WO2008065284A2 - Procede de conversion de gaz en liquides a logistique simplifiee - Google Patents

Procede de conversion de gaz en liquides a logistique simplifiee Download PDF

Info

Publication number
WO2008065284A2
WO2008065284A2 PCT/FR2007/001861 FR2007001861W WO2008065284A2 WO 2008065284 A2 WO2008065284 A2 WO 2008065284A2 FR 2007001861 W FR2007001861 W FR 2007001861W WO 2008065284 A2 WO2008065284 A2 WO 2008065284A2
Authority
WO
WIPO (PCT)
Prior art keywords
fraction
hcki
boiling point
weight
compounds
Prior art date
Application number
PCT/FR2007/001861
Other languages
English (en)
Other versions
WO2008065284A3 (fr
Inventor
Eric Lenglet
Patrick Chaumette
Original Assignee
Ifp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ifp filed Critical Ifp
Priority to US12/516,505 priority Critical patent/US8425760B2/en
Publication of WO2008065284A2 publication Critical patent/WO2008065284A2/fr
Publication of WO2008065284A3 publication Critical patent/WO2008065284A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1025Natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/304Pour point, cloud point, cold flow properties

Definitions

  • the present invention relates to the natural gas industry, or gas associated with oil, and in particular the oil and gas processing industry in the production region of both oil and gas.
  • the first stage of transformation of natural or associated gas corresponds to the production of synthesis gas, a mixture of hydrogen (H2) and carbon monoxide (CO).
  • synthesis gas a mixture of hydrogen (H2) and carbon monoxide (CO).
  • H2 hydrogen
  • CO carbon monoxide
  • Many processes for the production of synthesis gas are known, such as, for example, steam reforming, partial oxidation, or the autothermal process.
  • the Fischer-Tropsch synthesis step can be carried out in various ways according to any of the known reactor technologies and processes using any of the known catalysts, especially those based on iron or cobalt. It is typically carried out with a catalyst adapted to the H2 / CO ratio of the synthesis gas produced.
  • a cobalt catalyst can typically be used for a synthesis gas with an H 2 / CO molar ratio of between approximately 1.8 and 2.5, or an iron catalyst for a synthesis gas of H2 / CO molar ratio included. for example between about 1.2 and 2, without these values being limiting.
  • Fischer-Tropsch reactor technology it is possible in particular to use a three-phase fixed bed reactor, or a "slurry" reactor according to English terminology, ie a triphasic reactor with a phase liquid comprising a solid catalyst divided into suspension and a gaseous phase (here, the synthesis gas, mixture composed mainly of hydrogen and carbon monoxide).
  • the Fischer-Tropsch catalyst may be used in the form of fine particles in suspension comprising an inert support impregnated with iron or cobalt.
  • the three-phase mixture can generally comprise catalyst particles with a mean diameter of between 3 and 150 micrometers, preferably 10 to 120 micrometers, in suspension in a liquid essentially composed of reaction products, in particular paraffin waxes melted at room temperature. of reaction.
  • the weight percentage of catalyst may be generally between 10% and 40% by weight of catalyst relative to the weight of the liquid suspension comprising the solid catalyst.
  • the superficial gas velocity in the reactor may be between 0.05 m / s and 0.4 m / s, preferably between 0.12 and 0.3 m / s.
  • the pressure is often between 1, 5 and 4 MPa, preferably between 1, 8 and 2.8 MPa.
  • the temperature is often between 215 ° C. and 255 ° C., preferably between 230 ° C. and 240 ° C.
  • Fischer-Tropsch catalysts and / or processes refer to the patents or patent applications: EP 0 450 860, US 5,961,933, US 6,060,524, US 6,921,778 and WO 2006/067285.
  • the Fischer-Tropsch synthesis thus makes it possible to transform most of the synthesis gas into liquid fractions.
  • the Fischer-Tropsch effluents are then typically treated to convert them into commercial finished products: liquefied petroleum gas, naphtha, kerosene, gas oil.
  • liquefied petroleum gas naphtha
  • kerosene gas oil.
  • it is typically carried out isomerizing hydrocracking HCKI waxes (long paraffins solid at room temperature), and often also fractions boiling above 150 0 C to 200 0 C 1 the lightest fractions being hydro-isomerized, and not cracked.
  • hydro-isomerization The HCKI isomerizing hydrocracking stage, sometimes referred to as hydro-isomerization, is well known to those skilled in the art:
  • EP 0 583 836 describes a process for the production of middle distillates from filler obtained by Fischer-Tropsch synthesis. In this process, the charge is treated in its entirety. At most it is possible to remove the fraction C 4 ⁇ (fraction comprising compounds with 4 carbon atoms or less) and thus to obtain the fraction C 5 + (fraction comprising compounds with 5 or more carbon atoms) treated.
  • This feed is subjected to a hydrotreatment and then to a hydro-isomerization with a conversion (of products boiling above 37O 0 C into products with a lower boiling point) of at least 40% weight
  • One of the catalysts that can be used for hydroconversion consists of a platinum-silica-alumina formulation. The conversions described in the examples are at most 60% by weight.
  • EP-321 303 also describes a process for treating said feeds in order to produce middle distillates and possibly oils.
  • middle distillates are obtained by means of a process consisting in treating the heavy fraction of the feedstock, that is to say with an initial boiling point of between 232 ° C. and 343 ° C., hydro-isomerization on a fluorinated catalyst containing a group VIII metal and alumina and having particular physicochemical characteristics. After hydroisomerization, the effluent is distilled off and the heavy part is recycled to hydro-isomerization.
  • the conversion to the hydro-isomerization of the products 370 ° C + is given as between 50-95% by weight and the examples go up to 85-87%.
  • the catalysts currently used in isomerizing hydrocracking are of the bifunctional type associating an acid function with a hydrogenating function.
  • the acid function is typically provided by supports with large surface areas (generally 150 to 800 microns) having a surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), phosphorus aluminas, combinations of boron oxides. and aluminum, amorphous silica-aluminas and silica-aluminas.
  • the hydrogenating function is provided either by one or more metals of group VIII of the periodic table of the elements, such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, or by a combination of at least one Group VI metal such as chromium, molybdenum and tungsten and at least one Group VIII metal.
  • group VIII of the periodic table of the elements such as iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum, or by a combination of at least one Group VI metal such as chromium, molybdenum and tungsten and at least one Group VIII metal.
  • the equilibrium between the two acid and hydrogenating functions is one of the parameters that govern the activity and the selectivity of the catalyst.
  • a weak acidic function and a strong hydrogenating function give catalysts which are not very active and selective towards isomerization whereas a strong acid function and a low hydrogenating function give very active and cracking-selective catalysts.
  • a third possibility is to use a strong acid function and a strong hydrogenating function to obtain a very active catalyst but also very selective towards isomerization. It is therefore possible, by judiciously choosing each of the functions to adjust the activity / selectivity couple of the catalyst.
  • a disadvantage of the conventional Fischer-Tropsch process is that it requires relatively complex logistics for the recovery and marketing of the products obtained. Summary of the invention
  • the invention proposes a process for converting gases into liquid products, typically in oil production regions using simple logistics and nevertheless making it possible to obtain a significant valorisation of the products resulting from Fischer-Tropsch synthesis.
  • the invention is not related to a particular embodiment of the Fischer-Tropsch synthesis, nor from the point of view of the technology of the reactor or reactors, nor from the point of view of the catalyst, nor from the point of view of operating conditions.
  • an HCKI step of isomerizing hydrocracking of a heavy fraction of Fischer-Tropsch effluents is carried out, then the effluents of step HCKI are mixed with a light fraction of the Fischer-Tropsch effluents and a crude oil P.
  • This atypical mixture of very high purity products contained in the effluents of HCKI and crude oil makes it possible to obtain a significant valorization of the Fischer-Tropsch effluents without requiring a specific logistics for the refined products.
  • the invention provides a process for converting at least one stream of natural gas or associated into transportable liquid fractions, comprising a) at least one step of converting said gas stream into an SG synthesis gas. comprising hydrogen and carbon monoxide, b) a Fischer-Tropsch synthesis step FT for converting at least a large part of SG into liquid fractions, c) a fractionation step of Fischer-Tropsch synthesis effluents into at least one relatively heavy fraction comprising waxes having a boiling point greater than 565 ° C.
  • the amount of fractions from the FT conversion (directly and indirectly after the HCKI step) that is incorporated into the P * oil is variable. It is often between 5% and 30% by weight, and preferably between 8% and 25% by weight in P *.
  • the mixture not of untransformed Fischer-Tropsch raw effluents, but of the hydrocracking effluents isomerized with crude oil, is surprising in that it produces a mixture between products of very high purity and high purity. on the other hand, an unrefined product of much lower value.
  • it makes it possible to convert most of the Fischer-Tropsch waxes into compounds having a relatively moderate boiling point, preferably below 565 ° C.
  • the oil P * has a pour point lowered by at least 10 0 C relative to that of a petroleum P 'which would be constituted by the mixture of P and the effluent of step FT.
  • the process according to the invention can in particular be carried out with any P oil, preferably with a fluid oil P at ambient temperature and even at 0 ° C. or below.
  • step HCKI it is preferable to adapt the conversion of the charge of the isomerizing hydrocracking step HCKI to compounds boiling below 565 ° C. so that the oil P * has a pour point that is identical to or lower than that of P Increased conversion, and correlative obtaining of a lower pour point can be achieved by adjusting the severity of the HCKI step; This is easily achievable for those skilled in the art, by reducing the WH space velocity and / or increasing the operating temperature and / or increasing the operating pressure.
  • step HCKI at least 85 wt.%, And often 85% to 97 wt.% Of the fraction of the boiling point load greater than 565 ° C is converted into compounds boiling below 565 °. vs.
  • the evacuation logistics of Fischer-Tropsch products is particularly simple with the process according to the invention, because it benefits from the existing logistics for oil P.
  • oil and in particular "oil P or P *, must be understood as an atmospheric distillation feed from an oil refinery.
  • An oil well typically contains at least 4% by weight, and generally at minus 6% by weight of each of the following sections defined by their ASTM distillation ranges or ranges:
  • FIG. 1 presents a non-limiting example of an installation diagram for carrying out the method according to the invention according to a preferred mode. Description of Figure 1
  • a natural or associated gas is, after purification, converted into synthesis gas (by means not shown, for example by the autothermal process), this synthesis gas feeds on line 1 the Fischer-Tropsch synthesis reaction section (FT) .
  • the synthesis gas can typically have a H 2 / CO molar ratio of 2.1 and feed Fischer-Tropsch reactors in slurry, operating with a cobalt catalyst on alumina.
  • the crude effluent circulating in line 2 is fractionally distilled in column 3 into a relatively light fraction (mainly short naphtha) with a boiling point of less than 160 0 C, discharged through line 4, and a relatively heavy fraction of boiling point greater than 160 0 C which comprises waxes boiling above 565 ° C.
  • a relatively light fraction mainly short naphtha
  • LPG liquefied petroleum gas
  • the relatively heavy fraction exits column 3 via line 5, and is subjected to isomerizing hydrocracking (HCKI) with a 95% weight conversion of waxes boiling above 565 ° C to products with a boiling point below 565 ° C. ° C.
  • HCKI isomerizing hydrocracking
  • Isomerizing hydrocracking effluents (HCKI) flow in line 6 are mixed with the relatively light fraction circulating in line 4, and are then incorporated at a level of 10% by weight in a crude oil P circulating in line 7, for form a modified oil P * evacuated by line 8.
  • This modified petroleum P * has a pour point which is not substantially different from that of P, because of the conversion of Fischer-Tropsch heavy waxes in step HCKI.
  • the Fischer-Tropsch products contained in P * will thus be well valued during the final refining of P * (they will not be essentially included in a vacuum residue, but in fractions converted into fuels).
  • the logistics of evacuation of Fischer-Tropsch products is particularly simple with the method according to the invention, because it benefits from the logistics of oil P.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

L'invention concerne un procédé de conversion d'un courant de gaz naturel ou associé en fractions liquides, comprenant : a) une étape de conversion de ce courant de gaz en un gaz de synthèse SG, b) une étape FT de synthèse Fischer-Tropsch pour convertir SG en fractions liquides, c) une étape de fractionnement des effluents de la synthèse Fischer-Tropsch en au moins une fraction relativement lourde comprenant des cires de point d'ébullition supérieur à 565°C et au moins une fraction relativement légère, d) une étape HCKI d'hydrocraquage isomérisant de la fraction relativement lourde, dans laquelle au moins 75% poids de la fraction de la charge de température d'ébullition supérieure à 565°C est convertie en composés bouillant en dessous de 565°C, e) au moins une étape de mélange entre au moins les effluents de l'étape HCKI (étape d)), la fraction légère issue de l'étape c), et un pétrole brut P, pour produire ainsi un pétrole P*.

Description

PROCEDE DE CONVERSION DE GAZ EN LIQUIDES A LOGISTIQUE SIMPLIFIEE
Domaine de l'invention
La présente invention concerne l'industrie du gaz naturel, ou du gaz associé à dû pétrole, et en particulier l'industrie du traitement du pétrole et du gaz en région de production à la fois de pétrole et de gaz.
Elle se rattache également et plus particulièrement à la conversion chimique du gaz naturel en fractions d'hydrocarbures liquides transportables, par le procédé Fischer-Tropsch.
Art antérieur
La conversion du gaz en fractions liquides transportables est un objectif important dans de nombreuses régions de production de gaz. Il est déjà connu de transformer du gaz, naturel et/ou associé, en hydrocarbures liquides par le procédé Fischer-Tropsch. Cette option technique est intéressante lorsque la valorisation du gaz est difficile, par exemple pour des champs de production de gaz isolés ou éloignés d'infrastructures de transport par canalisation, ou d'une usine de liquéfaction du gaz.
La première étape de transformation du gaz naturel ou associé correspond à la production de gaz de synthèse, mélange d'hydrogène (H2) et de monoxyde de carbone (CO). De nombreux procédés de production de gaz de synthèse sont connus, tels que par exemple le vaporeformage, l'oxydation partielle, ou le procédé autotherme. On peut notamment se référer à l'ouvrage de référence: "Le raffinage du pétrole, Procédés de transformation, P. Leprince, Editions Technip, Paris", pages 467 à 509.
L'étape de synthèse Fischer-Tropsch peut être réalisée de diverses façons selon l'une quelconque des technologies de réacteurs et procédés connus, utilisant l'un quelconque des catalyseurs connus, notamment à base de fer ou de cobalt. Elle est typiquement réalisée avec un catalyseur adapté au rapport H2/CO du gaz de synthèse produit. Par exemple on peut typiquement utiliser un catalyseur au cobalt pour un gaz de synthèse de rapport molaire H2/CO compris entre environ 1,8 et 2,5 , ou bien un catalyseur au fer pour un gaz de synthèse de rapport molaire H2/CO compris par exemple entre environ 1,2 et 2, sans que ces valeurs soient limitatives.
Au niveau de la technologie du réacteur Fischer-Tropsch, on peut notamment utiliser un réacteur en lit fixe triphasique, ou bien un réacteur en "slurry" selon la terminologie anglo- saxonne, c'est-à-dire un réacteur triphasique avec une phase liquide comprenant un catalyseur solide divisé en suspension et une phase gazeuse (ici, le gaz de synthèse, mélange composé principalement d'hydrogène et de monoxyde de carbone). Le catalyseur Fischer-Tropsch peut être mis en oeuvre sous forme de fines particules en suspension comprenant un support inerte imprégné de fer ou de cobalt. On peut par exemple utiliser un support à base d'alumine ou de silice, ou de zircone, ou de silice-alumine, ou encore d'alumine-zircone, imprégné par 10% à 40% poids de fer ou de cobalt par rapport au catalyseur global. Le mélange triphasique peut généralement comprendre des particules de catalyseur de diamètre moyen compris entre 3 et 150 micromètres, de préférence 10 à 120 micromètres, en suspension dans un liquide essentiellement composé par des produits de la réaction, en particulier des cires paraffiniques fondues à la température de réaction. Le pourcentage poids de catalyseur peut être compris généralement entre 10% et 40% poids de catalyseur par rapport au poids de la suspension liquide comprenant le catalyseur solide. La vitesse superficielle gaz dans le réacteur peut être comprise entre 0,05 m/s et 0,4 m/s, préférentiellement entre 0,12 et 0,3 m/s. La pression est souvent comprise entre 1 ,5 et 4 MPa, préférentiellement entre 1 ,8 et 2,8 MPa. La température est souvent comprise entre 2150C et 255°C, préférentiellement entre 2300C et 240°C. On pourra notamment pour plus de détails concernant des catalyseurs et/ou procédés Fischer-Tropsch se référer aux brevets ou demandes de brevet: EP 0 450 860, US 5,961,933, US 6,060,524, US 6,921 ,778 et WO 2006/067285.
La synthèse Fischer-Tropsch permet ainsi de transformer la plus grande partie du gaz de synthèse en fractions liquides.
On traite alors typiquement les effluents Fischer-Tropsch pour les convertir en produits finis commerciaux: gaz de pétrole liquéfié, naphta, kérosène, gasoil. Pour ce faire, outre le fractionnement nécessaire, on réalise typiquement un hydrocraquage isomérisant HCKI des cires (paraffines longues solides à l'ambiante), et souvent également des fractions bouillant au dessus de 1500C à 2000C1 les fractions les plus légères étant hydro-isomérisées, et non pas craquées.
L'étape d' hydrocraquage isomérisant HCKI, parfois dénommée hydro-isomérisation, est bien connue de l'homme de l'art:
Le brevet EP 0 583 836 décrit un procédé pour la production de distillats moyens à partir de charge obtenue par la synthèse Fischer-Tropsch. Dans ce procédé, la charge est traitée dans sa globalité. Tout au plus il est possible d'enlever la fraction C4 ~ (fraction comprenant des composés à 4 atomes de carbones ou moins) et d'obtenir ainsi la fraction C5 + (fraction comprenant des composés avec 5 atomes de carbone ou plus) traitée . Cette charge est soumise à un hydrotraitement puis à une hydro-isomérisation avec une conversion (de produits bouillant au-dessus de 37O0C en produits à point d'ébullition inférieur) d'au moins 40% poids. Un des catalyseurs utilisables en hydroconversion consiste en une formulation platine sur silice-alumine. Les conversions décrites dans les exemples sont d'au plus 60% poids.
Le brevet EP-321 303 décrit également un procédé de traitement desdites charges en vue de produire des distillats moyens et éventuellement des huiles. Selon un mode de réalisation particulier, des distillats moyens sont obtenus au moyen d'un procédé consistant à traiter la fraction lourde de la charge, c'est à dire à point d'ébullition initial compris entre 2320C et 343°C, par hydro-isomérisation sur un catalyseur fluoré contenant un métal du groupe VIII et de l'alumine et présentant des caractéristiques physico-chimiques particulières. Après hydro- isomérisation, l'effluent est distillé et la partie lourde est recyclée en hydro-isomérisation. La conversion en hydro-isomérisation des produits 370°C+ est donnée comme comprise entre 50-95% pds et les exemples vont jusqu'à 85-87%.
On peut également se référer à la demande de brevet EP 1 590 424 qui décrit un autre procédé d'hydrocraquage isomérisant et un catalyseur adapté.
Les catalyseurs utilisés actuellement en hydrocraquage isomérisant sont du type bifonctionnels associant une fonction acide à une fonction hydrogénante. La fonction acide est typiquement apportée par des supports de grandes surfaces (150 à 800 m^.g-i généralement) présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les alumines phosphorées, les combinaisons d'oxydes de bore et d'aluminium, les silice-alumines amorphes et les silice-alumines. La fonction hydrogénante est apportée soit par un ou plusieurs métaux du groupe VIII de la classification périodique des éléments, tels que fer, cobalt, nickel, ruthénium, rhodium, palladium, osmium, iridium et platine, soit par une association d'au moins un métal du groupe Vl tels que chrome, molybdène et tungstène et au moins un métal du groupe VIII.
L'équilibre entre les deux fonctions acide et hydrogénante est l'un des paramètres qui régissent l'activité et la sélectivité du catalyseur. Une fonction acide faible et une fonction hydrogénante forte donnent des catalyseurs peu actifs et sélectifs envers l'isomérisation alors qu'une fonction acide forte et une fonction hydrogénante faible donnent des catalyseurs très actifs et sélectifs envers le craquage. Une troisième possibilité est d'utiliser une fonction acide forte et une fonction hydrogénante forte afin d'obtenir un catalyseur très actif mais également très sélectif envers l'isomérisation. Il est donc possible, en choisissant judicieusement chacune des fonctions d'ajuster le couple activité/sélectivité du catalyseur. Un inconvénient du procédé Fischer-Tropsch conventionnel est qu'il requiert une logistique relativement complexe pour la valorisation et la commercialisation des produits obtenus. Résumé de l'invention
L'invention propose un procédé de conversion de gaz en produits liquides, typiquement en région de production pétrolière utilisant une logistique simple et permettant néanmoins d'obtenir une valorisation importante des produits issus de la synthèse Fischer-Tropsch
L'invention n'est pas liée à un mode particulier de mise en oeuvre de la synthèse Fischer- Tropsch, ni du point de vue de la technologie du ou des réacteurs, ni du point de vue du catalyseur, ni du point de vue des conditions opératoires.
Selon l'invention, on réalise une étape HCKI d'hydrocraquage isomérisant d'une fraction lourde des effluents Fischer-Tropsch, puis on mélange les effluents de l'étape HCKI avec une fraction légère des effluents Fischer-Tropsch et un pétrole brut P. Ce mélange atypique de produits à très haute pureté contenus dans les effluents d'HCKI et de pétrole brut permet d'obtenir une valorisation importante des effluents Fischer-Tropsch sans nécessiter une logistique spécifique pour les produits raffinés .
Description détaillée de l'invention
Sous sa forme la plus générale, l'invention présente un procédé de transformation d'au moins un courant de gaz naturel ou associé en fractions liquides transportables, comprenant a) au moins une étape de conversion dudit courant de gaz en un gaz de synthèse SG comprenant de l'hydrogène et du monoxyde de carbone, b) une étape FT de synthèse Fischer-Tropsch pour convertir la plus grande partie au moins de SG en fractions liquides, c) une étape de fractionnement des effluents de la synthèse Fischer-Tropsch en au moins une fraction relativement lourde comprenant des cires de point d'ébullition supérieur à 565°C et au moins une fraction relativement légère, dont les composés ont un point d'ébullition inférieur à 45O0C, de préférence à 3600C, et de façon très préférée à 2600C, d) une étape HCKI d'hydrocraquage isomérisant de la fraction relativement lourde, dans laquelle au moins 75% poids de la fraction de la charge de température d'ébullition supérieure à 565°C est convertie en composés bouillant en dessous de 565°C, e) au moins une étape de mélange entre au moins:
• la plus grande partie au moins des effluents de l'étape HCKI, • ladite fraction relativement légère issue de l'étape c, qui n'est pas transformée par hydrocraquage isomérisant,
• un pétrole brut P, et/ou au moins une fraction issue d'un traitement du pétrole brut P, pour produire ainsi un pétrole P*.
La quantité de fractions issues de la conversion FT (directement et indirectement après l'étape HCKI) qui est incorporée dans le pétrole P* est variable. Elle est souvent comprise entre 5% et 30% poids, et de préférence entre 8% et 25% poids dans P*.
Le mélange, non pas des effluents bruts Fischer-Tropsch non transformés, mais au contraire des effluents d'hydrocraquage isomérisant avec du pétrole brut est étonnant en ce qu'il réalise un mélange entre d'une part des produits de très haute pureté et d'autre part un produit non raffiné de valorisation bien plus faible. Il permet cependant, selon l'invention, de transformer la plus grande partie des cires Fischer-Tropsch en composés ayant un point d'ébullition relativement modéré, de préférence en dessous de 565°C.
Ceci procure deux effets techniques: D'une part, cela permet, lors du traitement aval du pétrole modifié P*, en raffinerie, de valoriser l'essentiel des composés Fischer-Tropsch sans qu'ils ne se retrouvent dans le résidu sous vide bouillant typiquement au dessus de 565°C. D'autre part, cela abaisse le point d'écoulement du pétrole modifié P*, par rapport à une situation où l'on diluerait les effluents directs de l'étape Fischer-Tropsch dans un pétrole brut.
De préférence, le pétrole P* a un point d'écoulement abaissé d'au moins 100C par rapport à celui d'un pétrole P' qui serait constitué par le mélange de P et de l'effluent de l'étape FT. Le procédé selon l'invention peut notamment être mis en oeuvre avec tout pétrole P, de préférence avec un pétrole P fluide à l'ambiante et même à O0C ou moins.
On peut de préférence adapter la conversion de la charge de l'étape HCKI d'hydrocraquage isomérisant en composés bouillant en dessous de 5650C de façon à ce que le pétrole P* ait un point d'écoulement identique ou inférieur à celui de P. Une conversion augmentée, et l'obtention corrélative d'un point d'écoulement plus bas peuvent être obtenus en ajustant la sévérité de l'étape HCKI; Ceci est aisément réalisable pour l'homme du métier, par une réduction de la vitesse spatiale WH et/ou une augmentation de la température opératoire et/ou une augmentation de la pression opératoire. Typiquement, au cours de l'étape HCKI on convertit au moins 85% poids, et souvent entre 85% et 97% poids de la fraction de la charge de température d'ébullition supérieure à 565°C en composés bouillant en dessous de 565°C.
Il est de plus avantageux de convertir entre 10% et 40% poids de cette fraction (cires) de haut point d'ébullition supérieur à 565°C en composés bouillant entre 3600C et 565°C, au lieu de convertir toute la charge en gazole et distillats moyens. Ceci permet alors de réaliser un hydrocraquage isomérisant simple avec des conditions opératoires modérées. Les composés restants, bouillant entre 36O0C et 565°C, sont alors valorisés de façon satisfaisante en raffinerie. En effet, ces composés sont récupérés puis transformés principalement en carburants, car ils constituent une charge satisfaisante de craquage catalytique.
Typiquement, on peut alors réaliser l'étape HCKI d'hydrocraquage isomérisant en une seule passe (sans recyclage), ce qui est un avantage important. De plus les effluents d'HCKI peuvent alors être incorporés dans le pétrole modifié P* sans fractionnement préalable.
La logistique d'évacuation des produits Fischer-Tropsch est de plus particulièrement simple avec le procédé selon l'invention, car on bénéficie de la logistique existant pour le pétrole P.
Selon l'invention, le terme "pétrole" , et notamment "pétrole P ou P*, doit être compris comme une charge de distillation atmosphérique d'une raffinerie de pétrole. Un pétrole contient ainsi typiquement au moins 4% poids, et généralement au moins 6% poids de chacune des coupes suivantes définies par leurs intervalles ou domaines de distillation ASTM:
- naphta [30°C - 22O0C];
- distillats moyens ]220°C - 36O0C]
- distillât sous vide ]360°C - 565°C] résidu sous vide 565°C + (composés bouillant au dessus de 5650C).
L'invention sera mieux comprise à la lecture de la description de la figure 1 , qui présente un exemple non limitatif de schéma d'installation pour la réalisation du procédé selon l'invention selon un mode préféré. Description de la figure 1
Un gaz naturel ou associé est, après épuration, transformé en gaz de synthèse (par des moyens non représentés, par exemple par le procédé autotherme), ce gaz de synthèse alimente par la ligne 1 la section réactionnelle de synthèse Fischer-Tropsch (FT). Le gaz de synthèse peut typiquement présenter un rapport molaire H2/CO de 2,1 et alimenter des réacteurs Fischer-Tropsch en slurry, fonctionnant avec un catalyseur au cobalt sur alumine. En sortie de la section réactionnelle de synthèse Fischer-Tropsch (FT), l'effluent brut circulant dans la ligne 2 est fractionné par distillation dans la colonne 3 en une fraction relativement légère (principalement du naphta court) de température d'ébullition inférieure à 1600C, évacuée par la ligne 4, et une fraction relativement lourde de température d'ébullition supérieure à 1600C qui comprend des cires de point d'ébullition supérieur à 565°C. Une faible quantité de gaz de pétrole liquéfiés (GPL) est par ailleurs évacuée par une ligne non représentée.
La fraction relativement lourde sort de la colonne 3 via la ligne 5, et est soumise à un hydrocraquage isomérisant (HCKI) avec une conversion de 95 % poids des cires bouillant au dessus de 565°C en produits de température d'ébullition inférieure à 565°C. On peut par exemple utiliser un catalyseur et des conditions opératoires telles que décrites dans le brevet EP 0 321 303.
Les effluents de l'hydrocraquage isomérisant (HCKI) circulent dans la ligne 6, sont mélangés avec la fraction relativement légère circulant dans la ligne 4, puis sont incorporés à hauteur de 10% poids dans un pétrole brut P circulant dans la ligne 7, pour former un pétrole modifié P* évacué par la ligne 8.
Ce pétrole P* modifié présente un point d'écoulement qui n'est pas sensiblement différent de celui de P, du fait de la conversion des cires lourdes Fischer-Tropsch au niveau de l'étape HCKI. Les produits Fischer-Tropsch contenus dans P* seront ainsi bien valorisés lors du raffinage final de P* (ils ne seront pas pour l'essentiel inclus dans un résidu sous vide, mais dans des fractions transformées en carburants).
La logistique d'évacuation des produits Fischer-Tropsch est de plus particulièrement simple avec le procédé selon l'invention, car on bénéficie de la logistique du pétrole P.

Claims

REVENDICATIONS
1. Procédé de transformation d'au moins un courant de gaz naturel ou associé en fractions liquides transportables, comprenant : a) au moins une étape de conversion dudit courant de gaz en un gaz de synthèse SG comprenant de l'hydrogène et du monoxyde de carbone, b) une étape FT de synthèse Fischer-Tropsch pour convertir la plus grande partie au moins de SG en fractions liquides, c) une étape de fractionnement des effluents de la synthèse Fischer-Tropsch en au moins une fraction relativement lourde comprenant des cires de point d'ébullition supérieur à 565°C et au moins une fraction relativement légère dont les composés ont un point d'ébullition inférieur à 45O0C, d) une étape HCKI d'hydrocraquage isomérisant de ladite fraction relativement lourde, dans laquelle au moins 75% poids de la fraction de la charge de température d'ébullition supérieure à 565°C est convertie en composés bouillant en dessous de 565°C, e) au moins une étape de mélange entre au moins:
• la plus grande partie au moins des effluents de l'étape HCKI,
• ladite fraction relativement légère issue de l'étape c,
• un pétrole brut P, pour produire ainsi un pétrole P*.
2. Procédé selon la revendication 1 , dans lequel au cours de l'étape HCKI (étape d) on convertit au moins 85% poids de la fraction de la charge de température d'ébullition supérieure à 565°C en composés bouillant en dessous de 565°C.
3. Procédé selon la revendications 2, dans lequel au cours de l'étape HCKI (étape d) on convertit entre 85% et 97% poids de la fraction de la charge de température d'ébullition supérieure à 565°C en composés bouillant en dessous de 565°C.
4. Procédé selon l'une des revendications précédentes, dans lequel au cours de l'étape HCKI (étape d) on convertit entre 15% et 40% poids de la fraction de la charge de température d'ébullition supérieure à 565°C en composés bouillant entre 3600C et 5650C.
5. Procédé selon l'une des revendications précédentes, dans lequel l'étape HCKI d'hydrocraquage isomérisant est réalisée en simple passe.
6. Procédé selon l'une des revendications précédentes, dans lequel les composés de ladite fraction relativement légère ont un point d'ébullition inférieur à 26O0C.
7. Procédé selon l'une des revendications précédentes, dans lequel la quantité cumulée de fractions issues de la conversion FT qui est incorporée dans le pétrole P* est comprise entre 5% et 30% poids.
8. Procédé selon l'une des revendications précédentes, dans lequel chacun des pétroles P et P* contient au moins 4% poids de chacune des coupes suivantes définies par leurs intervalles ou domaines de distillation ASTM:
- naphta [30°C - 2200C];
- distillats moyens ]220°C - 360°C]
- distillât sous vide ]360°C - 565°C] résidu sous vide 565°C +.
PCT/FR2007/001861 2006-11-27 2007-11-12 Procede de conversion de gaz en liquides a logistique simplifiee WO2008065284A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/516,505 US8425760B2 (en) 2006-11-27 2007-11-12 Process for converting gas into liquids with simplified logistics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0610497A FR2909097B1 (fr) 2006-11-27 2006-11-27 Procede de conversion de gaz en liquides a logistique simplifiee
FR06/10.497 2006-11-27

Publications (2)

Publication Number Publication Date
WO2008065284A2 true WO2008065284A2 (fr) 2008-06-05
WO2008065284A3 WO2008065284A3 (fr) 2008-11-13

Family

ID=38191283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/001861 WO2008065284A2 (fr) 2006-11-27 2007-11-12 Procede de conversion de gaz en liquides a logistique simplifiee

Country Status (4)

Country Link
US (1) US8425760B2 (fr)
FR (1) FR2909097B1 (fr)
SA (1) SA07280639B1 (fr)
WO (1) WO2008065284A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2392634A1 (fr) * 2009-01-30 2011-12-07 Japan Oil, Gas and Metals National Corporation Procédé de raffinage d'un pétrole de synthèse obtenu par le procédé fischer-tropsch, et pétrole brut mélangé

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10144877B2 (en) 2016-02-01 2018-12-04 Fluor Technologies Corporation Small scale modular gas to liquids plant for stranded remote gas

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321305A2 (fr) * 1987-12-18 1989-06-21 Exxon Research And Engineering Company Procédé d'hydro-isomérisation/hydrocraquage de cires de Fischer-Tropsch en vue de la production d'un brut synthétique et des produits hydrocarburés
US5378348A (en) * 1993-07-22 1995-01-03 Exxon Research And Engineering Company Distillate fuel production from Fischer-Tropsch wax
WO1997014768A1 (fr) * 1995-10-17 1997-04-24 Exxon Research And Engineering Company Carburant diesel synthetique et son procede de production
US6310108B1 (en) * 1999-02-11 2001-10-30 Institut Francais Du Petrole Process for synthesis at atmospheric distillate that comprises the use of Fischer-Tropsch technology
WO2002077128A2 (fr) * 2001-03-27 2002-10-03 Exxonmobil Research And Engineering Company Production de carburant diesel a partir du bitume
US20020144929A1 (en) * 2001-04-04 2002-10-10 Moore Richard O. Method for upgrading Fischer-Tropsch wax using split-feed hydrocracking/hydrotreating
US20020169219A1 (en) * 2001-05-11 2002-11-14 Moore Richard O. Methods for optimizing fischer-tropsch synthesis hydrocarbons in the distillate fuel range

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007039460A1 (fr) * 2005-09-21 2007-04-12 Shell Internationale Research Maatschappij B.V. Procede de melange d’un produit hydrocarbone derive d’un mineral et d’un produit hydrocarbone derive de fisher-tropsch

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321305A2 (fr) * 1987-12-18 1989-06-21 Exxon Research And Engineering Company Procédé d'hydro-isomérisation/hydrocraquage de cires de Fischer-Tropsch en vue de la production d'un brut synthétique et des produits hydrocarburés
US5378348A (en) * 1993-07-22 1995-01-03 Exxon Research And Engineering Company Distillate fuel production from Fischer-Tropsch wax
WO1997014768A1 (fr) * 1995-10-17 1997-04-24 Exxon Research And Engineering Company Carburant diesel synthetique et son procede de production
US6310108B1 (en) * 1999-02-11 2001-10-30 Institut Francais Du Petrole Process for synthesis at atmospheric distillate that comprises the use of Fischer-Tropsch technology
WO2002077128A2 (fr) * 2001-03-27 2002-10-03 Exxonmobil Research And Engineering Company Production de carburant diesel a partir du bitume
US20020144929A1 (en) * 2001-04-04 2002-10-10 Moore Richard O. Method for upgrading Fischer-Tropsch wax using split-feed hydrocracking/hydrotreating
US20020169219A1 (en) * 2001-05-11 2002-11-14 Moore Richard O. Methods for optimizing fischer-tropsch synthesis hydrocarbons in the distillate fuel range

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2392634A1 (fr) * 2009-01-30 2011-12-07 Japan Oil, Gas and Metals National Corporation Procédé de raffinage d'un pétrole de synthèse obtenu par le procédé fischer-tropsch, et pétrole brut mélangé
EP2392634A4 (fr) * 2009-01-30 2013-11-20 Japan Oil Gas & Metals Jogmec Procédé de raffinage d'un pétrole de synthèse obtenu par le procédé fischer-tropsch, et pétrole brut mélangé

Also Published As

Publication number Publication date
US20100276334A1 (en) 2010-11-04
WO2008065284A3 (fr) 2008-11-13
FR2909097B1 (fr) 2012-09-21
US8425760B2 (en) 2013-04-23
SA07280639B1 (ar) 2011-10-18
FR2909097A1 (fr) 2008-05-30

Similar Documents

Publication Publication Date Title
CA3021600C (fr) Procede de conversion comprenant des lits de garde permutables d'hydrodemetallation, une etape d'hydrotraitement en lit fixe et une etape d'hydrocraquage en reacteurs permutables
CN116745387A (zh) 用于加氢处理基于聚合物废料的材料的共加工路线
FR2906814A1 (fr) Procede de conversion d'une huile desasphaltee
FR3014110A1 (fr) Procede de conversion d'une charge hydrocarbonee lourde integrant un desasphaltage selectif en cascade avec recyclage d'une coupe desasphaltee
CA2816666A1 (fr) Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmospherique, et hydrocraquage
FR2964386A1 (fr) Procede de conversion de residu integrant une etape de desashphaltage et une etape d'hydroconversion
WO2008017742A1 (fr) Procede et installation de traitement de petrole brut avec conversion de résidu asphalténique
WO2014096591A1 (fr) Procede de conversion d'une charge hydrocarbonee lourde integrant un desasphaltage selectif avec recycle de l'huile desasphaltee
EP2158303B1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch
FR2753983A1 (fr) Procede en plusieurs etapes de conversion d'un residu petrolier
WO2017108295A1 (fr) Procede de conversion d'une charge pour la production d'hydrocarbures par voie de synthese fischer-tropsch
EP3999613A1 (fr) Procede de production d'olefines comprenant un hydrotraitement, un desasphaltage, un hydrocraquage et un vapocraquage
WO2008065284A2 (fr) Procede de conversion de gaz en liquides a logistique simplifiee
WO2020144095A1 (fr) Procede d' hydrocraquage en deux etapes pour la production de naphta comprenant une etape d'hydrogenation mise en œuvre en aval de la deuxieme etape d'hydrocraquage
WO2010112690A1 (fr) Procédé de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch
EP3476917B1 (fr) Procede de demarrage d'un procede de production de kerosene et de gazole a partir de composes hydrocarbones produits par synthese fischer-tropsch
CA2815685A1 (fr) Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par decontamination, hydroconversion en lit bouillonnant, et fractionnement par distillation atmospherique
WO2020144097A1 (fr) Procede d'hydrocraquage en deux etapes comprenant une etape d'hydrogenation en aval de la deuxieme etape d'hydrocraquage pour la production de distillats moyens
WO2020144096A1 (fr) Procede d'hydrocraquage en deux etapes comprenant une etape d'hydrogenation en amont de la deuxieme etape d'hydrocraquage pour la production de distillats moyens
FR2983864A1 (fr) Procede de conversion de charbon par voie hybride associant liquefaction directe en lit bouillonnant et liquefaction indirecte par gazeification suivie d'une synthese fischer-tropsch
FR2970478A1 (fr) Procede d'hydroconversion en lit fixe d'un petrole brut, etete ou non, un fractionnement, puis un desasphaltage de la fraction lourde pour la production d'un brut synthetique preraffine
WO2023241930A1 (fr) Procédé d'hydrocraquage avec gestion du recyclage optimisée pour la production de naphta
WO2020016023A1 (fr) Procede d'hydrocraquage en deux etapes utilisant une colonne de distillation a cloison
FR3091536A1 (fr) Procede d’hydrocraquage en une etape comprenant une etape d'hydrogenation en amont ou en aval de l’etape d’hydrocraquage pour la production de naphta
FR2857370A1 (fr) Procede de production de distillats et d'huiles lubrifiantes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07870273

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07870273

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12516505

Country of ref document: US