigment that is silicon carbide to at least the furnace inner surface of the furnace wall of the base material and then drying.
  • a coating layer is formed on the surface of the base material by the coating agent containing aluminum phosphate. It is considered that aluminum phosphate has a high affinity with alumina constituting the base material. A coating layer is formed on the surface of the base metal with a strong bonding force, and dust generation from the surface of the base material into the furnace is prevented for a long time.
  • the coating layer is formed on the furnace inner surface of the furnace wall of the base material with the coating agent containing aluminum phosphate, thereby strengthening the coating layer on the surface of the base material. It can be formed with a binding force. Even if heating and cooling are repeated, it is possible to prevent the generation of dust into the surface force furnace of the base material that does not cause cracks in the coating layer over a long period of time.
  • the surface of the base material can be covered with the coating layer exhibiting black in consideration of the above-described effect, and the heating element embedded in the base material can be used.
  • the generated heat can be radiated efficiently.
  • the coating layer is formed on the surface of the base material with a strong bonding force by forming the coating layer on the furnace inner surface of the furnace wall of the base material with the coating agent containing aluminum phosphate. Can be formed. Even when heating and cooling are repeated, the surface of the base metal, which does not cause cracks in the coating layer, can prevent dust generation into the furnace for a long period of time.
  • FIG. 1 is a cross-sectional view showing a configuration of a heat treatment furnace of the present invention.
  • FIG. 2 is a partially enlarged cross-sectional view of a heat treatment furnace heat insulating material of the present invention.
  • FIG. 3 is a diagram showing experimental results of examples and conventional examples of heat insulation materials for heat treatment furnaces according to the present invention.
  • FIG. 4 is a partially enlarged sectional view of an electric heating unit for a heat treatment furnace according to the present invention.
  • FIG. 5 is a diagram showing experimental results of an example of an electric heating unit for a heat treatment furnace according to the present invention and a conventional example.
  • FIG. 1 is a cross-sectional view showing a configuration of a heat treatment furnace 100 according to an embodiment of the present invention.
  • the heat treatment furnace 100 performs a setterless heat treatment on the glass substrate for plasma display, which is the workpiece 200.
  • the heat treatment furnace 100 includes furnace walls 101 to 104, a conveyance roller 120, and a conveyance motor 124.
  • the furnace walls 101 to 104 respectively cover the left and right side surfaces, the upper surface, and the lower surface of the conveyance path through which the workpiece 20 is conveyed.
  • the left and right side furnace walls 101 and 102 are constituted by a heat treatment furnace heat insulating material 10
  • the upper and lower side furnace walls 103 and 104 are constituted by a heat treatment furnace electric heating unit 20.
  • the furnace walls 103 and 104 are provided with a heater (not shown) near the furnace inner surface.
  • the transport roller 120 is provided at each of a plurality of positions along the transport path. Both ends of the transport roller 120 pass through the furnace walls 101 and 102, and the left and right side surfaces of the transport roller 120 are penetrated. It is rotatably supported by bearings 121 and 122 outside the furnace. A sprocket 123 is fixed to the conveying roller 120 at the end exposed to the outside of the furnace on the right side surface side. The rotation of the transport motor 124 is transmitted to the sprocket 123 via the chain 125.
  • FIG. 2 is a partially enlarged cross-sectional view of the heat treatment furnace heat insulating material of the present invention.
  • the heat treatment furnace heat insulating material 10 is used as the left and right furnace walls 101 and 102 in the heat treatment furnace 100.
  • the heat treatment furnace heat insulating material 10 includes a base material 1 and a coating layer 2.
  • Base material 1 is a ceramic fiber molded body containing alumina and silica, and is generally used as a material for furnace walls 101-104.
  • the base material 1 is formed by a known method such as a vacuum forming method in accordance with the size of the furnace walls 101 and 102.
  • the coating layer 2 is formed by applying a liquid coating agent obtained by kneading silicon carbide as a pigment in a base containing water and water-soluble aluminum phosphate to the surface of the base material 1 and then drying it.
  • the coating agent contains 50% of the base and the pigment.
  • the base contains water and aluminum phosphate as main components in a weight ratio of about 2: 1, and can also contain small amounts of amorphous silica, alcohol, nitric acid, aluminum hydroxide, and the like.
  • the composition is not limited to this, and can be changed as appropriate.
  • the covering layer 2 is formed on at least the inner surface when used as the furnace walls 101 and 102 in the base material 1.
  • the coating layer 2 is applied with a coating agent on the surface of the base material 1 and then dried and fired at an appropriate temperature of 300 ° C. to 600 ° C. for about 3 hours to a thickness of 0.3 mm to l.Omm. .
  • the covering layer 2 may be formed on the entire surface of the base material 1 or on two or more surfaces.
  • the aluminum phosphate contained in the coating layer 2 composed of the coating agent has a high affinity with the alumina contained in the base material 1. For this reason, the coating layer 2 is formed on the surface of the base material 1 with a strong bonding force.
  • the temperature rise and fall may be repeated between the normal temperature and the heat treatment temperature of the workpiece.
  • the base material 1 and the coating layer 2 having different materials have different expansion coefficients. Thermal stress acts on the interface between the base material 1 and the coating layer 2 due to the temperature rise and fall in the furnace, but the coating layer 2 has a strong bonding force to the surface of the base material 1, so that the coating layer 2 is cracked. That's it!
  • FIG. 3 is a diagram showing experimental results of examples of the heat treatment furnace heat insulating material 10 and comparative examples.
  • An experimental block of 90 mm ⁇ 55 mm ⁇ 25 mm was formed from the base material 1, the coating layer 2 was formed on the measurement surface in the example of the heat insulation material 10 for heat treatment furnace, and tape was applied to the other five surfaces.
  • the coating layer 2 was not formed on the measurement surface of the comparative example, and the tape was attached to the other five surfaces.
  • Nitrogen gas of 30 liters per minute was applied to the measurement surface of the experimental blocks of Examples and Comparative Examples at room temperature, and the number of dust particles that floated was counted.
  • FIG. 4 is a partially enlarged sectional view of the electric heating unit 20 for heat treatment furnace of the present invention.
  • the electric heating unit 20 for heat treatment furnace is used as the upper and lower furnace walls 103 and 104 in the heat treatment furnace 100 and heats the inside of the furnace to a predetermined heat treatment temperature.
  • the electric heating unit 20 for heat treatment furnace includes a base material 11, a coating layer 12, and a heating element 13.
  • Each of the base material 11 and the coating layer 12 is the same as the base material 1 and the coating layer 2 of the heat treatment furnace heat insulating material 10.
  • the covering layer 12 is formed in the same manner as the covering layer 2 on the base material 11 at least on the surface that becomes the furnace inner surface when used as the furnace walls 103 and 104.
  • the heating element 13 is a coil-like long body as an example, and is repeatedly folded and embedded in the vicinity of the inner surface of the base material 11.
  • the shape is not limited to this, and other shapes such as a waveform shape may be used.
  • the heating element 13 generates heat when energized.
  • the base material 11 in which the heating element 13 is embedded has a surface covered with the coating layer 13, and is excellent in low dust generation.
  • the electric heating unit 20 for the heat treatment furnace as the furnace walls 103 and 104 on the upper and lower surfaces of the heat treatment furnace 100, the amount of dust scattered in the furnace can be reduced.
  • FIG. 5 is a diagram showing experimental results of an example and a conventional example of the electric heating unit 20 for a heat treatment furnace according to the present invention. Furnace walls 103 and 104 are made of the base material 11 in which the heating element 13 is embedded. Did not form the covering layer 12 and was strong.
  • the temperature of the example shown by the solid line in FIG. 5 was lower by about 6 ° C. at the low temperature and about 4 ° C. at the higher temperature than the temperature of the comparative example shown by the broken line in FIG.
  • the example was superior in heat dissipation compared to the comparative example, and abnormal overheating of the heating element 13 could be prevented. This is considered to be because the coating layer 12 exhibits a black color due to silicon carbide contained as a pigment in the coating agent constituting the coating layer 12.
  • the electric heating unit 20 for the heat treatment furnace as the furnace walls 103 and 104 on the upper and lower surfaces of the heat treatment furnace 100, the inside of the furnace can be efficiently heated and the power consumption can be reduced. can do.
  • the present invention can be used to prevent dust generation from the furnace wall in a furnace of a heat treatment furnace such as a firing furnace.

Abstract

A heat-insulating material (10) for heat treatment ovens and an electrical heating unit (20) for heat treatment ovens which each comprises a base material (1) made of ceramic fibers comprising alumina and silica and a coating layer (2) formed by applying a coating material comprising a base ingredient comprising water and a water-soluble aluminum phosphate and a pigment comprising silicon carbide to that surface of the base material (1) which serves as an oven-wall inner side and thenmatériau drying the coating material. Since the aluminum phosphate contained in the coating layer (2) has a high affinity for the alumina as a component of the base material (1), the coating layer (2) formed on the surface of the base material (1) is adherent thereto at high bond strength. The surface of the base material (1) is hence prevented from generating dust in the oven over long.

Description

明 細 書  Specification
熱処理炉用断熱材、熱処理炉用電気加熱ユニット及び熱処理炉 技術分野  Thermal insulation for heat treatment furnace, electric heating unit for heat treatment furnace and heat treatment furnace
[0001] この発明は、焼成炉等の熱処理炉の炉壁として使用される熱処理炉用断熱材、こ の断熱材中に発熱体を埋設した熱処理炉用電気加熱ユニット、及びこの断熱材を使 用した熱処理炉に関する。  The present invention relates to a heat treatment furnace heat insulating material used as a furnace wall of a heat treatment furnace such as a firing furnace, an electric heating unit for a heat treatment furnace in which a heating element is embedded in the heat insulating material, and the heat insulating material. It relates to the heat treatment furnace used.
背景技術  Background art
[0002] 焼成炉等の熱処理炉の炉壁には、安価で熱伝導率の低いセラミックファイバを素 材とした断熱材が使用されている。セラミックファイバを素材とした断熱材は、粉塵の 発生が多い。このため、例えば、電子部品用の熱処理炉のように清浄性が要求され る場合には、炉壁の内側(炉内側表面)に耐熱ガラスセラミック板を配置し、被処理物 が搬送される空間に断熱材が露出しないようにしている(例えば、特許文献 1参照。 )  [0002] A heat insulating material made of a ceramic fiber having a low cost and a low thermal conductivity is used for a furnace wall of a heat treatment furnace such as a firing furnace. Thermal insulation made of ceramic fiber generates a lot of dust. For this reason, for example, when cleanliness is required as in a heat treatment furnace for electronic components, a heat-resistant glass ceramic plate is placed inside the furnace wall (furnace inner surface), and the space in which the workpiece is transported (See, for example, Patent Document 1)
[0003] ところが、熱処理炉内で被処理物が搬送される空間の全面を耐熱ガラスセラミック 板で仕切ると、設備コストが高騰する。また、耐熱ガラスセラミック板は、温度の昇降の 繰り返しや衝撃等によって破損を生じ易ぐメンテナンスが煩雑ィ匕する。 [0003] However, if the entire surface of the space in which the workpiece is transported in the heat treatment furnace is partitioned by a heat-resistant glass ceramic plate, the equipment cost increases. In addition, the heat-resistant glass-ceramic plate is complicated to be easily damaged due to repeated temperature rise and fall or impact.
[0004] そこで、耐熱ガラスセラミック板を不要にすべぐセラミックファイバの断熱材の低発 塵ィ匕が望まれている。このため、セラミックファイバの断熱材の表面に、粉末状耐熱材 料 60〜90重量0 /0、無機バインダ 5〜30%、及び増粘材カもなるコーティング剤で構 成された耐熱被覆層を形成する方法がある (例えば、特許文献 2参照。 ) 0 [0004] Therefore, there is a demand for low dust generation of a ceramic fiber heat insulating material that does not require a heat-resistant glass ceramic plate. Therefore, the surface of the insulation ceramic fiber, powdered refractory materials 60 to 90 weight 0/0, 5-30% inorganic binder, and a heat-resistant coating layer consists of thickener mosquitoes also coatings There is a method of forming (see, for example, Patent Document 2) 0
[0005] また、セラミックファイバの断熱材と同材質の緻密な SiO を断熱材の表面から内部  [0005] In addition, a dense SiO 2 made of the same material as the ceramic fiber insulation is introduced from the surface of the insulation.
2  2
に浸透させる方法も提案されて ヽる。  A method of infiltrating the sewage is also proposed.
特許文献 1:特開平 5— 330836号公報  Patent Document 1: Japanese Patent Laid-Open No. 5-330836
特許文献 2 :特開 2003— 192472号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-192472
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 特許文献 2に開示された方法では、断熱材の表面が耐熱被覆層で完全に覆われ、 一見して低発塵性に優れる。しかし、耐熱被覆層は、断熱材の表面と結合力が弱ぐ 断熱材との膨張率の相違によって昇降温が繰り返された際に熱応力による割れを生 じ易ぐ長期間にわたつて低発塵性を維持することができな 、。 [0006] In the method disclosed in Patent Document 2, the surface of the heat insulating material is completely covered with a heat-resistant coating layer, At first glance, it is excellent in low dust generation. However, the heat-resistant coating layer has a low bonding strength with the surface of the heat insulating material, and the resistance to thermal cracking is low when the temperature rises and falls repeatedly due to the difference in expansion coefficient with the heat insulating material. The dustiness cannot be maintained.
[0007] また、 SiO を断熱材の表面から内部に浸透させる方法では、断熱材の内部に浸透  [0007] Further, in the method of infiltrating SiO from the surface of the heat insulating material, it penetrates into the heat insulating material.
2  2
するために熱応力による膜の割れは生じな 、が、断熱材の表面を確実に被覆するこ とはできな 、ために発塵を完全に防ぐことはできな!、。  Therefore, the film does not crack due to thermal stress, but the surface of the heat insulating material cannot be reliably covered, so it is impossible to completely prevent dust generation!
[0008] このような問題は、セラミックファイバの断熱材の内部(炉内側表面近傍)に発熱体 を埋設した熱処理炉用電気加熱ユニットにおいても同様に生じる。 [0008] Such a problem also occurs in an electric heating unit for a heat treatment furnace in which a heating element is embedded inside a ceramic fiber heat insulating material (near the furnace inner surface).
[0009] この発明の目的は、セラミックファイバの断熱材の表面をセラミックファイバとの結合 力の強 ヽ組成のコ一ティング剤で被覆することにより、断熱材の低発塵性を長期間に わたって維持することができる熱処理炉用断熱材、熱処理炉用電気加熱ユニット及 び熱処理炉を提供することにある。 [0009] The object of the present invention is to cover the surface of the heat insulating material of the ceramic fiber with a coating agent having a composition having a strong binding force with the ceramic fiber, thereby reducing the low dust generation property of the heat insulating material over a long period of time. It is an object of the present invention to provide a heat treatment furnace heat insulating material, an electric heating unit for heat treatment furnace, and a heat treatment furnace that can be maintained.
課題を解決するための手段  Means for solving the problem
[0010] この発明の熱処理炉用断熱材は、熱処理炉の炉壁を構成するものであり、母材、 被覆層を備えている。母材は、アルミナ及びシリカを含むセラミックファイバ成型体で ある。被覆層は、水及び水溶性のリン酸アルミニウムを含む基剤と炭化珪素である顔 料とからなるコーティング剤を、少なくとも母材における炉壁の炉内側表面に塗布し た後に乾燥させて形成される。 The heat insulating material for heat treatment furnace according to the present invention constitutes a furnace wall of the heat treatment furnace, and includes a base material and a coating layer. The base material is a ceramic fiber molded body containing alumina and silica. The coating layer is formed by applying a coating agent composed of a base containing water and water-soluble aluminum phosphate and a silicon carbide pigment to at least the furnace inner surface of the furnace wall in the base material and then drying. The
[0011] リン酸アルミニウムを含むコーティング剤により、母材の表面に被覆層が形成される [0011] A coating layer is formed on the surface of the base material by the coating agent containing aluminum phosphate.
。リン酸アルミニウムは、母材を構成するアルミナとの親和性が高いと考えられる。母 材の表面に被覆層が強い結合力で形成され、母材の表面から炉内への発塵が長期 間にわたって防止される。 . It is considered that aluminum phosphate has a high affinity with alumina constituting the base material. A coating layer is formed on the surface of the base metal with a strong bonding force, and dust generation from the surface of the base material into the furnace is prevented for a long time.
[0012] この発明の熱処理炉用電気加熱ユニットは、熱処理炉内を加熱するものであり、母 材、発熱体、被覆層を備えている。母材は、アルミナ及びシリカを含むセラミックフアイ バ成型体である。発熱体は、母材中の炉内側表面近傍に埋設され、通電により発熱 する。被覆層は、水及び水溶性のリン酸アルミニウムを含む基剤と炭化珪素である顔 料とからなるコーティング剤を、少なくもと母材における炉壁の炉内側表面に塗布し た後に乾燥させて形成される。 [0013] リン酸アルミニウムを含むコーティング剤により、母材の表面に被覆層が形成される 。リン酸アルミニウムは、母材を構成するアルミナとの親和性が高いと考えられる。母 材の表面に被覆層が強い結合力で形成され、昇降温が繰り返された際にも被覆層 に割れを生じることがなぐ母材の表面力 炉内への発塵が長期間にわたって防止さ れる。また、母材の表面が顔料として含まれる炭化珪素によって黒色を呈する被覆層 で被覆され、母材に埋設された発熱体から発生した熱が効率的に放射される。 [0012] The electric heating unit for a heat treatment furnace of the present invention heats the inside of the heat treatment furnace, and includes a base material, a heating element, and a coating layer. The base material is a ceramic fiber molded body containing alumina and silica. The heating element is buried near the inner surface of the furnace in the base metal and generates heat when energized. The coating layer is formed by applying a coating agent composed of a base containing water and water-soluble aluminum phosphate and a silicon carbide pigment to at least the furnace inner surface of the furnace wall of the base material and then drying it. It is formed. [0013] A coating layer is formed on the surface of the base material by the coating agent containing aluminum phosphate. It is considered that aluminum phosphate has a high affinity with alumina constituting the base material. The coating layer is formed on the surface of the base metal with a strong bonding force, and the surface strength of the base material prevents cracking of the coating layer even when heating and cooling are repeated. It is. Further, the surface of the base material is covered with a black coating layer with silicon carbide contained as a pigment, and heat generated from the heating element embedded in the base material is efficiently radiated.
[0014] この発明の熱処理炉は、電子部品の焼成等に使用され、母材、被覆層を備えた炉 壁によって構成されている。母材は、アルミナ及びシリカを含むセラミックファイバ成 型体である。被覆層は、水及び水溶性のリン酸アルミニウムを含む基剤と炭化珪素で ある顔料とからなるコーティング剤を、少なくもと母材における炉壁の炉内側表面に 塗布した後に乾燥させて形成される。  The heat treatment furnace of the present invention is used for firing electronic components and the like, and is constituted by a furnace wall provided with a base material and a coating layer. The base material is a ceramic fiber molded body containing alumina and silica. The coating layer is formed by applying a coating agent composed of a base containing water and water-soluble aluminum phosphate and a pigment that is silicon carbide to at least the furnace inner surface of the furnace wall of the base material and then drying. The
[0015] リン酸アルミニウムを含むコーティング剤により、母材の表面に被覆層が形成される 。リン酸アルミニウムは、母材を構成するアルミナとの親和性が高いと考えられる。母 材の表面に被覆層が強い結合力で形成され、母材の表面から炉内への発塵が長期 間にわたって防止される。  [0015] A coating layer is formed on the surface of the base material by the coating agent containing aluminum phosphate. It is considered that aluminum phosphate has a high affinity with alumina constituting the base material. A coating layer is formed on the surface of the base metal with a strong bonding force, and dust generation from the surface of the base material into the furnace is prevented for a long time.
発明の効果  The invention's effect
[0016] この発明の熱処理炉用断熱材によれば、リン酸アルミニウムを含むコーティング剤 によって母材における炉壁の炉内側表面に被覆層を形成することで、母材の表面に 被覆層を強い結合力で形成することができる。昇降温が繰り返された際にも被覆層 に割れを生じることがなぐ母材の表面力 炉内への発塵を長期間にわたって防止で きる。  According to the heat treatment furnace heat insulating material of the present invention, the coating layer is formed on the furnace inner surface of the furnace wall of the base material with the coating agent containing aluminum phosphate, thereby strengthening the coating layer on the surface of the base material. It can be formed with a binding force. Even if heating and cooling are repeated, it is possible to prevent the generation of dust into the surface force furnace of the base material that does not cause cracks in the coating layer over a long period of time.
[0017] この発明の熱処理炉用電気加熱ユニットによれば、上記の効果にカ卩えて、母材の 表面を黒色を呈する被覆層で被覆することができ、母材に埋設された発熱体から発 生した熱を効率的に放射することができる。  According to the electric heating unit for a heat treatment furnace of the present invention, the surface of the base material can be covered with the coating layer exhibiting black in consideration of the above-described effect, and the heating element embedded in the base material can be used. The generated heat can be radiated efficiently.
[0018] この発明の熱処理炉によれば、リン酸アルミニウムを含むコーティング剤によって母 材における炉壁の炉内側表面に被覆層を形成することで、母材の表面に被覆層を 強い結合力で形成することができる。昇降温が繰り返された際にも被覆層に割れを 生じることがなぐ母材の表面カも炉内への発塵を長期間にわたって防止できる。 図面の簡単な説明 [0018] According to the heat treatment furnace of the present invention, the coating layer is formed on the surface of the base material with a strong bonding force by forming the coating layer on the furnace inner surface of the furnace wall of the base material with the coating agent containing aluminum phosphate. Can be formed. Even when heating and cooling are repeated, the surface of the base metal, which does not cause cracks in the coating layer, can prevent dust generation into the furnace for a long period of time. Brief Description of Drawings
[0019] [図 1]この発明の熱処理炉の構成を示す断面図である。  FIG. 1 is a cross-sectional view showing a configuration of a heat treatment furnace of the present invention.
[図 2]この発明の熱処理炉用断熱材の部分拡大断面図である。  FIG. 2 is a partially enlarged cross-sectional view of a heat treatment furnace heat insulating material of the present invention.
[図 3]この発明の熱処理炉用断熱材の実施例及び従来例の実験結果を示す図であ る。  FIG. 3 is a diagram showing experimental results of examples and conventional examples of heat insulation materials for heat treatment furnaces according to the present invention.
[図 4]この発明の熱処理炉用電気加熱ユニットの部分拡大断面図である。  FIG. 4 is a partially enlarged sectional view of an electric heating unit for a heat treatment furnace according to the present invention.
[図 5]この発明の熱処理炉用電気加熱ユニットの実施例及び従来例の実験結果を示 す図である。  FIG. 5 is a diagram showing experimental results of an example of an electric heating unit for a heat treatment furnace according to the present invention and a conventional example.
符号の説明  Explanation of symbols
[0020] 1, 11 母材 [0020] 1, 11 Base material
2, 12 被覆層  2, 12 coating layer
13 発熱体  13 Heating element
10 熱処理炉用断熱材  10 Heat insulation for heat treatment furnace
20 熱処理炉用電気加熱ユニット  20 Electric heating unit for heat treatment furnace
100 熱処理炉  100 heat treatment furnace
101〜104 炉壁  101-104 furnace wall
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 図 1は、この発明の実施形態に係る熱処理炉 100の構成を示す断面図である。熱 処理炉 100は、一例として、被処理物 200であるプラズマディスプレイ用のガラス基 板に対して、セッターレス方式の熱処理を行う。熱処理炉 100は、炉壁 101〜104、 搬送ローラ 120、及び搬送モータ 124を備えている。  FIG. 1 is a cross-sectional view showing a configuration of a heat treatment furnace 100 according to an embodiment of the present invention. For example, the heat treatment furnace 100 performs a setterless heat treatment on the glass substrate for plasma display, which is the workpiece 200. The heat treatment furnace 100 includes furnace walls 101 to 104, a conveyance roller 120, and a conveyance motor 124.
[0022] 炉壁 101〜104は、それぞれ被処理物 20が搬送される搬送経路の左右側面、上 面及び下面を被覆する。左右側面の炉壁 101, 102は熱処理炉用断熱材 10によつ て構成されており、上下面の炉壁 103, 104は熱処理炉用電気加熱ユニット 20によ つて構成されている。少なくとも加熱領域では、炉壁 103, 104は、炉内側表面近傍 に図示しな 、ヒータを備えて 、る。  [0022] The furnace walls 101 to 104 respectively cover the left and right side surfaces, the upper surface, and the lower surface of the conveyance path through which the workpiece 20 is conveyed. The left and right side furnace walls 101 and 102 are constituted by a heat treatment furnace heat insulating material 10, and the upper and lower side furnace walls 103 and 104 are constituted by a heat treatment furnace electric heating unit 20. At least in the heating region, the furnace walls 103 and 104 are provided with a heater (not shown) near the furnace inner surface.
[0023] 搬送ローラ 120は、搬送経路に沿う複数の位置のそれぞれに備えられている。搬送 ローラ 120は、両端部が炉壁 101, 102を貫通しており、左側面側及び右側面側の 炉外で軸受 121, 122によって回転自在に支持されている。搬送ローラ 120には、右 側面側の炉外に露出した端部にスプロケット 123が固定されている。スプロケット 123 には、チェーン 125を介して搬送モータ 124の回転が伝達される。 [0023] The transport roller 120 is provided at each of a plurality of positions along the transport path. Both ends of the transport roller 120 pass through the furnace walls 101 and 102, and the left and right side surfaces of the transport roller 120 are penetrated. It is rotatably supported by bearings 121 and 122 outside the furnace. A sprocket 123 is fixed to the conveying roller 120 at the end exposed to the outside of the furnace on the right side surface side. The rotation of the transport motor 124 is transmitted to the sprocket 123 via the chain 125.
[0024] 図 2は、この発明の熱処理炉用断熱材の部分拡大断面図である。熱処理炉用断熱 材 10は、熱処理炉 100における左右側面の炉壁 101, 102として用いられる。熱処 理炉用断熱材 10は、母材 1と被覆層 2とを備えている。母材 1は、アルミナ及びシリカ を含むセラミックファイバの成型体であり、炉壁 101〜104の材料として一般的に用 いられている。母材 1は、炉壁 101, 102の大きさに合わせて公知の方法、例えば真 空成型法により成形される。  FIG. 2 is a partially enlarged cross-sectional view of the heat treatment furnace heat insulating material of the present invention. The heat treatment furnace heat insulating material 10 is used as the left and right furnace walls 101 and 102 in the heat treatment furnace 100. The heat treatment furnace heat insulating material 10 includes a base material 1 and a coating layer 2. Base material 1 is a ceramic fiber molded body containing alumina and silica, and is generally used as a material for furnace walls 101-104. The base material 1 is formed by a known method such as a vacuum forming method in accordance with the size of the furnace walls 101 and 102.
[0025] 被覆層 2は、水及び水溶性のリン酸アルミニウムを含む基剤中に、炭化珪素を顔料 として混練した液状のコーティング剤を、母材 1の表面に塗布した後に乾燥させて構 成されている。コーティング剤は、基剤及び顔料を 50%ずつ含有する。基剤には、水 及びリン酸アルミニウムを主たる成分として重量比で約 2 : 1の割合で含み、他に少量 のアモルファスシリカ、アルコール、硝酸、水酸化アルミニウム等を含めることができる 。但し、組成はこれに限るものでなぐ適宜変更可能である。  [0025] The coating layer 2 is formed by applying a liquid coating agent obtained by kneading silicon carbide as a pigment in a base containing water and water-soluble aluminum phosphate to the surface of the base material 1 and then drying it. Has been. The coating agent contains 50% of the base and the pigment. The base contains water and aluminum phosphate as main components in a weight ratio of about 2: 1, and can also contain small amounts of amorphous silica, alcohol, nitric acid, aluminum hydroxide, and the like. However, the composition is not limited to this, and can be changed as appropriate.
[0026] 被覆層 2は、母材 1において炉壁 101, 102として使用される際の少なくとも内側面 となる面に形成される。被覆層 2は、母材 1の表面にコーティング剤を塗布した後、 30 0°C〜600°Cの適温で 3時間程度乾燥及び焼成され、 0. 3mm〜l. Ommの厚さに される。被覆層 2は、母材 1の全面又は 2面以上に形成してもよい。  The covering layer 2 is formed on at least the inner surface when used as the furnace walls 101 and 102 in the base material 1. The coating layer 2 is applied with a coating agent on the surface of the base material 1 and then dried and fired at an appropriate temperature of 300 ° C. to 600 ° C. for about 3 hours to a thickness of 0.3 mm to l.Omm. . The covering layer 2 may be formed on the entire surface of the base material 1 or on two or more surfaces.
[0027] コーティング剤で構成された被覆層 2に含まれるリン酸アルミニウムは、母材 1に含 まれるアルミナとの親和性が高いと考えられる。このため、母材 1の表面に被覆層 2が 強い結合力で形成される。  [0027] It is considered that the aluminum phosphate contained in the coating layer 2 composed of the coating agent has a high affinity with the alumina contained in the base material 1. For this reason, the coating layer 2 is formed on the surface of the base material 1 with a strong bonding force.
[0028] 熱処理炉 100の炉内は、常温と被処理物の熱処理温度との間で昇降温が繰り返さ れる場合がある。素材の異なる母材 1と被覆層 2とは、膨張率が互いに相違する。炉 内温度の昇降温によって母材 1と被覆層 2との境界面に熱応力が作用するが、母材 1の表面に対する被覆層 2の結合力が強 、ため、被覆層 2に割れを生じることがな!ヽ  [0028] In the furnace of the heat treatment furnace 100, the temperature rise and fall may be repeated between the normal temperature and the heat treatment temperature of the workpiece. The base material 1 and the coating layer 2 having different materials have different expansion coefficients. Thermal stress acts on the interface between the base material 1 and the coating layer 2 due to the temperature rise and fall in the furnace, but the coating layer 2 has a strong bonding force to the surface of the base material 1, so that the coating layer 2 is cracked. That's it!
[0029] 図 3は、熱処理炉用断熱材 10の実施例及び比較例の実験結果を示す図である。 母材 1によって 90mm X 55mm X 25mmの実験用ブロックを成形し、熱処理炉用断 熱材 10の実施例には測定面に被覆層 2を形成し、その他の 5面にテープを貼付した 。比較例の測定面には被覆層 2を形成せず、その他の 5面にテープを貼付した。実 施例及び比較例の実験用ブロックの測定面に常温下で毎分 30リットルの窒素ガスを 当て、浮上した粉塵数を計数した。 FIG. 3 is a diagram showing experimental results of examples of the heat treatment furnace heat insulating material 10 and comparative examples. An experimental block of 90 mm × 55 mm × 25 mm was formed from the base material 1, the coating layer 2 was formed on the measurement surface in the example of the heat insulation material 10 for heat treatment furnace, and tape was applied to the other five surfaces. The coating layer 2 was not formed on the measurement surface of the comparative example, and the tape was attached to the other five surfaces. Nitrogen gas of 30 liters per minute was applied to the measurement surface of the experimental blocks of Examples and Comparative Examples at room temperature, and the number of dust particles that floated was counted.
[0030] この結果、図 3に示すように、実施 f列で ίま、 1. 0 m、 0. 5 m、 0. 3 mの何れの 粉塵も、比較例に比べて十分に少ない値となった。この結果から、被覆層 2によって 熱処理炉用断熱材 10の低発塵化が実現されたことが判る。  [0030] As a result, as shown in FIG. 3, all the dust particles of 1.0 m, 0.5 m, and 0.3 m in the column f were sufficiently smaller than the comparative example. became. From this result, it can be seen that the coating layer 2 realizes a low dust generation of the heat insulating material 10 for the heat treatment furnace.
[0031] 熱処理炉用断熱材 10を熱処理炉 100の炉壁に用いることで、炉内温度の昇降温 の繰り返しによっても母材 1に発塵を生じることがなぐ炉内に粉塵が飛散することが ない。電子部品等の熱処理のように、清浄性が要求される場合にも、炉内の被処理 物が搬送される空間を高価な耐熱ガラスセラミック板で仕切る必要がなぐ熱処理炉 [0031] By using the thermal insulation 10 for the heat treatment furnace as the furnace wall of the heat treatment furnace 100, dust is scattered in the furnace where no dust is generated in the base material 1 even when the temperature in the furnace is repeatedly raised and lowered. There is no. Even when cleanliness is required, such as heat treatment of electronic parts, etc., a heat treatment furnace that does not need to partition the space in the furnace where the workpiece is transported by expensive heat-resistant glass ceramic plates
100を安価に製造できる。また、耐熱ガラスセラミック板の交換等が不要になり、メン テナンスを簡略ィ匕できる。 100 can be manufactured at low cost. In addition, it is not necessary to replace the heat-resistant glass ceramic plate, and maintenance can be simplified.
[0032] 図 4は、この発明の熱処理炉用電気加熱ユニット 20の部分拡大断面図である。熱 処理炉用電気加熱ユニット 20は、熱処理炉 100における上下面の炉壁 103, 104と して用いられ、炉内を所定の熱処理温度に加熱する。熱処理炉用電気加熱ユニット 20は、母材 11、被覆層 12、発熱体 13を備えている。  FIG. 4 is a partially enlarged sectional view of the electric heating unit 20 for heat treatment furnace of the present invention. The electric heating unit 20 for heat treatment furnace is used as the upper and lower furnace walls 103 and 104 in the heat treatment furnace 100 and heats the inside of the furnace to a predetermined heat treatment temperature. The electric heating unit 20 for heat treatment furnace includes a base material 11, a coating layer 12, and a heating element 13.
[0033] 母材 11及び被覆層 12のそれぞれは、熱処理炉用断熱材 10の母材 1及び被覆層 2と同様である。被覆層 12は、母材 11において、炉壁 103, 104として使用された際 の少なくとも炉内側表面となる面に、被覆層 2と同様にして形成されている。  Each of the base material 11 and the coating layer 12 is the same as the base material 1 and the coating layer 2 of the heat treatment furnace heat insulating material 10. The covering layer 12 is formed in the same manner as the covering layer 2 on the base material 11 at least on the surface that becomes the furnace inner surface when used as the furnace walls 103 and 104.
[0034] 発熱体 13は、一例としてコイル状の長尺体であり、母材 11の炉内側表面近傍に繰 り返し折り返して埋設されている。もちろん、これに限らず、他の形状、例えば、波形 形状などであってもよい。発熱体 13は、通電によって発熱する。  The heating element 13 is a coil-like long body as an example, and is repeatedly folded and embedded in the vicinity of the inner surface of the base material 11. Of course, the shape is not limited to this, and other shapes such as a waveform shape may be used. The heating element 13 generates heat when energized.
[0035] 発熱体 13を埋設した母材 11は、母材 1と同様に、表面を被覆層 13によって被覆さ れており、低発塵性に優れる。熱処理炉用電気加熱ユニット 20を熱処理炉 100の上 下面の炉壁 103, 104として使用することにより、炉内に飛散する粉塵量を削減でき る。 [0036] 図 5は、この発明の熱処理炉用電気加熱ユニット 20の実施例及び従来例の実験結 果を示す図である。発熱体 13を埋設した母材 11によって炉壁 103, 104を作成し、 熱処理炉用電気加熱ユニット 20の実施例には炉内側表面に被覆層 12を形成し、比 較例の炉内側表面には被覆層 12を形成しな力つた。これらの実施例及び比較例を 上下面の炉壁 103, 104として熱処理炉を作成し、炉内温度を図 5中一点鎖線で示 すように制御し、 370°Cの低温時及び 700°Cの高温時における実施例及び比較例 の温度を測定した。 [0035] As with the base material 1, the base material 11 in which the heating element 13 is embedded has a surface covered with the coating layer 13, and is excellent in low dust generation. By using the electric heating unit 20 for the heat treatment furnace as the furnace walls 103 and 104 on the upper and lower surfaces of the heat treatment furnace 100, the amount of dust scattered in the furnace can be reduced. FIG. 5 is a diagram showing experimental results of an example and a conventional example of the electric heating unit 20 for a heat treatment furnace according to the present invention. Furnace walls 103 and 104 are made of the base material 11 in which the heating element 13 is embedded. Did not form the covering layer 12 and was strong. These examples and comparative examples were prepared as furnace walls 103 and 104 on the upper and lower surfaces, and the furnace temperature was controlled as indicated by the alternate long and short dash line in Fig. 5 at a low temperature of 370 ° C and 700 ° C. The temperatures of the examples and comparative examples at high temperatures were measured.
[0037] この結果、図 5中実線で示す実施例の温度は同図中破線で示す比較例の温度より も低温時に 6°C程度、高温時に 4°C程度低力つた。この結果、実施例は、比較例に比 ベて放熱性に優れており、発熱体 13の異常過熱を防止できることが判った。これは、 被覆層 12を構成するコーティング剤に顔料として含まれる炭化珪素により、被覆層 1 2が黒色を呈するためであると考えられる。  As a result, the temperature of the example shown by the solid line in FIG. 5 was lower by about 6 ° C. at the low temperature and about 4 ° C. at the higher temperature than the temperature of the comparative example shown by the broken line in FIG. As a result, it was found that the example was superior in heat dissipation compared to the comparative example, and abnormal overheating of the heating element 13 could be prevented. This is considered to be because the coating layer 12 exhibits a black color due to silicon carbide contained as a pigment in the coating agent constituting the coating layer 12.
熱処理炉用電気加熱ユニット 20を熱処理炉 100の上下面の炉壁 103, 104として 用いることにより、炉内を清浄に維持することができるだけでなぐ炉内を効率的に加 熱して消費電力を削減することができる。  By using the electric heating unit 20 for the heat treatment furnace as the furnace walls 103 and 104 on the upper and lower surfaces of the heat treatment furnace 100, the inside of the furnace can be efficiently heated and the power consumption can be reduced. can do.
産業上の利用可能性  Industrial applicability
[0038] この発明は、焼成炉等の熱処理炉の炉内における炉壁からの発塵の防止に利用 できる。 [0038] The present invention can be used to prevent dust generation from the furnace wall in a furnace of a heat treatment furnace such as a firing furnace.

Claims

請求の範囲 The scope of the claims
[1] アルミナ及びシリカを含むセラミックファイバを母材とし、熱処理炉の炉壁を構成す る熱処理炉用断熱材において、  [1] In a heat treatment furnace heat insulating material comprising a ceramic fiber containing alumina and silica and constituting a furnace wall of a heat treatment furnace,
水及び水溶性のリン酸アルミニウムを含む基剤と炭化珪素である顔料とからなるコ 一ティング剤を少なくとも前記母材における前記炉壁の炉内側表面に塗布した後に 乾燥させて形成される被覆層を備えたことを特徴とする熱処理炉用断熱材。  A coating layer formed by applying a coating agent comprising a base containing water and water-soluble aluminum phosphate and a pigment that is silicon carbide to at least the furnace inner surface of the furnace wall of the base material and then drying the coating. A heat treatment furnace heat insulating material characterized by comprising:
[2] アルミナ及びシリカを含むセラミックファイバの母材の炉内側表面近傍に発熱体を 埋設し、熱処理炉の炉壁を構成するとともに、熱処理炉内を加熱する熱処理炉用加 熱ユニットにおいて、  [2] In a heating unit for a heat treatment furnace in which a heating element is embedded in the vicinity of the furnace inner surface of a ceramic fiber base material containing alumina and silica to constitute a furnace wall of the heat treatment furnace and to heat the inside of the heat treatment furnace,
水及び水溶性のリン酸アルミニウムを含む基剤と炭化珪素である顔料とからなるコ 一ティング剤を少なくとも前記母材における前記熱処理炉の炉壁の内側面に塗布し た後に乾燥させて形成される被覆層を備えたことを特徴とする熱処理炉用加熱ュ- ッ卜。  A coating agent comprising a base containing water and water-soluble aluminum phosphate and a pigment that is silicon carbide is applied to at least the inner surface of the furnace wall of the heat treatment furnace in the base material and then dried. A heating tube for a heat treatment furnace characterized by comprising a coating layer.
[3] アルミナ及びシリカを含むセラミックファイバを母材とした炉壁で構成された熱処理 炉において、  [3] In a heat treatment furnace composed of a furnace wall made of ceramic fibers containing alumina and silica,
水及び水溶性のリン酸アルミニウムを含む基剤と炭化珪素である顔料とからなるコ 一ティング剤を少なくとも前記母材における前記炉壁の炉内側表面に塗布した後に 乾燥させて形成される被覆層を備えたことを特徴とする熱処理炉。  A coating layer formed by applying a coating agent comprising a base containing water and water-soluble aluminum phosphate and a pigment that is silicon carbide to at least the furnace inner surface of the furnace wall of the base material and then drying the coating. A heat treatment furnace comprising:
PCT/JP2006/323608 2006-11-27 2006-11-27 Heat-insulating material for heat treatment oven, electrical heating unit for heat treatment oven, and heat treatment oven WO2008065702A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/323608 WO2008065702A1 (en) 2006-11-27 2006-11-27 Heat-insulating material for heat treatment oven, electrical heating unit for heat treatment oven, and heat treatment oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/323608 WO2008065702A1 (en) 2006-11-27 2006-11-27 Heat-insulating material for heat treatment oven, electrical heating unit for heat treatment oven, and heat treatment oven

Publications (1)

Publication Number Publication Date
WO2008065702A1 true WO2008065702A1 (en) 2008-06-05

Family

ID=39467506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323608 WO2008065702A1 (en) 2006-11-27 2006-11-27 Heat-insulating material for heat treatment oven, electrical heating unit for heat treatment oven, and heat treatment oven

Country Status (1)

Country Link
WO (1) WO2008065702A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050035A1 (en) * 2010-10-14 2012-04-19 ニチアス株式会社 Heat insulating material and method for producing heat insulating material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273191A (en) * 1975-12-17 1977-06-18 Hitachi Metals Ltd Painting agent for preventing oxidation decarbonization
JPS5395336A (en) * 1977-02-01 1978-08-21 Nippon Asbestos Co Ltd Method of producing fibrous heat insulating body having built in heating unit
JPS63303870A (en) * 1987-06-04 1988-12-12 Idemitsu Kosan Co Ltd Coating material
JPH05301779A (en) * 1992-04-24 1993-11-16 Shinagawa Refract Co Ltd Surface curing type heat insulating module and its production
JPH06287864A (en) * 1993-04-02 1994-10-11 Toshiba Monofrax Co Ltd Inorganic fiber formed body
JPH10318681A (en) * 1997-05-16 1998-12-04 Murata Mfg Co Ltd Heat insulation cover and heat treating furnace
JPH11211357A (en) * 1998-01-20 1999-08-06 Toshiba Monofrax Co Ltd Inorganic fiber block and furnace

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5273191A (en) * 1975-12-17 1977-06-18 Hitachi Metals Ltd Painting agent for preventing oxidation decarbonization
JPS5395336A (en) * 1977-02-01 1978-08-21 Nippon Asbestos Co Ltd Method of producing fibrous heat insulating body having built in heating unit
JPS63303870A (en) * 1987-06-04 1988-12-12 Idemitsu Kosan Co Ltd Coating material
JPH05301779A (en) * 1992-04-24 1993-11-16 Shinagawa Refract Co Ltd Surface curing type heat insulating module and its production
JPH06287864A (en) * 1993-04-02 1994-10-11 Toshiba Monofrax Co Ltd Inorganic fiber formed body
JPH10318681A (en) * 1997-05-16 1998-12-04 Murata Mfg Co Ltd Heat insulation cover and heat treating furnace
JPH11211357A (en) * 1998-01-20 1999-08-06 Toshiba Monofrax Co Ltd Inorganic fiber block and furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050035A1 (en) * 2010-10-14 2012-04-19 ニチアス株式会社 Heat insulating material and method for producing heat insulating material
JP2012081701A (en) * 2010-10-14 2012-04-26 Nichias Corp Heat insulating material and method of manufacturing the same

Similar Documents

Publication Publication Date Title
EP0134769B1 (en) Oxidation prohibitive coatings for carbonaceous articles
EP3159077B1 (en) Metal transfer device
JP4530896B2 (en) Plate type far infrared heater for vacuum heating furnace
EP1159235A1 (en) Oxidation-protective coatings for carbon-carbon components
WO2008065702A1 (en) Heat-insulating material for heat treatment oven, electrical heating unit for heat treatment oven, and heat treatment oven
EP1972878B1 (en) Support structure of heater
JP2004108767A (en) Ceramic cooking system and its manufacturing method
EA025702B1 (en) Furnace and heating device comprising a thermal barrier and a heating method associated with said furnace
WO2008065703A1 (en) Electrical heating unit for heat treatment oven and heat treatment oven
JP2000130951A (en) Substrate firing furnace for plasma display panel and furnace member therefor
AU5198400A (en) Device for heating plates of glass
JP7247141B2 (en) Heat storage element and method for manufacturing heat storage element
JP2006086054A (en) Heating structure body and manufacturing method thereof
JP2006008427A (en) Heating element for microwave firing furnace
JP4936216B2 (en) Dust-proof member for heat treatment furnace and heat treatment furnace
JP2006027919A (en) Heat resistant coating material, and insulating material using the same
JP2011508173A (en) Industrial furnace wall lining
JP2008060026A (en) In-furnace installed induction heating device
JP2000246821A (en) Heat resistant material and its manufacture
JP2003277157A (en) Kiln
JP2010236797A (en) Roller hearth kiln
JP2007309540A (en) Heating plate, combined heating plate and heating furnace comprising the same
JP2018080891A (en) Wall surface material and heat treat furnace
JP2558169Y2 (en) Hot plate for molten metal container
JP2536699Y2 (en) Hot plate for molten metal container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06833412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP