WO2008055582A1 - Widerstand, insbesondere smd-widerstand, und zugehöriges herstellungsverfahren - Google Patents

Widerstand, insbesondere smd-widerstand, und zugehöriges herstellungsverfahren Download PDF

Info

Publication number
WO2008055582A1
WO2008055582A1 PCT/EP2007/009057 EP2007009057W WO2008055582A1 WO 2008055582 A1 WO2008055582 A1 WO 2008055582A1 EP 2007009057 W EP2007009057 W EP 2007009057W WO 2008055582 A1 WO2008055582 A1 WO 2008055582A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
resistance
support element
resistance element
connection parts
Prior art date
Application number
PCT/EP2007/009057
Other languages
English (en)
French (fr)
Inventor
Ulrich Hetzler
Original Assignee
Isabellenhütte Heusler Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38950785&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008055582(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to BRPI0720449-3A2A priority Critical patent/BRPI0720449A2/pt
Priority to PL07819122T priority patent/PL1941520T3/pl
Priority to MX2009000553A priority patent/MX2009000553A/es
Priority to JP2009541788A priority patent/JP5237299B2/ja
Priority to CN2007800252335A priority patent/CN101484952B/zh
Application filed by Isabellenhütte Heusler Gmbh & Co. Kg filed Critical Isabellenhütte Heusler Gmbh & Co. Kg
Priority to DE502007001025T priority patent/DE502007001025D1/de
Priority to EP07819122A priority patent/EP1941520B1/de
Priority to AT07819122T priority patent/ATE436077T1/de
Priority to US12/375,276 priority patent/US8013713B2/en
Priority to CA002654216A priority patent/CA2654216A1/en
Priority to KR1020087031564A priority patent/KR101371053B1/ko
Publication of WO2008055582A1 publication Critical patent/WO2008055582A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making

Definitions

  • Resistor in particular SMD resistor, and associated
  • the invention relates to a resistor, in particular an SMD resistor, as well as a corresponding manufacturing method according to the independent claims.
  • FIG 4 shows an exemplary embodiment of a conventional SMD resistor 1 (SMD: S_urface mounted device), which is sold by the applicant and in similar form, for example, in DE 43 39 551 Cl is described.
  • the known SMD resistor 1 has a plate-shaped metallic carrier 2, which may for example consist of copper.
  • an electrically insulating adhesive layer 3 is applied in the manufacture, with which then a resistive layer is glued to the top of the carrier 2.
  • the resistance layer is structured by etching, so that forms a maanderformig extending resistance track 4 at the top of the carrier 2.
  • the resistor 1 is then covered at the top by a protective lacquer 5 which electrically insulates the resistance track 4.
  • a transversely extending recess 6 is then introduced into the carrier 2, which divides the carrier 2 into two separate carrier elements 2.1, 2.2 and thereby prevents a direct current flow between the two carrier elements 2.1, 2.2.
  • the support elements 2.1, 2.2 in this case thus form the electrical connection parts of the SMD resistor 1, which can be soldered on solder pads 7, 8, as indicated schematically in the drawing by the arrows.
  • a disadvantage of the known SMD resistor 1 is the complicated electrical connection of the underlying support elements 2.1, 2.2 with the above-adhered resistance layer, which forms the resistance track 4.
  • a conductive surface must first be achieved (chemical through-connection) in preparation for a current-carrying, galvanically applied contacting on the outer edge of the adhesive layer 3, in order subsequently to apply a copper layer in a multi-stage galvanic process, which safely conducts the total current.
  • this contact is part of the current path through the SMD resistor and therefore also influences the resistance of the SMD resistor 1, which in the case of low-resistance configurations with a resistance value of less than 25 m ⁇ requires that the resistance compensation be performed on the isolated SMD resistor 1 whereas resistance matching on a multi-resistor benefit is excluded.
  • a further disadvantage of the known SMD resistor 1 is due to the incision 6 in the carrier 2, since the recess 6 for the mechanical stabilization of the SMD resistor 1 is filled with a lacquer or an epoxy resin which expands during the plating and for Bending of the SMD resistor 1 leads, wherein the bending is virtually frozen after the solidification of the solder and is retained in the finished component, at least as an optical defect.
  • This problem occurs especially when using lead-free solders that require a higher soldering temperature.
  • a certain paint volume is required to mechanically stabilize the SMD resistor 1 despite the incision 6, which in turn requires that the carrier 2 is relatively thick.
  • the carrier 2 must have a thickness of at least 0.5 mm, which limits the miniaturization of the SMD resistor 1. Regardless of the thickness of the carrier 2, the mechanical strength of the SMD resistor 1 due to the mechanical weakening is limited by the incision 6.
  • SMD resistor 1 Another disadvantage of the SMD resistor 1 is the high electroplating cost, which accounts for approximately 25% of the total production costs. These high electroplating costs result from the fact that the lateral re-contacting of the two support elements 2.1, 2.2 to the resistance track 4 must take over the full current flow, so that the requirements for the density and the effective cross section of the galvanically applied copper layer are relatively high. In addition, with low-ohmic resistance values, the influence of copper on the electrical properties is not completely negligible.
  • the support elements 2.1, 2.2 do not correspond to the usual standard dimensions of solder pads as connection parts, but have a much greater length. A shortening of the two support elements 2.1, 2.2 and thus a widening of the incision 6, however, would lead to a further mechanical and thermal weakening and is therefore not possible.
  • FIG. 5 shows another construction of a known SMD resistor 9 marketed by the Applicant, a similar construction also being described in EP 0 929 083 B1.
  • the SMD resistor 9 has a plate-shaped thin carrier 10 made of aluminum, wherein the carrier 10 in this design has no incision and thus no mechanical weakening.
  • At the bottom of the plate-shaped carrier 10 is an adhesive layer 11, a resistive layer 12th glued, the technically structured and forms a maanderformige resistance path.
  • strip-shaped copper contacts 13 are applied to the underside, which contact the strip-shaped connecting parts 14, 15 electrically.
  • the SMD resistor 9 in this construction at the top and at the bottom of a protective lacquer layer 16, 17.
  • An advantage of this construction of the SMD resistor 9 is first the fact that the carrier 10 has no mechanical weakening, so that the problems based thereon and described above are avoided.
  • connection parts 14, 15 and thus also the soldering points lie on the underside of the SMD resistor 9, where the solder points are not accessible to visual inspection.
  • lateral attachment of the solder pads is not possible with the SMD resistor 9 because the solder pads would otherwise make an undesirable electrical shunt across the electrically conductive carrier 10.
  • SMD resistor 9 Another disadvantage of the SMD resistor 9 is that the carrier 10 made of anodized aluminum is relatively hard and therefore reduces the lifetime of the used Sageblatts when separating the SMD resistor 9 by legends. Moreover, the rejection of the individual SMD resistors 9 from aluminum benefit, due to the low melting point of the aluminum compared to copper, leads to an interfering sawing ridge on the rejected SMD resistor 9.
  • Another conventional construction of an SMD resistor finally has a plate-shaped ceramic carrier, which carries on its upper side a structured resistance layer, wherein the resistance layer also forms a maanderformige resistance path.
  • the electrical contacting of the SMD resistor is carried out in this construction by Lotkappen of a chemicalleitfahigen, usually galvanically reinforced, solderable metal layer (eg nickel-chromium alloy), the Lotkappen in cross-section are U-shaped and the opposite narrow edges of the SMD Encase resistance-shaped cap.
  • the Lotkappen are hereby accessible laterally, so that when Festloten laterally visible Lotstellen arise that allow easy visual inspection of the solder joints.
  • a disadvantage of this construction is the fact that the carrier is made of ceramic and therefore compared to
  • Copper see Fig. 4
  • aluminum see Fig. 5
  • the resistance layer is in this case arranged on the upper side of the carrier, which leads to the above-described disadvantageous influences on the total resistance.
  • the object of the invention is to eliminate the disadvantages of the SMD resistor 9 by allowing a simple visual inspection of the solder joints.
  • the invention comprises the general technical teaching of arranging the connection parts exposed on the resistor laterally, so that the connection parts are visibly wettable laterally by a solder in order to allow a visual inspection of the respective solder connection.
  • the inventive resistor is preferably designed as an SMD resistor and allows a conventional surface mounting.
  • the invention is not limited to SMD resistors, but basically also includes other types of Widertand, for example, provide a conventional contact with solder pins.
  • the resistor according to the invention has a flat, metallic support element, which has good thermal conductivity and an adapted coefficient of thermal expansion due to its metallic material composition, which is advantageous during operation of the resistor according to the invention.
  • the resistor according to the invention has a flat resistance element made of a resistance material, wherein the resistance element is arranged on the underside of the flat carrier element.
  • a flat resistance element or carrier element is to be understood generally and is not limited to the mathematical-geometric definition of a surface.
  • this feature is preferably based on the fact that the lateral extent of the carrier element or of the resistance element is substantially greater than the thickness of the carrier element or resistance element.
  • this feature preferably also includes that the top side and the bottom side of the carrier element or resistance element each extend parallel to one another.
  • the support element and the resistance element are preferably flat, but also curved and curved shapes are possible for the support element and the resistance element.
  • the resistor according to the invention has at least two separate metallic connection parts, which electrically contact the resistance element and are partially arranged on the underside of the support element.
  • the connection parts are not completely arranged at the bottom, but are at least partially laterally free of the resistor, so that form the solid solders laterally visible Lotstellen that a simple visual inspection enable.
  • the metallic connecting parts preferably each extend laterally upwards on the resistor up to the metallic carrier element, where the connecting parts contact the carrier element and make electrical and thermal contact.
  • the connecting parts can each have a U-shaped transverse have cut and embrace the resistor at opposite edges each kappenformig, with a lateral metallization in the contact area is possible.
  • the metallic carrier element has only the function of a carrier and a heat conductor, whereas in the case of the inventive resistor the carrier element should not be a current conductor in order to avoid an undesired shunt across the metallic carrier element.
  • the metallic element Tragerele ⁇ Therefore, in the inventive resistor an incision, which divides the support element into at least two electrically isolated portions and a current flow via the support element between the two connecting parts is prevented.
  • the recess may be formed in the same manner as in the known SMD resistor according to Figure 4, in which the resistance layer is arranged at the top of the carrier.
  • the incision in the support element runs at least partially obliquely, for example V-shaped, W-shaped or maander-shaped.
  • V-shaped, W-shaped or maander-shaped Such a shaping of the incision in the support element advantageously leads to a greater mechanical stability of the resistance than in the case of a running incision.
  • connection parts are preferably matched in their size to standard solder pads, as a result of which the resistor according to the invention differs from the known SMD resistor according to FIG. 4, in which the connection parts have a substantially greater lateral extent.
  • the connecting parts therefore preferably have a lateral extent which is less than 30%, 20% or 15% of the distance between the two connecting parts.
  • a relative dimensioning of the connecting parts relative to the distance between the connection parts on the other hand excessively klei ⁇ NEN connection parts.
  • the strip-shaped connection parts can have a width in the range of 0.1-0, 3 mm (design 0402), 0.15-0, 40 mm (design 0603), 0.25-0.75 mm (design 1206) or 0.35- 0.85 mm (type 2512).
  • the resistance material of the resistor according to the invention preferably consists of a copper-manganese alloy, such as, for example, a copper-manganese-nickel alloy.
  • a copper-manganese alloy such as, for example, a copper-manganese-nickel alloy.
  • CuMn3 be used as a resistor material.
  • a nickel-chromium alloy in particular a nickel-chromium-aluminum alloy.
  • the resistance element may also consist of a copper-nickel alloy, such as CuNil5 or CuNiIO.
  • the invention is not limited to the abovementioned examples with regard to the resistance materials which can be used, but in principle can also be implemented with other resistance materials.
  • the resistor according to the invention preferably has a high degree of miniaturization.
  • the thickness of the resistor according to the invention may be less than 2 mm, 1 mm, 0.5 mm or even 0.3 mm.
  • the length of the resistor according to the invention may be less than 10mm, 5mm, 2mm or even less than 1mm.
  • the breadth of the invention By comparison, the resistance is preferably less than 5 mm, 2 mm or even less than 1 mm.
  • the carrier element preferably has a thickness which lies in the range of 0.05-0.3 mm.
  • solder resist a temperature-resistant insulating layer
  • solder resist is therefore preferably applied to the upper side of the support element and to the lower side of the support element in the resistor according to the invention.
  • connection parts preferably consist of a highly conductive material in order to achieve the lowest possible connection resistance.
  • the carrier element and / or the connecting parts are preferably made of a highly thermally conductive material in order to achieve effective heat removal from the resistance element.
  • the connection parts and / or the support element for this purpose may consist of copper or a copper alloy.
  • the individual connecting parts are preferably cap-shaped and can be U-shaped in cross-section, for example.
  • the U-shaped cross-section surrounds the upper leg of the connection part, the support member above, while the lower leg of the U-shaped connection part engages around the resistance element below.
  • the cap-shaped connecting parts are preferably provided in the closing part that the cap-shaped connecting parts not only surround the support element and / or the resistance element at the top or bottom, but also laterally. This is possible if the cap-shaped connection parts are only applied when the resistors are separated from the use within the scope of the manufacturing method according to the invention, since only then are the lateral cut surfaces of the isolated resistors exposed.
  • an adhesive layer is preferably arranged between the planar resistance element and the flat support element.
  • the adhesive layer fixes the planar resistance element on the underside of the support element.
  • the adhesive layer is electrically insulating and therefore prevents interfering electrical shunts on the metallic support element.
  • the planar resistance element is preferably structured in a medical or other manner (eg by laser processing) so that the resistance element has a simple rectangular or maander-shaped resistance path, as is the case with the known SMD resist described in the introduction - stood the case.
  • the resistor according to the invention advantageously enables low resistance values in the milliohm range, the resistance being less than 500m ⁇ , 200m ⁇ , 50m ⁇ , 30m ⁇ , 20m ⁇ , 10m ⁇ , 5m ⁇ or even less than 1m ⁇ .
  • the resistance element in the case of the resistor according to the invention is preferably complete is electrically insulated to the outside, if one disregards the connection parts.
  • the invention comprises not only the resistor according to the invention described above but also a corresponding manufacturing method in which the connection parts are attached to the resistor in such a way that the connection parts are exposed laterally and are visibly wettable by a solder. to allow a visual inspection of the respective soldering point.
  • the incision in the metallic support element described above can be produced, for example, in the context of the manufacturing method according to the invention, by etching technology or by laser processing.
  • the separation of the resistances by means of sawing, punching or laser cutting can be of use.
  • the invention advantageously allows a longer service life of the saw blade used, since copper is much softer than the anodized aluminum used in the known SMD resistor described above according to FIG.
  • the invention advantageously makes it possible to carry out a resistance compensation on a utility with a plurality of resistors that have not yet been isolated, so that after the separation of the resistors no resistance compensation is required.
  • FIG. 1 shows a perspective view of an SMD resistor according to the invention
  • FIGS. 2A-2G show various stages of manufacture of an SMD resistor according to the invention
  • FIG. 3 shows the production method according to the invention in FIG.
  • FIG. 4 shows the known SMD circuit described above.
  • Figure 5 is a perspective view of the well-known SMD resistor also described above.
  • the cross-sectional view in FIG. 1 shows an SMD resistor 18 according to the invention, which may have, for example, the 0604 design.
  • the SMD resistor 18 may have a thickness in the Y direction of e.g. 0.4mm.
  • the SMD resistor 18 has a plate-shaped carrier element 19 made of copper, wherein on the underside of the carrier element 19 by means of an adhesive layer 20 a resistance Layer 21 of a copper-manganese-nickel alloy (CuMnl2Ni) is glued.
  • the adhesive layer 20 effects a fixation of the resistance layer 21 on the underside of the plate-shaped carrier element 19.
  • the adhesive layer 20 is electrically insulating and therefore insulates the conductive carrier element 19 with respect to the resistance layer 21.
  • the SMD resistor 18 has laterally cap-shaped connection parts 22, 23, wherein the two connection parts 22, 23 surround the support element 19 and the resistance layer 21 at the top, sides and bottom.
  • the two connection parts 22, 23 thus contact the resistance layer 21 electrically, so that in the mounted state a current can flow via the two connection parts 22, 23 and the resistance layer 21.
  • Parts 19.1, 19.2 are electrically isolated from the incision 24 against each other.
  • the adhesive layer 20 between the resistive layer 21 and the plate-shaped support member 19 thus prevents in connection with the incision 24 interfering electrical shunts on the support member 19.
  • the support member 19 thus serves only as a mechanical support and heat dissipation, but not to the power line.
  • solder resist 25 is applied flatly to the upper side of the support element 19 between the two connection parts 22, 23.
  • a solder resist 26 is also flatly applied to the underside of the resistance layer 21 between the two connection parts 22, 23.
  • the resistance layer 21 is thus in the SMD resistor 18 except for the connection parts 22, 23 completely isolated to the outside.
  • FIGS. 2A-2G showing various intermediate stages of the SMD resistor 18 according to the invention.
  • the carrier element 19 is initially provided in the form of a copper foil, as shown in FIG. 2A.
  • the resistance layer 21 is then glued to the underside of the carrier element 19, wherein the bonding takes place by means of the adhesive layer 20, as can be seen from FIG. 2B.
  • Step S3 the incision 24 is then introduced into the carrier element 19, in order later to prevent an electrical shunt via the electrically conductive carrier element 19.
  • the generation of the incision 24 can take place, for example, by medical technology or by laser processing.
  • Step S3 leads to the intermediate stage according to FIG. 2C.
  • step S4 a solder resist is then applied to the upper side of the support element 19, which is known per se.
  • step S5 an etching-technical structuring of the resistance layer 21 takes place, which then subsequently forms a maander-shaped resistance path.
  • step S6 the solder resist 26 is then applied to the underside of the resistive layer 21, as shown in FIG. 2D.
  • a stripe-shaped exposure of the carrier element 19 then takes place at the edges of the SMD resistor 18 which are opposite in the X direction, so that subsequently the connection parts 22, 23 can contact the carrier element 19 thermally.
  • the cross-sectional view m Figure 2E shows this state after the strip-like exposure of the support member.
  • a step S9 the deposition of a copper layer having a thickness of e.g. lO ⁇ m on the exposed edges of the resistive layer 21 at the bottom.
  • SlO then takes place at a benefit with numerous, not yet isolated SMD resistors a resistance balance.
  • the individual SMD resistors 18 are then separated from the use in a step S, which can be done by sawing, punching or laser machining.
  • FIG. 2G shows the SMD resistor 18 according to the invention on a printed circuit board 27 with two standard solder pads 28, 29 and two solder pads 30, 31. From the cross-sectional view it can be seen that the solder pads 30, 31 are located laterally on the PCB SMD resistor 18 are exposed and therefore a visual inspection are accessible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Details Of Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Secondary Cells (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Glass Compositions (AREA)
  • Organic Insulating Materials (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

Die Erfindung betrifft einen Widerstand (18), insbesondere einen SMD-Widerstand, mit einem flächigen, metallischen Trägerelement (19) mit einer Oberseite und einer Unterseite, einem flächigen Widerstandselement (21) aus einem Widerstandsmaterial, wobei das Widerstandselement (21) auf der Unterseite des Trägerelements (19) angeordnet ist, sowie mit mindestens zwei getrennten metallischen Anschlussteilen (22, 23), die das Widerstandselement (21) elektrisch kontaktieren und teilweise an der Unterseite des Trägerelements (19) angeordnet sind. Es wird vorgeschlagen, dass die Anschlussteile (22, 23) an dem Widerstand (18) seitlich frei liegen und seitlich sichtbar von einem Lot benetzbar sind. Weiterhin umfasst die Erfindung ein entsprechendes Herstellungsverfahren.

Description

BESCHREIBUNG
Widerstand, insbesondere SMD-Widerstand, und zugehöriges
Herstellungsverfahren
Die Erfindung betrifft einen Widerstand, insbesondere einen SMD-Widerstand, sowie ein entsprechendes Herstellungsverfahren gemäß den nebengeordneten Ansprüchen.
Figur 4 zeigt ein Ausfuhrungsbeispiel eines herkömmlichen SMD-Widerstands 1 (SMD: S_urface Mounted Device) , der von der Anmelderin vertrieben wird und in ahnlicher Form beispielsweise in DE 43 39 551 Cl beschrieben ist. Der bekannte SMD- Widerstand 1 weist einen plattenformigen metallischen Trager 2 auf, der beispielsweise aus Kupfer bestehen kann. Auf die Oberseite des Tragers 2 wird bei der Herstellung eine elektrisch isolierende Kleberschicht 3 aufgebracht, mit der dann eine Widerstandsschicht auf die Oberseite des Tragers 2 festgeklebt wird. Anschließend wird die Widerstandsschicht atztechnisch strukturiert, so dass sich an der Oberseite des Tragers 2 eine maanderformig verlaufende Widerstandsbahn 4 bildet. Der Widerstand 1 wird dann oben von einem Schutzlack 5 abgedeckt, der die Widerstandsbahn 4 elektrisch isoliert. Vor der Fertigstellung wird dann in den Trager 2 ein quer verlaufender Einschnitt 6 eingebracht, der den Trager 2 in zwei getrennte Tragerelemente 2.1, 2.2 aufteilt und dadurch einen direkten Stromfluss zwischen den beiden Tragerelementen 2.1, 2.2 verhindert. Die Tragerelemente 2.1, 2.2 bilden hierbei also die elektrischen Anschlussteile des SMD-Widerstands 1, die auf Lotpads 7, 8 aufgelotet werden können, wie in der Zeichnung durch die Pfeile schematisch angedeutet ist.
Nachteilig an dem bekannten SMD-Widerstand 1 ist die aufwen- dige elektrische Verbindung der unten liegenden Tragerelemente 2.1, 2.2 mit der oben aufgeklebten Widerstandsschicht, welche die Widerstandsbahn 4 bildet. Hierzu muss zunächst als Vorbereitung einer strombelastbaren, galvanisch aufgebrachten Kontaktierung auf der Außenkante der Kleberschicht 3 eine leitfahige Oberflache erreicht werden (chemische Durchkontak- tierung) , um anschließend in einem mehrstufigen galvanischen Prozess eine Kupferschicht aufzubringen, die den Gesamtstrom sicher leitet. Diese Kontaktierung ist jedoch Teil des Strompfads durch den SMD-Widerstand und beemflusst deshalb eben- falls den Widerstandswert des SMD-Widerstands 1, was bei nie- derohmigen Ausfuhrungen mit einem Widerstandswert von weniger als 25mΩ erfordert, dass der Widerstandsabgleich am vereinzelten SMD-Widerstand 1 erfolgen muss, wohingegen ein Widerstandsabgleich an einem Nutzen mit mehreren Widerstanden hierbei ausgeschlossen ist.
Em weiterer Nachteil des bekannten SMD-Widerstands 1 rührt von dem Einschnitt 6 in dem Trager 2 her, da der Einschnitt 6 zur mechanischen Stabilisierung des SMD-Widerstands 1 mit ei- nem Lack oder einem Epoxidharz gefüllt wird, der sich beim Aufloten ausdehnt und zur Verbiegung des SMD-Widerstands 1 fuhrt, wobei die Verbiegung nach der Erstarrung des Lötzinns quasi eingefroren wird und in dem fertigen Bauteil zumindest als optischer Mangel erhalten bleibt. Dieses Problem tritt insbesondere bei einer Verwendung bleifreier Lote auf, die eine höhere Lottemperatur erfordern. Darüber hinaus ist in dem Einschnitt 6 ein bestimmtes Lackvolumen erforderlich, um den SMD-Widerstand 1 trotz des Einschnitts 6 mechanisch zu stabilisieren, was wiederum voraussetzt, dass der Trager 2 relativ dick ist. In der Praxis muss der Trager 2 deshalb eine Dicke von mindestens 0,5mm aufweisen, was der Miniaturisierung des SMD-Widerstands 1 Grenzen setzt. Unabhängig von der Dicke des Tragers 2 ist die mechanische Belastbarkeit des SMD-Widerstands 1 aufgrund der mechanischen Schwächung durch den Einschnitt 6 begrenzt.
Ein weiterer Nachteil des SMD-Widerstands 1 sind die hohen Galvanik-Kosten, die ungefähr 25% der gesamten Fertigungskos- ten ausmachen. Diese hohen Galvanik-Kosten rühren daher, dass die seitlich Umkontaktierung von den beiden Tragerelementen 2.1, 2.2 zu der Widerstandsbahn 4 den vollen Stromfluss übernehmen muss, so dass die Anforderungen an die Dichte und den effektiven Querschnitt der galvanisch aufgebrachten Kup- ferschicht relativ hoch sind. Darüber hinaus ist bei nieder- ohmigen Widerstandswerten der Kupfereinfluss auf die elektrischen Eigenschaften nicht völlig vernachlassigbar .
Schließlich entsprechen die Tragerelemente 2.1, 2.2 als An- Schlussteile nicht den üblichen Standardabmessungen von Lot- pads, sondern weisen eine wesentlich größere Lange auf. Eine Verkürzung der beiden Tragerelemente 2.1, 2.2 und damit eine Verbreiterung des Einschnitts 6 wurde jedoch zu einer weiteren mechanischen und thermischen Schwächung fuhren und ist deshalb nicht möglich.
Figur 5 zeigt eine andere Bauweise eines bekannten SMD- Widerstands 9, der von der Anmelderin vertrieben wird, wobei eine ahnliche Bauweise auch in EP 0 929 083 Bl beschrieben ist. Der SMD-Widerstand 9 weist einen plattenformigen dünnen Trager 10 aus Aluminium auf, wobei der Trager 10 bei dieser Bauweise keinen Einschnitt und damit keine mechanische Schwächung aufweist. An der Unterseite des plattenformigen Tragers 10 ist mit einer Kleberschicht 11 eine Widerstandsschicht 12 festgeklebt, die atztechnisch strukturiert ist und eine maan- derformige Widerstandsbahn bildet. An den schmalen Stirnseiten des SMD-Widerstands 9 sind an der Unterseite streifenförmige Kupferkontaktierungen 13 aufgebracht, die streifenformi- ge Anschlussteile 14, 15 elektrisch kontaktieren. Schließlich weist der SMD-Widerstand 9 bei dieser Bauweise an der Oberseite und an der Unterseite eine Schutzlackschicht 16, 17 auf.
Vorteilhaft an dieser Bauweise des SMD-Widerstands 9 ist zunächst die Tatsache, dass der Trager 10 keine mechanische Schwächung aufweist, so dass die darauf beruhenden und vorstehend beschriebenen Probleme vermieden werden.
Nachteilig an dem SMD-Widerstand 9 ist jedoch die Tatsache, dass die Anschlussteile 14, 15 und damit auch die Lotstellen an der Unterseite des SMD-Widerstands 9 liegen, wo die Lotstellen keiner Sichtkontrolle zuganglich sind. Eine seitliche Anbringung der Lotstellen ist jedoch bei dem SMD-Widerstand 9 nicht möglich, da die Lotstellen andernfalls einen unerwünschten elektrischen Nebenschluss über den elektrisch leitenden Trager 10 herstellen wurden.
Ein weiterer Nachteil des SMD-Widerstands 9 besteht darin, dass der Trager 10 aus eloxiertem Aluminium relativ hart ist und deshalb beim Vereinzeln des SMD-Widerstands 9 durch Sagen die Standzeit des verwendeten Sageblatts herabsetzt. Darüber hinaus fuhrt das Absagen der einzelnen SMD-Widerstande 9 von einem Aluminium-Nutzen aufgrund des niedrigen Schmelzpunkts des Aluminiums im Vergleich zu Kupfer zu einem störenden Sagegrat an dem abgesagten SMD-Widerstand 9.
Schließlich verursacht die Aufbringung des Schutzlacks 6 auf der Oberseite des SMD-Widerstands 9 und die Beschriftung des SMD-Widerstands 9 materialbedingte Produktionsschwierigkei¬ ten.
Eine andere herkömmliche Bauweise eines SMD-Widerstands weist schließlich einen plattenformigen Keramiktrager auf, der an seiner Oberseite eine strukturierte Widerstandsschicht tragt, wobei die Widerstandsschicht ebenfalls eine maanderformige Widerstandsbahn bildet. Die elektrische Kontaktierung des SMD-Widerstands erfolgt bei dieser Bauweise durch Lotkappen aus einer hochleitfahigen, meist galvanisch verstärkten, lot- fahigen Metallschicht (z.B. Nickel-Chrom-Legierung) , wobei die Lotkappen im Querschnitt U-formig sind und die gegenüberliegenden schmalen Kanten des SMD-Widerstands kappenformig umgreifen. Die Lotkappen sind hierbei seitlich zuganglich, so dass beim Festloten seitlich sichtbare Lotstellen entstehen, die eine einfache Sichtkontrolle der Lotverbindungen ermöglichen .
Nachteilig an dieser Bauweise ist jedoch die Tatsache, dass der Trager aus Keramik besteht und deshalb im Vergleich zu
Kupfer (vgl. Fig. 4) oder Aluminium (vgl. Fig. 5) eine relativ geringe Wärmeleitfähigkeit und einen geringen, einer normalen Leiterplatte schlecht angepassten Wärmeausdehnungskoeffizient aufweist. Darüber hinaus ist die Widerstandsschicht hierbei auf der Oberseite des Tragers angeordnet, was zu den vorstehend beschriebenen nachteiligen Einflüssen auf den Gesamtwiderstand fuhrt.
Ähnliche Widerstände mit einem nicht-metallischen Tragerele- ment sind beispielsweise aus US 2004/0252009 Al und DE 30 27 122 Al bekannt.
Schließlich ist aus DE 196 46 441 Al ein Widerstand bekannt, bei dem jedoch die Anschlussteile ausschließlich an der Un- terseite angebracht sind, so dass keine Sichtkontrolle der Lotverbindung möglich ist.
Der Erfindung liegt deshalb, ausgehend von dem bekannten SMD- Widerstand 9 gemäß Figur 5, die Aufgabe zugrunde, die Nachteile des SMD-Widerstands 9 zu beseitigen, indem eine einfache Sichtkontrolle der Lotstellen ermöglicht wird.
Diese Aufgabe wird durch einen erfindungsgemaßen Widerstand bzw. ein erfmdungsgemaßes Herstellungsverfahren gemäß den nebengeordneten Ansprüchen gelost.
Die Erfindung umfasst die allgemeine technische Lehre, die Anschlussteile an dem Widerstand seitlich freiliegend anzu- ordnen, so dass die Anschlussteile seitlich sichtbar von einem Lot benetzbar sind, um eine Sichtkontrolle der jeweiligen Lotverbindung zu ermöglichen.
Der erfindungsgemaße Widerstand ist vorzugsweise als SMD- Widerstand ausgebildet und ermöglicht eine herkömmliche Oberflachenmontage. Die Erfindung ist jedoch nicht auf SMD- Widerstande beschrankt, sondern umfasst grundsätzlich auch andere Widertandstypen, die beispielsweise eine herkömmliche Kontaktierung durch Lotpins vorsehen.
Weiterhin weist der erfindungsgemaße Widerstand ein flachiges, metallisches Tragerelement auf, das aufgrund seiner metallischen Mateπalzusammensetzung eine gute Wärmeleitfähigkeit und einen angepassten Wärmeausdehnungskoeffizienten auf- weist, was im Betrieb des erfindungsgemaßen Widerstands vorteilhaft ist.
Darüber hinaus weist der erfindungsgemaße Widerstand ein flachiges Widerstandselement aus einem Widerstandsmaterial auf, wobei das Widerstandselement auf der Unterseite des flachigen Tragerelements angeordnet ist.
Der im Rahmen der Erfindung verwendete Begriff eines flachi- gen Widerstandselements bzw. Tragerelements ist allgemein zu verstehen und nicht auf die mathematisch-geometrische Definition einer Flache beschrankt. Vorzugsweise stellt dieses Merkmal jedoch darauf ab, dass die seitliche Ausdehnung des Tragerelements bzw. des Widerstandselements wesentlich großer ist als die Dicke des Tragerelements bzw. Widerstandselements. Darüber hinaus umfasst dieses Merkmal vorzugsweise auch, dass die Oberseite und die Unterseite des Tragerelements bzw. Widerstandselements jeweils parallel zueinander verlaufen. Ferner sind das Tragerelement und das Widerstands- element vorzugsweise eben, jedoch sind auch gekrümmte und gebogene Formgebungen für das Tragerelement und das Widerstandselement möglich.
Darüber hinaus weist der erfindungsgemaße Widerstand mindes- tens zwei getrennte metallische Anschlussteile auf, die das Widerstandselement elektrisch kontaktieren und teilweise an der Unterseite des Tragerelements angeordnet sind. Im Gegensatz zu dem eingangs beschriebenen bekannten SMD-Widerstand gemäß Figur 5 sind die Anschlussteile jedoch nicht vollstan- dig an der Unterseite angeordnet, sondern liegen zumindest teilweise seitlich an dem Widerstand frei, so dass sich beim Festloten seitlich sichtbare Lotstellen bilden, die eine einfache Sichtkontrolle ermöglichen.
Vorzugsweise reichen die metallischen Anschlussteile jeweils seitlich an dem Widerstand nach oben bis zu dem metallischen Tragerelement, wo die Anschlussteile das Tragerelement berühren und elektrisch und thermisch kontaktieren. Beispielsweise können die Anschlussteile jeweils einen U-formigen Quer- schnitt aufweisen und den Widerstand an gegenüberliegenden Kanten jeweils kappenformig umgreifen, wobei auch eine seitliche Metallisierung im Kontaktbereich möglich ist.
Das metallische Tragerelement hat jedoch bei dem erfindungs- gemaßen Widerstand nur die Funktion eines Tragers und eines Wärmeleiters, wohingegen das Tragerelement bei dem erfin- dungsgemaßen Widerstands kein Stromleiter sein soll, um einen unerwünschten Nebenschluss über das metallische Tragerelement zu vermeiden. Vorzugsweise weist das metallische Tragerele¬ ment deshalb bei dem erfindungsgemaßen Widerstand einen Einschnitt auf, der das Tragerelement in mindestens zwei elektrisch voneinander isolierte Teile aufteilt und einen Strom- fluss über das Tragerelement zwischen den beiden Anschluss- teilen verhindert. In der einfachsten Form kann der Einschnitt in der gleichen Weise ausgebildet sein wie bei dem bekannten SMD-Widerstand gemäß Figur 4, bei dem die Widerstandsschicht jedoch an der Oberseite des Tragers angeordnet ist. Vorzugsweise verlauft der Einschnitt in dem Tragerele- ment jedoch mindestens teilweise schräg, beispielsweise V- formig, W-formig oder maanderformig. Eine derartige Formgebung des Einschnitts in dem Tragerelement fuhrt vorteilhaft zu einer größeren mechanischen Stabilität des Widerstands als bei einem guer verlaufenden Einschnitt.
Weiterhin sind die Anschlussteile bei dem erfindungsgemaßen Widerstands vorzugsweise in ihrer Große an Standard-Lotpads angepasst, wodurch sich der erfindungsgemaße Widerstand von dem bekannten SMD-Widerstand gemäß Figur 4 unterscheidet, bei dem die Anschlussteile eine wesentlich größere seitliche Ausdehnung aufweisen. Bei dem erfindungsgemaßen Widerstand weisen die Anschlussteile deshalb vorzugsweise eine seitliche Ausdehnung auf, die kleiner ist als 30%, 20% oder 15% des Abstands zwischen den beiden Anschlussteilen . Bei einer extre- men Miniaturisierung des erfindungsgemaßen Widerstands fuhrt eine relative Bemessung der Anschlussteile relativ zu dem Abstand zwischen den Anschlussteilen dagegen zu übermäßig klei¬ nen Anschlussteilen. Als Maximalwerte für die seitliche Aus- dehnung der Anschlussteile können dann Grenzwerte von 1mm,
0,5mm oder 0,1mm vorgegeben werden. Beispielsweise können die streifenförmigen Anschlussteile eine Breite im Bereich von 0,1-0, 3mm (Bauform 0402), 0,15-0, 40mm (Bauform 0603), 0,25- 0,75mm (Bauform 1206) oder 0,35-0, 85mm (Bauform 2512) aufwei- sen.
Vorzugsweise besteht das Widerstandsmaterial des erfindungs- gemaßen Widerstands aus einer Kupfer-Mangan-Legierung, wie beispielsweise einer Kupfer-Mangan-Nickel-Legierung. Bei- spielsweise können die Legierungen CuMnl2Ni, CuMn7Sn oder
CuMn3 als Widerstandsmaterial eingesetzt werden. Alternativ besteht im Rahmen der Erfindung die Möglichkeit, dass als Wi¬ derstandsmaterial eine Nickel-Chrom-Legierung, insbesondere eine Nickel-Chrom-Aluminium-Legierung eingesetzt wird. Bei- spiele derartiger möglicher Legierungen sind NiCr20AlSilMnFe, NiCr6015, NiCr8020 und NiCr3020. Darüber hinaus kann das Widerstandselement auch aus einer Kupfer-Nickel-Legierung, wie beispielsweise CuNil5 oder CuNiIO, bestehen. Die Erfindung ist jedoch hinsichtlich der einsetzbaren Widerstandsmateria- lien nicht auf die vorstehend genannten Beispiele beschrankt, sondern grundsatzlich auch mit anderen Widerstandsmaterialien realisierbar .
Ferner ist zu erwähnen, dass der erfmdungsgemaße Widerstand vorzugsweise einen hohen Miniaturisierungsgrad aufweist. Beispielsweise kann die Dicke des erfindungsgemaßen Widerstands kleiner als 2mm, 1mm, 0,5mm oder sogar 0,3mm sein. Die Lange des erfindungsgemaßen Widerstands kann kleiner als 10mm, 5mm, 2mm oder sogar kleiner als lmm sein. Die Breite des erfin- dungsgemaßen Widerstands ist dagegen vorzugsweise kleiner als 5mm, 2mm oder sogar kleiner als 1mm.
Entsprechend weist das Tragerelement bei dem erfindungsgema- ßen Widerstand vorzugsweise eine Dicke auf, die im Bereich von 0,05-0, 3mm liegt.
Weiterhin ist zu erwähnen, dass der Widerstand an seiner Außenseite vorzugsweise mit einer temperaturbeständigen Isola- tionsschicht (im Folgenden allgemein als Lotstopplack bezeichnet) beschichtet ist, was von herkömmlichen SMD- Widerstanden bekannt ist. Der Lotstopplack ist deshalb bei dem erfindungsgemaßen Widerstand vorzugsweise auf die Oberseite des Tragerelements und auf die Unterseite des Wider- Standselements aufgebracht.
Darüber hinaus ist zu erwähnen, dass die Anschlussteile vorzugsweise aus einem hochleitfahigen Material bestehen, um einen möglichst geringen Anschlusswiderstand zu erreichen. Dar- über hinaus bestehen das Tragerelement und/oder die Anschlussteile bei dem erfindungsgemaßen Widerstand vorzugsweise aus einem thermisch hochleitfahigen Material, um eine effektive Warmeabfuhr von dem Widerstandselement zu erreichen. Beispielsweise können die Anschlussteile und/oder das Trager- element hierzu aus Kupfer oder einer Kupferlegierung bestehen.
Die einzelnen Anschlussteile sind vorzugsweise kappenformig und können im Querschnitt beispielsweise U-formig sein. Bei einem derartigen kappenformigen Anschlussteil mit einem
U-formigen Querschnitt umgreift der obere Schenkel des Anschlussteils das Tragerelement oben, wahrend der untere Schenkel des U-formigen Anschlussteils das Widerstandselement unten umgreift. Bei einem derartigen kappenformigen An- schlussteil ist vorzugsweise vorgesehen, dass die kappenfor- migen Anschlussteile das Tragerelement und/oder das Widerstandselement nicht nur oben bzw. unten umgreifen, sondern auch seitlich. Dies ist möglich, wenn die kappenformigen An- schlussteile erst dann aufgebracht werden, wenn die Widerstände im Rahmen des erfmdungsgemaßen Herstellungsverfahrens von dem Nutzen abgetrennt sind, da erst dann die seitlichen Schnittflachen der vereinzelten Widerstände frei liegen.
Ferner ist zu erwähnen, dass auch bei dem erfindungsgemaßen Widerstand vorzugsweise eine Kleberschicht zwischen dem flächigen Widerstandselement und dem flachigen Tragerelement angeordnet ist. Zum einen fixiert die Kleberschicht das flächige Widerstandselement an der Unterseite des Tragerelements. Zum anderen ist die Kleberschicht elektrisch isolierend und verhindert deshalb störende elektrische Nebenschlüsse über das metallische Tragerelement.
Weiterhin ist das flächige Widerstandselement bei dem erfin- dungsgemaßen Widerstand vorzugsweise atztechnisch oder in sonstiger Weise (z.B. durch Laser-Bearbeitung) strukturiert, so dass das Widerstandselement eine einfache rechteckige oder maanderformig verlaufende Widerstandsbahn aufweist, wie es auch bei den eingangs beschriebenen bekannten SMD-Wider- standen der Fall ist.
Der erfindungsgemaße Widerstand ermöglicht vorteilhaft niedrige Widerstandswerte im Milliohmbereich, wobei der Widerstand kleiner als 500mΩ, 200mΩ, 50mΩ, 30mΩ, 20mΩ, lOmΩ, 5mΩ oder sogar kleiner als lmΩ sein kann.
Weiterhin ist zu erwähnen, dass das Widerstandselement bei dem erfindungsgemaßen Widerstand vorzugsweise vollständig nach außen elektrisch isoliert ist, sofern man von den Anschlussteilen absieht.
Die Erfindung umfasst jedoch nicht nur den vorstehend be- schπebenen erfindungsgemaßen Widerstand, sondern auch ein entsprechendes Herstellungsverfahren, bei dem die Anschluss- teile an dem Widerstand so angebracht werden, dass die An- schlussteile seitlich frei liegen und seitlich sichtbar von einem Lot benetzbar sind, um eine Sichtkontrolle der jeweili- gen Lotstelle zu ermöglichen.
Der vorstehend beschriebene Einschnitt in dem metallischen Tragerelement kann im Rahmen des erfindungsgemaßen Herstellungsverfahren beispielsweise atztechnisch oder durch eine Laserbearbeitung hergestellt werden.
Das gleiche gilt für die Strukturierung des Widerstandselements zur Ausbildung der maanderformigen Widerstandsbahn, die ebenfalls atztechnisch oder durch Laserbearbeitung erfolgen kann.
Weiterhin ist zu dem erfindungsgemaßen Herstellungsverfahren zu erwähnen, dass die Vereinzelung der Widerstände durch Sagen, Stanzen oder durch Laserschneiden von einem Nutzen ver- folgen kann. Bei einer Fertigung des Tragerelements aus Kupfer ermöglicht die Erfindung vorteilhaft eine längere Standzeit des verwendeten Sageblattes, da Kupfer wesentlich weicher ist als das bei dem eingangs beschriebenen bekannten SMD-Widerstand gemäß Figur 5 verwendete eloxierte Aluminium.
Darüber hinaus ermöglicht die Erfindung vorteilhaft die Durchfuhrung eines Widerstandsabgleichs an einem Nutzen mit mehreren, noch nicht vereinzelten Widerstanden, so dass nach der Vereinzelung der Widerstände kein Widerstandsabgleich mehr erforderlich ist.
Andere vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet oder werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführungsbeispiele der Erfindung anhand der Figuren näher erläutert. Es zeigen:
Figur 1 eine Perspektivansicht eines erfindungsgemäßen SMD-Widerstands,
Figuren 2A-2G verschiedene Fertigungsstadien eines erfindungsgemäßen SMD-Widerstands,
Figur 3 das erfindungsgemäße Herstellungsverfahren in
Form eines Flussdiagramms,
Figur 4 den eingangs beschriebenen bekannten SMD-
Widerstand in einer Perspektivansicht, sowie
Figur 5 eine Perspektivansicht des ebenfalls eingangs beschriebenen bekannten SMD-Widerstands.
Die Querschnittsansicht in Figur 1 zeigt einen erfindungsge- mäßen SMD-Widerstand 18, der beispielsweise die Bauform 0604 haben kann. Dies bedeutet, dass der SMD-Widerstand 18 in X-Richtung eine Länge von 0,06 Zoll (1,524mm) und eine Breite in Z-Richtung von 0,04 Zoll (1,016mm) hat. Weiterhin kann der SMD-Widerstand 18 eine Dicke in Y-Richtung von z.B. 0,4mm ha- ben.
Der SMD-Widerstand 18 weist ein plattenförmiges Trägerelement 19 aus Kupfer auf, wobei an der Unterseite des Trägerelements 19 mittels einer Kleberschicht 20 eine Widerstands- Schicht 21 aus einer Kupfer-Mangan-Nickel-Legierung (CuMnl2Ni) festgeklebt ist. Zum einen bewirkt die Kleberschicht 20 eine Fixierung der Widerstandsschicht 21 an der Unterseite des plattenformigen Tragerelements 19. Zum anderen ist die Kleberschicht 20 elektrisch isolierend und isoliert deshalb das leitfahige Tragerelement 19 gegenüber der Widerstandsschicht 21.
Weiterhin weist der SMD-Widerstand 18 seitlich jeweils kap- penformige Anschlussteile 22, 23 auf, wobei die beiden Anschlussteile 22, 23 das Tragerelement 19 und die Widerstandsschicht 21 oben, seitlich und unten umgreifen. Die beiden Anschlussteile 22, 23 kontaktieren also die Widerstandsschicht 21 elektrisch, so dass im montierten Zustand ein Strom über die beiden Anschlussteile 22, 23 und die Widerstandsschicht 21 fließen kann.
In dem plattenformigen Tragerelement 19 befindet sich ein im wesentlichen V-formiger Einschnitt 24, der das Tragerele- ment 19 in zwei Teile 19.1, 19.2 aufteilt, wobei die beiden
Teile 19.1, 19.2 von dem Einschnitt 24 elektrisch gegeneinander isoliert werden. Die Kleberschicht 20 zwischen der Widerstandsschicht 21 und dem plattenformigen Tragerelement 19 verhindert also in Verbindung mit dem Einschnitt 24 störende elektrische Nebenschlüsse über das Tragerelement 19. Das Tragerelement 19 dient hierbei also lediglich als mechanischer Trager und zur Wärmeableitung, aber nicht zur Stromleitung.
Schließlich ist noch zu erwähnen, dass auf die Oberseite des Tragerelements 19 zwischen den beiden Anschlussteilen 22, 23 flachig ein Lotstopplack 25 aufgetragen ist. Darüber hinaus ist auch auf die Unterseite der Widerstandsschicht 21 zwischen den beiden Anschlussteilen 22, 23 flachig ein Lotstopplack 26 aufgetragen. Die Widerstandsschicht 21 ist also in dem SMD-Widerstand 18 bis auf die Anschlussteile 22, 23 voll- standig nach außen isoliert.
Im Folgenden wird nun anhand der Figuren 2A-2G und anhand des Flussdiagramms gemäß Figur 3 das erfindungsgemaße Herstellungsverfahren beschrieben, wobei die Figuren 2A-2G verschiedene Zwischenstadien des erfindungsgemaßen SMD-Widerstands 18 zeigen.
In einem ersten Schritt Sl des erfindungsgemaßen Herstellungsverfahren wird zunächst das Tragerelement 19 in Form einer Kupfer-Folie bereitgestellt, wie in Figur 2A dargestellt ist.
In einem weiteren Schritt S2 wird dann auf die Unterseite des Tragerelements 19 die Widerstandsschicht 21 aufgeklebt, wobei die Verklebung mittels der Kleberschicht 20 erfolgt, wie aus Figur 2B ersichtlich ist.
Im nächsten Schritt S3 wird dann der Einschnitt 24 in das Tragerelement 19 eingebracht, um spater einen elektrischen Nebenschluss über das elektrisch leitfahige Tragerelement 19 zu verhindern. Die Erzeugung des Einschnitts 24 kann beispielsweise atztechnisch oder durch eine Laserbearbeitung er- folgen. Der Schritt S3 fuhrt zu dem Zwischenstadium gemäß Figur 2C.
In dem Schritt S4 wird dann auf die Oberseite des Tragerelements 19 ein Lotstopplack aufgebracht, was an sich bekannt ist.
In einem weiteren Schritt S5 erfolgt dann eine atztechnische Strukturierung der Widerstandsschicht 21, die dann anschließend eine maanderformige Widerstandsbahn bildet. In dem Schritt S6 wird dann der Lotstopplack 26 auf die Unterseite der Widerstandsschicht 21 aufgebracht, wie aus Figur 2D ersichtlich ist.
In den nächsten Schritten S7 und S8 erfolgt dann eine streifenförmige Freilegung des Tragerelements 19 an den in X- Richtung gegenüberliegenden Kanten des SMD-Widerstands 18, damit anschließend die Anschlussteile 22, 23 das Tragerele- ment 19 thermisch kontaktieren können. Die Querschnittsansicht m Figur 2E zeigt diesen Zustand nach der streifenförmigen Freilegung des Tragerelements.
Anschließend erfolgt dann in einem Schritt S9 die Aufbringung einer Kupferschicht mit einer Dicke von z.B. lOμm auf die freiliegenden Kanten der Widerstandsschicht 21 an deren Unterseite .
Im nächsten Schritt SlO erfolgt dann an einem Nutzen mit zahlreichen, noch nicht vereinzelten SMD-Widerstanden ein Widerstandsabgleich .
Nach dem Widerstandsabgleich werden dann von dem Nutzen in einem Schritt Sil die einzelnen SMD-Widerstande 18 abge- trennt, was durch Zersägen, Stanzen oder durch Laserbearbeitung erfolgen kann.
In einem letzten Schritt S12 werden dann die Anschlussteile 22, 23 als Lotkappen auf die freigelegten Kanten aufge- bracht. Diese Aufbringung der Anschlussteile 22, 23 nach der Vereinzelung des SMD-Widerstands 18 ermöglicht es, dass die Anschlussteile 22, 23 das Tragerelement 19 auch seitlich an den Schnittflachen umgreifen, wie aus der Perspektivansicht in Figur 1 ersichtlich ist. Figur 2G zeigt schließlich den erfindungsgemaßen SMD-Wider- stand 18 auf einer Leiterplatte 27 mit zwei Standard-Lot- pads 28, 29 und zwei Lotstellen 30, 31. Aus der Querschnitts- ansieht ist ersichtlich, dass die Lotstellen 30, 31 seitlich an dem SMD-Widerstand 18 frei liegen und deshalb einer Sichtkontrolle zugänglich sind.
Die Erfindung ist nicht auf die vorstehend beschriebenen be- vorzugten Ausfuhrungsbeispiele beschrankt. Vielmehr ist eine Vielzahl von Varianten und Abwandlungen möglich, die ebenfalls von dem Erfindungsgedanken Gebrauch machen und deshalb in den Schutzbereich fallen.
Bezugszeichenliste
1 SMD-Widerstand
2 Trager
2. 1, 2.2 Tragerelemente
3 Kleberschicht
4 Widerstandsbahn
5 Schutzlack
6 Einschnitt
7 Lotpad
8 Lotpad
9 SMD-Widerstand
10 Trager
11 Kleberschicht
12 Widerstandsschicht
13 Kupferkontaktierungen
14 , 15 Anschlussteile
16 , 11 Schutzlackschicht
18 SMD-Widerstand
19 Tragerelement
19 .1, 19.2 Teile
20 Kleberschicht
21 WiderStandsSchicht
22 , 23 AnSchlussteile
24 Einschnitt
25 , 26 Lotstopplack
27 Leiterplatte
28 , 29 Standard-Lotpads
30 . 31 Lotstellen

Claims

ANSPRUCHE
1. Widerstand (18), insbesondere SMD-Widerstand, mit a) einem flächigen, metallischen Trägerelement (19) mit einer Oberseite und einer Unterseite, b) einem flachigen Widerstandselement (21) aus einem Widerstandsmaterial, wobei das Widerstandselement (21) auf der Unterseite des Trägerelements (19) angeordnet ist, c) mindestens zwei getrennten metallischen Anschlussteilen
(22, 23), die das Widerstandselement (21) elektrisch kontaktieren und teilweise an der Unterseite des Trä- gerelements (19) angeordnet sind, dadurch gekennzeichnet:, dass e) die Anschlussteile (22, 23) an dem Widerstand (18) seitlich frei liegen und seitlich sichtbar von einem Lot benetzbar sind.
2. Widerstand (18) nach Anspruch 1, dadurch gekennzeichnet, dass die metallischen Anschlussteile (22, 23) jeweils seitlich an dem Widerstand (18) nach oben bis zu dem metallischen Tragerelement (19) reichen und das Trägerelement (19) berühren und elektrisch und thermisch kontaktieren.
3. Widerstand (18) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Trägerelement (19) einen Einschnitt (24) aufweist, der das Trägerelement (19) in mindestens zwei elektrisch voneinander isolierte Teile (19.1, 19.2) aufteilt und einen Stromfluss über das Tragerelement (19) zwischen den beiden Anschlussteilen (22, 23) verhindert.
4. Widerstand (18) nach Anspruch 3, dadurch gekennzeichnet, dass der Einschnitt (24) in dem Tragerelement (19) mindestens teilweise schräg verlauft.
5. Widerstand (18) nach Anspruch 4, dadurch gekennzeichnet, dass der Einschnitt (24) in dem Tragerelement (19) V- formig, W-formig oder maanderformig verlauft.
6. Widerstand (18) nach einem der vorhergehenden Anspru- che, dadurch gekennzeichnet, a) dass die Anschlussteile (22, 23) eine seitliche Ausdehnung aufweisen, die kleiner ist als 30%, 20% oder 15% der seitlichen Ausdehnung des Widerstands (18), um die Kontaktierung von Standard-Lotpads (28, 29) zu erleich- tern, und/oder b) dass die Anschlussteile (22, 23) eine seitliche Ausdehnung aufweisen, die kleiner ist als lmm, 0,5mm oder 0,1mm, um die Kontaktierung von Standard-Lotpads (28, 29) zu erleichtern.
7. Widerstand (18) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Widerstandsmaterial eines der folgenden Materialien ist: a) Kupfer-Mangan-Legierung, insbesondere Kupfer-Mangan- Nickel-Legierung, insbesondere CuMnl2Ni, CuMn7Sn oder
CuMn3, b) Nickel-Chrom-Legierung, insbesondere Nickel-Chrom- Aluminium-Legierung, insbesondere NiCr20AlSilMnFe, NiCr6015, NiCr8020, NiCr3020, c) Kupfer-Nickel-Legierung, insbesondere CuNil5 oder Cu- NiIO.
8. Widerstand (18) nach einem der vorhergehenden Ansprüche, gekennzeichnet; durch a) eine Dicke von weniger als 2mm, lmm, 0,5mm oder 0,3mm, und/oder b) eine Lange von weniger als 10mm, 5mm, 2mm oder lmm, und/oder c) eine Breite von weniger als 5mm, 2mm oder lmm.
9. Widerstand (18) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Tragerelement (19) eine Dicke aufweist, die kleiner als 0,3mm und/oder großer als 0, 05mm ist .
10. Widerstand (18) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, a) dass das Tragerelement (19) an seiner Oberseite flachig mit einem Lotstopplack (25) beschichtet ist, und/oder b) dass das Widerstandselement (21) an seiner Unterseite flachig mit einem Lotstopplack (26) beschicht ist.
11. Widerstand (18) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, a) dass die Anschlussteile (22, 23) aus einem hochleitfa- higen Material bestehen, und/oder b) dass das Tragerelement (19) aus einem thermisch hoch- leitfahigen Material bestehen.
12. Widerstandselement (21) nach Anspruch 11, dadurch gekennzeichnet, a) dass die Anschlussteile (22, 23) aus Kupfer oder einer Kupferlegierung bestehen, und/oder b) dass das Tragerelement (19) aus Kupfer oder einer Kupferlegierung besteht.
13. Widerstand (18) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, a) dass die einzelnen Anschlussteile (22, 23) das Trager- element (19) oben und das Widerstandselement (21) unten kappenformig umgreifen, und/oder b) dass die einzelnen Anschlussteile (22, 23) das Tragerelement (19) und/oder das Widerstandselement (21) seitlich kappenformig umgreifen.
14. Widerstand (18) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Kleberschicht (20) zwischen dem Widerstandselement (21) und dem Tragerelement (19) .
15. Widerstand (18) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Widerstandselement (21) eine einfach rechteckige oder maanderformig verlaufende Widerstandsbahn aufweist.
16. Widerstand (18) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen Widerstandswert im Milliohm- bereich, insbesondere einen Widerstandswert von weniger als 500 mΩ, 200 mΩ, 50mΩ, 30mΩ, 20mΩ, lOmΩ, 5mΩ oder lmΩ.
17. Widerstand (18) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Widerstandselement (21) mit Ausnahme der Anschlussteile (22, 23) nach außen vollständig elektrisch isoliert ist.
18. Herstellungsverfahren für Widerstände, insbesondere für Widerstände nach einem der vorhergehenden Ansprüche, mit den folgenden Schritten: a) Bereitstellung eines flachigen, metallischen Tragerelements (19) mit einer Oberseite und einer Unterseite, b) Aufbringen eines flachigen Widerstandselements (21) aus einem Widerstandsmaterial auf die Unterseite des Tragerelements (19), c) Elektrische Kontaktxerung des Widerstandselements (21) durch mindestens zwei getrennte metallische Anschlussteile (22, 23), die teilweise an der Unterseite des Tragerelements (19) angeordnet werden, dadurch gekennzeichnet:, dass e) die Anschlussteile (22, 23) an dem Widerstand (18) so angebracht werden, dass die Anschlussteile (22, 23) seitlich frei liegen und seitlich sichtbar von einem Lot benetzbar sind.
19. Herstellungsverfahren nach Anspruch 18, gekennzeichnet durch folgenden Schritt:
Erzeugung eines Einschnitts (24) in dem Tragerelement (19), wobei der Einschnitt (24) das Tragerelement (19) in zwei Teile (19.1, 19.2) trennt und einen Stromfluss über das Tragerelement (19) zwischen den beiden Anschlussteilen (22, 23) verhindert.
20. Herstellungsverfahren nach Anspruch 19, dadurch gekennzeichnet, dass der Einschnitt (24) in dem Tragerelement (19) atztechnisch oder durch Laserbearbeitung hergestellt wird.
21. Herstellungsverfahren nach Anspruch 19 oder 20, dadurch gekennzeichnet, dass der Einschnitt (24) in dem Tragerelement
(19) mindestens teilweise schräg geformt wird, insbesondere V-formig, W-formig oder maanderformig.
22. Herstellungsverfahren nach einem der Ansprüche 18 bis 21, dadurch gekennzeichnet, dass das Widerstandselement (21) durch eine Kleberschicht (20) auf die Unterseite des Tragerelements (19) aufgeklebt wird.
23. Herstellungsverfahren nach einem der Ansprüche 18 bis 22, dadurch gekennzeichnet, dass das Widerstandselement (21) atztechnisch oder durch Laserbearbeitung strukturiert wird.
24. Herstellungsverfahren nach Anspruch 23, dadurch gekennzeichnet, dass durch die Strukturierung des Widerstandselements (21) eine maanderformige Widerstandsbahn in dem Widerstandselement (21) erzeugt wird.
25. Herstellungsverfahren nach einem der Ansprüche 18 bis 24, gekennzeichnet durch folgende Schritte: a) Flachiges Aufbringen eines Lotstopplacks (25) auf die Oberseite des Tragerelements (19), und/oder b) Flachiges Aufbringen eines Lotstopplacks (26) auf die Unterseite des Widerstandselements (21) .
26. Herstellungsverfahren nach Anspruch 25, gekennzeichnet durch folgende Schritte: a) Streifenförmige Entfernung des Lotstopplacks (25) an der Oberseite des Tragerelements (19) an zwei gegenüber liegenden Kanten, und/oder b) Streifenförmige Entfernung des Lotstopplacks (26) an der Unterseite des Widerstandselements (21) an den ge- genuber liegenden Kanten, und/oder c) Streifenförmige Entfernung der Klebeschicht (20) zwischen dem Tragerelement (19) und dem Widerstandselement (21) an den gegenüber liegenden Kanten, und/oder d) Streifenförmige Entfernung des Widerstandselements (21) an der Unterseite des Tragerelements (19) an den beiden gegenüber liegenden Kanten zur streifenförmigen Freilegung des Widerstandselements (21) für eine elektrische Kontaktierung .
27. Herstellungsverfahren nach einem der Ansprüche 18 bis 26, gekennzeichnet durch folgenden Schritt:
Vereinzelung der Widerstände (18) durch Trennung von einem Nutzen, der mehrere Widerstände (18) umfasst.
28. Herstellungsverfahren nach Anspruch 27, dadurch gekennzeichnet, dass das Vereinzeln der Widerstände (18) durch Sagen, Stanzen oder durch Laserschneiden des Nutzens erfolgt.
29. Herstellungsverfahren nach einem der Ansprüche 27 oder
28, gekennzeichnet durch folgenden Schritt:
Durchfuhrung eines Widerstandsabgleichs vor der Vereinzelung der Widerstände (18) .
30. Herstellungsverfahren nach einem der Ansprüche 27 bis
29, dadurch gekennzeichnet, dass die Anschlussteile (22, 23) nach dem Widerstandsabgleich und/oder nach dem Vereinzeln aufgebracht werden.
PCT/EP2007/009057 2006-12-20 2007-10-18 Widerstand, insbesondere smd-widerstand, und zugehöriges herstellungsverfahren WO2008055582A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020087031564A KR101371053B1 (ko) 2006-12-20 2007-10-18 Smd 저항 장치 및 그의 제조방법
PL07819122T PL1941520T3 (pl) 2006-12-20 2007-10-18 Opornik, w szczególności opornik SMD i przynależny sposób wytwarzania
MX2009000553A MX2009000553A (es) 2006-12-20 2007-10-18 Un resistor, particularmente un resistor smd y metodo de produccion asociado.
JP2009541788A JP5237299B2 (ja) 2006-12-20 2007-10-18 抵抗器(特にsmd抵抗器)及びその製造方法
CN2007800252335A CN101484952B (zh) 2006-12-20 2007-10-18 电阻器、尤其是smd电阻器以及相关制造方法
BRPI0720449-3A2A BRPI0720449A2 (pt) 2006-12-20 2007-10-18 Resistor e processo de produção de resistores
DE502007001025T DE502007001025D1 (de) 2006-12-20 2007-10-18 Widerstand, insbesondere smd-widerstand, und zugehöriges herstellungsverfahren
EP07819122A EP1941520B1 (de) 2006-12-20 2007-10-18 Widerstand, insbesondere smd-widerstand, und zugehöriges herstellungsverfahren
AT07819122T ATE436077T1 (de) 2006-12-20 2007-10-18 Widerstand, insbesondere smd-widerstand, und zugehöriges herstellungsverfahren
US12/375,276 US8013713B2 (en) 2006-12-20 2007-10-18 Resistor, particularly SMD resistor, and associated production method
CA002654216A CA2654216A1 (en) 2006-12-20 2007-10-18 Resistor, particularly an smd resistor, and associated production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006060387.7 2006-12-20
DE102006060387A DE102006060387A1 (de) 2006-12-20 2006-12-20 Widerstand, insbesondere SMD-Widerstand, und zugehöriges Herstellungsverfahren

Publications (1)

Publication Number Publication Date
WO2008055582A1 true WO2008055582A1 (de) 2008-05-15

Family

ID=38950785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/009057 WO2008055582A1 (de) 2006-12-20 2007-10-18 Widerstand, insbesondere smd-widerstand, und zugehöriges herstellungsverfahren

Country Status (13)

Country Link
US (1) US8013713B2 (de)
EP (1) EP1941520B1 (de)
JP (1) JP5237299B2 (de)
KR (1) KR101371053B1 (de)
CN (1) CN101484952B (de)
AT (1) ATE436077T1 (de)
BR (1) BRPI0720449A2 (de)
CA (1) CA2654216A1 (de)
DE (3) DE102006060387A1 (de)
ES (1) ES2329425T3 (de)
MX (1) MX2009000553A (de)
PL (1) PL1941520T3 (de)
WO (1) WO2008055582A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022113553A1 (de) 2022-05-30 2023-11-30 Isabellenhütte Heusler Gmbh & Co. Kg Herstellungsverfahren für einen elektrischen Widerstand

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105374478B (zh) * 2009-09-11 2018-04-20 乾坤科技股份有限公司 微电阻组件
TWM439246U (en) * 2012-06-25 2012-10-11 Ralec Electronic Corp Micro metal sheet resistance
TW201401305A (zh) * 2012-06-25 2014-01-01 Ralec Electronic Corp 微型金屬片電阻的量產方法
US20150076700A1 (en) * 2013-09-18 2015-03-19 Weng Foong Yap System-in-packages containing embedded surface mount devices and methods for the fabrication thereof
DE102015214407A1 (de) * 2015-07-29 2017-02-02 Robert Bosch Gmbh Vorrichtung zur Erfassung mindestens einer Eigenschaft eines Mediums und Verfahren zum Abgleich eines Signals der Vorrichtung
US10083781B2 (en) * 2015-10-30 2018-09-25 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
CN107112099B (zh) * 2015-12-22 2021-04-02 松下知识产权经营株式会社 电阻器
DE102016000751B4 (de) * 2016-01-25 2019-01-17 Isabellenhütte Heusler Gmbh & Co. Kg Herstellungsverfahren für einen Widerstand und entsprechende Herstellungsanlage
DE102016107931A1 (de) * 2016-04-28 2017-11-02 Epcos Ag Elektronisches Bauelement zur Einschaltstrombegrenzung und Verwendung eines elektronischen Bauelements
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation
JP7216602B2 (ja) * 2019-04-17 2023-02-01 Koa株式会社 電流検出用抵抗器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3705279A1 (de) * 1986-02-21 1987-08-27 Tdk Corp Widerstand in chip-form sowie verfahren zu dessen herstellung
EP0509582A2 (de) * 1991-04-16 1992-10-21 Koninklijke Philips Electronics N.V. SMD-Widerstand
DE4339551C1 (de) * 1993-11-19 1994-10-13 Heusler Isabellenhuette Widerstand in SMD-Bauweise und Verfahren zu seiner Herstellung sowie Leiterplatte mit solchem Widerstand
US5379016A (en) * 1993-06-03 1995-01-03 E. I. Du Pont De Nemours And Company Chip resistor
EP0841668A1 (de) * 1996-11-11 1998-05-13 Isabellenhütte Heusler GmbH KG Elektrischer Widerstand und Verfahren zu seiner Herstellung
EP0929083A1 (de) * 1998-01-08 1999-07-14 Matsushita Electric Industrial Co., Ltd Widerstand und sein Herstellungsverfahren

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3027122A1 (de) * 1980-07-17 1982-02-11 Siemens AG, 1000 Berlin und 8000 München Chip-widerstand
US4574263A (en) * 1980-09-24 1986-03-04 The Commonwealth Of Australia Infrared radiation detector
JPS57154102U (de) * 1981-03-24 1982-09-28
GB8403968D0 (en) * 1984-02-15 1984-03-21 Heraeus Gmbh W C Chip resistors
US5179366A (en) * 1991-06-24 1993-01-12 Motorola, Inc. End terminated high power chip resistor assembly
JP2000500295A (ja) * 1996-09-13 2000-01-11 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 薄膜抵抗及び薄膜抵抗用の抵抗材料
JP4047760B2 (ja) * 2003-04-28 2008-02-13 ローム株式会社 チップ抵抗器およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3705279A1 (de) * 1986-02-21 1987-08-27 Tdk Corp Widerstand in chip-form sowie verfahren zu dessen herstellung
EP0509582A2 (de) * 1991-04-16 1992-10-21 Koninklijke Philips Electronics N.V. SMD-Widerstand
US5379016A (en) * 1993-06-03 1995-01-03 E. I. Du Pont De Nemours And Company Chip resistor
DE4339551C1 (de) * 1993-11-19 1994-10-13 Heusler Isabellenhuette Widerstand in SMD-Bauweise und Verfahren zu seiner Herstellung sowie Leiterplatte mit solchem Widerstand
EP0841668A1 (de) * 1996-11-11 1998-05-13 Isabellenhütte Heusler GmbH KG Elektrischer Widerstand und Verfahren zu seiner Herstellung
EP0929083A1 (de) * 1998-01-08 1999-07-14 Matsushita Electric Industrial Co., Ltd Widerstand und sein Herstellungsverfahren

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022113553A1 (de) 2022-05-30 2023-11-30 Isabellenhütte Heusler Gmbh & Co. Kg Herstellungsverfahren für einen elektrischen Widerstand
WO2023232407A1 (de) 2022-05-30 2023-12-07 Isabellenhütte Heusler Gmbh & Co. Kg Herstellungsverfahren für einen elektrischen widerstand

Also Published As

Publication number Publication date
ATE436077T1 (de) 2009-07-15
CN101484952A (zh) 2009-07-15
MX2009000553A (es) 2009-01-28
BRPI0720449A2 (pt) 2014-01-21
PL1941520T3 (pl) 2009-12-31
US8013713B2 (en) 2011-09-06
KR101371053B1 (ko) 2014-03-10
CA2654216A1 (en) 2008-05-15
JP2010514171A (ja) 2010-04-30
DE502007001025D1 (de) 2009-08-20
CN101484952B (zh) 2011-03-30
DE202006020215U1 (de) 2008-02-21
EP1941520B1 (de) 2009-07-08
ES2329425T3 (es) 2009-11-25
JP5237299B2 (ja) 2013-07-17
KR20090096304A (ko) 2009-09-10
DE102006060387A1 (de) 2008-06-26
EP1941520A1 (de) 2008-07-09
US20090322467A1 (en) 2009-12-31

Similar Documents

Publication Publication Date Title
EP1941520B1 (de) Widerstand, insbesondere smd-widerstand, und zugehöriges herstellungsverfahren
DE4339551C1 (de) Widerstand in SMD-Bauweise und Verfahren zu seiner Herstellung sowie Leiterplatte mit solchem Widerstand
EP3262667B1 (de) Elektrischer anschlusskontakt fuer ein keramisches bauelement, keramisches bauelement, bauelementanordnung und verfahren zur deren herstellung
DE10116531B4 (de) Widerstand mit niedrigem Widerstandswert
DE102012013036B4 (de) Widerstand, insbesondere niederohmiger Strommesswiderstand, sowie Beschichtungsverfahren hierzu
EP3069582B1 (de) Leiterplatte mit wenigstens einem eingebetteten präzisionswiderstand
EP3929594B1 (de) Verfahren zur herstellung einer vorrichtung zur messung von stromstärken und vorrichtung zur messung von stromstärken
DE202008018126U1 (de) Lötanschlusselement
DE112009001287T5 (de) Widerstand
WO2006005435A1 (de) Schmelzsicherung für einen chip
DE102004021054A1 (de) Halbleiterbauelement
EP0841668B1 (de) Elektrischer Widerstand und Verfahren zu seiner Herstellung
DE2639979B2 (de) Halbleiterbaueinheit
EP1313109A2 (de) Oberflächenmontierbarer elektrischer Widerstand
EP1196747A1 (de) Vorrichtung zur hochtemperaturerfassung und verfahren zur herstellung derselben
EP0484756A2 (de) Widerstandsanordnung in SMD-Bauweise
WO2008022632A1 (de) Elektrisches bauelement, insbesondere messwiderstand sowie verfahren zur herstellung eines derartigen elektrischen bauelements
DE10103084A1 (de) Halbleitermodul und Verfahren zu seiner Herstellung
DE10329267A1 (de) Schaltungsanordnung mit Wärmeleitkörper
EP0144413A1 (de) Leiterplatte zum auflöten von integrierten miniaturschaltungen und verfahren zur herstellung von solchen leiterplatten
EP0357977B1 (de) Lötvorrichtung mit mindestens einer durch elekrische Widerstandswärme erhitzbaren Bügelelektrode
EP3200568A1 (de) Batteriebrücke und verfahren zum aktivieren einer elektronischen vorrichtung
EP1283528B1 (de) Niederohmiger elektrischer Widerstand und Verfahren zur Herstellung solcher Widerstände
DE102008044379A1 (de) Drahtbasierte Schaltungsvorrichtung und Verfahren zur Herstellung einer drahtbasierten Schaltungsvorrichtung
DE102022113553A1 (de) Herstellungsverfahren für einen elektrischen Widerstand

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780025233.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007819122

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07819122

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 2007819122

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2654216

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020087031564

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/000553

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2009541788

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12375276

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4248/CHENP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2009127742

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0720449

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090616