WO2008059618A1 - Liquid treating apparatus, and liquid treating method, using hydrotalcite-like granular substance - Google Patents

Liquid treating apparatus, and liquid treating method, using hydrotalcite-like granular substance Download PDF

Info

Publication number
WO2008059618A1
WO2008059618A1 PCT/JP2007/001245 JP2007001245W WO2008059618A1 WO 2008059618 A1 WO2008059618 A1 WO 2008059618A1 JP 2007001245 W JP2007001245 W JP 2007001245W WO 2008059618 A1 WO2008059618 A1 WO 2008059618A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
granular material
hydrotalcite
liquid processing
processing apparatus
Prior art date
Application number
PCT/JP2007/001245
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiko Matsukata
Takeo Asakura
Mutsuhiro Ono
Takashi Kajimoto
Original Assignee
Jdc Corporation
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jdc Corporation, Waseda University filed Critical Jdc Corporation
Priority to JP2008544072A priority Critical patent/JP5363817B2/en
Publication of WO2008059618A1 publication Critical patent/WO2008059618A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/10Inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • C01F7/784Layered double hydroxide, e.g. comprising nitrate, sulfate or carbonate ions as intercalating anions
    • C01F7/785Hydrotalcite
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds

Definitions

  • the present invention relates to a liquid processing apparatus and a liquid processing method using a hydrophobic site-like granular material.
  • Hydrotalcite a type of layered clay mineral that exists in nature, is mainly composed of hydroxides of naturally abundant elements such as magnesium and aluminum, and its synthesis is relatively easy. Therefore, various synthesis methods have been disclosed.
  • magnesium hydroxide is used as a magnesium source, and a hydrolytic site is produced in an aqueous solvent (see, for example, Patent Document 1) or magnesium ions and aluminum ions are reacted in an aqueous solution in the presence of alkali. (For example, refer to Patent Document 2) and the like.
  • the hydrophobic site has an anion exchange action. And if this anion exchange action can immobilize arsenic, fluorine, boron, selenium, hexavalent chromium, nitrite ions, and other anionic harmful substances, waste safety improvement technology, harmless It is expected to contribute to improving the quality of contaminated water, preventing the release of harmful substances, improving soil, and promoting the stabilization of hazardous substances at waste disposal sites.
  • Patent Document 1 Japanese Patent Laid-Open No. 6_3 2 9 4 10
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 3 _ 2 6 4 1 8
  • a granular hydrosite that can adsorb and fix anionic toxic substances at a relatively low pressure in a small-scale facility.
  • the granular hydrosite needs to have a large particle size.
  • the present invention provides a liquid processing apparatus and a liquid processing method using a hydrophobic site-like granular material that is stable in form, has high anion exchange performance per unit volume, and can be manufactured at low cost.
  • the purpose is to provide.
  • a liquid processing apparatus of the present invention is a liquid processing apparatus for removing ions in a liquid, and has a chemical formula of M 2 X M 3+ X (OH) 2 ( A " x / n 'mH 2 0 Hydralsite-like substance (M 2+ is a divalent metal, M 3+ is a trivalent metal, A n -is an anion) and water at least A hydrotalcite-like granule obtained by drying a material containing the hydrotalcite-like substance at a temperature lower than or equal to the dehydration temperature of the hydrotalcite-like substance (temperature at which the crystal water of the hydrotalcite-like substance starts dehydration); And a contact portion for contacting the hydrophobic site-like granular material.
  • the liquid processing apparatus of the present invention is a liquid processing apparatus for removing ions in a liquid, and has a chemical formula of M 2 xM 3+ x (OH) 2 (A " x / n ⁇ Hydrate site-like substance represented by mH 20 (M 2+ represents a divalent metal, M 3+ represents a trivalent metal, and An ⁇ represents an anion).
  • a hydrousite-like granule obtained by drying at least a material having a moisture content of 70% or less at a temperature lower than the dehydration temperature of the hydrosite-like material, and the liquid and the hydrosite-like granule. And a contact portion for contacting.
  • the hydrophobic site-like granular material is dried at 90 ° C or higher 1
  • the product is produced by carrying out at 10 ° C. or lower.
  • the above mentioned hydrousite-like granular material is produced by performing the drying under conditions where the amount of water vapor in the atmosphere is close to the amount of saturated water vapor.
  • the liquid processing apparatus of the present invention is a liquid processing apparatus for removing ions in a liquid, and has a fluorine ion (F-) concentration of 1 16 mg / I at 20 ° C.
  • the amount of fluorine ion (F-) adsorbed is 8 mg / g or more when 100 g of a hydrotalcite-like granular material is added to 100 ml of the fluorine solution adjusted to 50 g and stirred for 60 minutes.
  • the hydrotalcite-like granular material, and a contact portion for bringing the liquid into contact with the hydrotalcite-like granular material are examples of fluorine ion (F-) adsorbed.
  • the hydrousite-like granular material has a water content of 10% or more.
  • the hydrotalcite-like granule contains chloride, and more preferably, the hydrotalcite-like granule contains Na CI.
  • the hydrotalcite-like granular material is produced from a hydrotalcite-like substance having a crystallite size of 20 nm or less.
  • the hydrousite-like granular material is one that adsorbs and fixes cations.
  • the particle size of the hydrophobic site-like granular material is 0.24 mm or more.
  • the stationary means may be formed in a net shape that encloses the hydrophobic site-like granular material.
  • a plurality of the contact portions may be connected.
  • a sampling channel for sampling the liquid in the contact portion may be provided.
  • the hide in the contact portion It is preferable to provide a stirring means for stirring the mouth talcite-like granular material.
  • flow rate varying means for changing the flow rate of the liquid flowing through the contact portion.
  • you may comprise the gas supply means which supplies gas to the said contact part.
  • the liquid treatment method of the present invention is a liquid treatment method for removing ions in a liquid, and has a chemical formula of M 2 xM 3+ x (OH) 2 (A " x / n ⁇ mH 2 0 high Dorotarusai Doo-like material (M 2+ is a divalent metal, M 3+ is a trivalent metal, a n - represents a Anion) represented a material containing at least a and the water, the high Dorotarusai preparative like substances It is characterized in that a hydrousite-like granule dried at a temperature lower than the dehydration temperature is brought into contact with the liquid.
  • the liquid processing method of the present invention is a liquid processing method for removing ions in a liquid, and has a chemical formula of M 2 xM 3+ x (OH) 2 (A " x / n ⁇ mH
  • the hydrous site-like substance represented by 20 (M 2+ represents a divalent metal, M 3+ represents a trivalent metal, and An ⁇ represents an anion). It is characterized in that the liquid site is brought into contact with a hydrous site-like granular material obtained by drying a material at a temperature lower than the dehydration temperature of the hydrous site-like material.
  • the hydrousite-like granular material is dried at 90 ° C or higher 1
  • the product is produced by carrying out at 10 ° C. or lower.
  • the above mentioned hydrousite-like granular material is produced by performing the drying under conditions where the amount of water vapor in the atmosphere is close to the amount of saturated water vapor.
  • the liquid treatment method of the present invention is a liquid treatment method for removing ions in a liquid, wherein the fluorine ion (F-) concentration is 1 16 mg / I at 20 ° C.
  • the amount of fluorine ion (F-) adsorbed is 8 mg / g or more when 100 g of a hydrotalcite-like granular material is added to 100 ml of the fluorine solution adjusted to 50 g and stirred for 60 minutes. This hydrotalcite-like granular material is brought into contact with the liquid.
  • the hydrotalcite-like granular material has a water content of 10% or more. Is preferable.
  • the hydrotalcite-like granule contains chloride, and more preferably, the hydrotalcite-like granule contains Na CI.
  • the hydrotalcite-like granular material is preferably produced from a hydrotalcite-like material having a crystallite size of 20 nm or less.
  • the hydrousite-like granular material is one that adsorbs and fixes cations.
  • the particle size of the hydrophobic site-like granular material is 0.24 mm or more.
  • the fixing means may be formed in a net shape that encloses the hydrophobic site-like granular material.
  • the hydrotalcite-like granular material is disposed, and a plurality of contact portions for contacting the liquid are connected, and the liquid body is sequentially brought into contact with the hydrotalcite-like granular material at these contact portions. It can also be made.
  • the crystallite size is 20 nm or less. Since the hydrotalcite-like granular material produced from the hydrotalcite-like substance is used, the adsorption amount of ions can be improved.
  • the hydrostatic site-like granular material can be prevented from flowing out from the contact portion by the fixing means.
  • ions in the liquid can be adsorbed in order from ions that are easily adsorbed. Ions can be selectively processed.
  • the liquid in the contact portion can be sampled, the type and concentration of ions in the liquid in the contact portion can be measured, and the hydrosite-like granularity in the contact portion can be measured.
  • the body condition can be accurately grasped.
  • FIG. 1 is a schematic front view showing a liquid processing apparatus of the present invention.
  • FIG. 2 is a schematic front view showing a liquid processing apparatus of the present invention.
  • FIG. 3 is a schematic front view showing a liquid processing apparatus of the present invention.
  • FIG. 4 is a schematic perspective view showing a liquid processing apparatus of the present invention.
  • FIG. 5 is a schematic front view showing a liquid processing apparatus of the present invention.
  • FIG. 6 is a graph when a solution is processed using the liquid processing apparatus of the present invention.
  • the present invention is a liquid processing apparatus 1 for removing cations and anions in a liquid 9, such as an aqueous solution containing various ions, which is described later. And the contact portion for bringing the liquid 9 into contact with the hydrophobic site-like granule 2.
  • the hydrotalcite-like granular material of the present invention comprises a material containing at least a hydrotalcite-like substance and water, and the dehydration temperature of the hydrotalcite-like substance (the crystal water of the hydrotalcite-like substance is dehydrated). Starting temperature) It is dried at the following.
  • the hydrosite-like substance is a kind of non-stoichiometric compound, and the chemical formula is represented by M 2 + 1 - X M 3+ X (OH) 2 (A " x / n ⁇ mH 2 0 M 2+ represents a divalent metal, Mg 2 ⁇ Fe 2+ , Zn 2+ , Ga 2+ , L i 2+ , Ni 2+ , Co 2 ⁇ Gu 2+ M 3+ represents a trivalent metal, such as AI 3+ , Fe 3 ⁇ Mn 3+, etc. A n- represents an anion ( where n is the valence of the anion). , X represents a numerical value between 0 and 1, and a general hydrosite material is 0.25 ⁇ ⁇ ⁇ 0.33. Any such hydrosite material may be used. For example, a product manufactured by the following method can be used.
  • the aluminum source of aluminum ions is not limited to a specific substance as long as it generates aluminum ion in water.
  • alumina, soda aluminate, aluminum hydroxide, aluminum chloride , Aluminum nitrate, pork site, alumina production residue from pork slag, aluminum sludge, etc. can be used. These aluminum sources may be used alone or in combination of two or more.
  • the magnesium source of magnesium ions is not limited to a specific substance as long as it is a substance that generates magnesium ions in water.
  • a blu-site, magnesium hydroxide, magnesite, or a burned product of magnesi lees can be used. These magnesium sources may be used either alone or in combination of two or more.
  • the aluminum compound as the aluminum source and the magnesium compound as the magnesium source do not need to be completely dissolved as long as aluminum ions and magnesium ions are present in the acidic solution. Therefore, even if an aluminum compound or a magnesium compound that is not dissolved in the acidic solution is contained, a hydrolytic site can be produced without any problem.
  • nitric acid or hydrochloric acid is preferably used.
  • the acidic solution containing aluminum ions and magnesium ions is mixed with an alkaline solution containing alkali.
  • This alkaline solution preferably has a pH of 8 to 11.
  • the acidic solution and alkaline solution can be mixed by adding the acidic solution to the alkaline solution at once, or mixing the acidic solution However, it is preferable to mix an acidic solution and an alkaline solution in appropriate amounts according to the stirring ability at the time of mixing. Of course, other methods may be used as long as the acidic solution and the alkaline solution can be sufficiently stirred.
  • the strength of the alkaline solution contained in the alkaline solution is not limited to a specific substance as long as the aqueous solution is made strong.
  • sodium hydroxide, calcium hydroxide, etc. can be used.
  • sodium carbonate, potassium carbonate, ammonium carbonate, aqueous ammonia, sodium borate, potassium borate and the like can also be used. These alkalis may be used alone or in combination of two or more.
  • the crystallite size (crystallite size) can be reduced without growing the crystals of the hydrotalcite-like substance. This is preferable in that a small hydrosite-like substance can be produced. In this case, because the crystallite size of the hydrotalcite-like substance is small, the solution becomes colloidal when mixed.
  • the pH of the mixed solution is lowered to a value at which the crystal growth of the hydrousite-like substance stops.
  • the maturation of the hydrated talcite-like substance represented by mH 2 0 can be stopped by setting the pH to 9 or less.
  • Aging can also be stopped by removing moisture. moisture In order to remove this, an appropriate method such as suction filtration or centrifugal separation can be used.
  • the crystallite size of the hydrotalcite-like substance represented by the general formula Mg 2 + I 3 + x (OH) 2 (A n _) x / n 'mH 2 0 should be 20 nm or less.
  • the pH of the mixed solution may be adjusted to 9 or less, preferably within 120 minutes after the mixing of the acidic solution and the alkaline solution is completed. Any method can be used to adjust the pH to 9 or less. For example, there is a method in which an acidic solution and an alkaline solution are mixed and then immediately diluted with water. Of course, the water may be removed by suction filtration or centrifugation within 120 minutes, preferably at the same time after mixing the acidic solution and the alkaline solution. Also, in order to prevent the aging from occurring, it is also possible to quickly wash the hydrousite-like substance after the mixing of the acidic solution and the alkaline solution is completed. In addition, chlorides such as Na CI produced in the synthesis process may be included.
  • the hydrotalcite-like substance thus produced is subjected to a predetermined pressure by a dehydrating device such as a filter press to remove moisture as much as possible, and then the dehydration temperature of the crystal water of the hydrotalcite-like substance. Dry with: In other words, only water outside the crystal of the hydrotalcite-like substance is dried. Specifically, a hydrotalcite-like substance having a moisture content of 70% or less, preferably 65% or less, and more preferably 60% or less is used. It is dried so that it is 10% or more and 20% or less, preferably 10% or more and 15% or less, and more preferably 11% or more and 12% or less.
  • the reason why the moisture content of the hydrousite-like granule is maintained at 10% or more is that when the moisture content of the hydrousite-like granule is less than 10%, it comes into contact with the solution etc. This is because the hydrated talcite-like granular material absorbs moisture and rapidly expands in volume, making it impossible to maintain the particle size.
  • the water content is the mass of water relative to the mass of the entire hydrotalcite-like substance containing water.
  • the mass of moisture contained in the hydrosite-like substance was measured according to the Japanese Industrial Standard “Method for testing moisture content of soil” (JISA 1203: 1 999).
  • the drying temperature may be any temperature as long as it is equal to or lower than the dehydration temperature of the crystal water of the hydrotalcite-like substance, but in order to increase the particle size of the hydrotalcite-like granule. It is preferable to dry at a relatively low temperature. However, if it is dried at a temperature that is too low, the hydrotalcite-like granular material is easily dissolved in water. Therefore, the specific drying temperature should be 25 ° C or higher and 125 ° C or lower, preferably 90 ° C or higher and 110 ° C or lower, more preferably 95 ° C or higher and 105 ° C or lower. .
  • this drying may be performed in any way, for example, a normal drying furnace may be used. Of course, it can be naturally dried at room temperature. In addition, it is better to adjust the humidity during drying to be high in terms of morphological stability of the hydrotalcite-like granules. For example, the amount of water vapor in the drying furnace may be adjusted to be close to the saturated water vapor amount (humidity is 90% to 100%).
  • the dried mouth talcite-like granular material may be sieved to remove the precipitated chloride and the like.
  • the particle size of the hydrousite-like granule may be adjusted according to its use.
  • the particle size of the hydrousite-like granular material is a size that does not pass through a stationary means described later, for example, 0.24 mm or more, preferably 0.36 mm or more, and more preferably 1 mm or more. 2 mm or less is good.
  • the particle size may be adjusted in any way, for example, by crushing with a hammer or the like and passing through a sieve having a target size.
  • the amount of adsorbed anions of the thus produced hydrotalcite-like granular material is high.
  • the adsorption amount of fluorine ions is at least 8 mg / g or more, preferably 8.5 mg / g or more, more preferably 8.7 mg / g or more.
  • the hydrotalcite-like granular material is preferably one that adsorbs and fixes cations such as force domium ions and lead ions.
  • the smaller the crystallite size of the hydrotalcite-like substance used as the material the higher the anion exchange property and the higher the amount of adsorption of fluorine ions. Therefore, the material is a hydrolytic site-like substance with a crystallite size of 20 nm or less, preferably 10 nm or less. It is good to use.
  • this hydrotalcite-like granular material has a relatively high amount of anion adsorption because it does not use a binder or the like for production.
  • the material of the contact part 3 may be any material as long as it does not react with the solution.
  • a resin such as polymethyl methacrylate (PMMA) or vinyl chloride, metal, wood, etc. can be freely used. Can be used.
  • any material can be used as long as the hydrophobic site-like granule 2 is disposed and the liquid 9 and the hydrous site-like granule 2 can be brought into contact with each other.
  • a container connected to a supply channel 3 1 for supplying the liquid 9 into the contact portion 3 and a discharge channel 3 2 for discharging the liquid 9 from the contact portion 3 What was formed in the shape can be used.
  • the position where the supply flow path 31 and the discharge flow path 3 2 are connected to the contact portion 3 may be anywhere. For example, as shown in FIG.
  • a plurality of supply channels and discharge channels should be provided.
  • the flow of the liquid 9 in the contact part 3 may be changed.
  • FIG. 3 it is of course possible to use the common flow path 33 that serves as both the supply flow path and the discharge flow path, and supply and discharge the liquid 9 through the common flow path 33-3 lines.
  • the contact portion 3 may be formed as a flow path itself.
  • the hydrophobic site-like granular material 2 may be arranged at the bottom 39 of the flow path.
  • the liquid treatment apparatus 1 circulates the liquid 9 and prevents it from flowing out from the contact portion 3 together with the liquid 9 in order to prevent the hydrophobic site-like granular material 2 arranged in the contact portion 3 from flowing out from the contact portion 3.
  • the stationary means for preventing the flow of the granular bodies 2 may be arranged on the liquid 9 discharge side or the liquid 9 supply side of the contact part 3.
  • a filter having a finer particle size than the particle size of the hydrophobic site-like granular material 2 can be used. In this case, this filter may be arranged at the connection portion between the contact portion 3 and the supply flow path 31 or the discharge flow path 3 2.
  • a reinforcing plate having a coarser grain than that of the filter 1 may be provided between the filter 1 and the hydrophobic site-like granular material 2.
  • the fixing means it is also possible to use a net having a finer particle size than the particle size of the hydrophobic site-like granular material 2.
  • the hydrophobic site-like granule 2 may be held by the net and placed in the contact portion 3.
  • a hydrotalcite-like granular material 2 encased in a net can be easily placed in a channel such as a river, and predetermined ions can be extracted from the water flowing through the channel. After removing and purifying the water, it can be easily removed from the waterway.
  • the liquid treatment apparatus 1 may be provided with a stirring means 4 that stirs the hydrophobic site-like granular material 2 in the contact portion 3.
  • a stirring means 4 that stirs the hydrophobic site-like granular material 2 in the contact portion 3.
  • the stirring means 4 for example, a flow rate adjusting means for changing the flow rate of the liquid 9 supplied into the contact portion 3, for example, a flow rate adjusting valve can be used.
  • changing the flow rate of the liquid 9 flowing to the contact portion 3 includes making the flow rate negative, that is, reversing the direction of the liquid 9 flowing into the contact portion 3.
  • a gas supply means for supplying gas to the contact portion 3 may be used so that the hydrophobic site-like granular material 2 in the contact portion 3 is uniformly dispersed.
  • the flow rate adjusting means and the gas supply means may be used in combination.
  • the liquid processing apparatus 1 is formed by connecting a plurality of contact portions 3 as shown in FIG. You may do it. If formed in this way, the hydrophobic site-like granular material 2 adsorbs ions in the liquid 9 in order from the ions that are likely to be adsorbed, so that the ions in the liquid 9 are selectively removed at each contact portion 3. can do.
  • the contact portion 3 on the supply side has a higher ion concentration in the liquid 9, and the adsorption capacity of the hydrotalcite-like granule 2 is likely to deteriorate. By removing the contact portion 3 on the side and connecting the contact portion 3 having the new hydrotalcite-like granule 2 on the discharge side, the hydrotalcite-like granule 2 can be used effectively.
  • each contact portion 3 may be provided with a sampling flow path 5 for sampling the liquid 9 in the contact portion 3.
  • a sampling flow path 5 for sampling the liquid 9 in the contact portion 3.
  • the measurement of the adsorption amount of fluorine ions is performed by the following method. First, prepare a fluorine solution 10 Om I prepared so that the fluorine concentration is 1 16 mg / I. Next, 10 g of the hydrousite-like granular material produced in each example is added, stirred for 1 hour with a magnetic stirrer, and then filtered using a filter. In addition, the particle size of the hydrotalcite-like granule was adjusted to 2 to 4.75 mm. Further, the adsorption of anions was performed in a constant temperature room at 20 ° C. by adjusting the temperature of the fluorine solution to 20 ° C. This change in the concentration of the fluorine solution was measured using an absorptiometer (DR. 1_80 £ 1_ 8 3 8_ 50) and a special reagent for this absorptiometer (LCK 3 2 3). And calculate the amount of anions adsorbed per gram of the hydrosite-like granular material. Adsorption amount.
  • the measurement of adsorption and fixation of force domum ions and lead ions is performed by the following method.
  • a force dome solution containing 2250 p pm (high concentration) and 1.6 p pm (low concentration) of cadmium (C d) and 885 p pm (high concentration) of lead (P b) and 1. 1 7 Prepare 10 Om I lead solutions containing p pm (low concentration).
  • the amount of powdery hydrosite-like substance added is adjusted to 0.1 wt%, 0.5 wt%, 1 wt%, and 5 wt%. This is stirred for 1 hour with a magnetic stirrer and then filtered using a filter.
  • Cadmium ions and lead ions were adsorbed and fixed in a constant temperature room at 20 ° C with the temperature of the fluorine solution adjusted to 20 ° C. Changes in the concentration of this cadmium solution and lead solution were measured using an absorptiometer (1_8_3_50 manufactured by Dr. 1_800) and a special reagent for this absorption altimeter. CK308 was measured using LCK306 as the lead ion (see Table 2). In addition, the residue (hydrated talcite-like substance) obtained by filtration was measured by XRD, SEM ⁇ EDS.
  • water permeability means the ease of water flow when water is flowed at a constant pressure in a cylindrical container filled with hydrotalcite-like granules, and the shape of the hydrousite-like granules is stable.
  • water permeability was measured as follows.
  • a PMMA plate (reinforcement plate) with holes of 5 mm in diameter arranged at a pitch of 7 mm is placed at the bottom of a cylindrical container (contact part) with a height of 250 mm and an inner diameter of 9 Omm.
  • the hydrotalcite-like granule was prepared to a particle size of 2 to 4.75 mm.
  • water with a head difference of 4 m was allowed to flow from the lower part to the upper part of this cylindrical container for 12 hours, and the water flow rate was measured to measure the water permeability. At this time, it is indicated as large, medium and small in order of increasing water permeability. Shown in 1.
  • Table 1 shows the amount of adsorption and the change in water permeability of Sample 2.
  • Table 1 shows the changes in the amount of adsorption and water permeability of Sample 3.
  • a material having a water content of about 63% was dried in a drying furnace at a temperature of 125 ° C. for 24 hours to produce a hydrosite-like granular material.
  • Table 1 shows the changes in the adsorption amount and water permeability of the specimen 5.
  • Table 1 shows that the hydrotalcite-like granule according to the present invention (samples 1 to 5) has a fluorine ion adsorption amount as compared to the sample material 6 formed into a spherical body using a binder. high.
  • the powdery hydrotalcite-like substance constituting the hydrotalcite-like granule according to the present invention reduces the concentration of cations, force domium ions and lead ions.
  • cadmium No diffraction peaks other than those in the hydrotalcite-like substance were detected after the on-site adsorption immobilization test.
  • a diffraction peak of lead hydroxide chloride (PbCIOH) was detected in the hydrotalcite-like substance after the lead ion adsorption and immobilization test, in addition to the hydrotalcite-like substance.
  • a supply port connected to the supply channel is formed at the bottom, a discharge port is formed at the top facing the bottom, and the height is 25 Omm and the inner diameter is 9 Om.
  • a cylindrical container was used. At the bottom of this cylindrical container (contact part), a PMMA pan with 5 mm diameter holes formed at a 7 mm pitch is placed as a reinforcing plate, and a 0.336 mm diameter hole is placed below it as a mounting means. PP mesh 40 (filter) with was placed.
  • the cylindrical container (contact portion) was filled with 5.0 kg of the hydrotalcite-like granular material of Test Material 4. Liquid is supplied from the supply port to this liquid treatment device at a flow rate of 1.5 I / min.
  • the uniform drainage standard for fluorine is 8 mg / I
  • the time required to exceed 8 mg / I is about 14 hours
  • the total amount of fluorine ion adsorption up to that time is 26, 91 6 mg
  • Adsorbed amount per gram of hydrated talcite-like granule is 5.4 mg.
  • the adsorption amounts of fluorine ions and sulfate ions almost became 0 at the same time, and the hydrousite-like granular material was saturated with respect to fluoride ions and sulfate ions. It was confirmed that the amount of fluoride ion adsorbed at this point was 12.1 mg / g.
  • the liquid treatment apparatus and the liquid treatment method of the present invention have high ion exchange performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

Hazardous ions are removed from liquid (9) by the use of liquid treating apparatus (1) comprising hydrotalcite-like granular substance (2) obtained by drying a material containing at least hydrotalcite-like substance of the chemical formula M2+1-xM3+x(OH)2(An-)x/nmH2O (M2+ is a bivalent metal, M3+ a trivalent metal and An- an anion) and water at the absolute dry temperature of hydrotalcite-like substance or below and comprising contact part (3) for realizing contact of the liquid (9) with the hydrotalcite-like granular substance (2).

Description

明 細 書  Specification
ハイドロタルサイト様粒状体を用いた液処理装置および液処理方法 技術分野  Technical field of liquid processing apparatus and liquid processing method using hydrotalcite-like granular material
[0001 ] この発明は、 ハイ ドロタルサイ ト様粒状体を用いた液処理装置および液処 理方法に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a liquid processing apparatus and a liquid processing method using a hydrophobic site-like granular material.
背景技術  Background art
[0002] 天然に存在する層状粘土鉱物の一種であるハイ ドロタルサイ トは、 マグネ シゥム、 アルミニウムなど、 天然に豊富に存在する元素の水酸化物を主骨格 としており、 その合成も比較的簡単に行うことができることから、 種々の合 成方法が開示されている。 例えば、 マグネシウム源として水酸化マグネシゥ ムを用い、 水溶媒中でハイ ドロタルサイ トを製造する方法 (例えば、 特許文 献 1参照) やアルカリの存在下、 水溶液中でマグネシウムイオンとアルミ二 ゥムイオンとを反応させる方法 (例えば、 特許文献 2参照) 等が開示されて いる。  [0002] Hydrotalcite, a type of layered clay mineral that exists in nature, is mainly composed of hydroxides of naturally abundant elements such as magnesium and aluminum, and its synthesis is relatively easy. Therefore, various synthesis methods have been disclosed. For example, magnesium hydroxide is used as a magnesium source, and a hydrolytic site is produced in an aqueous solvent (see, for example, Patent Document 1) or magnesium ions and aluminum ions are reacted in an aqueous solution in the presence of alkali. (For example, refer to Patent Document 2) and the like.
[0003] また、 ハイ ドロタルサイ トは陰イオン交換作用を有していることが知られ ている。 そして、 この陰イオン交換作用によって、 ヒ素、 フッ素、 ホウ素、 セレン、 六価クロム、 亜硝酸イオン、 その他の陰イオン系の有害物質を固定 化することができれば、 廃棄物の安全性向上技術、 無害化環境改善技術にお いて、 汚染水の水質改善、 有害物質の溶出防止、 土壌改良、 廃棄物処分場で の有害物質の安定化促進等に寄与できるものと期待される。  [0003] In addition, it is known that the hydrophobic site has an anion exchange action. And if this anion exchange action can immobilize arsenic, fluorine, boron, selenium, hexavalent chromium, nitrite ions, and other anionic harmful substances, waste safety improvement technology, harmless It is expected to contribute to improving the quality of contaminated water, preventing the release of harmful substances, improving soil, and promoting the stabilization of hazardous substances at waste disposal sites.
[0004] ここで、 陰イオン系の有害物質の固定化には、 例えば、 粉末状のハイ ドロ タルサイ トを有害物質が溶解した溶液に混合して有害物質を固定化した後、 フィルタプレス等による加圧によってハイ ドロタルサイ 卜と溶液を分離する 液処理装置および液処理方法がある。 しかしながら、 この方法では、 ハイ ド 口タルサイ ト及び溶液を濾布に対して大きな圧力で加圧する加圧手段が必要 となり、 装置全体が大型化するという問題があつた。  [0004] Here, for immobilization of an anionic toxic substance, for example, a powdery hydrosite is mixed with a solution in which the toxic substance is dissolved to fix the toxic substance, and then the filter is pressed. There are a liquid processing apparatus and a liquid processing method that separates a hydrosilica and a solution by pressurization. However, this method requires a pressurizing means for pressurizing the high-mouth talcite and the solution against the filter cloth with a large pressure, and there is a problem that the entire apparatus becomes large.
[0005] 特許文献 1 :特開平 6 _ 3 2 9 4 1 0号公報 特許文献 2:特開 2 0 0 3 _ 2 6 4 1 8号公報 Patent Document 1: Japanese Patent Laid-Open No. 6_3 2 9 4 10 Patent Document 2: Japanese Patent Laid-Open No. 2 0 0 3 _ 2 6 4 1 8
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] そこで、 小規模な設備等では、 比較的低圧で陰イオン系の有害物質を吸着 固定することができる粒状体のハイ ドロタルサイ トを用いることが考えられ る。 粒状体のハイ ドロタルサイ トは、 目詰まり等を防止するため、 粒径の大 きいものが必要であり、 例えば、 造粒機や、 バインダを用いて製造する方法 がある。  [0006] Therefore, it is conceivable to use a granular hydrosite that can adsorb and fix anionic toxic substances at a relatively low pressure in a small-scale facility. In order to prevent clogging, etc., the granular hydrosite needs to have a large particle size. For example, there are a granulator and a method using a binder.
[0007] しかしながら、 造粒機を用いる場合には、 別途造粒工程が必要であるため 製造するのに必要な時間やコストが増大するという問題があった。 また、 バ インダを用いる場合にもコス卜が増大する他、 ハイ ドロタルサイ ト以外の材 料を用いることにより粒状体に占めるハイ ドロタルサイ 卜の割合が小さくな るため、 同体積当たりの陰イオンの吸着量が低くなるという問題があった。  [0007] However, when a granulator is used, there is a problem that the time and cost required for production increase because a separate granulation step is required. In addition, when using a binder, the cost increases, and the use of materials other than the hydrophobic site reduces the proportion of the hydrophobic site in the granular material. There was a problem that the amount was low.
[0008] そこで本発明は、 形態が安定していると共に単位体積当たりの陰イオン交 換性能が高く、 更に低コス卜で製造できるハイ ドロタルサイ ト様粒状体を用 いた液処理装置および液処理方法を提供することを目的とする。  [0008] Therefore, the present invention provides a liquid processing apparatus and a liquid processing method using a hydrophobic site-like granular material that is stable in form, has high anion exchange performance per unit volume, and can be manufactured at low cost. The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0009] 上記目的を達成するために、 本発明の液処理装置は、 液体中のイオンを除 去するための液処理装置であって、 化学式が M2 XM3+ X (OH) 2 (A" x/n ' mH20で 表されるハイ ドロタルサイ ト様物質 (M2+は 2価の金属、 M3+は 3価の金属、 An- はァニオンを表す) と水とを少なくとも含む材料を、 前記ハイ ド口タルサイ ト様物質の脱水温度 (ハイ ドロタルサイ ト様物質の結晶水が脱水を開始する 温度) 以下で乾燥させてなるハイ ドロタルサイ ト様粒状体と、 前記液体と前 記ハイ ドロタルサイ ト様粒状体とを接触させるための接触部と、 を具備する ことを特徴とする。 In order to achieve the above object, a liquid processing apparatus of the present invention is a liquid processing apparatus for removing ions in a liquid, and has a chemical formula of M 2 X M 3+ X (OH) 2 ( A " x / n 'mH 2 0 Hydralsite-like substance (M 2+ is a divalent metal, M 3+ is a trivalent metal, A n -is an anion) and water at least A hydrotalcite-like granule obtained by drying a material containing the hydrotalcite-like substance at a temperature lower than or equal to the dehydration temperature of the hydrotalcite-like substance (temperature at which the crystal water of the hydrotalcite-like substance starts dehydration); And a contact portion for contacting the hydrophobic site-like granular material.
[001 0] また、 本発明の液処理装置は、 液体中のイオンを除去するための液処理装 置であって、 化学式が M2 xM3+ x (OH) 2 (A" x/n■ mH20で表されるハイ ドロタル サイ ト様物質 (M2+は 2価の金属、 M3+は 3価の金属、 An-はァニオンを表す) を 少なくとも含む含水率が 7 0 %以下の材料を、 前記ハイ ドロタルサイ ト様物 質の脱水温度以下で乾燥させてなるハイ ドロタルサイ ト様粒状体と、 前記液 体と前記ハイ ドロタルサイ ト様粒状体とを接触させるための接触部と、 を具備することを特徴とする。 [001 0] The liquid processing apparatus of the present invention is a liquid processing apparatus for removing ions in a liquid, and has a chemical formula of M 2 xM 3+ x (OH) 2 (A " x / n ■ Hydrate site-like substance represented by mH 20 (M 2+ represents a divalent metal, M 3+ represents a trivalent metal, and An − represents an anion). A hydrousite-like granule obtained by drying at least a material having a moisture content of 70% or less at a temperature lower than the dehydration temperature of the hydrosite-like material, and the liquid and the hydrosite-like granule. And a contact portion for contacting.
[001 1 ] この場合、 前記ハイ ドロタルサイ ト様粒状体は、 前記乾燥を 9 0 °C以上 1 [001 1] In this case, the hydrophobic site-like granular material is dried at 90 ° C or higher 1
1 0 °C以下で行うことにより製造されたものである方が好ましい。 また、 前 記ハイ ドロタルサイ ト様粒状体は、 前記乾燥を、 雰囲気の水蒸気量が飽和水 蒸気量付近となる条件下で行うことにより製造されたものである方が好まし い。  It is preferable that the product is produced by carrying out at 10 ° C. or lower. In addition, it is preferable that the above mentioned hydrousite-like granular material is produced by performing the drying under conditions where the amount of water vapor in the atmosphere is close to the amount of saturated water vapor.
[0012] また、 本発明の液処理装置は、 液体中のイオンを除去するための液処理装 置であって、 フッ素イオン (F -) の濃度が 1 1 6 m g / Iの 2 0 °Cに調節さ れたフッ素溶液 1 0 0 0 m l にハイ ドロタルサイ ト様粒状体 1 0 gを添加し 、 6 0分間撹拌した際のフッ素イオン (F -) の吸着量が 8 m g / g以上であ る当該ハイ ドロタルサイ ト様粒状体と、 前記液体と前記ハイ ドロタルサイ ト 様粒状体とを接触させるための接触部と、 を具備することを特徴とする。  [0012] The liquid processing apparatus of the present invention is a liquid processing apparatus for removing ions in a liquid, and has a fluorine ion (F-) concentration of 1 16 mg / I at 20 ° C. The amount of fluorine ion (F-) adsorbed is 8 mg / g or more when 100 g of a hydrotalcite-like granular material is added to 100 ml of the fluorine solution adjusted to 50 g and stirred for 60 minutes. The hydrotalcite-like granular material, and a contact portion for bringing the liquid into contact with the hydrotalcite-like granular material.
[0013] これらの場合、 前記ハイ ドロタルサイ ト様粒状体は、 含水率が 1 0 %以上 である方が好ましい。 また、 前記ハイ ドロタルサイ ト様粒状体は、 塩化物を 含有する方が好ましく、 更に好ましくは、 前記ハイ ドロタルサイ ト様粒状体 は、 N a C I を含有する方が良い。 また、 前記ハイ ドロタルサイ ト様粒状体 は、 結晶子サイズが 2 0 n m以下であるハイ ドロタルサイ ト様物質から製造 されたものである方が好ましい。 また、 前記ハイ ドロタルサイ ト様粒状体は 、 陽イオンを吸着固定するものである方が好ましい。 また、 前記ハイ ドロタ ルサイ ト様粒状体は、 粒径が 0 . 2 4 m m以上である方が好ましい。 また、 前記液体を流通させる共に前記ハイ ドロタルサイ ト様粒状体の流通を防止す る定置手段を具備する方が好ましい。 この場合、 前記定置手段は、 前記ハイ ドロタルサイ ト様粒状体を包持するネット状に形成しても良い。 また、 前記 接触部を複数連結しても良い。 また、 前記接触部内の液体をサンプリングす るためのサンプリング流路を具備しても良い。 また、 前記接触部内のハイ ド 口タルサイ ト様粒状体を撹拌する撹拌手段を具備する方が好ましい。 また、 前記接触部に流す前記液体の流量を変化させる流量可変手段を具備する方が 好ましい。 また、 前記接触部に気体を供給する気体供給手段を具備しても良 い。 [0013] In these cases, it is preferable that the hydrousite-like granular material has a water content of 10% or more. In addition, it is preferable that the hydrotalcite-like granule contains chloride, and more preferably, the hydrotalcite-like granule contains Na CI. In addition, it is preferable that the hydrotalcite-like granular material is produced from a hydrotalcite-like substance having a crystallite size of 20 nm or less. In addition, it is preferable that the hydrousite-like granular material is one that adsorbs and fixes cations. Further, it is preferable that the particle size of the hydrophobic site-like granular material is 0.24 mm or more. Further, it is preferable to provide a stationary means for circulating the liquid and preventing the flow of the hydrophobic site-like granular material. In this case, the stationary means may be formed in a net shape that encloses the hydrophobic site-like granular material. A plurality of the contact portions may be connected. A sampling channel for sampling the liquid in the contact portion may be provided. Also, the hide in the contact portion It is preferable to provide a stirring means for stirring the mouth talcite-like granular material. In addition, it is preferable to provide flow rate varying means for changing the flow rate of the liquid flowing through the contact portion. Moreover, you may comprise the gas supply means which supplies gas to the said contact part.
[0014] 本発明の液処理方法は、 液体中のイオンを除去するための液処理方法であ つて、 化学式が M2 xM3+ x (OH) 2 (A" x/n■ mH20で表されるハイ ドロタルサイ ト 様物質 (M2+は 2価の金属、 M3+は 3価の金属、 An-はァニオンを表す) と水とを 少なくとも含む材料を、 前記ハイ ドロタルサイ ト様物質の脱水温度以下で乾 燥させてなるハイ ドロタルサイ ト様粒状体と、 前記液体とを接触させること を特徴とする。 [0014] The liquid treatment method of the present invention is a liquid treatment method for removing ions in a liquid, and has a chemical formula of M 2 xM 3+ x (OH) 2 (A " x / n ■ mH 2 0 high Dorotarusai Doo-like material (M 2+ is a divalent metal, M 3+ is a trivalent metal, a n - represents a Anion) represented a material containing at least a and the water, the high Dorotarusai preparative like substances It is characterized in that a hydrousite-like granule dried at a temperature lower than the dehydration temperature is brought into contact with the liquid.
[0015] また、 本発明の液処理方法は、 液体中のイオンを除去するための液処理方 法であって、 化学式が M2 xM3+ x (OH) 2 (A" x/n■ mH20で表されるハイ ドロタル サイ ト様物質 (M2+は 2価の金属、 M3+は 3価の金属、 An-はァニオンを表す) を 少なくとも含む含水率が 7 0 %以下の材料を、 前記ハイ ドロタルサイ ト様物 質の脱水温度以下で乾燥させてなるハイ ドロタルサイ ト様粒状体と、 前記液 体とを接触させることを特徴とする。 [0015] The liquid processing method of the present invention is a liquid processing method for removing ions in a liquid, and has a chemical formula of M 2 xM 3+ x (OH) 2 (A " x / n ■ mH The hydrous site-like substance represented by 20 (M 2+ represents a divalent metal, M 3+ represents a trivalent metal, and An − represents an anion). It is characterized in that the liquid site is brought into contact with a hydrous site-like granular material obtained by drying a material at a temperature lower than the dehydration temperature of the hydrous site-like material.
[0016] この場合、 前記ハイ ドロタルサイ ト様粒状体は、 前記乾燥を 9 0 °C以上 1  [0016] In this case, the hydrousite-like granular material is dried at 90 ° C or higher 1
1 0 °C以下で行うことにより製造されたものである方が好ましい。 また、 前 記ハイ ドロタルサイ ト様粒状体は、 前記乾燥を、 雰囲気の水蒸気量が飽和水 蒸気量付近となる条件下で行うことにより製造されたものである方が好まし い。  It is preferable that the product is produced by carrying out at 10 ° C. or lower. In addition, it is preferable that the above mentioned hydrousite-like granular material is produced by performing the drying under conditions where the amount of water vapor in the atmosphere is close to the amount of saturated water vapor.
[0017] また、 本発明の液処理方法は、 液体中のイオンを除去するための液処理方 法であって、 フッ素イオン (F -) の濃度が 1 1 6 m g / Iの 2 0 °Cに調節さ れたフッ素溶液 1 0 0 0 m l にハイ ドロタルサイ ト様粒状体 1 0 gを添加し 、 6 0分間撹拌した際のフッ素イオン (F -) の吸着量が 8 m g / g以上であ る当該ハイ ドロタルサイ ト様粒状体と、 前記液体とを接触させることを特徴 とする。  [0017] Further, the liquid treatment method of the present invention is a liquid treatment method for removing ions in a liquid, wherein the fluorine ion (F-) concentration is 1 16 mg / I at 20 ° C. The amount of fluorine ion (F-) adsorbed is 8 mg / g or more when 100 g of a hydrotalcite-like granular material is added to 100 ml of the fluorine solution adjusted to 50 g and stirred for 60 minutes. This hydrotalcite-like granular material is brought into contact with the liquid.
[0018] これらの場合、 前記ハイ ドロタルサイ ト様粒状体は、 含水率が 1 0 %以上 である方が好ましい。 また、 前記ハイ ドロタルサイ ト様粒状体は、 塩化物を 含有する方が好ましく、 更に好ましくは、 前記ハイ ドロタルサイ ト様粒状体 は、 N a C I を含有する方が良い。 また、 前記ハイ ドロタルサイ ト様粒状体 は、 結晶子サイズが 2 0 n m以下であるハイ ドロタルサイ ト様物質から製造 されたものである方が好ましい。 また、 前記ハイ ドロタルサイ ト様粒状体は 、 陽イオンを吸着固定するものである方が好ましい。 また、 前記ハイ ドロタ ルサイ ト様粒状体は、 粒径が 0 . 2 4 m m以上である方が好ましい。 また、 前記液体を流通させると共に前記ハイ ドロタルサイ ト様粒状体の流通を防止 する定置手段を用いて前記液体を処理する方が好ましい。 この場合、 前記定 置手段は、 前記ハイ ドロタルサイ ト様粒状体を包持するネット状に形成され たものを用いることができる。 また、 前記ハイ ドロタルサイ ト様粒状体が配 置されると共に、 前記液体と接触させるための接触部を複数連結し、 前記液 体をこれらの接触部において前記ハイ ドロタルサイ ト様粒状体と順次接触さ せることもできる。 また、 前記ハイ ドロタルサイ ト様粒状体を撹拌しながら 接触させる方が好ましい。 この場合、 前記ハイ ドロタルサイ ト様粒状体に接 触させる際の前記液体の流量を変化させるか、 あるいは、 前記ハイ ド口タル サイ ト様粒状体と接触させる際に前記液体に気体を供給すれば良い。 [0018] In these cases, the hydrotalcite-like granular material has a water content of 10% or more. Is preferable. In addition, it is preferable that the hydrotalcite-like granule contains chloride, and more preferably, the hydrotalcite-like granule contains Na CI. In addition, the hydrotalcite-like granular material is preferably produced from a hydrotalcite-like material having a crystallite size of 20 nm or less. In addition, it is preferable that the hydrousite-like granular material is one that adsorbs and fixes cations. Further, it is preferable that the particle size of the hydrophobic site-like granular material is 0.24 mm or more. In addition, it is preferable to treat the liquid by using a stationary means that circulates the liquid and prevents the flow of the hydrophobic site-like granular material. In this case, the fixing means may be formed in a net shape that encloses the hydrophobic site-like granular material. In addition, the hydrotalcite-like granular material is disposed, and a plurality of contact portions for contacting the liquid are connected, and the liquid body is sequentially brought into contact with the hydrotalcite-like granular material at these contact portions. It can also be made. In addition, it is preferable to bring the above-mentioned hydrotalcite-like granular material into contact with stirring. In this case, if the flow rate of the liquid at the time of contact with the hydrotalcite-like granular material is changed, or if the gas is supplied to the liquid at the time of contact with the hide-talent-like granular material, good.
発明の効果  The invention's effect
[001 9] 請求項 1ないし 3 , 5 , 7 , 8 , 1 1 , 1 9ないし 2 1 , 2 3 , 2 5 , 2 6 , 2 9記載の発明によれば、 形態が安定していると共に陰イオン交換性能 が高く、 更に低コストで製造できるハイ ドロタルサイ ト様粒状体を用いるの で、 イオンを効率良く除去することができる。  [001 9] According to the invention of claims 1 to 3, 5, 7, 7, 8, 1 1, 1 9 to 2 1, 2 3, 2 5, 2 6, 29, the form is stable and The use of a hydrophobic site-like granule that has high anion exchange performance and can be produced at a low cost makes it possible to efficiently remove ions.
[0020] 請求項 4 , 2 2記載の発明によれば、 ハイ ド口タルサイ ト様粒状体の形態 が安定しているので、 更に効率良くイオンを除去することができる。  [0020] According to the inventions according to claims 4 and 22, since the form of the hydrated talcite-like granular material is stable, ions can be removed more efficiently.
[0021 ] 請求項 6 , 2 4記載の発明によれば、 ハイ ド口タルサイ ト様粒状体が水分 を吸収して急激に体積が膨張し、 破砕しやすくなるのを防止することができ るので、 更に効率良くイオンを除去することができる。  [0021] According to the inventions described in claims 6 and 24, it is possible to prevent the hydrated talcite-like granular material from absorbing moisture and rapidly expanding in volume and being easily crushed. Further, ions can be removed more efficiently.
[0022] 請求項 9 , 2 7記載の発明によれば、 結晶子サイズが 2 0 n m以下である ハイ ドロタルサイ ト様物質から製造されたハイ ドロタルサイ ト様粒状体を用 いるので、 イオンの吸着量を向上させることができる。 [0022] According to the inventions of claims 9 and 27, the crystallite size is 20 nm or less. Since the hydrotalcite-like granular material produced from the hydrotalcite-like substance is used, the adsorption amount of ions can be improved.
[0023] 請求項 1 0 , 2 8記載の発明によれば、 陽イオンを吸着固定することがで きるハイ ドロタルサイ ト様粒状体を用いるので、 汎用性を広げることができ る。  [0023] According to the inventions of claims 10 and 28, since the hydrousite-like granular material capable of adsorbing and fixing cations is used, versatility can be expanded.
[0024] 請求項 1 2 , 1 3 , 3 0 , 3 1記載の発明によれば、 定置手段により、 接 触部からハイ ドロタルサイ ト様粒状体が流出するのを防止することができる  [0024] According to the inventions according to claims 1 2, 1 3, 3 0, 3 1 1, the hydrostatic site-like granular material can be prevented from flowing out from the contact portion by the fixing means.
[0025] 請求項 1 4 , 3 2記載の発明によれば、 接触部を複数連結することにより 、 液体中のイオンのうち、 吸着しやすいイオンから順に吸着させることがで きるので、 液体中のイオンを選択的に処理することができる。 [0025] According to the inventions of claims 14 and 32, by connecting a plurality of contact portions, ions in the liquid can be adsorbed in order from ions that are easily adsorbed. Ions can be selectively processed.
[0026] 請求項 1 5記載の発明によれば、 接触部内の液体をサンプリングできるの で、 接触部内の液体のイオンの種類や濃度を測定することができると共に、 接触部内のハイ ドロタルサイ ト様粒状体の状態を正確に把握することができ る。  [0026] According to the invention described in claim 15, since the liquid in the contact portion can be sampled, the type and concentration of ions in the liquid in the contact portion can be measured, and the hydrosite-like granularity in the contact portion can be measured. The body condition can be accurately grasped.
[0027] 請求項 1 6ないし 1 8 , 3 3ないし 3 5記載の発明によれば、 ハイ ドロタ ルサイ ト様粒状体を撹拌するので、 接触部内のハイ ドロタルサイ トを均一に 分散させることができ、 更に効率良くイオンを除去することができる。 図面の簡単な説明  [0027] According to the inventions according to claims 16 to 18 and 33 to 35, since the hydrophobic site-like granular material is agitated, it is possible to uniformly disperse the hydrophobic site in the contact portion, Furthermore, ions can be efficiently removed. Brief Description of Drawings
[0028] [図 1 ]本発明の液処理装置を示す概略正面図である。  FIG. 1 is a schematic front view showing a liquid processing apparatus of the present invention.
[図 2]本発明の液処理装置を示す概略正面図である。  FIG. 2 is a schematic front view showing a liquid processing apparatus of the present invention.
[図 3]本発明の液処理装置を示す概略正面図である。  FIG. 3 is a schematic front view showing a liquid processing apparatus of the present invention.
[図 4]本発明の液処理装置を示す概略斜視図である。  FIG. 4 is a schematic perspective view showing a liquid processing apparatus of the present invention.
[図 5]本発明の液処理装置を示す概略正面図である。  FIG. 5 is a schematic front view showing a liquid processing apparatus of the present invention.
[図 6]本発明の液処理装置を用いて溶液を処理した際のグラフである。  FIG. 6 is a graph when a solution is processed using the liquid processing apparatus of the present invention.
符号の説明  Explanation of symbols
[0029] 1 液処理装置  [0029] One liquid processing apparatus
2 ハイ ド口タルサイ ト様粒状体 3 接触部 2 Hide mouth talcite-like granule 3 Contact area
4 撹拌手段  4 Stirring means
5 サンプリング手段  5 Sampling means
9 液体  9 liquid
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 本発明は、 図 1に示すように、 種々のイオンを含有する水溶液等の液体 9 中の陽イオンや陰イオンを除去するための液処理装置 1であって、 後述する ハイ ドロタルサイ ト様粒状体 2と、 液体 9とハイ ドロタルサイ ト様粒状体 2 とを接触させるための接触部と、 で主に構成される。 [0030] As shown in Fig. 1, the present invention is a liquid processing apparatus 1 for removing cations and anions in a liquid 9, such as an aqueous solution containing various ions, which is described later. And the contact portion for bringing the liquid 9 into contact with the hydrophobic site-like granule 2.
[0031 ] まず、 本発明のハイ ドロタルサイ ト様粒状体およびその製造方法について 説明する。 [0031] First, the hydrotalcite-like granular material of the present invention and the production method thereof will be described.
[0032] 本発明のハイ ドロタルサイ ト様粒状体は、 少なくともハイ ドロタルサイ ト 様物質と水とを含む材料を、 ハイ ドロタルサイ ト様物質の脱水温度 (ハイ ド 口タルサイ ト様物質の結晶水が脱水を開始する温度) 以下で乾燥させてなる ものである。  [0032] The hydrotalcite-like granular material of the present invention comprises a material containing at least a hydrotalcite-like substance and water, and the dehydration temperature of the hydrotalcite-like substance (the crystal water of the hydrotalcite-like substance is dehydrated). Starting temperature) It is dried at the following.
[0033] ここでハイ ドロタルサイ ト様物質とは、 不定比化合物の一種で、 化学式が M2 +1-XM3+ X (OH) 2 (A" x/n■ mH20で表される層状複水酸化物である。 M2+は 2価の 金属を表し、 Mg2\ Fe2+、 Zn2+、 Ga2+、 L i 2+、 N i 2+、 Co2\ Gu2+等が該当する。 M3+は 3価の金属を表し、 A I 3+、 Fe3\ Mn3+等が該当する。 また、 An-はァニオンを表す ( nはァニオンの価数) 。 なお、 Xは 0以上 1以下の数値を示し、 一般的なハ ィ ドロタルサイ ト様物質は 0. 25≤ χ≤0. 33である。 このようなハイ ドロタル サイ ト様物質としてはどのようなものでも良いが、 例えば、 以下のような方 法で製造したものを用いることができる。 [0033] Here, the hydrosite-like substance is a kind of non-stoichiometric compound, and the chemical formula is represented by M 2 + 1 - X M 3+ X (OH) 2 (A " x / n ■ mH 2 0 M 2+ represents a divalent metal, Mg 2 \ Fe 2+ , Zn 2+ , Ga 2+ , L i 2+ , Ni 2+ , Co 2 \ Gu 2+ M 3+ represents a trivalent metal, such as AI 3+ , Fe 3 \ Mn 3+, etc. A n- represents an anion ( where n is the valence of the anion). , X represents a numerical value between 0 and 1, and a general hydrosite material is 0.25 ≤ χ ≤ 0.33. Any such hydrosite material may be used. For example, a product manufactured by the following method can be used.
[0034] まず、 アルミニウムイオンとマグネシウムイオンを含む酸性溶液を調製す る。  [0034] First, an acidic solution containing aluminum ions and magnesium ions is prepared.
[0035] アルミニウムイオンのアルミニウム源としては、 水中でアルミニウムィォ ンを生成するものであれば良く、 特定の物質に限定されるものではない。 例 えば、 アルミナ、 アルミン酸ソ一ダ、 水酸化アルミニウム、 塩化アルミニゥ ム、 硝酸アルミニウム、 ポーキサイ ト、 ポーキサイ 卜からのアルミナ製造残 渣、 アルミスラッジ等を用いることができる。 また、 これらアルミニウム源 は、 いずれかを単独で用いても、 2種類以上を組み合わせて用いても良い。 [0035] The aluminum source of aluminum ions is not limited to a specific substance as long as it generates aluminum ion in water. For example, alumina, soda aluminate, aluminum hydroxide, aluminum chloride , Aluminum nitrate, pork site, alumina production residue from pork slag, aluminum sludge, etc. can be used. These aluminum sources may be used alone or in combination of two or more.
[0036] また、 マグネシウムイオンのマグネシウム源としては、 水中でマグネシゥ ムイオンを生成する物であれば良く、 特定の物質に限定されるものではない 。 例えば、 ブル一サイ ト、 水酸化マグネシウム、 マグネサイ ト、 マグネサイ 卜の焼成物等を用いることができる。 これらマグネシウム源は、 いずれかを 単独で用いても、 2種類以上を組み合わせて用いても良い。  [0036] Further, the magnesium source of magnesium ions is not limited to a specific substance as long as it is a substance that generates magnesium ions in water. For example, a blu-site, magnesium hydroxide, magnesite, or a burned product of magnesi lees can be used. These magnesium sources may be used either alone or in combination of two or more.
[0037] なお、 前記アルミニウム源としてのアルミニウム化合物、 マグネシウム源 としてのマグネシウム化合物は、 前記酸性溶液にアルミニウムイオン、 マグ ネシゥムイオンが存在していれば完全に溶解している必要はない。 したがつ て、 酸性溶液中に溶解していないアルミニウム化合物やマグネシウム化合物 を含んでいても問題なくハイ ドロタルサイ トを製造することができる。  [0037] The aluminum compound as the aluminum source and the magnesium compound as the magnesium source do not need to be completely dissolved as long as aluminum ions and magnesium ions are present in the acidic solution. Therefore, even if an aluminum compound or a magnesium compound that is not dissolved in the acidic solution is contained, a hydrolytic site can be produced without any problem.
[0038] ここで、 アルミニウムイオンとマグネシウムイオンからなるハイ ド口タル サイ 卜の一般式は、 M g Z ^ x A I 3 + x ( O H ) 2 ( A n ") x/ n ■ m H 2 0 ( A n -はァ二オン) であり、 高結晶質のハイ ドロタルサイ 卜の最も一般的な組成 では、 アルミニウムイオンとマグネシウムイオンのモル比が 1 : 3 ( x = 0 . 2 5 ) となっていることが知られている。 したがって、 酸性溶液中のアル ミニゥムイオンとマグネシウムイオンのモル比は、 1 : 5〜 1 : 2の範囲と するのが好ましい。 この範囲とすることによって、 アルミニウム源とマグネ シゥム源を無駄にすることなく、 物質収支的に有利にハイ ドロタルサイ ト様 物質を製造することができる。 [0038] Here, the general formula of the hydride talus か ら composed of aluminum ions and magnesium ions is M g Z ^ x AI 3 + x (OH) 2 (A n ") x / n ■ m H 2 0 (A n-is anion), and the most common composition of highly crystalline hydrangeas is a molar ratio of aluminum ions to magnesium ions of 1: 3 (x = 0.25) Therefore, it is preferable that the molar ratio of aluminum ions to magnesium ions in the acidic solution be in the range of 1: 5 to 1: 2. Hydrotalcite-like materials can be produced in an advantageous manner in terms of material balance without wasting the shim source.
[0039] また、 前記酸性溶液を酸性に調製するには、 硝酸又は塩酸を用いるのが好 ましい。  [0039] Further, in order to prepare the acidic solution acidic, nitric acid or hydrochloric acid is preferably used.
[0040] 次に、 アルミニウムイオンとマグネシウムイオンを含んだ前記酸性溶液を 、 アルカリを含むアルカリ性溶液と混合する。 このアルカリ性溶液は、 p H が 8〜 1 1のものを用いるのが好ましい。 なお、 酸性溶液とアルカリ性溶液 の混合は、 酸性溶液をアルカリ性溶液へ一気に加えて混合するか、 酸性溶液 をアルカリ性溶液へ滴下して行うことができるが、 好ましくは、 混合する際 の撹拌能力に応じて酸性溶液とアル力リ性溶液を適量ずつ混合する方が良い 。 勿論、 酸性溶液とアルカリ性溶液を十分に撹拌できるものであれば、 これ ら以外の方法であっても構わない。 [0040] Next, the acidic solution containing aluminum ions and magnesium ions is mixed with an alkaline solution containing alkali. This alkaline solution preferably has a pH of 8 to 11. The acidic solution and alkaline solution can be mixed by adding the acidic solution to the alkaline solution at once, or mixing the acidic solution However, it is preferable to mix an acidic solution and an alkaline solution in appropriate amounts according to the stirring ability at the time of mixing. Of course, other methods may be used as long as the acidic solution and the alkaline solution can be sufficiently stirred.
[0041] ここで、 アル力リ性溶液に含まれるアル力リとしては、 水溶液をアル力リ 性とするものであれば良く、 特定の物質に限定されるものではない。 例えば 、 水酸化ナトリウム、 水酸化カルシウムなどを用いることができる。 また、 炭酸ナトリウム、 炭酸カリウム、 炭酸アンモニゥム、 アンモニア水、 ホウ酸 ナトリウム、 ホウ酸カリウムなども用いることができる。 これらアルカリは いずれかを単独で用いても、 2種類以上を組み合わせて用いても良い。  [0041] Here, the strength of the alkaline solution contained in the alkaline solution is not limited to a specific substance as long as the aqueous solution is made strong. For example, sodium hydroxide, calcium hydroxide, etc. can be used. Further, sodium carbonate, potassium carbonate, ammonium carbonate, aqueous ammonia, sodium borate, potassium borate and the like can also be used. These alkalis may be used alone or in combination of two or more.
[0042] また、 高結晶質のハイ ドロタルサイ トは炭酸イオンと優先的にイオン交換 するため、 炭酸イオンを含むと目的とする陰イオンと効率良くイオン交換で きない。 したがって、 ハイ ド口タルサイ ト様物質においても、 目的とする陰 イオンと効率良くイオン交換させるために、 前記酸性溶液および前記アル力 リ性溶液に炭酸イオンを含まないようにするのが好ましい。  [0042] In addition, since highly crystalline hydrosites are preferentially ion-exchanged with carbonate ions, if they contain carbonate ions, they cannot be efficiently ion-exchanged with the intended anions. Therefore, it is preferable not to contain carbonate ions in the acidic solution and the alkaline solution in order to efficiently exchange ions with the target anion in the hydrated talcite-like substance.
[0043] また、 酸性溶液とアルカリ性溶液の混合が完了した後、 熟成を行わないよ うにすれば、 ハイ ドロタルサイ ト様物質の結晶を成長させることなく、 結晶 子サイズ (結晶子の大きさ) の小さいハイ ドロタルサイ ト様物質を製造する ことができる点で好ましい。 この場合、 ハイ ドロタルサイ ト様物質の結晶子 サイズが小さいので、 混合時に溶液はコロイ ド状となる。  [0043] Further, if the aging is not performed after the mixing of the acidic solution and the alkaline solution is completed, the crystallite size (crystallite size) can be reduced without growing the crystals of the hydrotalcite-like substance. This is preferable in that a small hydrosite-like substance can be produced. In this case, because the crystallite size of the hydrotalcite-like substance is small, the solution becomes colloidal when mixed.
[0044] 熟成を行わないようにするには、 酸性溶液とアル力リ性溶液の混合が完了 した後、 当該混合溶液の p Hをハイ ドロタルサイ ト様物質の結晶成長が止ま る値まで下げれば良い。 例えば、 一般式 MgZ +
Figure imgf000011_0001
I 3 + x (OH) 2 (A— ) x/n ■ mH20で表されるハイ ド口タルサイ ト様物質は、 p Hを 9以下とす れば熟成を止めることができる。 また、 一般式 Z n 2 + I 3 + x (OH) 2
[0044] In order to prevent aging, after the mixing of the acidic solution and the alkaline solution is completed, the pH of the mixed solution is lowered to a value at which the crystal growth of the hydrousite-like substance stops. good. For example, the general formula MgZ +
Figure imgf000011_0001
I 3 + x (OH) 2 (A—) x / n ■ The maturation of the hydrated talcite-like substance represented by mH 2 0 can be stopped by setting the pH to 9 or less. In addition, the general formula Z n 2 + I 3 + x (OH) 2
(A"") x/n ■ mH20で表されるハイ ド口タルサイ ト様物質は、 p Hを 5以 下とすれば熟成を止めることができる。 (A "") x / n ■ Hide mouth talcite-like substance represented by mH 2 0 can stop ripening if pH is 5 or less.
[0045] また、 水分を除去することによつても、 熟成を止めることができる。 水分 を除去するためには、 吸引濾過、 遠心分離など適当な方法を用いることがで さる。 [0045] Aging can also be stopped by removing moisture. moisture In order to remove this, an appropriate method such as suction filtration or centrifugal separation can be used.
[0046] したがって、 一般式 M g 2 + I 3 + x (OH) 2 (An_) x/n ' mH20で 表されるハイ ドロタルサイ ト様物質の結晶子サイズを 20 nm以下にするに は、 酸性溶液とアル力リ性溶液の混合が完了した後 1 20分以内好ましくは 同時に、 混合溶液の p Hを 9以下に調整すれば良い。 p Hを 9以下とするに はどのような方法を用いても良いが、 例えば、 酸性溶液とアル力リ性溶液を 混合した後、 直ちに水で希釈する方法がある。 もちろん、 酸性溶液とアル力 リ性溶液と混合した後 1 20分以内好ましくは同時に、 吸引濾過や遠心分離 等によって水分を除去しても良い。 また、 確実に熟成を行わせないためには 、 酸性溶液とアルカリ性溶液の混合が完了した後、 速やかにハイ ドロタルサ ィ ト様物質を洗浄するのも良い。 なお、 合成過程で生成される N a C I等の 塩化物は含有させておいても構わない。 [0046] Therefore, the crystallite size of the hydrotalcite-like substance represented by the general formula Mg 2 + I 3 + x (OH) 2 (A n _) x / n 'mH 2 0 should be 20 nm or less. In this case, the pH of the mixed solution may be adjusted to 9 or less, preferably within 120 minutes after the mixing of the acidic solution and the alkaline solution is completed. Any method can be used to adjust the pH to 9 or less. For example, there is a method in which an acidic solution and an alkaline solution are mixed and then immediately diluted with water. Of course, the water may be removed by suction filtration or centrifugation within 120 minutes, preferably at the same time after mixing the acidic solution and the alkaline solution. Also, in order to prevent the aging from occurring, it is also possible to quickly wash the hydrousite-like substance after the mixing of the acidic solution and the alkaline solution is completed. In addition, chlorides such as Na CI produced in the synthesis process may be included.
[0047] このように生成されたハイ ド口タルサイ ト様物質は、 フィルタプレス等の 脱水装置により所定の圧力をかけて水分をできるだけ除去した後、 ハイ ドロ タルサイ ト様物質の結晶水の脱水温度以下で乾燥させる。 換言すると、 ハイ ドロタルサイ ト様物質の結晶外の水のみを乾燥させる。 具体的には、 含水率 が 70%以下、 好ましくは 65%以下、 更に好ましくは 60%以下のハイ ド 口タルサイ ト様物質を、 最終生成物であるハイ ドロタルサイ ト様粒状体の含 水率が 1 0 %以上 20 %以下、 好ましくは 1 0 %以上 1 5 %以下、 更に好ま しくは、 1 1 %以上 1 2%以下になるように乾燥させる。 ここで、 ハイ ドロ タルサイ ト様粒状体の含水率を 1 0%以上に保持する理由は、 ハイ ドロタル サイ ト様粒状体の含水率が 1 0%未満であると、 溶液等に触れた際にハイ ド 口タルサイ ト様粒状体が水分を吸収して体積が急激に膨張し、 粒度を保持で きなくなるためである。 なお、 含水率とは水分を含むハイ ドロタルサイ ト様 物質全体の質量に対する水の質量である。 ハイ ドロタルサイ ト様物質が含ん でいる水分の質量の測定は、 日本工業規格 「土の含水比試験方法」 (J I S A 1 203 : 1 999) に準拠して行った。 [0048] なお、 乾燥させる温度としては、 ハイ ドロタルサイ ト様物質の結晶水の脱 水温度以下であればどのような温度でも良いが、 ハイ ドロタルサイ ト様粒状 体の粒径を大きくするためには比較的低温で乾燥させる方が好ましい。 ただ し、 あまり低すぎる温度で乾燥すると、 ハイ ドロタルサイ ト様粒状体が水に 解け易くなる。 したがって、 具体的な乾燥温度は、 25°C以上 1 25°C以下 が良く、 好ましくは 90°C以上 1 1 0°C以下が良く、 更に好ましくは 95°C 以上 1 05 °C以下が良い。 [0047] The hydrotalcite-like substance thus produced is subjected to a predetermined pressure by a dehydrating device such as a filter press to remove moisture as much as possible, and then the dehydration temperature of the crystal water of the hydrotalcite-like substance. Dry with: In other words, only water outside the crystal of the hydrotalcite-like substance is dried. Specifically, a hydrotalcite-like substance having a moisture content of 70% or less, preferably 65% or less, and more preferably 60% or less is used. It is dried so that it is 10% or more and 20% or less, preferably 10% or more and 15% or less, and more preferably 11% or more and 12% or less. Here, the reason why the moisture content of the hydrousite-like granule is maintained at 10% or more is that when the moisture content of the hydrousite-like granule is less than 10%, it comes into contact with the solution etc. This is because the hydrated talcite-like granular material absorbs moisture and rapidly expands in volume, making it impossible to maintain the particle size. The water content is the mass of water relative to the mass of the entire hydrotalcite-like substance containing water. The mass of moisture contained in the hydrosite-like substance was measured according to the Japanese Industrial Standard “Method for testing moisture content of soil” (JISA 1203: 1 999). [0048] The drying temperature may be any temperature as long as it is equal to or lower than the dehydration temperature of the crystal water of the hydrotalcite-like substance, but in order to increase the particle size of the hydrotalcite-like granule. It is preferable to dry at a relatively low temperature. However, if it is dried at a temperature that is too low, the hydrotalcite-like granular material is easily dissolved in water. Therefore, the specific drying temperature should be 25 ° C or higher and 125 ° C or lower, preferably 90 ° C or higher and 110 ° C or lower, more preferably 95 ° C or higher and 105 ° C or lower. .
[0049] また、 この乾燥はどのように行っても良く、 例えば、 通常の乾燥炉等を用 いれば良い。 勿論、 室温で自然乾燥にすることも可能である。 また、 乾燥時 の湿度を高く調節する方がハイ ドロタルサイ ト様粒状体の形態安定性の点で 良い。 例えば、 乾燥炉内の水蒸気の量を飽和水蒸気量付近 (湿度が 90%〜 1 00%) となるように調節すれば良い。  [0049] Further, this drying may be performed in any way, for example, a normal drying furnace may be used. Of course, it can be naturally dried at room temperature. In addition, it is better to adjust the humidity during drying to be high in terms of morphological stability of the hydrotalcite-like granules. For example, the amount of water vapor in the drying furnace may be adjusted to be close to the saturated water vapor amount (humidity is 90% to 100%).
[0050] また、 このようにして乾燥したハイ ド口タルサイ ト様粒状体をふるいにか け、 析出した塩化物等を除去しても良い。  [0050] Further, the dried mouth talcite-like granular material may be sieved to remove the precipitated chloride and the like.
[0051] また、 ハイ ドロタルサイ ト様粒状体は、 その用途に応じて粒径を調製して も良い。 この場合、 ハイ ドロタルサイ ト様粒状体の粒径は、 後述する定置手 段を通過しない大きさ、 例えば、 0. 24mm以上が良く、 好ましくは 0. 36 mm以上が良く、 更に好ましくは 1 mm以上 2 mm以下が良い。 粒径の 調製は、 どのように行っても良いが、 例えば、 ハンマ一等により破砕し、 目 的とする大きさの目をもったふるいにかけて行えば良い。  [0051] In addition, the particle size of the hydrousite-like granule may be adjusted according to its use. In this case, the particle size of the hydrousite-like granular material is a size that does not pass through a stationary means described later, for example, 0.24 mm or more, preferably 0.36 mm or more, and more preferably 1 mm or more. 2 mm or less is good. The particle size may be adjusted in any way, for example, by crushing with a hammer or the like and passing through a sieve having a target size.
[0052] このように製造したハイ ドロタルサイ ト様粒状体の陰イオンの吸着量は高 い方が好ましい。 例えば、 フッ素イオンの吸着量は、 少なくとも 8m g/g 以上、 好ましくは 8. 5mg/g以上、 更に好ましくは 8. 7mg/g以上 が良い。 また、 ハイ ドロタルサイ ト様粒状体は、 力 ドミゥムイオン、 鉛ィォ ン等の陽イオンを吸着固定するものが好ましい。 また、 材料として用いるハ ィ ドロタルサイ ト様物質の結晶子サイズは小さい程陰イオン交換性が高く、 フッ素イオンの吸着量等が高くなる。 したがって、 材料としては、 結晶子サ ィズが 20 n m以下、 好ましくは 1 0 n m以下のハイ ドロタルサイ ト様物質 を用いるのが良い。 [0052] It is preferable that the amount of adsorbed anions of the thus produced hydrotalcite-like granular material is high. For example, the adsorption amount of fluorine ions is at least 8 mg / g or more, preferably 8.5 mg / g or more, more preferably 8.7 mg / g or more. In addition, the hydrotalcite-like granular material is preferably one that adsorbs and fixes cations such as force domium ions and lead ions. In addition, the smaller the crystallite size of the hydrotalcite-like substance used as the material, the higher the anion exchange property and the higher the amount of adsorption of fluorine ions. Therefore, the material is a hydrolytic site-like substance with a crystallite size of 20 nm or less, preferably 10 nm or less. It is good to use.
[0053] これにより、 低コス卜で形態安定性に優れたハイ ドロタルサイ ト様粒状体 を製造することができる。 また、 このハイ ドロタルサイ ト様粒状体は、 製造 にバインダ等を用いないため、 陰イオンの吸着量が比較的高い。  [0053] This makes it possible to produce a hydrotalcite-like granular material having a low cost and excellent shape stability. In addition, this hydrotalcite-like granular material has a relatively high amount of anion adsorption because it does not use a binder or the like for production.
[0054] 接触部 3の材質は、 溶液と反応する物質でなければどのようなものでも良 く、 例えば、 ポリメチルメタクリレート (P M M A ) や塩化ビニル等の樹脂 の他、 金属、 木材等を自由に用いることができる。  [0054] The material of the contact part 3 may be any material as long as it does not react with the solution. For example, in addition to a resin such as polymethyl methacrylate (PMMA) or vinyl chloride, metal, wood, etc. can be freely used. Can be used.
[0055] また、 接触部 3としては、 ハイ ドロタルサイ ト様粒状体 2が配置されると 共に、 液体 9とハイ ドロタルサイ ト様粒状体 2とを接触させることができる ものであればどのようなものでも良いが、 例えば、 図 1に示すように、 液体 9を接触部 3内に供給する供給流路 3 1 と液体 9を接触部 3内から排出する 排出流路 3 2とに接続される容器状に形成したものを用いることができる。 この場合、 接触部 3に供給流路 3 1や排出流路 3 2を接続する位置はどこで も良く、 例えば、 図 1に示すように接触部 3の下部で供給流路 3 1に接続し 、 上部で排出流路 3 2に接続したり、 図 2に示すように接触部 3の下部で供 給流路 3 1 と排出流路 3 2に接続したりすれば良い。 また、 ハイ ドロタルサ ィ ト様粒状体 2が液体 9の流れによって接触部 3内の一部に偏り、 イオンの 除去効率が下がるのを防止するため、 供給流路ゃ排出流路を複数設けるよう にし、 接触部 3内の液体 9の流れに変化を付けるようにしても良い。 また、 図 3に示すように、 供給流路と排出流路とを兼ねる共通流路 3 3とし、 液体 9の供給と排出を共通流路 3 3—本で行うことも勿論可能である。  [0055] In addition, as the contact portion 3, any material can be used as long as the hydrophobic site-like granule 2 is disposed and the liquid 9 and the hydrous site-like granule 2 can be brought into contact with each other. However, for example, as shown in FIG. 1, a container connected to a supply channel 3 1 for supplying the liquid 9 into the contact portion 3 and a discharge channel 3 2 for discharging the liquid 9 from the contact portion 3 What was formed in the shape can be used. In this case, the position where the supply flow path 31 and the discharge flow path 3 2 are connected to the contact portion 3 may be anywhere. For example, as shown in FIG. It may be connected to the discharge channel 3 2 at the upper part or connected to the supply channel 3 1 and the discharge channel 3 2 at the lower part of the contact part 3 as shown in FIG. In addition, in order to prevent the hypothalite-like granular material 2 from being biased to a part of the contact portion 3 due to the flow of the liquid 9 and reducing the ion removal efficiency, a plurality of supply channels and discharge channels should be provided. The flow of the liquid 9 in the contact part 3 may be changed. In addition, as shown in FIG. 3, it is of course possible to use the common flow path 33 that serves as both the supply flow path and the discharge flow path, and supply and discharge the liquid 9 through the common flow path 33-3 lines.
[0056] また、 接触部 3の別の形態としては、 図 4に示すように、 流路自体として 形成しても良い。 この場合、 ハイ ドロタルサイ ト様粒状体 2は、 流路の底部 3 9に配置すれば良い。  [0056] Further, as another form of the contact portion 3, as shown in FIG. 4, it may be formed as a flow path itself. In this case, the hydrophobic site-like granular material 2 may be arranged at the bottom 39 of the flow path.
[0057] また、 液処理装置 1は、 接触部 3に配置するハイ ドロタルサイ ト様粒状体 2が液体 9と共に接触部 3から流出するのを防止するため、 液体 9を流通さ せると共にハイ ドロタルサイ ト様粒状体 2の流通を防止する定置手段を、 接 触部 3の液体 9の排出側や液体 9の供給側に配置するようにしても良い。 定 置手段としては、 例えば、 ハイ ドロタルサイ ト様粒状体 2の粒径よりも細か い目を有するフィルタ一を用いることができる。 この場合、 接触部 3と供給 流路 3 1や排出流路 3 2との接続部分にこのフィルターを配置すれば良い。 また、 フィルタ一の強度を補うために、 フィルタ一の目より粗い目を有する 補強板をフィルタ一とハイ ドロタルサイ ト様粒状体 2との間に設けても良い [0057] In addition, the liquid treatment apparatus 1 circulates the liquid 9 and prevents it from flowing out from the contact portion 3 together with the liquid 9 in order to prevent the hydrophobic site-like granular material 2 arranged in the contact portion 3 from flowing out from the contact portion 3. The stationary means for preventing the flow of the granular bodies 2 may be arranged on the liquid 9 discharge side or the liquid 9 supply side of the contact part 3. Constant As the placing means, for example, a filter having a finer particle size than the particle size of the hydrophobic site-like granular material 2 can be used. In this case, this filter may be arranged at the connection portion between the contact portion 3 and the supply flow path 31 or the discharge flow path 3 2. Further, in order to supplement the strength of the filter 1, a reinforcing plate having a coarser grain than that of the filter 1 may be provided between the filter 1 and the hydrophobic site-like granular material 2.
[0058] また、 定置手段の別の形態として、 ハイ ドロタルサイ ト様粒状体 2の粒径 よりも目の細かいネットを用いることも可能である。 この場合、 ハイ ドロタ ルサイ ト様粒状体 2をネットによって包持して接触部 3に配置すれば良い。 このようにすれば、 ハイ ドロタルサイ ト様粒状体 2をネッ卜で包持したもの を、 例えば河川等の水路に容易に配置することができると共に、 水路を流れ る水の中から所定のイオンを除去し水を浄化した後、 水路から容易に取り出 すことができる。 [0058] Further, as another form of the fixing means, it is also possible to use a net having a finer particle size than the particle size of the hydrophobic site-like granular material 2. In this case, the hydrophobic site-like granule 2 may be held by the net and placed in the contact portion 3. In this way, a hydrotalcite-like granular material 2 encased in a net can be easily placed in a channel such as a river, and predetermined ions can be extracted from the water flowing through the channel. After removing and purifying the water, it can be easily removed from the waterway.
[0059] また、 接触部 3に液体 9を一定の速度で流し続けると、 ハイ ドロタルサイ ト様粒状体 2が液体 9の流れによつて接触部 3内の一部に偏り、 イオンの除 去効率が下がるという問題がある。 そこで、 液処理装置 1に、 接触部 3内の ハイ ドロタルサイ ト様粒状体 2を撹拌する撹拌手段 4を設けても良い。 これ により、 接触部 3内のハイ ドロタルサイ ト様粒状体 2を均一に分散させるこ とができる。 ここで、 撹拌手段 4としては、 例えば、 接触部 3内に供給する 液体 9の流量を変化させる流量調節手段、 例えば流量調節弁等を用いること ができる。 なお、 接触部 3に流す液体 9の流量を変化させることには、 負の 流量にすること、 すなわち、 接触部 3内へ流す液体 9の方向を逆にすること も含まれる。  [0059] When the liquid 9 continues to flow through the contact portion 3 at a constant speed, the hydrosite-like granular material 2 is biased to a part of the contact portion 3 by the flow of the liquid 9, and the ion removal efficiency. There is a problem that goes down. Therefore, the liquid treatment apparatus 1 may be provided with a stirring means 4 that stirs the hydrophobic site-like granular material 2 in the contact portion 3. As a result, the hydrophobic site-like granular material 2 in the contact portion 3 can be uniformly dispersed. Here, as the stirring means 4, for example, a flow rate adjusting means for changing the flow rate of the liquid 9 supplied into the contact portion 3, for example, a flow rate adjusting valve can be used. Note that changing the flow rate of the liquid 9 flowing to the contact portion 3 includes making the flow rate negative, that is, reversing the direction of the liquid 9 flowing into the contact portion 3.
[0060] また、 撹拌手段の別の形態として、 接触部 3に気体を供給する気体供給手 段とし、 接触部 3内のハイ ドロタルサイ ト様粒状体 2を均一に分散させるよ うにしても良い。 もちろん、 流量調節手段と気体供給手段とを併用すること も可能である。  [0060] Further, as another form of the agitation means, a gas supply means for supplying gas to the contact portion 3 may be used so that the hydrophobic site-like granular material 2 in the contact portion 3 is uniformly dispersed. . Of course, it is also possible to use the flow rate adjusting means and the gas supply means in combination.
[0061 ] また、 液処理装置 1は、 図 5に示すように、 接触部 3を複数連結して形成 しても良い。 このように形成すれば、 ハイ ドロタルサイ ト様粒状体 2は、 液 体 9中のイオンのうち、 吸着しやすいイオンから順に吸着するため、 液体 9 中のイオンを各接触部 3で選択的に除去することができる。 また、 供給側の 接触部 3の方が液体 9中のイオン濃度が高く、 ハイ ドロタルサイ ト様粒状体 2のイオンの吸着能力が劣化し易いため、 ハイ ドロタルサイ ト様粒状体 2の 交換は、 供給側の接触部 3を取り外し、 排出側に新しいハイ ドロタルサイ ト 様粒状体 2を有する接触部 3を連結するとハイ ドロタルサイ ト様粒状体 2を 有効に利用することができる。 [0061] Further, the liquid processing apparatus 1 is formed by connecting a plurality of contact portions 3 as shown in FIG. You may do it. If formed in this way, the hydrophobic site-like granular material 2 adsorbs ions in the liquid 9 in order from the ions that are likely to be adsorbed, so that the ions in the liquid 9 are selectively removed at each contact portion 3. can do. In addition, the contact portion 3 on the supply side has a higher ion concentration in the liquid 9, and the adsorption capacity of the hydrotalcite-like granule 2 is likely to deteriorate. By removing the contact portion 3 on the side and connecting the contact portion 3 having the new hydrotalcite-like granule 2 on the discharge side, the hydrotalcite-like granule 2 can be used effectively.
[0062] また、 各接触部 3に、 接触部 3内の液体 9をサンプリングするためのサン プリング流路 5を設けるようにしても良い。 これにより、 各接触部 3内の液 体 9のイオンの種類や濃度を測定することができると共に、 接触部 3内のハ ィ ドロタルサイ ト様粒状体 2の状態を把握することができる。 [0062] In addition, each contact portion 3 may be provided with a sampling flow path 5 for sampling the liquid 9 in the contact portion 3. As a result, the type and concentration of ions in the liquid 9 in each contact portion 3 can be measured, and the state of the hydrophobic site-like granular material 2 in the contact portion 3 can be grasped.
実施例  Example
[0063] 以下に、 本発明の液処理装置および液処理方法に用いるハイ ド口タルサイ ト様粒状体およびその製造方法の実施例について説明するが、 本発明に係る ハイ ドロタルサイ ト様粒状体は、 これら実施例に限定されるものではない。 なお、 本実施例のハイ ドロタルサイ ト様粒状体は、 上述した製法とほぼ同様 に製造するため、 その同様な部分についての重複する説明は省略する。  [0063] Hereinafter, examples of the hydrated talcite-like granule used in the liquid treatment apparatus and the liquid treatment method of the present invention and a method for producing the same will be described. It is not limited to these examples. In addition, since the hydrotalcite-like granular material of the present example is manufactured in substantially the same manner as the above-described manufacturing method, redundant description of similar parts is omitted.
[0064] なお、 フッ素イオンの吸着量の測定は、 次のような方法で行う。 まず、 フ ッ素濃度が 1 1 6 m g / I となるように調製したフッ素溶液 1 0 0 O m I を 準備する。 次に、 各実施例により製造したハイ ドロタルサイ ト様粒状体 1 0 gを添加し、 マグネチックスターラーで 1時間撹拌した後、 フィルタ一を用 いて濾過する。 なお、 ハイ ドロタルサイ ト様粒状体の粒度は 2〜4 . 7 5 m mに調製したものを用いた。 また、 陰イオンの吸着は、 2 0 °Cの恒温室内で 、 フッ素溶液の温度を 2 0 °Cに調整して行った。 このフッ素溶液の濃度の変 化を、 吸光光度計 (D R . 1_八 0 £社製の1_八3八_ 5 0 ) とこの吸光高 度計の専用試薬 (L C K 3 2 3 ) を用いて測定し、 ハイ ドロタルサイ ト様粒 状体 1 g当たりが吸着した陰イオンの量を計算して、 これをフッ素イオンの 吸着量とする。 [0064] The measurement of the adsorption amount of fluorine ions is performed by the following method. First, prepare a fluorine solution 10 Om I prepared so that the fluorine concentration is 1 16 mg / I. Next, 10 g of the hydrousite-like granular material produced in each example is added, stirred for 1 hour with a magnetic stirrer, and then filtered using a filter. In addition, the particle size of the hydrotalcite-like granule was adjusted to 2 to 4.75 mm. Further, the adsorption of anions was performed in a constant temperature room at 20 ° C. by adjusting the temperature of the fluorine solution to 20 ° C. This change in the concentration of the fluorine solution was measured using an absorptiometer (DR. 1_80 £ 1_ 8 3 8_ 50) and a special reagent for this absorptiometer (LCK 3 2 3). And calculate the amount of anions adsorbed per gram of the hydrosite-like granular material. Adsorption amount.
[0065] また、 力 ドミゥムイオン及び鉛イオンの吸着固定化測定は、 次のような方 法で行う。 まず、 カ ドミウム (C d) を 2250 p pm (高濃度) 及び 1. 6 p pm (低濃度) 含む力 ドミゥム溶液と、 鉛 (P b) を 885 p pm (高 濃度) 及び 1. 1 7 p pm (低濃度) を含む鉛溶液をそれぞれ 1 0 Om I用 意する。 次に、 0. 1 w t %、 0. 5w t %、 1 w t %、 5w t %となるよ うに粉状のハイ ドロタルサイ ト様物質の添加量を調節する。 これをマグネチ ックスターラーで 1時間撹拌した後、 フィルタ一を用いて濾過する。 なお、 カ ドミウムイオン、 鉛イオンの吸着固定は、 20°Cの恒温室内で、 フッ素溶 液の温度を 20°Cに調整して行った。 このカ ドミウム溶液、 鉛溶液の濃度の 変化を、 吸光光度計 (D R. 1_八 0 £社製の1_八3八_50) とこの吸光 高度計の専用試薬として、 カ ドミウムには L CK308を、 鉛イオンには L CK306を用いて測定した (表 2参照) 。 また、 濾過により得られた残渣 (ハイ ド口タルサイ ト様物質) を X RD、 S EM ■ E DSにより測定した。  [0065] Further, the measurement of adsorption and fixation of force domum ions and lead ions is performed by the following method. First, a force dome solution containing 2250 p pm (high concentration) and 1.6 p pm (low concentration) of cadmium (C d) and 885 p pm (high concentration) of lead (P b) and 1. 1 7 Prepare 10 Om I lead solutions containing p pm (low concentration). Next, the amount of powdery hydrosite-like substance added is adjusted to 0.1 wt%, 0.5 wt%, 1 wt%, and 5 wt%. This is stirred for 1 hour with a magnetic stirrer and then filtered using a filter. Cadmium ions and lead ions were adsorbed and fixed in a constant temperature room at 20 ° C with the temperature of the fluorine solution adjusted to 20 ° C. Changes in the concentration of this cadmium solution and lead solution were measured using an absorptiometer (1_8_3_50 manufactured by Dr. 1_800) and a special reagent for this absorption altimeter. CK308 was measured using LCK306 as the lead ion (see Table 2). In addition, the residue (hydrated talcite-like substance) obtained by filtration was measured by XRD, SEM ■ EDS.
[0066] また、 ハイ ドロタルサイ ト様粒状体の形態安定性を観察するために、 透水 性を測定した。 ここで透水性とは、 ハイ ドロタルサイ ト様粒状体を充填した 円筒容器内に一定圧力で水を流した際の水の流れ易さを意味し、 ハイ ドロタ ルサイ ト様粒状体の形態が安定しているものは一定の透水性を示すが、 形態 が不安定で細かく砕けやすいハイ ドロタルサイ ト様粒状体の場合には、 時間 と共に水が流れにくくなり透水性が低くなる。 本実施例では、 透水性の評価 を次のようにして測定した。 まず、 高さ 250mm、 内径が 9 Ommである 円筒容器 (接触部) の底部に、 直径 5 mmの孔を 7 mmピッチで配置した P MMA目皿 (補強板) を配置し、 更にその下部に直径 0. 36mmの孔を有 する P Pメッシュ 40 {フィルタ一 (定置手段) } を配置し、 この容器内に ハイ ドロタルサイ ト様粒状体を 1 k g充填した。 ハイ ドロタルサイ ト様粒状 体の粒度は 2〜4. 75mmに調製したものを用いた。 次に、 水頭差 4mの 水をこの円筒容器内の下部から上部に 1 2時間流し、 水の流量を計測して透 水性を測定した。 この際、 透水性の大きいものから順に大、 中、 小として表 1に示した。 [0066] In order to observe the morphological stability of the hydrophobic site-like granular material, water permeability was measured. Here, water permeability means the ease of water flow when water is flowed at a constant pressure in a cylindrical container filled with hydrotalcite-like granules, and the shape of the hydrousite-like granules is stable. However, in the case of a hydrolytic site-like granule that is unstable in shape and easily crushed, water becomes difficult to flow over time and the water permeability decreases. In this example, the water permeability was measured as follows. First, a PMMA plate (reinforcement plate) with holes of 5 mm in diameter arranged at a pitch of 7 mm is placed at the bottom of a cylindrical container (contact part) with a height of 250 mm and an inner diameter of 9 Omm. A PP mesh 40 {filter one (stationary means)} having a hole with a diameter of 0.36 mm was placed, and 1 kg of hydrotalcite-like granular material was filled in this container. The hydrotalcite-like granule was prepared to a particle size of 2 to 4.75 mm. Next, water with a head difference of 4 m was allowed to flow from the lower part to the upper part of this cylindrical container for 12 hours, and the water flow rate was measured to measure the water permeability. At this time, it is indicated as large, medium and small in order of increasing water permeability. Shown in 1.
[0067] 供試材 1 [0067] Specimen 1
結晶子サイズが 20 nm以下、 平均結晶子サイズが 1 0 n mで、 化学式が [Mg533AI267 (OH) J [CI 2.67 - 4H20] であるハイ ドロタルサイ ト様物質を含む 含水率が約 63%の材料を、 室温で一週間自然乾燥し、 ハイ ドロタルサイ ト 様粒状体を製造した。 この供試材 1の吸着量と透水性の変化を表 1に示す。 Crystallite size 20 nm or less, in the 1 0 nm average crystallite size, chemical formula [Mg 533 AI 267 (OH) J [CI 2 67 -. 4H 2 0] water content including high Dorotarusai bets like substances is About 63% of the material was air-dried at room temperature for a week to produce hydrotalcite-like granules. Table 1 shows the amount of adsorption and the change in water permeability of this test material 1.
[0068] 供試材 2 [0068] Specimen 2
結晶子サイズが 20 nm以下、 平均結晶子サイズが 1 0 n mで、 化学式が [Mg533AI267 (OH) J [CI 2.67 - 4H20] であるハイ ドロタルサイ ト様物質を含む 含水率が約 63%の材料を、 温度が 50°Cの乾燥炉内で 24時間乾燥し、 ハ ィ ドロタルサイ ト様粒状体を製造した。 この供試材 2の吸着量と透水性の変 化を表 1に示す。 Crystallite size 20 nm or less, in the 1 0 nm average crystallite size, chemical formula [Mg 533 AI 267 (OH) J [CI 2 67 -. 4H 2 0] water content including high Dorotarusai bets like substances is About 63% of the material was dried in a drying oven at a temperature of 50 ° C for 24 hours to produce a hydrotalcite-like granule. Table 1 shows the amount of adsorption and the change in water permeability of Sample 2.
[0069] 供試材 3 [0069] Specimen 3
結晶子サイズが 20 nm以下、 平均結晶子サイズが 1 0 n mで、 化学式が [Mg533AI267 (OH) J [CI 2.67 - 4H20] であるハイ ドロタルサイ ト様物質を含む 含水率が約 63 %の材料を、 温度が 1 00°Cの乾燥炉内で 24時間乾燥し、 ハイ ドロタルサイ ト様粒状体を製造した。 この供試材 3の吸着量と透水性の 変化を表 1に示す。 Crystallite size 20 nm or less, in the 1 0 nm average crystallite size, chemical formula [Mg 533 AI 267 (OH) J [CI 2 67 -. 4H 2 0] water content including high Dorotarusai bets like substances is About 63% of the material was dried in a drying oven at a temperature of 100 ° C for 24 hours to produce a hydrousite-like granule. Table 1 shows the changes in the amount of adsorption and water permeability of Sample 3.
[0070] 供試材 4 [0070] Specimen 4
結晶子サイズが 20 nm以下、 平均結晶子サイズが 1 0 n mで、 化学式が [Mg533AI267 (OH) J [Gl267■ 4H20] であるハイ ドロタルサイ ト様物質を含む 含水率が約 63 %の材料を、 温度が 1 00°Cの乾燥炉内で 24時間乾燥し、 ハイ ドロタルサイ ト様粒状体を製造した。 なお、 この乾燥は、 乾燥炉の換気 口を閉じ、 乾燥炉内の湿度が 1 00%に近い状態で行った。 この供試材 4の 吸着量と透水性の変化を表 1に示す。 Contains hydrotalcite-like substances with a crystallite size of 20 nm or less, an average crystallite size of 10 nm, and a chemical formula of [Mg 533 AI 267 (OH) J [Gl 267 ■ 4H 2 0] 63% of the material was dried in a drying furnace at a temperature of 100 ° C for 24 hours to produce a hydrotalcite-like granule. This drying was performed with the ventilation port of the drying furnace closed and the humidity in the drying furnace close to 100%. Table 1 shows the changes in the adsorption amount and water permeability of this test material 4.
[0071] 供試材 5 [0071] Specimen 5
結晶子サイズが 20 nm以下、 平均結晶子サイズが 1 0 n mで、 化学式が [Mg533AI267 (OH) J [CI 2.67 - 4H20] であるハイ ドロタルサイ ト様物質を含む 含水率が約 6 3 %の材料を、 温度が 1 2 5 °Cの乾燥炉内で 2 4時間乾燥し、 ハイ ドロタルサイ ト様粒状体を製造した。 この供試材 5の吸着量と透水性の 変化を表 1に示す。 Crystallite size 20 nm or less, an average crystallite size of 1 0 nm, the chemical formula [Mg 533 AI 267 (OH) J [CI 2 67 - including high Dorotarusai bets like substances is 4H 2 0]. A material having a water content of about 63% was dried in a drying furnace at a temperature of 125 ° C. for 24 hours to produce a hydrosite-like granular material. Table 1 shows the changes in the adsorption amount and water permeability of the specimen 5.
[0072] 供試材 6 (比較例) [0072] Specimen 6 (Comparative example)
結晶子サイズが 2 0 n m以下、 平均結晶子サイズが 1 0 n mで、 化学式が [Mg5 33A I 2 67 (OH) 16] [C I 2.67 - 4H20] であるハイ ドロタルサイ ト様物質の粉体 にバインダを添加し球状に成型した。 この供試材 6の吸着量を表 1に示す。 Crystallite size 2 0 nm or less, in the 1 0 nm average crystallite size, chemical formula [Mg 5 33 AI 2 67 ( OH) 16] - High Dorotarusai preparative like substances is [CI 2 67. 4H 2 0 ] A binder was added to this powder and molded into a spherical shape. Table 1 shows the amount of adsorption of this specimen 6.
[0073] [表 1 ] [0073] [Table 1]
Figure imgf000019_0001
Figure imgf000019_0001
[0074] 2]  [0074] 2]
Figure imgf000019_0002
Figure imgf000019_0002
[0075] 表 1より、 本発明に係るハイ ドロタルサイ ト様粒状体 (供試材 1ないし 5 ) は、 バインダを用いて球状体にした供試材 6に比較してフッ素イオンの吸 着量が高い。  [0075] Table 1 shows that the hydrotalcite-like granule according to the present invention (samples 1 to 5) has a fluorine ion adsorption amount as compared to the sample material 6 formed into a spherical body using a binder. high.
[0076] また、 表 1より、 換気を行わずに比較的湿度の高い状態で乾燥を行った供 試材 4のハイ ドロタルサイ ト様粒状体が最も透水性の変化が小さく、 形態が 安定している。  [0076] Further, from Table 1, the hydrousite-like granular material of Specimen 4 which was dried in a relatively high humidity state without ventilation had the smallest change in water permeability and the form was stable. Yes.
[0077] また、 表 2より、 本発明に係るハイ ドロタルサイ ト様粒状体を構成する粉 状のハイ ドロタルサイ ト様物質は、 陽イオンである力 ドミゥムイオン、 鉛ィ オンの濃度を低減させることがわかる。 X R D測定によると、 カ ドミウムィ オンの吸着固定化試験後のハイ ドロタルサイ ト様物質には、 ハイ ドロタルサ ィ ト様物質以外の回折ピークは検出されなかった。 一方、 鉛イオンの吸着固 定化試験後のハイ ドロタルサイ ト様物質には、 ハイ ドロタルサイ ト様物質以 外に、 水酸化塩化鉛 (P b C I OH) の回折ピークが検出された。 また、 鉛 イオンの吸着固定化試験後のハイ ドロタルサイ ト様物質には、 鉛塩化物の生 成が確認されたが、 力 ドミゥムイオンの吸着固定化試験後のハイ ドロタルサ ィ ト様物質には、 力 ドミゥムイオンの化合物を観察することはできなかった 。 したがって、 力 ドミゥムイオンは、 ハイ ドロタルサイ ト様物質に吸着して いると考えられ、 鉛イオンは、 ハイ ドロタルサイ ト様物質が触媒的な働きを し、 水酸化塩化鉛 (P b C I OH) として、 固定化されたと考えられる。 こ の結果から、 本発明に係るハイ ドロタルサイ ト様粒状体は、 力 ドミゥムィォ ン、 鉛イオン等の陽イオンを吸着固定することがわかる。 [0077] Further, from Table 2, it is understood that the powdery hydrotalcite-like substance constituting the hydrotalcite-like granule according to the present invention reduces the concentration of cations, force domium ions and lead ions. . According to XRD measurement, cadmium No diffraction peaks other than those in the hydrotalcite-like substance were detected after the on-site adsorption immobilization test. On the other hand, a diffraction peak of lead hydroxide chloride (PbCIOH) was detected in the hydrotalcite-like substance after the lead ion adsorption and immobilization test, in addition to the hydrotalcite-like substance. In addition, the formation of lead chloride was confirmed in the hydrotalcite-like material after the lead ion adsorption and immobilization test. It was not possible to observe the compound of domium ion. Therefore, force domum ions are thought to be adsorbed on the hydrotalcite-like substance, and lead ions are immobilized as lead hydroxide chloride (PbCIOH), with the hydrotalcite-like substance acting as a catalyst. It is thought that From this result, it can be seen that the hydrophobic site-like granule according to the present invention adsorbs and fixes cations such as force dommyon and lead ions.
[0078] 次に、 本発明の液処理装置及びその液処理方法の実施例について説明する Next, examples of the liquid processing apparatus and the liquid processing method of the present invention will be described.
[0079] まず、 接触部としては、 底部に供給流路に接続される供給口が形成され、 底部と対向する天部に排出口が形成された高さが 25 Omm, 内径が 9 Om mである円筒容器を用いた。 この円筒容器 (接触部) の底部に、 補強板とし て直径 5 m mの孔が 7 m mピッチで形成された P M M A目皿を配置し、 更に その下部に定置手段として直径 0. 36 mmの孔を有する P Pメッシュ 40 (フィルター) を配置した。 また、 この円筒容器 (接触部) 内には、 供試材 4のハイ ドロタルサイ ト様粒状体を 5. 0 k g充填した。 この液処理装置に 、 供給口から液体を 1. 5 I /minの流量で供給し、 供給した液体のフッ素ィ オン濃度 (図 6中の実線) と排出口から排出された液体のフッ素イオン濃度 (図 6中の波線) からハイ ドロタルサイ ト様粒状体が吸着したフッ素イオン 濃度 (図 6中の一点鎖線) を測定した。 その結果を図 6に示す。 [0079] First, as the contact portion, a supply port connected to the supply channel is formed at the bottom, a discharge port is formed at the top facing the bottom, and the height is 25 Omm and the inner diameter is 9 Om. A cylindrical container was used. At the bottom of this cylindrical container (contact part), a PMMA pan with 5 mm diameter holes formed at a 7 mm pitch is placed as a reinforcing plate, and a 0.336 mm diameter hole is placed below it as a mounting means. PP mesh 40 (filter) with was placed. In addition, the cylindrical container (contact portion) was filled with 5.0 kg of the hydrotalcite-like granular material of Test Material 4. Liquid is supplied from the supply port to this liquid treatment device at a flow rate of 1.5 I / min. The fluorine ion concentration of the supplied liquid (solid line in Fig. 6) and the fluorine ion concentration of the liquid discharged from the discharge port From the wavy line in Fig. 6, the concentration of fluorine ions adsorbed by the hydrocyte-like granular material (dashed line in Fig. 6) was measured. The result is shown in Fig. 6.
[0080] フッ素の一律排水基準を 8 m g / I とすると、 8mg / I を超えるまでに 要した時間は約 1 4時間であり、 それまでのフッ素イオン吸着量の合計は 2 6, 91 6mg、 ハイ ド口タルサイ ト様粒状体 1 g当たりの吸着量は 5. 4 mgだった。 また、 試験開始後、 約 53時間経過時点でフッ素イオン及び硫 酸ィオンの吸着量がほぼ同時に 0となり、 フッ素ィォン及び硫酸ィオンに対 しハイ ドロタルサイ ト様粒状体が飽和した。 この時点でのフッ素イオン吸着 量は、 1 2. 1 mg/gであることが確認された。 [0080] If the uniform drainage standard for fluorine is 8 mg / I, the time required to exceed 8 mg / I is about 14 hours, and the total amount of fluorine ion adsorption up to that time is 26, 91 6 mg, Adsorbed amount per gram of hydrated talcite-like granule is 5.4 mg. In addition, after about 53 hours had passed since the start of the test, the adsorption amounts of fluorine ions and sulfate ions almost became 0 at the same time, and the hydrousite-like granular material was saturated with respect to fluoride ions and sulfate ions. It was confirmed that the amount of fluoride ion adsorbed at this point was 12.1 mg / g.
以上の結果より、 本発明の液処理装置および液処理方法は、 イオン交換性 能が高いことがわかる。  From the above results, it can be seen that the liquid treatment apparatus and the liquid treatment method of the present invention have high ion exchange performance.

Claims

請求の範囲 The scope of the claims
[1 ] 液体中のィォンを除去するための液処理装置であって、  [1] A liquid processing apparatus for removing ions in a liquid,
化学式が M2 xM3+ x (OH) 2 (A" x/n■ mH20で表されるハイ ドロタルサイ ト様物 質 (M2+は 2価の金属、 M3+は 3価の金属、 An-はァニオンを表す) と水とを少な くとも含む材料を、 前記ハイ ドロタルサイ ト様物質の脱水温度以下で乾燥さ せてなるハイ ドロタルサイ ト様粒状体と、 M 2 xM 3+ x (OH) 2 (A " x / n ■ Hydrocyte-like substance represented by mH 2 0 (M 2+ is a divalent metal, M 3+ is a trivalent metal A n − represents an anion) and a hydrotalcite-like granular material obtained by drying a material containing at least water and water at a temperature lower than the dehydration temperature of the hydrotalcite-like substance,
前記液体と前記ハイ ドロタルサイ ト様粒状体とを接触させるための接触部 と、  A contact portion for bringing the liquid into contact with the hydrophobic site-like granular material;
を具備することを特徴とする液処理装置。  A liquid processing apparatus comprising:
[2] 液体中のイオンを除去するための液処理装置であって、 [2] A liquid processing apparatus for removing ions in a liquid,
化学式が M2 XM3+ X (OH) 2 (A" x/n■ mH20で表されるハイ ドロタルサイ ト様物 質 (M2+は 2価の金属、 M3+は 3価の金属、 An-はァニオンを表す) を少なくとも 含む含水率が 7 0 %以下の材料を、 前記ハイ ドロタルサイ ト様物質の脱水温 度以下で乾燥させてなるハイ ドロタルサイ ト様粒状体と、 M 2 X M 3+ X (OH) 2 (A " x / n ■ Hydrocyte-like substance represented by mH 2 0 (M 2+ is a divalent metal, M 3+ is a trivalent A hydrousite-like granular material obtained by drying a material having a water content of at least 70% and containing at least a metal, An n- represents anion) at a temperature not higher than the dehydration temperature of the hydrotalcite-like substance,
前記液体と前記ハイ ドロタルサイ ト様粒状体とを接触させるための接触部 と、  A contact portion for bringing the liquid into contact with the hydrophobic site-like granular material;
を具備することを特徴とする液処理装置。  A liquid processing apparatus comprising:
[3] 前記ハイ ドロタルサイ ト様粒状体は、 前記乾燥を 9 0 °C以上 1 1 0 °C以下 で行うことにより製造されたものであることを特徴とする請求項 1又は 2記 載の液処理装置。 [3] The liquid according to claim 1 or 2, wherein the hydrophobic site-like granular material is produced by performing the drying at 90 ° C or higher and 110 ° C or lower. Processing equipment.
[4] 前記ハイ ドロタルサイ ト様粒状体は、 前記乾燥を、 雰囲気の水蒸気量が飽 和水蒸気量付近となる条件下で行うことにより製造されたものであることを 特徴とする請求項 1ないし 3のいずれかに記載の液処理装置。  [4] The hydrousite-like granule is produced by performing the drying under conditions where the amount of water vapor in the atmosphere is close to the amount of saturated water vapor. The liquid processing apparatus in any one of.
[5] 液体中のイオンを除去するための液処理装置であって、  [5] A liquid processing apparatus for removing ions in a liquid,
フッ素イオン (F -) の濃度が 1 1 6 m g / Iの 2 0 °Cに調節されたフッ素 溶液 1 0 0 0 m l にハイ ドロタルサイ ト様粒状体 1 0 gを添加し、 6 0分間 撹拌した際のフッ素イオン (F -) の吸着量が 8 m g / g以上である当該ハイ ドロタルサイ ト様粒状体と、 前記液体と前記ハイ ドロタルサイ ト様粒状体とを接触させるための接触部 と、 Add 10 g of hydrousite-like granular material to 100 ml of fluorine solution adjusted to 20 ° C with a concentration of fluoride ion (F-) of 110 mg / I, and stir for 60 minutes. A hydrousite-like granular material having an adsorption amount of fluorine ions (F-) of 8 mg / g or more, A contact portion for bringing the liquid into contact with the hydrophobic site-like granular material;
を具備することを特徴とする液処理装置。  A liquid processing apparatus comprising:
[6] 前記ハイ ドロタルサイ ト様粒状体は、 含水率が 1 0 %以上であることを特 徵とする請求項 1ないし 5のいずれかに記載の液処理装置。  [6] The liquid processing apparatus according to any one of [1] to [5], wherein the hydrous site-like granular material has a water content of 10% or more.
[7] 前記ハイ ドロタルサイ ト様粒状体は、 塩化物を含有することを特徴とする 請求項 1ないし 6のいずれかに記載の液処理装置。 [7] The liquid processing apparatus according to any one of [1] to [6], wherein the hydrophobic site-like granular material contains a chloride.
[8] 前記ハイ ドロタルサイ ト様粒状体は、 N a C I を含有することを特徴とす る請求項 1ないし 6のいずれかに記載の液処理装置。 [8] The liquid processing apparatus according to any one of [1] to [6], wherein the hydrousite-like granular material contains Na C I.
[9] 前記ハイ ドロタルサイ ト様粒状体は、 結晶子サイズが 2 0 n m以下である ハイ ドロタルサイ ト様物質から製造されたものであることを特徴とする請求 項 1ないし 8のいずれかに記載の液処理装置。 [9] The hydrotalcite-like granule according to any one of claims 1 to 8, wherein the hydrotalcite-like granule is produced from a hydrotalcite-like substance having a crystallite size of 20 nm or less. Liquid processing equipment.
[10] 前記ハイ ドロタルサイ ト様粒状体は、 陽イオンを吸着固定するものである ことを特徴とする請求項 1ないし 9のいずれかに記載の液処理装置。 [10] The liquid processing apparatus according to any one of [1] to [9], wherein the hydrophobic site-like granular material adsorbs and fixes cations.
[1 1 ] 前記ハイ ド口タルサイ ト様粒状体は、 粒径が 0 . 2 4 m m以上であること を特徴とする請求項 1ないし 1 0のいずれかに記載の液処理装置。 [1 1] The liquid processing apparatus according to any one of claims 1 to 10, wherein the particle size of the hydrated talcite-like granular material is 0.24 mm or more.
[12] 前記液体を流通させる共に前記ハイ ドロタルサイ ト様粒状体の流通を防止 する定置手段を具備することを特徴とする請求項 1ないし 1 1のいずれかに 記載の液処理装置。 [12] The liquid processing apparatus according to any one of [1] to [11], further comprising stationary means for circulating the liquid and preventing the flow of the hydrophobic site-like granular material.
[13] 前記定置手段は、 前記ハイ ドロタルサイ ト様粒状体を包持するネット状に 形成されることを特徴とする請求項 1 2記載の液処理装置。  13. The liquid processing apparatus according to claim 12, wherein the stationary means is formed in a net shape that encloses the hydrocyte-like granular material.
[14] 前記接触部を複数連結してなることを特徴とする請求項 1ないし 1 3のい ずれかに記載の液処理装置。 14. The liquid processing apparatus according to any one of claims 1 to 13, wherein a plurality of the contact portions are connected.
[15] 前記接触部内の液体をサンプリングするためのサンプリング流路を具備す ることを特徴とする請求項 1 4記載の液処理装置。 15. The liquid processing apparatus according to claim 14, further comprising a sampling channel for sampling the liquid in the contact portion.
[1 6] 前記接触部内のハイ ドロタルサイ ト様粒状体を撹拌する撹拌手段を具備す ることを特徴とする請求項 1ないし 1 5のいずれかに記載の液処理装置。 [16] The liquid processing apparatus according to any one of [1] to [15], further comprising a stirring unit that stirs the hydrophobic site-like granular material in the contact portion.
[1 7] 前記接触部に流す前記液体の流量を変化させる流量可変手段を具備するこ とを特徴とする請求項 1ないし 1 5のいずれかに記載の液処理装置。 [17] A flow rate varying means for changing a flow rate of the liquid flowing through the contact portion is provided. The liquid processing apparatus according to claim 1, wherein:
[18] 前記接触部に気体を供給する気体供給手段を具備することを特徴とする請 求項 1ないし 1 7のいずれかに記載の液処理装置。  [18] The liquid processing apparatus according to any one of [1] to [17], further comprising gas supply means for supplying gas to the contact portion.
[19] 液体中のィォンを除去するための液処理方法であって、  [19] A liquid processing method for removing ions in a liquid,
化学式が M2 xM3+ x (OH) 2 (A" x/n■ mH20で表されるハイ ドロタルサイ ト様物 質 (M2+は 2価の金属、 M3+は 3価の金属、 An-はァニオンを表す) と水とを少な くとも含む材料を、 前記ハイ ドロタルサイ ト様物質の脱水温度以下で乾燥さ せてなるハイ ドロタルサイ ト様粒状体と、 前記液体とを接触させることを特 徵とする液処理方法。 M 2 xM 3+ x (OH) 2 (A " x / n ■ Hydrocyte-like substance represented by mH 2 0 (M 2+ is a divalent metal, M 3+ is a trivalent metal , A n- represents anion) and a hydrousite-like granular material obtained by drying a material containing at least water and water at a temperature not higher than the dehydration temperature of the hydrotalcite-like substance, and the liquid This is a liquid processing method.
[20] 液体中のイオンを除去するための液処理方法であって、  [20] A liquid processing method for removing ions in a liquid,
化学式が M2 xM3+ x (OH) 2 (A" x/n■ mH20で表されるハイ ドロタルサイ ト様物 質 (M2+は 2価の金属、 M3+は 3価の金属、 An-はァニオンを表す) を少なくとも 含む含水率が 7 0 %以下の材料を、 前記ハイ ドロタルサイ ト様物質の脱水温 度以下で乾燥させてなるハイ ドロタルサイ ト様粒状体と、 前記液体とを接触 させることを特徴とする液処理方法。 M 2 xM 3+ x (OH) 2 (A " x / n ■ Hydrocyte-like substance represented by mH 2 0 (M 2+ is a divalent metal, M 3+ is a trivalent metal , A n- represents an anion), a hydrousite-like granular material obtained by drying a material having a water content of 70% or less containing at least the dehydrating temperature of the hydrotalcite-like substance, and the liquid The liquid processing method characterized by making contact.
[21 ] 前記ハイ ドロタルサイ ト様粒状体は、 前記乾燥を 9 0 °C以上 1 1 0 °C以下 で行うことにより製造されたものであることを特徴とする請求項 1 9又は 2 0記載の液処理方法。  [21] The hydrostatic site-like granule is produced by performing the drying at 90 ° C or higher and 110 ° C or lower. Liquid processing method.
[22] 前記ハイ ドロタルサイ ト様粒状体は、 前記乾燥を、 雰囲気の水蒸気量が飽 和水蒸気量付近となる条件下で行うことにより製造されたものであることを 特徴とする請求項 1 9ないし 2 1のいずれかに記載の液処理方法。  [22] The hydrousite-like granule is produced by performing the drying under a condition in which the amount of water vapor in the atmosphere is close to the amount of saturated water vapor. 2 The liquid processing method according to any one of 1.
[23] 液体中のイオンを除去するための液処理方法であって、  [23] A liquid processing method for removing ions in a liquid,
フッ素イオン (F -) の濃度が 1 1 6 m g / Iの 2 0 °Cに調節されたフッ素 溶液 1 0 0 0 m l にハイ ドロタルサイ ト様粒状体 1 0 gを添加し、 6 0分間 撹拌した際のフッ素イオン (F -) の吸着量が 8 m g / g以上である当該ハイ ドロタルサイ ト様粒状体と、 前記液体とを接触させることを特徴とする液処 理方法。  Add 10 g of hydrousite-like granular material to 100 ml of fluorine solution adjusted to 20 ° C with a concentration of fluoride ion (F-) of 110 mg / I, and stir for 60 minutes. A liquid treatment method comprising contacting the liquid with a hydrocyte-like granular material having an adsorption amount of fluorine ions (F −) of 8 mg / g or more.
[24] 前記ハイ ドロタルサイ ト様粒状体は、 含水率が 1 0 %以上であることを特 徵とする請求項 1 9ないし 2 3のいずれかに記載の液処理方法。 [24] The hydrousite-like granule has a water content of 10% or more. The liquid treatment method according to any one of claims 19 to 23, wherein the liquid treatment method is used.
[25] 前記ハイ ドロタルサイ ト様粒状体は、 塩化物を含有することを特徴とする 請求項 1 9ないし 2 4のいずれかに記載の液処理方法。 [25] The liquid treatment method according to any one of [19] to [24], wherein the hydrousite-like granular material contains a chloride.
[26] 前記ハイ ドロタルサイ ト様粒状体は、 N a C I を含有することを特徴とす る請求項 1 9ないし 2 4のいずれかに記載の液処理方法。 [26] The liquid treatment method according to any one of [19] to [24], wherein the hydrousite-like granular material contains Na C I.
[27] 前記ハイ ドロタルサイ ト様粒状体は、 結晶子サイズが 2 0 n m以下である ハイ ドロタルサイ ト様物質から製造されたものであることを特徴とする請求 項 1 9ないし 2 6のいずれかに記載の液処理方法。 [27] The hydrotalcite-like granule is produced from a hydrotalcite-like substance having a crystallite size of 20 nm or less. The liquid processing method as described.
[28] 前記ハイ ドロタルサイ ト様粒状体は、 陽イオンを吸着固定するものである ことを特徴とする請求項 1 9ないし 2 7のいずれかに記載の液処理方法。 [28] The liquid processing method according to any one of [19] to [27], wherein the above-mentioned hydrotalcite-like granular material adsorbs and fixes cations.
[29] 前記ハイ ド口タルサイ ト様粒状体は、 粒径が 0 . 2 4 m m以上であること を特徴とする請求項 1 9ないし 2 8のいずれかに記載の液処理方法。 [29] The liquid treatment method according to any one of [19] to [28], wherein the particle size of the hydrated talcite-like granular material is 0.24 mm or more.
[30] 前記液体を流通させると共に前記ハイ ドロタルサイ ト様粒状体の流通を防 止する定置手段を用いて前記液体を処理することを特徴とする請求項 1 9な いし 2 9のいずれかに記載の液処理方法。 [30] The liquid according to any one of claims 1 to 9 or 29, wherein the liquid is treated by using a stationary means that circulates the liquid and prevents the flow of the hydrophobic site-like granular material. Liquid processing method.
[31 ] 前記定置手段は、 前記ハイ ドロタルサイ ト様粒状体を包持するネット状に 形成されることを特徴とする請求項 3 0記載の液処理方法。 [31] The liquid treatment method according to claim 30, wherein the stationary means is formed in a net shape that encloses the hydrophobic site-like granular material.
[32] 前記ハイ ドロタルサイ ト様粒状体が配置されると共に、 前記液体と接触さ せるための接触部を複数連結し、 前記液体をこれらの接触部において前記ハ ィ ドロタルサイ ト様粒状体と順次接触させることを特徴とする請求項 1 9な いし 3 1のいずれかに記載の液処理方法。 [32] The hydrotalcite-like granule is disposed, and a plurality of contact portions for contacting the liquid are connected, and the liquid is sequentially brought into contact with the hydrosite-like granule at these contact portions. The liquid treatment method according to claim 1, wherein the liquid treatment method is performed.
[33] 前記ハイ ドロタルサイ ト様粒状体を撹拌しながら接触させることを特徴と する請求項 1 9ないし 3 2のいずれかに記載の液処理方法。 [33] The liquid treatment method according to any one of [19] to [32], wherein the hydrousite-like granular material is brought into contact with stirring.
[34] 前記ハイ ドロタルサイ ト様粒状体に接触させる際の前記液体の流量を変化 させることを特徴とする請求項 1 9ないし 3 2のいずれかに記載の液処理方 法。 [34] The liquid processing method according to any one of [19] to [32], wherein the flow rate of the liquid at the time of contacting with the hydrophobic site-like granular material is changed.
[35] 前記ハイ ドロタルサイ ト様粒状体と接触させる際に前記液体に気体を供給す ることを特徴とする請求項 1 9ないし 3 2のいずれかに記載の液処理方法。  [35] The liquid processing method according to any one of [19] to [32], wherein a gas is supplied to the liquid when contacting with the hydrophobic site-like granular material.
PCT/JP2007/001245 2006-11-17 2007-11-15 Liquid treating apparatus, and liquid treating method, using hydrotalcite-like granular substance WO2008059618A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008544072A JP5363817B2 (en) 2006-11-17 2007-11-15 Liquid processing apparatus and liquid processing method using hydrotalcite-like granular material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006311943 2006-11-17
JP2006-311943 2006-11-17

Publications (1)

Publication Number Publication Date
WO2008059618A1 true WO2008059618A1 (en) 2008-05-22

Family

ID=39401432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001245 WO2008059618A1 (en) 2006-11-17 2007-11-15 Liquid treating apparatus, and liquid treating method, using hydrotalcite-like granular substance

Country Status (2)

Country Link
JP (1) JP5363817B2 (en)
WO (1) WO2008059618A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121786A (en) * 2009-12-08 2011-06-23 Taki Chem Co Ltd Aqueous dispersion type colloidal solution and method for producing the same
JP2013112560A (en) * 2011-11-28 2013-06-10 Jdc Corp Layered double hydroxide particle group, method for producing the same, layered double hydroxide dispersion, and layered double hydroxide-added resin
JP2013226530A (en) * 2012-04-27 2013-11-07 Toshiba Corp Impurity adsorption method and adsorption apparatus
KR101556538B1 (en) 2014-11-28 2015-10-02 한국해양과학기술원 Method for removing phosphorus from contaminated water using magnetically separated particles isolated from soil
KR101733471B1 (en) * 2016-11-08 2017-05-10 (재)서해환경과학연구소 Layered-double-hydroxides having high fluoride ion removal efficient and methods of manufacturing the same, removal methods of fluoride ion
JP2017119256A (en) * 2015-12-28 2017-07-06 日本国土開発株式会社 Silica adsorbent and method for producing the same
WO2018124192A1 (en) * 2016-12-27 2018-07-05 日本国土開発株式会社 Layered double hydroxide molded body and method for manufacturing same
WO2021117275A1 (en) * 2019-12-12 2021-06-17 日本国土開発株式会社 Liquid filter and liquid treatment method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829478B1 (en) * 1970-12-30 1973-09-10
JPS4869780A (en) * 1971-12-25 1973-09-21
JPS62160185A (en) * 1986-01-08 1987-07-16 Kawasaki Heavy Ind Ltd Method and apparatus for estimating break-through time of activated carbon adsorbing tank
JPH07132284A (en) * 1993-11-09 1995-05-23 Fukai Toshiko Method for producing water having purifying activation action and device therefor
JPH0857471A (en) * 1994-08-24 1996-03-05 Nomura Micro Sci Co Ltd Water purifying apparatus for making pure water and packing of packing material for making pure water
JPH08281258A (en) * 1995-04-17 1996-10-29 Akai Electric Co Ltd Water purifying method and water purifier
JPH10263529A (en) * 1997-03-27 1998-10-06 Mitsubishi Materials Corp Waste liquid treating device
JP2000033387A (en) * 1998-07-22 2000-02-02 Sumitomo Chem Co Ltd Method for removing arsenic in water
JP2000176447A (en) * 1998-12-18 2000-06-27 Taiheiyo Cement Corp Water purifying tank and water purifying system using the same
JP2001269664A (en) * 2000-01-20 2001-10-02 Godo Shigen Sangyo Kk Treatment method of contaminant to make it almost insoluble
JP2005193167A (en) * 2004-01-08 2005-07-21 Sophia Co Ltd Drainage purification method and purification method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829478B1 (en) * 1970-12-30 1973-09-10
JPS4869780A (en) * 1971-12-25 1973-09-21
JPS62160185A (en) * 1986-01-08 1987-07-16 Kawasaki Heavy Ind Ltd Method and apparatus for estimating break-through time of activated carbon adsorbing tank
JPH07132284A (en) * 1993-11-09 1995-05-23 Fukai Toshiko Method for producing water having purifying activation action and device therefor
JPH0857471A (en) * 1994-08-24 1996-03-05 Nomura Micro Sci Co Ltd Water purifying apparatus for making pure water and packing of packing material for making pure water
JPH08281258A (en) * 1995-04-17 1996-10-29 Akai Electric Co Ltd Water purifying method and water purifier
JPH10263529A (en) * 1997-03-27 1998-10-06 Mitsubishi Materials Corp Waste liquid treating device
JP2000033387A (en) * 1998-07-22 2000-02-02 Sumitomo Chem Co Ltd Method for removing arsenic in water
JP2000176447A (en) * 1998-12-18 2000-06-27 Taiheiyo Cement Corp Water purifying tank and water purifying system using the same
JP2001269664A (en) * 2000-01-20 2001-10-02 Godo Shigen Sangyo Kk Treatment method of contaminant to make it almost insoluble
JP2005193167A (en) * 2004-01-08 2005-07-21 Sophia Co Ltd Drainage purification method and purification method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121786A (en) * 2009-12-08 2011-06-23 Taki Chem Co Ltd Aqueous dispersion type colloidal solution and method for producing the same
JP2013112560A (en) * 2011-11-28 2013-06-10 Jdc Corp Layered double hydroxide particle group, method for producing the same, layered double hydroxide dispersion, and layered double hydroxide-added resin
JP2013226530A (en) * 2012-04-27 2013-11-07 Toshiba Corp Impurity adsorption method and adsorption apparatus
KR101556538B1 (en) 2014-11-28 2015-10-02 한국해양과학기술원 Method for removing phosphorus from contaminated water using magnetically separated particles isolated from soil
JP2017119256A (en) * 2015-12-28 2017-07-06 日本国土開発株式会社 Silica adsorbent and method for producing the same
KR101733471B1 (en) * 2016-11-08 2017-05-10 (재)서해환경과학연구소 Layered-double-hydroxides having high fluoride ion removal efficient and methods of manufacturing the same, removal methods of fluoride ion
CN110325256A (en) * 2016-12-27 2019-10-11 日本国土开发株式会社 The filtering body and its manufacturing method of layered double-hydroxide are used
WO2018124191A1 (en) * 2016-12-27 2018-07-05 日本国土開発株式会社 Filtration body using layered double hydroxide and method for manufacturing said filtration body
WO2018124192A1 (en) * 2016-12-27 2018-07-05 日本国土開発株式会社 Layered double hydroxide molded body and method for manufacturing same
CN110352088A (en) * 2016-12-27 2019-10-18 日本国土开发株式会社 Layered double-hydroxide formed body and its manufacturing method
JPWO2018124191A1 (en) * 2016-12-27 2019-10-31 日本国土開発株式会社 Filtration body using layered double hydroxide and method for producing the same
JPWO2018124192A1 (en) * 2016-12-27 2019-11-14 日本国土開発株式会社 Layered double hydroxide molded body and method for producing the same
JP7042219B2 (en) 2016-12-27 2022-03-25 日本国土開発株式会社 Filter using layered double hydroxide and its manufacturing method
WO2021117275A1 (en) * 2019-12-12 2021-06-17 日本国土開発株式会社 Liquid filter and liquid treatment method
JPWO2021117275A1 (en) * 2019-12-12 2021-06-17
JP7309120B2 (en) 2019-12-12 2023-07-18 日本国土開発株式会社 Liquid filter and liquid treatment method

Also Published As

Publication number Publication date
JP5363817B2 (en) 2013-12-11
JPWO2008059618A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
AU2019201715B2 (en) Organic-inorganic composite material for removal of anionic pollutants from water and process for the preparation thereof
WO2008059618A1 (en) Liquid treating apparatus, and liquid treating method, using hydrotalcite-like granular substance
Taha et al. Multi-component adsorption of Pb (II), Cd (II), and Ni (II) onto Egyptian Na-activated bentonite; equilibrium, kinetics, thermodynamics, and application for seawater desalination
Karatas Removal of Pb (II) from water by natural zeolitic tuff: kinetics and thermodynamics
Li et al. Mechanism study on manganese (II) removal from acid mine wastewater using red mud and its application to a lab-scale column
JP5905669B2 (en) Hazardous material treatment material and method
EP1762545A1 (en) Hydrotalcite-like substance, process for producing the same and method of immobilizing hazardous substance
EP2180944A1 (en) Surface treated calcium carbonate and its use in waste water treatment
JP5201680B2 (en) Hydrotalcite-like granular material and method for producing the same
WO2007011770A1 (en) Methods of preparing a titanium oxide product
Li et al. A composite adsorbent of ZnS nanoclusters grown in zeolite NaA synthesized from fly ash with a high mercury ion removal efficiency in solution
TW201416328A (en) Harmful substance treatment material, preparation method thereof and harmful substance treatment method
Letshwenyo et al. Phosphorus removal from secondary wastewater effluent using copper smelter slag
WO2009152172A2 (en) Defluoridation of water
Petrović et al. Removal of trivalent chromium from aqueous solutions by natural clays: Valorization of saturated adsorbents as raw materials in ceramic manufacturing
Fang et al. Supercritical CO 2 assisted synthesis of sulfur-modified zeolites as high-efficiency adsorbents for Hg 2+ removal from water
US20200338526A1 (en) Sorbents from iron-rich and aluminium-rich starting materials
JP2009034564A (en) Adsorbent for substance x that ionizes in alkaline solution, and method for isolating the same
EP4319914A1 (en) Organic soil amendments with ions bound thereto for removing contaminants from aqueous streams
JP7177703B2 (en) Water purification device and water purification method using layered double hydroxide
Khazaei et al. Adsorption of EDTA from aqueous solution using HDTMA-modified zeolite
Acevedo-Macias et al. Tailoring CaCO3 microstructure to improve trace phosphate removal from water
Khademolhosseini et al. Lead absorption by nano-hydroxyapatite granules in a fixed-bed column
JP7196332B2 (en) Liquid handling method
JP6918323B1 (en) Granulation adsorbent and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828022

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008544072

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828022

Country of ref document: EP

Kind code of ref document: A1