WO2008053756A1 - Polyester coating film for use in rubber laminate, rubber-polyester film laminate, process for production of the laminate, and composite material - Google Patents

Polyester coating film for use in rubber laminate, rubber-polyester film laminate, process for production of the laminate, and composite material Download PDF

Info

Publication number
WO2008053756A1
WO2008053756A1 PCT/JP2007/070701 JP2007070701W WO2008053756A1 WO 2008053756 A1 WO2008053756 A1 WO 2008053756A1 JP 2007070701 W JP2007070701 W JP 2007070701W WO 2008053756 A1 WO2008053756 A1 WO 2008053756A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
polyester film
film
polyester
laminate
Prior art date
Application number
PCT/JP2007/070701
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuya Ito
Katsufumi Kumano
Yuka Hirose
Katsuaki Kuze
Hirotoshi Kizumoto
Shinya Higasiura
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to JP2008542059A priority Critical patent/JP4905458B2/en
Publication of WO2008053756A1 publication Critical patent/WO2008053756A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a rubber laminated coated polyester film and a laminated body of the rubber laminated coated polyester film and rubber. More specifically, the present invention relates to a polyester film and rubber bonded with an adhesive or the like. It can be integrated directly without using an adhesive, the adhesive strength between the polyester film and rubber of the rubberized polyester film laminate is strong, and the durability of the adhesive strength is good, Further, the present invention relates to a laminated polyester film for rubber lamination and a laminated body of the coated polyester film for rubber lamination and rubber, which can obtain a laminated body with rubber having excellent moldability.
  • the present invention also relates to a method for producing the above rubber 'polyester film laminate, and more particularly, the present invention relates to an economical method for producing a rubber' polyester film laminate.
  • the present invention relates to a plastic molded article using the above rubber / polyester film laminate, and more specifically, it has excellent surface smoothness and surface decoration and generates less molding distortion during molding! /,
  • This article relates to plastic moldings that use fiber-reinforced composite materials as one of the constituent materials.
  • Rubber has excellent cushioning properties, and is therefore widely used in industry, and is used as a sealing material in the field.
  • a film made only of rubber is too flexible, so it is inferior in workability when it is incorporated in equipment and parts.
  • Polyester films are harder than rubber and have good dimensional stability, excellent workability when incorporated into devices and parts, and good slipperiness, so they are used in a wide range of fields.
  • the polyester film has low elasticity and sealing properties, the sealing material is not suitable as a cushioning material.
  • Patent Document 1 Kohei No. 10-53659
  • Patent Document 2 Kohei No. 10-58605
  • Patent Literature 3 Kohei No. 10-86282
  • Patent Document 4 Kohei No. 10-95071
  • Patent Document 5 JP-A-10-113934
  • Patent Document 6 Japanese Patent Laid-Open No. 10-226022
  • Patent Document 7 Japanese Patent Laid-Open No. 11-157010
  • Polyester film is excellent in heat resistance, dimensional stability, etc., and economical, and is suitable as a base film for a laminate with the rubber described above. And the laminated body which used this polyester film as a base film is disclosed. However, since the laminate disclosed in the patent document uses a general-purpose polyester film, the obtained rubber laminate is inferior in moldability!
  • the rubber laminate it may be used as a component of a molded body as a member of various molded bodies.
  • a rubber laminate as the member, distortion generated in the molding of the molded body can be relaxed using the elasticity of rubber.
  • the surface state of the molded body can be improved, and the The external force applied to the molded body during use of the molded body can be relaxed by the elasticity of the rubber, and for example, effects such as improving the durability of the molded body can be provided.
  • the rubber laminate requires high moldability, adhesion between the rubber and the polyester film in the rubber laminate, or high adhesion with the molding material, and adhesion. is there.
  • one of the above usage methods there is a case where a rubber laminate is used in combination with the surface of the above molded body, and one of the usage methods is a molded body with the polyester film side as the outermost layer.
  • the surface of the polyester film is used for printing, painting, or laminating a metal thin film or metal foil by vapor deposition or laminating.
  • the adhesiveness between the rubber and the polyester film decreases due to the solvent used in printing, painting and laminating.
  • the molded body may be used under severe conditions such as outdoor use, and excellent adhesion durability is required, such as maintaining the adhesion between rubber and polyester film even under such severe conditions. It is. Furthermore, strong adhesive strength and durability of adhesive strength are also required between the above printing inks and paints and polyester film.
  • the adhesive strength between the rubber and the polyester film of the rubber laminate obtained by the method disclosed in the above patent document is normally high, for example, in the presence of a solvent, high temperature, high humidity It has the subject that the durability of the adhesive force is inferior in such a severe environment.
  • Patent Document 8 Japanese Patent Laid-Open No. 2001-322167
  • Patent Document 9 Japanese Patent Laid-Open No. 2001-323081
  • the laminate according to the method disclosed in the above patent documents is excellent in moldability and meets some of the above requirements.
  • the method of the patent document has a problem that the polyester film and the rubber are laminated using an adhesive, which is disadvantageous in terms of economy. There may also be problems with adhesion and durability. Furthermore, depending on the type of adhesive, the moldability may be inferior.
  • Plastic moldings have been used in a wide range of fields.
  • molded products using fiber-reinforced composite materials are thin, lightweight, highly rigid, highly productive, and economical.
  • a molded body using a fiber reinforced composite material is a fiber reinforced resin sheet for thermoforming. Molded into various shapes by press molding, drawing, vacuum molding, or the like.
  • a method for producing the above-mentioned fiber reinforced resin sheet for thermoforming a method is known in which a thermoplastic resin sheet is laminated on the upper and lower sides of a fiber reinforced mat, and this is heated and pressed to impregnate the fiber reinforced mat with resin.
  • the reinforcing fibers float on the surface of the molded product, resulting in poor appearance.
  • reinforcing fibers float on the surface of the molded product, it will be an obstacle even if the surface is coated with paint. For this purpose, it is required to have a smooth surface on which a map is projected.
  • thermosetting resin is cured at the same time as forming with a press molding machine or the like. This method also has the same problems as described above.
  • thermoplasticity A fiber mat is not included in the surface layer of a fiber reinforced thermoplastic resin sheet composed of a resin and a fiber mat!
  • thermoplastic resin layer A method of laminating a thermoplastic resin layer (see Patent Document 11), at least a core layer composed of a fiber reinforced thermoplastic resin sheet A surface layer made of a thermoplastic resin sheet containing a crosslinking agent is laminated on one side, and this is heated and pressurized to heat-seal the core layer and the surface layer, and the thermoplastic resin layer of the surface layer is crosslinked with the crosslinking agent.
  • Method at least one side of a core layer made of a fiber reinforced thermoplastic resin sheet is made of ethylene-propylene rubber or attalononitrile tributadiene rubber.
  • a method of laminating the surface layer of the elastomer by thermal fusion (see Patent Document 13), and a low elastic modulus with a tensile elastic modulus of at least one side of the fiber reinforced plastic layer of 0.;
  • a method of disposing a high elastic modulus layer having a tensile elastic modulus of 1000 to 30000 MPa through the layer (see Patent Document 14) is disclosed.
  • Patent Document 10 JP-A-58-188649
  • Patent Document 11 Japanese Patent Laid-Open No. 63-214444
  • Patent Document 12 Japanese Patent Laid-Open No. 5-84737
  • Patent Document 13 Japanese Patent Laid-Open No. 5-155492
  • Patent Document 14 Japanese Unexamined Patent Publication No. 2006-51813
  • the present invention provides a rubber composite coated polyester film for obtaining a rubber 'polyester film laminate having high adhesion between a polyester film and rubber, excellent durability, and excellent moldability. And a method for producing the rubber / polyester film laminate. It is another object of the present invention to provide a plastic molded product having a smooth surface and a composite of the rubber and polyester film laminate.
  • this invention consists of the following structures.
  • a cross-linked polymer film with a thickness of 5 m or less is provided on at least one side of a polyester film having a degree of plane orientation of 0.005–0.15, and stretched by 10% in the longitudinal and width directions of the film Coated polyester noreinolem for rubber lamination, characterized by a long-time stress (25 ° C) of 20 to 200 MPa.
  • crosslinked polymer film comprises at least one resin selected from polyester, polyurethane and acrylic polymer.
  • the coated polyester film for rubber lamination according to 3 above which is at least one selected from a compound, a silane coupling agent, and a titanate coupling agent.
  • cross-linked polymer film includes a self-cross-linked one or more types of self-cross-linked polymers selected from the group consisting of self-cross-linked polyester, polyurethane and acrylic polymer.
  • Rubber 'polyester film laminate obtained by laminating rubber and a laminated polyester film for rubber lamination according to any one of 1 to 6 above.
  • the above-mentioned 8- which is obtained by laminating an uncrosslinked rubber layer on the surface of the crosslinked polymer film of a polyester film having a (25 ° C) of 20 to 200 MPa, and then crosslinking the uncrosslinked rubber layer.
  • the coated polyester film for rubber lamination of the present invention has a high moldability, and can directly bond the polyester film and the rubber layer without using an adhesive, so that the polyester film and the rubber layer having excellent moldability can be bonded. And a laminate can be obtained economically.
  • the coated polyester film for rubber lamination of the present invention is a thin cross-linked polymer film layer that improves the adhesion between the polyester film and the rubber layer, and eliminates the adhesive layer, so that the layer thickness is large. The deterioration of moldability caused by the adhesive layer can be avoided.
  • a laminate having high adhesion between the polyester film and the rubber layer and excellent adhesion durability can be obtained.
  • the rubber / polyester film laminate of the present invention has excellent moldability, for example, when used as a member for a plastic molded body, the moldability of the plastic molded body is not lowered. Furthermore, since the rubber / polyester film laminate of the present invention has a rubber layer laminated, for example, in the case of a composite used as a member of the plastic molded product, it occurs when the plastic molded product is molded. Since the strain can be relaxed by using the elasticity of the rubber layer, for example, the surface state of the plastic molded body can be improved, and the external force applied to the molded body in the use of the plastic molded body can be improved.
  • the polyester film laminate of the rubber polyester film of the present invention is laminated, it is easy to handle and has better properties than a single rubber layer product.
  • the rubber polyester film laminate of the present invention has excellent adhesion and adhesion durability between the rubber layer and the polyester film, for example, when used as a member for a plastic molding, Improves body durability.
  • the rubber / polyester film laminate of the present invention includes a form in which a crosslinked polymer film layer is formed on both sides of the coated polyester film. Even on the side opposite to the side on which the rubber layer is laminated, there is an advantage that, for example, adhesion to printing ink and adhesion durability can be improved. Therefore, when decorating the polyester film surface of the rubber 'polyester film laminate of the present invention by printing, painting or metal deposition, etc., the adhesion between the printing ink, paint, metal thin film, etc. and the polyester film And has the advantage of improved adhesion durability. Also
  • the method for producing a rubber / polyester film laminate of the present invention can produce a rubber / polyester film laminate having the above-mentioned properties economically and stably.
  • the plastic molded body of the present invention has the following characteristics because the rubber / polyester film laminate is used as a constituent member of the plastic molded body. (1) Since it is possible to reduce the strain generated in the molding of a plastic molded body by utilizing the elasticity of the rubber layer, for example, the surface condition of the plastic molded body can be improved and the strain generated during molding can be improved. In addition, the external force applied to the molded body in the use of the plastic molded body can be relaxed by the elasticity of the rubber layer. For example, the durability of the plastic molded body can be improved. it can.
  • polyester film laminate is laminated with the rubber polyester film laminate described above, it may be possible to improve the barrier properties such as gas-noirity of the plastic molding.
  • the adhesive strength between the coated polyester film and the rubber layer is high and the durability of the adhesive strength is excellent. It can be used with a force suitable for use as a structural member of a molded body that requires durability such as an outer plate.
  • the coated polyester film for rubber lamination of the present invention has a cross-linked polymer film having a thickness of 0.003-5 ⁇ m on at least one surface of a polyester film having a degree of plane orientation of 0.005-0.15.
  • the 10% elongation stress (25 ° C.) in the longitudinal and width directions of the film is 20 to 200 MPa.
  • the plane orientation degree of the polyester film in the present invention is 0.005 to 0.15.
  • the upper limit of the degree of surface orientation is 0.15, and 0.14 is more preferable.
  • the degree of plane orientation is a physical property related to moldability, and the higher the degree of plane orientation, the more the molecular chains are arranged in the plane direction and the moldability decreases. Therefore, the degree of plane orientation is small The better the moldability.
  • the lower limit of the degree of plane orientation is more preferably 0.01, and more preferably 0.04. .
  • the degree of surface orientation of the polyester film is determined by the longitudinal refractive index (Nx), the width direction refractive index (Ny), and the thickness direction refractive index (Nz) of the film measured using an Abbe refractometer or the like. It is a value calculated from the following equation (1).
  • the thickness of the crosslinked polymer layer is 0.5 111 or less, the influence of the crosslinked polymer layer on the refractive index of the polyester-based substrate film is small.
  • the refractive index of the polyester base film can be measured, and the degree of plane orientation can be calculated.
  • the method for bringing the degree of plane orientation to the above range is not limited, but a biaxially stretched polyester is preferably used.
  • a method of force biaxial stretching, simultaneous biaxial stretching, sequential biaxial stretching, or even misalignment.
  • the method for producing the above-mentioned biaxially stretched polyester film is not particularly limited! /, For example, after drying the polyester as necessary, it is supplied to a known melt extruder and is then formed into a sheet from a slit-shaped die. Then, the sheet is brought into close contact with the casting drum by a method such as electrostatic application, cooled and solidified to obtain an unstretched sheet, and then the unstretched sheet is stretched.
  • a stretching method may be either simultaneous biaxial stretching or sequential biaxial stretching.
  • the unstretched sheet is stretched in the longitudinal direction and the width direction of the film and heat-treated to form a film having a desired plane orientation degree. The method to obtain is adopted.
  • the method for bringing the degree of plane orientation in the above-mentioned biaxially stretched polyester film is not limited, but, for example, a homopolyester resin such as polyethylene terephthalate or polyethylene naphthalate is used as a raw material to optimize the stretch ratio and heat setting temperature.
  • a homopolyester resin such as polyethylene terephthalate or polyethylene naphthalate is used as a raw material to optimize the stretch ratio and heat setting temperature.
  • the above method and the above method are combined by reducing the degree of plane orientation using a compounded resin in which a copolyester resin is blended as the polyester resin and the copolyester resin and the homopolyester resin. Methods and the like.
  • the stretching ratio of biaxial stretching is It is preferable to set 1 ⁇ 6 to 4 ⁇ 2 times in each direction, and more preferably 1 ⁇ 7 to 4 ⁇ 0 times. Particularly preferably, it is 1.8 to 3.2 times. In this case, the stretching ratio in the longitudinal direction and the width direction may be the same or larger. In addition, it is desirable that the stretching speed is 1000% / min to 20 0000% / min.
  • the stretching temperature may be any temperature as long as it is not less than the glass transition temperature of the polyester and not less than the glass transition temperature + 100 ° C. Force that can be used Preferably it is 80-; Further, a force for heat-treating the film after biaxial stretching.
  • This heat treatment can be performed by any conventionally known method such as in an oven or on a heated roll.
  • the heat treatment temperature can be any temperature between 120 ° C. and 245 ° C.
  • Force that can be applied S preferably 150 to 220 ° C.
  • the heat treatment time can be set arbitrarily.
  • the heat treatment time is 1 to 60 seconds.
  • the force and heat treatment may be performed while relaxing the film in the longitudinal direction and / or the width direction. Further, re-stretching may be performed once or more in each direction, and then heat treatment may be performed.
  • the heat treatment temperature is determined by the force S that can be confirmed by the peak temperature of the crystal melting sub-peak caused by the heat treatment observed by DSC.
  • the 10% elongation stress (25 ° C.) in the longitudinal direction and the width direction of the polyester film is 20 to 200 MPa.
  • the stress at 10% elongation (25 ° C.) is 20 to more preferably 180 MPa, and more preferably 20 to 160 MPa. If the stress at 10% elongation (25 ° C) is 20 MPa or more, the film can be prevented from being stretched or broken when the roll film is pulled and unwound. On the other hand, if the 10% elongation stress (25 ° C) is 200 MPa or less, the moldability can be secured. In particular, when using a mold with irregularities and depressions, the film before molding may be followed by lightly following those molds in advance. The design of good products will be good.
  • the thermal shrinkage in the longitudinal direction and the width direction at 150 ° C is preferably 0.01 to 5.0%.
  • the lower limit value of the heat shrinkage rate at 150 ° C. is more preferably 0.1%, and further preferably 0.5%.
  • the thermal shrinkage at 150 ° C The upper limit value is more preferably 4.5%, still more preferably 4.1%, and particularly preferably 3.2%. If the thermal shrinkage of the film in the longitudinal direction and the width direction at 150 ° C is 0.01% or more, productivity can be secured.
  • the thermal shrinkage rate of the film in the longitudinal direction and the width direction at 150 ° C is 5.0% or less, the heat force and the post-processing without causing deformation of the film even in the post-processing step. The appearance and design of the film will be good.
  • the haze of the polyester film is preferably 0 ⁇ ;! to 3 ⁇ 0%.
  • the lower limit of haze is preferably 0.3%, and more preferably 0.5%.
  • the upper limit of ⁇ is 2.5%, more preferably 2.0%.
  • ⁇ ⁇ If the film size is 0.1% or more, the film can be produced on an industrial scale with high normal productivity.
  • the haze of the film is 3.0% or less, the metal or printed surface becomes clear when the vapor-deposited or sputtered surface of metal or the printed surface is viewed from the back side of the film, ensuring good design. I can help.
  • This characteristic is an important characteristic in the development of applications in which the coated polyester film for rubber lamination according to the present invention is used as the outermost layer of a molded product and is decorated.
  • the surface roughness (Ra) of at least one side of the film should be 0.005-0.030 m. Is preferred.
  • the lower limit of Ra is more preferably 0.006 ⁇ m force S, and more preferably 0.007 ⁇ 111.
  • the upper limit of Ra is more preferably 0.025 ⁇ m, more preferably 0.015 ⁇ m. If Ra of at least one side of the film is 0.005 m or more, blocking will not cause film breakage when winding the film or unwinding the film once wound into a roll. .
  • Ra is not more than 0 ⁇ 03 m, defects such as protrusions do not occur in post-processing steps such as vapor deposition, sputtering, or printing, and design properties are ensured.
  • a method for producing a polyester film having the above-mentioned properties is not limited, but a preferred embodiment is carried out by the method exemplified below.
  • a raw material for the polyester film it is preferable to use a copolymer polyester containing 5 to 50 mol% of a copolymer component as the raw material.
  • a polyester film obtained by using a copolymer polyester containing 5 to 50 mol% of a copolymer component as a raw material has a slower crystallization rate and lower crystallinity than polyethylene terephthalate film.
  • the heat treatment zone has two stages (or more), and the first stage heat treatment temperature TS1 and the second stage heat treatment temperature TS2 are controlled within a specific range.
  • the crystallization of the film is promoted to some extent before the particles are buried inside the film in the first heat treatment zone, and the temperature is further increased in the second heat treatment zone.
  • the molecular mobility is sufficiently lowered, and the film has a low thermal shrinkage rate by further promoting the crystallinity while forming the protrusions on the surface.
  • the copolyester used for the polyester film for molding includes (a) a copolymer composed of an aromatic dicarboxylic acid component, ethylene glycol, and a darlicol component containing a branched aliphatic glycol or alicyclic darlicol. Polymerized polyester or (b) a copolymerized polyester composed of an aromatic dicarboxylic acid component containing terephthalic acid and isophthalic acid and a glycol component containing ethylene glycol is preferred.
  • the polyester force S constituting the biaxially oriented polyester film and further including a 1,3-propylpandiol unit or a 1,4 butanediol unit as a glycol component.
  • the polyester force S constituting the biaxially oriented polyester film and further including a 1,3-propylpandiol unit or a 1,4 butanediol unit as a glycol component.
  • the polyester force S constituting the biaxially oriented polyester film and further including a 1,3-propylpandiol unit or a 1,4 butanediol unit as a glycol component.
  • the polyester force S constituting the biaxially oriented polyester film and further including a 1,3-propylpandiol unit or a 1,4 butanediol unit as a glycol component.
  • the polyester force S constituting the biaxially oriented polyester film and further including a 1,3-propylpandiol unit or a 1,4 butanedio
  • a copolymerized polyester composed of an aromatic dicarboxylic acid component, ethylene glycol, and a darlicol component containing a branched aliphatic glycol or alicyclic glycol
  • the aromatic dicarboxylic acid component Terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid or their ester-forming derivatives are preferred, and the amount of terephthalic acid and / or naphthalene dicarboxylic acid component relative to the total dicarboxylic acid component is 70 mol% or more, preferably 85 mol. % Or more, particularly preferably 95 mol% or more, particularly preferably 100 mol%.
  • Examples of branched aliphatic glycols include neopentyl dallicol, 1,2-propanediol, 1,3-propanediol, and 1,4 butanediol.
  • Examples of the alicyclic glycol include 1,4-cyclohexanedimethanol and tricyclodecane dimethylol.
  • neopentyl glycol and 1,4-cyclohexanedimethanol are particularly preferred.
  • 1,3-propanediol or 1,4 butanediol is used as a copolymerization component in addition to the glycol component.
  • Use of these glycols as a copolymerization component is suitable for imparting the above-mentioned properties, and is also excellent in transparency and heat resistance, and improves adhesion to the adhesion modified layer. are also preferred.
  • the amount of ethylene glycol is the total amount of glycol. 70 mol% or more based component, preferably 85 mol% or more, particularly preferably 95 mol% or more, especially preferred properly is 100 mole 0/0.
  • the glycol component other than ethylene glycol the above-mentioned branched aliphatic daricool alicyclic dallicol or diethylene darlicol is suitable.
  • Examples of the catalyst used in the production of the above copolyester include, for example, alkaline earth metal compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, titanium / silicon composite oxides, and germanium compounds. Etc. can be used. Of these, titanium compounds, antimony compounds, germanium compounds, and aluminum compounds are preferred from the viewpoint of catalytic activity.
  • the copolymer polyester preferably has an intrinsic viscosity of 0.50 dl / g or more, more preferably 0.55 dl / g or more, and particularly preferably 0 from the viewpoints of moldability, adhesion, and film formation stability. More than 60dl / g. If the intrinsic viscosity is less than 0.50 dl / g, the moldability tends to decrease. In addition, when a filter for removing foreign substances is provided in the melt line, the upper limit of the intrinsic viscosity is preferably 1. Odl / g from the viewpoint of ejection stability during extrusion of the molten resin.
  • the melting point of the polyester film having the above characteristics is preferably 200 to 245 ° C from the viewpoint of heat resistance and moldability.
  • the melting point is a so-called differential. This is the endothermic peak temperature at the time of melting that is detected at the first temperature rise in scanning calorimetry (DSC).
  • DSC scanning calorimetry
  • the lower limit of the melting point is more preferably 210 ° C, particularly preferably 230 ° C. If the melting point is 200 ° C or higher, the heat resistance will not be deteriorated. Even when the rubber layer is cross-linked by thermal cross-linking, if the polyester film laminate is distorted, there will be no problems.
  • the polyester film has a light transmittance of 50% or less at a wavelength of 370 nm, preferably S, more preferably 40% or less, particularly preferably 30% or less.
  • a light transmittance of 50% or less at a wavelength of 370 nm, preferably S, more preferably 40% or less, particularly preferably 30% or less.
  • an ultraviolet absorber in any of the constituent layers of the polyester film.
  • the ultraviolet absorber any inorganic or organic one can be used as long as it can impart the above-mentioned characteristics.
  • organic ultraviolet absorbers include benzotozole, benzophenone, cyclic imino ester, and combinations thereof. From the viewpoint of heat resistance, benzotozole and cyclic iminoesters are preferred. When two or more kinds of ultraviolet absorbers are used in combination, ultraviolet rays having different wavelengths can be absorbed simultaneously, so that the ultraviolet absorption effect can be improved.
  • inorganic ultraviolet absorbers include ultrafine particles of metal oxides such as cerium oxide, zinc oxide, and titanium oxide.
  • Examples of the benzotriazole-based UV absorber include 2- [2'-hydroxy-5 '-(methacryloyloxymethinole) phenyl] 2H-benzotriazole, 2- [2'-hydroxy 5' ( Methacryloyloxychettinole) phenyl] 2H benzotriazole, 2- [2'-hydroxy 5 '(methacryloyloxypropynole) phenyl] 2H benzotriazole, 2— [2' hydroxy 5 '(methacryloyloxyhexyl) ) Phenyl] 2H-benzotriazole, 2- [2'-hydroxyl 3'- tert butyl 5 '-(methacryloyloxichetinole) phenyl] 2H benzotriazole, 2- [2'-hydroxy 5'-ter t-Butyl-3 '(methacryloyloxychettinole) phenyl] 2H benzotriazole
  • cyclic imino ester UV absorbers examples include 2,2 '-(1,4-phenylene) bis (4H—3,1-benzoxazine 1-on), 2-methyl 3,1-benzoxazine 1-on , 2 Butyl 3, 1-benzoxazine 1-on, 2 phenyl 3, 1-Benzoxazine 1-on, 2— (1— or 2 naphthyl) 3, 1-Benzoxazine 1-on, 2— (4 biphenyl 1) 1, 3-benzoxazine 1-on, 2-p 12 tropeninore 3, 1-benzoxazine 4-on, 2-m 2 trofenenole 3, 1-benzoxazine 4-on, 2-p benzoyl phenyl 3 , 1-Benzoxazin-4-one, 2-p methoxyphenylenolate 3, 1-Benzoxazine-4-one, 2- o methoxyphenyl-1,3,1-benzoxazine-4-one, 2 cyclohexyl 3,1-benzoxa
  • an ultraviolet absorber having a decomposition start temperature of 290 ° C or higher is used as the ultraviolet absorber. Preferred for reducing process contamination during film formation.
  • an ultraviolet absorber with a decomposition start temperature of 2 90 ° C or higher is used, the decomposed product of the ultraviolet absorber adheres to the rolls of the production equipment during film formation, and may reattach to the film or be damaged. As a result, it is possible to prevent an optical defect.
  • the upper limit of the melting point is preferably high from the viewpoint of heat resistance, but when the polyethylene terephthalate unit is the main component, if the melting point is 250 ° C or less, the moldability and transparency of the film should be ensured. Power S can be. Therefore, in order to obtain high moldability and transparency, it is preferable to control the upper limit of the melting point to 245 ° C.
  • the particles include internal particles having an average particle diameter of 0.01 to; lO ⁇ m, and external particles such as inorganic particles and / or organic particles. If the average particle diameter is 10 m or less, there will be no deterioration of the film, design and transparency. On the other hand, when the average particle size is 0.01 ⁇ m or more, it is possible to prevent the deterioration of handling such as slipping and winding of the finolem.
  • the average particle diameter of the particles is preferably a lower limit of 0 ⁇ 10 m from the viewpoint of handling properties such as slipperiness and winding property, and more preferably 0.50 m. On the other hand, when the upper limit is preferably 5 m, it is possible to reduce film defects due to good transparency and coarse protrusions. Especially preferably at 2 m is there.
  • the average particle size of the particles is such that at least 200 particles are photographed by electron microscopy, the contours of the particles are traced on an OHP film, and the trace image is converted into an equivalent circle diameter by an image analyzer. Convert and calculate.
  • Examples of the external particles include inorganic particles such as wet and dry silica, colloidal silica, aluminum silicate, titanium oxide, calcium carbonate, calcium phosphate, barium sulfate, alumina, mica, kaolin, clay, and hydroxyapatite.
  • Organic particles containing styrene, silicone, acrylic acid, etc. as constituent components can be used.
  • inorganic particles such as dry, wet and dry colloidal silica and alumina, and organic particles containing styrene, silicone, acrylic acid, methacrylic acid, polyester, dibutenebenzene and the like as constituent components are preferably used.
  • the content in a film of said particles 0.00 is preferably in the range of 1-10 mass 0/0!.
  • the content is 001% by mass or more, the handling property is not deteriorated such that the slipperiness of the film is deteriorated and winding becomes difficult.
  • the content is 10% by mass or less, formation of coarse protrusions, deterioration of film forming property and transparency can be prevented.
  • the particles contained in the film generally have a refractive index different from that of polyester, it causes a decrease in transparency of the film.
  • Molded products are often printed on the surface of the film before it is molded to enhance the design. Since such a printing layer is often applied to the back side of a molding film, it is desired that the transparency of the film is high from the viewpoint of printing clarity.
  • the main layer base film does not substantially contain particles, and only the surface layer having a thickness of 0.01 to 5 111 is used. It is effective to use a laminated film having a laminated structure containing particles.
  • the upper limit of the thickness of the surface layer is preferably 3 m, particularly preferably 1 m. In this case, the particles exemplified above can be used.
  • the above-mentioned film is substantially free of particles and has a thickness of 0. 0 ;! ⁇ 5 It is preferable to have a laminated structure in which particles are contained only in the surface layer. Note that it is difficult to obtain a film with a particle size of 3.0% or less just by incorporating particles in the film while maintaining handling properties.
  • the above film does not substantially contain particles, but if it is 30 ppm or less, particles may be added to the base film. I do not care.
  • substantially no particles are contained in the base film means, for example, in the case of inorganic particles, a content that is below the detection limit when inorganic elements are quantified by key X-ray analysis. Means. This is because contaminants derived from foreign substances may be mixed without intentionally adding particles to the base film.
  • the thin surface layer can be formed by a coating method or a coextrusion method.
  • a coating method the use of a composition comprising an adhesion modifying resin containing particles as a coating layer is preferable because the adhesion with the printing layer can be improved.
  • the adhesion modifying resin is preferably a resin comprising at least one selected from polyesters, polyurethanes, talyl polymers and / or copolymers thereof.
  • the particles to be contained in the surface layer it is possible to use the same particles as those described above.
  • silica particles, glass fillers, and silica-alumina composite oxide particles are particularly suitable from the viewpoint of transparency because the refractive index is relatively close to that of polyester.
  • the particle content in the surface layer is preferably in the range of 0.0;
  • the content is less than 01% by mass, the handling property is liable to deteriorate, for example, the slipperiness of the film deteriorates or the winding becomes difficult.
  • it exceeds 25% by mass transparency and coatability tend to deteriorate.
  • the polyester film can be made into a laminated structure by a known method using different types of polyester.
  • the form of the laminated film is not particularly limited, but for example, A / B, 2 types, 2 layers, B / A / B, 2 types, 3 layers, C / A / B, 3 types, 3 layers Examples of layered configurations
  • the polyester film is a biaxially stretched film. Biaxial stretching By the molecular orientation by the above, it is possible to control the thermal deformation rate of the film under the micro tension (initial load 49 mN) within a preferable range, and the solvent resistance and dimensional stability, which are disadvantages of the unstretched sheet, are improved. The This correspondence can improve the solvent resistance and heat resistance, which are disadvantages of the unstretched sheet, while maintaining good formability of the unstretched sheet.
  • the method for producing the polyester film is not particularly limited.
  • the polyester film is supplied to a known melt extruder, extruded into a sheet form from a slit die, and applied by a method such as electrostatic application.
  • An example is a method of biaxially stretching the unstretched sheet after it is brought into close contact with the casting drum, cooled and solidified to obtain an unstretched sheet.
  • the biaxial stretching method there is a method in which an unstretched sheet is stretched in the longitudinal direction (MD) and the width direction (TD) and heat treated to obtain a biaxially stretched film having a desired in-plane orientation degree.
  • MD longitudinal direction
  • TD width direction
  • the MD / TD method in which the film is stretched in the longitudinal direction and then stretched in the width direction
  • the TD / MD method in which the film is stretched in the width direction and then stretched in the longitudinal direction.
  • An axial stretching method and a simultaneous biaxial stretching method in which the longitudinal direction and the width direction are stretched almost simultaneously are desirable.
  • a tenter driven by a linear motor may be used.
  • a multi-stage stretching method in which stretching in the same direction is divided into multi-stages may be used.
  • the film stretching ratio for biaxial stretching is a force S of 1.6 to 4.2 times in the longitudinal direction and the width direction, preferably S, particularly preferably 1.7 to 4.0 times.
  • the stretching ratio in the longitudinal direction and the width direction may be either larger or the same ratio. More preferably, the stretching ratio in the longitudinal direction is 2.8 to 4.0 times, and the stretching ratio in the width direction is 3.0 to 4.5 times.
  • the stretching conditions for producing the polyester film for example, it is preferable to select the following conditions.
  • the stretching temperature is more preferably 50 to 110 ° C. and the stretching ratio is preferably 1.6 to 4.0 times so that the subsequent lateral stretching can be performed smoothly.
  • the stretching temperature when the stretching temperature is higher than appropriate conditions, the initial stress is reduced. The stress does not increase even if the stretching ratio is high. Therefore, the film has a low stress at 10% elongation at 25 ° C. Therefore, by taking the optimum stretching temperature, it is possible to obtain a highly oriented film while ensuring stretchability.
  • the stretching stress rapidly decreases as the stretching temperature is increased to eliminate the yield stress.
  • the orientation does not increase and the stress at 10% stretching at 25 ° C decreases.
  • the transverse stretching temperature is preferably set to the following conditions.
  • the preheating temperature is in the range of +10 + 50 ° C of the glass transition temperature when the mixture (raw material) after extruding the film material with an extruder is measured by DSC.
  • the stretching temperature is preferably 120 + 15 ° C with respect to the preheating temperature.
  • the stretching temperature is preferably 30 ° C. relative to the stretching temperature in the first half, and is preferably in the range of 10 ° C. to 20 ° C. relative to the stretching temperature in the first half.
  • the draw ratio of a horizontal direction shall be 2.55.0 times. As a result, it is possible to obtain a film satisfying the 10% elongation stress at 25 ° C. defined in the present invention.
  • the film is subjected to heat treatment (heat setting treatment).
  • This heat treatment condition is an important condition in order to achieve both the smoothness of the film and the surface roughness, that is, the film.
  • Ability to continue heat-treating the stretched film in the tenter In this case, it is important to perform the heat treatment in two or more stages.
  • the first stage heat treatment temperature (TS1) is -5 to -30 ° C of the second stage heat treatment temperature (TS2), the lower limit is preferably TS2-10 ° C, and the upper limit is preferably TS2-25 ° C. C.
  • the second stage heat treatment temperature (TS2) is the film material extruder
  • the mixture (original fabric) after extrusion at -5 is in the range of 5 to 35 ° C of the melting point as measured by DSC described later.
  • the lower limit of TS2 is preferably a melting point of 10 ° C
  • the upper limit of TS2 is preferably a melting point of 1 ° C. It is possible to provide an intermediate heat treatment zone between TS 1 and TS2, or to provide a heat treatment zone after TS2. In these cases, TS2 shows the highest heat treatment temperature. By taking such conditions, a film having a low haze and good sliding properties can be obtained.
  • a polyester film containing about 5 to 50 mol% of a copolymer component as in the present invention has a slower crystallization rate and lower crystallinity than a polyethylene terephthalate film. Therefore, if heat treatment is rapidly performed at a high temperature after stretching, the crystallinity in the heat treatment zone is low, and the mobility of molecules constituting the material is increased. Therefore, since the particles (particles in the film and / or particles in the coating layer) are raised in the stretching process, they are buried again in the heat treatment zone of the surface protrusion force. Can't get. Therefore, in order to wind up the film neatly, the content of particles is increased more than necessary, which causes a decrease in haze. On the other hand, if the temperature of TS2 is lower than the predetermined temperature, a film having a sufficiently low thermal shrinkage at 150 ° C. cannot be obtained.
  • the heat treatment zone has two stages (or more) allows TS 1 to promote crystallization of the film to some extent before the particles are embedded in the film, Furthermore, even if the temperature is raised sufficiently in the TS2 zone, the molecular mobility is sufficiently reduced compared to the state in the previous section, and the film has a low thermal shrinkage rate by further promoting crystallinity while forming protrusions on the surface. Is obtained. Also, prevent the addition of more particles than necessary with force S.
  • the film is formed on a clip that holds the film in the transverse stretching step. Becomes difficult to peel. Therefore, it is important to sufficiently cool the vicinity of the clip when the clip force S film is released at the tenter outlet.
  • the coated polyester film for rubber lamination of the present invention is formed by coating at least one surface of the polyester film with a crosslinked polymer layer having a thickness of 0.003 to 5 m.
  • a crosslinked polymer layer having a thickness of 0.003 to 5 m.
  • the thickness of the crosslinked polymer layer is more preferably 3 m or less; even more preferably 1 m or less, particularly preferably 0.5 m or less. By adjusting to 0.5 or less, adhesion durability between the polyester film and the rubber layer may be improved.
  • the polymer compound constituting the crosslinked polymer layer is not limited! /, But is preferably at least one resin selected from polyester, polyurethane and acrylic acid polymer.
  • the above resins may be used alone, or two or three different types may be used in combination! /.
  • the polyester resin has an ester bond in the main chain or side chain, and is obtained by polycondensation of dicarboxylic acid and a diol.
  • aromatic, aliphatic and alicyclic dicarboxylic acids and trivalent or higher polyvalent carboxylic acids can be used.
  • Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, orthophthalic acid, phthalic acid, 2,5 dimethyl terephthalic acid, 1,4 naphthalenedicarboxylic acid, biphenyldicarboxylic acid, 2,6 naphthalenedicarboxylic acid, 1,2 bisphenol.
  • shetan p, ⁇ ′-dicarboxylic acid, phenylindanedicarboxylic acid, or the like can be used.
  • these aromatic dicarboxylic acid powers preferably account for 30 mol% or more, more preferably 35 mol% or more, most preferably 40 mol% or more of the total dicarboxylic acid component. I prefer to use.
  • Aliphatic and alicyclic dicarboxylic acids include succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, dimer acid, 1,3-cyclopentanedicarboxylic acid, 1,2 cyclohexanedicarboxylic acid. 1,4-cyclohexanedicarboxylic acid and the like, and ester-forming derivatives thereof.
  • the glycol component of the polyester resin includes ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, 1,3 propanediol, 1,3-butanediol, 1,4 butanediol, 1 , 5-pentanediol, 1,6 hexanediol, 1,7 heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10 decanediol, 2,4 dimethyl-2-ethylhexane 1,3 diol , Neopentyl glycol, 2-ethyl-2-butynole, 1,3-propanediol, 2-ethyl-2-yl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,2,4 trimethyl-1,6-hexanediol 1,2-cyclohexan
  • polyester resin when used as a coating liquid in an aqueous solution, a compound containing a sulfonate group is used in order to facilitate water-solubilization or water-dispersion of the polyester resin, It is preferable to copolymerize a compound containing a phosphonate group and a compound containing a carboxylate group.
  • Examples of the compound containing a carboxylate group include trimellitic acid, trimellitic anhydride, pyromellitic acid, pyromellitic anhydride, 4-methylcyclohexene 1, 2, 3 tricarboxylic acid, trimesic acid, 1, 2, 3 , 4, tantetra-force nolevonic acid, 1, 2, 3, 4, 4 pentanetetra-force nolevonic acid, 3, 3 ', 4, 4' -benzophenone tetracarboxylic acid, 5- (2,5 dixotetrahydrofurfuryl) -3 Methyl-3 cyclohexene mono 1,2 dicarboxylic acid, 5-(2,5-dioxotetrahydrofurfuryl) 3 cyclohexene mono 1,2 dicarboxylic acid, cyclopentanetetra-force nolevonic acid, 2, 3, 6,7 naphthalene tetra-force norevonic acid, 1, 2, 5, 6 naphthalene te
  • Examples of the compound containing a sulfonate group include sulfoterephthalic acid, 5 sulfoisophthalic acid, 4-sulfoisophthalic acid, 4 sulfonaphthalene 2,7 dicarboxylic acid, snow p-xylylene glycol, 2 sulfo-1,4
  • Examples of the compound containing a phosphonate group include phosphoterephthalic acid, 5 phosphosophthalenoic acid, 4 phosphoisophthalic acid, 4 phosphonaphthalene-1,2,7 dicarboxylic acid, phospho-p xylylene glycol, 2 phospho-1, 4 A force S that can use bis (hydroxyethoxy) benzene or an alkali metal salt, alkaline earth metal salt, or ammonium salt thereof, but is not limited thereto.
  • a modified polyester copolymer such as a block copolymer or a graft copolymer modified with acrylic, urethane, epoxy or the like can be used as the polyester.
  • polyester terephthalic acid, isophthalic acid, sebacic acid, 5-sodium sulfoisophthalic acid as the acid component, ethylene glycol
  • examples include copolymers selected from tylene glycol, 1,4 butanediol, and neopentyl glycol.
  • trimellitic acid is a copolymerization component instead of 5-sodium sulfoisophthalic acid.
  • the polyester resin can be produced by the following production method. For example, a polyester resin composed of terephthalic acid, isophthalic acid, 5-sodium sulfoisophthalic acid as the dicarboxylic acid component, and ethylene glycol and neopentyl glycol as the glycol component will be described.
  • the ability to directly esterify phthalic acid with ethylene glycol or neopentyl glycol, the first stage of transesterification of terephthalic acid, isophthalic acid, 5-sodium sulfoisophthalic acid, ethylene dallicol, and neopentyl dallicol It can be produced by a method S that is produced by the second step of polycondensation reaction of the reaction product of the first step.
  • alkali metal for example, alkali metal, alkaline earth metal, manganese, cobalt, zinc, antimony, germanium, titanium compound, or the like can be used as the reaction catalyst.
  • water-dispersed polyester resin for example, a commercially available “Vylonal (registered trademark)” series (manufactured by Toyobo Co., Ltd.) can be used.
  • a solvent or a required polyester resin for example, a commercially available “Byron (registered trademark)” series (manufactured by Toyobo Co., Ltd.) can be used.
  • the intrinsic viscosity of the polyester resin is not particularly limited, but is preferably 0.3 dl / g or more, more preferably 0.3 dl / g or more, and most preferably 0 in terms of adhesiveness. It is 4dl / g or more.
  • Glass transition point of polyester resin (hereinafter abbreviated as Tg) Is preferably 0 to 130 ° C, more preferably 10 to 85 ° C. Tg If the temperature is less than C, for example, the heat-resistant adhesiveness may be inferior, or a blocking phenomenon may occur in which the coating films adhere to each other. Because there is favorable! / ⁇ .
  • the polyurethane urethane resin is not particularly limited as long as it has a urethane bond, and the main constituent component is obtained by polymerizing a polyol compound and a polyisocyanate compound.
  • a urethane resin whose affinity for water is enhanced by introduction of a carboxylate group, a sulfonate group, or a sulfuric acid ester half ester base can be used.
  • the content of a carboxylate group, a sulfonate group, or a sulfuric acid half ester base is preferably 0.5 to 15% by mass.
  • polyol compound examples include polyethylene glycol, polypropylene glycol, polyethylene propylene glycol, polytetramethylene glycol, hexamethylene glycol, hexamethylene glycol, tetramethylene glycol, 1,5-pentanediol, and diethylene glycol.
  • Triethylene glycol, poly-strength prolatatone, polyhexamethylene adipate, polytetramethylene adipate, trimethylonorepronone, trimethylonoreethane, glycerin, acrylic polyol, and the like can be used.
  • polyisocyanate compound examples include tolylene diisocyanate, hexamethylenediocyanate, phenylene diisocyanate, diphenylmethane diisocyanate, tolylene diisocyanate and trimethylol.
  • An adduct of propane, an adduct of hexamethylene diisocyanate and trimethylolethane can be used.
  • main components of the urethane resin may contain a chain extender, a crosslinking agent, and the like in addition to the polyol compound and the polyisocyanate compound.
  • chain extender or cross-linking agent use of ethylene glycol, propylene glycol, butadiene diol, diethylene glycol, ethylene diamine, diethylene triamine, etc. is possible.
  • the polyurethane resin having an anionic group includes, for example, a method of using a compound having an anionic group in a polyol, a polyisocyanate, a chain extender or the like, and a produced polyurethane resin.
  • the force that can be produced using a method of reacting a compound having an unreacted isocyanate group and an anionic group of a resin or a method of reacting a group having an active hydrogen of a polyurethane with a specific compound is particularly limited. It is not a thing.
  • the anionic group in the polyurethane resin is preferably used as a sulfonic acid group, a carboxylic acid group and their ammonium salt, lithium salt, sodium salt, potassium salt or magnesium salt, and particularly preferably a sulfonic acid group. .
  • the amount of the anionic group in the polyurethane resin is preferably 0.05% by mass to 8% by mass. If it is less than 0.05% by mass, the water dispersibility of the polyurethane resin tends to be poor, and if it exceeds 8% by mass, the water resistance tends to be poor.
  • Hydran registered trademark
  • Dainippon Ink & Chemicals, Inc. can be used as an aqueous dispersion of polyurethane resin.
  • the monomer component constituting the acrylic polymer resin includes, for example, alkyl phthalate, alkyl methacrylate (the alkyl group is methyl group, ethyl group, n-propinole group, isopropyl group, n-butyl group, isobutyl group).
  • Examples of other types of monomers include epoxy such as allyl glycidyl ether.
  • Monomers containing a sulfonic acid group or a salt thereof such as a group-containing monomer, styrene sulfonic acid, vinyl sulfonic acid and salts thereof (lithium salt, sodium salt, potassium salt, ammonium salt, etc.), crotonic acid, itaconic acid, maleic acid , Fumaric acid and its salts (lithium salt, sodium salt, potassium salt, ammonium salt, etc.), a monomer containing a carboxyl group or a salt thereof, a monomer containing an acid anhydride such as maleic anhydride, itaconic anhydride, etc.
  • Burisocyanate Burisocyanate, allylic isocyanate, styrene, butylmethyl etherenole, vinino ethino oleenole, vinino tris triolecooxy silane, ano quinole maleic acid mono ester, alkyl fumaric acid mono ester, attariloni Torinore, Metatarilo nitrinore, A Kiruitakon acid monoester, vinylidene chloride, acetate Bulle, leaving by force S which are use and chloride Bulle.
  • acrylic polymer resin a modified acrylic polymer resin such as a block copolymer or a graft copolymer modified with polyester, urethane, epoxy, or the like can also be used.
  • the Tg of the acrylic polymer resin is not particularly limited, but is preferably 10 to 90 ° C, more preferably 0 to 50 ° C, and most preferably 10 to 40 ° C.
  • the heat resistant adhesiveness tends to be inferior or the blocking tendency tends to be blocked.
  • the adhesiveness may deteriorate or the film forming property may be inferior.
  • the molecular weight of the acrylic polymer is preferably 50,000 or more, more preferably 300,000 or more from the viewpoint of adhesiveness.
  • acrylic polymer resin examples include copolymers selected from methyl methacrylate, ethyl acrylate, n-butyl acrylate, 2-hydroxyethyl acrylate, acrylamide, N methylolanol acrylamide, and acrylic acid.
  • the acrylic polymer resin is preferably dissolved, emulsified or suspended in water and used as an aqueous solution from the viewpoint of environmental pollution and explosion-proof properties during application.
  • water-based acrylic polymer resins are copolymerized with monomers having a hydrophilic group (such as acrylic acid, methacrylic acid, acrylamide, vinyl sulfonic acid and salts thereof) and emulsified using reactive emulsifiers and surfactants. It can be produced by a method such as polymerization, suspension polymerization or soap-free polymerization. Also, commercially available acrylic emulsions can be used. Standard) ”series (BASF Japan).
  • the present invention may be a modified product in which a skeleton of a rubber component such as nitrile butadiene is introduced into a resin comprising the polyester, polyurethane and acrylic polymer. good.
  • the use of the modified product is a preferred embodiment because it may further improve the adhesion to the rubber layer and the durability of adhesion.
  • the structure of the rubber component to be introduced preferably has the same structure as that of the rubber component to be combined, but is not necessarily limited. Introducing rubber components having different structures may also be effective. This is due to the effect caused by the effect of improving the adhesion durability due to the effect of improving the flexibility of the crosslinked polymer film, which is not only the improvement of the compatibility with the rubber layer where the effect of introducing the rubber component is combined. I guess.
  • the method for preparing the modified product is not limited! /.
  • a rubber component having a carboxyl group, hydroxyl group or amino group introduced therein may be added during the preparation of the polymer and introduced into the polymer using, for example, a condensation reaction or an addition reaction.
  • it may be introduced by grafting or block polymerization using a rubber component having a bur group or acrylic group introduced at the terminal.
  • the resin comprising the polyester, polyurethane and acrylic polymer is preferably cross-linked.
  • the crosslinking method is not limited, and examples thereof include a method of crosslinking a resin comprising the above polymer using a crosslinking agent V.
  • the cross-linking agent in the method of cross-linking using the cross-linking agent is not particularly limited, but the functional group present in the above-described polymer, for example, carboxyl group, hydroxy group, methylol group, amide
  • a melamine crosslinking agent, oxazoline crosslinking agent, isocyanate crosslinking agent, aziridine crosslinking agent, epoxy crosslinking agent, methylolated or alkylolized urea system can be used.
  • Amide amide, polyamide resins, amide epoxy compounds, various silane coupling agents, various titanate coupling agents, and the like can be used.
  • isocyanate-based crosslinking agents melamine-based crosslinking agents, and oxazoline-based crosslinking agents can be suitably used from the viewpoint of compatibility with the resin and adhesiveness. In particular, from the viewpoint of adhesion durability, Use is preferred.
  • the melamine-based crosslinking agent is not particularly limited, but partially or completely etherified by reacting melamine, a methylolated melamine derivative obtained by condensing melamine and formaldehyde, or methylolated melamine with a lower alcohol.
  • Compound or a mixture thereof can be used.
  • the melamine-based crosslinking agent a monomer, a condensate composed of a dimer or higher polymer, or a mixture thereof can be used.
  • the lower alcohol used for etherification methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like can be used.
  • the functional group has an alkoxymethyl group such as an imino group, a methylol group, or a methoxymethyl group or a butoxymethyl group in one molecule.
  • an acidic catalyst such as p-toluenesulfonic acid may be used to promote thermal curing of the melamine crosslinking agent.
  • the oxazoline-based crosslinking agent is not particularly limited as long as it has an oxazoline group as a functional group in the compound, and includes at least one monomer containing an oxazoline group, and Those composed of an oxazoline group-containing copolymer obtained by copolymerizing at least one other monomer are preferred.
  • Monomers containing an oxazoline group include 2-bulu 2-oxazoline, 2-bi bis 4-methyl-2 oxazoline, 2-bur 5 methyl-2 oxazoline, 2 isopropenyl-2 oxazoline, 2 isopropenyl-4-methyl-2 oxazoline 2 isopropenyl-5 ethyl-2-oxazoline, etc., and a mixture of one or more of them can also be used.
  • 2-isopropenyl lu 2-oxazoline is preferred because it is easily available industrially.
  • the at least one other monomer used for the monomer having an oxazoline group is not particularly limited as long as it is a monomer copolymerizable with the monomer having the oxazoline group.
  • methyl acrylate, meta Acrylic acid esters or methacrylic acid esters such as methyl crylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, acrylic acid, methacrylic acid
  • Unsaturated carboxylic acids such as acid, itaconic acid and maleic acid
  • unsaturated nitriles such as acrylonitrile and methacrylonitrile
  • unsaturated amides such as acrylamide, methacrylamide, N-methylolacrylamide and N-methylolmethacrylamide
  • Vinylenoestenoles such as butyl acetate and butyl propionate
  • vinyl ethers such as methinolevinoleatenore, ethinolevinoleatenole, olefins such as ethylene and propylene, butyl
  • oxazoline group-containing crosslinking agent for example, “Epocross (registered trademark)” series (manufactured by Nippon Shokubai Co., Ltd.) is available.
  • the isocyanate cross-linking agent is not particularly limited as long as the compound has an isocyanate group as a functional group in the compound, but it is a polyfunctional isocyanate compound containing two or more isocyanate groups in one molecule. Use is preferred.
  • polyfunctional isocyanate compound a low or high molecular aromatic, aliphatic diisocyanate, or trivalent or higher polyisocyanate can be used.
  • Polyisocyanates include nates, diphenylmethane diisocyanates, hydrogenated diphenylmethane diisocyanates, nates, and trimers of these isocyanate compounds. Further, an excess amount of these isocyanate compounds and a low molecular active hydrogen compound such as ethylene glycol, propylene glycol, trimethylol propane, glycerin, sorbitol, ethylenediamine, monoethanolamine, jetanolamine, triethanolamine, or polyester. Mention may be made of terminal isocyanate group-containing compounds obtained by reacting with polymer active hydrogen compounds such as polyols, polyether polyols and polyamides.
  • isocyanate cross-linking agent examples include “Coronate (registered trademark)” series (poly Retan Kogyo) and “Millionate (registered trademark)” series (Polyurethane Kogyo) are available. In particular, the use of the Millionate series is preferable from the viewpoint of adhesive durability.
  • an isocyanate compound is used as a crosslinking agent
  • a block type isocyanate compound can also be used.
  • the blocked isocyanate can be prepared by subjecting the above isocyanate compound and blocking agent to an addition reaction by a conventionally known appropriate method.
  • Isocyanate blocking agents include, for example, phenols such as fenenore, cresol monole, xylenore, lesonoresinole, nitrophenol, chlorophenol, and thiophenols such as thiophenol and methylthiophenol; , Oximes such as methylethiketoxime and cyclohexanone oxime; alcohols such as methanol, ethanol, propanol and butanol; halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol; t -Tertiary alcohols such as butanol and t-pentanol; epsilon prolatata, ⁇ noradatalatata, V-p'tyrolatatam, ⁇ propinolactam and
  • Epoxy-based cross-linking agent is not particularly limited as long as it has an epoxy group as a functional group, but is a polyfunctional epoxy compound containing two or more epoxy groups in one molecule. Is preferred.
  • polyfunctional epoxy compound examples include diglycidyl ether of bisphenol ⁇ ⁇ and its oligomer, diglycidyl ether of hydrogenated bisphenol A and its oligomer, orthophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid Diglycidyl ester, p-oxybenzoic acid diglycidyl ester, tetrahydrodiphthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, succinic acid diglycidyl ester, adipic acid diglycidyl ester, sebacic acid diglycidyl ester, ethylene glycol Noresigrisidinoatenore, Propylene glycol diglysidinoreatenore, 1, 4 Butanezinoresigrisinoreatenore, 1, 6-hexanediol diglycid Ethers and polyalkylene glycol diglycidyl
  • cross-linking agent examples include phenol formaldehyde resins which are condensates with formaldehyde such as alkylated phenols and talesols; adducts of urea, melamine, benzoguanamine and the like with formaldehyde, and the adducts and the number of carbon atoms.
  • An amino resin such as an alkyl ether compound composed of 1 to 6 alcohols can also be used.
  • phenol formaldehyde resins examples include alkylated (methyl, ethyl, propyl, isopropyl or butyl) phenol, p tert amyl phenol, 4, 4'-se c, chiriten phenol, p- tert propyl.
  • amino resin examples include methoxylated methylol urea, methoxylated methylol N, N ethylene urea, methoxylated methylonoresiandiamide, methoxylated methylol melamine, methoxylated methylol benzoguanamine, butoxylated methylol melamine, butoxylated methyl.
  • examples include tyrolbenzoguanamine, but preferably methoxylated methylol melamine.
  • the force S that can be used by mixing the resin and the cross-linking agent in an arbitrary ratio S the cross-linking agent is 2 parts by mass or more in terms of solid content mass ratio to 100 parts by mass of the resin generally used, 50 Even if added in less than part by mass, the effect is manifested.
  • 50 parts by mass or more more preferably 70 parts by mass or more, and even more preferable.
  • the addition amount of the crosslinking agent is less than 2 parts by mass, the effect of addition is small.
  • the upper limit is not limited, but is 500 parts by mass.
  • a crosslinked polymer layer may be formed using a self-crosslinked resin in which a crosslinkable functional group is introduced into the above-described polymer.
  • the crosslinking method may be, for example, crosslinking by high-energy active rays such as ultraviolet rays, electron beams, and wire, which may be thermal crosslinking, .
  • the self-crosslinking polyester resin preferably used in the present invention is a polyester-based graft copolymer resin obtained by grafting a compound having at least one radical polymerizable double bond to a hydrophobic copolymer polyester resin. is there.
  • the “grafting” of the polyester-based graph copolymer resin in the present invention is to introduce a branched polymer composed of a polymer different from the main chain into the main polymer as the main chain. Graft polymerization is usually carried out by reacting at least one radical polymerizable monomer using a radical initiator in a state where a hydrophobic copolymer polyester resin is dissolved in an organic solvent.
  • a water-phobic copolyester resin is an essentially water-insoluble polyester resin that does not inherently dissolve in water. Therefore, when a polyester resin that dissolves in water is used as the backbone polymer for graft polymerization, Compared to heat-resistant water adhesion.
  • the hydrophobic copolyester resin is composed of 60 to 99.5 mol% of aromatic dicarboxylic acid and 0 to 39 of aliphatic dicarboxylic acid and / or alicyclic dicarboxylic acid in 100 mol% of dicarboxylic acid component.
  • the dicarboxylic acid containing 5 mol% and a radical polymerizable double bond is preferably 0.5 to 10 mol%.
  • the aromatic dicarboxylic acid is 68 to 98 mol%
  • the aliphatic dicarboxylic acid and / or the alicyclic dicarboxylic acid is 0 to 30 mol%
  • the dicarboxylic acid containing a polymerizable unsaturated double bond is 2 to 7 Mol%.
  • the aromatic dicarboxylic acid is 60 mol% or more and the aliphatic dicarboxylic acid and / or alicyclic dicarboxylic acid is 39.5 mol% or less, the heat resistant water adhesion is good. . Further, by using 0.5 mol% or more of a dicarboxylic acid containing a radical polymerizable double bond, it is possible to efficiently graft the radical polymerizable monomer onto the polyester resin. On the other hand, by setting it to 10 mol% or less, the viscosity of the reaction solution can be suppressed from increasing significantly in the latter stage of the grafting reaction, and the reaction can proceed uniformly. preferable.
  • any of the compounds exemplified above can be used.
  • Dicarboxylic acids containing radically polymerizable double bonds include fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, and other ⁇ and ⁇ unsaturated dicarboxylic acids; 2, 5 norbornene dicarboxylic acid anhydride, tetrahydro Examples thereof include alicyclic dicarboxylic acids containing unsaturated double bonds such as phthalic anhydride. Of these dicarboxylic acids containing a polymerizable unsaturated double bond, fumaric acid, maleic acid and 2,5-norbornene dicarboxylic acid are preferred from the viewpoint of polymerizability.
  • glycol component any of the compounds exemplified above can be used. Even if two or more glycol components are used in combination, they do not work. Of these, aliphatic glycols having 2 to 10 carbon atoms, alicyclic glycols having 6 to 12 carbon atoms, and the like are preferable.
  • the hydrophobic copolyester resin can be copolymerized with 0 to 5 mol% of a trifunctional or higher polycarboxylic acid and / or polyol.
  • Tri- or higher functional polycarboxylic acids include (anhydrous) trimellitic acid, (anhydrous) pyromellitic acid, (anhydrous) benzophenone tetracarboxylic acid, trimesic acid, ethylene glycol bis (anhydrotrimellitate), glycerol And tris (anhydro trimellitate).
  • glycerin trimethylolethane, trimethylolpropane, pentaerythritol and the like are used.
  • Trifunctional or more polycarboxylic acids and / or polyols the total acid component or total glycol component to 0-5 mole 0/0, preferably copolymerized in the range of 0-3 mole 0/0, the range If it is, the gelatinization at the time of superposition
  • the lower limit of the weight average molecular weight of the hydrophobic copolyester resin is preferably 5,000 from the viewpoint of adhesiveness. Further, the upper limit is preferably 50,000 from the viewpoint of gelation during polymerization.
  • graft polymerization is carried out by reacting at least one radical polymerizable monomer with a radical initiator in a state where the hydrophobic copolyester resin is dissolved in an organic solvent.
  • the reaction product after completion of the graft reaction is a desired hydrophobic copolymer polyester.
  • the graft copolymer of tellurium resin and radically polymerizable monomer it can be obtained from the ability to undergo grafting, the ability to graft onto hydrophobic copolyesters and hydrophobic copolyester resins, and the radically polymerizable monomers. It also contains (co) polymers!
  • the polyester-based graft copolymer in the present invention includes not only the above-mentioned polyester-based graft copolymer, but also a hydrophobic copolymerized polyester resin that has not undergone grafting, and a radical polymerizable property that has not been grafted. Also included are reaction mixtures that include (co) polymers obtained from monomers and monomers (residual monomers).
  • the acid value of the reaction product obtained by subjecting a radically copolymerizable monomer to the radical copolymerization monomer to be subjected to the radical polymerization monomer is 600 eq / 10 6 g or more from the viewpoint of hot water adhesiveness. It is preferable that More preferably, the acid value of the reactant is 1200 eq / l 0 6 g or more. If the acid value of the reaction product is less than 00 eq / l 0 6 g, the hot water adhesion may decrease.
  • the mass ratio of the hydrophobic copolyester resin By setting the mass ratio of the hydrophobic copolyester resin to 40% by mass or more, excellent adhesiveness of the polyester can be exhibited. On the other hand, when the mass ratio of the hydrophobic copolyester is 95% by mass or less, the blocking resistance can be improved and the acid value of the reaction product can be adjusted to the above range.
  • the graft polymerization reaction product is in the form of an organic solvent solution or dispersion, or an aqueous solvent solution or dispersion.
  • a dispersion of an aqueous solvent that is, a form of an aqueous dispersion is preferable from the viewpoint of working environment and applicability. Therefore, it is preferable to use a radical polymerizable monomer that essentially contains a hydrophilic radical polymerizable monomer as the radical polymerizable monomer to be grafted. Then, after graft polymerization in an organic solvent, an aqueous dispersion can be obtained by adding water and distilling off the organic solvent.
  • the hydrophilic radically polymerizable monomer means a radically polymerizable monomer having a hydrophilic group or a group that can be changed to a hydrophilic group later.
  • the radical polymerizable monomer having a hydrophilic group include a carboxyl group, a hydroxyl group, a phosphoric acid group, a phosphorous acid group, and a sulfonic acid group.
  • radically polymerizable monomers containing amide groups, quaternary ammonium bases, and the like are examples of the radical polymerizable monomer having a hydrophilic group.
  • examples of the radical polymerizable monomer having a group that can be changed to a hydrophilic group include radical polymerizable monomers containing an acid anhydride group, a glycidyl group, a chloro group, and the like.
  • examples of the radical polymerizable monomer having a carboxyl group that is preferable for a carboxyl group or a group that generates a carboxyl group is preferable.
  • a radical polymerizable monomer containing a carboxyl group and having a V, a strong force, and a group capable of generating a carboxyl group preferable.
  • Such monomers include fumaric acid, monoethyl fumarate; maleic acid and its anhydride, monoethyl ethyl maleate; itaconic acid and its anhydride, monoester of itaconic acid; acrylic acid, methacrylic acid; and their salts ( Sodium salt, potassium salt, ammonium salt) and the like.
  • Maleic anhydride is preferable.
  • the above monomers can be copolymerized using one kind or two or more kinds.
  • the radically polymerizable monomer to be grafted may contain other types of monomers as long as the acid value is within the above preferred range.
  • the monomers that can be used when synthesizing the acrylic polymer described above can be used as they are.
  • Examples of the graft polymerization initiator include organic peroxides and organic compound compounds known to those skilled in the art.
  • examples of the organic peroxide include benzoyl peroxide, t-butyl peroxybivalate, and examples of the organic azo compound include 2, 2 ′ azobisisobutyronitrile, 2, 2, and azobis. (2, 4 dimethylvaleronitrile).
  • the amount of the polymerization initiator used for the graft polymerization is at least 0.2% by mass, preferably 0.5% by mass or more, based on the radical polymerizable monomer.
  • a chain transfer agent for adjusting the chain length of the branched polymer for example, octyl mercaptan, mercaptoethanol, 3-tert-butyl-4-hydroxyanisole may be used as necessary. In this case, it is desirable to add in the range of 0 to 5% by mass with respect to the polymerizable monomer.
  • the grafting reaction product can be easily dispersed in water by neutralization, preferably neutralizing with a basic compound.
  • a basic compound it volatilizes during coating film formation.
  • Ammonia, organic amines and the like that are desirable for the compound to be used are suitable.
  • Desirable compounds include, for example, triethinoreamine, N, N-jetinoethanolamine, N, N-dimethylethanolamine, aminoethanolamine, N-methyl-N, N-diethanolamine, Isopropylamine, iminobispropylamine, ethylamine, jetylamine, 3-ethoxypropylamine, 3-jetylaminopropylamine, sec-butylamine, propinoreamine, methylaminopropylamine, dimethylaminopropyl And amine, methyliminobispropylamine, 3-methoxypropylamine, monoethanolamine, diethanolamine, and triethanolamine.
  • the pH value of the aqueous dispersion is in the range of 5.0 to 9.0 by at least partial neutralization or complete neutralization depending on the carboxyl group content in the grafting reaction product. It is desirable to use it as is. If a basic compound with a boiling point of 100 ° C or less is used, the residual basic compound in the coating film after drying is also low.For example, adhesion to hot water in harsh environments such as high temperature and humidity Improves.
  • the weight average molecular weight of the polymer of the radical polymerizable monomer is preferably 500 to 50,000.
  • the graft polymer of the radical polymerizable monomer has a hydration layer with sufficient thickness to form a hydrated layer of dispersed particles, and in order to obtain a stable aqueous dispersion, a radical polymerizable monomer graft is obtained.
  • the weight average molecular weight of the polymer is preferably 500 or more.
  • the upper limit of the weight average molecular weight of the graft polymer of the radical polymerizable monomer is preferably 50,000 from the viewpoint of polymerizability in solution polymerization.
  • the amount of initiator, monomer dropping time, polymerization time, reaction solvent, monomer composition, or as required It is preferable to carry out by appropriately combining a chain transfer agent and a polymerization inhibitor.
  • the glass transition temperature of the graft copolymer is not particularly limited, but is preferably 20 ° C. or higher, more preferably 40 ° C. or higher in consideration of hot water adhesion.
  • a radically polymerizable monomer is added to the hydrophobic copolyester resin.
  • the polymerized reaction product has a self-crosslinking property because the hydroxyl group in the polyester reacts with the carboxyl group present in the graft portion. In addition, it does not crosslink at room temperature, but undergoes an intermolecular reaction such as a hydrogen abstraction reaction by a thermal radical with the heat during drying when forming a coating film, and crosslinks without a crosslinking agent. As a result, a high degree of heat-resistant water adhesion is exhibited.
  • the degree of crosslinking of the coating film can be evaluated by various methods. For example, there is a method for measuring the insoluble fraction in a chloroform solvent or the like that dissolves both the hydrophobic copolymerized polyester and the grafted polymer. Can be mentioned.
  • the insoluble fraction of the coating film obtained by drying at about 80 ° C and heat-treating at 120 ° C for 5 minutes is more preferably 50% by mass or more from the viewpoint of heat resistant water adhesion and blocking resistance. 70% by mass or more.
  • the self-crosslinking polyester resin aqueous dispersion for example, a commercially available product such as “Vylonal (registered trademark) AGN702” (manufactured by Toyobo Co., Ltd.) can be used.
  • a grafted polyurethane can be prepared by a method similar to the above.
  • additives such as an antioxidant, a heat stabilizer, a weather stabilizer, a UV absorber, an organic absorber, and the like can be added to the crosslinked polymer layer as long as the effects of the present invention are not impaired.
  • Lubricants, pigments, dyes, organic or inorganic fine particles, fillers, antistatic agents, nucleating agents and the like may be blended.
  • a material obtained by adding inorganic particles to the crosslinked polymer layer is more preferable because it is easy to slip and has improved blocking resistance.
  • inorganic particles to be added silica, colloidal silica, alumina, alumina sol, kaolin, talc, My power, calcium carbonate, etc. can be used.
  • the inorganic particles used have an average particle size of 0.005 to 5 111 particles, more preferably (0 ⁇ 01 to 3 111, most preferably (0 ⁇ 05 to 2 111).
  • the mixing ratio with respect to the moon is not particularly limited, but the solid content mass ratio is preferably 0.05 to 10 parts by mass, more preferably 0.0 to! To 5 parts by mass.
  • the method for coating the crosslinked polymer layer is not limited and is arbitrary, but a method carried out by a coating method is preferred.
  • the coating solution is applied to an unstretched film and then stretched in at least one direction, a method of coating after longitudinal stretching, and a method of coating on the film surface after the orientation treatment. Any method is possible .
  • the so-called in-line coating method is used in which the film is applied before the crystal orientation of the film is completed and then stretched in at least one direction and then the crystal orientation of the polyester film is completed. This is a method that can exert the effects of the invention more remarkably!
  • the coating liquid can be applied onto the polyester film as the base film by various coating methods such as reverse coating, gravure coating, rod coating, bar coating, myer bar coating, and die coating. Method, spray coating method and the like can be used.
  • the crosslinked polymer layer is coated on at least one side of the polyester film, but a form in which the crosslinked polymer layer is coated on both sides of the polyester film is more preferable.
  • the rubber / polyester film laminate of the present invention can maintain the moldability and can improve the adhesive strength between the rubber layer and the polyester.
  • the occurrence of strain at the interface between the rubber layer and the polyester film during molding is reduced by reducing the difference in stress when stretched between the rubber layer and the polyester film in a very small deformation region. It is estimated that the above characteristics have been improved.
  • the above-mentioned interface means an interface between the rubber layer and the crosslinked polymer layer.
  • the method for imparting the above properties is not limited, but it is a preferred embodiment that the degree of plane orientation of the polyester film and the thickness of the bridge polymer layer are within the above ranges.
  • the rubber / polyester film laminate of the present invention is preferably formed by laminating a rubber layer directly on the surface of a crosslinked polymer layer of a coated polyester film for rubber lamination obtained by the above method without using an adhesive.
  • the use of the adhesive for bonding the polyester film and the rubber layer and the bonding step can be omitted by the above-mentioned measures, which is economically advantageous.
  • the ability S to control the deterioration of moldability by the adhesive layer can be omitted by the above-mentioned measures, which is economically advantageous.
  • the rubber / polyester film laminate of the present invention preferably has an adhesive strength between the rubber layer and the coated polyester film of 9 N / 20 mm or more. 10N / 20mm or more More preferably, l lN / 20 mm or more is more preferable. Most preferably, no interface is produced even if a knife cuts between the rubber layer and the coated polyester film.
  • the adhesive strength before the durability test is also referred to as initial adhesive strength.
  • the adhesive strength in the present invention is the peel strength between the rubber layer and the cross-linked polymer layer or the cross-linked high strength with the polyester film. It means the delamination strength of either the delamination strength with the molecular layer.
  • the rubber / polyester film laminate of the present invention preferably has an adhesive strength of 8N / 20mm or more between the polyester film and the rubber layer after immersion in toluene (25 ° C, 72 hours). 9N / 20mm or more is more preferable 10N / 20mm or more is more preferable.
  • the adhesive strength is also referred to as solvent-resistant adhesive strength.
  • the above characteristics are also referred to as solvent resistance durability.
  • the solvent-resistant adhesive strength is less than 8N / 20mm, for example, when printing or painting on the surface of the rubber / polyester film laminate, the polyester film may be coated with an organic solvent contained in printing ink or paint. Or the rubber layer is peeled off, or the durability of the adhesive force between the polyester film and the rubber layer is reduced, and the durability of the molded article using the rubber / polyester film laminate or the durability This is not preferable because reliability is reduced.
  • the adhesive strength between the polyester film and the rubber layer after the water-resistant durability treatment evaluated by the following method is 8 N / 20 mm or more. . More preferably, it is 9N / 20mm or more. Particularly preferred is 10N / 20mm or more.
  • the adhesive strength is also referred to as water-resistant adhesive strength.
  • the above characteristics are also referred to as water-resistant adhesion durability.
  • the water-resistant adhesive strength is less than N / 20 mm, for example, when used as a constituent member of a molded product that requires durability such as an automobile outer plate, the rubber layer between the polyester film and the rubber layer of the polyester film laminate is used. May cause peeling, or the durability of the adhesive force between the polyester film and the rubber layer will be reduced, and the durability of the molded body using the rubber / polyester film laminate and the reliability of the durability will be reduced. Therefore, it is not preferable.
  • a rubber sample of a polyester film laminate cut to 50 mm x 50 mm is placed in a cylindrical glass container with a lid of 400 cc of distilled water so that the rubber layer of the sample is on the bottom. Cap the container with the entire sample immersed in water. If the sample itself is not immersed in water, for example, a polyester film of 60 mm X 60 mm and a thickness of 188 m may be placed on the sample and weighted. The size and material of the weight are not particularly limited, and the entire sample may be immersed in water. Place the sample container in a gear oven set at 90 ° C and let stand for 14 days.
  • the rubber component constituting the rubber layer is not limited! /.
  • natural rubber NR
  • silicone rubber Q
  • EPDM ethylene propylene diene rubber
  • NBR atari port nitrile butadiene rubber
  • CR chloroprene rubber
  • ACM acrylic rubber
  • FKM fluorine rubber
  • the rubber component is appropriately selected depending on the required characteristics according to the purpose of use.
  • the method for imparting the various adhesive strengths described above is not limited, but it is preferable to add an adhesion improver to the rubber layer.
  • a compound containing a reactive group active against radical reaction examples include acrylic acid derivatives, methacrylic acid derivatives, and aryl derivatives, among which derivatives having 2 or more, especially 3 or more unsaturated bonds are preferred.
  • These compounds are widely used as rubber co-crosslinking agents, and examples thereof include acrylic acid esters of polyhydric alcohols, methacrylic acid esters, aryl esters of polyvalent carboxylic acids, triallyl isocyanurate, and triaryl cyanurate. It is done.
  • the polyhydric alcohol acrylate ester methacrylate ester ester compound obtained by esterifying two or more alcoholic hydroxyl groups of a polyhydric alcohol having two or more alcoholic hydroxyl groups with allylic acid or methacrylic acid.
  • ethylene glycol diatalylate ethylene glycol dimetatalylate, 1,3-butanediol diatalate, 1,3-butanediol dimetatalylate, 1,4-butanediol acrylate, 1,4-butanediol Metatalylate, 1,6Hexanedioldiatalylate, 1,6Hexanediole nolese methacrylate, Neopentinoreglyconoregiotitalate, Neopentinoreglyconoresimetatalate, 2, 2'bis (4 Atari Diethoxyphenol) propane, 2,2'bis (4-methacrylo) Xydiethoxyphenyl) prone, glycerin dimetatalylate, glycerin trimethalate, glycerin trimetatalylate, trimethylolpropane trimetatalylate, pentaerythritol diatalylate, pentaerythritol dimetatalylate, pen
  • aryl ester of polyvalent carboxylic acid examples include phthalic acid diarylate, trimellitic acid diarylate, pyromellitic acid tetraarylate and the like.
  • adhesion improvers may be used alone, or two or more thereof may be used in combination. Further, the adhesion improver used in the present invention is not limited to the above exemplified compounds.
  • the compounding amount of the above-mentioned adhesion improver is 0.2 to 20 parts by mass, preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of all rubber components, and less than 0.2 parts by mass. Adhesive strength with the base film becomes insufficient, and on the contrary, if it exceeds 20 parts by mass, the effect of improving the adhesive strength is saturated. And the physical properties of the rubber are reduced.
  • a peroxide compound is added to the rubber layer.
  • Peroxide compounds include benzoyl peroxide, monochloro benzoyl peroxide, 2,4 dichlorobenzoyl peroxide, t-butyltamyl peroxide, 2, 5 Dimethyl-2,5-bis (tert-butylperoxy) hexane, 1,1-di-t-butylperoxy 3,3,5-trimethylcyclohexane, 1,1-bis-t-butylperoxy 3,3,5-trimethylcyclohexane, di t-Butyl peroxide, t-Butyl Tamil peroxide, etc.
  • the compounding amount of the peroxide compound is preferably 0.05 to 10 parts by mass, particularly 1 to 8 parts by mass with respect to 100 parts by mass of the rubber component.
  • this amount 0.05 or more parts by mass, the adhesiveness is improved, and if it is 10 parts by mass or less, the above-mentioned promotion effect is maintained and the physical properties of rubber and film are lowered. Hanare.
  • the uncrosslinked silicone rubber has an average unit formula: RaSiO
  • R is a substituted or unsubstituted a) / 2 monovalent hydrocarbon group, such as a methyl group, an ethyl group, a propyl group, a butyl group, Alkyl groups such as pentyl group, hexyl group, butyl group, aryl group, butyr group, pentyl group, alkenyl group such as hexenyl group, phenyl group, trinole group, xylinole group, naphthyl group such as aryl group, cyclopentyl group, Cycloalkyl group such as cyclohexyl group, benzyl group
  • Aralkyl groups such as phenethyl group, halogenated alkyl groups such as 3,3-chloropropyl group, 3,3,3-trifluoropropyl group, etc., preferably methyl group, bur group, phenyl group 3, 3, 3
  • the trifnore group is a propropore group. Also, in the above formula, it is a number in the range of attl. 9-2.
  • the silicone rubber component is represented by the above average unit formula. Specific examples of the siloxane units constituting the silicone rubber component include R SiO units and R (HO) SiO.
  • the main components of the silicone rubber component are R iO units and R SiO units or R (HO)
  • a linear polymer with an essential SiO unit sometimes with a small amount of RSiO units
  • It can have a partially branched structure containing 1/2 3/2 and / or R SiO units. Also,
  • a resinous material consisting of R SiO units and SiO units
  • a polymer can be blended.
  • the silicone rubber component may be a mixture of two or more kinds of polymers.
  • the molecular structure of the uncrosslinked silicone rubber component is not particularly limited, and examples thereof include a straight chain, a partially branched straight chain, a branched chain, and a resin, which form a silicone rubber.
  • it is a linear polymer or a mixture mainly composed of a linear polymer.
  • silicone rubber component include, for example, molecular chain both ends trimethyl siloxy group-blocked dimethylpolysiloxane, molecular chain both ends trimethylsiloxy group-blocked methylpolypolysiloxane, molecular chain both ends trimethylsiloxy group-blocked methylphenylpolysiloxane.
  • Methyl (3, 3, 3-trifluor Polypropylene) siloxane copolymer molecular chain both ends dimethylvinylsiloxy group-blocked dimethylsiloxane 'methylbululsiloxane • Methylphenylsiloxane copolymer, molecular chain both ends silanol group-blocked dimethylpolysiloxane, molecular chain both ends silanol Methyl vinyl polysiloxane blocked with silanol groups, silanol group blocked with silanol groups at both ends of the molecular chain, silanol groups blocked with molecular chain at both ends Chain-chain dimethylsiloxane 'methylbulusiloxane copolymer, molecular chain both-end silanol-blocked dimethylsiloxane' methylphenylsiloxane copolymer, molecular-chain both-end silanol-blocked dimethylsiloxane 'methylpheny
  • Organopolysiloxane copolymer consisting of units and RSiO units.
  • An organopolysiloxane copolymer comprising 2/2 3/2 3 1/2 positions, R SiO units and RSiO units,
  • the viscosity of the silicone rubber component at 25 ° C is not particularly limited, but practically it is preferably 100 centistos or more, particularly 1,000 centistes or more.
  • the blending amount of the uncrosslinked silicone rubber is preferably 5 to 100 parts by mass, particularly 10 to 70 parts by mass with respect to 100 parts by mass of the ethylene propylene rubber. If the blending amount is 5 parts by mass or more, the improvement of the adhesion improving effect is promoted. Conversely, if the blending amount is 100 parts by mass or less, the promoting effect can be economically maintained. In addition, the heat resistance of rubber may be improved by blending silicone rubber.
  • an uncrosslinked silicone rubber composition in which an adhesion improving agent is blended as an intermediate layer between the rubber laminated coating polyester and the rubber layer instead of blending uncrosslinked silicone rubber into the rubber layer.
  • This layer may be interposed to improve the adhesive strength between the rubber laminated coating polyester and the rubber layer.
  • the uncrosslinked silicone rubber can be the same as described above, and the adhesion improver can be the same as that blended in the rubber layer.
  • the compounding quantity of the adhesive improvement agent with respect to silicone rubber is 0.5-30 mass parts with respect to 100 mass parts of silicone rubbers in the case of the said metatalic acid ester, Especially 1-20 mass parts is preferable. 0.5 If it is 5 parts by mass or more, the adhesive strength with the base film is good And if it is 30 mass parts or less, intensity
  • the thickness of the uncrosslinked silicone rubber layer is preferably from 0.0005 to 0.05 mm.
  • reinforcing fillers pigments, dyes, antioxidants, antioxidants, mold release agents, flame retardants, thixotropic agents, filler dispersants and the like can be blended.
  • a peroxide can be blended as an adhesion improvement promoter for promoting the adhesion improvement effect of the above adhesion improver.
  • the method of blending the above-mentioned compounding agent with rubber is not particularly limited.
  • a rubber kneader such as a two-roll, a Banbury mixer, or a dough mixer (kneader) is used.
  • the rubber is dissolved in a solvent and formed into a film by the casting method, the rubber compound is dissolved in the solvent to prepare a solution, or after addition to the solution, add! May be.
  • the method for producing the rubber-polyester film laminate is not limited.
  • the method of laminating the rubber layer on the rubber lamination-coated polyester is arbitrary.
  • a solution obtained by dissolving a rubber composition in a solvent is coated on the crosslinked polymer layer surface of the rubber lamination-coated polyester film and dried to form a rubber layer.
  • liquid rubber such as liquid silicone rubber is used, it can be applied without dilution with a solvent.
  • the crosslinking method in the production method is not particularly limited.
  • thermal crosslinking may be used, and crosslinking using high-energy active rays such as electron beams and ⁇ rays may be used.
  • high-energy active rays such as electron beams and ⁇ rays
  • the actinic radiation method does not require the addition of additives such as peroxides to generate radicals, and the properties of rubber due to the residues of these additives are reduced and the crosslinking is efficiently performed. This is preferable because of high productivity.
  • the surface roughness of the rubber layer may be variously changed.
  • a cover sheet made of a film or a fabric having a different surface roughness is laminated on the surface of the uncrosslinked rubber layer so that the surface form of the cover sheet is the rubber layer. It is known to transfer to the surface.
  • a polyethylene film or a chlorinated bull film with a matte finish or embossed, or a filament fabric such as nylon taffeta or polyester taffeta is used as a cover sheet. The weighting that was done is done widely. This method can be applied to the present invention.
  • the cover sheet is superimposed on the surface of the rubber layer at the time of crosslinking, and is peeled off after the crosslinking is completed.
  • the adhesion for improving the adhesive strength between the rubber layer and the polyester film is performed.
  • a property improver or the like is blended, even if an attempt is made to peel the cover sheet after cross-linking, the peel strength between the rubber layer and the cover sheet is also improved, so that the cover sheet may be difficult to peel.
  • the cover sheet is peeled off before the crosslinking treatment, there is a problem that the rubber is chipped and adheres to the cover sheet.
  • a surface treatment for improving the peelability of the cover sheet it is preferable to perform a surface treatment for improving the peelability of the cover sheet.
  • a material having a low adhesive force to the rubber layer for example, a film made of poly 4 methyl pentene 1 or ethylene 'methyl metatalylate copolymer may be used.
  • the rubber layer can be multi-layered and the amount of the adhesion improver on the rubber layer on the side opposite to the polyester film can be reduced on the cover sheet side than on the polyester film side.
  • crosslinking is performed by electron beam irradiation, it is also one method to perform the irradiation from the polyester film side, and in this case, it is preferable in terms of improving the adhesive force between the rubber layer and the polyester film.
  • the method of using the rubber.polyester film laminate of the present invention is not limited, but it is preferably used as a member of a plastic molded article.
  • the composite of the rubber polyester film laminate and the plastic molded body obtained by the use can utilize various effects described in [Effects of the Invention].
  • the resin used for the plastic molding is appropriately selected according to market requirements, etc. For example, it is possible to use a deviation between the thermoplastic resin and the cured product of the thermosetting resin.
  • the thermoplastic resin may be appropriately selected depending on the market demand, the type of resin used for the base material in the plastic molding, and the like.
  • the thermoplastic resin include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polypropylene terephthalate, polyethylene naphthalate and polybutylene terephthalate, polyamides, polyamideimides, polycarbonates, polysenophones, polyacetanols, polyphenylene ethers, and polyphenylenes.
  • Examples thereof include dirensulfide, polyarylate, polyetherimide, polyethersulfone and polyetherketone, and blends and alloy compositions thereof.
  • thermosetting resin examples include, but are not limited to, an unsaturated polyester resin, a bull ester resin, an epoxy resin, and a phenol resin.
  • thermosetting resin since the balance between heat resistance and mechanical properties is excellent, even when it is preferable to use a cured product of thermosetting resin, the balance between heat resistance and mechanical properties is particularly excellent and curing shrinkage is small. Therefore, it is more preferable to use an epoxy resin.
  • the base material of the plastic molded body is a fiber reinforced plastic in which a resin selected from the above resins and a fiber are combined.
  • Fiber reinforced plastic can increase the strength and elastic modulus of the molded body due to the reinforcing effect of the fiber, and it can be used for weight reduction.
  • the reinforcing fiber include glass fiber, carbon fiber, aramid fiber, alumina fiber, and boron fiber.
  • carbon fibers are preferably used because they have excellent characteristics of high strength and high elastic modulus while being lightweight.
  • reinforcing fibers both short fibers and long fibers can be used.
  • reinforcing fibers with a length of 10 cm or more should be used. preferable.
  • Specific examples of the reinforcing fiber array structure include a single direction, two directions, and a random direction. Further, specific examples of the form of the reinforcing fiber include force S such as mat, woven fabric and knitted fabric.
  • a unidirectional array structure because a fiber-reinforced plastic molding having excellent properties of high strength and high elastic modulus can be obtained while being lightweight. Also, because it is easy to handle, it is preferable to use woven and knitted fabrics.
  • the plastic molded body is preferably in the form of a sheet!
  • the plastic molded body preferably has a curved portion.
  • the molding method of the plastic molded body of the present invention may be selected appropriately depending on the constituent material of the molded body, the shape of the molded body, etc. Examples include press molding, draw molding, vacuum molding, etc. Rubber of the present invention As a method of forming a composite of a polyester film laminate and a plastic molded body, for example, a rubber 'polyester film laminate and a plastic molded body may be combined and integrally molded, or both may be formed separately. After molding, the two may be bonded with an adhesive or adhesive. In the former method, when thermosetting resin is used as a force and plastic molding, the thermosetting resin may be cured in the molding process, or pre- or post-curing treatment may be performed after molding. Yo! /
  • the rubber. Polyester film laminate is one of the forms of a composite used as a constituent material of the plastic molding, and the molded body is formed so that the polyester film side of the rubber 'polyester film laminate is the outermost surface. There is a method of using it laminated on the surface. When used in this form, since the polyester film is the outermost layer, the appearance defects due to the deterioration of the smoothness of the surface of the molded body are suppressed. Further, since the rubber layer of the present invention is laminated with a rubber layer, the rubber layer can relieve the distortion of the molded body generated at the time of molding as described above. Suitable for surface properties The ability to raise S.
  • the durability of the molded body can be improved.
  • the rubber / polyester film laminate of the present invention is excellent in moldability as described above, it can follow molding of a complicated shape having a curved portion when used as a constituent material of a plastic molded body.
  • At least one decorative layer selected from printing ink, metal thin film, inorganic thin film and paint is provided on the surface of the polyester film of the rubber / polyester film laminate.
  • a molded body can be decorated by laminating printing ink, metal thin film, and paint, and the design of the molded body can be improved.
  • the lamination of the metal thin film or the inorganic thin film suppresses permeation of oxygen gas, water vapor and the like to the molded body base layer, so that the durability of the molded body can be improved.
  • the cross-linked polymer layer is preferably formed on both sides of the polyester film.
  • Lamination of the decorative layer may be performed after being combined with the molded body, or may be molded and combined after the decorative layer is previously stacked on the rubber / polyester film laminated body.
  • the method for forming the decorative layer is not limited. Various known methods can be applied. For example, as a printing method for forming a decorative layer, known printing methods such as gravure printing, flat printing, flexographic printing, dry offset printing, pad printing, and screen printing are used depending on the product shape and printing application. can do. Especially multi-color printing and gradation expression For this, offset printing and gravure printing are suitable.
  • the decorative layer may be not only a printed layer but also a metal or metal oxide thin film layer, and may be a combination of a printed layer and a metal or metal oxide thin film layer.
  • methods for forming a metal or metal oxide thin film layer include vapor deposition, thermal spraying, and plating.
  • a vapor deposition method either a physical vapor deposition method or a chemical vapor deposition method can be used.
  • physical vapor deposition include vacuum vapor deposition, sputtering, and ion plating.
  • Examples of the chemical vapor deposition (CVD) method include a thermal CVD method, a plasma CVD method, and a photo CVD method.
  • Examples of the thermal spraying method include an atmospheric pressure plasma spraying method and a low pressure plasma spraying method.
  • Examples of the plating method include an electroless plating method (chemical plating method), a melting plating method, and an electrical plating method. In the electrical plating method, a laser plating method can be used.
  • the vapor deposition method and the plating method are preferred for forming the metal layer, and the vapor deposition method is preferred for forming the metal oxide layer. Also, the vapor deposition method and the plating method can be used in combination.
  • the metal for the vapor deposition method aluminum, chromium, silver, gold, and a combination thereof are used. Since the metal may be formed into a complicated shape, it is preferable that the metal forming the metal layer has excellent extensibility. For example, in the case of aluminum metal, it is preferable to mix a metal such as indium.
  • the spreadability is a characteristic required even when the above printing ink is used. Therefore, it is preferable to use a flexible resin such as polyurethane resin as the main component of the binder resin that constitutes the printing ink. You may perform formation of said decoration layer, after producing a plastic molding.
  • a flexible resin such as polyurethane resin
  • One of the forms in which the rubber / polyester film laminate described above is used as a constituent material of the plastic molded body is a method of using the rubber / polyester film laminated body as an intermediate layer of the plastic molded body.
  • the rubber / polyester film laminated body When used in this form, other than the effect of providing a decorative layer, which is one of the effects when used to become the outermost layer of the above-mentioned plastic molded body, it is expressed in the same manner as the above-mentioned use. can do.
  • the rubber polyester film laminate of the present invention is not limited to the force S that can be suitably used as a member of a plastic molded body as described above.
  • it can be used in a rubber / polyester film laminate itself or in a form combined with other materials.
  • Rubber 'Cushioning, cushioning and gripping properties of the rubber layer of the polyester film laminate can be used as a sealing material, cushioning material and skin material for various devices and devices.
  • the rubber 'polyester film laminate of the present invention is excellent in adhesion and durability between the polyester film and the rubber layer. It can be used particularly suitably for applications with strict requirements on properties.
  • the rubber surface of the rubber polyester film laminate may be subjected to surface treatment with active rays such as plasma or corona. Further, an uncrosslinked rubber layer may be laminated on the surface of the rubber layer.
  • Polyester film with sodium D-line (wavelength 589nm) as light source and Abbe refractometer the refractive index in the longitudinal direction of the film (Nz), the refractive index in the width direction (Ny), the refractive index in the thickness direction (Nz) And the degree of plane orientation ( ⁇ P) was calculated from the following formula.
  • a sample was cut with a single-blade force razor into strips having a length of 18 Omm and a width of 10 mm, respectively, in the longitudinal direction and the width direction of the polyester film having a crosslinked polymer layer.
  • Measurements were made in an atmosphere of 25 ° C, with an initial length of 40 mm, a chuck-to-chuck distance of 100 mm, a crosshead speed of 100 mm / min, a recorder chart speed of 200 mm / min, and a load cell of 25 kgf. This measurement was performed 10 times and the average value was used.
  • a knife was inserted at the interface between the rubber layer and the polyester film of the rubber / polyester film laminate, and stress was applied to the part with a finger to cause interface peeling.
  • the peel strength was measured by the T-type peeling method according to JIS K6854.
  • Rubber Sample of a polyester film laminate cut to 50 mm x 50 mm is placed in a 500 cc lidded cylindrical glass container with 400 cc of toluene so that the rubber layer of the sample is on the bottom. Cap the container with the entire sample immersed in toluene. If the sample is not immersed in toluene by its own weight alone, for example, a polyester film of 60 mm x 60 mm and a thickness of 188 m may be placed on the sample to make it weight. The size and material of the weight are not particularly limited, and the entire sample may be immersed in toluene. Leave the container with the sample at 25 ° C for 72 hours. After standing, quickly remove the sample from the container, wipe off the toluene, and measure the delamination strength by the above method.
  • contact heating with a hot plate heated to 100 to 140 ° C for 4 seconds, followed by press molding at a mold temperature of 30 to 70 ° C and a holding time of 5 seconds went.
  • the heating conditions selected the optimal conditions within the said range with respect to each film.
  • the mold is cup-shaped, the opening has a diameter of 50 mm, the bottom has a diameter of 40 mm, a depth of 30 mm, and all corners are curved with a diameter of 0.5 mm. It was.
  • corner radius of curvature is lmm or less and printing deviation is 0.1mm or less
  • Corner radius of curvature exceeds lmm, 1.5mm or less, or print misalignment is 0.1
  • corner radius of curvature is lmm or less and printing deviation is 0.1mm or less
  • Corner radius of curvature exceeds lmm, 1.5mm or less, or print misalignment is 0.1
  • the ink adhesion strength of the polyester film surface of the rubber / polyester film laminate was evaluated. Specifically, after printing the following ink on the polyester film surface of the polyester film laminate, using a cross-cut guide V and lmm squares with a cutter blade on the printing surface, create 100 adhesive tapes (Nichiban) Company name, cellophane tape) was affixed to the printed surface and adhered completely so that no air remained. Next, after peeling off the adhesive tape vertically, the number of remaining portions on the printed surface is evaluated as adhesion (remaining number / 100), and 80/100 or more is judged as ⁇ , and less than it is judged as X. did.
  • UV curable ink manufactured by Toka Dye Co., Ltd., Best Cure No. 161
  • the polyester film surface of the rubber polyester film laminate was printed with an RI tester, and then irradiated with lOOmJ UV, and evaluated according to the above method.
  • Polyethylene terephthalate (inherent viscosity 0.665 dl / g) pellets containing 0.04% by mass of amorphous silica with an average particle size (SEM method) of 1.5 m are fully vacuum dried and heated to 280 ° C.
  • the sheet was fed into the extruder, extruded in a sheet form from a T-shaped base, and wound around a mirror-casting drum with a surface temperature of 30 ° C using the electrostatic application casting method, and solidified by cooling.
  • the unstretched film was stretched 3.0 times in the longitudinal direction while passing through a 105 ° C. heated roll group to obtain a uniaxially oriented film.
  • Both sides of this film were subjected to corona discharge treatment, and the following coating solutions were applied to both treatment surfaces.
  • the coated uniaxially stretched film is guided to the preheating zone while being gripped with a clip, dried at 110 ° C, continuously stretched 3.2 times in the width direction in the heating zone of 125 ° C, and further to 195 ° C
  • the thickness of the cross-linked polymer layer was 0.15 m on each side, with 6% relaxation in the width direction and heat treatment for 6 seconds. m, a polyester film for rubber lamination was obtained.
  • Consists acid component force terephthalic acid / isophthalic acid / trimellitic acid / sebacic acid 28 mol 0/0/9 mol% / 10 mol% / 3 mol%
  • EPDM manufactured by Nippon Synthetic Rubber, EP21; ethylene content: 34% by mass
  • zinc salt of 2-mercaptobenzimidazole manufactured by Ouchi Shinsei Chemical Co., Ltd., NOCRACK MBZ
  • 4,4- ( ⁇ , a-dimethylbenzyl) diphenylamine Nouchi CD, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. was used as the anti-aging agent B, respectively, and kneaded in a conventional manner at the following blending ratio.
  • Anti-aging agent B 0.7 parts by mass
  • the kneaded rubber was molded into a sheet having a thickness of 3 mm. Cutting this unvulcanized rubber sheet 1 cm square strips, weigh the strips so that the ratio to toluene is 30% by mass, put them together with toluene into a stirrer equipped with a vacuum deaerator, and stir for 15 hours at atmospheric pressure. Was dissolved in toluene. Next, pentaerythritol tetraacrylate was added to the solution so as to be 8 parts by mass with respect to 100 parts by mass of EPDM rubber, and stirred uniformly. Furthermore, the vacuum deaerator was driven, and the mixture was further stirred for 20 minutes under vacuum with a gauge pressure of 750 mmHg to degas.
  • the EPDM rubber solution obtained by the above-described dissolution and defoaming was supplied to a roll coater, and applied to the above-mentioned polyester film for laminating to a thickness of 0.15 mm after drying. Subsequently, it was introduced into an oven and dried at 80 ° C.
  • the surface of the EPDM rubber is made of a copolymer of poly-4-methylpentene 1 and has a thickness of 0.035mm mat processing film (Mitsui Petrochemical Co., Ltd., Oburan X-60YMT4) with the mat processing surface facing the EPDM rubber surface. Then, using a pressure roll, the layers were continuously stacked while pressing at a pressure of 5 kgf / cm.
  • the obtained laminate was further continuously introduced into an electron beam irradiation apparatus, and pre-crosslinking was performed by irradiating an electron beam with a polyester film side force of 200 KV, 3 Mrad energy.
  • the cover sheet was peeled off to obtain a laminate comprising an EPDM rubber layer and a polyester film.
  • this laminate was further introduced into an electron beam irradiation apparatus, post-crosslinking was performed by electron beam irradiation of 200 KV and 30 Mrad from the EPDM rubber layer side, and the resulting rubber polyester film laminate was wound into a roll. .
  • Table 1 shows the properties of the obtained rubber polyester film laminate.
  • the rubber / polyester film laminate obtained in this example was excellent in initial adhesive strength and solvent-resistant adhesive strength. Moreover, it was excellent in mold moldability and ink adhesion, and could be suitably used as a member of a molded product.
  • Example 2 In the method of Example 1, a polyester film was obtained in the same manner as in Example 1 except that the application of the coating solution was stopped in the polyester film production process. Using the obtained polyester film, a rubber polyester film laminate was obtained in the same manner as in Example 1. The results are shown in Table 1. The rubber / polyester film laminate obtained in this comparative example was inferior in initial adhesive strength and solvent-resistant adhesive strength and was of low quality. [0156] (Comparative Example 2)
  • Example 1 In the same manner as in Example 1 except that the method of Example 1 is used, and in the polyester film manufacturing process, the compounding of the methylolated melamine resin, which is a crosslinking agent, in the coating solution used is stopped. A polyester film was obtained. Using the obtained polyester film, a rubber / polyester film laminate was obtained in the same manner as in Example 1. The results are shown in Table 1. The rubber / polyester film laminate obtained in this Comparative Example was inferior in solvent-resistant adhesive strength and of low quality. Ink adhesion was also poor.
  • Example 1 In the method of Example 1, a rubber'polyester film laminate was obtained in the same manner as in Example 1 except that an unstretched polyester film was used instead of the polyester film. The results are shown in Table 1.
  • the rubber / polyester film laminate obtained in this comparative example was provided with a crosslinked polymer layer, so that the initial adhesive strength, solvent-resistant adhesive strength, and ink adhesion were inferior and the quality was low. It was.
  • Example 1 For the method of Example 1, for rubber lamination, the same as in Example 1, except that the longitudinal stretching temperature is 95 ° C, the longitudinal and lateral stretching ratios are 3.5 times, and the heat treatment temperature is 225 ° C. A coated polyester film was obtained. A rubber / polyester film laminate was obtained in the same manner as in Example 1, using the obtained coated polyester film for rubber lamination. The results are shown in Table 1. The coated polyester film for rubber lamination obtained in this comparative example was poor in moldability and low quality.
  • polyester chip (A) amorphous silica with an inherent viscosity of 0.69 dl / g and an average particle size (SEM method) of 1.5 m, and benzotriazole-based UV absorber (N) (Ciba 'Specialty' Chemicals Luz Ltd., Tinuvin 326) polyethylene terephthalate and containing 0 - 67 mass 0/0
  • N benzotriazole-based UV absorber
  • these chip mixtures are melt-extruded from the slit of the T die at 270 ° C by an extruder, rapidly cooled and solidified on a chill roll having a surface temperature of 40 ° C, and simultaneously adhered to the chill roll using an electrostatic application method. An amorphous unstretched sheet was obtained.
  • the obtained unstretched sheet was stretched 3.3 times at 90 ° C in the machine direction between the heating roll and the cooling roll.
  • the coating solution used in Example 1 was applied to both sides of the uniaxially stretched film.
  • the applied uniaxially stretched film is guided to the preheating zone while being gripped with a clip, dried at 110 ° C, guided to a tenter, preheated at 120 ° C for 10 seconds, the first half of the horizontal stretching is 110 ° C, and the second half is The film was stretched 3-9 times at 100 ° C.
  • the first heat treatment (TS1) is 220 ° C
  • the second heat treatment (TS 2) is 7% relaxation treatment in the lateral direction! /
  • the heat fixation treatment is performed at 235 ° C! /
  • a 100 m thick laminated polyester film for rubber lamination was obtained, in which both cross-linked polymer layers of 0 ⁇ 15 m were coated on both sides.
  • an intermediate section of 2 m is provided between the stretching section, a far infrared heater is installed in the heating section of the heat setting zone, and a shielding plate for each section is used as a film. It was expanded and installed to the limit position where it did not touch. Even in the cooling section after heating, the section shielding is strengthened, an external return method is used as a clip return method, a clip cooling device is installed, and forced cooling is performed with cold air of 20 ° C, and the clip temperature at the tenter outlet is increased. Measures were taken to prevent clip fusion at 40 ° C or lower.
  • a rubber polyester film laminate was obtained in the same manner as in Example 1 using the obtained polyester film for rubber lamination.
  • the results are shown in Table 1.
  • Rubber obtained in this example Polyester film laminate is the rubber obtained in Example 1. Moldability is improved compared to polyester film laminate, vacuum molding is possible, and higher quality Met
  • Example 1 In the method of Example 1, a polyester film was obtained in the same manner as in Example 1 except that the application of the coating solution was stopped in the polyester film production process. Both sides of the obtained polyester film are corona-treated, and further, both byron 30SS and coronate HX are blended so that the solid content ratio is 100: 30 (parts by mass). The resulting coating solution was applied using a coater to a thickness of 1 ⁇ m after drying to provide a crosslinked polymer layer. By using the obtained coated polyester film for rubber lamination, a rubber'polyester film laminate was obtained in the same manner as in Example 1. The results are shown in Table 1. The rubber / polyester film laminate obtained in this example had the same properties as the rubber / polyester film laminate obtained in Example 1 and was of high quality.
  • a coated polyester film for rubber lamination was obtained in the same manner as in Example 1 except that the acrylonitrile butadiene rubber (NBR) composition was used as the rubber composition in the method of Example 1.
  • NBR acrylonitrile butadiene rubber
  • a rubber ′ polyester film laminate was obtained in the same manner as in Example 1. The results are shown in Table 1.
  • the rubber / polyester film laminate obtained in this example had the same properties as the rubber / polyester film laminate obtained in Example 1 and was of high quality.
  • a polyester film was obtained in the same manner as in Example 4 except that in the method of Example 4 and in the production process of the polyester film, application of the coating solution was stopped. Using the obtained polyester film, a rubber polyester film laminate was obtained in the same manner as in Example 4. The results are shown in Table 2. The rubber / polyester film laminate obtained in this comparative example was inferior in initial adhesive strength and solvent-resistant adhesive strength and was of low quality.
  • Example 4 except that the method of Example 4 was applied to the polyester film manufacturing process, and the amount of coating solution was increased so that the thickness after drying was 15 inches.
  • a coated polyester film for rubber lamination was obtained.
  • a rubber / polyester film laminate was obtained in the same manner as in Example 4 using the polyester film obtained in this Comparative Example. The results are shown in Table 2.
  • the rubber / polyester film laminate obtained in this comparative example had poor moldability and low quality.
  • the initial adhesive strength and solvent resistant adhesive strength were also deteriorated compared with the rubber / polyester film laminate obtained in Example 4! /.
  • acrylonitrile butadiene rubber NBR
  • a rubber polyester film was obtained in the same manner as in Example 2 except that the composition was changed to use.
  • the results are shown in Table 2.
  • the rubber / polyester film laminate obtained in this example had the same properties as the rubber / polyester film laminate obtained in Example 2 and was of high quality.
  • Example 5 a coated polyester film for rubber lamination was obtained in the same manner as in Example 5 except that the application of the coating liquid in the polyester production process was changed to be applied to one side.
  • a coated polyester film for rubber lamination obtained in this example a rubber layer was laminated on the coating layer (crosslinked polymer layer) side surface, and a rubber-polyester film laminate was obtained in the same manner as in Example 5. It was. The results are shown in Table 2.
  • the rubber / polyester film laminate obtained in this example had a high-quality force similar to that in Example 5, and the cross-linked polymer layer was formed on the opposite side of the rubber layer. The adhesion was inferior.
  • Example 2! In the method of Example 2! /, In the process for producing a coated polyester film for rubber lamination! /, for rubber lamination, in the same manner as in Example 2 except that the coating solution used is changed to the following composition, respectively. A coated polyester film was obtained. A rubber / polyester film laminate was obtained in the same manner as in Example 2 by using the coated polyester film for rubber lamination obtained in these Examples. The results are shown in Table 2. The rubber / polyester film laminates obtained in these examples had the same or better properties as those of Example 2 and were of high quality. [Coating liquid of Example 7]
  • the resulting prepolymer was cooled to 60 ° C, and 3 moles of hexamethylene diisocyanate and 1 mole of water were obtained. 56 parts by weight of biuret polyisocyanate, bisketimine obtained from isophorone diamine and acetone 173 Mass parts were sequentially added. Next, a 50 ° C. aqueous solution in which 15 parts by mass of hydrazine hydrate was dissolved was added to this mixture with stirring to obtain an aqueous polyurethane resin dispersion. An aqueous coating solution was prepared by adding 3 parts by mass of the oxazoline-based crosslinking agent used in Example 7 to 100 parts by mass of the polyurethane resin in the polyurethane resin aqueous dispersion.
  • a reaction vessel was charged with 95 parts by weight of dimethyl terephthalate, 95 parts by weight of dimethyl isophthalate, 35 parts by weight of ethylene glycol, 145 parts by weight of neopentyl glycol, 0.1 part by weight of zinc acetate and 0.1 part by weight of antimony trioxide.
  • the ester exchange reaction was carried out at 180 ° C for 3 hours.
  • 6.0 parts by mass of 5 sodium sulfoisophthalic acid was added, the esterification reaction was carried out at 240 ° C for 1 hour, and then at 250 ° C under reduced pressure (10 to 0.2 mmHg) over 2 hours.
  • a polycondensation reaction was carried out to obtain a copolymerized polyester resin having a number average molecular weight of 19,500 and a softening point of 60 ° C.
  • a fluorine-based nonionic surfactant (Dainippon Ink & Chemicals, MegaFac F 142D) 10 parts by mass aqueous solution, 0.6 parts by mass, particles as soot, colloidal silica (manufactured by Nissan Chemical Industries, Snowtex OL; average particle size 40 nm), 20 parts by mass aqueous dispersion of 2.3 parts by mass, particles As B, 0.5 parts by mass of a 3.5 mass% aqueous dispersion of dry-process silica (manufactured by Nippon Aerosil Co., Ltd., Aerosil OX50; average particle diameter 200 nm, average primary particle diameter 40 nm) was added.
  • a fluorine-based nonionic surfactant (Dainippon Ink & Chemicals, MegaFac F 142D) 10 parts by mass aqueous solution, 0.6 parts by mass, particles as soot, colloidal silica (manufactured by Nissan Chemical Industries
  • the pH of the coating solution is adjusted to 6.2 with a 5% by weight aqueous sodium bicarbonate solution, and the solution is finely filtered with a felt-type polypropylene filter with a filtration particle size (initial filtration efficiency: 95%).
  • a rubber polyester film laminate was obtained in the same manner as in Example 2 except that the chloroprene rubber (CR) composition was used as the rubber composition in the method of Example 2. The results are shown in Table 2.
  • the rubber 'polyester film laminate obtained in this example had the same properties as the rubber' polyester film laminate obtained in Example 2 and was of high quality.
  • Example 2 In the method of Example 2, using a rubber component as a silicone rubber compound, a commercially available high-strength silicone rubber compound (manufactured by Shin-Etsu Chemical Co., Ltd., “KE555-U”) and a commercially available silicone rubber compound for general molding (Shin-Etsu Chemical Co., Ltd.) "KE958-U”) at a mass ratio of 60:40, and the amount of pentaerythritol tetratalylate is 3 parts by mass with respect to 100 parts by mass of the total amount of silicone rubber compound.
  • a rubber'polyester film laminate was obtained in the same manner as in Example 2 except that The results are shown in Table 2.
  • the rubber / polyester film laminate obtained in this example had the same properties as the rubber / polyester film laminate obtained in Example 2 and was of high quality. In particular, the rubber / polyester film laminate obtained in this example was excellent in properties related to adhesive strength.
  • Example 1 a self-crosslinking polyester resin made of a graft-modified polyester resin prepared by the following method is used as the coating solution used in the process for producing a rubber-laminated coated polyester film. Except for the above, the same rubber coating as in Example 1 A polyester film was obtained. Next, a rubber'polyester film laminate was obtained in the same manner as in Example 1 using the coated polyester film for rubber lamination. The properties of the rubber / polyester film laminate obtained are shown in Table 3.
  • the rubber / polyester film laminate obtained in Example 12 was superior in quality to the rubber polyester film laminate obtained in Example 1, and was of high quality.
  • Self-crosslinking polyester resin water dispersion "Vironal (registered trademark) AGN702" (manufactured by Toyobo Co., Ltd.) 40 parts, water 24 parts and isopropyl alcohol 36 parts are mixed, and 10% aqueous solution of anionic surfactant 0. 6 parts, 1 part of propionic acid, colloidal silica particles (“Snowtex (registered trademark) OL”; average particle size 40 nm; manufactured by Nissan Chemical Industries, Ltd.) 20% water dispersion 1.
  • Virtual (registered trademark) AGN702 manufactured by Toyobo Co., Ltd.
  • the coating liquid used in the process has the following composition, and the layer thickness of the crosslinked polymer layer is the final polyester for rubber lamination.
  • a coated polyester film for rubber lamination was obtained in the same manner as in Example 5 except that the thickness on the film was changed to 0.08, 1 m on both sides.
  • a rubber polyester film laminate was obtained in the same manner as in Example 5 using the coated polyester film for rubber lamination obtained in this example. The results are shown in Table 3.
  • the rubber polyester film laminate obtained in this example was superior to the rubber polyester film laminate obtained in Example 5 in terms of solvent- and water-resistant adhesive strength and higher quality. In particular, the water-resistant adhesive strength was significantly improved.
  • Acid value is 5eq / ton
  • part means parts by weight, and the acid value of the resin, molecular weight, and composition analysis of the polyester polyol were each carried out by the following methods.
  • the resin was dissolved in black mouth form-d, and the resin composition ratio was determined by NMR using a nuclear magnetic resonance analyzer (NMR) “Deminy 200” manufactured by Varian.
  • NMR nuclear magnetic resonance analyzer
  • the thickness of the crosslinked polymer layer of the rubber laminated coating film was set to 0.2 m on both sides to obtain a rubber laminated coating film.
  • a rubber.polyester film laminate in which EPDM rubber was laminated in the same manner as in Example 1 was obtained.
  • the results are shown in Table 3.
  • the rubber 'polyester film laminate obtained in this example is the rubber obtained in Example 1.
  • the initial adhesion strength, solvent-resistant adhesive strength and water-resistant adhesive strength are all superior to those of the polyester film laminate. It was quality. In particular, the water-resistant adhesive strength was remarkably improved.
  • the coating liquid is applied in the polyester film manufacturing process.
  • a polyester film was obtained in the same manner as in Example 1 except that the removal was performed. Both sides of the obtained polyester film are subjected to corona treatment, and the coating liquid used in Example 13 is applied to both sides of the corona treatment so that the thickness after drying using a coater is 0. ll rn on both sides.
  • the coated polyester film for rubber lamination was obtained by coating.
  • a rubber'polyester film laminate was obtained in the same manner as in Example 5 using the coated polyester film for rubber lamination obtained in this example. The results are shown in Table 3.
  • the rubber / polyester film laminate obtained in this example was superior to the rubber / polyester film laminate obtained in Example 5 in solvent resistance and water resistance, and was of higher quality. In particular, the water-resistant adhesive strength was significantly improved.
  • Example 15 the composition ratio of NBR-modified polyurethane in the coating solution and myonate (registered trademark) MR (manufactured by Nippon Polyurethane Co., Ltd.), which is an isocyanate cross-linking agent, is changed to a solid content mass ratio of 100: 10. Except for the above, a coated film for rubber lamination and a rubber 'polyester film laminate were obtained in the same manner as in Example 15. The results are shown in Table 3. The rubber / polyester film laminate obtained in this example has the same strength S as that of Example 5 with a lower adhesive strength S than the rubber / polyester film laminate obtained in Example 15, and has high properties. It was quality.
  • Example 15 the composition ratio of NBR-modified polyurethane in the coating solution and myonate (registered trademark) MR (manufactured by Nippon Polyurethane Co., Ltd.), which is an isocyanate crosslinking agent, is changed so that the solid mass ratio is 100: 100. Except for the above, a coated film for rubber lamination and a rubber 'polyester film laminate were obtained in the same manner as in Example 15. The results are shown in Table 3. The rubber / polyester film laminate obtained in this example had the same properties as the rubber / polyester film laminate obtained in Example 15, and was of very high quality.
  • Example 15 the isocyanate-based crosslinking agent of the coating solution was changed so that the composition ratio of coronate (registered trademark) L (manufactured by Nippon Polyurethane Co., Ltd.) was 100: 250 in terms of the solid content mass ratio, and the crosslinking Other than changing the layer thickness of the molecular layer to 0.02 m as the thickness after drying
  • a rubber laminated coating film and a rubber / polyester film laminate were obtained.
  • the results are shown in Table 3.
  • the rubber 'polyester film laminate obtained in this example had the same characteristics as the rubber' polyester film laminate obtained in Example 15, and was extremely high quality.
  • Glass fiber reinforced polypropylene resin sheet (thickness: 3.) as a core layer made of fiber reinforced thermoplastic resin sheet, melted and impregnated with polypropylene resin on continuous glass fiber mat (swirl roving mat with needle punch). 7 mm, fiber content: 40 mass 0/0) were used.
  • the rubber layer obtained by laminating the EPDM rubber layer obtained by the method of Example 1 or the like is decorated on the surface opposite to the rubber layer of the polyester film laminate, and the surface of the EPDM rubber layer is the same as in Example 1! /,
  • the rubber 'polyester film laminate obtained by drying the EPDM rubber solution used to be 3 m in thickness after drying is placed on both sides of the core layer so that the rubber layer side of the rubber' polyester film laminate is the core layer side.
  • the laminate was inserted into a curved mold and heated and pressed at a temperature of 200 ° C. and a pressure of 10 kg / cm 2 by hot pressing to heat-bond the core layer and the surface layer.
  • a plastic molded body having a curved surface structure hereinafter abbreviated as a molded body.
  • the surface of the obtained plastic molding had a highly smooth surface on which a mapping was projected, and the printing appearance was extremely excellent. Also, the dimensional accuracy of the molded body was good and there was no distortion of the shape.
  • Example 19 a plastic molded product was obtained in the same manner as in Example 19 without laminating the rubber / polyester film laminate.
  • the obtained plastic molding had surface irregularities such as glass fiber embossing and the surface condition was not good. Accordingly, although the same printing as that applied to the rubber / polyester film laminate used in Example 19 was performed on the surface of the molded body, it did not look good.
  • Example 19 In the method of Example 19, instead of the rubber / polyester film laminate, an EPDM rubber sheet having a thickness of 250 m was laminated to obtain a composite with a plastic molding in the same manner as in Example 19.
  • the surface state of the composite with the obtained molded body is the same as that of the molded body obtained in Comparative Example 7. Although the surface roughness was good, the surface was partially uneven, such as the glass fiber being raised, and the surface condition was better than the composite with the plastic molded body obtained in Example 19.
  • the EPDM rubber sheet was thin and the polyester film was integrated! /,!, And so on.
  • Example 19 In the method of Example 19, a rubber / polyester film laminate was used, and a single layer film of only a polyester layer with the rubber layer being removed was used to form a composite with a plastic molding in the same manner as in Example 19. Obtained. Although the surface state of the composite with the obtained plastic molding was good, the dimensional accuracy and shape distortion of the plastic molding were inferior to those of the plastic molding obtained in Example 19.
  • Carbon fiber woven fabric 4ply cut so that each side is a square with a side of 300mm parallel to either warp or weft was laminated in a mold, and peel ply and resin distribution medium were laminated on it.
  • the mold was held at 90 ° C., and “Epicoat®” 828 (Japan Epoxy Resin, bisphenol A type epoxy resin) 100% by mass, "Cuazo Nore (registered trademark)” 2E4MZ (Product No., Shikoku Kasei Kogyo Co., Ltd., 2-ethyl 4-methylimidazole) 3% by mass Blended,
  • a liquid epoxy resin composition RTM resin composition was injected.
  • the injection was completed 5 minutes after the RTM resin composition flowed into the mold, and demolding started 40 minutes after the RTM resin composition flowed into the mold.
  • Got a layer The rubber layer side of the rubber layer obtained by laminating the NBR rubber layer obtained in Example 5 etc. on both surfaces of the obtained core layer (the NBR rubber layer surface was plasma-treated immediately before use) is the core layer side.
  • the surface of the obtained plastic molding had a highly smooth surface for displaying a map.
  • the dimensional accuracy of the molded body is good and There was no distortion of the shape.
  • the surface of the plastic molded body obtained by the above method was washed with isopropyl alcohol, and a melamine-based baking paint was applied so that the thickness of the coating film was 35 ⁇ after drying. Then, it was left at room temperature for 30 minutes, and further dried and baked in an oven at 140 ° C for 30 minutes. The appearance of the coating film was very good. Also, the adhesion and durability of the paint film were good.
  • Example 20 a plastic molded product was obtained in the same manner as in Example 20 without laminating the rubber / polyester film laminate.
  • the obtained plastic molding had surface irregularities such as carbon fiber embossing and had a good surface condition. Accordingly, the same printing force as in Example 20 was applied to the surface of the plastic molded body.
  • Example 20 In the method of Example 20, instead of the rubber and polyester film laminate, an NBR rubber sheet having a thickness of 250 m was laminated, and a plastic molded article was obtained in the same manner as in Example 20.
  • the surface state of the obtained plastic molded body was better than that of the plastic molded body obtained in Comparative Example 10, but there were surface irregularities such as partly raised carbon fibers, which were obtained in Example 20. Compared to the molded body, the surface condition was better.
  • the NBR rubber sheet was thin and the polyester film was not integrated, so that the operability at the time of manufacturing a plastic molded product that was difficult to handle was inferior! /.
  • Example 20 In the method of Example 20, in place of the rubber 'polyester film laminate, a single-layer film made only of polyester with the rubber layer stacked off was used to form a composite with a plastic molded body in the same manner as in Example 20. Obtained. Although the surface condition of the composite with the obtained plastic molding was good, the dimensional accuracy and shape distortion of the molding were inferior to those of the plastic molding obtained in Example 20. In addition, the distortion of the plastic molding increased during the painting process.
  • NBR rubber layer laminated rubber 'polyester film lamination A core layer made of fiber reinforced plastic material is laminated on both sides of the body, molded in the same way as in Example 20, and a plastic molded body with a curved structure with a rubber / polyester film laminate laminated with NBR rubber as an intermediate layer is obtained. It was. The surface smoothness of the obtained plastic molded body was slightly inferior to the molded body obtained in Example 20. The plastic molded body obtained in Comparative Example 10 was remarkably superior.
  • the coated polyester film for rubber lamination of the present invention is a cross-linked polymer film layer having a thin layer thickness, which improves the adhesion between the polyester film and the rubber layer, and eliminates the adhesive layer. The moldability degradation caused by the thick adhesive layer can be avoided. In addition, a rubber / polyester film laminate having a high adhesive force between the polyester film and the rubber layer and an excellent durability of the adhesive force can be obtained.
  • the rubber / polyester film laminate of the present invention has excellent moldability, for example, when used as a member for a plastic molded body, the moldability of the plastic molded body is not lowered. Furthermore, since the rubber layer of the polyester film laminate of the present invention has a rubber layer laminated, for example, when it is used as a member of the plastic molded body, the distortion generated in the molding of the plastic molded body is reduced. Since the elasticity of the layer can be relaxed, for example, the surface state of the plastic molded body can be improved, and the external force applied to the molded body in the use of the plastic molded body can be improved by the elasticity of the rubber layer. For example, effects such as improving the appearance and durability of the plastic molded body can be imparted. In addition, the rubber 'poly of the present invention The polyester film laminate is laminated with a polyester film, so it is easier to handle and better than a single rubber layer product!
  • the rubber / polyester film laminate of the present invention is excellent in adhesion between rubber and polyester film and durability of adhesiveness, for example, when used as a member for plastic molding, Durability is improved.
  • the rubber / polyester film laminate of the present invention includes a form in which a cross-linked polymer film layer is formed on both sides of the base polyester film, so that the adhesiveness to the rubber layer and the adhesive durability are only 1 life. Even on the surface opposite to the surface on which the rubber layer is laminated, there is an advantage that, for example, adhesion to printing ink and adhesion durability can be improved. Therefore, when decorating the polyester film surface of the rubber 'polyester film laminate of the present invention by printing, painting or metal deposition, etc., the adhesion between the printing ink, paint, metal thin film, etc. and the polyester film And has the advantage of improved adhesion durability. Also
  • the plastic molded body of the present invention has the following characteristics because the rubber / polyester film laminate is used as a constituent member of the plastic molded body.
  • polyester film laminate is laminated with the rubber polyester film laminate described above, it may be possible to improve the barrier properties such as gas-noirity of the plastic molding.
  • the polyester film surface side of the rubber 'polyester film laminate is placed on the surface of the plastic molded body of the rubber' polyester film laminate.
  • the adhesive strength between the coated polyester film and the rubber layer is high and the durability of the adhesive strength is excellent. It can be used with a force suitable for use as a structural member of a molded body that requires durability such as an outer plate.
  • the rubber layer of rubber / polyester film composites can be used for various devices and devices with vitality of cushioning, cushioning and gripping properties. It can also be used suitably as a sealing material, cushioning material, and skin material.
  • the rubber according to the present invention as described above, the polyester film laminate is excellent in the adhesion between the polyester film and the rubber layer and the adhesion durability V. It can be used particularly suitably for strict durability requirements and applications. Therefore, it is important to contribute to the industry.

Abstract

[PROBLEMS] To provide: a rubber-polyester film laminate which can show excellent adhesion between a polyester film and a rubber layer, has excellent adhesion durability, and also has excellent molding properties; and a plastic molded article having the laminate as a constituent component and having excellent durability. [MEANS FOR SOLVING PROBLEMS] Disclosed is a polyester coating film for use in a rubber laminate, which has a crosslinked polymer film having a thickness of 0.003 to 5 μm on at least one surface of a polyester film having a plane orientation degree of 0.005 to 0.15, wherein the values of the stress upon 10%-stretching (25˚C) in both of a length-wise direction and a width-wise direction of the film lie within the range from 20 to 200 MPa. Also disclosed is a rubber-polyester film laminate comprising the polyester coating film laminated on a rubber layer. Further disclosed is a plastic molded article produced by using the rubber-polyester film laminate as a constituent material.

Description

明 細 書  Specification
ゴム積層用被覆ポリエステルフィルム、ゴム'ポリエステルフィルム積層体 及びその製造方法、ならびに複合体  Coated polyester film for rubber lamination, rubber 'polyester film laminate, method for producing the same, and composite
発明の属する技術分野  TECHNICAL FIELD OF THE INVENTION
[0001] 本発明は、ゴム積層用被覆ポリエステルフィルム及び該ゴム積層用被覆ポリエステ ルフィルムとゴムとの積層体に関するものであり、さらに詳しくは、本発明は、ポリエス テルフィルムとゴムとを接着剤や粘着剤によらずに直接一体化することができ、該ー 体化されたゴム'ポリエステルフィルム積層体のポリエステルフィルムとゴムとの接着力 が強ぐかつ該接着力の耐久性が良好であり、さらに成型性の優れたゴムとの積層体 が得られるゴム積層用被覆ポリエステルフィルム及びそのゴム積層用被覆ポリエステ ルフィルムとゴムとの積層体に関するものである。 TECHNICAL FIELD [0001] The present invention relates to a rubber laminated coated polyester film and a laminated body of the rubber laminated coated polyester film and rubber. More specifically, the present invention relates to a polyester film and rubber bonded with an adhesive or the like. It can be integrated directly without using an adhesive, the adhesive strength between the polyester film and rubber of the rubberized polyester film laminate is strong, and the durability of the adhesive strength is good, Further, the present invention relates to a laminated polyester film for rubber lamination and a laminated body of the coated polyester film for rubber lamination and rubber, which can obtain a laminated body with rubber having excellent moldability.
また、本発明は、上記ゴム'ポリエステルフィルム積層体の製造方法に関するもので 、さらに詳しくは、本発明は、経済的なゴム'ポリエステルフィルム積層体の製造方法 に関するものである。  The present invention also relates to a method for producing the above rubber 'polyester film laminate, and more particularly, the present invention relates to an economical method for producing a rubber' polyester film laminate.
さらに本発明は、上記ゴム'ポリエステルフィルム積層体を用いたプラスチック成型 体に関するものであり、さらに詳しくは、表面平滑性や表面装飾性に優れて、かつ成 型時の成型歪の発生が少な!/、繊維強化複合材料を構成材料の一つとして用いてな るプラスチック成型体に関するものである。  Furthermore, the present invention relates to a plastic molded article using the above rubber / polyester film laminate, and more specifically, it has excellent surface smoothness and surface decoration and generates less molding distortion during molding! /, This article relates to plastic moldings that use fiber-reinforced composite materials as one of the constituent materials.
従来の技術  Conventional technology
[0002] ゴムは、優れたクッション性を有して!/、るため、産業上の広!/、分野でシール材ゃタツ シヨン材等に使用されている。し力、し、ゴムのみからなるフィルムは柔軟すぎるため、 装置や部品に組み込む場合の作業性に劣っていた。一方、ポリエステルフィルムは、 ゴムに比べて硬ぐ寸法安定性が良好で、装置や部品に組み込む場合の作業性に 優れており、かつ滑り性が良好であるため、広い分野で利用されている。しかし、ポリ エステルフィルムは、弾力性やシール性が低いため、シール材ゃクッション材として は不適当であった。  [0002] Rubber has excellent cushioning properties, and is therefore widely used in industry, and is used as a sealing material in the field. However, a film made only of rubber is too flexible, so it is inferior in workability when it is incorporated in equipment and parts. Polyester films, on the other hand, are harder than rubber and have good dimensional stability, excellent workability when incorporated into devices and parts, and good slipperiness, so they are used in a wide range of fields. However, since the polyester film has low elasticity and sealing properties, the sealing material is not suitable as a cushioning material.
上記課題を解決する方法として、ポリエステルフィルム等の各種フィルムとゴムから なるフィルムとを接着剤を介せずに直接接着したゴム'フィルム積層体やその製造方 法が開示されてレ、る(例えば、特許文献;!〜 7参照)。 As a method to solve the above problems, from various films such as polyester film and rubber A rubber film laminate obtained by directly adhering a film to a film without using an adhesive and a method for producing the same are disclosed (for example, see Patent Documents !! to 7).
特許文献 1 : :特開平 10 - - 53659号公幸  Patent Document 1:: Kohei No. 10-53659
特許文献 2 : :特開平 10 - - 58605号公幸  Patent Document 2:: Kohei No. 10-58605
特許文献 3 : :特開平 10 - - 86282号公幸  Patent Literature 3:: Kohei No. 10-86282
特許文献 4 : :特開平 10 - - 95071号公幸  Patent Document 4:: Kohei No. 10-95071
特許文献 5 : :特開平 10 - 113934号公報  Patent Document 5:: JP-A-10-113934
特許文献 6 : :特開平 10 - - 226022号公報  Patent Document 6:: Japanese Patent Laid-Open No. 10-226022
特許文献 7 : :特開平 11 - 157010号公報  Patent Document 7: Japanese Patent Laid-Open No. 11-157010
ポリエステ 'ルフィルムは :、耐熱性や寸法安定性等に優れており、かつ経済性に優れ ており、上記ゴムとの積層体の基材フィルムとして好適であり、上記特許文献;!〜 6に おいて、該ポリエステルフィルムを基材フィルムとして用いた積層体が開示されている 。しかしながら、該特許文献で開示されている積層体は汎用のポリエステルフィルム を用いてレ、るので、得られたゴム積層体は成型性に劣ると!/、う課題を有する。  Polyester film is excellent in heat resistance, dimensional stability, etc., and economical, and is suitable as a base film for a laminate with the rubber described above. And the laminated body which used this polyester film as a base film is disclosed. However, since the laminate disclosed in the patent document uses a general-purpose polyester film, the obtained rubber laminate is inferior in moldability!
[0004] 上記ゴム積層体の用途の一つとして、各種成型体の部材として成型体の構成部材 として使用される場合がある。該部材としてゴム積層体を用いることにより、成型体の 成形において発生する歪をゴムの弾性を利用して緩和することができるので、例えば 、成型体の表面状態を改善することができ、かつ該成型体の使用において成型体に 加わる外力をゴムの有する弾性で緩和することが可能であり、例えば、成型体の耐久 性を向上させることができる等の効果を付与することができる。  [0004] As one of uses of the rubber laminate, it may be used as a component of a molded body as a member of various molded bodies. By using a rubber laminate as the member, distortion generated in the molding of the molded body can be relaxed using the elasticity of rubber. For example, the surface state of the molded body can be improved, and the The external force applied to the molded body during use of the molded body can be relaxed by the elasticity of the rubber, and for example, effects such as improving the durability of the molded body can be provided.
[0005] 上記のような使用方法においては、ゴム積層体は高い成型性、ゴム積層体におけ るゴムとポリエステルフィルムとの接着性あるいは成型体の素材との高レ、接着性が必 要である。  [0005] In the use method as described above, the rubber laminate requires high moldability, adhesion between the rubber and the polyester film in the rubber laminate, or high adhesion with the molding material, and adhesion. is there.
[0006] さらに、上記使用方法の一つとして、ゴム積層体を上記成型体の表面に複合して用 いる場合があり、かつ該使用方法の一つにポリエステルフィルム側を最表層として成 型体に組み込み、該ポリエステルフィルムの表面に印刷、塗装あるいは金属薄膜や 金属箔を蒸着やラミネート法で積層して使用される場合がある。該対応により成型体 表面の加飾や酸素ガスや水蒸気等のガス透過性の低減効果を発現することができる 。該使用方法においては、印刷、塗装及びラミネート等において用いられる溶剤によ りゴムとポリエステルフィルムとの接着性が低下する。また、該成型体は屋外での使用 等過酷な条件で使用されることがあり、該過酷な条件においてもゴムとポリエステルフ イルムの接着性の維持が求められる等、優れた接着耐久性が必要である。さらに、上 記の印刷インクや塗料とポリエステルフィルムとの間にも強い接着力及び接着力の耐 久性が求められる。 [0006] Further, as one of the above usage methods, there is a case where a rubber laminate is used in combination with the surface of the above molded body, and one of the usage methods is a molded body with the polyester film side as the outermost layer. In some cases, the surface of the polyester film is used for printing, painting, or laminating a metal thin film or metal foil by vapor deposition or laminating. By this correspondence, it is possible to exhibit the effect of reducing the gas permeability of the surface of the molded body and oxygen gas, water vapor, etc. . In this method of use, the adhesiveness between the rubber and the polyester film decreases due to the solvent used in printing, painting and laminating. In addition, the molded body may be used under severe conditions such as outdoor use, and excellent adhesion durability is required, such as maintaining the adhesion between rubber and polyester film even under such severe conditions. It is. Furthermore, strong adhesive strength and durability of adhesive strength are also required between the above printing inks and paints and polyester film.
[0007] また、上記特許文献で開示している方法で得られたゴム積層体のゴムとポリエステ ルフィルムとの接着力は常態においては高いが、例えば、溶剤が存在する状態や高 温、高湿等の過酷な環境下における接着力の耐久性が劣るという課題を有する。  [0007] Although the adhesive strength between the rubber and the polyester film of the rubber laminate obtained by the method disclosed in the above patent document is normally high, for example, in the presence of a solvent, high temperature, high humidity It has the subject that the durability of the adhesive force is inferior in such a severe environment.
[0008] 一方、成型性の高いポリエステルフィルムとゴムとの積層体用のポリエステルフィル ム及び該フィルムを用いた積層体が開示されてレ、る(特許文献 8及び 9参照)。  On the other hand, a polyester film for a laminate of a highly moldable polyester film and rubber and a laminate using the film are disclosed (see Patent Documents 8 and 9).
特許文献 8 :特開 2001— 322167号公報  Patent Document 8: Japanese Patent Laid-Open No. 2001-322167
特許文献 9 :特開 2001— 323081号公報  Patent Document 9: Japanese Patent Laid-Open No. 2001-323081
[0009] 上記特許文献にお!/、て開示されて!/、る方法における積層体は成型性が優れて!/、 るという点では前記要求の一部を満たしている。し力、しながら、該特許文献の方法は ポリエステルフィルムとゴムとが接着剤を用いて積層されており経済性において不利 であるという課題を有している。また、接着性や接着耐久性においても課題がでること がある。さらに、接着剤の種類によっては成型性が劣る場合が生ずることがある。  [0009] The laminate according to the method disclosed in the above patent documents is excellent in moldability and meets some of the above requirements. However, the method of the patent document has a problem that the polyester film and the rubber are laminated using an adhesive, which is disadvantageous in terms of economy. There may also be problems with adhesion and durability. Furthermore, depending on the type of adhesive, the moldability may be inferior.
[0010] 以上の背景より、経済性の高い方法で成型性の高いポリエステルフィルムとゴムと の接着力が高ぐかつ該接着力の耐久性の優れ、さらに成型性の優れた積層体が得 られるゴム積層用ポリエステルフィルム及びそのゴムとの積層体の開発が強く嘱望さ れている。 [0010] On the basis of the above background, a laminate having high adhesiveness between a highly moldable polyester film and rubber, excellent durability, and excellent moldability can be obtained by an economical method. Development of a polyester film for rubber lamination and a laminate with the rubber is strongly desired.
[0011] プラスチック成型体は広い分野で使用されてきている。特に、繊維強化複合材料を 用いた成型体は、薄肉、軽量、高剛性、生産性、経済性に優れ、電気 ·電子機器部 品、 自動車機器部品、パソコン、 OA機器、 AV機器、携帯電話、電話機、ファクシミリ 、家電製品、玩具用品などの電気'電子機器の部品や筐体に頻繁に使用されだし急 速な伸びが期待される。  [0011] Plastic moldings have been used in a wide range of fields. In particular, molded products using fiber-reinforced composite materials are thin, lightweight, highly rigid, highly productive, and economical. Electrical / electronic equipment parts, automotive equipment parts, personal computers, OA equipment, AV equipment, mobile phones, It is frequently used for parts and casings of electrical and electronic equipment such as telephones, facsimiles, home appliances, and toy supplies, and rapid growth is expected.
例えば、繊維強化複合材料を用いた成型体は、熱成型用繊維強化樹脂シートは プレス成型、絞り成型、真空成型等により各種形状の成型体に成型される。 For example, a molded body using a fiber reinforced composite material is a fiber reinforced resin sheet for thermoforming. Molded into various shapes by press molding, drawing, vacuum molding, or the like.
上記の熱成形用繊維強化樹脂シートの製法として、繊維強化マットの上下に熱可 塑性樹脂シートを積層し、これを加熱加圧して繊維強化マットに樹脂を含浸させる方 法が知られている。このような方法で得られる熱成形用繊維強化樹脂シートを用いて 成形品を成形すると、成形品の表面に強化繊維が浮きだして外観不良となる。また、 成形品の表面に強化繊維が浮きだすと、この表面に、塗装ゃメツキを施こす場合にも 障害となる。そのために、写像が映し出される用な平滑な表面を有することが求めら れている。  As a method for producing the above-mentioned fiber reinforced resin sheet for thermoforming, a method is known in which a thermoplastic resin sheet is laminated on the upper and lower sides of a fiber reinforced mat, and this is heated and pressed to impregnate the fiber reinforced mat with resin. When a molded product is formed using the fiber-reinforced resin sheet for thermoforming obtained by such a method, the reinforcing fibers float on the surface of the molded product, resulting in poor appearance. In addition, if reinforcing fibers float on the surface of the molded product, it will be an obstacle even if the surface is coated with paint. For this purpose, it is required to have a smooth surface on which a map is projected.
また、繊維強化マットに未硬化の熱硬化性樹脂を含浸させて、プレス成型機等で成 型と同時に熱硬化性樹脂の硬化を行う方法が知られている。該方法においても上記 と同様の課題を有している。  In addition, a method is known in which a fiber reinforced mat is impregnated with an uncured thermosetting resin, and the thermosetting resin is cured at the same time as forming with a press molding machine or the like. This method also has the same problems as described above.
力、かる問題を解決する方法として、例えば、繊維強化熱可塑性樹脂シートの表面 に該シートのマットリック樹脂よりも高融点の熱可塑性樹脂表皮層を形成する方法( 特許文献 10参照)、熱可塑性樹脂と繊維マットよりなる繊維強化熱可塑性樹脂シー トの表層に繊維マット含まな!/、熱可塑性樹脂層を積層する方法 (特許文献 11参照) 、繊維強化熱可塑性樹脂シートからなる芯層の少なくとも片面に、架橋剤を含有する 熱可塑性樹脂シートよりなる表層を積層し、これを加熱、加圧して、芯層と表層を熱 融着させるとともに、架橋剤により表層の熱可塑性樹脂層を架橋させる方法 (特許文 献 12参照)、繊維強化熱可塑性樹脂シートからなる芯層の少なくとも片面に、ェチレ ンープロピレンラバーやアタリロニトリノレーブタジエンラバー等のエラストマ一シート力、 らなる表層を熱融着により積層する方法(特許文献 13参照)、及び繊維強化プラスチ ック層の少なくとも片面に引っ張り弾性率が 0. ;!〜 500MPaである低弾性率層を介 して引張弾性率が 1000〜30000MPaである高弾性率層を配置する方法(特許文 献 14参照)等が開示されて!/、る。  As a method for solving such problems, for example, a method of forming a thermoplastic resin skin layer having a melting point higher than that of the matric resin of the sheet on the surface of the fiber reinforced thermoplastic resin sheet (see Patent Document 10), thermoplasticity A fiber mat is not included in the surface layer of a fiber reinforced thermoplastic resin sheet composed of a resin and a fiber mat! /, A method of laminating a thermoplastic resin layer (see Patent Document 11), at least a core layer composed of a fiber reinforced thermoplastic resin sheet A surface layer made of a thermoplastic resin sheet containing a crosslinking agent is laminated on one side, and this is heated and pressurized to heat-seal the core layer and the surface layer, and the thermoplastic resin layer of the surface layer is crosslinked with the crosslinking agent. Method (see Patent Document 12), at least one side of a core layer made of a fiber reinforced thermoplastic resin sheet is made of ethylene-propylene rubber or attalononitrile tributadiene rubber. A method of laminating the surface layer of the elastomer by thermal fusion (see Patent Document 13), and a low elastic modulus with a tensile elastic modulus of at least one side of the fiber reinforced plastic layer of 0.; A method of disposing a high elastic modulus layer having a tensile elastic modulus of 1000 to 30000 MPa through the layer (see Patent Document 14) is disclosed.
特許文献 10 :特開昭 58— 188649号公報 Patent Document 10: JP-A-58-188649
特許文献 11:特開昭 63— 214444号公報 Patent Document 11: Japanese Patent Laid-Open No. 63-214444
特許文献 12:特開平 5— 84737号公報 Patent Document 12: Japanese Patent Laid-Open No. 5-84737
特許文献 13:特開平 5— 154962号公報 特許文献 14 :特開平 2006— 51813号公報 Patent Document 13: Japanese Patent Laid-Open No. 5-155492 Patent Document 14: Japanese Unexamined Patent Publication No. 2006-51813
[0013] 上記特許文献で開示されて!/、る方法により表面平滑性は改善され一部の用途に おいては市場要求を満たすことができる力 S、写像が映し出される用な高度な平滑表 面が求められる用途においては市場要求を満たすことが出来ない場合がある。 また、特許文献 10〜; 12において開示されている方法においては、成型体の構成 層に低弾性率の層が含まれていないので、成型体に成型する場合に発生する歪を 緩和する層がないので成型体の寸法精度や寸法安定性が問題になる場合がある。 また、特許文献 13及び 14の方法は成型体の構成層に低弾性率の層が配置されて いるので、上記課題は改善されているが、これらの方法においては取り扱い性の悪 V、低弾性率の層を独立して成型体に組み込む方式がとられて!/、るので成型体を製 造する際に操作性が劣る場合や、不良品の発生頻度が増加する場合がある。 [0013] The surface smoothness is improved by the method disclosed in the above-mentioned patent documents, and the force that can meet the market demand in some applications. There are cases where market demands cannot be met in applications where surface is required. Further, in the methods disclosed in Patent Documents 10 to 12, since the low-elasticity layer is not included in the constituent layer of the molded body, a layer that relieves strain generated when molding into a molded body is provided. Therefore, there may be a problem with the dimensional accuracy and dimensional stability of the molded body. In addition, the methods of Patent Documents 13 and 14 improve the above-mentioned problem because a layer having a low elastic modulus is arranged in the constituent layer of the molded body. However, in these methods, the handling property is poor and the low elasticity is low. Therefore, there is a case where the operability is inferior or the frequency of occurrence of defective products is increased when the molded body is manufactured.
さらに、上記特許文献において開示されている方法は、いずれもが成型体の表面 に加飾を施すことや、該表面に機能性付与層を配置する等に対する配慮がなされて いない。  Furthermore, none of the methods disclosed in the above-mentioned patent documents give consideration to decorating the surface of the molded body and disposing a functional layer on the surface.
このように、上記の従来方法に於いては、いずれもそれぞれ問題があった。  As described above, each of the conventional methods has problems.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] 本発明は、ポリエステルフィルムとゴムとの接着力が高ぐかつ該接着力の耐久性 の優れ、さらに成型性の優れたゴム'ポリエステルフィルム積層体が得るためのゴム複 合用被覆ポリエステルフィルム及びそのゴム'ポリエステルフィルム積層体の製造方 法を提供することにある。また、上記ゴム'ポリエステルフィルム積層体を複合した表 面平滑なプラスチック成型体を提供することにある。 [0014] The present invention provides a rubber composite coated polyester film for obtaining a rubber 'polyester film laminate having high adhesion between a polyester film and rubber, excellent durability, and excellent moldability. And a method for producing the rubber / polyester film laminate. It is another object of the present invention to provide a plastic molded product having a smooth surface and a composite of the rubber and polyester film laminate.
課題を解決するための手段  Means for solving the problem
[0015] 本発明者等は、上記の課題を解決すべく鋭意検討を重ねた結果、本発明の完成 に到った。 [0015] As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
すなわち、本発明は、下記の構成からなる。  That is, this invention consists of the following structures.
1.面配向度が 0. 005—0. 15であるポリエステルフィルムの少なくとも片面に厚み 5 m以下の架橋高分子膜を有し、フィルムの長手方向及び幅方向における 10%伸 長時応力(25°C)が 20〜200MPaであることを特徴とするゴム積層用被覆ポリエステ ノレフイノレム。 1. A cross-linked polymer film with a thickness of 5 m or less is provided on at least one side of a polyester film having a degree of plane orientation of 0.005–0.15, and stretched by 10% in the longitudinal and width directions of the film Coated polyester noreinolem for rubber lamination, characterized by a long-time stress (25 ° C) of 20 to 200 MPa.
2.架橋高分子膜がポリエステル、ポリウレタン及びアクリル系ポリマーより選ばれた 少なくとも 1種の樹脂よりなる上記 1記載のゴム積層用被覆ポリエステルフィルム。  2. The coated polyester film for rubber lamination according to 1 above, wherein the crosslinked polymer film comprises at least one resin selected from polyester, polyurethane and acrylic polymer.
3.架橋高分子膜が架橋剤により架橋されてなる上記 1は 2記載のゴム積層用被覆 ポリエステルフィルム。  3. The coated polyester film for rubber lamination as described in 2 above, wherein the crosslinked polymer film is crosslinked with a crosslinking agent.
4.架橋剤が、メラミン系架橋剤、ォキサゾリン系架橋剤、イソシァネート系架橋剤、 アジリジン系架橋剤、エポキシ系架橋剤、メチロール化あるいはアルキロール化した 尿素系、アクリルアミド系、ポリアミド系樹脂、アミドエポキシ化合物、シランカップリン グ剤及びチタネート系カップリング剤より選ばれた少なくとも 1種である上記 3に記載 のゴム積層用被覆ポリエステルフィルム。  4.Crosslinker is melamine type crosslinker, oxazoline type crosslinker, isocyanate type crosslinker, aziridine type crosslinker, epoxy type crosslinker, methylolated or alkylolized urea type, acrylamide type, polyamide type resin, amide epoxy 4. The coated polyester film for rubber lamination according to 3 above, which is at least one selected from a compound, a silane coupling agent, and a titanate coupling agent.
5.架橋高分子膜を構成する樹脂と架橋剤との比が架橋剤/樹脂の重量比で 0. 5 以上である上記 3又は 4に記載のゴム積層用被覆ポリエステルフィルム。  5. The coated polyester film for rubber lamination as described in 3 or 4 above, wherein the ratio of the resin constituting the crosslinked polymer film to the crosslinking agent is 0.5 or more in terms of the weight ratio of the crosslinking agent / resin.
6.架橋高分子膜が、 自己架橋型のポリエステル、ポリウレタン及びアクリル系ポリマ 一よりなる群から選択される 1種以上の自己架橋型ポリマーが、自己架橋したものを 含んでいる上記 2〜5のいずれかに記載のゴム積層用被覆ポリエステルフィルム。  6. The above 2-5, wherein the cross-linked polymer film includes a self-cross-linked one or more types of self-cross-linked polymers selected from the group consisting of self-cross-linked polyester, polyurethane and acrylic polymer. The coated polyester film for rubber lamination according to any one of the above.
7.架橋高分子膜がポリエステルフィルムの両面に形成されてなる上記 1〜6のいず れかに記載のゴム積層用被覆ポリエステルフィルム。  7. The coated polyester film for rubber lamination according to any one of 1 to 6 above, wherein the crosslinked polymer film is formed on both sides of the polyester film.
8.上記 1〜6のいずれかに記載のゴム積層用被覆ポリエステルフィルムとゴムを積 層してなるゴム'ポリエステルフィルム積層体。  8. Rubber 'polyester film laminate obtained by laminating rubber and a laminated polyester film for rubber lamination according to any one of 1 to 6 above.
9.被覆ポリエステルフィルムとゴム層とを接着剤を介することなく直接積層してなる 上記 8記載のゴム'ポリエステルフィルム積層体。  9. The rubber 'polyester film laminate according to 8 above, wherein the coated polyester film and the rubber layer are directly laminated without using an adhesive.
10.被覆ポリエステルフィルムとゴム層との接着強度が 9N/20mm以上である請 求項 8又は 9に記載のゴム.ポリエステルフィルム積層体。  10. The rubber polyester film laminate according to claim 8 or 9, wherein the adhesive strength between the coated polyester film and the rubber layer is 9 N / 20 mm or more.
11. トルエン浸漬後(25°C、 72時間)のポリエステルフィルムとゴム層との接着強度 が 8N/20mm以上である上記 8〜10のいずれかに記載のゴム'ポリエステルフィル ム積層体。  11. The rubber'polyester film laminate according to any one of 8 to 10 above, wherein the adhesive strength between the polyester film and the rubber layer after immersion in toluene (25 ° C, 72 hours) is 8 N / 20 mm or more.
12.明細書中で定義した方法で耐水耐久処理をした後のポリエステルフィルムとゴ ム層との接着強度が 8N/20mm以上である上記 8〜; 11の!/、ずれかに記載のゴム · ポリエステルフィルム積層体。 12.Polyester film and rubber after water-resistant durability treatment by the method defined in the specification The rubber / polyester film laminate according to any one of 8 to 11 above, wherein the adhesive strength to the rubber layer is 8 N / 20 mm or more.
13.面酉己向度力 005—0. 15であるポリエステノレフイノレムの少なくとも片面に厚 み 5 m以下の架橋高分子膜を有する、フィルムの長手方向及び幅方向における 10 %伸長時応力(25°C)が 20〜200MPaであるポリエステルフィルムの前記架橋高分 子膜の表面に未架橋ゴム層を積層し、次いで未架橋ゴム層を架橋してなる上記 8〜 13. Self-directing force of 005—0.15 Polyesterolinolem having a cross-linked polymer film of 5 m or less on at least one side, 10% elongation stress in the longitudinal and width directions of the film (8) The above-mentioned 8-, which is obtained by laminating an uncrosslinked rubber layer on the surface of the crosslinked polymer film of a polyester film having a (25 ° C) of 20 to 200 MPa, and then crosslinking the uncrosslinked rubber layer.
12に記載のゴム ·ポリエステルフィルム積層体の製造方法。 12. The method for producing a rubber / polyester film laminate according to 12.
14.未架橋ゴム層に接着性改良剤が配合されてなる上記 13に記載のゴム'ポリエ ステルフィルム積層体の製造方法。  14. The method for producing a rubber / polyester film laminate according to the above 13, wherein an adhesion improver is blended in the uncrosslinked rubber layer.
15.上記 8〜 12のいずれかに記載のゴム.ポリエステルフィルム積層体とプラスツチ ック成型体との複合体。  15. The rubber according to any one of 8 to 12 above, a composite of a polyester film laminate and a plastic molding.
16.最表面にポリエステルフィルムを配してなる上記 15に記載の複合体。  16. The composite according to 15 above, wherein a polyester film is disposed on the outermost surface.
17.ポリエステルフィルム表面に印刷インキ、金属薄膜、無機薄膜及び塗料より選 ばれた少なくとも 1種よりなる加飾層を設けてなる上記 16記載の複合体。  17. The composite according to 16 above, wherein a decorative layer comprising at least one selected from printing ink, metal thin film, inorganic thin film and paint is provided on the surface of the polyester film.
18.ゴム'ポリエステルフィルム積層体をプラスッチック成型体の中間層として用レヽ てなる上記 15に記載の複合体。  18. The composite according to 15 above, wherein the rubber / polyester film laminate is used as an intermediate layer of a plastic molding.
19.プラスチック成型体がシート状である上記 15〜; 18のいずれかに記載の複合体 19. The composite according to any one of 15 to 18 above, wherein the plastic molding is a sheet.
Yes
20.プラスチック成型体が湾曲部分を有してなる上記 19に記載の複合体。  20. The composite according to 19 above, wherein the plastic molding has a curved portion.
発明の効果 The invention's effect
本発明のゴム積層用被覆ポリエステルフィルムは、成型性の高レ、ポリエステルフィ ルムとゴム層とを接着剤を介することなく直接接着することができるので、成型性の優 れたポリエステルフィルムとゴム層との積層体を経済的に得ることができる。また、本 発明のゴム積層用被覆ポリエステルフィルムは層厚みの薄い架橋高分子膜層でポリ エステルフィルムとゴム層の接着性を向上させており、接着剤層を排除しているので 層厚みの厚い接着剤層により引き起こされる成型性の低下を回避することができる。 その上に、該ポリエステルフィルムとゴム層との接着力が高ぐかつ接着力の耐久性 に優れた積層体を得ることができる。 また、本発明のゴム 'ポリエステルフィルム積層体は、優れた成型性を有するので、 例えば、プラスチック成型体用部材として使用した場合にプラスチック成型体の成型 性を低下させることがない。さらに、本発明のゴム'ポリエステルフィルム積層体は、ゴ ム層が積層されているので、例えば、該プラスチック成型体の部材として使用した複 合体の場合において、プラスチック成型体の成型の折に発生する歪をゴム層の弾性 を利用して緩和することができるので、例えば、プラスチック成型体の表面状態を改 善することができ、かつ該プラスチック成型体の使用において成型体に加わる外力を ゴム層の有する弾性で緩和することが可能であり、例えば、プラスチック成型体の外 観や耐久性を向上させることができる等の効果を付与することができる。また、本発明 のゴム.ポリエステルフィルム積層体はポリエステルフィルムが積層されているのでゴ ム層単体品に比べて取り扱!/、性に優れて!/、る。 The coated polyester film for rubber lamination of the present invention has a high moldability, and can directly bond the polyester film and the rubber layer without using an adhesive, so that the polyester film and the rubber layer having excellent moldability can be bonded. And a laminate can be obtained economically. The coated polyester film for rubber lamination of the present invention is a thin cross-linked polymer film layer that improves the adhesion between the polyester film and the rubber layer, and eliminates the adhesive layer, so that the layer thickness is large. The deterioration of moldability caused by the adhesive layer can be avoided. In addition, a laminate having high adhesion between the polyester film and the rubber layer and excellent adhesion durability can be obtained. Further, since the rubber / polyester film laminate of the present invention has excellent moldability, for example, when used as a member for a plastic molded body, the moldability of the plastic molded body is not lowered. Furthermore, since the rubber / polyester film laminate of the present invention has a rubber layer laminated, for example, in the case of a composite used as a member of the plastic molded product, it occurs when the plastic molded product is molded. Since the strain can be relaxed by using the elasticity of the rubber layer, for example, the surface state of the plastic molded body can be improved, and the external force applied to the molded body in the use of the plastic molded body can be improved. It can be relaxed by the elasticity it has, and for example, effects such as improving the appearance and durability of the plastic molded body can be imparted. In addition, since the polyester film laminate of the rubber polyester film of the present invention is laminated, it is easy to handle and has better properties than a single rubber layer product.
[0017] また、本発明のゴム.ポリエステルフィルム積層体は、ゴム層とポリエステルフィルム の接着性や接着性の耐久性が優れているので、例えば、プラスチック成型体用部材 として使用した場合にプラスチック成型体の耐久性が向上する。 [0017] Further, since the rubber polyester film laminate of the present invention has excellent adhesion and adhesion durability between the rubber layer and the polyester film, for example, when used as a member for a plastic molding, Improves body durability.
また、本発明のゴム'ポリエステルフィルム積層体は、被覆ポリエステルフィルムの両 面に架橋高分子膜層が形成された形態も含まれるので、ゴム層との接着性や接着耐 久 1·生のみでなぐゴム層を積層した面との反対面においても、例えば、印刷インキと の接着性や接着耐久性も向上できるという利点を有する。したがって、本発明のゴム 'ポリエステルフィルム積層体のポリエステルフィルム表面に、印刷、塗装あるいは金 属の蒸着等により装飾を施す場合に、印刷インク、塗料、あるいは金属薄膜等とポリ エステルフィルムとの接着性や接着耐久性が向上するという利点を有している。また In addition, the rubber / polyester film laminate of the present invention includes a form in which a crosslinked polymer film layer is formed on both sides of the coated polyester film. Even on the side opposite to the side on which the rubber layer is laminated, there is an advantage that, for example, adhesion to printing ink and adhesion durability can be improved. Therefore, when decorating the polyester film surface of the rubber 'polyester film laminate of the present invention by printing, painting or metal deposition, etc., the adhesion between the printing ink, paint, metal thin film, etc. and the polyester film And has the advantage of improved adhesion durability. Also
、ゴム層を積層した面との反対面にフィルム、織物、不織布あるいは成型体等の他素 材とを貼り合せる場合に、該素材とポリエステルフィルムとの接着性や接着耐久性が 向上するとレ、う利点も有して!/、る。 When the other material such as a film, woven fabric, non-woven fabric or molded body is bonded to the surface opposite to the surface on which the rubber layer is laminated, the adhesion and durability of the material to the polyester film are improved. It also has an advantage!
また、本発明のゴム ·ポリエステルフィルム積層体の製造方法は、上記特性を有した ゴム.ポリエステルフィルム積層体を経済的に、かつ安定して製造することができる。  The method for producing a rubber / polyester film laminate of the present invention can produce a rubber / polyester film laminate having the above-mentioned properties economically and stably.
[0018] また、本発明のプラスチック成型体は、上記ゴム'ポリエステルフィルム積層体をプラ スチック成型体の一構成部材として用いているので、以下のような特徴を有する。 (1)プラスチック成型体の成形において発生する歪をゴム層の弾性を利用して緩和 すること力 Sできるので、例えば、プラスチック成型体の表面状態を改善することができ 、かつ成型時に発生する歪を緩和することができ、さらに、該プラスチック成型体の使 用において成型体に加わる外力をゴム層の有する弾性で緩和することが可能であり 、例えば、プラスチック成型体の耐久性を向上させることができる。 [0018] The plastic molded body of the present invention has the following characteristics because the rubber / polyester film laminate is used as a constituent member of the plastic molded body. (1) Since it is possible to reduce the strain generated in the molding of a plastic molded body by utilizing the elasticity of the rubber layer, for example, the surface condition of the plastic molded body can be improved and the strain generated during molding can be improved. In addition, the external force applied to the molded body in the use of the plastic molded body can be relaxed by the elasticity of the rubber layer. For example, the durability of the plastic molded body can be improved. it can.
(2)上記ゴム.ポリエステルフィルム積層体はポリエステルフィルムが積層されている のでプラスチック成型体の強度等を高める補強効果を発現する。  (2) The above-mentioned rubber polyester film laminate exhibits a reinforcing effect that enhances the strength and the like of the plastic molding because the polyester film is laminated.
(3)上記ゴム.ポリエステルフィルム積層体はポリエステルフィルムが積層されている ので、プラスチック成型体のガスノ リア一性等のバリアー性を改善できることがある。  (3) Since the polyester film laminate is laminated with the rubber polyester film laminate described above, it may be possible to improve the barrier properties such as gas-noirity of the plastic molding.
(4)上記ゴム'ポリエステルフィルム積層体のポリエステルフィルム面プラスチック成 型体の表面に上記ゴム'ポリエステルフィルム積層体のポリエステルフィルム面側が 表層となるように積層した場合は、ポリエステルフィルムの表面平滑性及びゴム層に よるプリントスルー効果により極めて高度な表面平滑性が得られるという利点を有する 。そのため、プラスチック成型体の表面に加飾処理した場合に品位の高い表面装飾 が可能となる。  (4) When the rubber film is laminated so that the polyester film surface side of the rubber film is a surface layer, the polyester film surface smoothness and the polyester film surface smoothness and It has the advantage that extremely high surface smoothness can be obtained due to the print-through effect of the rubber layer. Therefore, high-quality surface decoration is possible when the surface of the plastic molding is decorated.
(5)上記特性を有したゴム'ポリエステルフィルム積層体を用いているので、被覆ポ リエステルフィルムとゴム層との接着力が高ぐかつ接着力の耐久性に優れているの で、例えば、自動車用外板等の耐久性が求められる成型体の構成部材として好適に 使用すること力でさる。  (5) Since the rubber / polyester film laminate having the above characteristics is used, the adhesive strength between the coated polyester film and the rubber layer is high and the durability of the adhesive strength is excellent. It can be used with a force suitable for use as a structural member of a molded body that requires durability such as an outer plate.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 本発明のゴム積層用被覆ポリエステルフィルムは、面配向度が 0. 005-0. 15であ るポリエステルフィルムの少なくとも片面に厚み 0· 003-5 ^ mの架橋高分子膜を有 し、フィルムの長手方向及び幅方向における 10%伸長時応力(25°C)が 20〜200M Paである。 [0019] The coated polyester film for rubber lamination of the present invention has a cross-linked polymer film having a thickness of 0.003-5 ^ m on at least one surface of a polyester film having a degree of plane orientation of 0.005-0.15. The 10% elongation stress (25 ° C.) in the longitudinal and width directions of the film is 20 to 200 MPa.
[0020] 本発明におけるポリエステルフィルムの面配向度は、 0. 005—0. 15である。面配 向度の上限は 0. 15であり、 0. 14がより好ましい。高度な成型性が必要な場合は 0. 13以下がさらに好ましい。該面配向度は成型性と関連のある物性であり、面配向度 が高いほど分子鎖が面方向に配列し、成型性が低下する。従って、面配向度が小さ いほど成型性は良くなる。一方、フィルムの強度及び厚み斑などの平面性を確保す る観点から、或いは耐溶剤性の確保の観点から、面配向度の下限は 0. 01がより好 ましく、 0. 04がさらに好ましい。 [0020] The plane orientation degree of the polyester film in the present invention is 0.005 to 0.15. The upper limit of the degree of surface orientation is 0.15, and 0.14 is more preferable. When high moldability is required, 0.13 or less is more preferable. The degree of plane orientation is a physical property related to moldability, and the higher the degree of plane orientation, the more the molecular chains are arranged in the plane direction and the moldability decreases. Therefore, the degree of plane orientation is small The better the moldability. On the other hand, from the viewpoint of ensuring flatness such as film strength and unevenness of thickness, or from the viewpoint of ensuring solvent resistance, the lower limit of the degree of plane orientation is more preferably 0.01, and more preferably 0.04. .
ここで、ポリエステルフィルムの面配向度とは、アッベ屈折計等を用いて測定される フィルムの長手方向屈折率 (Nx)、幅方向屈折率 (Ny)、厚み方向屈折率 (Nz)によ り下記(1)式から算出される値である。  Here, the degree of surface orientation of the polyester film is determined by the longitudinal refractive index (Nx), the width direction refractive index (Ny), and the thickness direction refractive index (Nz) of the film measured using an Abbe refractometer or the like. It is a value calculated from the following equation (1).
面配向度 = (Nx+Ny) /2— Nz 式(1)  Plane orientation = (Nx + Ny) / 2— Nz formula (1)
本発明のゴム積層用被覆ポリエステルフィルムにおいて、架橋高分子層の厚みが 0 . 5 111以下の場合は、上記架橋高分子層のポリエステル系基材フィルムの屈折率 に対する影響は小さレ、ので、ゴム積層用被覆ポリエステルフィルムの屈折率測定によ つてポリエステル基材フィルムの屈折率が測定でき、面配向度を計算できる。  In the coated polyester film for rubber lamination of the present invention, when the thickness of the crosslinked polymer layer is 0.5 111 or less, the influence of the crosslinked polymer layer on the refractive index of the polyester-based substrate film is small. By measuring the refractive index of the laminated polyester film for lamination, the refractive index of the polyester base film can be measured, and the degree of plane orientation can be calculated.
[0021] 面配向度を上記範囲にする方法は限定されないが、ポリエステルを二軸延伸化し たものが望ましく使用される。力、かる二軸延伸の方法としては、同時二軸延伸、逐次 二軸延伸のレ、ずれであってもよレ、。  [0021] The method for bringing the degree of plane orientation to the above range is not limited, but a biaxially stretched polyester is preferably used. As a method of force, biaxial stretching, simultaneous biaxial stretching, sequential biaxial stretching, or even misalignment.
上記の二軸延伸ポリエステルフィルムの製造方法としては、特に限定されな!/、が、 例えばポリエステルを必要に応じて乾燥した後、公知の溶融押出機に供給し、スリツ ト状のダイからシート状に押出し、静電印加などの方式によりキャスティングドラムに 密着させ、冷却固化し、未延伸シートを得た後、かかる未延伸シートを延伸するもの である。かかる延伸方式としては、同時二軸延伸、逐次二軸延伸のいずれでもよいが 、要するに該未延伸シートをフィルムの長手方向及び幅方向に延伸、熱処理し、 目 的とする面配向度のフィルムを得る方法が採用される。  The method for producing the above-mentioned biaxially stretched polyester film is not particularly limited! /, For example, after drying the polyester as necessary, it is supplied to a known melt extruder and is then formed into a sheet from a slit-shaped die. Then, the sheet is brought into close contact with the casting drum by a method such as electrostatic application, cooled and solidified to obtain an unstretched sheet, and then the unstretched sheet is stretched. Such a stretching method may be either simultaneous biaxial stretching or sequential biaxial stretching. In short, the unstretched sheet is stretched in the longitudinal direction and the width direction of the film and heat-treated to form a film having a desired plane orientation degree. The method to obtain is adopted.
[0022] 上記の二軸延伸ポリエステルフィルムにおいて面配向度を上記範囲にする方法は 限定されないが、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等の ホモポリエステル樹脂を原料として延伸倍率や熱セット温度を最適化することによる 方法やポリエステル樹脂として共重合ポリエステル樹脂ゃ該共重合ポリエステル樹脂 と上記ホモポリエステル樹脂を配合した配合樹脂を用いて面配向度を低下させて上 記範囲とする方法及び上記方法を組み合わせた方法等が挙げられる。  [0022] The method for bringing the degree of plane orientation in the above-mentioned biaxially stretched polyester film is not limited, but, for example, a homopolyester resin such as polyethylene terephthalate or polyethylene naphthalate is used as a raw material to optimize the stretch ratio and heat setting temperature. The above method and the above method are combined by reducing the degree of plane orientation using a compounded resin in which a copolyester resin is blended as the polyester resin and the copolyester resin and the homopolyester resin. Methods and the like.
[0023] 例えば、延伸条件で面配向度を低下させるためには、二軸延伸の延伸倍率を、そ れぞれの方向に 1 · 6〜4· 2倍とすることが好ましぐさらに好ましくは 1 · 7〜4· 0倍と する。特に好ましくは、 1. 8〜3. 2倍である。この場合、長手方向、幅方向の延伸倍 率はどちらを大きくしてもよぐ同一としてもよい。また、延伸速度は 1000%/分〜 20 0000%/分であることが望ましぐ延伸温度はポリエステルのガラス転移温度以上ガ ラス転移温度 + 100°C以下であれば任意の温度とすることができる力 好ましくは 80 〜; 170°Cの範囲で延伸するのがよい。更に、二軸延伸の後にフィルムの熱処理を行 う力 この熱処理は、オーブン中、あるいは、加熱されたロール上等、従来公知の任 意の方法で行なうことができる。熱処理温度は 120°C以上 245°C以下の任意の温度 とすること力 Sできる力 好ましくは 150〜220°Cである。また熱処理時間は任意とする ことができる力 好ましくは 1〜60秒間行うのがよい。なお、力、かる熱処理はフィルムを その長手方向及び/又は幅方向に弛緩させつつ行ってもよい。さらに、再延伸を各 方向に対して 1回以上行ってもよぐその後熱処理を行ってもよい。ここで、熱処理温 度は、 DSCで観測される熱処理に起因する結晶融解サブピークのピーク温度により 確言忍すること力 Sでさる。 [0023] For example, in order to reduce the degree of plane orientation under stretching conditions, the stretching ratio of biaxial stretching is It is preferable to set 1 · 6 to 4 · 2 times in each direction, and more preferably 1 · 7 to 4 · 0 times. Particularly preferably, it is 1.8 to 3.2 times. In this case, the stretching ratio in the longitudinal direction and the width direction may be the same or larger. In addition, it is desirable that the stretching speed is 1000% / min to 20 0000% / min. The stretching temperature may be any temperature as long as it is not less than the glass transition temperature of the polyester and not less than the glass transition temperature + 100 ° C. Force that can be used Preferably it is 80-; Further, a force for heat-treating the film after biaxial stretching. This heat treatment can be performed by any conventionally known method such as in an oven or on a heated roll. The heat treatment temperature can be any temperature between 120 ° C. and 245 ° C. Force that can be applied S, preferably 150 to 220 ° C. Further, the heat treatment time can be set arbitrarily. Preferably, the heat treatment time is 1 to 60 seconds. The force and heat treatment may be performed while relaxing the film in the longitudinal direction and / or the width direction. Further, re-stretching may be performed once or more in each direction, and then heat treatment may be performed. Here, the heat treatment temperature is determined by the force S that can be confirmed by the peak temperature of the crystal melting sub-peak caused by the heat treatment observed by DSC.
[0024] 本発明においては、高度な成型性が求められる用途へ展開する場合は、下記に例 示する方法で対応するのが好ましレ、。  [0024] In the present invention, it is preferable that the method illustrated below is used when developing for applications that require high moldability.
本発明において、ポリエステルフィルムの長手方向及び幅方向における 10%伸長 時応力(25°C)が 20〜200MPaであることが重要である。該 10%伸張時応力(25°C )は 20〜; 180MPaであることがより好ましぐ 20〜; 160MPaであるがさらに好ましい。 10%伸長時応力(25°C)が 20MPa以上であればロール状のフィルムを引張って巻 きだす際のフィルムの伸長や破断を防止することができる。一方、 10%伸長時応力( 25°C)が 200MPaを以下であれば、成型性を確保することができる。特に、凹凸や窪 みのある金型を用いて成型する際に、成型前のフィルムを事前にそれらの型に軽く 追随させて成型する場合があり、このような場合に、フィルムの成形性が良ぐ製品の 意匠性が良好となる。  In the present invention, it is important that the 10% elongation stress (25 ° C.) in the longitudinal direction and the width direction of the polyester film is 20 to 200 MPa. The stress at 10% elongation (25 ° C.) is 20 to more preferably 180 MPa, and more preferably 20 to 160 MPa. If the stress at 10% elongation (25 ° C) is 20 MPa or more, the film can be prevented from being stretched or broken when the roll film is pulled and unwound. On the other hand, if the 10% elongation stress (25 ° C) is 200 MPa or less, the moldability can be secured. In particular, when using a mold with irregularities and depressions, the film before molding may be followed by lightly following those molds in advance. The design of good products will be good.
[0025] ポリエステルフィルムにおいて、 150°Cにおける長手方向及び幅方向の熱収縮率 は 0. 01-5. 0%であることが好ましい。 150°Cにおける熱収縮率の下限値は、 0. 1 %がより好ましぐさらに好ましくは 0. 5%である。一方、 150°Cにおける熱収縮率の 上限値は、 4. 5%がより好ましくは、さらに好ましくは 4. 1 %、特に好ましくは 3. 2% である。 150°Cにおける長手方向及び幅方向のフィルムの熱収縮率が 0. 01 %以上 であれば、生産性を確保することができる。一方、 150°Cにおける長手方向及び幅方 向のフィルムの熱収縮率が 5. 0%以下であれば、熱の力、かる後処理工程においても フィルムの変形を惹起させることなぐ後加工後のフィルムの外観や意匠性が良好と なる。 [0025] In the polyester film, the thermal shrinkage in the longitudinal direction and the width direction at 150 ° C is preferably 0.01 to 5.0%. The lower limit value of the heat shrinkage rate at 150 ° C. is more preferably 0.1%, and further preferably 0.5%. On the other hand, the thermal shrinkage at 150 ° C The upper limit value is more preferably 4.5%, still more preferably 4.1%, and particularly preferably 3.2%. If the thermal shrinkage of the film in the longitudinal direction and the width direction at 150 ° C is 0.01% or more, productivity can be secured. On the other hand, if the thermal shrinkage rate of the film in the longitudinal direction and the width direction at 150 ° C is 5.0% or less, the heat force and the post-processing without causing deformation of the film even in the post-processing step. The appearance and design of the film will be good.
[0026] また、ポリエステルフィルムのヘーズは 0· ;!〜 3· 0%であるのが好ましい。ヘーズの 下限ィ直は 0. 3%がより好ましぐさらに好ましくは 0. 5%である。一方、 ^ ^一ズの上限 ィ直は 2. 5%がより好ましぐさらに好ましくは 2. 0%である。^ ^一ズが 0. 1 %以上であ ればフィルムを通常の生産性よく工業規模で生産することができる。一方、フィルムの ヘーズが 3. 0%以下であれば、金属などの蒸着やスパッタリング面、又は印刷面をフ イルムの裏面から見た場合、金属や印刷面が鮮明となり、良好な意匠性を確保するこ と力できる。なお、フィルム中のハンドリング性の改良のために一般的に行われる、粒 子をフィルム中に含有させてフィルム表面に凹凸を形成する方法では、 ^ ^一ズが 2. [0026] The haze of the polyester film is preferably 0 · ;! to 3 · 0%. The lower limit of haze is preferably 0.3%, and more preferably 0.5%. On the other hand, the upper limit of ^^ is 2.5%, more preferably 2.0%. ^ ^ If the film size is 0.1% or more, the film can be produced on an industrial scale with high normal productivity. On the other hand, if the haze of the film is 3.0% or less, the metal or printed surface becomes clear when the vapor-deposited or sputtered surface of metal or the printed surface is viewed from the back side of the film, ensuring good design. I can help. In the method of forming irregularities on the film surface by incorporating particles into the film, which is generally performed to improve the handling properties in the film, ^ ^
0%以下のフィルムを得ることは難しい。該特性は本発明のゴム積層用被覆ポリエス テルフィルムを成型体の最表層として用い、かつ加飾を施す用途への展開において 重要な特性である。 It is difficult to obtain a film of 0% or less. This characteristic is an important characteristic in the development of applications in which the coated polyester film for rubber lamination according to the present invention is used as the outermost layer of a molded product and is decorated.
[0027] また、本発明のゴム'ポリエステルフィルム積層体を成型体の最表層として用いる場 合は、少なくとも片面のフィルムの表面粗さ(Ra)は、 0. 005—0. 030 mであること が好ましい。 Raの下限値は 0. 006〃m力 Sより好ましく、さらに好ましくは 0. 007 ^ 111 である。一方、 Raの上限ィ直は 0. 025〃m力より好ましく、さらに好ましくは 0. 015〃 mである。少なくとも片面のフィルムの Raが 0. 005 m以上であれば、フィルムの巻 取りや、また、一旦ロール状に巻き取ったフィルムを巻き出す際に、ブロッキングゃフ イルムの破れが発生することもない。また、 Raが 0· 03 m以下であれば、蒸着、スパ ッタリング又は印刷などの後加工工程で突起などの欠点は発生せず、意匠性が確保 される。  [0027] When the rubber / polyester film laminate of the present invention is used as the outermost layer of the molded product, the surface roughness (Ra) of at least one side of the film should be 0.005-0.030 m. Is preferred. The lower limit of Ra is more preferably 0.006 μm force S, and more preferably 0.007 ^ 111. On the other hand, the upper limit of Ra is more preferably 0.025 μm, more preferably 0.015 μm. If Ra of at least one side of the film is 0.005 m or more, blocking will not cause film breakage when winding the film or unwinding the film once wound into a roll. . In addition, if Ra is not more than 0 · 03 m, defects such as protrusions do not occur in post-processing steps such as vapor deposition, sputtering, or printing, and design properties are ensured.
[0028] 上記特性を有したポリエステルフィルムの製造方法は限定されないが、以下に例示 する方法で実施するのが好ましい実施態様である。 ポリエステルフィルムの原料としては、共重合成分を 5〜50モル%含む共重合ポリ エステルを原料として用いるのが好ましい。共重合成分を 5〜50モル%含む共重合 ポリエステルを原料として用いて得たポリエステルフィルムは、ポリエチレンテレフタレ 一トフイルムなどに比較して結晶化速度が遅ぐまた結晶性が低い。また、面配向度 と 150°Cの熱収縮率を小さくするために、通常よりも高温で熱処理するという方法を 用いた場合、延伸終了後に急激に高温で熱処理をするため、熱処理ゾーンにおい て結晶性の低い材料を構成する分子の運動性が高くなる。よって、延伸工程におい て粒子(二軸配向フィルム中の粒子あるいはコーティング層中の粒子)が***するこ とにより形成された表面突起力 S、熱処理ゾーンにおいて再び埋没してしまうために、 十分な表面粗さを得ることができない。それゆえ、フィルムをきれいに巻き取り、かつ ロール状に巻き取ったフィルムを巻き出す際のブロッキングや破れを抑制するために 、粒子の添加量を必要以上に増やすと、ヘーズが低下するという問題を回避すること ができる。 [0028] A method for producing a polyester film having the above-mentioned properties is not limited, but a preferred embodiment is carried out by the method exemplified below. As a raw material for the polyester film, it is preferable to use a copolymer polyester containing 5 to 50 mol% of a copolymer component as the raw material. A polyester film obtained by using a copolymer polyester containing 5 to 50 mol% of a copolymer component as a raw material has a slower crystallization rate and lower crystallinity than polyethylene terephthalate film. In addition, in order to reduce the degree of plane orientation and the thermal shrinkage at 150 ° C, when a method of heat treatment at a temperature higher than usual is used, the heat treatment is suddenly carried out at a high temperature after the drawing is completed. The mobility of the molecules that make up the material with low properties is increased. Therefore, in the stretching process, the surface protrusion force S formed when the particles (particles in the biaxially oriented film or particles in the coating layer) rise, and the surface is sufficiently buried because it is buried again in the heat treatment zone. Roughness cannot be obtained. Therefore, avoiding the problem of haze reduction when the amount of added particles is increased more than necessary to prevent blocking and tearing when winding the film neatly and unwinding the roll-wound film. can do.
[0029] 上記課題を解決するには、熱処理ゾーンを 2段(以上)にし、一段目の熱処理温度 TS 1と 2段目の熱処理温度 TS 2を特定範囲に制御するが好ましい。  [0029] In order to solve the above-mentioned problem, it is preferable that the heat treatment zone has two stages (or more), and the first stage heat treatment temperature TS1 and the second stage heat treatment temperature TS2 are controlled within a specific range.
該対応により、第 1段目の熱処理ゾーンにおいて、粒子がフィルム内部に埋没する 前に、ある程度フィルムの結晶化を促進させておいて、さらに 2段目の熱処理ゾーン において十分に温度を上げても、分子の運動性は十分に低下しており、表面の突起 を形成したまま、さらに結晶性を促進させ、熱収縮率の低いフィルムが得られる。また 、透明性の点から、必要以上に粒子を含有させる必要がなくなる。  As a result, the crystallization of the film is promoted to some extent before the particles are buried inside the film in the first heat treatment zone, and the temperature is further increased in the second heat treatment zone. The molecular mobility is sufficiently lowered, and the film has a low thermal shrinkage rate by further promoting the crystallinity while forming the protrusions on the surface. Moreover, it is not necessary to contain particles more than necessary from the viewpoint of transparency.
[0030] 成型用ポリエステルフィルムに用いられる共重合ポリエステルとしては、(a)芳香族 ジカルボン酸成分と、エチレングリコールと、分岐状脂肪族グリコール又は脂環族ダリ コールを含むダリコール成分から構成される共重合ポリエステル、あるいは(b)テレフ タル酸及びイソフタル酸を含む芳香族ジカルボン酸成分と、エチレングリコールを含 むグリコール成分から構成される共重合ポリエステルが好適である。また、二軸配向 ポリエステルフィルムを構成するポリエステル力 S、さらにグリコール成分として 1 , 3—プ 口パンジオール単位又は 1 , 4 ブタンジオール単位を含むことが成型性をさらに向 上させる点から好ましい。 [0031] 本発明において、ポリエステルフィルムの原料としては、(a)共重合ポリエステルの みを単独で用いる場合、(b) 2種以上の共重合ポリエステルをブレンドして用いる場 合、(c) 1種又は 2種以上の共重合ポリエステルと、 1種又は 2種以上のホモポリエス テルとをブレンドする場合、のいずれの方法も可能である。これらの中でも、ブレンド 法が融点の低下を抑制する点から好適である。 [0030] The copolyester used for the polyester film for molding includes (a) a copolymer composed of an aromatic dicarboxylic acid component, ethylene glycol, and a darlicol component containing a branched aliphatic glycol or alicyclic darlicol. Polymerized polyester or (b) a copolymerized polyester composed of an aromatic dicarboxylic acid component containing terephthalic acid and isophthalic acid and a glycol component containing ethylene glycol is preferred. In addition, it is preferable from the viewpoint of further improving the moldability that the polyester force S constituting the biaxially oriented polyester film, and further including a 1,3-propylpandiol unit or a 1,4 butanediol unit as a glycol component. [0031] In the present invention, as the raw material for the polyester film, (a) when only the copolyester is used alone, (b) when two or more copolyesters are blended, (c) 1 In the case of blending one or two or more kinds of copolyesters with one or more kinds of homopolyesters, any of the methods is possible. Among these, the blend method is preferable from the viewpoint of suppressing the lowering of the melting point.
上記共重合ポリエステルとして、芳香族ジカルボン酸成分と、エチレングリコールと 、分岐状脂肪族グリコール又は脂環族グリコールを含むダリコール成分から構成され る共重合ポリエステルを用いる場合、芳香族ジカルボン酸成分としては、テレフタル 酸、イソフタル酸、ナフタレンジカルボン酸又はそれらのエステル形成性誘導体が好 適であり、全ジカルボン酸成分に対するテレフタル酸及び/又はナフタレンジカルボ ン酸成分の量は 70モル%以上、好ましくは 85モル%以上、特に好ましくは 95モル %以上、とりわけ好ましくは 100モル%である。  In the case of using a copolymerized polyester composed of an aromatic dicarboxylic acid component, ethylene glycol, and a darlicol component containing a branched aliphatic glycol or alicyclic glycol as the copolymerized polyester, as the aromatic dicarboxylic acid component, Terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid or their ester-forming derivatives are preferred, and the amount of terephthalic acid and / or naphthalene dicarboxylic acid component relative to the total dicarboxylic acid component is 70 mol% or more, preferably 85 mol. % Or more, particularly preferably 95 mol% or more, particularly preferably 100 mol%.
[0032] また、分岐状脂肪族グリコールとしては、例えば、ネオペンチルダリコール、 1 , 2— プロパンジオール、 1 , 3—プロパンジオール、 1 , 4 ブタンジオールなどが例示され る。脂環族グリコールとしては、 1 , 4—シクロへキサンジメタノール、トリシクロデカンジ メチロールなどが例示される。  [0032] Examples of branched aliphatic glycols include neopentyl dallicol, 1,2-propanediol, 1,3-propanediol, and 1,4 butanediol. Examples of the alicyclic glycol include 1,4-cyclohexanedimethanol and tricyclodecane dimethylol.
これらのなかでも、ネオペンチルグリコールや 1 , 4ーシクロへキサンジメタノールが 特に好ましい。さらに、上記のグリコール成分に加えて 1 , 3—プロパンジオールや 1 , 4 ブタンジオールを共重合成分とすることが、より好ましい実施態様である。これら のグリコールを共重合成分として使用することは、前記の特性を付与するために好適 であり、さらに、透明性や耐熱性にも優れ、密着性改質層との密着性を向上させる点 力、らも好ましい。  Of these, neopentyl glycol and 1,4-cyclohexanedimethanol are particularly preferred. Furthermore, it is a more preferable embodiment that 1,3-propanediol or 1,4 butanediol is used as a copolymerization component in addition to the glycol component. Use of these glycols as a copolymerization component is suitable for imparting the above-mentioned properties, and is also excellent in transparency and heat resistance, and improves adhesion to the adhesion modified layer. Are also preferred.
[0033] また、上記共重合ポリエステルとして、テレフタル酸及びイソフタル酸を含む芳香族 ジカルボン酸成分と、エチレングリコールを含むダリコール成分から構成される共重 合ポリエステルを用いる場合、エチレングリコールの量は全グリコール成分に対し 70 モル%以上、好ましくは 85モル%以上、特に好ましくは 95モル%以上、とりわけ好ま しくは 100モル0 /0である。エチレングリコール以外のグリコール成分としては、前記の 分岐状脂肪族ダリコ一ルゃ脂環族ダリコール、又はジエチレンダリコールが好適であ [0034] 上記共重合ポリエステルを製造する際に用いる触媒としては、例えば、アルカリ土 類金属化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン 化合物、チタン化合物、チタン/ケィ素複合酸化物、ゲルマニウム化合物などが使 用できる。これらのなかでも、チタン化合物、アンチモン化合物、ゲルマニウム化合物 、アルミユウム化合物が触媒活性の点から好ましレ、。 [0033] When a copolymer polyester composed of an aromatic dicarboxylic acid component containing terephthalic acid and isophthalic acid and a darlicol component containing ethylene glycol is used as the copolymerized polyester, the amount of ethylene glycol is the total amount of glycol. 70 mol% or more based component, preferably 85 mol% or more, particularly preferably 95 mol% or more, especially preferred properly is 100 mole 0/0. As the glycol component other than ethylene glycol, the above-mentioned branched aliphatic daricool alicyclic dallicol or diethylene darlicol is suitable. [0034] Examples of the catalyst used in the production of the above copolyester include, for example, alkaline earth metal compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, titanium / silicon composite oxides, and germanium compounds. Etc. can be used. Of these, titanium compounds, antimony compounds, germanium compounds, and aluminum compounds are preferred from the viewpoint of catalytic activity.
上記共重合ポリエステルを製造する際に、熱安定剤としてリン化合物を添加するこ とが好ましい。前記リン化合物としては、例えばリン酸、亜リン酸などが好ましい。 上記共重合ポリエステルは、成型性、密着性、製膜安定性の点から、固有粘度が 0 . 50dl/g以上であることが好ましぐさらに好ましくは 0. 55dl/g以上、特に好ましく は 0. 60dl/g以上である。固有粘度が 0. 50dl/g未満では、成型性が低下する傾 向がある。また、メルトラインに異物除去のためのフィルターを設けた場合、溶融樹脂 の押出時における吐出安定性の点から、固有粘度の上限を 1. Odl/gとすることが 好ましい。  When producing the copolymer polyester, it is preferable to add a phosphorus compound as a heat stabilizer. As said phosphorus compound, phosphoric acid, phosphorous acid, etc. are preferable, for example. The copolymer polyester preferably has an intrinsic viscosity of 0.50 dl / g or more, more preferably 0.55 dl / g or more, and particularly preferably 0 from the viewpoints of moldability, adhesion, and film formation stability. More than 60dl / g. If the intrinsic viscosity is less than 0.50 dl / g, the moldability tends to decrease. In addition, when a filter for removing foreign substances is provided in the melt line, the upper limit of the intrinsic viscosity is preferably 1. Odl / g from the viewpoint of ejection stability during extrusion of the molten resin.
[0035] 上記ポリエステル原料として、 1種類以上のホモポリエステル又は共重合ポリエステ ルを用い、これらをブレンドしてフィルムを製膜することによって、共重合ポリエステル のみを用いた場合と同等の柔軟性を維持しながら透明性と高い融点(耐熱性)を実 現すること力 Sできる。また、高融点のホモポリエステル (例えば、ポリエチレンテレフタ レート)のみを用いた場合に対し、高い透明性を維持しながら柔軟性と実用上問題の なレヽ融点(耐熱性)を実現することができる。  [0035] By using one or more types of homopolyester or copolymer polyester as the polyester raw material and blending them to form a film, the same flexibility as when using only the copolyester is maintained. However, it can achieve transparency and high melting point (heat resistance). In addition, when only a high melting point homopolyester (for example, polyethylene terephthalate) is used, flexibility and a practically problematic melting point (heat resistance) can be realized while maintaining high transparency. .
また、上記共重合ポリエステルと、ポリエチレンテレフタレート以外のホモポリエステ も 1種以上ブレンドして、原料として使用することは、成型性の点からもさらに好ましい It is further preferable from the viewpoint of moldability to blend the above copolyester and one or more homopolyesters other than polyethylene terephthalate and use them as raw materials.
Yes
[0036] 上記特性を有したポリエステルフィルムの融点は、耐熱性及び成型性の点から、 20 0〜245°Cであることが好ましい。使用するポリマーの種類や組成、さらに製膜条件を 前記融点の範囲内に制御することにより、成型性と仕上力 Sり性とのバランスが取れ、 高品位の成型品を経済的に生産することができる。ここで、融点とは、いわゆる示差 走査熱量測定 (DSC)の 1次昇温時に検出される融解時の吸熱ピーク温度のことで ある。該融点は、示差走査熱量分析装置(マックサイエンス社製、 DSC3100S)を用 いて、昇温速度 20°C/分で測定して求めた。融点の下限値は、 210°Cがさらに好ま しぐ特に好ましくは 230°Cである。融点が 200°C以上であれば、耐熱性の悪化を招 くことはない。また、ゴム層の架橋を熱架橋で行う場合でもポリエステルフィルム積層 体に歪が発生するとレ、つた問題も生じなレ、。 [0036] The melting point of the polyester film having the above characteristics is preferably 200 to 245 ° C from the viewpoint of heat resistance and moldability. By controlling the type and composition of the polymer used and the film forming conditions within the melting point range, a balance between moldability and finishing power can be achieved, and high-quality molded products can be produced economically. Can do. Here, the melting point is a so-called differential. This is the endothermic peak temperature at the time of melting that is detected at the first temperature rise in scanning calorimetry (DSC). The melting point was determined by measuring with a differential scanning calorimeter (manufactured by Mac Science, DSC3100S) at a heating rate of 20 ° C./min. The lower limit of the melting point is more preferably 210 ° C, particularly preferably 230 ° C. If the melting point is 200 ° C or higher, the heat resistance will not be deteriorated. Even when the rubber layer is cross-linked by thermal cross-linking, if the polyester film laminate is distorted, there will be no problems.
[0037] また、ポリエステルフィルムは、波長 370nmにおける光線透過率が 50%以下であ ること力 S好ましく、より好ましくは 40%以下、特に好ましくは 30%以下である。ポリエス テルフィルムの波長 370nmにおける光線透過率を 50%以下に制御することにより、 特に、本発明のゴム'ポリエステルフィルム積層体を成型体の最表層として用いた場 合に成型体の耐候性を向上させることができる。 [0037] The polyester film has a light transmittance of 50% or less at a wavelength of 370 nm, preferably S, more preferably 40% or less, particularly preferably 30% or less. By controlling the light transmittance of the polyester film at a wavelength of 370 nm to 50% or less, the weather resistance of the molded body is improved particularly when the rubber / polyester film laminate of the present invention is used as the outermost layer of the molded body. Can be made.
上記の波長 370nmにおける光線透過率を 50%以下に制御する方法として、ポリ エステルフィルムの構成層のいずれかに紫外線吸収剤を配合する方法を用いる。紫 外線吸収剤としては、前記の特性を付与できるものであれば、無機系、有機系のどち らでも構わない。有機系紫外線吸収剤としては、ベンゾトァゾール系、ベンゾフエノン 系、環状ィミノエステル系等、及びその組み合わせが挙げられる。耐熱性の観点から はベンゾトァゾール系、環状ィミノエステル系が好ましい。 2種以上の紫外線吸収剤 を併用した場合には、別々の波長の紫外線を同時に吸収させることができるので、い つそう紫外線吸収効果を改善することができる。  As a method for controlling the light transmittance at a wavelength of 370 nm to 50% or less, a method of blending an ultraviolet absorber in any of the constituent layers of the polyester film is used. As the ultraviolet absorber, any inorganic or organic one can be used as long as it can impart the above-mentioned characteristics. Examples of organic ultraviolet absorbers include benzotozole, benzophenone, cyclic imino ester, and combinations thereof. From the viewpoint of heat resistance, benzotozole and cyclic iminoesters are preferred. When two or more kinds of ultraviolet absorbers are used in combination, ultraviolet rays having different wavelengths can be absorbed simultaneously, so that the ultraviolet absorption effect can be improved.
無機系紫外線吸収剤としては、酸化セリウム、酸化亜鉛、酸化チタン等の金属酸化 物の超微粒子類が挙げられる。  Examples of inorganic ultraviolet absorbers include ultrafine particles of metal oxides such as cerium oxide, zinc oxide, and titanium oxide.
[0038] ベンゾトリアゾール系紫外線吸収剤としては、例えば、 2 - [2'—ヒドロキシ— 5' - ( メタクリロイルォキシメチノレ)フエニル ] 2H—べンゾトリァゾール、 2—[2'—ヒドロキ シ 5' (メタクリロイルォキシェチノレ)フエニル ] 2H べンゾトリァゾール、 2— [2 'ーヒドロキシ 5' (メタクリロイルォキシプロピノレ)フエニル ] 2H べンゾトリァゾ ール、 2— [2' ヒドロキシ 5' (メタクリロイルォキシへキシル)フエニル ] 2H— ベンゾトリァゾール、 2- [2'—ヒドロキシ一 3'— tert ブチル 5' - (メタクリロイル ォキシェチノレ)フエニル ] 2H べンゾトリァゾール、 2—[2'—ヒドロキシ 5' -ter tーブチルー 3' (メタクリロイルォキシェチノレ)フエニル ] 2H べンゾトリアゾール 、 2—[2' ヒドロキシ 5' (メタクリロイルォキシェチノレ)フエニル ] 5 クロロー 2 H べンゾトリァゾール、 2- [2'ーヒドロキシ 5' (メタクリロイルォキシェチノレ)フ ェニル ] 5 メトキシ一 2H ベンゾトリァゾール、 2— [2'—ヒドロキシ一 5' (メタク リロイルォキシェチノレ)フエニル ] 5 シァノー 2H べンゾトリァゾール、 2— [2, 一 ヒドロキシー 5' (メタクリロイルォキシェチノレ)フエニル ] 5— tert ブチルー 2H— ベンゾトリァゾール、 2- [2'ーヒドロキシ 5' (メタクリロイルォキシェチノレ)フエ二 ノレ ]ー5 二トロー 2H べンゾトリアゾールなどが挙げられる力 S、特にこれらに限定さ れるものではない。 [0038] Examples of the benzotriazole-based UV absorber include 2- [2'-hydroxy-5 '-(methacryloyloxymethinole) phenyl] 2H-benzotriazole, 2- [2'-hydroxy 5' ( Methacryloyloxychettinole) phenyl] 2H benzotriazole, 2- [2'-hydroxy 5 '(methacryloyloxypropynole) phenyl] 2H benzotriazole, 2— [2' hydroxy 5 '(methacryloyloxyhexyl) ) Phenyl] 2H-benzotriazole, 2- [2'-hydroxyl 3'- tert butyl 5 '-(methacryloyloxichetinole) phenyl] 2H benzotriazole, 2- [2'-hydroxy 5'-ter t-Butyl-3 '(methacryloyloxychettinole) phenyl] 2H benzotriazole, 2- [2' hydroxy 5 '(methacryloyloxychettinole) phenyl] 5 chloro-2H benzotriazole, 2- [2' -Hydroxy 5 '(methacryloyloxychettinole) phenyl] 5 methoxy- 1H benzotriazole, 2- [2'-hydroxy-1 5' (methacryloyloxychetinore) phenyl] 5 cyano 2H benzotriazole, 2 — [2, 1 Hydroxy-5 '(methacryloyloxychettinole) phenyl] 5— tert Butyl-2H— Benzotriazole, 2- [2′-hydroxy5 ′ (methacryloyloxychettinole) phenyl-5] Nitroen 2H Force S, such as benzotriazole, is not particularly limited.
環状ィミノエステル系紫外線吸収剤としては、例えば、 2, 2' - (1 , 4—フエ二レン) ビス(4H— 3, 1—ベンズォキサジン一 4 オン)、 2 メチル 3, 1—ベンゾォキサ ジン一 4 オン、 2 ブチル 3, 1—ベンゾォキサジン一 4 オン、 2 フエ二ルー 3 , 1—ベンゾォキサジン一 4 オン、 2— (1—又は 2 ナフチル) 3, 1—ベンゾォキ サジン一 4 オン、 2— (4 ビフエ二ル)一 3, 1—ベンゾォキサジン一 4 オン、 2— p 一二トロフエニノレー 3, 1—べンゾォキサジンー4 オン、 2— m 二トロフエニノレー 3, 1—ベンゾォキサジン一 4 オン、 2— p ベンゾィルフエニル一 3, 1—ベンゾォキサ ジンー4 オン、 2— p メトキシフエニノレー 3, 1—べンゾォキサジンー4 オン、 2— o メトキシフエニル一 3, 1—ベンゾォキサジン一 4 オン、 2 シクロへキシル 3, 1—ベンゾォキサジン一 4 オン、 2— p— (又は m—)フタルイミドフエニル一 3, 1 - ベンゾ才キサジン 4 オン、 2, 2,一(1 , 4 フエ二レン)ビス(4H— 3, 1—べンズ ォキサジノンー4一オン) 2, 2 ' —ビス(3, 1—べンゾォキサジンー4一オン)、 2, 2, 一 エチレンビス(3, 1—べンゾォキサジンー4 オン)、 2, 2,ーテトラメチレンビス(3, 1 一べンゾォキサジンー4 オン)、 2, 2,ーデカメチレンビス(3, 1—べンゾォキサジン 4 オン)、 2, 2, 一 p フエ二レンビス(3, 1—べンゾォキサジン 4 オン)、 2, 2 , 一 m フエ二レンビス(3, 1—べンゾォキサジン 4 オン)、 2, 2'—(4, 4'ージフ ェニレン)ビス(3, 1—べンゾォキサジン 4 オン)、 2, 2'—(2, 6 又は 1 , 5 ナ フタレン)ビス(3, 1—べンゾォキサジン 4 オン)、 2, 2'—(2 メチノレー p フエ 二レン)ビス(3, 1—べンゾォキサジン 4 オン)、 2, 2,一(2 二トロー p フエユレ サジン 4 オン)、 2, 2,一(2 クロロー p フエ二 ビス(3 -サジン一 4一才ン)、 2, 2' - (1, 4 シクロへキシレン)ビス(3 Examples of cyclic imino ester UV absorbers include 2,2 '-(1,4-phenylene) bis (4H—3,1-benzoxazine 1-on), 2-methyl 3,1-benzoxazine 1-on , 2 Butyl 3, 1-benzoxazine 1-on, 2 phenyl 3, 1-Benzoxazine 1-on, 2— (1— or 2 naphthyl) 3, 1-Benzoxazine 1-on, 2— (4 biphenyl 1) 1, 3-benzoxazine 1-on, 2-p 12 tropeninore 3, 1-benzoxazine 4-on, 2-m 2 trofenenole 3, 1-benzoxazine 4-on, 2-p benzoyl phenyl 3 , 1-Benzoxazin-4-one, 2-p methoxyphenylenolate 3, 1-Benzoxazine-4-one, 2- o methoxyphenyl-1,3,1-benzoxazine-4-one, 2 cyclohexyl 3,1-benzoxazine Four On, 2—p— (or m—) phthalimidophenyl 1,3,1-benzoided xazine 4 On, 2,2,1 (1,4 phenyl) bis (4H—3,1—benzoxazinone-4 1,2'-bis (3,1-benzoxazine-4one), 2,2,1 ethylenebis (3,1-benzoxazine-4-one), 2,2, -tetramethylenebis (3, 1 benzoxazine 4-one), 2, 2, -decamethylene bis (3, 1-benzoxazine 4-one), 2, 2, 1 p phenylene bis (3, 1-benzoxazine 4-one), 2, 2 , 1 m phenylbis (3, 1-benzoxazine 4-one), 2, 2 '-(4,4'-diphenylene) bis (3, 1-benzoxazine 4-one), 2, 2'-(2, 6 or 1, 5 naphthalene) bis (3,1-benzoxazine 4-one), 2,2 '-(2 methinolet p-diylene) bis (3,1-benzoxazi 4 on), 2, 2, 1 (2 2 trough p fuel) Sagin 4 ON), 2, 2, 1 (2 Chloro-P phenibis (3-Sajin 1 4 years old), 2, 2 '-(1, 4 cyclohexylene) Bis (3
-サジンー4 オン) 1, 3, 5—トリ(3, 1—べンゾォキサジンー4 オン —2 ィノレ)ベンゼン、 1, 3, 5 トリ(3, 1—ベンゾォキサジン一 4 オン一 2 ィル) ナフタレン、及び 2, 4, 6 トリ(3, 1—ベンゾォキサジン一 4 オン一 2 ィル)ナフタ レン、 2, 8 ジメチル一 4H, 6H ベンゾ(1, 2— d;5, 4— d,)ビス一(1, 3) ォキ サジン 4, 6 ジ才ン、 2, 7 ジメチノレー 4H, 9H べンゾ(1, 2— d;5, 4— d,)ビ ス一(1, 3)—ォキサジン一 4, 9 ジ才ン、 2, 8 ジフエニル一 4H, 8H ベンゾ(1 , 2-d;5, 4 d,)ビスー(1, 3) ォキサジン 4, 6 ジオン、 2, 7 ジフエニノレー 4H, 9H ベンゾ(1, 2— d;5, 4— d,)ビス一(1, 3) ォキサジン一 4, 6 ジオン、 6, 6, 一ビス(2 メチル 4H, 3, 1—ベンゾォキサジン一 4 オン)、 6, 6, 一ビス(2 —ェチル一 4H, 3, 1—ベンゾォキサジン一 4 オン)、 6, 6, 一ビス(2 フエニル一 4H, 3, 1—ベンゾォキサジン一 4 オン)、 6, 6, 一メチレンビス(2 メチル 4H, 3  -Sadin-4 on) 1, 3, 5—tri (3, 1-benzoxazine-4 on —2 ynole) benzene, 1, 3, 5 tri (3, 1-benzoxazine 1 4 on 1 2 yl) naphthalene, and 2, 4, 6 Tri (3, 1-benzoxazine mono 4-one-one 2-yl) naphthalene, 2, 8 Dimethyl mono 4H, 6H Benzo (1, 2-de; 5, 4-d,) Bis (1 , 3) Oxadine 4, 6 Di, 2, 7 Dimethinore 4H, 9H Benzo (1, 2—d; 5, 4—d,) Bis (1, 3) —Oxazine 4, 9 Di, 2, 8 Diphenyl 4H, 8H Benzo (1, 2-d; 5, 4 d,) Bis (1, 3) Oxazine 4, 6 Dione, 2, 7 Diphenylenole 4H, 9H Benzo (1, 2—d; 5, 4—d,) bis (1,3) oxazine-1,4,6 dione, 6,6,1bis (2 methyl 4H, 3,1-benzoxazine 1 4 on), 6, 6, One bis (2 — ethyl one 4H, 3, 1-benzoxazine one 4 on), 6, 6, one bis (2 Phenyl 1H, 3, 1-benzoxazine 1 4-one), 6, 6, monomethylene bis (2 methyl 4H, 3
-サジン一 4 オン)、 6, 6, 一メチレンビス(2 フエニル一 4H, 3, 1 -サジン一 4 オン)、 6, 6, 一エチレンビス(2 メチル 4H, 3, 1—ベ -サジン一 4 オン)、 6, 6, 一エチレンビス(2 フエ二ルー 4H, 3, ォキサジン一 4 オン)、 6, 6, 一ブチレンビス(2 メチル 4H, 3, 1—  -Sagine 4-one), 6, 6, 1-Methylenebis (2 phenyl 4-H, 3, 1-Sagin 4-one), 6, 6, 1-Ethylenebis (2 Methyl 4H, 3, 1-Be-Sadine 4 ON), 6, 6, monoethylene bis (2 phenyl 4H, 3, oxazine 1 4 ON), 6, 6, monobutylene bis (2 methyl 4H, 3, 1—
サジン一 4 オン)、 6, 6, 一ブチレンビス(2 フエニル一 4H, 3, 1—ベンゾォキサ ジンー4 オン)、 6, 6, 一ォキシビス(2—メチルー 4H, 3, 1—べンゾォキサジンー4 Sadin 1-on), 6, 6, 1-Butylenebis (2 phenyl 1 4H, 3, 1-benzoxazine-4-one), 6, 6, 1-oxybis (2-methyl-4H, 3, 1-benzoxazine-4)
6, 6, 一ォキシビス(2 フエニル一 4H, 3  6, 6, mono-oxybis (2 phenyl 1 4H, 3
ン)、 6, 6, 一スルホニルビス(2 メチル 4H, 3, ] サジン 4一才ン) 、 6, 6, 一スルホニルビス(2 フエニル一 4H, 3, 1 サジン 4一才ン)、 6, 6, 一カルボニルビス(2—メチル 4H, 3, 1— サジン 4 オン)、 6, 6, 一カルボニルビス(2 フエ二ルー 4H, 3, 1—ベ サジン一 4 オン)、 7, 7 ,一メチレンビス(2 メチル 4H, 3, 1—ベンゾォキサ、: 4 オン)、 7, 7'ーメ チレンビス(2 フエニル一 4H, 3, 1—ベンゾォキサジン 4 オン)、 7, 7' ビス( 2 メチルー 4H, 3, 1—べンゾォキサジ 4 オン)、 7, 7, 一エチレンビス(2 メ チノレー 4H, 3, 1—べンゾォキサジン 4- 7, 7, 一ォキシビス(2 メチルー 4H, 3, 1—ベンゾォキサジン一 4 オン)、 7, 7, 一スルホニルビス(2 メチル 4H , 3, 1—ベンゾォキサジン一 4 オン)、 7, 7, 一カルボニルビス(2 メチル 4H, 3 , 1—ベンゾォキサジン一 4 オン)、 6, 7, 一ビス(2 メチル 4H, 3, 1—ベンゾォ キサジン一 4 オン)、 6, 7, 一ビス(2 フエ二ルー 4H, 3, 1—ベンゾォキサジン一 4 —オン)、 6, 7, 一メチレンビス(2 メチル 4H, 3, 1—ベンゾォキサジン一 4 オン )、及び 6, 7, 一メチレンビス(2 フエニル一 4H, 3, 1—ベンゾォキサジン一 4 ォ ン)などが挙げられる。 ), 6, 6, monosulfonyl bis (2 methyl 4H, 3,] Sajin 4 years old), 6, 6, monosulfonyl bis (2 phenyl 1H, 3, 1 sajin 4 years old), 6, 6, monocarbonylbis (2-methyl 4H, 3, 1-sadine 4 on), 6, 6, monocarbonyl bis (2 phenol 4H, 3, 1-besadine 1 on), 7, 7, one Methylene bis (2 methyl 4H, 3, 1-benzoxa: 4 on), 7, 7'-methylen bis (2 phenyl mono 4H, 3, 1-benzoxazine 4 on), 7, 7 'bis (2 methyl 4H, 3 , 1-Benzoxazidi 4-one), 7, 7, monoethylenebis (2 methinole 4H, 3, 1-benzoxazine 4- 7, 7, monooxybis (2 methylone) 4H, 3, 1-benzoxazine mono 4-one), 7, 7, monosulfonyl bis (2 methyl 4H, 3, 1-benzoxazine mono 4-one), 7, 7, monocarbonyl bis (2 methyl 4H, 3, 1- Benzoxazine 1-one), 6, 7, 1-bis (2 methyl 4H, 3, 1-benzoxazine 4-one), 6, 7, 1-bis (2 phenol 4H, 3, 1-benzoxazine 4-one) ), 6, 7, 1 methylene bis (2 methyl 4H, 3, 1-benzoxazine 1-on), and 6, 7, 1 methylene bis (2 phenyl 1 4H, 3, 1-benzoxazine 1 4 on) .
[0040] 上記の有機系紫外線吸収剤をポリエステルフィルムに配合する場合は、押し出しェ 程で高温に晒されるので、紫外線吸収剤は分解開始温度が 290°C以上の紫外線吸 収剤を用いるのが製膜時の工程汚染を少なくする上で好ましレ、。分解開始温度が 2 90°C以上の紫外線吸収剤を用いると製膜中に紫外線吸収剤の分解物が製造装置 のロール群等に付着し、強いてはフィルムに再付着したり、キズを付けたりして光学 的な欠点となる事態を防止することができる。  [0040] When the above-mentioned organic ultraviolet absorber is blended in a polyester film, it is exposed to a high temperature during the extrusion process, and therefore, an ultraviolet absorber having a decomposition start temperature of 290 ° C or higher is used as the ultraviolet absorber. Preferred for reducing process contamination during film formation. When an ultraviolet absorber with a decomposition start temperature of 2 90 ° C or higher is used, the decomposed product of the ultraviolet absorber adheres to the rolls of the production equipment during film formation, and may reattach to the film or be damaged. As a result, it is possible to prevent an optical defect.
前記融点の上限値は、耐熱性の点からは高いほうが良いが、ポリエチレンテレフタ レート単位を主体とした場合、融点が 250°C以下であれば、フィルムの成型性と透明 性を確保すること力 Sできる。したがって、高度な成型性や透明性を得るためには、融 点の上限を 245°Cに制御することが好ましい。  The upper limit of the melting point is preferably high from the viewpoint of heat resistance, but when the polyethylene terephthalate unit is the main component, if the melting point is 250 ° C or less, the moldability and transparency of the film should be ensured. Power S can be. Therefore, in order to obtain high moldability and transparency, it is preferable to control the upper limit of the melting point to 245 ° C.
[0041] また、ポリエステルフィルムの滑り性や巻き取り性などのハンドリング性を改善するた めに、フィルム表面に凹凸を形成させることが好ましい。フィルム表面に凹凸を形成さ せる方法としては、一般にフィルム中に粒子を含有させる方法が用いられる。  [0041] Further, in order to improve handling properties such as slipperiness and winding property of the polyester film, it is preferable to form irregularities on the film surface. As a method for forming irregularities on the film surface, a method of incorporating particles in the film is generally used.
前記粒子としては、平均粒子径が 0. 01〜; lO ^ mの内部析出粒子、無機粒子及び /又は有機粒子などの外部粒子が挙げられる。平均粒子径が 10 m以下であれば 、フィルムの欠陥や意匠性及び透明性の悪化を招くことはない。一方、平均粒子径 が 0. 01〃m以上であれば、フイノレムの滑り†生や巻き取り生などのハンドリング†生の低 下を招くことを防止すること力できる。前記粒子の平均粒子径は、滑り性や巻き取り性 などのハンドリング性の点から、下限は 0· 10 mとすること力 Sさらに好ましく、特に好 ましくは 0. 50 mである。一方、上限を好ましくは 5 mとすることにより、良好な透 明性や粗大突起によるフィルム欠点を低減することができる。特に好ましくは 2 mで ある。 Examples of the particles include internal particles having an average particle diameter of 0.01 to; lO ^ m, and external particles such as inorganic particles and / or organic particles. If the average particle diameter is 10 m or less, there will be no deterioration of the film, design and transparency. On the other hand, when the average particle size is 0.01 μm or more, it is possible to prevent the deterioration of handling such as slipping and winding of the finolem. The average particle diameter of the particles is preferably a lower limit of 0 · 10 m from the viewpoint of handling properties such as slipperiness and winding property, and more preferably 0.50 m. On the other hand, when the upper limit is preferably 5 m, it is possible to reduce film defects due to good transparency and coarse protrusions. Especially preferably at 2 m is there.
なお、粒子の平均粒子径は、少なくとも 200個以上の粒子を電子顕微鏡法により複 数枚写真撮影し、 OHPフィルムに粒子の輪郭をトレースし、該トレース像を画像解析 装置にて円相当径に換算して算出する。  The average particle size of the particles is such that at least 200 particles are photographed by electron microscopy, the contours of the particles are traced on an OHP film, and the trace image is converted into an equivalent circle diameter by an image analyzer. Convert and calculate.
[0042] 前記外部粒子としては、例えば、湿式及び乾式シリカ、コロイダルシリカ、珪酸アル ミニゥム、酸化チタン、炭酸カルシウム、リン酸カルシウム、硫酸バリウム、アルミナ、マ イカ、カオリン、クレー、ヒドロキシアパタイト等の無機粒子及びスチレン、シリコーン、 アクリル酸類等を構成成分とする有機粒子等を使用することができる。なかでも、乾 式、湿式及び乾式コロイド状シリカ、アルミナ等の無機粒子及びスチレン、シリコーン 、アクリル酸、メタクリル酸、ポリエステル、ジビュルベンゼン等を構成成分とする有機 粒子等が、好ましく使用される。これらの内部粒子、無機粒子及び/又は有機粒子 は二種以上を、本願発明で規定した特性を損ねない範囲内で併用してもよい。 さらに、前記粒子のフィルム中での含有量は 0. 00;!〜 10質量0 /0の範囲であること が好ましい。 0. 001質量%以上であれば、フィルムの滑り性の悪化や、巻き取りが困 難となったりするなどハンドリング性の低下を招くことはない。一方、 10質量%以下で あれば、粗大突起の形成、製膜性や透明性の悪化などを防止することができる。 [0042] Examples of the external particles include inorganic particles such as wet and dry silica, colloidal silica, aluminum silicate, titanium oxide, calcium carbonate, calcium phosphate, barium sulfate, alumina, mica, kaolin, clay, and hydroxyapatite. Organic particles containing styrene, silicone, acrylic acid, etc. as constituent components can be used. Of these, inorganic particles such as dry, wet and dry colloidal silica and alumina, and organic particles containing styrene, silicone, acrylic acid, methacrylic acid, polyester, dibutenebenzene and the like as constituent components are preferably used. Two or more kinds of these internal particles, inorganic particles and / or organic particles may be used in combination as long as the characteristics defined in the present invention are not impaired. Further, the content in a film of said particles 0.00; is preferably in the range of 1-10 mass 0/0!. When the content is 001% by mass or more, the handling property is not deteriorated such that the slipperiness of the film is deteriorated and winding becomes difficult. On the other hand, when the content is 10% by mass or less, formation of coarse protrusions, deterioration of film forming property and transparency can be prevented.
[0043] また、フィルム中に含有させる粒子は、一般的には屈折率がポリエステルと異なるた め、フィルムの透明性を低下させる要因となる。  [0043] Further, since the particles contained in the film generally have a refractive index different from that of polyester, it causes a decrease in transparency of the film.
成型品は意匠性を高めるために、フィルムを成型する前にフィルム表面に印刷が施 される場合が多い。このような印刷層は、成型用フィルムの裏側に施されることが多い ため、印刷鮮明性の点から、フィルムの透明性が高いことが要望されている。  Molded products are often printed on the surface of the film before it is molded to enhance the design. Since such a printing layer is often applied to the back side of a molding film, it is desired that the transparency of the film is high from the viewpoint of printing clarity.
そのため、フィルムのハンドリング性を維持しながら、高度な透明性を得るために、 主層の基材フィルム中に実質的に粒子を含有させず、厚みが 0. 01〜5 111の表面 層にのみ粒子を含有させた積層構造を有する積層フィルムを用いることが有効であ る。表面層の厚みの上限は 3 mが好ましぐ特に好ましくは 1 mである。この場合 、粒子は上記で例示したものを用いることができる。  Therefore, in order to obtain a high degree of transparency while maintaining the handleability of the film, the main layer base film does not substantially contain particles, and only the surface layer having a thickness of 0.01 to 5 111 is used. It is effective to use a laminated film having a laminated structure containing particles. The upper limit of the thickness of the surface layer is preferably 3 m, particularly preferably 1 m. In this case, the particles exemplified above can be used.
[0044] 前記したポリエステルフィルムのヘーズを 0· ;!〜 3· 0%とするため、特に 2. 0以下 にするためには、上記のフィルム中に実質的に粒子を含有させず、厚みが 0. 0;!〜 5 の表面層にのみ粒子を含有させた積層構造とすることが好ましい。なお、ハンド リング性を維持しながら、フィルム中に粒子を含有させることのみで、 ^ ^一ズが 3. 0% 以下となるフィルムを得ることは難しレ、。 [0044] In order to make the haze of the above-mentioned polyester film 0 · ;! to 3 · 0%, particularly in order to make it 2.0 or less, the above-mentioned film is substantially free of particles and has a thickness of 0. 0 ;! ~ 5 It is preferable to have a laminated structure in which particles are contained only in the surface layer. Note that it is difficult to obtain a film with a particle size of 3.0% or less just by incorporating particles in the film while maintaining handling properties.
- ^一ズが低く意匠性の高いフィルムを得るには、上記のフィルム中に実質的に粒子 を含有させないことが好ましいが、 30ppm以下であれば基材フィルム中に粒子を添 カロしても構わない。なお、上記でいう「基材フィルム中に実質的に粒子を含有させず」 とは、例えば無機粒子の場合、ケィ光 X線分析で無機元素を定量した場合に検出限 界以下となる含有量を意味する。これは意識的に粒子を基材フィルムに添加させなく ても、外来異物由来のコンタミ成分などが混入する場合があるためである。  -In order to obtain a film with a low design and a high design property, it is preferable that the above film does not substantially contain particles, but if it is 30 ppm or less, particles may be added to the base film. I do not care. Note that “substantially no particles are contained in the base film” as used above means, for example, in the case of inorganic particles, a content that is below the detection limit when inorganic elements are quantified by key X-ray analysis. Means. This is because contaminants derived from foreign substances may be mixed without intentionally adding particles to the base film.
[0045] 厚みの薄い表面層の形成は、コーティング法又は共押出し法によって行うことがで きる。なかでも、コーティング法の場合、粒子を含有する密着性改質樹脂からなる組 成物を塗布層として用いることで、印刷層との密着性も改良することができるので好ま しい方法である。前記の密着性改質樹脂としては、ポリエステル、ポリウレタン、アタリ ル系重合体及び/又はそれらの共重合体から選ばれた少なくとも 1種からなる樹脂 が好ましい。 [0045] The thin surface layer can be formed by a coating method or a coextrusion method. In particular, in the case of a coating method, the use of a composition comprising an adhesion modifying resin containing particles as a coating layer is preferable because the adhesion with the printing layer can be improved. The adhesion modifying resin is preferably a resin comprising at least one selected from polyesters, polyurethanes, talyl polymers and / or copolymers thereof.
[0046] 前記表面層に含有させる粒子としては、前記で記載した粒子と同様のものを使用 すること力 Sできる。粒子のなかでも、シリカ粒子、ガラスフィラー、シリカ一アルミナ複合 酸化物粒子は屈折率がポリエステルに比較的近いため、透明性の点から特に好適 である。  [0046] As the particles to be contained in the surface layer, it is possible to use the same particles as those described above. Among the particles, silica particles, glass fillers, and silica-alumina composite oxide particles are particularly suitable from the viewpoint of transparency because the refractive index is relatively close to that of polyester.
さらに、前記表面層における粒子含有量は、 0. 0;!〜 25質量%の範囲であることが 好ましい。 0. 01質量%未満の場合、フィルムの滑り性が悪化したり、巻き取りが困難 となったりするなどハンドリング性が低下しやすくなる。一方、 25質量%を越えると、 透明性や塗布性が悪化しやすくなる。  Furthermore, the particle content in the surface layer is preferably in the range of 0.0; When the content is less than 01% by mass, the handling property is liable to deteriorate, for example, the slipperiness of the film deteriorates or the winding becomes difficult. On the other hand, if it exceeds 25% by mass, transparency and coatability tend to deteriorate.
[0047] 上記ポリエステルフィルムは、他の機能を付与するために、種類の異なるポリエステ ルを用い、公知の方法で積層構造とすることができる。力、かる積層フィルムの形態は 、特に限定されないが、例えば、 A/Bの 2種 2層構成、 B/A/B構成の 2種 3層構 成、 C/A/Bの 3種 3層構成の積層形態が挙げられる  [0047] In order to impart other functions, the polyester film can be made into a laminated structure by a known method using different types of polyester. The form of the laminated film is not particularly limited, but for example, A / B, 2 types, 2 layers, B / A / B, 2 types, 3 layers, C / A / B, 3 types, 3 layers Examples of layered configurations
[0048] 上記ポリエステルフィルムは、二軸延伸フィルムであることが重要である。二軸延伸 による分子配向により、前記のフィルムの微小張力(初期荷重 49mN)下での熱変形 率を好ましい範囲内に制御することができ、未延伸シートの欠点である耐溶剤性や 寸法安定性が改善される。該対応により未延伸シートの成型性の良さを維持しつつ、 未延伸シートの欠点である耐溶剤性や耐熱性を改善することができる。 [0048] It is important that the polyester film is a biaxially stretched film. Biaxial stretching By the molecular orientation by the above, it is possible to control the thermal deformation rate of the film under the micro tension (initial load 49 mN) within a preferable range, and the solvent resistance and dimensional stability, which are disadvantages of the unstretched sheet, are improved. The This correspondence can improve the solvent resistance and heat resistance, which are disadvantages of the unstretched sheet, while maintaining good formability of the unstretched sheet.
上記ポリエステルフィルムの製造方法は特に限定されないが、例えばポリエステル 樹脂を必要に応じて乾燥した後、公知の溶融押出機に供給し、スリット状のダイから シート状に押出し、静電印加などの方式によりキャスティングドラムに密着させ、冷却 固化し、未延伸シートを得た後、力、かる未延伸シートを二軸延伸する方法が例示され  The method for producing the polyester film is not particularly limited. For example, after drying the polyester resin as necessary, the polyester film is supplied to a known melt extruder, extruded into a sheet form from a slit die, and applied by a method such as electrostatic application. An example is a method of biaxially stretching the unstretched sheet after it is brought into close contact with the casting drum, cooled and solidified to obtain an unstretched sheet.
[0049] 二軸延伸方法としては、未延伸シートをフィルムの長手方向(MD)及び幅方向(T D)に延伸、熱処理し、 目的とする面内配向度を有する二軸延伸フィルムを得る方法 が採用される。これらの方式の中でも、フィルム品質の点で、長手方向に延伸した後 、幅方向に延伸する MD/TD法、又は幅方向に延伸した後、長手方向に延伸する TD/MD法などの逐次二軸延伸方式、長手方向及び幅方向をほぼ同時に延伸し ていく同時二軸延伸方式が望ましい。また、同時二軸延伸法の場合、リニアモーター で駆動するテンターを用いてもよい。さらに、必要に応じて、同一方向の延伸を多段 階に分けて行う多段延伸法を用いても構わなレ、。 [0049] As the biaxial stretching method, there is a method in which an unstretched sheet is stretched in the longitudinal direction (MD) and the width direction (TD) and heat treated to obtain a biaxially stretched film having a desired in-plane orientation degree. Adopted. Among these methods, in terms of film quality, the MD / TD method in which the film is stretched in the longitudinal direction and then stretched in the width direction, or the TD / MD method in which the film is stretched in the width direction and then stretched in the longitudinal direction. An axial stretching method and a simultaneous biaxial stretching method in which the longitudinal direction and the width direction are stretched almost simultaneously are desirable. In the case of the simultaneous biaxial stretching method, a tenter driven by a linear motor may be used. Furthermore, if necessary, a multi-stage stretching method in which stretching in the same direction is divided into multi-stages may be used.
二軸延伸する際のフィルム延伸倍率としては、長手方向と幅方向に 1. 6〜4. 2倍と すること力 S好ましく、特に好ましくは 1. 7〜4. 0倍である。この場合、長手方向と幅方 向の延伸倍率はどちらを大きくしてもよいし、同一倍率としてもよい。長手方向の延伸 倍率は 2. 8〜4. 0倍、幅方向の延伸倍率は 3. 0〜4. 5倍で行うことがより好ましい。  The film stretching ratio for biaxial stretching is a force S of 1.6 to 4.2 times in the longitudinal direction and the width direction, preferably S, particularly preferably 1.7 to 4.0 times. In this case, the stretching ratio in the longitudinal direction and the width direction may be either larger or the same ratio. More preferably, the stretching ratio in the longitudinal direction is 2.8 to 4.0 times, and the stretching ratio in the width direction is 3.0 to 4.5 times.
[0050] 上記ポリエステルフィルムを製造する際の延伸条件としては、例えば、下記の条件 を採用することが選択することが好ましレ、。  [0050] As the stretching conditions for producing the polyester film, for example, it is preferable to select the following conditions.
縦延伸においては、後の横延伸がスムースにできるように、延伸温度は 50〜; 110 °C、延伸倍率は 1. 6〜4. 0倍とすることがさらに好ましい。  In the longitudinal stretching, the stretching temperature is more preferably 50 to 110 ° C. and the stretching ratio is preferably 1.6 to 4.0 times so that the subsequent lateral stretching can be performed smoothly.
通常、ポリエチレンテレフタレートを延伸する際に、適切な条件に比べ延伸温度が 低い場合は、横延伸の開始初期で急激に降伏応力が高くなるため、延伸ができない 。また、たとえ延伸ができても厚みや延伸倍率が不均一になりやすいため好ましくな い。 Usually, when the polyethylene terephthalate is stretched, if the stretching temperature is lower than the appropriate conditions, the yield stress increases abruptly at the beginning of the lateral stretching, and therefore stretching cannot be performed. In addition, even if it can be stretched, it is not preferable because the thickness and stretch ratio are likely to be non-uniform. Yes.
また、適切な条件に比べ延伸温度が高い場合は初期の応力は低くなる力 延伸倍 率が高くなつても応力は高くならない。そのため、 25°Cにおける 10%伸張時応力が 小さいフィルムとなる。よって、最適な延伸温度をとることにより、延伸性を確保しなが ら配向の高いフィルムを得ることができる。  In addition, when the stretching temperature is higher than appropriate conditions, the initial stress is reduced. The stress does not increase even if the stretching ratio is high. Therefore, the film has a low stress at 10% elongation at 25 ° C. Therefore, by taking the optimum stretching temperature, it is possible to obtain a highly oriented film while ensuring stretchability.
しかしながら、前記共重合ポリエステルが共重合成分を;!〜 40モル%含む場合、降 伏応力をなくすように延伸温度を高くしていくと、延伸応力は急激に低下する。特に、 延伸の後半でも応力が高くならないため、配向が高くならず、 25°Cにおける 10%伸 張時応力が低下する。  However, when the copolymerized polyester contains a copolymer component;! ~ 40 mol%, the stretching stress rapidly decreases as the stretching temperature is increased to eliminate the yield stress. In particular, since the stress does not increase even in the latter half of the stretching, the orientation does not increase and the stress at 10% stretching at 25 ° C decreases.
このような現象は、フィルムの厚さが 60〜500 111で発生しやすぐ特に厚みが 10 0〜300 111のフィルムで顕著に見られる。そのため、本発明の共重合したポリエス テルを用いたフィルムの場合、横方向の延伸温度は、以下の条件とすることが好まし い。  Such a phenomenon occurs when the film thickness is 60 to 500 111, and is particularly noticeable in a film with a thickness of 100 to 300 111. Therefore, in the case of a film using the copolymerized polyester of the present invention, the transverse stretching temperature is preferably set to the following conditions.
[0051] まず、予熱温度はフィルム材料を押出機で押出した後の混合物(原反)を DSCに おいて測定した場合のガラス転移温度の + 10 + 50°Cの範囲で行う。次いで、横 延伸の前半部では延伸温度は予熱温度に対して一 20 + 15°Cとすることが好まし い。横延伸の後半部では、延伸温度は前半部の延伸温度に対して 0 30°Cとす ること力 S好ましく、特に好ましくは前半部の延伸温度に対して一 10 20°C範囲で ある。このような条件を採用することにより、横延伸の前半では降伏応力が小さいため 延伸しやすぐまた後半では配向しやすくなる。なお、横方向の延伸倍率は、 2. 5 5. 0倍とすることが好ましい。その結果、本発明で規定した 25°Cにおける 10%伸張 時応力を満足するフィルムを得ることが可能である。  [0051] First, the preheating temperature is in the range of +10 + 50 ° C of the glass transition temperature when the mixture (raw material) after extruding the film material with an extruder is measured by DSC. Next, in the first half of the transverse stretching, the stretching temperature is preferably 120 + 15 ° C with respect to the preheating temperature. In the latter half of the transverse stretching, the stretching temperature is preferably 30 ° C. relative to the stretching temperature in the first half, and is preferably in the range of 10 ° C. to 20 ° C. relative to the stretching temperature in the first half. By adopting such conditions, since the yield stress is small in the first half of the transverse stretching, it is easy to stretch and to be oriented in the second half. In addition, it is preferable that the draw ratio of a horizontal direction shall be 2.55.0 times. As a result, it is possible to obtain a film satisfying the 10% elongation stress at 25 ° C. defined in the present invention.
[0052] さらに、二軸延伸後にフィルムの熱処理(熱固定処理)を行う。この熱処理条件は、 - ^一ズと表面粗さ、つまりフィルムのすべり性を両立させるために重要な条件である。 延伸終了後のフィルムを引き続きテンター内で熱処理する力 この場合、熱処理は 2 段階以上に分けて行うことが重要である。一段目の熱処理温度 (TS1)は、二段目の 熱処理温度 (TS2)の— 5〜― 30°C、下限値は好ましくは TS2— 10°C、上限値は好 ましくは TS2— 25°Cである。二段目の熱処理温度 (TS2)は、フィルム材料を押出機 で押出した後の混合物(原反)を後述の DSCにおいて測定した場合の融点の 5〜 — 35°Cの範囲で行う。 TS2の下限値は好ましくは融点 10°C、 TS2の上限値は好 ましくは融点一 30°Cである。なお、 TS 1と TS2の間に中間の熱処理ゾーンを設けるこ とも、また TS2の後に熱処理ゾーンを設けることも可能である。これらの場合、 TS2は 最高の熱処理温度を示す。このような条件を取ることにより、ヘーズが低ぐすべり性 が良好なフィルムが得られる。 [0052] Further, after the biaxial stretching, the film is subjected to heat treatment (heat setting treatment). This heat treatment condition is an important condition in order to achieve both the smoothness of the film and the surface roughness, that is, the film. Ability to continue heat-treating the stretched film in the tenter In this case, it is important to perform the heat treatment in two or more stages. The first stage heat treatment temperature (TS1) is -5 to -30 ° C of the second stage heat treatment temperature (TS2), the lower limit is preferably TS2-10 ° C, and the upper limit is preferably TS2-25 ° C. C. The second stage heat treatment temperature (TS2) is the film material extruder The mixture (original fabric) after extrusion at -5 is in the range of 5 to 35 ° C of the melting point as measured by DSC described later. The lower limit of TS2 is preferably a melting point of 10 ° C, and the upper limit of TS2 is preferably a melting point of 1 ° C. It is possible to provide an intermediate heat treatment zone between TS 1 and TS2, or to provide a heat treatment zone after TS2. In these cases, TS2 shows the highest heat treatment temperature. By taking such conditions, a film having a low haze and good sliding properties can be obtained.
[0053] その理由は、以下のようなものと考える。本発明のような共重合成分が 5〜50モル %程度含まれるポリエステルフィルムは、ポリエチレンテレフタレートフィルムなどに比 較して結晶化速度が遅ぐまた結晶性が低い。そのため、延伸終了後に急激に高温 で熱処理をすると、熱処理ゾーンにお!/、て結晶性の低!/、材料を構成する分子の運 動性が高くなる。よって、延伸工程において粒子(フィルム中の粒子及び/又はコー ティング層の粒子)が***することにより形成された表面突起力 熱処理ゾーンにお いて再び埋没してしまうために、十分な表面粗さを得ることができない。それゆえ、フ イルムをきれいに巻き取るためには、粒子の含有量を必要以上に増加させることにな り、ヘーズが低下する原因になる。一方、 TS2の温度を所定の温度より低くすると、 1 50°Cにおける熱収縮率が十分低いフィルムが得られなくなる。  [0053] The reason is considered as follows. A polyester film containing about 5 to 50 mol% of a copolymer component as in the present invention has a slower crystallization rate and lower crystallinity than a polyethylene terephthalate film. Therefore, if heat treatment is rapidly performed at a high temperature after stretching, the crystallinity in the heat treatment zone is low, and the mobility of molecules constituting the material is increased. Therefore, since the particles (particles in the film and / or particles in the coating layer) are raised in the stretching process, they are buried again in the heat treatment zone of the surface protrusion force. Can't get. Therefore, in order to wind up the film neatly, the content of particles is increased more than necessary, which causes a decrease in haze. On the other hand, if the temperature of TS2 is lower than the predetermined temperature, a film having a sufficiently low thermal shrinkage at 150 ° C. cannot be obtained.
[0054] したがって、熱処理ゾーンを 2段(以上)にする本願発明の方法をとることは、 TS 1 において粒子がフィルム内部に埋没する前に、ある程度フィルムの結晶化を促進さ せておいて、さらに TS2ゾーンにおいて十分に温度を上げても、前項の状態に比べ れば十分分子の運動性は低下しており表面の突起を形成したまま、さらに結晶性を 促進させ、熱収縮率の低いフィルムが得られる。また、必要以上の粒子の添加を防ぐ こと力 Sでさる。  [0054] Therefore, taking the method of the present invention in which the heat treatment zone has two stages (or more) allows TS 1 to promote crystallization of the film to some extent before the particles are embedded in the film, Furthermore, even if the temperature is raised sufficiently in the TS2 zone, the molecular mobility is sufficiently reduced compared to the state in the previous section, and the film has a low thermal shrinkage rate by further promoting crystallinity while forming protrusions on the surface. Is obtained. Also, prevent the addition of more particles than necessary with force S.
[0055] 一般に、面配向度を下げる手段としては延伸倍率を下げる方法と共重合成分の配 合量を増加させる方法が知られている力 前者の方法はフィルムの厚み斑が悪化し 、後者の方法ではフィルムの融点が低下し、耐熱性が悪化するため好ましくない。本 発明において、二軸配向ポリエステルフィルムの面配向度と 150°Cの熱収縮率を小 さくするために、通常よりも高温で熱固定を行う。熱固定は、前述の熱処理、特に二 段目の熱処理にぉレ、て行うことが好ましレ、。 [0056] また、上記ポリエステルフィルムは共重合ポリエステルを用いるのが好ましいので、 融点が均一重合体に比して低いため、熱固定温度を高くすると、横延伸工程でフィ ルムを保持するクリップにフィルムが剥離しにくくなる。したがって、テンター出口でク リップ力 Sフィルムを開放するときにクリップ近傍を充分に冷却することが重要である。 具体的には、フィルムとクリップとを剥離しやすくするために、(1)クリップが加熱され にくいように、クリップ部分に熱遮蔽壁を設ける方法、(2)クリップ冷却機構をテンター に付加する方法、(3)冷却能力の強化を行うために熱固定後の冷却区間を長く設定 し、フィルム全体の冷却を十分行う方法、(4)冷却区間の長さ、区画数を増やすこと で、冷却効率を増加させる方法、(5)クリップの戻り部分が炉の外側を走行するタイ プを用いてクリップの冷却を強化する方法、などを採用することが好ましい。 [0055] In general, as means for lowering the degree of plane orientation, there are known methods for lowering the draw ratio and methods for increasing the amount of copolymerization component. The former method deteriorates film thickness unevenness. This method is not preferable because the melting point of the film decreases and the heat resistance deteriorates. In the present invention, in order to reduce the plane orientation degree of the biaxially oriented polyester film and the thermal shrinkage at 150 ° C., heat setting is performed at a temperature higher than usual. The heat setting is preferably performed in the heat treatment described above, particularly the second heat treatment. [0056] Further, since it is preferable to use a copolyester as the polyester film, the melting point is lower than that of the homogeneous polymer. Therefore, when the heat setting temperature is increased, the film is formed on a clip that holds the film in the transverse stretching step. Becomes difficult to peel. Therefore, it is important to sufficiently cool the vicinity of the clip when the clip force S film is released at the tenter outlet. Specifically, in order to make it easy to peel the film and the clip, (1) a method of providing a heat shielding wall on the clip portion so that the clip is not easily heated, and (2) a method of adding a clip cooling mechanism to the tenter , (3) A method to set the cooling section after heat setting long to enhance the cooling capacity and to cool the entire film sufficiently, (4) Cooling efficiency by increasing the length of the cooling section and the number of sections It is preferable to employ a method of increasing the clip, and (5) a method of enhancing the cooling of the clip by using a type in which the return portion of the clip travels outside the furnace.
[0057] 本発明のゴム積層用被覆ポリエステルフィルムは、上記ポリエステルフィルムの少な くとも片面に厚みが 0. 003〜5 mの架橋高分子層を被覆してなることが重要である 。該架橋高分子層の厚みを 0· 003 m以上とすると、ポリエステルフィルムとゴム層 の接着性向上効果が得られる。また、 5 m以下であれば、ポリエステルフィルムとゴ ム層の工業生産上、接着性向上効果を十分に発揮することができ、さらに、後述のフ イルムの長手方向及び幅方向における 10%伸長時応力(25°C)を低くすることが可 能となり、成型性やゴム層とポリエステルフィルムとの接着強度の耐久性の低下等を 招くおそれを防止することができる。該架橋高分子層の厚みは 3 m以下がより好ま しぐ; 1 m以下がさらに好ましぐ 0· 5 m以下が特に好ましい。 0. 5 111以下にす ることにより、ポリエステルフィルムとゴム層の接着耐久性が向上する場合がある。  [0057] It is important that the coated polyester film for rubber lamination of the present invention is formed by coating at least one surface of the polyester film with a crosslinked polymer layer having a thickness of 0.003 to 5 m. When the thickness of the crosslinked polymer layer is 0.003 m or more, an effect of improving the adhesion between the polyester film and the rubber layer can be obtained. In addition, if it is 5 m or less, the effect of improving the adhesiveness can be sufficiently exerted in the industrial production of the polyester film and the rubber layer, and further, when the film is stretched by 10% in the longitudinal direction and the width direction as described later The stress (25 ° C.) can be lowered, and the possibility of lowering the moldability and durability of the adhesive strength between the rubber layer and the polyester film can be prevented. The thickness of the crosslinked polymer layer is more preferably 3 m or less; even more preferably 1 m or less, particularly preferably 0.5 m or less. By adjusting to 0.5 or less, adhesion durability between the polyester film and the rubber layer may be improved.
[0058] 上記架橋高分子層を構成する高分子化合物は限定されな!/、が、ポリエステル、ポリ ウレタン及びアクリル酸系ポリマーより選ばれた少なくとも 1種の樹脂であることが好ま しい。該高分子化合物は上記樹脂をそれぞれ単独で用いてもよぐまた、異なる 2種 又は 3種を組み合わせて用いてもよ!/、。  [0058] The polymer compound constituting the crosslinked polymer layer is not limited! /, But is preferably at least one resin selected from polyester, polyurethane and acrylic acid polymer. As the polymer compound, the above resins may be used alone, or two or three different types may be used in combination! /.
[0059] 上記ポリエステル樹脂は、主鎖あるいは側鎖にエステル結合を有するもので、ジカ ルボン酸とジオールを重縮合して得られるものである。  [0059] The polyester resin has an ester bond in the main chain or side chain, and is obtained by polycondensation of dicarboxylic acid and a diol.
該ポリエステル樹脂を構成するカルボン酸成分としては、芳香族、脂肪族、脂環族 のジカルボン酸や 3価以上の多価カルボン酸を使用することができる。 芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、オルソフタル酸、フタル 酸、 2, 5 ジメチルテレフタル酸、 1, 4 ナフタレンジカルボン酸、ビフエニルジカル ボン酸、 2, 6 ナフタレンジカルボン酸、 1, 2 ビスフエノキシェタン一 p, ρ'—ジカ ルボン酸、フエニルインダンジカルボン酸などを用いることができる。被覆膜の強度や 耐熱性の点から、これらの芳香族ジカルボン酸力 好ましくは全ジカルボン酸成分の 30モル%以上、より好ましくは 35モル%以上、最も好ましくは 40モル%以上を占め るポリエステルを用いることが好ましレ、。 As the carboxylic acid component constituting the polyester resin, aromatic, aliphatic and alicyclic dicarboxylic acids and trivalent or higher polyvalent carboxylic acids can be used. Aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, orthophthalic acid, phthalic acid, 2,5 dimethyl terephthalic acid, 1,4 naphthalenedicarboxylic acid, biphenyldicarboxylic acid, 2,6 naphthalenedicarboxylic acid, 1,2 bisphenol. For example, shetan p, ρ′-dicarboxylic acid, phenylindanedicarboxylic acid, or the like can be used. From the viewpoint of the strength and heat resistance of the coating film, these aromatic dicarboxylic acid powers preferably account for 30 mol% or more, more preferably 35 mol% or more, most preferably 40 mol% or more of the total dicarboxylic acid component. I prefer to use.
また、脂肪族及び脂環族のジカルボン酸としては、コハク酸、アジピン酸、セバシン 酸、ァゼライン酸、ドデカンジオン酸、ダイマー酸、 1, 3—シクロペンタンジカルボン 酸、 1, 2 シクロへキサンジカルボン酸、 1, 4ーシクロへキサンジカルボン酸など、及 びそれらのエステル形成性誘導体を用いることができる。  Aliphatic and alicyclic dicarboxylic acids include succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, dimer acid, 1,3-cyclopentanedicarboxylic acid, 1,2 cyclohexanedicarboxylic acid. 1,4-cyclohexanedicarboxylic acid and the like, and ester-forming derivatives thereof.
[0060] ポリエステル樹脂のグリコール成分としては、エチレングリコール、ジエチレングリコ 一ノレ、ポリエチレングリコーノレ、プロピレングリコーノレ、ポリプロピレングリコーノレ、 1, 3 プロパンジオール、 1, 3—ブタンジオール、 1, 4 ブタンジオール、 1, 5—ペンタ ンジオール、 1, 6 へキサンジオール、 1, 7 ヘプタンジオール、 1, 8—オクタンジ オール、 1, 9ーノナンジオール、 1, 10 デカンジオール、 2, 4 ジメチルー 2 ェ チルへキサン 1, 3 ジオール、ネオペンチルグリコール、 2 ェチルー 2 ブチノレ 1, 3—プロパンジオール、 2—ェチルー 2—イソブチルー 1, 3—プロパンジオール 、 3 メチルー 1, 5 ペンタンジオール、 2, 2, 4 トリメチルー 1, 6 へキサンジォ 一ノレ、 1, 2—シクロへキサンジメタノーノレ、 1, 3—シクロへキサンジメタノーノレ、 1, 4 ーシクロへキサンジメタノール、 2, 2, 4, 4—テトラメチルー 1, 3—シクロブタンジォ 一ノレ、 4, 4' チォジフエノーノレ、 ビスフエノーノレ Α、 4, 4'ーメチレンジフエノーノレ、 4 , 4,一(2 ノルボルユリデン)ジフエノール、 4, 4,ージヒドロキシビフエノール、 ο—, m—,及び p ジヒドロキシベンゼン、 4, 4' イソプロピリデンフエノール、 4, 4'ーィ ソプロピリデンビンジオール、シクロペンタン 1, 2—ジオール、シクロへキサン一 1, 2—ジオール、シクロへキサン 1, 4ージオールなどを用いることができる。  [0060] The glycol component of the polyester resin includes ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, 1,3 propanediol, 1,3-butanediol, 1,4 butanediol, 1 , 5-pentanediol, 1,6 hexanediol, 1,7 heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10 decanediol, 2,4 dimethyl-2-ethylhexane 1,3 diol , Neopentyl glycol, 2-ethyl-2-butynole, 1,3-propanediol, 2-ethyl-2-yl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,2,4 trimethyl-1,6-hexanediol 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol -Noreth, 1,4-cyclohexanedimethanol, 2, 2, 4, 4-tetramethyl-1,3-cyclobutanediol, 4,4 'thiodiphenol, bisphenol, Α, 4,4'-methylenediphenol Nore, 4, 4, 1 (2 norborylidene) diphenol, 4, 4, dihydroxybiphenol, ο—, m—, and p dihydroxybenzene, 4, 4 ′ isopropylidene phenol, 4, 4 ′ sopropylidene Vindiol, cyclopentane 1,2-diol, cyclohexane-1,2-diol, cyclohexane 1,4-diol and the like can be used.
[0061] また、ポリエステル樹脂を水系液にして塗液として用いる場合には、ポリエステル樹 脂の水溶性化あるいは水分散化を容易にするため、スルホン酸塩基を含む化合物、 ホスホン酸塩基を含む化合物及びカルボン酸塩基を含む化合物を共重合することが 好ましい。 [0061] Further, when the polyester resin is used as a coating liquid in an aqueous solution, a compound containing a sulfonate group is used in order to facilitate water-solubilization or water-dispersion of the polyester resin, It is preferable to copolymerize a compound containing a phosphonate group and a compound containing a carboxylate group.
カルボン酸塩基を含む化合物としては、例えば、トリメリット酸、無水トリメリット酸、ピ ロメリット酸、無水ピロメリット酸、 4ーメチルシクロへキセン一 1 , 2, 3 トリカルボン酸 、トリメシン酸、 1 , 2, 3, 4 プ、タンテトラ力ノレボン酸、 1 , 2 , 3, 4 ペンタンテトラ力ノレ ボン酸、 3, 3 ' , 4, 4 '—べンゾフエノンテトラカルボン酸、 5—(2, 5 ジォキソテトラヒ ドロフルフリル)ー3 メチルー 3 シクロへキセン一 1 , 2 ジカルボン酸、 5—(2, 5 ージォキソテトラヒドロフルフリル) 3 シクロへキセン一 1 , 2 ジカルボン酸、シクロ ペンタンテトラ力ノレボン酸、 2, 3, 6 , 7 ナフタレンテトラ力ノレボン酸、 1 , 2, 5, 6 ナ フタレンテトラカルボン酸、エチレングリコールビストリメリテート、 2, 2 ' , 3, 3 '—ジフ ェニルテトラカルボン酸、チォフェン 2, 3, 4 , 5 テトラカルボン酸、エチレンテトラ カルボン酸など、あるいはこれらのアルカリ金属塩、アルカリ土類金属塩、アンモニゥ ム塩等を挙げることができる力 S、これらに限定されるものではない。  Examples of the compound containing a carboxylate group include trimellitic acid, trimellitic anhydride, pyromellitic acid, pyromellitic anhydride, 4-methylcyclohexene 1, 2, 3 tricarboxylic acid, trimesic acid, 1, 2, 3 , 4, tantetra-force nolevonic acid, 1, 2, 3, 4, 4 pentanetetra-force nolevonic acid, 3, 3 ', 4, 4' -benzophenone tetracarboxylic acid, 5- (2,5 dixotetrahydrofurfuryl) -3 Methyl-3 cyclohexene mono 1,2 dicarboxylic acid, 5-(2,5-dioxotetrahydrofurfuryl) 3 cyclohexene mono 1,2 dicarboxylic acid, cyclopentanetetra-force nolevonic acid, 2, 3, 6,7 naphthalene tetra-force norevonic acid, 1, 2, 5, 6 naphthalene tetracarboxylic acid, ethylene glycol bistrimellitate, 2, 2 ', 3, 3'-diphenyltetracarboxylic acid, thiophene 2, 3, 4, 5 Tetracarboxylic acid, ethylenetetracarboxylic acid, etc., or force S that can include these alkali metal salts, alkaline earth metal salts, ammonium salts, etc. S, but is not limited thereto .
[0062] スルホン酸塩基を含む化合物としては、例えば、スルホテレフタル酸、 5 スルホイ ソフタル酸、 4ースルホイソフタル酸、 4 スルホナフタレン 2, 7 ジカルボン酸、ス ノレホー p キシリレングリコール、 2 スルホー 1 , 4 ビス(ヒドロキシエトキシ)ベンゼ ンなどあるいはこれらのアルカリ金属塩、アルカリ土類金属塩、アンモニゥム塩を用い ること力 Sできる力 これに限定されるものではなレ、。  [0062] Examples of the compound containing a sulfonate group include sulfoterephthalic acid, 5 sulfoisophthalic acid, 4-sulfoisophthalic acid, 4 sulfonaphthalene 2,7 dicarboxylic acid, snow p-xylylene glycol, 2 sulfo-1,4 The ability to use bis (hydroxyethoxy) benzen or their alkali metal salts, alkaline earth metal salts, and ammonium salts.
[0063] ホスホン酸塩基を含む化合物としては、例えば、ホスホテレフタル酸、 5 ホスホソフ タノレ酸、 4 ホスホイソフタル酸、 4 ホスホナフタレン一 2, 7 ジカルボン酸、ホスホ —p キシリレングリコール、 2 ホスホー 1 , 4 ビス(ヒドロキシエトキシ)ベンゼンな どあるいはこれらのアルカリ金属塩、アルカリ土類金属塩、アンモニゥム塩を用いるこ とができる力 S、これに限定されるものではない。  [0063] Examples of the compound containing a phosphonate group include phosphoterephthalic acid, 5 phosphosophthalenoic acid, 4 phosphoisophthalic acid, 4 phosphonaphthalene-1,2,7 dicarboxylic acid, phospho-p xylylene glycol, 2 phospho-1, 4 A force S that can use bis (hydroxyethoxy) benzene or an alkali metal salt, alkaline earth metal salt, or ammonium salt thereof, but is not limited thereto.
[0064] また、本発明においては、上記ポリエステルとして、例えば、アクリル、ウレタン、ェ ポキシなどで変性したブロック共重合体、グラフト共重合体などの変性ポリエステル共 重合体も使用可能である。  [0064] In the present invention, for example, a modified polyester copolymer such as a block copolymer or a graft copolymer modified with acrylic, urethane, epoxy or the like can be used as the polyester.
[0065] 好まし!/、ポリエステルとしては、酸成分としてテレフタル酸、イソフタル酸、セバシン 酸、 5—ナトリウムスルホイソフタル酸、グリコール成分としてエチレングリコール、ジェ チレングリコール、 1 , 4 ブタンジオール、ネオペンチルグリコールから選ばれる共 重合体などが挙げられる。耐水性が必要とされる場合は、 5—ナトリウムスルホイソフ タル酸の代わりに、トリメリット酸をその共重合成分とした共重合体なども好適に用い ること力 Sでさる。 [0065] Preferable! /, As polyester, terephthalic acid, isophthalic acid, sebacic acid, 5-sodium sulfoisophthalic acid as the acid component, ethylene glycol, Examples include copolymers selected from tylene glycol, 1,4 butanediol, and neopentyl glycol. When water resistance is required, it is possible to use a copolymer with trimellitic acid as a copolymerization component instead of 5-sodium sulfoisophthalic acid.
[0066] 上記ポリエステル樹脂は、以下の製造法によって製造することができる。例えば、ジ カルボン酸成分として、テレフタル酸、イソフタル酸、 5—ナトリウムスルホイソフタル酸 、グリコール成分としてエチレングリコール、ネオペンチルグリコールからなるポリエス テル樹脂について説明すると、テレフタル酸、イソフタル酸、 5—ナトリウムスルホイソ フタル酸とエチレングリコール、ネオペンチルグリコールとを直接エステル化反応させ る力、、テレフタル酸、イソフタル酸、 5—ナトリウムスルホイソフタル酸及びエチレンダリ コール、ネオペンチルダリコールとをエステル交換反応させる第一段階と、この第一 段階の反応生成物を重縮合反応させる第二段階とによって製造する方法などにより 製造すること力 Sでさる。  [0066] The polyester resin can be produced by the following production method. For example, a polyester resin composed of terephthalic acid, isophthalic acid, 5-sodium sulfoisophthalic acid as the dicarboxylic acid component, and ethylene glycol and neopentyl glycol as the glycol component will be described. The ability to directly esterify phthalic acid with ethylene glycol or neopentyl glycol, the first stage of transesterification of terephthalic acid, isophthalic acid, 5-sodium sulfoisophthalic acid, ethylene dallicol, and neopentyl dallicol It can be produced by a method S that is produced by the second step of polycondensation reaction of the reaction product of the first step.
この際、反応触媒として、例えば、アルカリ金属、アルカリ土類金属、マンガン、コバ ルト、亜鉛、アンチモン、ゲルマニウム、チタン化合物などを用いることができる。  In this case, for example, alkali metal, alkaline earth metal, manganese, cobalt, zinc, antimony, germanium, titanium compound, or the like can be used as the reaction catalyst.
[0067] また、カルボン酸を末端及び/又は側鎖に多く有するポリエステル樹脂を得る方法 としては、特開昭 54— 46294号公報、特開昭 60— 209073号公報、特開昭 62— 2 40318号公報、特開昭 53— 26828号公報、特開昭 53— 26829号公報、特開昭 5 3— 98336号公報、特開昭 56— 116718号公報、特開昭 61— 124684号公報、特 開昭 62— 240318号公報などに記載の 3価以上の多価カルボン酸を共重合した樹 脂により製造することができる力 むろんこれら以外の方法であってもよレ、。  [0067] Further, methods for obtaining a polyester resin having a large amount of carboxylic acid at the terminal and / or side chain are disclosed in JP-A-54-46294, JP-A-60-209073, JP-A-62-240318. No. 53, No. 53-26828, No. 53-26829, No. 53-98336, No. 56-116718, No. 61-124684, Forces that can be produced from a resin obtained by copolymerizing a trivalent or higher polyvalent carboxylic acid as described in, for example, Kaikai 62-240318, etc. Of course, other methods may be used.
また、水分散ポリエステル樹脂として、例えば市販されている「バイロナール (登録 商標)」シリーズ (東洋紡績社製)を用レ、ることもできる。  Further, as the water-dispersed polyester resin, for example, a commercially available “Vylonal (registered trademark)” series (manufactured by Toyobo Co., Ltd.) can be used.
また、溶剤か要請ポリエステル樹脂として、例えば市販されている「バイロン (登録商 標)」シリーズ (東洋紡績社製)を用いることもできる。  Moreover, as a solvent or a required polyester resin, for example, a commercially available “Byron (registered trademark)” series (manufactured by Toyobo Co., Ltd.) can be used.
[0068] また、上記ポリエステル樹脂の固有粘度は、特に限定されないが、接着性の点で 0 . 3dl/g以上であることが好ましぐより好ましくは 0. 35dl/g以上、最も好ましくは 0 . 4dl/g以上であることである。ポリエステル樹脂のガラス転移点(以下、 Tgと略称す ることもある)は、 0〜; 130°Cであることが好ましぐより好ましくは 10〜85°Cである。 Tg カ^。 C未満では、例えば耐熱接着性が劣ったり、被覆膜同士が固着するブロッキング 現象が発生したりし、逆に 130°Cを超える場合、ポリエステル樹脂の安定性や水分散 十生が劣る場合があるので好ましくな!/ヽ。 [0068] The intrinsic viscosity of the polyester resin is not particularly limited, but is preferably 0.3 dl / g or more, more preferably 0.3 dl / g or more, and most preferably 0 in terms of adhesiveness. It is 4dl / g or more. Glass transition point of polyester resin (hereinafter abbreviated as Tg) Is preferably 0 to 130 ° C, more preferably 10 to 85 ° C. Tg If the temperature is less than C, for example, the heat-resistant adhesiveness may be inferior, or a blocking phenomenon may occur in which the coating films adhere to each other. Because there is favorable! / ヽ.
[0069] 上記ポリウレタンウレタン樹脂は、ウレタン結合を有したものであれば特に限定され るものではなぐ主要構成成分としては、ポリオール化合物とポリイソシァネート化合 物を重合して得られるものである。 [0069] The polyurethane urethane resin is not particularly limited as long as it has a urethane bond, and the main constituent component is obtained by polymerizing a polyol compound and a polyisocyanate compound.
該ポリウレタン樹脂としては、カルボン酸塩基、スルホン酸塩基、又は硫酸半エステ ノレ塩基の導入により水への親和性が高められたウレタン樹脂などを用いることができ る。カルボン酸塩基、スルホン酸塩基、又は硫酸半エステル塩基などの含有量は、 0 . 5〜; 15質量%が好ましい。  As the polyurethane resin, a urethane resin whose affinity for water is enhanced by introduction of a carboxylate group, a sulfonate group, or a sulfuric acid ester half ester base can be used. The content of a carboxylate group, a sulfonate group, or a sulfuric acid half ester base is preferably 0.5 to 15% by mass.
ポリオール化合物としては、例えば、ポリエチレングリコール、ポリプロピレングリコー ノレ、ポリエチレン.プロピレングリコーノレ、ポリテトラメチレングリコーノレ、へキサメチレン グリコーノレ、へキサメチレングリコーノレ、テトラメチレングリコーノレ、 1 , 5—ペンタンジォ ール、ジエチレングリコール、トリエチレングリコール、ポリ力プロラタトン、ポリへキサメ チレンアジペート、ポリテトラメチレンアジペート、トリメチローノレプロノ ン、トリメチロー ノレエタン、グリセリン、アクリル系ポリオールなどを用いることができる。  Examples of the polyol compound include polyethylene glycol, polypropylene glycol, polyethylene propylene glycol, polytetramethylene glycol, hexamethylene glycol, hexamethylene glycol, tetramethylene glycol, 1,5-pentanediol, and diethylene glycol. , Triethylene glycol, poly-strength prolatatone, polyhexamethylene adipate, polytetramethylene adipate, trimethylonorepronone, trimethylonoreethane, glycerin, acrylic polyol, and the like can be used.
また、ポリイソシァネート化合物としては、例えば、トリレンジイソシァネート、へキサメ チレンジイソシァネート、フエ二レンジイソシァネート、ジフエニルメタンジイソシァネー ト、トリレンジイソシァネートとトリメチロールプロパンの付加物、へキサメチレンジイソシ ァネートとトリメチロールェタンの付加物などを用いることができる。  Examples of the polyisocyanate compound include tolylene diisocyanate, hexamethylenediocyanate, phenylene diisocyanate, diphenylmethane diisocyanate, tolylene diisocyanate and trimethylol. An adduct of propane, an adduct of hexamethylene diisocyanate and trimethylolethane can be used.
ここで、ウレタン樹脂の主要な構成成分は、上記ポリオール化合物とポリイソシァネ ート化合物の他に、鎖長延長剤や架橋剤などを含んでいてもよい。  Here, main components of the urethane resin may contain a chain extender, a crosslinking agent, and the like in addition to the polyol compound and the polyisocyanate compound.
鎖延長剤あるいは架橋剤としては、エチレングリコール、プロピレングリコール、ブタ ンジ才ール、ジエチレングリコール、エチレンジァミン、ジエチレントリァミンなどを用い ること力 Sでさる。  As chain extender or cross-linking agent, use of ethylene glycol, propylene glycol, butadiene diol, diethylene glycol, ethylene diamine, diethylene triamine, etc. is possible.
[0070] ァニオン性基を有するポリウレタン樹脂は、例えば、ポリオール、ポリイソシァネート 、鎖延長剤などに、ァニオン性基を有する化合物を用いる方法、生成したポリウレタ ン樹脂の未反応イソシァネート基とァニオン性基を有する化合物を反応させる方法、 あるいはポリウレタンの活性水素を有する基と特定の化合物を反応させる方法などを 用いて製造することができる力、特に限定されるものではない。 [0070] The polyurethane resin having an anionic group includes, for example, a method of using a compound having an anionic group in a polyol, a polyisocyanate, a chain extender or the like, and a produced polyurethane resin. The force that can be produced using a method of reacting a compound having an unreacted isocyanate group and an anionic group of a resin or a method of reacting a group having an active hydrogen of a polyurethane with a specific compound is particularly limited. It is not a thing.
上記ポリウレタン樹脂中のァニオン性基は、好ましくはスルホン酸基、カルボン酸基 及びこれらのアンモニゥム塩、リチウム塩、ナトリウム塩、カリウム塩あるいはマグネシゥ ム塩として用いられ、特に好ましくは、スルホン酸塩基である。  The anionic group in the polyurethane resin is preferably used as a sulfonic acid group, a carboxylic acid group and their ammonium salt, lithium salt, sodium salt, potassium salt or magnesium salt, and particularly preferably a sulfonic acid group. .
ポリウレタン樹脂中のァニオン性基の量は、 0. 05質量%〜8質量%が好ましい。 0 . 05質量%未満では、ポリウレタン樹脂の水分散性が悪くなる傾向があり、 8質量% を超えると、耐水性ゃ耐ブロッキング性が劣る傾向がある。  The amount of the anionic group in the polyurethane resin is preferably 0.05% by mass to 8% by mass. If it is less than 0.05% by mass, the water dispersibility of the polyurethane resin tends to be poor, and if it exceeds 8% by mass, the water resistance tends to be poor.
なお、例えばポリウレタン樹脂の水分散体として、「ハイドラン (登録商標)」シリーズ ( 大日本インキ化学工業社製)を用いることもできる。  For example, “Hydran (registered trademark)” series (manufactured by Dainippon Ink & Chemicals, Inc.) can be used as an aqueous dispersion of polyurethane resin.
[0071] 上記アクリル系ポリマー樹脂を構成するモノマー成分としては、例えば、アルキルァ タリレート、アルキルメタタリレート(アルキル基としてはメチル基、ェチル基、 n プロ ピノレ基、イソプロピル基、 n ブチル基、イソブチル基、 t ブチル基、 2—ェチルへキ シノレ基、ラウリル基、ステアリル基、シクロへキシル基、フエニル基、ベンジル基、フエ ニルェチル基など)、 2—ヒドロキシェチルアタリレート、 2—ヒドロキシェチルメタクリレ ドロキシ基含有モノマー、アクリルアミド、メタクリルアミド、 N メチルアクリルアミド、 N ーメチルメタクリルアミド、 N メチロールアクリルアミド、 N メチロールメタクリルアミド 、 N, N ジメチロールアクリルアミド、 N メトキシメチルアクリルアミド、 N メトキシメ チルメタクリルアミド、 N フエニルアクリルアミドなどのアミド基含有モノマー、 N, N— ジェチルアミノエチルアタリレート、 N, N ジェチルアミノエチルメタタリレートなどの アミノ基含有モノマー、グリシジルアタリレート、グリシジルメタタリレートなどのエポキシ 基含有モノマー、アクリル酸、メタクリル酸及びそれらの塩(リチウム塩、ナトリウム塩、 カリウム塩など)などのカルボキシル基又はその塩を含有するモノマーなどを用いるこ とができ、これらは 1種もしくは 2種以上を用いて共重合される。更に、これらは他種の モノマーと併用することができる。 [0071] The monomer component constituting the acrylic polymer resin includes, for example, alkyl phthalate, alkyl methacrylate (the alkyl group is methyl group, ethyl group, n-propinole group, isopropyl group, n-butyl group, isobutyl group). T-butyl group, 2-ethylhexyl group, lauryl group, stearyl group, cyclohexyl group, phenyl group, benzyl group, phenylethyl group, etc.), 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate Monomers containing redoxy groups, acrylamide, methacrylamide, N methyl acrylamide, N-methyl methacrylamide, N methylol acrylamide, N methylol methacrylamide, N, N dimethylol acrylamide, N methoxymethyl acrylamide, N methoxymethyl methacryl Amide group-containing monomers such as amide, N phenylacrylamide, N, N-amino group-containing monomers such as N-N-jetylaminoethyl acrylate, N, N dimethylaminoethyl methacrylate, glycidyl acrylate, glycidyl methacrylate The epoxy group-containing monomers, acrylic acid, methacrylic acid and their salts (lithium salts, sodium salts, potassium salts, etc.) and other carboxyl groups or monomers containing such salts can be used. Two or more types are copolymerized. Furthermore, these can be used in combination with other types of monomers.
[0072] ここで他種のモノマーとしては、例えば、ァリルグリシジルエーテルなどのエポキシ 基含有モノマー、スチレンスルホン酸、ビニルスルホン酸及びそれらの塩(リチウム塩 、ナトリウム塩、カリウム塩、アンモニゥム塩など)などのスルホン酸基又はその塩を含 有するモノマー、クロトン酸、ィタコン酸、マレイン酸、フマール酸及びそれらの塩(リ チウム塩、ナトリウム塩、カリウム塩、アンモニゥム塩など)などのカルボキシル基又は その塩を含有するモノマー、無水マレイン酸、無水ィタコン酸などの酸無水物を含有 するモノマー、ビュルイソシァネート、ァリルイソシァネート、スチレン、ビュルメチルェ ーテノレ、ビニノレエチノレエーテノレ、ビニノレトリスァノレコキシシラン、ァノレキノレマレイン酸 モノエステル、アルキルフマール酸モノエステル、アタリロニトリノレ、メタタリロニトリノレ、 アルキルイタコン酸モノエステル、塩化ビニリデン、酢酸ビュル、塩化ビュルなどを用 いること力 Sでさる。 [0072] Examples of other types of monomers include epoxy such as allyl glycidyl ether. Monomers containing a sulfonic acid group or a salt thereof such as a group-containing monomer, styrene sulfonic acid, vinyl sulfonic acid and salts thereof (lithium salt, sodium salt, potassium salt, ammonium salt, etc.), crotonic acid, itaconic acid, maleic acid , Fumaric acid and its salts (lithium salt, sodium salt, potassium salt, ammonium salt, etc.), a monomer containing a carboxyl group or a salt thereof, a monomer containing an acid anhydride such as maleic anhydride, itaconic anhydride, etc. , Burisocyanate, allylic isocyanate, styrene, butylmethyl etherenole, vinino ethino oleenole, vinino tris triolecooxy silane, ano quinole maleic acid mono ester, alkyl fumaric acid mono ester, attariloni Torinore, Metatarilo nitrinore, A Kiruitakon acid monoester, vinylidene chloride, acetate Bulle, leaving by force S which are use and chloride Bulle.
[0073] また、上記アクリル系ポリマー樹脂としては、変性アクリル系ポリマー樹脂、例えば、 ポリエステル、ウレタン、エポキシなどで変性したブロック共重合体、グラフト共重合体 なども使用可能である。  [0073] As the acrylic polymer resin, a modified acrylic polymer resin such as a block copolymer or a graft copolymer modified with polyester, urethane, epoxy, or the like can also be used.
上記アクリル系ポリマー樹脂の Tgは特に限定されるものではないが、好ましくは 1 0〜90°C、より好ましくは 0〜50°C、最も好ましくは 10〜40°Cである。 Tgが低いアタリ ル樹脂を用いる場合は耐熱接着性が劣ったり、ブロッキングしゃすい傾向があり、逆 に高すぎる場合は接着性が悪くなつたり、造膜性が劣ることがあり好ましくない。また 、該アクリル系ポリマーの分子量は 5万以上が好ましぐより好ましくは 30万以上とす ることが接着性の点で望ましい。  The Tg of the acrylic polymer resin is not particularly limited, but is preferably 10 to 90 ° C, more preferably 0 to 50 ° C, and most preferably 10 to 40 ° C. When an talyl resin having a low Tg is used, the heat resistant adhesiveness tends to be inferior or the blocking tendency tends to be blocked. On the other hand, if it is too high, the adhesiveness may deteriorate or the film forming property may be inferior. Further, the molecular weight of the acrylic polymer is preferably 50,000 or more, more preferably 300,000 or more from the viewpoint of adhesiveness.
上記アクリル系ポリマー樹脂としては、メチルメタタリレート、ェチルアタリレート、 n- ブチルアタリレート、 2—ヒドロキシェチルアタリレート、アクリルアミド、 N メチローノレ アクリルアミド、アクリル酸から選ばれる共重合体などである。  Examples of the acrylic polymer resin include copolymers selected from methyl methacrylate, ethyl acrylate, n-butyl acrylate, 2-hydroxyethyl acrylate, acrylamide, N methylolanol acrylamide, and acrylic acid.
[0074] 該アクリル系ポリマー樹脂を水に溶解、乳化、あるいは懸濁し、水系液として用いる ことが、環境汚染や塗布時の防爆性の点で好ましい。このような水系アクリル系ポリマ 一樹脂は、親水性基を有するモノマー(アクリル酸、メタクリル酸、アクリルアミド、ビニ ルスルホン酸及びその塩など)との共重合や反応性乳化剤や界面活性剤を用いた 乳化重合、懸濁重合、ソープフリー重合などの方法によって作製することができる。 また、市販のアクリル系ェマルジヨンを用いてもよぐ例えば、「ジョンクリル (登録商 標)」シリーズ (BASFジャパン社製)が挙げられる。 [0074] The acrylic polymer resin is preferably dissolved, emulsified or suspended in water and used as an aqueous solution from the viewpoint of environmental pollution and explosion-proof properties during application. Such water-based acrylic polymer resins are copolymerized with monomers having a hydrophilic group (such as acrylic acid, methacrylic acid, acrylamide, vinyl sulfonic acid and salts thereof) and emulsified using reactive emulsifiers and surfactants. It can be produced by a method such as polymerization, suspension polymerization or soap-free polymerization. Also, commercially available acrylic emulsions can be used. Standard) ”series (BASF Japan).
[0075] また、本発明にお!/、ては、上記ポリエステル、ポリウレタン及びアクリル系ポリマーよ りなる樹脂に、例えば、二トリル'ブタヂェン等のゴム成分の骨格を導入した変性体で あっても良い。該変性体を用いることでゴム層との接着性や接着耐久性をより向上す ることができることがあるので好ましい実施態様である。該対応の場合、導入するゴム 成分の骨格は、複合対象のゴム成分と同類の構造が好ましいが、必ずしも限定され ない。異種構造のゴム成分の導入でも効果がでる場合がある。ゴム成分の導入の効 果が複合されるゴム層との馴染み性向上のみでなぐ架橋高分子膜の柔軟性向上効 果による接着耐久性の向上効果が加味されるために引き起こされる効果によるもと推 察している。 [0075] Further, according to the present invention, it may be a modified product in which a skeleton of a rubber component such as nitrile butadiene is introduced into a resin comprising the polyester, polyurethane and acrylic polymer. good. The use of the modified product is a preferred embodiment because it may further improve the adhesion to the rubber layer and the durability of adhesion. In this case, the structure of the rubber component to be introduced preferably has the same structure as that of the rubber component to be combined, but is not necessarily limited. Introducing rubber components having different structures may also be effective. This is due to the effect caused by the effect of improving the adhesion durability due to the effect of improving the flexibility of the crosslinked polymer film, which is not only the improvement of the compatibility with the rubber layer where the effect of introducing the rubber component is combined. I guess.
[0076] 上記変性体の調整方法は限定されな!/、。例えば、カルボキシル基、ヒドロキシル基 あるいはァミノ基が導入されたゴム成分を上記ポリマー調製時に添加して例えば、縮 合反応や付加反応を利用して、該ポリマー中に導入してしても良いし、例えば、末端 にビュル基やアクリル基を導入したゴム成分を用いてグラフトやブロック重合を行なう ことによって導入しても良い。  [0076] The method for preparing the modified product is not limited! /. For example, a rubber component having a carboxyl group, hydroxyl group or amino group introduced therein may be added during the preparation of the polymer and introduced into the polymer using, for example, a condensation reaction or an addition reaction. For example, it may be introduced by grafting or block polymerization using a rubber component having a bur group or acrylic group introduced at the terminal.
[0077] 本発明においては、上記ポリエステル、ポリウレタン及びアクリル系ポリマーよりなる 樹脂は架橋されてレ、ることが好ましレ、。  [0077] In the present invention, the resin comprising the polyester, polyurethane and acrylic polymer is preferably cross-linked.
該架橋方法は限定されないが、例えば、上記ポリマーよりなる樹脂を、架橋剤を用 V、て架橋する方法が挙げられる。  The crosslinking method is not limited, and examples thereof include a method of crosslinking a resin comprising the above polymer using a crosslinking agent V.
上記架橋剤を用いて架橋する方法における架橋剤は、架橋剤は、特に限定される ものではないが、上記したポリマーに存在する官能基、例えば、カルボキシル基、ヒド 口キシル基、メチロール基、アミド基などと架橋反応し得るものであればよぐ例えば、 メラミン系架橋剤、ォキサゾリン系架橋剤、イソシァネート系架橋剤、アジリジン系架 橋剤、エポキシ系架橋剤、メチロール化あるいはアルキロール化した尿素系、アタリ ルアミド系、ポリアミド系樹脂、アミドエポキシ化合物、各種シランカップリング剤、各種 チタネート系カップリング剤などを用いることができる。中でも、イソシァネート系架橋 剤、メラミン系架橋剤、ォキサゾリン系架橋剤が、樹脂との相溶性、接着性などの点か ら好適に用いること力できる。特に、接着耐久性の点より、イソシァネート系架橋剤の 使用が好ましい。 The cross-linking agent in the method of cross-linking using the cross-linking agent is not particularly limited, but the functional group present in the above-described polymer, for example, carboxyl group, hydroxy group, methylol group, amide For example, a melamine crosslinking agent, oxazoline crosslinking agent, isocyanate crosslinking agent, aziridine crosslinking agent, epoxy crosslinking agent, methylolated or alkylolized urea system can be used. , Amide amide, polyamide resins, amide epoxy compounds, various silane coupling agents, various titanate coupling agents, and the like can be used. Of these, isocyanate-based crosslinking agents, melamine-based crosslinking agents, and oxazoline-based crosslinking agents can be suitably used from the viewpoint of compatibility with the resin and adhesiveness. In particular, from the viewpoint of adhesion durability, Use is preferred.
[0078] 例えば、メラミン系架橋剤は、特に限定されないが、メラミン、メラミンとホルムアルデ ヒドを縮合して得られるメチロール化メラミン誘導体、メチロール化メラミンに低級アル コールを反応させて部分的あるいは完全にエーテル化した化合物、あるいはこれら の混合物などを用いることができる。また、メラミン系架橋剤としては単量体、 2量体以 上の多量体からなる縮合物、あるいはこれらの混合物などを用いることができる。エー テル化に使用する低級アルコールとしては、メチルアルコール、エチルアルコール、 イソプロピルアルコール、 n ブタノール、イソブタノールなどを用いることができる。官 能基としては、イミノ基、メチロール基、あるいはメトキシメチル基ゃブトキシメチル基な どのアルコキシメチル基を 1分子中に有するもので、イミノ基型メチル化メラミン樹脂、 メチロール基型メラミン樹脂、メチロール基型メチル化メラミン樹脂、完全アルキル型 メチル化メラミン樹脂などである。その中でも、イミノ基型メラミン樹脂、メチロール化メ ラミン樹脂が好ましぐ最も好ましくは、イミノ基型メラミン樹脂である。更に、メラミン系 架橋剤の熱硬化を促進するため、例えば、 p トルエンスルホン酸などの酸性触媒を 用いてもよい。  [0078] For example, the melamine-based crosslinking agent is not particularly limited, but partially or completely etherified by reacting melamine, a methylolated melamine derivative obtained by condensing melamine and formaldehyde, or methylolated melamine with a lower alcohol. Compound or a mixture thereof can be used. As the melamine-based crosslinking agent, a monomer, a condensate composed of a dimer or higher polymer, or a mixture thereof can be used. As the lower alcohol used for etherification, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like can be used. The functional group has an alkoxymethyl group such as an imino group, a methylol group, or a methoxymethyl group or a butoxymethyl group in one molecule. The imino group type methylated melamine resin, methylol group type melamine resin, methylol group Type methylated melamine resin and fully alkyl type methylated melamine resin. Among these, imino group type melamine resins and methylolated melamine resins are preferred, and imino group type melamine resins are most preferred. Furthermore, an acidic catalyst such as p-toluenesulfonic acid may be used to promote thermal curing of the melamine crosslinking agent.
[0079] また、ォキサゾリン系架橋剤は、該化合物中に官能基としてォキサゾリン基を有する ものであれば特に限定されるものではないが、ォキサゾリン基を含有するモノマーを 少なくとも 1種以上含み、かつ、少なくとも 1種の他のモノマーを共重合させて得られ るォキサゾリン基含有共重合体からなるものが好ましい。  [0079] Further, the oxazoline-based crosslinking agent is not particularly limited as long as it has an oxazoline group as a functional group in the compound, and includes at least one monomer containing an oxazoline group, and Those composed of an oxazoline group-containing copolymer obtained by copolymerizing at least one other monomer are preferred.
ォキサゾリン基を含有するモノマーとしては、 2—ビュルー2—ォキサゾリン、 2—ビ 二ルー 4ーメチルー 2 ォキサゾリン、 2—ビュル 5 メチルー 2 ォキサゾリン、 2 イソプロぺニルー 2 ォキサゾリン、 2 イソプロぺニルー 4ーメチルー 2 ォキサゾ リン、 2 イソプロぺニルー 5 ェチルー 2 ォキサゾリンなどを用いることができ、こ れらの 1種又は 2種以上の混合物を使用することもできる。中でも、 2—イソプロぺニ ルー 2—ォキサゾリンが工業的にも入手しやすく好適である。  Monomers containing an oxazoline group include 2-bulu 2-oxazoline, 2-bi bis 4-methyl-2 oxazoline, 2-bur 5 methyl-2 oxazoline, 2 isopropenyl-2 oxazoline, 2 isopropenyl-4-methyl-2 oxazoline 2 isopropenyl-5 ethyl-2-oxazoline, etc., and a mixture of one or more of them can also be used. Of these, 2-isopropenyl lu 2-oxazoline is preferred because it is easily available industrially.
[0080] ォキサゾリン系架橋剤において、ォキサゾリン基を含有するモノマーに対して用いら れる少なくとも 1種の他のモノマーとしては、該ォキサゾリン基を含有するモノマーと共 重合可能なモノマーであれば、特に限定されないが、例えば、アクリル酸メチル、メタ クリル酸メチル、アクリル酸ェチル、メタクリル酸ェチル、アクリル酸ブチル、メタクリノレ 酸ブチル、アクリル酸 2—ェチルへキシル、メタクリル酸 2—ェチルへキシルなど のアクリル酸エステルあるいはメタクリル酸エステル類、アクリル酸、メタクリル酸、イタ コン酸、マレイン酸などの不飽和カルボン酸類、アクリロニトリル、メタタリロニトリルなど の不飽和二トリル類、アクリルアミド、メタクリルアミド、 N メチロールアクリルアミド、 N ーメチロールメタクリルアミドなどの不飽和アミド類、酢酸ビュル、プロピオン酸ビュル などのビニノレエステノレ類、メチノレビニノレエーテノレ、ェチノレビニノレエーテノレなどのビニ ルエーテル類、エチレン、プロピレンなどのォレフィン類、塩化ビュル、塩化ビニリデ ン、フッ化ビュルなどの含ハロゲン一 α , β—不飽和モノマー類、スチレン、 α—メチ ノレスチレンなどの α , β 不飽和芳香族モノマー類などを用いることができ、これら は 1種又は 2種以上の混合物を使用することもできる。 [0080] In the oxazoline-based crosslinking agent, the at least one other monomer used for the monomer having an oxazoline group is not particularly limited as long as it is a monomer copolymerizable with the monomer having the oxazoline group. For example, methyl acrylate, meta Acrylic acid esters or methacrylic acid esters such as methyl crylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, acrylic acid, methacrylic acid Unsaturated carboxylic acids such as acid, itaconic acid and maleic acid, unsaturated nitriles such as acrylonitrile and methacrylonitrile, unsaturated amides such as acrylamide, methacrylamide, N-methylolacrylamide and N-methylolmethacrylamide Vinylenoestenoles such as butyl acetate and butyl propionate, vinyl ethers such as methinolevinoleatenore, ethinolevinoleatenole, olefins such as ethylene and propylene, butyl chloride, vinylidene chloride, Halogen-containing one alpha such Kka Bulle, beta-unsaturated monomers, styrene, alpha such as α- methylate Noresuchiren, can be used as the β unsaturated aromatic monomers, which are one or more Mixtures can also be used.
ォキサゾリン基含有架橋剤としては、例えば、「ェポクロス(登録商標)」シリーズ(日 本触媒社製)が入手可能である。  As the oxazoline group-containing crosslinking agent, for example, “Epocross (registered trademark)” series (manufactured by Nippon Shokubai Co., Ltd.) is available.
また、イソシァネート系架橋剤は、該化合物中に官能基としてイソシァネート基を有 するものであれば特に限定されるものではないが、 1分子中にイソシァネート基を 2個 以上含む多官能性イソシァネート化合物の使用が好ましい。  Further, the isocyanate cross-linking agent is not particularly limited as long as the compound has an isocyanate group as a functional group in the compound, but it is a polyfunctional isocyanate compound containing two or more isocyanate groups in one molecule. Use is preferred.
多官能性イソシァネート化合物としては、低分子又は高分子の芳香族、脂肪族のジ イソシァネート、 3価以上のポリイソシァネートを用い得る。ポリイソシァネートとしては ネート、ジフエニルメタンジイソシァネート、水素化ジフエニルメタンジイソシァネート、 ネート、及びこれらのイソシァネート化合物の 3量体がある。さらに、これらのイソシァ ネート化合物の過剰量と、エチレングリコール、プロピレングリコール、トリメチロール プロパン、グリセリン、ソルビトール、エチレンジァミン、モノエタノールァミン、ジェタノ ールァミン、トリエタノールァミンなどの低分子活性水素化合物、又はポリエステルポ リオール類、ポリエーテルポリオール類、ポリアミド類などの高分子活性水素化合物と を反応させて得られる末端イソシァネート基含有化合物を挙げることができる。  As the polyfunctional isocyanate compound, a low or high molecular aromatic, aliphatic diisocyanate, or trivalent or higher polyisocyanate can be used. Polyisocyanates include nates, diphenylmethane diisocyanates, hydrogenated diphenylmethane diisocyanates, nates, and trimers of these isocyanate compounds. Further, an excess amount of these isocyanate compounds and a low molecular active hydrogen compound such as ethylene glycol, propylene glycol, trimethylol propane, glycerin, sorbitol, ethylenediamine, monoethanolamine, jetanolamine, triethanolamine, or polyester. Mention may be made of terminal isocyanate group-containing compounds obtained by reacting with polymer active hydrogen compounds such as polyols, polyether polyols and polyamides.
イソシァネート系架橋剤としては、例えば、「コロネート (登録商標)」シリーズ (ポリウ レタン工業社製)や「ミリオネート (登録商標)」シリーズ (ポリウレタン工業社製)が入手 可能である。特に、接着性耐久性の点で、ミリオネートシリーズの使用が好ましい。 Examples of the isocyanate cross-linking agent include “Coronate (registered trademark)” series (poly Retan Kogyo) and “Millionate (registered trademark)” series (Polyurethane Kogyo) are available. In particular, the use of the Millionate series is preferable from the viewpoint of adhesive durability.
[0082] なお、イソシァネート化合物を架橋剤として用いる場合に、ブロック型イソシァネート 化合物を用いることも可能である。  [0082] When an isocyanate compound is used as a crosslinking agent, a block type isocyanate compound can also be used.
ブロック化イソシァネートは上記イソシァネート化合物とブロック化剤とを従来公知の 適宜の方法より付加反応させて調製し得る。イソシァネートブロック化剤としては、例 えば、フエノーノレ、クレゾ一ノレ、キシレノーノレ、レゾノレシノーノレ、ニトロフエノーノレ、クロ 口フエノールなどのフエノール類;チォフエノール、メチルチオフエノールなどのチオフ ェノール類;ァセトキシム、メチルェチケトォキシム、シクロへキサノンォキシムなどの ォキシム類;メタノール、エタノール、プロパノール、ブタノールなどのアルコール類; エチレンクロルヒドリン、 1 , 3—ジクロロー 2—プロパノールなどのハロゲン置換アルコ ール類; tーブタノール、 t—ペンタノールなどの第 3級アルコール類; ε一力プロラタ タム、 δ ノ レ口ラタタム、 V—プ'チロラタタム、 β プロピノレラクタムなどのラタタム類 ;芳香族ァミン類;イミド類;ァセチルアセトン、ァセト酢酸エステル、マロン酸ェチルェ ステルなどの活性メチレン化合物;メルカブタン類;ィミン類;尿素類;ジァリール化合 物類;重亜硫酸ソーダなどを挙げることができる。  The blocked isocyanate can be prepared by subjecting the above isocyanate compound and blocking agent to an addition reaction by a conventionally known appropriate method. Isocyanate blocking agents include, for example, phenols such as fenenore, cresol monole, xylenore, lesonoresinole, nitrophenol, chlorophenol, and thiophenols such as thiophenol and methylthiophenol; , Oximes such as methylethiketoxime and cyclohexanone oxime; alcohols such as methanol, ethanol, propanol and butanol; halogen-substituted alcohols such as ethylene chlorohydrin and 1,3-dichloro-2-propanol; t -Tertiary alcohols such as butanol and t-pentanol; epsilon prolatata, δ noradatalatata, V-p'tyrolatatam, βpropinolactam and other ratatams; aromatic amines; imides; Cetylacetone, Examples include active methylene compounds such as triacetate ester and ethyl ester malonate; mercabtans; imines; ureas; diaryl compounds; sodium bisulfite.
[0083] エポキシ系架橋剤該化合物中に官能基としてエポキシ基を有するものであれば特 に限定されるものではないが、 1分子中にエポキシ基を 2個以上を含む多官能性ェ ポキシ化合物の使用が好ましい。  [0083] Epoxy-based cross-linking agent The epoxy-based cross-linking agent is not particularly limited as long as it has an epoxy group as a functional group, but is a polyfunctional epoxy compound containing two or more epoxy groups in one molecule. Is preferred.
多官能性エポキシ化合物としては、例えば、ビスフエノール Αのジグリシジルエーテ ル及びそのオリゴマー、水素化ビスフエノール Aのジグリシジルエーテル及びそのォ リゴマー、オルソフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、 テレフタル酸ジグリシジルエステル、 p ォキシ安息香酸ジグリシジルエステル、テトラ ノヽイドロフタル酸ジグリシジルエステル、へキサハイドロフタル酸ジグリシジルエステノレ 、コハク酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、セバシン酸ジグリ シジルエステル、エチレングリコーノレジグリシジノレエーテノレ、プロピレングリコールジグ リシジノレエーテノレ、 1 , 4 ブタンジォーノレジグリシジノレエーテノレ、 1 , 6—へキサンジ オールジグリシジルエーテル及びポリアルキレングリコールジグリシジルエーテル類、 ルォキシベンゼン、ジグリシジルプロピレン尿素、グリセロールトリグリシジルエーテル 、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールトリグリシジルェ 一テル、グリセロールアルキレンオキサイド付加物のトリグリシジルエーテルなどを挙 げること力 Sでさる。 Examples of the polyfunctional epoxy compound include diglycidyl ether of bisphenol 及 び and its oligomer, diglycidyl ether of hydrogenated bisphenol A and its oligomer, orthophthalic acid diglycidyl ester, isophthalic acid diglycidyl ester, terephthalic acid Diglycidyl ester, p-oxybenzoic acid diglycidyl ester, tetrahydrodiphthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, succinic acid diglycidyl ester, adipic acid diglycidyl ester, sebacic acid diglycidyl ester, ethylene glycol Noresigrisidinoatenore, Propylene glycol diglysidinoreatenore, 1, 4 Butanezinoresigrisinoreatenore, 1, 6-hexanediol diglycid Ethers and polyalkylene glycol diglycidyl ethers, The power S can be exemplified by luoxybenzene, diglycidyl propylene urea, glycerol triglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol triglycidyl ether, triglycidyl ether of glycerol alkylene oxide adduct.
[0084] 上記架橋剤としては、アルキル化フエノール類、タレゾール類などのホルムアルデヒ ドとの縮合物のフエノールホルムアルデヒド樹脂;尿素、メラミン、ベンゾグアナミンな どとホルムアルデヒドとの付加物、この付加物と炭素原子数が 1〜6のアルコールから なるアルキルエーテル化合物などのアミノ樹脂等も使用できる。  [0084] Examples of the cross-linking agent include phenol formaldehyde resins which are condensates with formaldehyde such as alkylated phenols and talesols; adducts of urea, melamine, benzoguanamine and the like with formaldehyde, and the adducts and the number of carbon atoms. An amino resin such as an alkyl ether compound composed of 1 to 6 alcohols can also be used.
フエノールホルムアルデヒド樹脂としては、例えば、アルキル化(メチル、ェチル、プ 口ピル、イソプロピル又はブチル)フエノール、 p tert ァミルフエノール、 4, 4 '—se c プ、チリテンフエノーノレ、 p— tert プ、チノレフエノーノレ、 o—、 m—、 p クレゾ一ノレ、 p シクロへキシルフェノール、 4, 4 '—イソプロピリデンフエノール、 p ノユルフェノ 一ノレ、 p ォクチノレフエノーノレ、 3—ペンタデシノレフエノーノレ、フエノーノレ、 フエニノレ o —タレゾール、 p フエユルフェノーノレ、キシレノールなどのフエノール類とホルムアル デヒドとの縮合物を挙げることカできる。  Examples of phenol formaldehyde resins include alkylated (methyl, ethyl, propyl, isopropyl or butyl) phenol, p tert amyl phenol, 4, 4'-se c, chiriten phenol, p- tert propyl. , Cinolefenenore, o—, m—, p cresol mononole, p cyclohexylphenol, 4, 4′-isopropylidene phenol, p nourfeno mononore, p octino enoenore, 3-pentadecino Mention may be made of condensates of phenols and formaldehydes such as lefenore, fenenore, fenenore o —taresole, p huyfenenole, xylenol.
[0085] ァミノ樹脂としては、例えば、メトキシ化メチロール尿素、メトキシ化メチロール N, N エチレン尿素、メトキシ化メチローノレジシアンジアミド、メトキシ化メチロールメラミン 、メトキシ化メチロールべンゾグアナミン、ブトキシ化メチロールメラミン、ブトキシ化メ チロールべンゾグアナミンなどが挙げられるが好ましくはメトキシ化メチロールメラミン [0085] Examples of the amino resin include methoxylated methylol urea, methoxylated methylol N, N ethylene urea, methoxylated methylonoresiandiamide, methoxylated methylol melamine, methoxylated methylol benzoguanamine, butoxylated methylol melamine, butoxylated methyl. Examples include tyrolbenzoguanamine, but preferably methoxylated methylol melamine.
、ブトキシ化メチロールメラミン、及びメチロール化べンゾグアナミンなどを挙げること ができる。 , Butoxylated methylol melamine, methylolated benzoguanamine, and the like.
[0086] 上記樹脂と架橋剤は任意の比率で混合して用いることができる力 S、一般に用いられ ている上記樹脂 100質量部に対し、架橋剤を固形分質量比で 2質量部以上、 50質 量部未満添加してもその効果が発現される力 接着耐久性を付与する場合には 50 質量部以上することが好ましぐより好ましくは 70質量部以上の添加であり、さらに好 ましく 90質量部以上を添加するのが好ましい。架橋剤の添加量が、 2質量部未満添 加の場合、その添加効果が小さい。上限は限定されないが 500質量部である。 [0087] 本発明においては、上記方法以外にも、例えば、前記したポリマーに架橋性の官 能基を導入した自己架橋型の樹脂を用いて架橋高分子層を形成してもよい。 自己架 橋型の樹脂を用いる場合の架橋方法は、例えば、熱架橋であってもよぐ紫外線、電 子線及び Ί線等のような高エネルギーの活性線による架橋であってもよレ、。 [0086] The force S that can be used by mixing the resin and the cross-linking agent in an arbitrary ratio S, the cross-linking agent is 2 parts by mass or more in terms of solid content mass ratio to 100 parts by mass of the resin generally used, 50 Even if added in less than part by mass, the effect is manifested. To provide adhesive durability, it is preferable to add 50 parts by mass or more, more preferably 70 parts by mass or more, and even more preferable. It is preferable to add 90 parts by mass or more. When the addition amount of the crosslinking agent is less than 2 parts by mass, the effect of addition is small. The upper limit is not limited, but is 500 parts by mass. In the present invention, in addition to the above method, for example, a crosslinked polymer layer may be formed using a self-crosslinked resin in which a crosslinkable functional group is introduced into the above-described polymer. In the case of using a self-crosslinking resin, the crosslinking method may be, for example, crosslinking by high-energy active rays such as ultraviolet rays, electron beams, and wire, which may be thermal crosslinking, .
[0088] 以下、自己架橋型の樹脂として、ポリエステルの場合について具体的な方法を例 示する。  [0088] Hereinafter, a specific method for the case of polyester as a self-crosslinking resin will be exemplified.
本発明で好適に使用される自己架橋型のポリエステル樹脂は、疎水性共重合ポリ エステル樹脂に、少なくとも 1種のラジカル重合性二重結合を有する化合物をグラフト させたポリエステル系グラフト共重合体樹脂である。本発明におけるポリエステル系グ ラフト共重合体樹脂の「グラフト化」とは、主鎖である幹ポリマーに、主鎖とは異なる重 合体からなる枝ポリマーを導入することにある。グラフト重合は、通常、疎水性共重合 ポリエステル樹脂を有機溶剤中に溶解させた状態において、ラジカル開始剤を使用 して、少なくとも一種のラジカル重合性モノマーを反応させることにより実施される。疎 水性共重合ポリエステル樹脂とは、本来それ自身で水に溶解しない、本質的に水不 溶性のポリエステル樹脂であるため、水に溶解するポリエステル樹脂をグラフト重合 の際の幹ポリマーとして使用する場合に比べ、耐熱水接着性に優れている。  The self-crosslinking polyester resin preferably used in the present invention is a polyester-based graft copolymer resin obtained by grafting a compound having at least one radical polymerizable double bond to a hydrophobic copolymer polyester resin. is there. The “grafting” of the polyester-based graph copolymer resin in the present invention is to introduce a branched polymer composed of a polymer different from the main chain into the main polymer as the main chain. Graft polymerization is usually carried out by reacting at least one radical polymerizable monomer using a radical initiator in a state where a hydrophobic copolymer polyester resin is dissolved in an organic solvent. A water-phobic copolyester resin is an essentially water-insoluble polyester resin that does not inherently dissolve in water. Therefore, when a polyester resin that dissolves in water is used as the backbone polymer for graft polymerization, Compared to heat-resistant water adhesion.
[0089] 疎水性共重合ポリエステル樹脂は、ジカルボン酸成分 100モル%中、芳香族ジカ ルボン酸が 60〜99. 5モル%、脂肪族ジカルボン酸及び/又は脂環族ジカルボン 酸が 0〜39. 5モル%、ラジカル重合性二重結合を含有するジカルボン酸が 0. 5〜1 0モル%であることが好ましい。より好ましくは、芳香族ジカルボン酸が 68〜98モル %、脂肪族ジカルボン酸及び/又は脂環族ジカルボン酸が 0〜30モル%、重合性 不飽和二重結合を含有するジカルボン酸が 2〜7モル%である。  [0089] The hydrophobic copolyester resin is composed of 60 to 99.5 mol% of aromatic dicarboxylic acid and 0 to 39 of aliphatic dicarboxylic acid and / or alicyclic dicarboxylic acid in 100 mol% of dicarboxylic acid component. The dicarboxylic acid containing 5 mol% and a radical polymerizable double bond is preferably 0.5 to 10 mol%. More preferably, the aromatic dicarboxylic acid is 68 to 98 mol%, the aliphatic dicarboxylic acid and / or the alicyclic dicarboxylic acid is 0 to 30 mol%, and the dicarboxylic acid containing a polymerizable unsaturated double bond is 2 to 7 Mol%.
[0090] 前記芳香族ジカルボン酸が 60モル%以上であり、前記脂肪族ジカルボン酸及び /又は脂環族ジカルボン酸が 39. 5モル%以下である場合には、耐熱水接着性が 良好となる。また、ラジカル重合性二重結合を含有するジカルボン酸を 0. 5モル%以 上用いることで、ポリエステル樹脂に対するラジカル重合性モノマーのグラフト化を効 率よく行うこと力 Sできる。一方、 10モル%以下とすることにより、グラフト化反応の後期 に、反応溶液の粘度が顕著に上昇することを抑制し、反応を均一に進行できるため 好ましい。 [0090] When the aromatic dicarboxylic acid is 60 mol% or more and the aliphatic dicarboxylic acid and / or alicyclic dicarboxylic acid is 39.5 mol% or less, the heat resistant water adhesion is good. . Further, by using 0.5 mol% or more of a dicarboxylic acid containing a radical polymerizable double bond, it is possible to efficiently graft the radical polymerizable monomer onto the polyester resin. On the other hand, by setting it to 10 mol% or less, the viscosity of the reaction solution can be suppressed from increasing significantly in the latter stage of the grafting reaction, and the reaction can proceed uniformly. preferable.
芳香族ジカルボン酸、脂肪族及び/又は脂環族ジカルボン酸は、前記例示の化 合物がいずれも使用可能である。ラジカル重合性二重結合を含有するジカルボン酸 としては、フマル酸、マレイン酸、無水マレイン酸、ィタコン酸、シトラコン酸、等の α、 β 不飽和ジカルボン酸; 2, 5 ノルボルネンジカルボン酸無水物、テトラヒドロ無水 フタル酸等の不飽和二重結合を含有する脂環族ジカルボン酸等を例示することがで きる。これらの重合性不飽和二重結合を含有するジカルボン酸のうち、重合性の点か ら、フマル酸、マレイン酸、 2, 5 ノルボルネンジカルボン酸が好ましい。  As the aromatic dicarboxylic acid, aliphatic and / or alicyclic dicarboxylic acid, any of the compounds exemplified above can be used. Dicarboxylic acids containing radically polymerizable double bonds include fumaric acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, and other α and β unsaturated dicarboxylic acids; 2, 5 norbornene dicarboxylic acid anhydride, tetrahydro Examples thereof include alicyclic dicarboxylic acids containing unsaturated double bonds such as phthalic anhydride. Of these dicarboxylic acids containing a polymerizable unsaturated double bond, fumaric acid, maleic acid and 2,5-norbornene dicarboxylic acid are preferred from the viewpoint of polymerizability.
グリコール成分も、前記例示の化合物がいずれも使用可能である。グリコール成分 は、 2種以上併用しても力、まわない。なかでも、炭素数 2〜; 10の脂肪族グリコール、炭 素数 6〜; 12の脂環族グリコール等が好ましい。  As the glycol component, any of the compounds exemplified above can be used. Even if two or more glycol components are used in combination, they do not work. Of these, aliphatic glycols having 2 to 10 carbon atoms, alicyclic glycols having 6 to 12 carbon atoms, and the like are preferable.
[0091] 前記疎水性共重合ポリエステル樹脂には、 0〜5モル%の 3官能以上のポリカルボ ン酸及び/又はポリオールを共重合することができる。 3官能以上のポリカルボン酸 としては、(無水)トリメリット酸、(無水)ピロメリット酸、(無水)ベンゾフエノンテトラカル ボン酸、トリメシン酸、エチレングリコールビス(アンヒドロトリメリテート)、グリセロールト リス(アンヒドロトリメリテート)等が挙げられる。また、 3官能以上のポリオールとしては、 グリセリン、トリメチロールェタン、トリメチロールプロパン、ペンタエリスリトール等が使 用される。 [0091] The hydrophobic copolyester resin can be copolymerized with 0 to 5 mol% of a trifunctional or higher polycarboxylic acid and / or polyol. Tri- or higher functional polycarboxylic acids include (anhydrous) trimellitic acid, (anhydrous) pyromellitic acid, (anhydrous) benzophenone tetracarboxylic acid, trimesic acid, ethylene glycol bis (anhydrotrimellitate), glycerol And tris (anhydro trimellitate). As the tri- or higher functional polyol, glycerin, trimethylolethane, trimethylolpropane, pentaerythritol and the like are used.
3官能以上のポリカルボン酸及び/又はポリオールは、全酸成分あるいは全グリコ ール成分に対し 0〜5モル0 /0、好ましくは 0〜3モル0 /0の範囲で共重合され、この範囲 であれば重合時のゲル化を抑制することができる。 Trifunctional or more polycarboxylic acids and / or polyols, the total acid component or total glycol component to 0-5 mole 0/0, preferably copolymerized in the range of 0-3 mole 0/0, the range If it is, the gelatinization at the time of superposition | polymerization can be suppressed.
また、疎水性共重合ポリエステル樹脂の重量平均分子量は、接着性の点から下限 が 5, 000であることが好ましい。また、重合時のゲル化等の点で、上限は 50, 000で あることが好ましい。  The lower limit of the weight average molecular weight of the hydrophobic copolyester resin is preferably 5,000 from the viewpoint of adhesiveness. Further, the upper limit is preferably 50,000 from the viewpoint of gelation during polymerization.
[0092] 疎水性共重合ポリエステル樹脂を合成した後は,グラフト重合を行う。グラフト重合 は、疎水性共重合ポリエステル樹脂を有機溶剤中に溶解させた状態において、ラジ カル開始剤を使用して少なくとも一種のラジカル重合性モノマーを反応させることに より行う。なお、グラフト反応終了後の反応生成物は、所望の疎水性共重合ポリエス テル樹脂とラジカル重合性モノマーとのグラフト共重合体の他に、グラフト化を受けな 力、つた疎水性共重合ポリエステル及び疎水性共重合ポリエステル樹脂にグラフトしな 力、つたラジカル重合性モノマーから得られる(共)重合体をも含有して!/、る。本発明に おけるポリエステル系グラフト共重合体とは、上記したポリエステル系グラフト共重合 体だけでなぐこれに加えて、グラフト化を受けなかった疎水性共重合ポリエステル樹 脂、グラフトしなかったラジカル重合性モノマーから得られる(共)重合体及びモノマ 一 (残存モノマー)も含む反応混合物をも包含する。 [0092] After the hydrophobic copolyester resin is synthesized, graft polymerization is performed. Graft polymerization is carried out by reacting at least one radical polymerizable monomer with a radical initiator in a state where the hydrophobic copolyester resin is dissolved in an organic solvent. The reaction product after completion of the graft reaction is a desired hydrophobic copolymer polyester. In addition to the graft copolymer of tellurium resin and radically polymerizable monomer, it can be obtained from the ability to undergo grafting, the ability to graft onto hydrophobic copolyesters and hydrophobic copolyester resins, and the radically polymerizable monomers. It also contains (co) polymers! The polyester-based graft copolymer in the present invention includes not only the above-mentioned polyester-based graft copolymer, but also a hydrophobic copolymerized polyester resin that has not undergone grafting, and a radical polymerizable property that has not been grafted. Also included are reaction mixtures that include (co) polymers obtained from monomers and monomers (residual monomers).
[0093] 本発明にお!/、て、疎水性共重合ポリエステル樹脂にラジカル重合性モノマーをダラ フト重合させた反応物の酸価は、耐熱水接着性の点から、 600eq/106g以上である ことが好ましい。より好ましくは、反応物の酸価は 1200eq/l 06g以上である。反応物 の酸価力 00eq/l 06g未満である場合は、耐熱水接着性が低下する場合がある。 また、本発明の目的に適合する望ましい疎水性共重合ポリエステルとラジカル重合 性モノマーの質量比率は、ポリエステル/ラジカル重合性モノマー = 40/60〜95 /5の範囲が望ましぐより望ましくは 55/45〜93/7、最も望ましくは 60/40〜90 /10の範囲である。 [0093] In the present invention, the acid value of the reaction product obtained by subjecting a radically copolymerizable monomer to the radical copolymerization monomer to be subjected to the radical polymerization monomer is 600 eq / 10 6 g or more from the viewpoint of hot water adhesiveness. It is preferable that More preferably, the acid value of the reactant is 1200 eq / l 0 6 g or more. If the acid value of the reaction product is less than 00 eq / l 0 6 g, the hot water adhesion may decrease. In addition, the mass ratio of the desired hydrophobic copolymerized polyester and the radical polymerizable monomer suitable for the purpose of the present invention is preferably in the range of polyester / radical polymerizable monomer = 40/60 to 95/5, more preferably 55 / It is in the range of 45 to 93/7, most preferably 60/40 to 90/10.
疎水性共重合ポリエステル樹脂の質量比率を 40質量%以上とすることで、ポリエス テルの優れた接着性を発揮することができる。一方、疎水性共重合ポリエステルの質 量比率を 95質量%以下とすることで、耐ブロッキング性を改善するとともに、反応物 の酸価を上記範囲に調整することができる。  By setting the mass ratio of the hydrophobic copolyester resin to 40% by mass or more, excellent adhesiveness of the polyester can be exhibited. On the other hand, when the mass ratio of the hydrophobic copolyester is 95% by mass or less, the blocking resistance can be improved and the acid value of the reaction product can be adjusted to the above range.
[0094] グラフト重合反応物は、有機溶媒の溶液もしくは分散液又は水系溶媒の溶液もしく は分散液の形態になる。特に、水系溶媒の分散液、すなわち、水分散体の形態が、 作業環境、塗布性の点で好ましい。よって、グラフトさせるラジカル重合性モノマーと しては、親水性ラジカル重合性モノマーを必須的に含むラジカル重合性モノマーを 用いることが好ましい。そして、有機溶媒中でグラフト重合した後は、水を添加し、有 機溶媒を留去すれば、水分散体を得ることができる。  [0094] The graft polymerization reaction product is in the form of an organic solvent solution or dispersion, or an aqueous solvent solution or dispersion. In particular, a dispersion of an aqueous solvent, that is, a form of an aqueous dispersion is preferable from the viewpoint of working environment and applicability. Therefore, it is preferable to use a radical polymerizable monomer that essentially contains a hydrophilic radical polymerizable monomer as the radical polymerizable monomer to be grafted. Then, after graft polymerization in an organic solvent, an aqueous dispersion can be obtained by adding water and distilling off the organic solvent.
[0095] 親水性ラジカル重合性モノマーとは、親水基を有するか、後で親水基に変化できる 基を有するラジカル重合性モノマーを意味する。親水基を有するラジカル重合性モノ マーとしては、カルボキシル基、ヒドロキシル基、リン酸基、亜リン酸基、スルホン酸基 、アミド基、第 4級アンモニゥム塩基等を含むラジカル重合性モノマーを挙げることが できる。一方、親水基に変化できる基を有するラジカル重合性モノマーとしては、酸 無水物基、グリシジル基、クロル基等を含むラジカル重合性モノマーを挙げることが できる。これらの中でも、水分散性の点から、カルボキシル基が好ましぐカルボキシ ル基を有するか、カルボキシル基を発生する基を有するラジカル重合性モノマーが 好ましい。 [0095] The hydrophilic radically polymerizable monomer means a radically polymerizable monomer having a hydrophilic group or a group that can be changed to a hydrophilic group later. Examples of the radical polymerizable monomer having a hydrophilic group include a carboxyl group, a hydroxyl group, a phosphoric acid group, a phosphorous acid group, and a sulfonic acid group. And radically polymerizable monomers containing amide groups, quaternary ammonium bases, and the like. On the other hand, examples of the radical polymerizable monomer having a group that can be changed to a hydrophilic group include radical polymerizable monomers containing an acid anhydride group, a glycidyl group, a chloro group, and the like. Among these, from the viewpoint of water dispersibility, a radical polymerizable monomer having a carboxyl group that is preferable for a carboxyl group or a group that generates a carboxyl group is preferable.
[0096] グラフト反応物の酸価を上記好適範囲にするためには、カルボキシル基を含有して V、る力、、カルボキシル基を発生する基を有するラジカル重合性モノマーが含まれてレヽ るほうが好ましい。このようなモノマーとしては、フマル酸、フマル酸モノエチル;マレイ ン酸とその無水物、マレイン酸モノェチル;ィタコン酸とその無水物、ィタコン酸のモノ エステル;アクリル酸、メタクリル酸;及びこれらの塩(ナトリウム塩、カリウム塩、アンモ ニゥム塩)等が挙げられる。好ましくは、マレイン酸無水物である。上記モノマーは 1種 もしくは 2種以上を用いて共重合させることができる。  [0096] In order to bring the acid value of the graft reaction product into the above-mentioned preferable range, it is preferable to include a radical polymerizable monomer containing a carboxyl group and having a V, a strong force, and a group capable of generating a carboxyl group. preferable. Such monomers include fumaric acid, monoethyl fumarate; maleic acid and its anhydride, monoethyl ethyl maleate; itaconic acid and its anhydride, monoester of itaconic acid; acrylic acid, methacrylic acid; and their salts ( Sodium salt, potassium salt, ammonium salt) and the like. Maleic anhydride is preferable. The above monomers can be copolymerized using one kind or two or more kinds.
グラフトさせるラジカル重合性モノマーには、酸価を上記好適範囲にする限りは、他 種のモノマーが含まれていてもよい。他種のモノマーとしては、前記したアクリル系ポ リマーを合成するときに用い得るモノマーがそのまま用い得る。  The radically polymerizable monomer to be grafted may contain other types of monomers as long as the acid value is within the above preferred range. As other types of monomers, the monomers that can be used when synthesizing the acrylic polymer described above can be used as they are.
上記グラフト重合開始剤としては、例えば、当業者に公知の有機過酸化物類や有 機ァゾ化合物類が挙げられる。有機過酸化物としては、例えば、ベンゾィルパーォキ サイド、 t ブチルパーォキシビバレート、有機ァゾ化合物としては、例えば、 2, 2' ァゾビスイソブチロニトリル、 2, 2,ーァゾビス(2, 4 ジメチルバレロニトリル)が挙げ られる。グラフト重合を行うための重合開始剤の使用量は、ラジカル重合性モノマー に対して、少なくとも 0. 2質量%以上、好ましくは 0. 5質量%以上である。  Examples of the graft polymerization initiator include organic peroxides and organic compound compounds known to those skilled in the art. Examples of the organic peroxide include benzoyl peroxide, t-butyl peroxybivalate, and examples of the organic azo compound include 2, 2 ′ azobisisobutyronitrile, 2, 2, and azobis. (2, 4 dimethylvaleronitrile). The amount of the polymerization initiator used for the graft polymerization is at least 0.2% by mass, preferably 0.5% by mass or more, based on the radical polymerizable monomer.
重合開始剤の他に、枝ポリマーの鎖長を調節するための連鎖移動剤、例えば、ォ クチルメルカプタン、メルカプトエタノール、 3— tーブチルー 4ーヒドロキシァ二ソール を必要に応じて用い得る。この場合、重合性モノマーに対して 0〜5質量%の範囲で 添加することが望ましい。  In addition to the polymerization initiator, a chain transfer agent for adjusting the chain length of the branched polymer, for example, octyl mercaptan, mercaptoethanol, 3-tert-butyl-4-hydroxyanisole may be used as necessary. In this case, it is desirable to add in the range of 0 to 5% by mass with respect to the polymerizable monomer.
[0097] グラフト化反応生成物は、塩基性化合物で中和することが好ましぐ中和することに よって容易に水分散化することができる。塩基性化合物としては、塗膜形成時に揮散 する化合物が望ましぐアンモニア、有機アミン類等が好適である。望ましい化合物と しては、例えば、トリエチノレアミン、 N, N—ジェチノレエタノーノレアミン、 N, N—ジメチ ノレエタノールァミン、アミノエタノールアミン、 N—メチルー N, N—ジエタノールァミン 、イソプロピルァミン、イミノビスプロピルァミン、ェチルァミン、ジェチルァミン、 3—ェ トキシプロピルァミン、 3—ジェチルァミノプロピルァミン、 sec—ブチルァミン、プロピ ノレアミン、メチルァミノプロピルァミン、ジメチルァミノプロピルァミン、メチルイミノビス プロピルァミン、 3—メトキシプロピルァミン、モノエタノールァミン、ジエタノールァミン 、トリエタノールアミン等を挙げることができる。 [0097] The grafting reaction product can be easily dispersed in water by neutralization, preferably neutralizing with a basic compound. As a basic compound, it volatilizes during coating film formation. Ammonia, organic amines and the like that are desirable for the compound to be used are suitable. Desirable compounds include, for example, triethinoreamine, N, N-jetinoethanolamine, N, N-dimethylethanolamine, aminoethanolamine, N-methyl-N, N-diethanolamine, Isopropylamine, iminobispropylamine, ethylamine, jetylamine, 3-ethoxypropylamine, 3-jetylaminopropylamine, sec-butylamine, propinoreamine, methylaminopropylamine, dimethylaminopropyl And amine, methyliminobispropylamine, 3-methoxypropylamine, monoethanolamine, diethanolamine, and triethanolamine.
塩基性化合物は、グラフト化反応生成物中に含まれるカルボキシル基含有量に応 じて、少なくとも部分中和又は完全中和によって水分散体の pH値が 5. 0〜9. 0の範 囲であるように使用するのが望ましい。沸点が 100°C以下の塩基性化合物を使用し た場合であれば、乾燥後の塗膜中の残留塩基性化合物も少なぐ例えば、高温、多 湿下等の過酷な環境下における耐熱水接着性が向上する。  In the basic compound, the pH value of the aqueous dispersion is in the range of 5.0 to 9.0 by at least partial neutralization or complete neutralization depending on the carboxyl group content in the grafting reaction product. It is desirable to use it as is. If a basic compound with a boiling point of 100 ° C or less is used, the residual basic compound in the coating film after drying is also low.For example, adhesion to hot water in harsh environments such as high temperature and humidity Improves.
[0098] グラフト化反応生成物では、ラジカル重合性モノマーの重合物の重量平均分子量 «500—50, 000であるのが好ましい。ラジカル重合性モノマーの重合物の重量平 均分子量を 500未満にコントロールすることは一般に困難であり、グラフト効率が低 下し、共重合ポリエステルへの親水性基の付与が充分に行われない傾向がある。ま た、ラジカル重合性モノマーのグラフト重合物は分散粒子の水和層を形成する力 充 分な厚みの水和層をもたせ、安定な水分散体を得るためにはラジカル重合性モノマ 一のグラフト重合物の重量平均分子量は 500以上であることが望ましい。  [0098] In the graft reaction product, the weight average molecular weight of the polymer of the radical polymerizable monomer is preferably 500 to 50,000. In general, it is difficult to control the weight average molecular weight of the polymer of the radical polymerizable monomer to less than 500, the grafting efficiency is lowered, and there is a tendency that hydrophilic groups are not sufficiently imparted to the copolyester. is there. In addition, the graft polymer of the radical polymerizable monomer has a hydration layer with sufficient thickness to form a hydrated layer of dispersed particles, and in order to obtain a stable aqueous dispersion, a radical polymerizable monomer graft is obtained. The weight average molecular weight of the polymer is preferably 500 or more.
ラジカル重合性モノマーのグラフト重合物の重量平均分子量は、溶液重合におけ る重合性の点より、その上限値が 50, 000であることが好ましい。ラジカル重合性モノ マーのグラフト重合物の重量平均分子量を 500〜50, 000の範囲内とするためには 、開始剤量、モノマー滴下時間、重合時間、反応溶媒、モノマー組成、又は必要に 応じて連鎖移動剤や重合禁止剤を適宜組み合わせることにより行うことが好ましい。 グラフト共重合体のガラス転移温度は、特に限定されないが、耐熱水接着性を考慮 すれば、好ましくは 20°C以上、より好ましくは 40°C以上である。  The upper limit of the weight average molecular weight of the graft polymer of the radical polymerizable monomer is preferably 50,000 from the viewpoint of polymerizability in solution polymerization. In order to make the weight average molecular weight of the radical polymerized monomer graft polymer within the range of 500 to 50,000, the amount of initiator, monomer dropping time, polymerization time, reaction solvent, monomer composition, or as required It is preferable to carry out by appropriately combining a chain transfer agent and a polymerization inhibitor. The glass transition temperature of the graft copolymer is not particularly limited, but is preferably 20 ° C. or higher, more preferably 40 ° C. or higher in consideration of hot water adhesion.
[0099] 本発明にお!/、て、疎水性共重合ポリエステル樹脂にラジカル重合性モノマーをダラ フト重合させた反応物は、ポリエステル中のヒドロキシル基と,グラフト部分に存在する カルボキシル基が反応するため、自己架橋性を有する。また、常温では架橋しない 、塗膜形成の際の乾燥時の熱で、熱ラジカルによる水素引き抜き反応等の分子間 反応を行い、架橋剤なしで架橋する。これにより、高度な耐熱水接着性を発揮する。 塗膜の架橋度については、種々の方法で評価できるが、例えば、疎水性共重合ポリ エステル及びグラフトした重合体の両方を溶解するクロ口ホルム溶媒等での不溶分率 を測定する方法等が挙げられる。 [0099] In the present invention, a radically polymerizable monomer is added to the hydrophobic copolyester resin. The polymerized reaction product has a self-crosslinking property because the hydroxyl group in the polyester reacts with the carboxyl group present in the graft portion. In addition, it does not crosslink at room temperature, but undergoes an intermolecular reaction such as a hydrogen abstraction reaction by a thermal radical with the heat during drying when forming a coating film, and crosslinks without a crosslinking agent. As a result, a high degree of heat-resistant water adhesion is exhibited. The degree of crosslinking of the coating film can be evaluated by various methods. For example, there is a method for measuring the insoluble fraction in a chloroform solvent or the like that dissolves both the hydrophobic copolymerized polyester and the grafted polymer. Can be mentioned.
80°C程度で乾燥し、 120°Cで 5分間熱処理して得られる塗膜の不溶分率は、耐熱 水接着性と耐ブロッキング性の点から、 50質量%以上が好ましぐより好ましくは 70 質量%以上である。  The insoluble fraction of the coating film obtained by drying at about 80 ° C and heat-treating at 120 ° C for 5 minutes is more preferably 50% by mass or more from the viewpoint of heat resistant water adhesion and blocking resistance. 70% by mass or more.
自己架橋型ポリエステル樹脂水分散体として、例えば、「バイロナール (登録商標) AGN702」(東洋紡績社製)等の市販のものを用いることもできる。  As the self-crosslinking polyester resin aqueous dispersion, for example, a commercially available product such as “Vylonal (registered trademark) AGN702” (manufactured by Toyobo Co., Ltd.) can be used.
また、上記と類似した方法でグラフト化ポリウレタンを調製することができる。  In addition, a grafted polyurethane can be prepared by a method similar to the above.
[0100] また、上記架橋高分子層中には本発明の効果が損なわれない範囲内で、各種の 添加剤、例えば、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、有機の易 滑剤、顔料、染料、有機又は無機の微粒子、充填剤、帯電防止剤、核剤などが配合 されていてもよい。 [0100] In addition, various additives such as an antioxidant, a heat stabilizer, a weather stabilizer, a UV absorber, an organic absorber, and the like can be added to the crosslinked polymer layer as long as the effects of the present invention are not impaired. Lubricants, pigments, dyes, organic or inorganic fine particles, fillers, antistatic agents, nucleating agents and the like may be blended.
特に、該架橋高分子層中に無機粒子を添加したものは、易滑性ゃ耐ブロッキング 性が向上するので更に好ましい。この場合、添加する無機粒子としては、シリカ、コロ ィダルシリカ、アルミナ、アルミナゾル、カオリン、タルク、マイ力、炭酸カルシウムなど を用いること力 Sできる。用いられる無機粒子は、平均粒径 0. 005〜5 111カ 子ましく、 より好ましく (ま 0· 01〜3 111、最も好ましく (ま 0· 05〜2 111であり、被覆膜中の樹月旨 に対する混合比は特に限定されないが、固形分質量比で 0. 05〜; 10質量部が好ま しぐより好ましくは 0. ;!〜 5質量部である。  In particular, a material obtained by adding inorganic particles to the crosslinked polymer layer is more preferable because it is easy to slip and has improved blocking resistance. In this case, as inorganic particles to be added, silica, colloidal silica, alumina, alumina sol, kaolin, talc, My power, calcium carbonate, etc. can be used. The inorganic particles used have an average particle size of 0.005 to 5 111 particles, more preferably (0 · 01 to 3 111, most preferably (0 · 05 to 2 111). The mixing ratio with respect to the moon is not particularly limited, but the solid content mass ratio is preferably 0.05 to 10 parts by mass, more preferably 0.0 to! To 5 parts by mass.
[0101] 上記架橋高分子層を被覆する方法は限定されず任意であるが、塗布法で実施す る方法が好適である。該方法に於ける塗布液を塗工する段階としては、未延伸フィル ムに塗布し、次いで少なくとも一方向に延伸する方法、縦延伸後に塗布する方法、 配向処理の終了したフィルム表面に塗布する方法など、いずれの方法も可能である 。なかでも、ポリエステル基材フィルムを製造する際、フィルムの結晶配向が完了する 前に塗布し、その後、少なくとも 1方向に延伸した後、ポリエステルフィルムの結晶配 向を完了させる、いわゆるインラインコート法が本発明の効果をより顕著に発現させる こと力 Sできる好まし!/、方法である。 [0101] The method for coating the crosslinked polymer layer is not limited and is arbitrary, but a method carried out by a coating method is preferred. In this method, the coating solution is applied to an unstretched film and then stretched in at least one direction, a method of coating after longitudinal stretching, and a method of coating on the film surface after the orientation treatment. Any method is possible . In particular, when producing a polyester base film, the so-called in-line coating method is used in which the film is applied before the crystal orientation of the film is completed and then stretched in at least one direction and then the crystal orientation of the polyester film is completed. This is a method that can exert the effects of the invention more remarkably!
[0102] 基材フィルムであるポリエステルフィルム上への塗液の塗布方法は、各種の塗布方 法、例えば、リバースコート法、グラビアコート法、ロッドコート法、バーコート法、マイ ヤーバーコート法、ダイコート法、スプレーコート法などを用いることができる。 [0102] The coating liquid can be applied onto the polyester film as the base film by various coating methods such as reverse coating, gravure coating, rod coating, bar coating, myer bar coating, and die coating. Method, spray coating method and the like can be used.
本発明においては、以上のごとく上記架橋高分子層はポリエステルフィルムの少な くとも片面に被覆することは必須であるが、該架橋高分子層をポリエステルフィルムの 両面に被覆する形態がより好ましレヽ実施態様である。該実施態様による効果は後述 する。  In the present invention, as described above, it is essential that the crosslinked polymer layer is coated on at least one side of the polyester film, but a form in which the crosslinked polymer layer is coated on both sides of the polyester film is more preferable. This is an embodiment. The effect of this embodiment will be described later.
[0103] 本発明のゴム ·ポリエステルフィルム積層体は、成型性を維持し、かつゴム層とポリ エステルとの接着強度ゃ該接着強度の耐久性等が改善できる理由は不明である力 S、 本発明のゴム層を積層する場合においては、極僅かの変形領域におけるゴム層とポ リエステルフィルムとの伸長時応力差が小さくすることにより成型時のゴム層とポリエス テルフィルムの界面の歪発生が低減され上記特性が改善されたと推定してレ、る。な お、本発明においては、ポリエステルのゴム層の間には架橋高分子層が存在するの で、上記界面とは、ゴム層と架橋高分子層との界面を意味している。  [0103] The rubber / polyester film laminate of the present invention can maintain the moldability and can improve the adhesive strength between the rubber layer and the polyester. In the case of laminating the rubber layer of the invention, the occurrence of strain at the interface between the rubber layer and the polyester film during molding is reduced by reducing the difference in stress when stretched between the rubber layer and the polyester film in a very small deformation region. It is estimated that the above characteristics have been improved. In the present invention, since a crosslinked polymer layer exists between the polyester rubber layers, the above-mentioned interface means an interface between the rubber layer and the crosslinked polymer layer.
[0104] 上記特性を付与する方法は限定されないが、ポリエステルフィルムの面配向度と架 橋高分子層厚みを前記範囲にするのが好ましい実施態様である。 [0104] The method for imparting the above properties is not limited, but it is a preferred embodiment that the degree of plane orientation of the polyester film and the thickness of the bridge polymer layer are within the above ranges.
本発明のゴム'ポリエステルフィルム積層体は上記方法で得られたゴム積層用被覆 ポリエステルフィルムの架橋高分子層の表面に接着剤を介することなく直接ゴム層を 積層してなることが好ましい。  The rubber / polyester film laminate of the present invention is preferably formed by laminating a rubber layer directly on the surface of a crosslinked polymer layer of a coated polyester film for rubber lamination obtained by the above method without using an adhesive.
上記対応によりポリエステルフィルムとゴム層を貼り合せる接着剤の使用と該貼り合 せ工程が省略できるので経済的に有利となる。また、接着剤層により成型性の低下を 才卬制すること力 Sでさる。  The use of the adhesive for bonding the polyester film and the rubber layer and the bonding step can be omitted by the above-mentioned measures, which is economically advantageous. In addition, the ability S to control the deterioration of moldability by the adhesive layer.
[0105] また、本発明のゴム.ポリエステルフィルム積層体は、ゴム層と被覆ポリエステルフィ ルムとの接着強度が 9N/20mm以上であることが好ましい。 10N/20mm以上がよ り好ましく、 l lN/20mm以上がさらに好ましい。ナイフでゴム層と被覆ポリエステル フィルムの間に切り込みを入れても界面出しが出来ないのが最も好ましい。以下、各 種耐久試験後の接着強度と区別するため、耐久試験前の接着強度を初期接着強度 とも称する。 [0105] The rubber / polyester film laminate of the present invention preferably has an adhesive strength between the rubber layer and the coated polyester film of 9 N / 20 mm or more. 10N / 20mm or more More preferably, l lN / 20 mm or more is more preferable. Most preferably, no interface is produced even if a knife cuts between the rubber layer and the coated polyester film. Hereinafter, in order to distinguish from the adhesive strength after various durability tests, the adhesive strength before the durability test is also referred to as initial adhesive strength.
上記初期接着強度が 9N/20mm未満では、例えば、ゴム 'ポリエステル積層体を 成型体の部材として使用した場合に、成型工程や成型体を使用する場合にゴム層と ゴム積層用被覆ポリエステルフィルムの剥離が起こる場合があるので好ましくない。 なお、本発明においては、ポリエステルフィルムとゴム層の間には架橋高分子層が 存在するので、本発明における接着強度とは、ゴム層と架橋高分子層との剥離強度 あるいはポリエステルフィルムと架橋高分子層との層間剥離強度のどちらかの層間剥 離強度を意味している。  When the initial adhesive strength is less than 9 N / 20 mm, for example, when a rubber 'polyester laminate is used as a member of a molded body, the rubber layer is peeled off from the coated polyester film for rubber lamination when using the molding process or molded body. May occur, which is not preferable. In the present invention, since a cross-linked polymer layer exists between the polyester film and the rubber layer, the adhesive strength in the present invention is the peel strength between the rubber layer and the cross-linked polymer layer or the cross-linked high strength with the polyester film. It means the delamination strength of either the delamination strength with the molecular layer.
[0106] また、本発明のゴム.ポリエステルフィルム積層体は、トルエン浸漬後(25°C、 72時 間間)のポリエステルフィルムとゴム層との接着強度が 8N/20mm以上であることが 好ましい。 9N/20mm以上がより好ましぐ 10N/20mm以上がさらに好ましい。以 下、上記接着強度を耐溶剤接着強度とも称する。また、上記特性を耐溶剤接着耐久 性とも称する。上記耐溶剤接着強度が 8N/20mm未満の場合は、例えば、ゴム'ポ リエステルフィルム積層体表面に印刷や塗装をして装飾を施す場合に、印刷インクや 塗料に含まれる有機溶剤により、ポリエステルフィルムとゴム層との剥離が発生したり 、あるいはポリエステルフィルムとゴム層との接着力の耐久性が低下し、該ゴム.ポリエ ステルフィルム積層体を用いた成型体の耐久性や、該耐久性に対する信頼性が低 下するので好ましくない。 [0106] The rubber / polyester film laminate of the present invention preferably has an adhesive strength of 8N / 20mm or more between the polyester film and the rubber layer after immersion in toluene (25 ° C, 72 hours). 9N / 20mm or more is more preferable 10N / 20mm or more is more preferable. Hereinafter, the adhesive strength is also referred to as solvent-resistant adhesive strength. The above characteristics are also referred to as solvent resistance durability. When the solvent-resistant adhesive strength is less than 8N / 20mm, for example, when printing or painting on the surface of the rubber / polyester film laminate, the polyester film may be coated with an organic solvent contained in printing ink or paint. Or the rubber layer is peeled off, or the durability of the adhesive force between the polyester film and the rubber layer is reduced, and the durability of the molded article using the rubber / polyester film laminate or the durability This is not preferable because reliability is reduced.
[0107] また、本発明のゴム ·ポリエステルフィルム積層体は、下記方法で評価される耐水耐 久処理をした後のポリエステルフィルムとゴム層との接着強度が 8N/20mm以上で あることがより好ましい。 9N/20mm以上であることがさらに好ましぐ 10N/20mm 以上であることが特に好ましい。以下、上記接着強度を耐水接着強度とも称する。ま た、上記特性を耐水接着耐久性とも称する。上記耐水接着強度力 N/20mm未満 の場合は、例えば、 自動車用外板等の耐久性が求められる成型体の構成部材として 用いた場合にゴム'ポリエステルフィルム積層体のポリエステルフィルムとゴム層の間 で剥離が発生すしたり、あるいはポリエステルフィルムとゴム層との接着力の耐久性 が低下し、該ゴム ·ポリエステルフィルム積層体を用いた成型体の耐久性や、該耐久 性に対する信頼性が低下するので好ましくない。 [0107] Further, in the rubber / polyester film laminate of the present invention, it is more preferable that the adhesive strength between the polyester film and the rubber layer after the water-resistant durability treatment evaluated by the following method is 8 N / 20 mm or more. . More preferably, it is 9N / 20mm or more. Particularly preferred is 10N / 20mm or more. Hereinafter, the adhesive strength is also referred to as water-resistant adhesive strength. The above characteristics are also referred to as water-resistant adhesion durability. In the case where the water-resistant adhesive strength is less than N / 20 mm, for example, when used as a constituent member of a molded product that requires durability such as an automobile outer plate, the rubber layer between the polyester film and the rubber layer of the polyester film laminate is used. May cause peeling, or the durability of the adhesive force between the polyester film and the rubber layer will be reduced, and the durability of the molded body using the rubber / polyester film laminate and the reliability of the durability will be reduced. Therefore, it is not preferable.
[0108] 〔耐水接着耐久性〕 [0108] [Water-resistant adhesive durability]
ゴム.ポリエステルフィルム積層体を 50mm X 50mmに切断した測定試料を、蒸留 水 400ccを入れた 500ccの蓋付きの円筒状のガラス容器の中に、上記試料のゴム 層が下側になるように水中に沈め、試料全体が水中に浸漬した状態で容器に蓋をす る。試料の自重だけでは水中に浸漬しない場合は、例えば、 60mm X 60mm,厚さ 188 mのポリエステルフィルムを試料の上に載せて、重しにすればよい。重しの大 きさや素材は特に限定されるものではなぐ試料全体が水中に浸漬すればよい。試 料の入った容器を、 90°Cに設定したギア一オーブン中に入れ、 14日間静置する。熱 処理後、オーブンから容器を取り出し、速やかに試料を取り出して、ゴム'ポリエステ ルフィルム積層体のゴム層とポリエステルフィルムの界面にナイフを入れ、その部分 に指で応力を加えて界面剥離を発生させ、 JIS K6854に準じて T型剥離法で剥離 強度を測定する。  A rubber sample of a polyester film laminate cut to 50 mm x 50 mm is placed in a cylindrical glass container with a lid of 400 cc of distilled water so that the rubber layer of the sample is on the bottom. Cap the container with the entire sample immersed in water. If the sample itself is not immersed in water, for example, a polyester film of 60 mm X 60 mm and a thickness of 188 m may be placed on the sample and weighted. The size and material of the weight are not particularly limited, and the entire sample may be immersed in water. Place the sample container in a gear oven set at 90 ° C and let stand for 14 days. After heat treatment, take out the container from the oven, quickly take out the sample, put a knife at the interface between the rubber layer and the polyester film of the rubber / polyester film laminate, and apply stress to the part with your fingers to cause interface peeling. , Measure peel strength by T-peel method according to JIS K6854.
[0109] 本発明にお!/、ては、上記ゴム層を構成するゴム成分は限定されな!/、。例えば、天 然ゴム(NR)、シリコーンゴム(Q)、エチレンプロピレンジェンゴム(EPDM)、アタリ口 二トリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、アクリルゴム(ACM)、フッ素 ゴム(FKM)等の任意のゴム又はこれらの混合物が挙げられる。  [0109] In the present invention, the rubber component constituting the rubber layer is not limited! /. For example, natural rubber (NR), silicone rubber (Q), ethylene propylene diene rubber (EPDM), atari port nitrile butadiene rubber (NBR), chloroprene rubber (CR), acrylic rubber (ACM), fluorine rubber (FKM) And any rubber or a mixture thereof.
該ゴム成分は使用目的に応じた必要特性により適宜選択される。  The rubber component is appropriately selected depending on the required characteristics according to the purpose of use.
[0110] 本発明においては、前記した各種接着強度を付与する方法は限定されないが、ゴ ム層に接着性改良剤を配合してなることが好ましい。  [0110] In the present invention, the method for imparting the various adhesive strengths described above is not limited, but it is preferable to add an adhesion improver to the rubber layer.
上記接着性改良剤としては、ラジカル反応に対して活性な反応基を含む化合物を 用いるのが好ましい。この化合物としては、アクリル酸誘導体、メタクリル酸誘導体及 びァリル誘導体等が例示されるが、中でも不飽和結合を 2個以上、特に 3個以上有 する誘導体が好ましい。これらの化合物は、ゴムの共架橋剤として広く使用されてお り、多価アルコールのアクリル酸エステルゃメタクリル酸エステル、多価カルボン酸の ァリルエステル、トリアリルイソシァヌレート、トリァリルシアヌレート等が挙げられる。 [0111] 上記多価アルコールのアクリル酸エステルゃメタクリル酸エステルは、 2個以上のァ ルコール性水酸基を有する多価アルコールのアルコール性水酸基 2個以上をアタリ ル酸ゃメタクリル酸でエステル化したエステル化合物であり、例えばエチレングリコー ルジアタリレート、エチレングリコールジメタタリレート、 1 , 3ブタンジオールジアタリレ ート、 1 , 3ブタンジオールジメタタリレート、 1 , 4ブタンジオールアタリレート、 1 , 4ブタ ンジオールメタタリレート、 1 , 6へキサンジオールジアタリレート、 1 , 6へキサンジォー ノレジメタクリレート、ネオペンチノレグリコーノレジアタリレート、ネオペンチノレグリコーノレジ メタタリレート、 2, 2'ビス(4 アタリ口キシジエトキシフエ二ノレ)プロパン、 2, 2'ビス(4 ーメタクリロキシジエトキシフエニル)プロン、グリセリンジメタタリレート、グリセリントリア タリレート、グリセリントリメタタリレート、トリメチロールプロパントリメタタリレート、ペンタ エリスリトールジアタリレート、ペンタエリスリトールジメタタリレート、ペンタエリスリトー ノレトリアタリレート、ペンタエリスリトールトリメタタリレート、ペンタエリスリトールテトラァク リレート、ペンタエリスリトールテトラメタタリレート、テトラメチロールメタンジアタリレート 、テトラメチロールメタンジメタタリレート、テトラメチロールメタントリアタリレート、テトラメ チロールメタントリメタタリレート、テトラメチロールテトラアタリレート、テトラメチロールテ トラメタタリレート、ダイマージオールジアタリレート、ダイマージオールジメタタリレート 等が挙げられ、特に 3個以上のァリル酸エステル又はメタクリル酸エステルを含む化 合物が好ましい。なお、上記の化合物は、アクリル酸及びフタクリル酸のそれぞれの 単独エステル化合物を例示した力 アクリル酸とメタクリル酸の混合エステルの形であ つてもよい。 As the adhesion improver, it is preferable to use a compound containing a reactive group active against radical reaction. Examples of this compound include acrylic acid derivatives, methacrylic acid derivatives, and aryl derivatives, among which derivatives having 2 or more, especially 3 or more unsaturated bonds are preferred. These compounds are widely used as rubber co-crosslinking agents, and examples thereof include acrylic acid esters of polyhydric alcohols, methacrylic acid esters, aryl esters of polyvalent carboxylic acids, triallyl isocyanurate, and triaryl cyanurate. It is done. [0111] The polyhydric alcohol acrylate ester methacrylate ester ester compound obtained by esterifying two or more alcoholic hydroxyl groups of a polyhydric alcohol having two or more alcoholic hydroxyl groups with allylic acid or methacrylic acid. For example, ethylene glycol diatalylate, ethylene glycol dimetatalylate, 1,3-butanediol diatalate, 1,3-butanediol dimetatalylate, 1,4-butanediol acrylate, 1,4-butanediol Metatalylate, 1,6Hexanedioldiatalylate, 1,6Hexanediole nolese methacrylate, Neopentinoreglyconoregiotitalate, Neopentinoreglyconoresimetatalate, 2, 2'bis (4 Atari Diethoxyphenol) propane, 2,2'bis (4-methacrylo) Xydiethoxyphenyl) prone, glycerin dimetatalylate, glycerin trimethalate, glycerin trimetatalylate, trimethylolpropane trimetatalylate, pentaerythritol diatalylate, pentaerythritol dimetatalylate, pentaerythritol noretatriate, penta Erythritol trimetatalylate, pentaerythritol tetraacrylate, pentaerythritol tetrametatalylate, tetramethylol methane diatalylate, tetramethylol methane dimetatalylate, tetramethylol methane tritalylate, tetramethylol methane trimetatalylate, tetramethylol tetra Atalylate, tetramethylol tetrametatalylate, dimer diol ditalylate, Dimerdiol dimetatalylate and the like can be mentioned, and a compound containing 3 or more allylic acid esters or methacrylic acid esters is particularly preferable. The above-mentioned compound may be in the form of a mixed ester of acrylic acid and methacrylic acid, which exemplifies a single ester compound of acrylic acid and phthalacrylic acid.
また、多価カルボン酸のァリルエステルとしては、フタル酸ジァリレート、トリメリット酸 ジァリレート、ピロメリット酸テトラァリレート等が挙げられる。  Examples of the aryl ester of polyvalent carboxylic acid include phthalic acid diarylate, trimellitic acid diarylate, pyromellitic acid tetraarylate and the like.
上記接着性改良剤は、いずれか一種を単独で用いてもよぐまた二種以上を併用 してもよい。また、この発明に用いられる接着改良剤は、上記の例示化合物に限定さ れるものではない。  Any one of these adhesion improvers may be used alone, or two or more thereof may be used in combination. Further, the adhesion improver used in the present invention is not limited to the above exemplified compounds.
[0112] 上記接着性改良剤の配合量は、全ゴム成分 100質量部に対して 0. 2〜20質量部 、好ましくは 0. 5〜; 10質量部であり、 0. 2質量部未満では基材フィルムとの接着強 度が不十分となり、反対に 20質量部を超えると上記接着強度の向上効果が飽和に 達し、かつゴムの物性が低下する。 [0112] The compounding amount of the above-mentioned adhesion improver is 0.2 to 20 parts by mass, preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of all rubber components, and less than 0.2 parts by mass. Adhesive strength with the base film becomes insufficient, and on the contrary, if it exceeds 20 parts by mass, the effect of improving the adhesive strength is saturated. And the physical properties of the rubber are reduced.
また、上記した接着性改良剤による接着性向上効果の発現を促進させるため、ゴム 層に対してパーオキサイド化合物を配合することが好ましい実施態様である。該対応 によりゴムとゴム積層用ポリエステルフィルムとの層間剥離強度が一層向上する。  Moreover, in order to promote the expression of the adhesive improvement effect by the above-described adhesive improver, it is a preferred embodiment that a peroxide compound is added to the rubber layer. By this measure, the delamination strength between the rubber and the polyester film for rubber lamination is further improved.
[0113] パーオキサイド化合物としては、ァシル系又はアルキル系のいずれでもよぐベンゾ ィルパーオキサイド、モノクロルベンゾィルパーオキサイド、 2, 4ジクロルベンゾィル パーオキサイド、 t ブチルタミルパーオキサイド、 2, 5 ジメチルー 2, 5ビス(tーブ チルパーォキシ)へキサン、 1 , 1ージー t ブチルパーォキシ 3, 3, 5—トリメチル シクロへキサン、 1 , 1 ビス t ブチルパーォキシ 3, 3, 5—トリメチルシクロへキ サン、ジー t ブチルパーオキサイド、 t ブチルタミルパーオキサイド等が例示される[0113] Peroxide compounds include benzoyl peroxide, monochloro benzoyl peroxide, 2,4 dichlorobenzoyl peroxide, t-butyltamyl peroxide, 2, 5 Dimethyl-2,5-bis (tert-butylperoxy) hexane, 1,1-di-t-butylperoxy 3,3,5-trimethylcyclohexane, 1,1-bis-t-butylperoxy 3,3,5-trimethylcyclohexane, di t-Butyl peroxide, t-Butyl Tamil peroxide, etc.
Yes
上記パーオキサイド化合物の配合量は、ゴム成分 100質量部に対して 0. 05-10 質量部、特に 1〜8質量部が好ましい。この配合量を 0. 05質量部以上とすることによ り、接着性が向上し、また 10質量部以下であれば上記の促進効果を維持しつつ、ゴ ム及びフィルムの物性低下を招くことはなレ、。  The compounding amount of the peroxide compound is preferably 0.05 to 10 parts by mass, particularly 1 to 8 parts by mass with respect to 100 parts by mass of the rubber component. By making this amount 0.05 or more parts by mass, the adhesiveness is improved, and if it is 10 parts by mass or less, the above-mentioned promotion effect is maintained and the physical properties of rubber and film are lowered. Hanare.
[0114] また、シリコーンゴム以外のゴムを用いる場合には、該ゴム層に未架橋のシリコーン ゴムを配合するのが好ましい。該未架橋のシリコーンゴムは、平均単位式: RaSiO [0114] When a rubber other than silicone rubber is used, it is preferable to blend an uncrosslinked silicone rubber in the rubber layer. The uncrosslinked silicone rubber has an average unit formula: RaSiO
(4- で表されるオルガノポリシロキサンである。上式中、 Rは置換又は非置換の a) /2 一価 炭化水素基であり、例えば、メチル基、ェチル基、プロピル基、ブチル基、ペンチル 基、へキシル基等のアルキル基、ビュル基、ァリル基、ブテュル基、ペンテュル基、 へキセニル基等のアルケニル基、フエニル基、トリノレ基、キシリノレ基、ナフチル基等の ァリール基、シクロペンチル基、シクロへキシル基等のシクロアルキル基、ベンジル基 (It is an organopolysiloxane represented by 4-. In the above formula, R is a substituted or unsubstituted a) / 2 monovalent hydrocarbon group, such as a methyl group, an ethyl group, a propyl group, a butyl group, Alkyl groups such as pentyl group, hexyl group, butyl group, aryl group, butyr group, pentyl group, alkenyl group such as hexenyl group, phenyl group, trinole group, xylinole group, naphthyl group such as aryl group, cyclopentyl group, Cycloalkyl group such as cyclohexyl group, benzyl group
、フエネチル基等のァラルキル基、 3—クロ口プロピル基、 3, 3, 3—トリフルォロプロピ ル基等のハロゲン化アルキル基等が挙げられ、好ましくはメチル基、ビュル基、フエ 二ノレ基、 3, 3, 3 トリフノレ才ロプロピノレ基である。また、上式中、 attl . 9—2. 1の範 囲内の数である。シリコーンゴム成分は、上記の平均単位式で表されるが、これを構 成する具体的なシロキサン単位としては、例えば、 R SiO 単位、 R (HO) SiO , Aralkyl groups such as phenethyl group, halogenated alkyl groups such as 3,3-chloropropyl group, 3,3,3-trifluoropropyl group, etc., preferably methyl group, bur group, phenyl group 3, 3, 3 The trifnore group is a propropore group. Also, in the above formula, it is a number in the range of attl. 9-2. The silicone rubber component is represented by the above average unit formula. Specific examples of the siloxane units constituting the silicone rubber component include R SiO units and R (HO) SiO.
3 1/2 2 1/2 単位、 R SiO 単位、 RSiO 単位及び SiO 単位が挙げられる。 [0115] シリコーンゴム成分の主成分は、 R iO 単位と R SiO 単位もしくは R (HO) 3 1/2 2 1/2 units, R SiO units, RSiO units and SiO units. [0115] The main components of the silicone rubber component are R iO units and R SiO units or R (HO)
2 2/2 3 1/2 2 2 2/2 3 1/2 2
SiO 単位を必須とする直鎖状の重合体であり、場合により少量の RSiO 単位 A linear polymer with an essential SiO unit, sometimes with a small amount of RSiO units
1/2 3/2 及び/又は R SiO 単位を含有して、一部分岐構造を有することができる。また、  It can have a partially branched structure containing 1/2 3/2 and / or R SiO units. Also,
3 1/2  3 1/2
シリコーンゴム成分の一部として R SiO 単位及び SiO 単位からなる樹脂状の  As part of the silicone rubber component, a resinous material consisting of R SiO units and SiO units
3 1/2 4/2  3 1/2 4/2
重合体を配合することができる。このようにシリコーンゴム成分は、二種以上の重合体 の混合物であってもよい。  A polymer can be blended. As described above, the silicone rubber component may be a mixture of two or more kinds of polymers.
[0116] また上記未架橋のシリコーンゴム成分の分子構造は特に限定されず、例えば、直 鎖状、一部分岐を有する直鎖状、分岐鎖状、樹脂状等が挙げられ、シリコーンゴムを 形成するためには、直鎖状の重合体か、又は直鎖状の重合体を主成分とする混合 物である。このようなシリコーンゴム成分としては、例えば、分子鎖両末端トリメチルシ 口キシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖メチル ビュルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖メチルフエ二ルポリシ ロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン'メチルビュル シロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン'メ チルフエニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチル シロキサン'メチル(3, 3, 3—トリフルォロプロピル)シロキサン共重合体、分子鎖両 末端トリメチルシロキシ基封鎖ジメチルシロキサン'メチルビュルシロキサン'メチルフ ェニルシロキサン共重合体、分子鎖両末端ジメチルビ二ルシロキシ基封鎖ジメチルポ リシロキサン、分子鎖両末端ジメチルビ二ルシロキシ基封鎖メチルビ二ルポリシロキサ ン、分子鎖両末端ジメチルビ二ルシロキシ基封鎖メチルフエ二ルポリシロキサン、分 子鎖両末端ジメチルビ二ルシロキシ基封鎖ジメチルシロキサン'メチルビュルシロキ サン共重合体、分子鎖両末端ジメチルビ二ルシロキシ基封鎖ジメチルシロキサン'メ チルフエニルシロキサン共重合体、分子鎖両末端ジメチルビ二ルシロキシ基封鎖ジメ チルシロキサン.メチル(3, 3, 3—トリフルォロプロピル)シロキサン共重合体、分子 鎖両末端ジメチルビ二ルシロキシ基封鎖ジメチルシロキサン'メチルビュルシロキサン •メチルフエニルシロキサン共重合体、分子鎖両末端シラノール基封鎖ジメチルポリ シロキサン、分子鎖両末端シラノール基封鎖メチルビ二ルポリシロキサン、分子鎖両 末端シラノール基封鎖メチルフエ二ルポリシロキサン、分子鎖両末端シラノール基封 鎖ジメチルシロキサン'メチルビュルシロキサン共重合体、分子鎖両末端シラノール 基封鎖ジメチルシロキサン'メチルフエニルシロキサン共重合体、分子鎖両末端シラ ノール基封鎖ジメチルシロキサン'メチル(3, 3, 3—トリフルォロプロピル)シロキサン 共重合体、分子鎖両末端シラノール基封鎖ジメチルシロキサン'メチルビュルシロキ サン'メチルフエニルシロキサン共重合体、分子鎖両末端トリメトキシシロキシ基封鎖 ジメチルポリシロキサン、分子鎖両末端トリメトキシシロキシ基封鎖ジメチルシロキサン 'メチルビニルシロキサン共重合体、分子鎖両末端トリメトキシシロキシ基封鎖ジメチ ルシロキサン'メチルフエニルシロキサン共重合体、分子鎖両末端トリメトキシシロキシ 基封鎖ジメチノレシロキサン'メチノレビニノレシロキサン ·メチノレフエニノレシロキサン共重 合体、 R SiO 単位と SiO 単位からなるオルガノポリシロキサン共重合体、 R S [0116] The molecular structure of the uncrosslinked silicone rubber component is not particularly limited, and examples thereof include a straight chain, a partially branched straight chain, a branched chain, and a resin, which form a silicone rubber. For this purpose, it is a linear polymer or a mixture mainly composed of a linear polymer. Examples of such a silicone rubber component include, for example, molecular chain both ends trimethyl siloxy group-blocked dimethylpolysiloxane, molecular chain both ends trimethylsiloxy group-blocked methylpolypolysiloxane, molecular chain both ends trimethylsiloxy group-blocked methylphenylpolysiloxane. Molecular chain both ends trimethylsiloxy group-capped dimethylsiloxane 'methylbulu siloxane copolymer, molecular chain both ends trimethylsiloxy group-capped dimethylsiloxane' methylphenylsiloxane copolymer, molecular chain both ends trimethylsiloxy group-capped dimethylsiloxane 'methyl (3, 3, 3-trifluoropropyl) siloxane copolymer, both ends of the molecular chain trimethylsiloxy group-blocked dimethylsiloxane 'methylbululsiloxane', methylphenylsiloxane copolymer, both ends of the molecular chain dimethylvinyl Xylen-blocked dimethylpolysiloxane, molecular chain both ends dimethylvinylsiloxy group-blocked methylvinylpolysiloxane, molecular chain both ends dimethylvinylsiloxy group-blocked methylphenylpolysiloxane, molecular chain both ends dimethylvinylsiloxy group-blocked dimethylsiloxane 'methyl Butylsiloxane copolymer, dimethyl siloxane with dimethylvinylsiloxy group-blocked at both ends of the molecular chain, dimethylsiloxane copolymer with dimethylvinylsiloxane at the end of molecular chain, dimethylsiloxane with dimethylvinylsiloxy group-blocked at the molecular chain. Methyl (3, 3, 3-trifluor Polypropylene) siloxane copolymer, molecular chain both ends dimethylvinylsiloxy group-blocked dimethylsiloxane 'methylbululsiloxane • Methylphenylsiloxane copolymer, molecular chain both ends silanol group-blocked dimethylpolysiloxane, molecular chain both ends silanol Methyl vinyl polysiloxane blocked with silanol groups, silanol group blocked with silanol groups at both ends of the molecular chain, silanol groups blocked with molecular chain at both ends Chain-chain dimethylsiloxane 'methylbulusiloxane copolymer, molecular chain both-end silanol-blocked dimethylsiloxane' methylphenylsiloxane copolymer, molecular-chain both-end silanol-blocked dimethylsiloxane 'methyl (3, 3, 3-trifluoro) (Ropropyl) siloxane copolymer, molecular chain both ends silanol-blocked dimethylsiloxane 'methyl bursiloxysan' methylphenylsiloxane copolymer, molecular chain both ends trimethoxysiloxy group blocked dimethylpolysiloxane, molecular chain both ends trimethoxy Siloxy group-capped dimethylsiloxane 'methylvinylsiloxane copolymer, molecular chain both ends trimethoxysiloxy group-capped dimethylsiloxane' methylphenylsiloxane copolymer, molecular chain both ends trimethoxysiloxy group-capped dimethylolsiloxane 'methinolev Ninoreshiro San methylate Roh reflex Eni Norre siloxane co-polymer, organopolysiloxane copolymer composed of R SiO units and SiO units, RS
3 1/2 4/2 2 3 1/2 4/2 2
ΪΟ 単位と RSiO 単位からなるオルガノポリシロキサン共重合体、 R SiO 単オ ル ガ ノ Organopolysiloxane copolymer consisting of units and RSiO units.
2/2 3/2 3 1/2 位と R SiO 単位と RSiO 単位からなるオルガノポリシロキサン共重合体、これAn organopolysiloxane copolymer comprising 2/2 3/2 3 1/2 positions, R SiO units and RSiO units,
2 2/2 3/2 2 2/2 3/2
ら二種以上の混合物が挙げられる。なお、上記シリコーンゴム成分の 25°Cにおける 粘度は、特に限定されないが、実用的には 100センチスト一タス以上、特に 1 , 000 センチスト一タス以上が好ましレ、。  And a mixture of two or more of them. The viscosity of the silicone rubber component at 25 ° C is not particularly limited, but practically it is preferably 100 centistos or more, particularly 1,000 centistes or more.
[0117] 上記未架橋のシリコーンゴムの配合量は、エチレンプロピレン系ゴム 100質量部に 対して 5〜; 100質量部、特に 10〜70質量部が好ましい。上記配合量が 5質量部以 上であれば、接着性向上効果の向上が促進され、反対に 100質量部以下であれば 、上記の促進効果を経済的に維持することができる。なお、シリコーンゴムを配合する ことにより、ゴムの耐熱性も向上する場合がある。  [0117] The blending amount of the uncrosslinked silicone rubber is preferably 5 to 100 parts by mass, particularly 10 to 70 parts by mass with respect to 100 parts by mass of the ethylene propylene rubber. If the blending amount is 5 parts by mass or more, the improvement of the adhesion improving effect is promoted. Conversely, if the blending amount is 100 parts by mass or less, the promoting effect can be economically maintained. In addition, the heat resistance of rubber may be improved by blending silicone rubber.
[0118] また、ゴム層に未架橋のシリコーンゴムを配合する代わりに、ゴム積層用被覆ポリエ ステルとゴム層との間に中間層として接着性改良剤が配合された未架橋のシリコーン ゴム組成物の層を介在させてゴム積層用被覆ポリエステルとゴム層との接着強度を 向上させてもよい。この場合の未架橋のシリコーンゴムは、上記同様のものが使用可 能であり、また接着性改良剤は、前記のゴム層に配合されるものと同様のものが使用 可能である。そして、シリコーンゴムに対する接着性改良剤の配合量は、前記メタタリ ル酸エステルの場合、シリコーンゴム 100質量部に対し 0. 5〜30質量部、特に 1〜2 0質量部が好ましい。 0. 5質量部以上であれば、基材フィルムとの接着強度が良好 で、 30質量部以下であれば、経済的に強度を維持することができる。 [0118] Further, an uncrosslinked silicone rubber composition in which an adhesion improving agent is blended as an intermediate layer between the rubber laminated coating polyester and the rubber layer instead of blending uncrosslinked silicone rubber into the rubber layer. This layer may be interposed to improve the adhesive strength between the rubber laminated coating polyester and the rubber layer. In this case, the uncrosslinked silicone rubber can be the same as described above, and the adhesion improver can be the same as that blended in the rubber layer. And the compounding quantity of the adhesive improvement agent with respect to silicone rubber is 0.5-30 mass parts with respect to 100 mass parts of silicone rubbers in the case of the said metatalic acid ester, Especially 1-20 mass parts is preferable. 0.5 If it is 5 parts by mass or more, the adhesive strength with the base film is good And if it is 30 mass parts or less, intensity | strength can be maintained economically.
上記未架橋のシリコーンゴム層の厚みは、 0. 0005—0. 05mmが好ましい。  The thickness of the uncrosslinked silicone rubber layer is preferably from 0.0005 to 0.05 mm.
なお、必要に応じて補強性充填剤、顔料、染料、老化防止剤、酸化防止剤、離型 剤、難燃剤、チクソトロピー性付与剤、充填剤用分散剤等を配合することができる。ま た、上記の接着性改良剤による接着性向上効果を促進させるための接着性向上促 進剤として、過酸化物を配合することができる。  If necessary, reinforcing fillers, pigments, dyes, antioxidants, antioxidants, mold release agents, flame retardants, thixotropic agents, filler dispersants and the like can be blended. In addition, a peroxide can be blended as an adhesion improvement promoter for promoting the adhesion improvement effect of the above adhesion improver.
[0119] ゴムに上記配合剤を配合する方法は、特に限定されず、例えばゴムコンパウンドを 作製する際に 2本ロール、バンバリ一ミキサー、ドウミキサー(ニーダー)などのゴム練 り機を用いて行ってもよぐまたゴムを溶剤に溶解し、流延法で製膜する場合は、ゴム コンパゥンドを溶媒に溶解して溶液を作製する際、又は溶液にした後の!/、ずれで添 加配合してもよい。 [0119] The method of blending the above-mentioned compounding agent with rubber is not particularly limited. For example, when producing a rubber compound, a rubber kneader such as a two-roll, a Banbury mixer, or a dough mixer (kneader) is used. However, when the rubber is dissolved in a solvent and formed into a film by the casting method, the rubber compound is dissolved in the solvent to prepare a solution, or after addition to the solution, add! May be.
[0120] 本発明においては、上記のゴム.ポリエステルフィルム積層体の製造方法は限定さ れない。例えば、前記したゴム積層用被覆ポリエステルフィルムの架橋高分子層表面 に未架橋のゴム層を積層し、引き続きゴム層を架橋して製造するのが好ましい。該方 法において、ゴム層に上記した接着性改良剤を配合してなることがより好ましい実施 態様である。  [0120] In the present invention, the method for producing the rubber-polyester film laminate is not limited. For example, it is preferable to produce by laminating an uncrosslinked rubber layer on the surface of the crosslinked polymer layer of the coated polyester film for rubber lamination, and subsequently crosslinking the rubber layer. In this method, it is a more preferred embodiment that the above-mentioned adhesion improver is blended in the rubber layer.
上記対応により前記したような特性を有したゴム'ポリエステルフィルム積層体を経 済的に、かつ安定して製造することができる。  By the above measures, a rubber / polyester film laminate having the above-described characteristics can be produced economically and stably.
ゴム積層用被覆ポリエステルにゴム層を積層する方法は任意であり、例えばゴム組 成物を溶媒に溶解した溶液をゴム積層用被覆ポリエステルフィルムの架橋高分子層 表面に塗工、乾燥してゴム層を形成する方法、ゴム積層用被覆ポリエステルフィルム の架橋高分子層表面にゴム組成物を高圧下で押出してゴム層を形成する方法及び カレンダ一法等が挙げられる。液状シリコーンゴムのような液状ゴムを用いる場合は、 溶剤で希釈することなく塗工することができる。  The method of laminating the rubber layer on the rubber lamination-coated polyester is arbitrary. For example, a solution obtained by dissolving a rubber composition in a solvent is coated on the crosslinked polymer layer surface of the rubber lamination-coated polyester film and dried to form a rubber layer. , A method of forming a rubber layer by extruding a rubber composition on the surface of a crosslinked polymer layer of a coated polyester film for rubber lamination under high pressure, and a calendar method. When liquid rubber such as liquid silicone rubber is used, it can be applied without dilution with a solvent.
[0121] 上記製造方法における架橋方法は特に限定されない。例えば、熱架橋であっても よぐ電子線や γ線等のような高エネルギーの活性線による架橋であってもよい。特 に、活性線による方法は、過酸化物等のラジカル発生のための添加物を配合する必 要がなぐこれらの添加物の残渣によるゴム物性の低下がなぐしかも効率的に架橋 でき、生産性が高いので好適である。 [0121] The crosslinking method in the production method is not particularly limited. For example, thermal crosslinking may be used, and crosslinking using high-energy active rays such as electron beams and γ rays may be used. In particular, the actinic radiation method does not require the addition of additives such as peroxides to generate radicals, and the properties of rubber due to the residues of these additives are reduced and the crosslinking is efficiently performed. This is preferable because of high productivity.
[0122] 本発明のゴム.ポリエステルフィルム積層体の使用目的によりゴム層の表面粗さを 種々に変えたい場合がある。このような目的でゴム層の表面粗度を制御する手段とし て、表面粗度の異なるフィルムゃ布帛からなるカバーシートを未架橋状態のゴム層表 面に重ねてカバーシートの表面形態をゴム層表面に転写することが知られている。例 えば、一般のゴムシートの表面に微細な凹凸を付与する手段として、マット加工ゃェ ンボス加工を施したポリエチレンフィルムや塩化ビュルフィルム、又はナイロンタフタ やポリエステルタフタ等のフィラメント織物をカバーシートに用いた目付けが広く行わ れてレ、る。本発明にお!/、ても該方法を適用することができる。 [0122] Depending on the intended use of the rubber.polyester film laminate of the present invention, the surface roughness of the rubber layer may be variously changed. For this purpose, as a means for controlling the surface roughness of the rubber layer, a cover sheet made of a film or a fabric having a different surface roughness is laminated on the surface of the uncrosslinked rubber layer so that the surface form of the cover sheet is the rubber layer. It is known to transfer to the surface. For example, as a means for imparting fine irregularities to the surface of a general rubber sheet, a polyethylene film or a chlorinated bull film with a matte finish or embossed, or a filament fabric such as nylon taffeta or polyester taffeta is used as a cover sheet. The weighting that was done is done widely. This method can be applied to the present invention.
[0123] 上記のカバーシートは、ゴム層の架橋時にその表面に重ねられて架橋終了後に剥 離されるが、前記のようにゴム層にポリエステルフィルムとの間の接着強度を向上させ るための接着性改良剤等が配合されている場合は、架橋後にカバーシートを剥離し ようとしても、ゴム層とカバーシート間の剥離強度も向上しているためカバーシートの 剥離が困難になる場合がある。一方、架橋処理前にカバーシートを剥離すると、ゴム が欠けてカバーシートに付着するという問題がある。  [0123] The cover sheet is superimposed on the surface of the rubber layer at the time of crosslinking, and is peeled off after the crosslinking is completed. As described above, the adhesion for improving the adhesive strength between the rubber layer and the polyester film is performed. When a property improver or the like is blended, even if an attempt is made to peel the cover sheet after cross-linking, the peel strength between the rubber layer and the cover sheet is also improved, so that the cover sheet may be difficult to peel. On the other hand, if the cover sheet is peeled off before the crosslinking treatment, there is a problem that the rubber is chipped and adheres to the cover sheet.
したがって、カバーシートの剥離性を向上させるための表面処理を行うことが好まし い。また、カバーシートとして、ゴム層に対する接着力が低い素材、例えばポリ 4 メチルペンテン 1又はエチレン'メチルメタタリレート共重合体からなるフィルムを用 いてもよい。また、ゴム層を多層化し、ポリエステルフィルムと反対側のゴム層の接着 性改良剤の配合量をポリエステルフィルム側のゴム層よりもカバーシート側で少なく すること力 Sできる。また、架橋を電子線照射で行う場合は、その照射をポリエステルフ イルム側から行うことも一方法であり、この場合はゴム層とポリエステルフィルムの接着 力も向上する点で好ましい。  Therefore, it is preferable to perform a surface treatment for improving the peelability of the cover sheet. Further, as the cover sheet, a material having a low adhesive force to the rubber layer, for example, a film made of poly 4 methyl pentene 1 or ethylene 'methyl metatalylate copolymer may be used. In addition, the rubber layer can be multi-layered and the amount of the adhesion improver on the rubber layer on the side opposite to the polyester film can be reduced on the cover sheet side than on the polyester film side. In addition, when crosslinking is performed by electron beam irradiation, it is also one method to perform the irradiation from the polyester film side, and in this case, it is preferable in terms of improving the adhesive force between the rubber layer and the polyester film.
[0124] 本発明のゴム.ポリエステルフィルム積層体の使用方法は限定されないが、プラス チック成型体の部材として使用するのが好ましレ、一態様である。該使用により得られ たゴム.ポリエステルフィルム積層体とプラスチック成型体との複合体は、 [発明の効 果]にお!/、て記述した各種の効果を活かすことができる。  [0124] The method of using the rubber.polyester film laminate of the present invention is not limited, but it is preferably used as a member of a plastic molded article. The composite of the rubber polyester film laminate and the plastic molded body obtained by the use can utilize various effects described in [Effects of the Invention].
上記プラスチック成型体に用いられる樹脂は、市場要求等により適宜選択され、例 えば、熱可塑性樹脂及び熱硬化性樹脂の硬化物の!/ゝずれもが使用できる。 The resin used for the plastic molding is appropriately selected according to market requirements, etc. For example, it is possible to use a deviation between the thermoplastic resin and the cured product of the thermosetting resin.
[0125] 熱可塑性樹脂としては、市場要求やプラスチック成型体に基材に用いられる樹脂 の種類等により適宜選択すればよい。熱可塑性樹脂としては、例えば、ポリエチレン 、ポリプロピレン等のポリオレフイン、ポリエチレンテレフタレート、ポリプロピレンテレフ タレート、ポリエチレンナフタレート及びポリブチレンテレフタレート等のポリエステル、 ポリアミド、ポリアミドイミド、ポリカーボネート、ポリスノレホン、ポリアセターノレ、ポリフエ 二レンエーテル、ポリフエ二レンスルフイド、ポリアリレート、ポリエーテルイミド、ポリエ 一テルスルホン及びポリエーテルケトン及びこれらのブレンド物ゃァロイ組成物など が挙げられる。 [0125] The thermoplastic resin may be appropriately selected depending on the market demand, the type of resin used for the base material in the plastic molding, and the like. Examples of the thermoplastic resin include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polypropylene terephthalate, polyethylene naphthalate and polybutylene terephthalate, polyamides, polyamideimides, polycarbonates, polysenophones, polyacetanols, polyphenylene ethers, and polyphenylenes. Examples thereof include dirensulfide, polyarylate, polyetherimide, polyethersulfone and polyetherketone, and blends and alloy compositions thereof.
熱硬化性樹脂の具体例としては、不飽和ポリエステル樹脂、ビュルエステル樹脂、 エポキシ樹脂及びフエノール樹脂などが挙げられる力 これらに限定されるものでは ない。  Specific examples of the thermosetting resin include, but are not limited to, an unsaturated polyester resin, a bull ester resin, an epoxy resin, and a phenol resin.
これらの中でも、耐熱性、機械特性とのバランスが優れることから、熱硬化性樹脂の 硬化物を用いることが好ましぐなかでも、耐熱性、機械特性とのバランスが特に優れ 、硬化収縮が小さいという特徴を有することから、エポキシ樹脂を用いることが、さらに 好ましい。  Among these, since the balance between heat resistance and mechanical properties is excellent, even when it is preferable to use a cured product of thermosetting resin, the balance between heat resistance and mechanical properties is particularly excellent and curing shrinkage is small. Therefore, it is more preferable to use an epoxy resin.
[0126] 本発明にお!/、ては、該プラスチック成型体の基材が上記樹脂より選択された樹脂と 繊維とが複合された繊維強化プラスチックであることが好ましレ、。繊維強化プラスチッ クは、繊維による補強効果により成型体の強度や弾性率を上げることができ、軽量化 に繁げることカでさる。  [0126] In the present invention, it is preferable that the base material of the plastic molded body is a fiber reinforced plastic in which a resin selected from the above resins and a fiber are combined. Fiber reinforced plastic can increase the strength and elastic modulus of the molded body due to the reinforcing effect of the fiber, and it can be used for weight reduction.
[0127] 強化繊維の具体例としては、ガラス繊維、炭素繊維、ァラミド繊維、アルミナ繊維及 びボロン繊維などが挙げられる。なかでも、軽量でありながら、高強度、高弾性率であ るという優れた特性を有するため、炭素繊維が好ましく用いられる。  [0127] Specific examples of the reinforcing fiber include glass fiber, carbon fiber, aramid fiber, alumina fiber, and boron fiber. Among these, carbon fibers are preferably used because they have excellent characteristics of high strength and high elastic modulus while being lightweight.
強化繊維としては、短繊維及び長繊維のいずれも用いることができる。機械特性を 重視する場合には、軽量でありながら、高強度、高弾性率であるという優れた特性を 有する繊維強化プラスチックが得られることから、 10cm以上の長さの強化繊維を用 いることが好ましい。成形性を重視する場合には、 10cm以下の長さの強化繊維を用 いることが好ましい。 強化繊維の配列構造の具体例としては、単一方向、 2方向及びランダム方向などが 挙げられる。また、強化繊維の形態の具体例としては、マット、織物及び編み物など 力 S挙げられる。なかでも、軽量でありながら、高強度、高弾性率であるという優れた特 性を有する繊維強化プラスチック成型体が得られることから、単一方向の配列構造の ものを用いることが好ましい。また、取り扱い性に優れることから、織物、編み物の形 態のものを用いることが好ましレ、。 As the reinforcing fibers, both short fibers and long fibers can be used. When emphasizing mechanical properties, fiber reinforced plastics with excellent properties of light weight but high strength and high elastic modulus can be obtained. Therefore, reinforcing fibers with a length of 10 cm or more should be used. preferable. When emphasizing moldability, it is preferable to use reinforcing fibers having a length of 10 cm or less. Specific examples of the reinforcing fiber array structure include a single direction, two directions, and a random direction. Further, specific examples of the form of the reinforcing fiber include force S such as mat, woven fabric and knitted fabric. Among them, it is preferable to use a unidirectional array structure because a fiber-reinforced plastic molding having excellent properties of high strength and high elastic modulus can be obtained while being lightweight. Also, because it is easy to handle, it is preferable to use woven and knitted fabrics.
[0128] 上記プラスチック成型体は、シート状であることが好まし!/、。また、上記プラスチック 成型体は湾曲部分を有してなることが好ましい。該態様により複雑な形状対応が可 能となり、かつ軽量であるという特徴を活力、して電気 ·電子機器部品、 自動車機器部 品、パソコン、 OA機器、 AV機器、携帯電話、電話機、ファクシミリ、家電製品、玩具 用品などの電気'電子機器の部品や筐体等の各種用途にお!/、て好適に使用するこ と力 Sできる。 [0128] The plastic molded body is preferably in the form of a sheet! The plastic molded body preferably has a curved portion. With this feature, it is possible to deal with complex shapes, and it has the advantage of being lightweight, making it an electric / electronic device part, automotive equipment part, personal computer, OA equipment, AV equipment, mobile phone, telephone, facsimile, home appliance. It can be used for various purposes such as parts of electronic and electronic equipment such as products and toy products, and housings.
[0129] 本発明のプラスチック成型体の成型方法は、成型体の構成材料、成型体の形状等 により適宜選択すればよぐ例えば、プレス成型、絞り成型、真空成型等が挙げられ 本発明のゴム.ポリエステルフィルム積層体とプラスチック成型体との複合体の形成 方法としては、例えば、ゴム 'ポリエステルフィルム積層体とプラスチック成型体とを組 み合わせて一体成型をしてもよいし、両者を別々に成型したのちに両者を接着剤や 粘着剤で貼り合せてもよい。前者の方法で、力、つプラスチック成形体として熱硬化性 樹脂を用いて行う場合は、成型工程で熱硬化性樹脂を硬化させても良いし、成型前 後にプレあるいはポスト硬化処理を行ってもよ!/、。  [0129] The molding method of the plastic molded body of the present invention may be selected appropriately depending on the constituent material of the molded body, the shape of the molded body, etc. Examples include press molding, draw molding, vacuum molding, etc. Rubber of the present invention As a method of forming a composite of a polyester film laminate and a plastic molded body, for example, a rubber 'polyester film laminate and a plastic molded body may be combined and integrally molded, or both may be formed separately. After molding, the two may be bonded with an adhesive or adhesive. In the former method, when thermosetting resin is used as a force and plastic molding, the thermosetting resin may be cured in the molding process, or pre- or post-curing treatment may be performed after molding. Yo! /
[0130] 前記したゴム.ポリエステルフィルム積層体を、上記プラスチック成型体の構成材料 として使用する複合体の形態の一つにゴム'ポリエステルフィルム積層体のポリエステ ルフィルム側が最表面となるように成型体の表面に積層して使用する方法がある。該 形態で使用した場合は、ポリエステルフィルムが最表層になるので、上記の成型体表 面の平滑性の悪化による外観不良の発生が抑制される。さらに、本発明のゴム'ポリ エステルフィルム積層体はゴム層が積層されているので、該ゴム層により上記の成型 時等で発生した成型体の歪の緩和ができるので、成型体の成型精度や表面性を向 上させること力 Sできる。さらに、該成型体の使用において成型体に加わる外力をゴム の有する弾性で緩和することができるので、成型体の耐久性を向上させることができ る。また、本発明のゴム'ポリエステルフィルム積層体は前述のごとく成型性に優れて いるので、プラスチック成型体の構成材料として使用した場合に、湾曲部を有する複 雑な形状の成型にも追従できる。 [0130] The rubber. Polyester film laminate is one of the forms of a composite used as a constituent material of the plastic molding, and the molded body is formed so that the polyester film side of the rubber 'polyester film laminate is the outermost surface. There is a method of using it laminated on the surface. When used in this form, since the polyester film is the outermost layer, the appearance defects due to the deterioration of the smoothness of the surface of the molded body are suppressed. Further, since the rubber layer of the present invention is laminated with a rubber layer, the rubber layer can relieve the distortion of the molded body generated at the time of molding as described above. Suitable for surface properties The ability to raise S. Furthermore, since the external force applied to the molded body during use of the molded body can be relaxed by the elasticity of the rubber, the durability of the molded body can be improved. Further, since the rubber / polyester film laminate of the present invention is excellent in moldability as described above, it can follow molding of a complicated shape having a curved portion when used as a constituent material of a plastic molded body.
[0131] さらに、上記した使用形態においては、ゴム'ポリエステルフィルム積層体のポリエス テルフィルム表面に印刷インキ、金属薄膜、無機薄膜及び塗料より選ばれた少なくと も 1種の加飾層を設けてなることが好ましい実施態様である。例えば、印刷インキ、金 属薄膜及び塗料の積層により成型体の装飾ができ、成型体の意匠性を高めることが できる。また、金属薄膜や無機薄膜の積層により成型体基材層への酸素ガスや水蒸 気等の透過が抑制されるので、成型体の耐久性等を向上させることができる。  [0131] Furthermore, in the above-described usage pattern, at least one decorative layer selected from printing ink, metal thin film, inorganic thin film and paint is provided on the surface of the polyester film of the rubber / polyester film laminate. This is a preferred embodiment. For example, a molded body can be decorated by laminating printing ink, metal thin film, and paint, and the design of the molded body can be improved. In addition, the lamination of the metal thin film or the inorganic thin film suppresses permeation of oxygen gas, water vapor and the like to the molded body base layer, so that the durability of the molded body can be improved.
[0132] 本発明において、前記したごとぐ架橋高分子層はポリエステルフィルムの両面に 被覆する形態がより好ましい実施態様である。該構成により、上記のゴム積層用被覆 ポリエステルフィルムのゴム層の反対面に加飾層を積層する際に、加飾層とポリエス テルフィルムとの密着性や密着耐久性を向上させることができる。  [0132] In the present invention, as described above, the cross-linked polymer layer is preferably formed on both sides of the polyester film. With this configuration, the adhesion and adhesion durability between the decorative layer and the polyester film can be improved when the decorative layer is laminated on the opposite surface of the rubber layer of the coated polyester film for rubber lamination.
上記加飾層の積層は、成型体に複合した後に行ってもよいし、ゴム.ポリエステルフ イルム積層体に予め加飾層を積層した後に成型、複合してもよい。  Lamination of the decorative layer may be performed after being combined with the molded body, or may be molded and combined after the decorative layer is previously stacked on the rubber / polyester film laminated body.
[0133] 以上説明したように、本発明のゴム.ポリエステルフィルム積層体を用いることで、従 来の二軸配向ポリエステルフィルムでは成型することが困難であった、成型時の成型 圧力が 10気圧以下の低圧下での真空成型や圧空成型などの成型方法においても、 仕上がり性の良好な成型品を得ることができる。また、これらの成型法は成型コストが 安いので、成型品の製造における経済性において優位である。したがって、これらの 成型法に適用することが本発明のゴム'ポリエステルフィルム積層体の効果を最も有 効に発揮することができる。  [0133] As explained above, by using the rubber polyester film laminate of the present invention, it was difficult to mold with a conventional biaxially oriented polyester film. The molding pressure during molding was 10 atm or less. Also in molding methods such as vacuum molding and pressure molding under low pressure, molded products with good finish can be obtained. In addition, these molding methods are advantageous in terms of economics in the production of molded products because the molding costs are low. Therefore, application of these molding methods can most effectively exert the effects of the rubber / polyester film laminate of the present invention.
[0134] 上記の加飾層の形成方法は限定されない。種々の公知の方法の適用が可能であ る。例えば、加飾層を形成するための印刷方法としては、グラビア印刷、平板印刷、 フレキソ印刷、ドライオフセット印刷、パット印刷、スクリーン印刷などの公知の印刷方 法を製品形状や印刷用途に応じて使用することができる。特に多色刷りや階調表現 を行うには、オフセット印刷やグラビア印刷が適している。 [0134] The method for forming the decorative layer is not limited. Various known methods can be applied. For example, as a printing method for forming a decorative layer, known printing methods such as gravure printing, flat printing, flexographic printing, dry offset printing, pad printing, and screen printing are used depending on the product shape and printing application. can do. Especially multi-color printing and gradation expression For this, offset printing and gravure printing are suitable.
また、加飾層は、印刷層だけでなく金属又は金属酸化物の薄膜層であってもよぐ 更に印刷層と金属又は金属酸化物の薄膜層との組合せからなるものでもよい。金属 又は金属酸化物の薄膜層を形成する方法としては例えば蒸着法、溶射法、及びメッ キ法が挙げられる。蒸着法としては物理蒸着法及び化学蒸着法のいずれも使用でき る。物理蒸着法としては真空蒸着法、スパッタリング、及びイオンプレーティングが例 示される。化学蒸着(CVD)法としては、熱 CVD法、プラズマ CVD法、及び光 CVD 法などが例示される。  The decorative layer may be not only a printed layer but also a metal or metal oxide thin film layer, and may be a combination of a printed layer and a metal or metal oxide thin film layer. Examples of methods for forming a metal or metal oxide thin film layer include vapor deposition, thermal spraying, and plating. As a vapor deposition method, either a physical vapor deposition method or a chemical vapor deposition method can be used. Examples of physical vapor deposition include vacuum vapor deposition, sputtering, and ion plating. Examples of the chemical vapor deposition (CVD) method include a thermal CVD method, a plasma CVD method, and a photo CVD method.
[0135] 溶射法としては大気圧プラズマ溶射法、及び減圧プラズマ溶射法などが例示され る。メツキ法としては、無電解メツキ (化学メツキ)法、溶融メツキ及び電気メツキ法など が挙げられ、電気メツキ法においてはレーザーメツキ法を使用することができる。上記 の中でも蒸着法及びメツキ法が金属層を形成する上で好ましぐ蒸着法が金属酸化 物層を形成する上で好ましレ、。また蒸着法及びメツキ法は組み合わせて使用すること ができる。  [0135] Examples of the thermal spraying method include an atmospheric pressure plasma spraying method and a low pressure plasma spraying method. Examples of the plating method include an electroless plating method (chemical plating method), a melting plating method, and an electrical plating method. In the electrical plating method, a laser plating method can be used. Among the above, the vapor deposition method and the plating method are preferred for forming the metal layer, and the vapor deposition method is preferred for forming the metal oxide layer. Also, the vapor deposition method and the plating method can be used in combination.
蒸着法の金属としては、アルミニウム、クロム、銀及び金及びこれらの併用系が用い られる。複雑な形状に成型される場合があるので、該金属層を形成する金属は延展 性の優れたものであることが好ましい。例えば、アルミニウム金属の場合、インジウム 等の金属を配合したものが好ましレ、。  As the metal for the vapor deposition method, aluminum, chromium, silver, gold, and a combination thereof are used. Since the metal may be formed into a complicated shape, it is preferable that the metal forming the metal layer has excellent extensibility. For example, in the case of aluminum metal, it is preferable to mix a metal such as indium.
[0136] また、部分的に金属又は金属酸化物の薄膜層を形成する加飾方法を用いる場合 には、該薄膜層を必要としない部分に溶剤可溶性樹脂層を形成した後、その上の全 面に薄膜層を形成し、溶剤洗浄を行って、溶剤可溶性樹脂層と共に不要な金属薄 膜を除去する方法がある。この場合によく用いる溶剤は、水又は水溶液である。また 、別の加飾方法としては、全面的に力、かる薄膜を形成し、次に該薄膜を残しておきた い部分にレジスト層を形成し、酸又はアルカリでエッチングを行い、レジスト層を除去 する方法が挙げられる。  [0136] Also, in the case of using a decoration method in which a metal or metal oxide thin film layer is partially formed, after a solvent-soluble resin layer is formed in a portion that does not require the thin film layer, the entire upper layer is formed. There is a method in which a thin film layer is formed on the surface, solvent cleaning is performed, and unnecessary metal thin film is removed together with the solvent-soluble resin layer. The solvent often used in this case is water or an aqueous solution. As another decoration method, a thin film is formed on the entire surface, and then a resist layer is formed on a portion where the thin film is to be left, and etching is performed with an acid or an alkali. The method of removing is mentioned.
[0137] 上記の延展性は、前記の印刷インキを用いる場合にも要求される特性である。従つ て、印刷インキを構成するバインダー樹脂としては、ポリウレタン樹脂等の柔軟な樹脂 を主成分として用いることが好ましレ、。 上記の加飾層の形成は、プラスチック成型体を作製してから行ってもよい。 [0137] The spreadability is a characteristic required even when the above printing ink is used. Therefore, it is preferable to use a flexible resin such as polyurethane resin as the main component of the binder resin that constitutes the printing ink. You may perform formation of said decoration layer, after producing a plastic molding.
前記したゴム'ポリエステルフィルム積層体を、上記プラスチック成型体の構成材料 として使用する形態の一つにゴム'ポリエステルフィルム積層体をプラスチック成型体 の中間層として使用する方法が挙げられる。該形態で使用した場合は、上記のブラ スチック成型体の最表層になるように使用した場合の効果の一つである加飾層を設 けることの効用以外については、上記使用と同様に発現することができる。  One of the forms in which the rubber / polyester film laminate described above is used as a constituent material of the plastic molded body is a method of using the rubber / polyester film laminated body as an intermediate layer of the plastic molded body. When used in this form, other than the effect of providing a decorative layer, which is one of the effects when used to become the outermost layer of the above-mentioned plastic molded body, it is expressed in the same manner as the above-mentioned use. can do.
[0138] 本発明のゴム.ポリエステルフィルム積層体は、上記したごとくプラスチック成型体の 部材として好適に使用することができる力 S、これに限定されない。例えば、ゴム'ポリエ ステルフィルム積層体自体での使用や他の素材と複合した形での使用もできる。ゴム 'ポリエステルフィルム積層体のゴム層の有するクッション性、緩衝性及びグリップ性 を活力もて、各種機器や装置のシール材、クッション材及び表皮材等としても好適に 使用すること力できる。特に、上記したごとぐ本発明のゴム'ポリエステルフィルム積 層体は、ポリエステルフィルムとゴム層との接着性や接着耐久性に優れているので、 上記用途にお!/、て接着性や接着耐久性の要求の厳しレ、用途にお!/、て特に好適に 使用可能である。 [0138] The rubber polyester film laminate of the present invention is not limited to the force S that can be suitably used as a member of a plastic molded body as described above. For example, it can be used in a rubber / polyester film laminate itself or in a form combined with other materials. Rubber 'Cushioning, cushioning and gripping properties of the rubber layer of the polyester film laminate can be used as a sealing material, cushioning material and skin material for various devices and devices. In particular, as described above, the rubber 'polyester film laminate of the present invention is excellent in adhesion and durability between the polyester film and the rubber layer. It can be used particularly suitably for applications with strict requirements on properties.
[0139] 本発明においては、上記のごとくプラスチック成型体の構成材料として用いる場合 において、ゴム.ポリエステルフィルム積層体のゴム層とプラスチック成型体の基材プ ラスチック材料との接着性を向上させるために、ゴム.ポリエステルフィルム積層体の ゴム表面をプラズマやコロナ等の活性線で表面処理を行ってもよい。また、該ゴム層 表面に未架橋のゴム層を積層しても良い。  [0139] In the present invention, when used as a constituent material of a plastic molded body as described above, in order to improve the adhesion between the rubber layer of the rubber polyester film laminate and the base plastic material of the plastic molded body, The rubber surface of the rubber polyester film laminate may be subjected to surface treatment with active rays such as plasma or corona. Further, an uncrosslinked rubber layer may be laminated on the surface of the rubber layer.
実施例  Example
[0140] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、もとより下記 実施例によって制限を受けるものではなぐ本発明の趣旨に適合し得る範囲で適宜 変更を加えて実施することも可能であり、それらは、いずれも本発明の技術的範囲に p¾よれ 。  [0140] Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, but is appropriately modified within a range that can meet the gist of the present invention. It is also possible to implement them, and all of them are within the technical scope of the present invention.
尚、本明細書中で採用した測定、評価方法は次の通りである。  The measurement and evaluation methods employed in this specification are as follows.
[0141] ( 1 )フイノレムの厚み  [0141] (1) Thickness of Finolem
ミリトロンを用い、 1枚当たり 5点、計 3枚の 15点を測定し、その平均値を求めた。 (2)面配向度(Δ Ρ) Using Millitron, we measured 5 points per sheet, a total of 15 points, and calculated the average value. (2) Degree of plane orientation (Δ Ρ)
ポリエステルフィルムをナトリウム D線 (波長 589nm)を光源として、アッベ屈折計を 用いて、フィルムの長手方向の屈折率(Nz)、幅方向の屈折率(Ny)、厚み方向の屈 折率 (Nz)を測定し下記式から面配向度( Δ P)を算出した。  Polyester film with sodium D-line (wavelength 589nm) as light source and Abbe refractometer, the refractive index in the longitudinal direction of the film (Nz), the refractive index in the width direction (Ny), the refractive index in the thickness direction (Nz) And the degree of plane orientation (ΔP) was calculated from the following formula.
Δ Ρ = ( (Nx + Ny) /2) - Nz  Δ Ρ = ((Nx + Ny) / 2)-Nz
[0142] (3) 10%伸張時応力 [0142] (3) Stress at 10% elongation
架橋高分子層を有するポリエステルフィルムの長手方向及び幅方向に対して、そ れぞれ長さ 18 Omm及び幅 10mmの短冊状に試料を片刃力ミソリで切り出した。次!/、 で、引張試験機 (東洋精機株式会社製)を用いて短冊状試料を引っ張り、得られた 荷重 歪曲線から各方向の 10 %伸張時応力(MPa)及び破断伸度(% )を求めた。 なお、測定は 25°Cの雰囲気下で、初期長 40mm、チャック間距離 100mm、クロス ヘッドスピード 100mm/min、記録計のチャートスピード 200mm/min、ロードセ ル 25kgfの条件にて行った。なお、この測定は 10回行い平均値を用いた。  A sample was cut with a single-blade force razor into strips having a length of 18 Omm and a width of 10 mm, respectively, in the longitudinal direction and the width direction of the polyester film having a crosslinked polymer layer. Next! /, Pull a strip sample using a tensile tester (Toyo Seiki Co., Ltd.), and from the obtained load strain curve, 10% elongation stress (MPa) and elongation at break (%) in each direction Asked. Measurements were made in an atmosphere of 25 ° C, with an initial length of 40 mm, a chuck-to-chuck distance of 100 mm, a crosshead speed of 100 mm / min, a recorder chart speed of 200 mm / min, and a load cell of 25 kgf. This measurement was performed 10 times and the average value was used.
[0143] (4)初期接着強度 [0143] (4) Initial bond strength
ゴム.ポリエステルフィルム積層体のゴム層とポリエステルフィルムの界面にナイフを 入れ、その部分に指で応力を加えて界面剥離を発生させ、 JIS K6854に準じて T 型剥離法で剥離強度を測定した。  A knife was inserted at the interface between the rubber layer and the polyester film of the rubber / polyester film laminate, and stress was applied to the part with a finger to cause interface peeling. The peel strength was measured by the T-type peeling method according to JIS K6854.
(5)耐溶剤接着強度  (5) Solvent resistant adhesive strength
ゴム.ポリエステルフィルム積層体を 50mm X 50mmに切断した測定試料を、トルェ ン 400ccを入れた 500ccの蓋付きの円筒状のガラス容器の中に、上記試料のゴム層 が下側になるようにトルエン中に沈め、試料全体がトルエン中に浸漬した状態で容器 に蓋をする。試料の自重だけではトルエン中に浸漬しない場合は、例えば、 60mm X 60mm、厚さ 188 mのポリエステルフィルムを試料の上に載せて、重しにすれば よい。重しの大きさや素材は特に限定されるものではなぐ試料全体がトルエン中に 浸漬すればよい。試料の入った容器を、 25°Cで 72時間静置する。静置後、速やか に試料を容器力 取り出しトルエンを拭き取り、上記方法で層間剥離強度を測定した  Rubber Sample of a polyester film laminate cut to 50 mm x 50 mm is placed in a 500 cc lidded cylindrical glass container with 400 cc of toluene so that the rubber layer of the sample is on the bottom. Cap the container with the entire sample immersed in toluene. If the sample is not immersed in toluene by its own weight alone, for example, a polyester film of 60 mm x 60 mm and a thickness of 188 m may be placed on the sample to make it weight. The size and material of the weight are not particularly limited, and the entire sample may be immersed in toluene. Leave the container with the sample at 25 ° C for 72 hours. After standing, quickly remove the sample from the container, wipe off the toluene, and measure the delamination strength by the above method.
[0144] (6)耐水接着強度 ゴム.ポリエステルフィルム積層体を 50mm X 50mmに切断した測定試料を、蒸留 水 400ccを入れた 500ccの蓋付きの円筒状のガラス容器の中に、上記試料のゴム 層が下側になるように水中に沈め、試料全体が水中に浸漬した状態で容器に蓋をし た。試料の自重だけでは水中に浸漬しない場合は、例えば、 60mm X 60mm,厚さ 188 mのポリエステルフィルムを試料の上に載せて、重しにすればよい。重しの大 きさや素材は特に限定されるものではなぐ試料全体が水中に浸漬すればよい。試 料の入った容器を、 90°Cに設定したギア一オーブン中に入れ、 14日間静置する。熱 処理後、オーブンから容器を取り出し、速やかに試料を取り出して、ゴム'ポリエステ ルフィルム積層体のゴム層とポリエステルフィルムの界面にナイフを入れ、その部分 に指で応力を加えて界面剥離を発生させ、 JIS K6854に準じて T型剥離法で剥離 強度を測定した。 [0144] (6) Water-resistant adhesive strength A rubber sample of a polyester film laminate cut to 50 mm x 50 mm is placed in a cylindrical glass container with a lid of 400 cc of distilled water so that the rubber layer of the sample is on the bottom. The container was covered with the sample immersed in water. If the sample itself is not immersed in water, for example, a polyester film of 60 mm X 60 mm and a thickness of 188 m may be placed on the sample and weighted. The size and material of the weight are not particularly limited, and the entire sample may be immersed in water. Place the sample container in a gear oven set at 90 ° C and let stand for 14 days. After heat treatment, take out the container from the oven, quickly take out the sample, put a knife at the interface between the rubber layer and the polyester film of the rubber / polyester film laminate, and apply stress to the part with your fingers to cause interface peeling. The peel strength was measured by the T-type peel method according to JIS K6854.
(7)成型性 (7) Formability
(a)金型成型性  (a) Mold formability
ゴム.ポリエステルフィルム積層体に印刷を施した後、 100〜; 140°Cに加熱した熱板 で 4秒間接触加熱後、金型温度 30〜70°C、保圧時間 5秒にてプレス成型を行った。 なお、加熱条件は各フィルムに対し、上記範囲内で最適条件を選択した。金型の形 状はカップ型で、開口部は直径が 50mmであり、底面部は直径が 40mmで、深さが 30mmであり、全てのコーナーは直径 0. 5mmの湾曲をつけたものを用いた。  After printing on a rubber polyester film laminate, contact heating with a hot plate heated to 100 to 140 ° C for 4 seconds, followed by press molding at a mold temperature of 30 to 70 ° C and a holding time of 5 seconds went. In addition, the heating conditions selected the optimal conditions within the said range with respect to each film. The mold is cup-shaped, the opening has a diameter of 50 mm, the bottom has a diameter of 40 mm, a depth of 30 mm, and all corners are curved with a diameter of 0.5 mm. It was.
最適条件下で金型成型した成型品 5個について成型性及び仕上がり性を評価し、 下記基準にてランク付けをした。なお、◎及び〇を合格とし、 Xを不合格とした。  The moldability and finish of five molded products that were molded under optimal conditions were evaluated and ranked according to the following criteria. In addition, ◎ and ○ were accepted and X was rejected.
◎ : (i)成型品に破れがなぐ  ◎: (i) The molded product is not torn
(ii)角の曲率半径が lmm以下で、かつ印刷ずれが 0. 1mm以下であり、 (ii) corner radius of curvature is lmm or less and printing deviation is 0.1mm or less,
(iii)さらに Xに該当する外観不良がないもの (iii) Further, there is no appearance defect corresponding to X
〇:(i)成型品に破れがなぐ  ○: (i) The molded product is not torn
(ii)角の曲率半径が lmmを超え 1. 5mm以下、又は印刷ずれが 0. 1  (ii) Corner radius of curvature exceeds lmm, 1.5mm or less, or print misalignment is 0.1
mmを超え 0· 2mm以 で、  over 0 mm and over 0.2 mm
(iii)さらに Xに該当する外観不良がなぐ実用上問題な!/、レベルのもの X:成型品に破れがあるもの、又は破れがなくとも以下の項目(i)〜(iv)の いずれかに該当するもの (iii) Furthermore, there is no practical problem with appearance defects corresponding to X! /, level X: Even if the molded product is broken or not broken, the following items (i) to (iv) Applicable to either
(i)角の曲率半径が 1. 5mmを超えるもの  (i) Corner radius of curvature exceeds 1.5mm
(ii)大きな皺が入り外観が悪!/、もの  (ii) Big folds and bad appearance! /
(iii)フィルムが白化し透明性が低下したもの  (iii) The film is whitened and the transparency is lowered
(iv)印刷のずれが 0· 2mmを超えるもの  (iv) Print misalignment exceeding 0.2 mm
[0146] (b)真空成型性 [0146] (b) Vacuum formability
ゴム'ポリエステルフィルム積層体に 5mm四方のマス目印刷を施した後、 500°Cに 加熱した赤外線ヒーターでフィルムを 10〜; 15秒加熱した後、金型温度 30〜; 100°C で真空成型を行った。なお、加熱条件は各フィルムに対し、上記範囲内で最適条件 を選択した。金型の形状はカップ型で、開口部は直径が 50mmであり、底面部は直 径が 40mmで、深さが 50mmであり、全てのコーナーは直径 0. 5mmの湾曲をつけ たものを用いた。  After printing 5mm squares on rubber and polyester film laminate, heat the film with an infrared heater heated to 500 ° C for 10 to 15 seconds, then mold at a mold temperature of 30 to 100 ° C for vacuum forming Went. The heating conditions were selected for each film within the above range. The mold is cup-shaped, the opening is 50 mm in diameter, the bottom is 40 mm in diameter and 50 mm in depth, and all corners are curved with a diameter of 0.5 mm. It was.
最適条件下で真空成型した成型品 5個について成型性及び仕上がり性を評価し、 下記基準にてランク付けを行った。なお、◎及び〇を合格とし、 Xを不合格とした。  Five molds that were vacuum-molded under optimum conditions were evaluated for moldability and finish, and ranked according to the following criteria. In addition, ◎ and ○ were accepted and X was rejected.
◎ : (i)成型品に破れがなぐ  ◎: (i) The molded product is not torn
(ii)角の曲率半径が lmm以下で、かつ印刷ずれが 0. 1mm以下であり、 (ii) corner radius of curvature is lmm or less and printing deviation is 0.1mm or less,
(iii)さらに Xに該当する外観不良がないもの (iii) Further, there is no appearance defect corresponding to X
〇:(i)成型品に破れがなぐ  ○: (i) The molded product is not torn
(ii)角の曲率半径が lmmを超え 1. 5mm以下、又は印刷ずれが 0. 1  (ii) Corner radius of curvature exceeds lmm, 1.5mm or less, or print misalignment is 0.1
mmを超え 0· 2mm以,で、  over 0 mm and over 0.2 mm
(iii)さらに Xに該当する外観不良がなぐ実用上問題な!/、レベルのもの X:成型品に破れがあるもの、又は破れがなくとも以下の項目(i)〜(iv)の いずれかに該当するもの  (iii) In addition, there is no practical problem with the appearance defect corresponding to X! /, level X: Any of the following items (i) to (iv) even if the molded product is torn or not torn Applicable to
(i)角の曲率半径が 1. 5mmを超えるもの  (i) Corner radius of curvature exceeds 1.5mm
(ii)大きな皺が入り外観が悪!/、もの  (ii) Big folds and bad appearance! /
(iii)フィルムが白化し透明性が低下したもの  (iii) The film is whitened and the transparency is lowered
(iv)印刷のずれが 0· 2mmを超えるもの  (iv) Print misalignment exceeding 0.2 mm
[0147] (8)耐溶剤性 25°Cに調温したトルエンに試料を 30分間浸漬し、浸漬前後の外観変化につ!/、て 下記の基準で判定し、〇を合格とした。なお、ヘーズ値は前記の方法で測定した。 [0147] (8) Solvent resistance The sample was immersed in toluene adjusted to 25 ° C for 30 minutes, and the appearance change before and after immersion was judged based on the following criteria. The haze value was measured by the method described above.
〇:外観変化がほとんど無ぐヘーズ値の変化が 1 %未満  ○: Change in haze value with almost no change in appearance is less than 1%
X:外観変化が認められる、あるいは^ ^一ズ値の変化が 1 %以上  X: Appearance change is recognized, or ^^ 1s value change is 1% or more
[0148] (9)インキ密着力 [0148] (9) Ink adhesion
JIS— K5400の 8. 5. 1記載の碁盤目評価方法に準拠し、ゴム'ポリエステルフィル ム積層体のポリエステルフィルム表面のインク密着力を評価した。具体的には、ゴム. ポリエステルフィルム積層体のポリエステルフィルム表面に下記インキを印刷後、クロ スカットガイドを用 V、て lmmマス目を印刷面にカッター刃で 100個作成した後、粘着 テープ (ニチバン社製、商品名セロハンテープ)を印刷面に貼り付け、エアーが残ら ないように完全に付着させた。次いで、粘着テープを垂直に剥離した後、印刷面のマ ス目部分の残存数を密着力(残存数/ 100個)として評価し、 80個/ 100個以上を 〇、それ未満を Xとして判定した。  In accordance with the cross-cut evaluation method described in 8.5.1 of JIS-K5400, the ink adhesion strength of the polyester film surface of the rubber / polyester film laminate was evaluated. Specifically, after printing the following ink on the polyester film surface of the polyester film laminate, using a cross-cut guide V and lmm squares with a cutter blade on the printing surface, create 100 adhesive tapes (Nichiban) Company name, cellophane tape) was affixed to the printed surface and adhered completely so that no air remained. Next, after peeling off the adhesive tape vertically, the number of remaining portions on the printed surface is evaluated as adhesion (remaining number / 100), and 80/100 or more is judged as ◯, and less than it is judged as X. did.
UV硬化型インキ(東華色素社製、ベストキュア一 161)を用い、ゴム.ポリエステル フィルム積層体のポリエステルフィルム表面に RIテスターで印刷後 lOOmJの UVを照 射し、上記方法に従って評価した。  Using UV curable ink (manufactured by Toka Dye Co., Ltd., Best Cure No. 161), the polyester film surface of the rubber polyester film laminate was printed with an RI tester, and then irradiated with lOOmJ UV, and evaluated according to the above method.
[0149] (実施例 1) [Example 1]
〔ゴム積層用被覆ポリエステルフィルム〕  [Coated polyester film for rubber lamination]
平均粒子径(SEM法)が 1. 5 mの無定形シリカを 0. 04質量%を含むポリェチレ ンテレフタレート(固有粘度 0. 65dl/g)ペレットを十分に真空乾燥した後、 280°Cの 加熱された押し出し機に供給し、 T字型口金よりシート状に押し出し、静電印加キャス ト法を用いて表面温度 30°Cの鏡面キャスティングドラムに巻き付けて冷却固化せしめ た。この未延伸フィルムを 105°Cの加熱ロール群を通過させながら、長手方向に 3. 0 倍延伸し、一軸配向フィルムとした。このフィルムの両面にコロナ放電処理を施し、そ の両処理面に以下に示す塗布液を塗布した。塗布された一軸延伸フィルムをクリップ で把持しながら予熱ゾーンに導き、 110°Cで乾燥後、引続き連続的に 125°Cの加熱 ゾーンで幅方向に 3. 2倍延伸し、更に 195°Cにて、幅方向に 6%の弛緩、 6秒間の 熱処理を行い、両面にそれぞれ 0. 15 mの架橋高分子層が被覆された厚さ 100 mのゴム積層用被覆ポリエステルフィルムを得た。 Polyethylene terephthalate (inherent viscosity 0.665 dl / g) pellets containing 0.04% by mass of amorphous silica with an average particle size (SEM method) of 1.5 m are fully vacuum dried and heated to 280 ° C. The sheet was fed into the extruder, extruded in a sheet form from a T-shaped base, and wound around a mirror-casting drum with a surface temperature of 30 ° C using the electrostatic application casting method, and solidified by cooling. The unstretched film was stretched 3.0 times in the longitudinal direction while passing through a 105 ° C. heated roll group to obtain a uniaxially oriented film. Both sides of this film were subjected to corona discharge treatment, and the following coating solutions were applied to both treatment surfaces. The coated uniaxially stretched film is guided to the preheating zone while being gripped with a clip, dried at 110 ° C, continuously stretched 3.2 times in the width direction in the heating zone of 125 ° C, and further to 195 ° C The thickness of the cross-linked polymer layer was 0.15 m on each side, with 6% relaxation in the width direction and heat treatment for 6 seconds. m, a polyester film for rubber lamination was obtained.
[0150] 〔塗布液〕 [Coating solution]
酸成分力 テレフタル酸/イソフタル酸/トリメリット酸/セバシン酸 = 28モル0 /0/ 9モル%/10モル%/3モル%よりなり、グリコール成分力 エチレングリコール/ネ ォペンチルグリコール /1 , 4ーブタンジォール= 15モル%/18モル%/17モル% よりなるポリエステル樹脂のアンモニゥム塩型水分散体の固形分 100質量部に対し、 メチロール化メラミン樹脂「サイメル (登録商標) 303」(三井サイテック社製)を固形分 で 5部と、触媒として、「キヤタリスト 600」(三井サイテック社製)を 0· 025部加え混合 し、塗布液とした。 Consists acid component force terephthalic acid / isophthalic acid / trimellitic acid / sebacic acid = 28 mol 0/0/9 mol% / 10 mol% / 3 mol%, the glycol component force ethylene glycol / ne O neopentyl glycol / 1, 4 Methylolated melamine resin “Cymel (registered trademark) 303” (Mitsui Cytec Co., Ltd.) with respect to 100 parts by mass of the solid content of the ammonium salt aqueous dispersion of the polyester resin consisting of 15 mol% / 18 mol% / 17 mol% ) And 5 parts by weight of “Catalyst 600” (manufactured by Mitsui Cytec Co., Ltd.) as a catalyst and mixed to obtain a coating solution.
[0151] 〔ゴム.ポリエステルフィルム積層体〕 [0151] [Rubber / Polyester film laminate]
ゴムとして EPDM (日本合成ゴム社製、 EP21 ;エチレン含有量: 34質量%)を、老 化防止剤 Aとして 2—メルカプトべンズイミダゾールの亜鉛塩 (大内新興化学工業社 製、ノクラック MBZ)を、老化防止剤 Bとして 4, 4— ( α , a—ジメチルベンジル)ジフ ェニルァミン (大内新興化学工業社製、ノクラック CD)をそれぞれ用い、下記の配合 比率で常法により混練した。  EPDM (manufactured by Nippon Synthetic Rubber, EP21; ethylene content: 34% by mass) as rubber, and zinc salt of 2-mercaptobenzimidazole (manufactured by Ouchi Shinsei Chemical Co., Ltd., NOCRACK MBZ) as antioxidant A Then, 4,4- (α, a-dimethylbenzyl) diphenylamine (Nouchi CD, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.) was used as the anti-aging agent B, respectively, and kneaded in a conventional manner at the following blending ratio.
(配合組成)  (Composition composition)
(a) EPDM : 100. 0質量部  (a) EPDM: 100.0 parts by mass
(b)ポリエチレングリコール(分子量 4000) : 2· 5質量部  (b) Polyethylene glycol (molecular weight 4000): 2.5 parts by mass
(c)ステアリン酸: 0. 5質量部  (c) Stearic acid: 0.5 part by mass
(d)老化防止剤 A : l . 5質量部  (d) Anti-aging agent A: l .5 parts by mass
(e)老化防止剤 B : 0. 7質量部  (e) Anti-aging agent B: 0.7 parts by mass
(f)フエノールホルムアルデヒド樹脂: 2· 0質量部  (f) Phenolic formaldehyde resin: 2.0 parts by mass
(g) MAFカーボン: 30· 0質量部  (g) MAF carbon: 30.0 parts by mass
(h) FTカーボン: 40 · 0質量部  (h) FT carbon: 40 · 0 parts by mass
(i)ポリブテン: 15· 0質量部  (i) Polybutene: 15.0 parts by mass
(j ) N, N, 一 mフエ二レンジマレイミド: 1. 5質量部  (j) N, N, 1 m Fenylene dimaleimide: 1.5 parts by mass
(k) 2, 5 ジメチルー 2, 5 ジ(t ブチルパーォキシ)へキサン: 5 · 0質量部  (k) 2,5 Dimethyl-2,5 di (t-butylperoxy) hexane: 5 · 0 parts by mass
[0152] 上記の混練ゴムを厚さ 3mmのシートに成形した。この未加硫のゴムシートを切断し て lcm角の細片とし、この細片をトルエンに対する比率が 30質量%となるように秤量 し、トルエンと共に真空脱泡装置付き攪拌機に投入し、大気圧下で 15時間攪拌して 上記細片をトルエンに溶解した。次いで、該溶液にペンタエリスリトールテトラアタリレ ートを、 EPDMゴム 100質量部に対して 8質量部となるように添加し、均一に攪拌し た。さらに、真空脱泡装置を駆動し、ゲージ圧が 750mmHgの真空下で更に 20分間 攪拌し、脱泡した。 [0152] The kneaded rubber was molded into a sheet having a thickness of 3 mm. Cutting this unvulcanized rubber sheet 1 cm square strips, weigh the strips so that the ratio to toluene is 30% by mass, put them together with toluene into a stirrer equipped with a vacuum deaerator, and stir for 15 hours at atmospheric pressure. Was dissolved in toluene. Next, pentaerythritol tetraacrylate was added to the solution so as to be 8 parts by mass with respect to 100 parts by mass of EPDM rubber, and stirred uniformly. Furthermore, the vacuum deaerator was driven, and the mixture was further stirred for 20 minutes under vacuum with a gauge pressure of 750 mmHg to degas.
[0153] 次いで、上記の溶解、脱泡で得られた EPDMゴム溶液をロールコーターに供給し、 上記ゴム積層用被覆ポリエステルフィルムに、乾燥後厚みが 0. 15mmとなるように塗 布した。続いて、オーブンに導入し、 80°Cで乾燥した。その EPDMゴムの表面にポリ 4ーメチルペンテン 1の共重合体からなり、厚みが 0. 035mmのマット加工フィル ム(三井石油化学社製、ォビュラン X— 60YMT4)をそのマット加工面が EPDMゴム 面に向くように重ね、圧着ロールを用い、圧力 5kgf/cmで押さえながら連続的に積 層した。得られた積層体を更に連続して電子線照射装置に導入し、ポリエステルフィ ルム側力、ら 200KV、 3Mradのエネルギーで電子線を照射してプレ架橋を行った。 次いで、カバーシートを剥離し、 EPDMゴム層とポリエステルフィルムからなる積層体 を得た。そして、この積層体を更に電子線照射装置に導入し、 EPDMゴム層側から 2 00KV、 30Mradの電子線照射によるポスト架橋を行い、得られたゴム.ポリエステル フィルム積層体をロール状に巻取った。  [0153] Next, the EPDM rubber solution obtained by the above-described dissolution and defoaming was supplied to a roll coater, and applied to the above-mentioned polyester film for laminating to a thickness of 0.15 mm after drying. Subsequently, it was introduced into an oven and dried at 80 ° C. The surface of the EPDM rubber is made of a copolymer of poly-4-methylpentene 1 and has a thickness of 0.035mm mat processing film (Mitsui Petrochemical Co., Ltd., Oburan X-60YMT4) with the mat processing surface facing the EPDM rubber surface. Then, using a pressure roll, the layers were continuously stacked while pressing at a pressure of 5 kgf / cm. The obtained laminate was further continuously introduced into an electron beam irradiation apparatus, and pre-crosslinking was performed by irradiating an electron beam with a polyester film side force of 200 KV, 3 Mrad energy. Next, the cover sheet was peeled off to obtain a laminate comprising an EPDM rubber layer and a polyester film. Then, this laminate was further introduced into an electron beam irradiation apparatus, post-crosslinking was performed by electron beam irradiation of 200 KV and 30 Mrad from the EPDM rubber layer side, and the resulting rubber polyester film laminate was wound into a roll. .
[0154] 得られたゴム.ポリエステルフィルム積層体の特性を表 1に示す。  [0154] Table 1 shows the properties of the obtained rubber polyester film laminate.
本実施例で得られたゴム ·ポリエステルフィルム積層体は初期接着強度及び耐溶 剤接着強度に優れていた。また、金型成型性及びインキ密着性にも優れており、成 型体の部材として好適に使用することができた。  The rubber / polyester film laminate obtained in this example was excellent in initial adhesive strength and solvent-resistant adhesive strength. Moreover, it was excellent in mold moldability and ink adhesion, and could be suitably used as a member of a molded product.
[0155] (比較例 1)  [0155] (Comparative Example 1)
実施例 1の方法において、ポリエステルフィルム製造工程において塗布液の塗布を 取り止める以外は、実施例 1と同様にしてポリエステルフィルムを得た。得られたポリ エステルフィルムを用いて、実施例 1と同様の方法でゴム.ポリエステルフィルム積層 体を得た。結果を表 1に示す。本比較例で得られたゴム'ポリエステルフィルム積層体 は初期接着強度及び耐溶剤接着強度が劣っており低品質であった。 [0156] (比較例 2) In the method of Example 1, a polyester film was obtained in the same manner as in Example 1 except that the application of the coating solution was stopped in the polyester film production process. Using the obtained polyester film, a rubber polyester film laminate was obtained in the same manner as in Example 1. The results are shown in Table 1. The rubber / polyester film laminate obtained in this comparative example was inferior in initial adhesive strength and solvent-resistant adhesive strength and was of low quality. [0156] (Comparative Example 2)
実施例 1の方法にお!/、て、ポリエステルフィルム製造工程にお!/、て用いる塗布液へ の架橋剤であるメチロール化メラミン樹脂の配合を取り止める以外は、実施例 1と同 様にしてポリエステルフィルムを得た。得られたポリエステルフィルムを用いて、実施 例 1と同様の方法でゴム ·ポリエステルフィルム積層体を得た。結果を表 1に示す。本 比較例で得られたゴム'ポリエステルフィルム積層体は耐溶剤接着強度が劣っており 低品質であった。また、インキ密着性も劣っていた。  In the same manner as in Example 1 except that the method of Example 1 is used, and in the polyester film manufacturing process, the compounding of the methylolated melamine resin, which is a crosslinking agent, in the coating solution used is stopped. A polyester film was obtained. Using the obtained polyester film, a rubber / polyester film laminate was obtained in the same manner as in Example 1. The results are shown in Table 1. The rubber / polyester film laminate obtained in this Comparative Example was inferior in solvent-resistant adhesive strength and of low quality. Ink adhesion was also poor.
[0157] (比較例 3) [0157] (Comparative Example 3)
実施例 1の方法において、ポリエステルフィルムに替えて未延伸ポリエステルフィル ムを用いる以外は、実施例 1と同様にしてゴム'ポリエステルフィルム積層体を得た。 結果を表 1に示す。本比較例で得られたゴム'ポリエステルフィルム積層体は、架橋 高分子層が設けられてレ、なレ、ので、初期接着強度及び耐溶剤接着強度及びインキ 密着性が劣っており低品質であった。  In the method of Example 1, a rubber'polyester film laminate was obtained in the same manner as in Example 1 except that an unstretched polyester film was used instead of the polyester film. The results are shown in Table 1. The rubber / polyester film laminate obtained in this comparative example was provided with a crosslinked polymer layer, so that the initial adhesive strength, solvent-resistant adhesive strength, and ink adhesion were inferior and the quality was low. It was.
[0158] (比較例 4) [0158] (Comparative Example 4)
実施例 1の方法において、縦延伸温度を 95°C、縦及び横延伸倍率を 3. 5倍に、熱 処理温度を 225°Cに変更する以外は、実施例 1と同様にしてゴム積層用被覆ポリエ ステルフィルムを得た。得られたゴム積層用被覆ポリエステルフィルムを用いて、実施 例 1と同様の方法でゴム ·ポリエステルフィルム積層体を得た。結果を表 1に示す。本 比較例で得られたゴム積層用被覆ポリエステルフィルムは成型性が劣っており低品 質であった。  For the method of Example 1, for rubber lamination, the same as in Example 1, except that the longitudinal stretching temperature is 95 ° C, the longitudinal and lateral stretching ratios are 3.5 times, and the heat treatment temperature is 225 ° C. A coated polyester film was obtained. A rubber / polyester film laminate was obtained in the same manner as in Example 1, using the obtained coated polyester film for rubber lamination. The results are shown in Table 1. The coated polyester film for rubber lamination obtained in this comparative example was poor in moldability and low quality.
[0159] (実施例 2) [Example 2]
〔ゴム積層用被覆ポリエステルフィルム〕  [Coated polyester film for rubber lamination]
芳香族ジカルボン酸成分としてテレフタル酸単位 100モル0 /0、ジオール成分として エチレングリコール単位 40モル%及びネオペンチルグリコール単位 60モル%を構 成成分とする、固有粘度が 0. 69dl/gの共重合ポリエステルのチップ (A)と、固有粘 度が 0. 69dl/gで、かつ平均粒子径(SEM法)が 1. 5 mの無定形シリカを 0. 04 質量%、及びべンゾトリアゾール系紫外線吸収剤(N) (チバ 'スペシャルティ'ケミカ ルズ株式会社製、チヌビン 326)を 0· 67質量0 /0含有するポリエチレンテレフタレート のチップ (B)をそれぞれ乾燥させた。さらに、チップ (A)とチップ (B)を 25 : 75の質量 比となるように混合した。次いで、これらのチップ混合物を押出し機により Tダイのスリ ットから 270°Cで溶融押出し、表面温度 40°Cのチルロール上で急冷固化させ、同時 に静電印加法を用いてチルロールに密着させながら無定形の未延伸シートを得た。 Terephthalic acid unit 100 mol of the aromatic dicarboxylic acid component 0/0, the ethylene glycol units 40 mole% and 60 mole% of neopentyl glycol units as a diol component and configuring the component, a copolymer of intrinsic viscosity 0. 69dl / g 0.04% by mass of polyester chip (A), amorphous silica with an inherent viscosity of 0.69 dl / g and an average particle size (SEM method) of 1.5 m, and benzotriazole-based UV absorber (N) (Ciba 'Specialty' Chemicals Luz Ltd., Tinuvin 326) polyethylene terephthalate and containing 0 - 67 mass 0/0 Each chip (B) was dried. Furthermore, the chip (A) and the chip (B) were mixed so as to have a mass ratio of 25:75. Next, these chip mixtures are melt-extruded from the slit of the T die at 270 ° C by an extruder, rapidly cooled and solidified on a chill roll having a surface temperature of 40 ° C, and simultaneously adhered to the chill roll using an electrostatic application method. An amorphous unstretched sheet was obtained.
[0160] 得られた未延伸シートを加熱ロールと冷却ロールの間で縦方向に 90°Cで 3. 3倍に 延伸した。次いで、実施例 1で用いた塗布液を一軸延伸フィルムの両面に塗布した。 塗布された一軸延伸フィルムをクリップで把持しながら予熱ゾーンに導き、 110°Cで 乾燥後、テンターに導き、 120°Cで 10秒間予熱し、横延伸の前半部を 110°C、後半 部を 100°Cで 3· 9倍延伸した。さらに、一段目の熱処理 (TS1)を 220°C、二段目の 熱処理 (TS 2)を横方向に 7 %の弛緩処理を行!/、ながら 235°Cで熱固定処理を行!/、 、両面にそれぞれ 0· 15 mの架橋高分子層が被覆された厚さ 100 mのゴム積層 用被覆ポリエステルフィルムを得た。  [0160] The obtained unstretched sheet was stretched 3.3 times at 90 ° C in the machine direction between the heating roll and the cooling roll. Next, the coating solution used in Example 1 was applied to both sides of the uniaxially stretched film. The applied uniaxially stretched film is guided to the preheating zone while being gripped with a clip, dried at 110 ° C, guided to a tenter, preheated at 120 ° C for 10 seconds, the first half of the horizontal stretching is 110 ° C, and the second half is The film was stretched 3-9 times at 100 ° C. Furthermore, the first heat treatment (TS1) is 220 ° C, the second heat treatment (TS 2) is 7% relaxation treatment in the lateral direction! /, While the heat fixation treatment is performed at 235 ° C! /, A 100 m thick laminated polyester film for rubber lamination was obtained, in which both cross-linked polymer layers of 0 · 15 m were coated on both sides.
[0161] なお、熱固定処理ゾーンには、延伸区間との間に 2mの中間区間を設け、熱固定ゾ ーンの加熱用区間には遠赤外線ヒーターを設置し、区間ごとの遮蔽板をフィルムに 接触しない限界位置まで拡大し、設置した。加熱後の冷却区間においても区間遮蔽 を強化し、クリップの戻り方法として外部リターン方式を用い、かつクリップ冷却装置を 設置し、さらに 20°Cの冷風で強制冷却し、テンター出口でのクリップ温度を 40°C以 下とするクリップ融着防止対策を行った。  [0161] In the heat setting treatment zone, an intermediate section of 2 m is provided between the stretching section, a far infrared heater is installed in the heating section of the heat setting zone, and a shielding plate for each section is used as a film. It was expanded and installed to the limit position where it did not touch. Even in the cooling section after heating, the section shielding is strengthened, an external return method is used as a clip return method, a clip cooling device is installed, and forced cooling is performed with cold air of 20 ° C, and the clip temperature at the tenter outlet is increased. Measures were taken to prevent clip fusion at 40 ° C or lower.
得られたゴム積層用被覆ポリエステルフィルムを用いて、実施例 1と同様の方法で ゴム.ポリエステルフィルム積層体を得た。結果を表 1に示す。本実施例で得られたゴ ム.ポリエステルフィルム積層体は実施例 1で得られたゴム.ポリエステルフィルム積層 体に比べて、成型性が良化しており、真空成型が可能であり、さらに高品質であった  A rubber polyester film laminate was obtained in the same manner as in Example 1 using the obtained polyester film for rubber lamination. The results are shown in Table 1. Rubber obtained in this example Polyester film laminate is the rubber obtained in Example 1. Moldability is improved compared to polyester film laminate, vacuum molding is possible, and higher quality Met
[0162] (実施例 3) [0162] (Example 3)
実施例 1の方法において、ポリエステルフィルム製造工程において塗布液の塗布を 取り止める以外は、実施例 1と同様の方法でポリエステルフィルムを得た。得られたポ リエステルフィルムの両面にコロナ処理をし、さらに、そのコロナ処理した両面にバイ ロン 30SSとコロネート HXそれぞれ固形分比で 100 : 30 (質量部)になるように配合し た塗布液をコーターを用いて乾燥後の厚みとしてそれぞれ 1 μ mになるように塗布し て架橋高分子層を設けた。得られたゴム積層用被覆ポリエステルフィルムを用いて、 実施例 1と同様の方法でゴム'ポリエステルフィルム積層体を得た。結果を表 1に示す 。本実施例で得られたゴム'ポリエステルフィルム積層体は実施例 1で得られたゴム · ポリエステルフィルム積層体と同等の特性を有しており高品質であつた。 In the method of Example 1, a polyester film was obtained in the same manner as in Example 1 except that the application of the coating solution was stopped in the polyester film production process. Both sides of the obtained polyester film are corona-treated, and further, both byron 30SS and coronate HX are blended so that the solid content ratio is 100: 30 (parts by mass). The resulting coating solution was applied using a coater to a thickness of 1 μm after drying to provide a crosslinked polymer layer. By using the obtained coated polyester film for rubber lamination, a rubber'polyester film laminate was obtained in the same manner as in Example 1. The results are shown in Table 1. The rubber / polyester film laminate obtained in this example had the same properties as the rubber / polyester film laminate obtained in Example 1 and was of high quality.
[0163] (実施例 4)  [0163] (Example 4)
実施例 1の方法において、ゴム組成物としてアクリロニトリルブタジエンゴム(NBR) 組成物を用いるように変更する以外は、実施例 1と同様にしてゴム積層用被覆ポリエ ステルフィルムを得た。本実施例で得られたゴム積層用被覆ポリエステルフィルムを 用いて、実施例 1と同様の方法でゴム'ポリエステルフィルム積層体を得た。結果を表 1に示す。本実施例で得られたゴム'ポリエステルフィルム積層体は、実施例 1で得ら れたゴム ·ポリエステルフィルム積層体と同等の特性を有しており高品質であつた。  A coated polyester film for rubber lamination was obtained in the same manner as in Example 1 except that the acrylonitrile butadiene rubber (NBR) composition was used as the rubber composition in the method of Example 1. Using the coated polyester film for rubber lamination obtained in this example, a rubber ′ polyester film laminate was obtained in the same manner as in Example 1. The results are shown in Table 1. The rubber / polyester film laminate obtained in this example had the same properties as the rubber / polyester film laminate obtained in Example 1 and was of high quality.
[0164] (比較例 5) [0164] (Comparative Example 5)
実施例 4の方法にお!/、て、ポリエステルフィルム製造工程にお!/、て塗布液の塗布を 取り止める以外は、実施例 4と同様にしてポリエステルフィルムを得た。得られたポリ エステルフィルムを用いて、実施例 4と同様の方法でゴム.ポリエステルフィルム積層 体を得た。結果を表 2に示す。本比較例で得られたゴム'ポリエステルフィルム積層体 は初期接着強度及び耐溶剤接着強度が劣っており低品質であった。  A polyester film was obtained in the same manner as in Example 4 except that in the method of Example 4 and in the production process of the polyester film, application of the coating solution was stopped. Using the obtained polyester film, a rubber polyester film laminate was obtained in the same manner as in Example 4. The results are shown in Table 2. The rubber / polyester film laminate obtained in this comparative example was inferior in initial adhesive strength and solvent-resistant adhesive strength and was of low quality.
[0165] (比較例 6) [0165] (Comparative Example 6)
実施例 4の方法にお!/、て、ポリエステルフィルム製造工程にお!/、て塗布液の塗布 量を増して、乾燥後の厚みとして 15 inになるように変更する以外は、実施例 4と同 様にしてゴム積層用被覆ポリエステルフィルムを得た。本比較例で得られたポリエス テルフィルムを用いて、実施例 4と同様の方法でゴム.ポリエステルフィルム積層体を 得た。結果を表 2に示す。本比較例で得られたゴム'ポリエステルフィルム積層体は 成型性が劣っており低品質であった。また、初期接着強度ゃ耐溶剤接着強度も実施 例 4で得られたゴム'ポリエステルフィルム積層体に比べて悪化して!/、た。  Example 4 except that the method of Example 4 was applied to the polyester film manufacturing process, and the amount of coating solution was increased so that the thickness after drying was 15 inches. In the same manner as above, a coated polyester film for rubber lamination was obtained. A rubber / polyester film laminate was obtained in the same manner as in Example 4 using the polyester film obtained in this Comparative Example. The results are shown in Table 2. The rubber / polyester film laminate obtained in this comparative example had poor moldability and low quality. In addition, the initial adhesive strength and solvent resistant adhesive strength were also deteriorated compared with the rubber / polyester film laminate obtained in Example 4! /.
[0166] (実施例 5) [Example 5]
実施例 2の方法において、ゴム組成物としてアクリロニトリルブタジエンゴム(NBR) 組成物を用いるように変更する以外は、実施例 2と同様にしてゴム'ポリエステルフィ ルム体を得た。結果を表 2に示す。本実施例で得られたゴム 'ポリエステルフィルム積 層体は、実施例 2で得られたゴム ·ポリエステルフィルム積層体と同等の特性を有して おり高品質であった。 In the method of Example 2, acrylonitrile butadiene rubber (NBR) was used as the rubber composition. A rubber polyester film was obtained in the same manner as in Example 2 except that the composition was changed to use. The results are shown in Table 2. The rubber / polyester film laminate obtained in this example had the same properties as the rubber / polyester film laminate obtained in Example 2 and was of high quality.
[0167] (実施例 6) [Example 6]
実施例 5の方法において、ポリエステル製造工程における塗布液の塗布を片面に 塗布するように変更する以外は、実施例 5と同様にしてゴム積層用被覆ポリエステル フィルムを得た。本実施例で得られたゴム積層用被覆ポリエステルフィルムを用いて 、塗布層(架橋高分子層)側表面にゴム層を積層し、実施例 5と同様の方法でゴム- ポリエステルフィルム積層体を得た。結果を表 2に示す。本実施例で得られたゴム'ポ リエステルフィルム積層体は、実施例 5と同様に高品質であった力 ゴム層と反対面 に架橋高分子層が形成されてレ、なレ、ため、インク密着性が劣ってレ、た。  In the method of Example 5, a coated polyester film for rubber lamination was obtained in the same manner as in Example 5 except that the application of the coating liquid in the polyester production process was changed to be applied to one side. Using the coated polyester film for rubber lamination obtained in this example, a rubber layer was laminated on the coating layer (crosslinked polymer layer) side surface, and a rubber-polyester film laminate was obtained in the same manner as in Example 5. It was. The results are shown in Table 2. The rubber / polyester film laminate obtained in this example had a high-quality force similar to that in Example 5, and the cross-linked polymer layer was formed on the opposite side of the rubber layer. The adhesion was inferior.
[0168] (実施例 7〜9) [0168] (Examples 7 to 9)
実施例 2の方法にお!/、て、ゴム積層用被覆ポリエステルフィルム製造工程にお!/、て 用いる塗布液をそれぞれ以下の組成に変更する以外は、実施例 2と同様にしてゴム 積層用被覆ポリエステルフィルムを得た。これらの実施例で得られたゴム積層用被覆 ポリエステルフィルムを用いて、実施例 2と同様の方法でゴム.ポリエステルフィルム積 層体を得た。結果を表 2に示す。これらの実施例で得られたゴム'ポリエステルフィル ム積層体は実施例 2と同等あるいはそれ以上の特性を有しており高品質であった。 〔実施例 7の塗布液〕  In the method of Example 2! /, In the process for producing a coated polyester film for rubber lamination! /, For rubber lamination, in the same manner as in Example 2 except that the coating solution used is changed to the following composition, respectively. A coated polyester film was obtained. A rubber / polyester film laminate was obtained in the same manner as in Example 2 by using the coated polyester film for rubber lamination obtained in these Examples. The results are shown in Table 2. The rubber / polyester film laminates obtained in these examples had the same or better properties as those of Example 2 and were of high quality. [Coating liquid of Example 7]
(a)アクリル樹脂共重合体ェマルジヨン〔メチルメタタリレート(60質量%)、ェチルァ タリレート(35質量%)、アクリル酸(2質量%)、 Ν—メチロールアクリルアミド(2質量 %)、アクリロニトリル(1質量%)を共重合したもの〕、(b)メラミン系架橋剤 (メチロール 化メラミンよりなる)、及び (c)ォキサゾリン系架橋剤〔メチルメタタリレート(50質量%) 、ェチルアタリレート(25質量%)、スチレン(5質量%)、 2—イソプロぺニルー 2—ォ キサゾリン(20質量%)を共重合したもの〕を、アクリル樹脂 100質量部に対し、メラミ ン系架橋剤 5質量部及びォキサゾリン系架橋剤 5質量部となるように配合した水系塗 布液を調製した。 [0169] 〔実施例 8の塗布液〕 (a) Acrylic resin copolymer emulsion [methyl methacrylate (60% by mass), ethyl methacrylate (35% by mass), acrylic acid (2% by mass), Ν-methylolacrylamide (2% by mass), acrylonitrile (1% by mass) %)), (B) melamine-based cross-linking agent (comprising methylol melamine), and (c) oxazoline-based cross-linking agent [methyl metatalylate (50 mass%), ethyl acrylate (25 mass) %), Styrene (5% by mass), 2-isopropenyl-2-oxazoline (20% by mass)] with respect to 100 parts by mass of acrylic resin, 5 parts by mass of melamine-based crosslinking agent and oxazoline. A water-based coating solution blended so as to be 5 parts by mass of a system cross-linking agent was prepared. [Coating solution of Example 8]
エチレンォキシドのポリエーテルをスルホン化したスルホン酸ナトリウムを含むポリェ 一テル(スルホン酸基含有量: 8質量%) 192質量部、ポリテトラメチレンアジペート 10 13質量部、ポリプロピレンォキシドポリエーテル 248質量部を混合し、減圧下、 100 °Cで脱水後、該混合物を 70°Cとし、イソホロンジイソシァネート 178質量部とへキサメ チレン 1 , 6 ジイソシァネート 244質量部との混合物を加え、更に該生成混合物 をイソシァネート含有量が 5. 6質量%になるまで 80〜90°Cの範囲で撹拌した。得ら れたプレポリマーを 60°Cに冷却し、へキサメチレンジイソシァネート 3モルと水 1モル 力も得られるビウレットポリイソシァネート 56質量部とイソホロンジァミンとアセトンから 得られるビスケチミン 173質量部とを順次加えた。次いで、ヒドラジン水和物の 15質 量部を溶解した 50°Cの水溶液をこの混合物に撹拌しながら加え、ポリウレタン樹脂 水分散体とした。該ポリウレタン樹脂水分散体のポリウレタン樹脂 100質量部に対し て、実施例 7で用いたォキサゾリン系架橋剤を 3質量部添加した水系塗布液を調製し た。  Polyether containing sodium sulfonate obtained by sulfonation of polyether of ethylene oxide (sulfonic acid group content: 8% by mass) 192 parts by mass, polytetramethylene adipate 10 13 parts by mass, polypropylene oxide polyether 248 parts by mass After dehydration at 100 ° C under reduced pressure, the mixture was brought to 70 ° C, a mixture of 178 parts by mass of isophorone diisocyanate and 244 parts by mass of hexamethylene 1,6 diisocyanate was added, and the product was further formed. The mixture was stirred in the range of 80-90 ° C. until the isocyanate content was 5.6% by weight. The resulting prepolymer was cooled to 60 ° C, and 3 moles of hexamethylene diisocyanate and 1 mole of water were obtained. 56 parts by weight of biuret polyisocyanate, bisketimine obtained from isophorone diamine and acetone 173 Mass parts were sequentially added. Next, a 50 ° C. aqueous solution in which 15 parts by mass of hydrazine hydrate was dissolved was added to this mixture with stirring to obtain an aqueous polyurethane resin dispersion. An aqueous coating solution was prepared by adding 3 parts by mass of the oxazoline-based crosslinking agent used in Example 7 to 100 parts by mass of the polyurethane resin in the polyurethane resin aqueous dispersion.
[0170] 〔実施例 9の塗布液〕  [Coating solution of Example 9]
ジメチルテレフタレート 95質量部、ジメチルイソフタレート 95質量部、エチレングリコ ール 35質量部、ネオペンチルグリコール 145質量部、酢酸亜鉛 0. 1質量部及び三 酸化アンチモン 0. 1質量部を反応容器に仕込み、 180°Cで 3時間かけてエステル交 換反応を行った。次に、 5 ナトリウムスルホイソフタル酸 6. 0質量部を添加し、 240 °Cで 1時間かけてエステル化反応を行った後、 250°Cで減圧下(10〜0. 2mmHg) 、 2時間かけて重縮合反応を行い、数平均分子量 19, 500、軟化点 60°Cの共重合 ポリエステル系樹脂を得た。  A reaction vessel was charged with 95 parts by weight of dimethyl terephthalate, 95 parts by weight of dimethyl isophthalate, 35 parts by weight of ethylene glycol, 145 parts by weight of neopentyl glycol, 0.1 part by weight of zinc acetate and 0.1 part by weight of antimony trioxide. The ester exchange reaction was carried out at 180 ° C for 3 hours. Next, 6.0 parts by mass of 5 sodium sulfoisophthalic acid was added, the esterification reaction was carried out at 240 ° C for 1 hour, and then at 250 ° C under reduced pressure (10 to 0.2 mmHg) over 2 hours. A polycondensation reaction was carried out to obtain a copolymerized polyester resin having a number average molecular weight of 19,500 and a softening point of 60 ° C.
得られた共重合ポリエステル系樹脂 (A)の 30質量%水分散液を 7. 5質量部、重亜 硫酸ソーダでブロックしたイソシァネート基を含有する自己架橋型ポリウレタン系樹脂 (B)の 20質量%水溶液 (第一工業製薬製、エラストロン H— 3)を 11. 3質量部、エラ ストロン用触媒 (第一工業製薬社製、 Cat64)を 0. 3質量部、水を 39. 8質量部及び イソプロピルアルコールを 37. 4質量部、それぞれ混合した。  7.5% by mass of a 30% by mass aqueous dispersion of the obtained copolyester resin (A), 20% by mass of a self-crosslinking polyurethane resin (B) containing isocyanate groups blocked with sodium bisulfite 11.3 parts by mass of an aqueous solution (Daiichi Kogyo Seiyaku Co., Ltd., Elastoron H-3), 0.3 parts by mass of Elastolone Catalyst (Daiichi Kogyo Seiyaku Co., Ltd., Cat64), 39.8 parts by mass of water and isopropyl Alcohol was mixed in 37.4 parts by mass.
さらに、フッ素系ノニオン型界面活性剤(大日本インキ化学工業社製、メガファック F 142D)の 10質量%水溶液を 0· 6質量部、粒子 Αとしてコロイダルシリカ(日産化学 工業社製、スノーテックス OL ;平均粒径 40nm)の 20質量%水分散液を 2. 3質量部 、粒子 Bとして乾式法シリカ(日本ァエロジル社製、ァエロジル OX50;平均粒径 200 nm、平均一次粒径 40nm)の 3. 5質量%水分散液を 0. 5質量部添加した。次いで、 5質量%の重曹水溶液で塗布液の pHを 6. 2に調整し、濾過粒子サイズ (初期濾過 効率: 95%)が 10 mのフェルト型ポリプロピレン製フィルターで精密濾過して、水系 塗布液を得た。 In addition, a fluorine-based nonionic surfactant (Dainippon Ink & Chemicals, MegaFac F 142D) 10 parts by mass aqueous solution, 0.6 parts by mass, particles as soot, colloidal silica (manufactured by Nissan Chemical Industries, Snowtex OL; average particle size 40 nm), 20 parts by mass aqueous dispersion of 2.3 parts by mass, particles As B, 0.5 parts by mass of a 3.5 mass% aqueous dispersion of dry-process silica (manufactured by Nippon Aerosil Co., Ltd., Aerosil OX50; average particle diameter 200 nm, average primary particle diameter 40 nm) was added. Next, the pH of the coating solution is adjusted to 6.2 with a 5% by weight aqueous sodium bicarbonate solution, and the solution is finely filtered with a felt-type polypropylene filter with a filtration particle size (initial filtration efficiency: 95%). Got.
[0171] (実施例 10)  [Example 10]
実施例 2の方法において、ゴム組成物としてクロロプレンゴム(CR)組成物を用いる ように変更する以外は、実施例 2と同様の方法でゴム'ポリエステルフィルム積層体を 得た。結果を表 2に示す。本実施例で得られたゴム'ポリエステルフィルム積層体は、 実施例 2で得られたゴム'ポリエステルフィルム積層体と同等の特性を有しており高品 質であった。  A rubber polyester film laminate was obtained in the same manner as in Example 2 except that the chloroprene rubber (CR) composition was used as the rubber composition in the method of Example 2. The results are shown in Table 2. The rubber 'polyester film laminate obtained in this example had the same properties as the rubber' polyester film laminate obtained in Example 2 and was of high quality.
[0172] (実施例 11)  [Example 11]
実施例 2の方法において、ゴム成分をシリコーンゴムコンパウンドとして、市販の高 強度型シリコーンゴムコンパウンド (信越化学工業社製、「KE555— U」)及び市販の 一般成形用シリコーンゴムコンパウンド (信越化学工業社製、「KE958— U」 )を 60: 40の質量比で配合したものに替え、かつペンタエリスリトールテトラアタリレートの配 合量をシリコーンゴムコンパウンドの全量 100質量部に対して 3質量部になるように変 更する以外は、実施例 2と同様の方法でゴム'ポリエステルフィルム積層体を得た。結 果を表 2に示す。本実施例で得られたゴム'ポリエステルフィルム積層体は、実施例 2 で得られたゴム ·ポリエステルフィルム積層体と同等の特性を有しており高品質であつ た。特に、本実施例で得られたゴム'ポリエステルフィルム積層体は接着強度に関連 した特性が優れていた。  In the method of Example 2, using a rubber component as a silicone rubber compound, a commercially available high-strength silicone rubber compound (manufactured by Shin-Etsu Chemical Co., Ltd., “KE555-U”) and a commercially available silicone rubber compound for general molding (Shin-Etsu Chemical Co., Ltd.) "KE958-U") at a mass ratio of 60:40, and the amount of pentaerythritol tetratalylate is 3 parts by mass with respect to 100 parts by mass of the total amount of silicone rubber compound. A rubber'polyester film laminate was obtained in the same manner as in Example 2 except that The results are shown in Table 2. The rubber / polyester film laminate obtained in this example had the same properties as the rubber / polyester film laminate obtained in Example 2 and was of high quality. In particular, the rubber / polyester film laminate obtained in this example was excellent in properties related to adhesive strength.
[0173] (実施例 12)  [Example 12]
実施例 1におレ、て、ゴム積層用被覆ポリエステルフィルム製造工程にお!/、て用いる 塗工液として、下記の方法で調製したグラフト変性ポリエステル樹脂よりなる自己架 橋型のポリエステル樹脂を用いたこと以外は、実施例 1と同様にしてゴム積層用被覆 ポリエステルフィルムを得た。次いで、該ゴム積層用被覆ポリエステルフィルムを用い て、実施例 1と同様の方法でゴム'ポリエステルフィルム積層体を得た。得られたゴム' ポリエステルフィルム積層体の特性を表 3に示す。 In Example 1, a self-crosslinking polyester resin made of a graft-modified polyester resin prepared by the following method is used as the coating solution used in the process for producing a rubber-laminated coated polyester film. Except for the above, the same rubber coating as in Example 1 A polyester film was obtained. Next, a rubber'polyester film laminate was obtained in the same manner as in Example 1 using the coated polyester film for rubber lamination. The properties of the rubber / polyester film laminate obtained are shown in Table 3.
本実施例 12で得られたゴム ·ポリエステルフィルム積層体は実施例 1で得られたゴ ム.ポリエステルフィルム積層体より優れた特性を有しており高品質であった。  The rubber / polyester film laminate obtained in Example 12 was superior in quality to the rubber polyester film laminate obtained in Example 1, and was of high quality.
〔塗工液〕  [Coating fluid]
(共重合ポリエステル樹脂の調製)  (Preparation of copolymer polyester resin)
自己架橋型ポリエステル樹脂水分散体「バイロナール (登録商標) AGN702」(東 洋紡績社製) 40部、水 24部及びイソプロピルアルコール 36部を混合し、さらにァニ オン系界面活性剤の 10%水溶液 0. 6部、プロピオン酸 1部、コロイダルシリカ粒子(「 スノーテックス(登録商標) OL」;平均粒径 40nm;日産化学工業社製))の 20%水分 散液 1. 8部、乾式法シリカ粒子(「ァエロジル 0X50」;平均粒径 200nm ;平均一次 粒径 40nm ;日本ァエロジル社製)の 4%水分散液 1. 1部を添加し、塗工液とした。  Self-crosslinking polyester resin water dispersion "Vironal (registered trademark) AGN702" (manufactured by Toyobo Co., Ltd.) 40 parts, water 24 parts and isopropyl alcohol 36 parts are mixed, and 10% aqueous solution of anionic surfactant 0. 6 parts, 1 part of propionic acid, colloidal silica particles (“Snowtex (registered trademark) OL”; average particle size 40 nm; manufactured by Nissan Chemical Industries, Ltd.) 20% water dispersion 1. 8 parts, dry process silica 1 part of a 4% aqueous dispersion of particles (“Aerosil 0X50”; average particle size 200 nm; average primary particle size 40 nm; manufactured by Nippon Aerosil Co., Ltd.) was added to prepare a coating solution.
[0174] (実施例 13)  [Example 13]
実施例 5の方法にお!/、て、ゴム積層用被覆ポリエステルフィルム製造工程にお!/、て 用いる塗布液を以下の組成として、かつ架橋高分子層の層厚みを最終のゴム積層 用ポリエステルフィルム上の厚みとして両面共に 0. 08 ,1 mになるように変更する以 外は、実施例 5と同様にしてゴム積層用被覆ポリエステルフィルムを得た。本実施例 で得られたゴム積層用被覆ポリエステルフィルムを用いて、実施例 5と同様の方法で ゴム.ポリエステルフィルム積層体を得た。結果を表 3に示す。本実施例で得られたゴ ム.ポリエステルフィルム積層体は実施例 5で得られたゴム.ポリエステルフィルム積層 体より耐溶剤接着強度や耐水接着強度に優れておりさらに高品質であった。特に、 耐水接着強度が著しく改善された。  In the method of Example 5! /, In the production process of coated polyester film for rubber lamination, the coating liquid used in the process has the following composition, and the layer thickness of the crosslinked polymer layer is the final polyester for rubber lamination. A coated polyester film for rubber lamination was obtained in the same manner as in Example 5 except that the thickness on the film was changed to 0.08, 1 m on both sides. A rubber polyester film laminate was obtained in the same manner as in Example 5 using the coated polyester film for rubber lamination obtained in this example. The results are shown in Table 3. The rubber polyester film laminate obtained in this example was superior to the rubber polyester film laminate obtained in Example 5 in terms of solvent- and water-resistant adhesive strength and higher quality. In particular, the water-resistant adhesive strength was significantly improved.
[0175] 〔塗布液〕  [0175] [Coating solution]
1、 NBR変性ポリウレタンの製造方法  1. Manufacturing method of NBR modified polyurethane
(1)ポリエステルポリオールの合成  (1) Synthesis of polyester polyol
攪拌機、温度計、リービッヒ冷却管を具備した 2L4つ口フラスコにジメチルテレフタル 酸 194部、ジメチノレイソフタノレ酸 194部、ネオペンチルグリコール 146部、エチレング リコール 161部及び触媒としてチタンモノマー 0· 2部を仕込み、 190°C、 210°C、 23 0°Cの順に各温度で 1時間づっ加熱攪拌し、生成するメタノールを溜去しつつエステ ル交換反応を終了させた。次いで 250°Cに昇温し、減圧下に 20分重合し、反応を終 了した。得られたポリエステルポリオールの特性は以下のとおりであった。 In a 2L four-necked flask equipped with a stirrer, thermometer and Liebig condenser, 194 parts of dimethyl terephthalic acid, 194 parts of dimethylolisophthalenoic acid, 146 parts of neopentyl glycol, ethylene glycol Charge 161 parts of recall and 0.2 part of titanium monomer as catalyst, heat and stir at 190 ° C, 210 ° C, 230 ° C in order for 1 hour at each temperature, and change the ester while distilling off the generated methanol. The reaction was terminated. Next, the temperature was raised to 250 ° C., and polymerization was carried out under reduced pressure for 20 minutes to complete the reaction. The characteristics of the obtained polyester polyol were as follows.
数平均分子量 2000  Number average molecular weight 2000
酸価は 5eq/ton  Acid value is 5eq / ton
組成 酸成分  Composition Acid component
テレフタノレ酸 50モノレ%  Terephthalenolic acid 50 monoole%
イソフタノレ酸 50モノレ0 /0 Isofutanore acid 50 Monore 0/0
グリコール成分  Glycol component
ネオペンチルグリコール 50モノレ0 /0 Neopentyl glycol 50 Monore 0/0
エチレングリコール 50モノレ0 /0 Ethylene glycol 50 Monore 0/0
[0176] (2) NBRポリオールオリゴマーの合成 [0176] (2) Synthesis of NBR polyol oligomer
攪拌機、温度計、コンデンサーを具備した 0. 5L4つ口フラスコに液状合成ゴム CT BN 1300X13 (宇部興産社製) 121部、トルエン 54部を仕込み均一に溶解させた。 次いでグリシドール 5. 5部、反応触媒としてトリフエニルフォスフィン 02部を添加し、 1 05°Cで 6時間反応させ、 NBRポリオールオリゴマーの 70%トルエン溶液を得た。反 応前と反応後の固形樹脂分の酸価は以下のとおりであった。  In a 0.5 L four-necked flask equipped with a stirrer, a thermometer, and a condenser, 121 parts of liquid synthetic rubber CT BN 1300X13 (manufactured by Ube Industries) and 54 parts of toluene were charged and dissolved uniformly. Next, 5.5 parts of glycidol and 02 parts of triphenylphosphine as a reaction catalyst were added and reacted at 105 ° C. for 6 hours to obtain a 70% toluene solution of NBR polyol oligomer. The acid values of the solid resin before and after the reaction were as follows.
反応前液状合成ゴムの酸価 : 630eq/ton 反応後(生成した NBRポリオールオリゴマー)の酸価: 90eq/ton  Acid value of liquid synthetic rubber before reaction: 630 eq / ton Acid value after reaction (generated NBR polyol oligomer): 90 eq / ton
[0177] (3) NBR変性ポリウレタンの合成 [0177] (3) Synthesis of NBR-modified polyurethane
攪拌機、温度計、コンデンサーを具備した 1L4つ口フラスコに上記ポリエステルポリ ォーノレ 100部、 2, 2—ジメチルー 3—ヒドロキシプロピル一 2' , 2, 一ジメチルー 3—ヒ ドロキシプロパネート 30部、トルエン 80部を仕込み、均一に溶解させた。次いで 4, 4 '—ジフエニルメタンジイソシァネート 54部を添加し、 70°Cで 3時間反応させた後、シ クロへキサノン 280部で希釈した。次いで上記 NBRポリオールオリゴマーの 70%トル ェン溶液 115部を添加し、 70°Cで 3時間反応後、メチルェチルケトン 223部で希釈し 、 NBR変性ポリゥレタンの 30 %溶液を得た。 なお、上記合成方法の中で「部」は重量部を意味し、樹脂の酸価、分子量、ポリエス テルポリオールの組成分析は各々以下の方法で実施した。 100 parts of the above polyester polyol, 2 parts of 2,2-dimethyl-3-hydroxypropyl 1 ', 2, 30 parts of 1-dimethyl-3-hydroxypropanoate, 80 parts of toluene in a 1L 4-neck flask equipped with a stirrer, thermometer and condenser Was uniformly dissolved. Subsequently, 54 parts of 4,4′-diphenylmethane diisocyanate was added, reacted at 70 ° C. for 3 hours, and diluted with 280 parts of cyclohexanone. Next, 115 parts of a 70% toluene solution of the above NBR polyol oligomer was added, reacted at 70 ° C. for 3 hours, and diluted with 223 parts of methyl ethyl ketone to obtain a 30% solution of NBR-modified polyurethane. In the above synthesis method, “parts” means parts by weight, and the acid value of the resin, molecular weight, and composition analysis of the polyester polyol were each carried out by the following methods.
•数平均分子量  Number average molecular weight
ウォーターズ社製ゲル浸透クロマトグラフィー(GPC) 150Cを用い、テトラヒドロフラ ンをキャリアー溶剤として流速 lml/分で測定した。カラムとして昭和電工 (株)製 S hodex KF— 802、 KF— 804、 KF— 806を 3本連結しカラム温度 (ま 30。C(こ設定し た。分子量標準サンプルとしてはポリスチレン標準物質を用いた  Using water permeation gel permeation chromatography (GPC) 150C, the measurement was performed at a flow rate of 1 ml / min using tetrahydrofuran as a carrier solvent. Three columns of Shodex KF-802, KF-804, KF-806 manufactured by Showa Denko K.K. were connected as the column, and the column temperature (30.C) was set. Polystyrene standard was used as the molecular weight standard sample.
'酸価  'Acid value
固形樹脂 0. 2g又は固形分換算 0. 2gの樹脂溶液を 20mlのクロ口ホルムに溶解後 、 0. ΙΝ— NaOHエタノール溶液でフエノールフタレインを指示薬として測定し、測定 値を樹脂固形分 lton中の当量で示した。  0.2 g of solid resin or 0.2 g of solid content conversion was dissolved in 20 ml of black mouth form, and then measured with phenolphthalein as an indicator in 0.1 ml of NaOH ethanol solution, and the measured value in the solid resin lton In equivalents.
'ポリエステルポリオール組成  'Polyester polyol composition
クロ口ホルム—dに樹脂を溶解し、ヴアリアン社製核磁気共鳴分析計 (NMR) "ジエミ ニー 200"を用い、 NMRにより樹脂組成比を求めた。  The resin was dissolved in black mouth form-d, and the resin composition ratio was determined by NMR using a nuclear magnetic resonance analyzer (NMR) “Deminy 200” manufactured by Varian.
(4)塗布液  (4) Coating liquid
上記方法で調製した NBR変性ポリウレタンとイソシァネート系架橋剤であるミリォネ ート(登録商標) MR(日本ポリウレタン社製)を固形分質量比で 100: 150になるよう に混合した溶液を用いた。  A solution prepared by mixing NBR-modified polyurethane prepared by the above method and Millionate (registered trademark) MR (manufactured by Nippon Polyurethane Co., Ltd.), which is an isocyanate crosslinking agent, at a solid content mass ratio of 100: 150 was used.
[0178] (実施例 14) [Example 14]
実施例 13の方法で、ゴム積層用被覆フィルムの架橋高分子層の層厚みを両面共 に 0. 2 mとして、ゴム積層用被覆フィルムを得た。得られたゴム積層用被覆ポリエス テルフィルムを用いて、実施例 1と同様の方法で EPDMゴムを積層したゴム.ポリエス テルフィルム積層体を得た。結果を表 3に示す。本実施例で得られたゴム'ポリエステ ルフィルム積層体は実施例 1で得られたゴム.ポリエステルフィルム積層体より初期接 着強度、耐溶剤接着強度及び耐水接着強度のいずれもが優れておりさらに高品質 であった。特に、耐水接着強度が著しく改善された。  By the method of Example 13, the thickness of the crosslinked polymer layer of the rubber laminated coating film was set to 0.2 m on both sides to obtain a rubber laminated coating film. Using the obtained coated polyester film for rubber lamination, a rubber.polyester film laminate in which EPDM rubber was laminated in the same manner as in Example 1 was obtained. The results are shown in Table 3. The rubber 'polyester film laminate obtained in this example is the rubber obtained in Example 1. The initial adhesion strength, solvent-resistant adhesive strength and water-resistant adhesive strength are all superior to those of the polyester film laminate. It was quality. In particular, the water-resistant adhesive strength was remarkably improved.
[0179] (実施例 15) [Example 15]
実施例 1の方法において、ポリエステルフィルム製造工程において塗布液の塗布を 取り止める以外は、実施例 1と同様の方法でポリエステルフィルムを得た。得られたポ リエステルフィルムの両面にコロナ処理をし、さらに、そのコロナ処理した両面に実施 例 13で用いた塗布液をコーターを用いて乾燥後の厚みとして両面共に 0. l l rnと なるように被覆してゴム積層用被覆ポリエステルフィルムを得た。本実施例で得られ たゴム積層用被覆ポリエステルフィルムを用いて、実施例 5と同様の方法でゴム'ポリ エステルフィルム積層体を得た。結果を表 3に示す。本実施例で得られたゴム'ポリエ ステルフィルム積層体は実施例 5で得られたゴム.ポリエステルフィルム積層体より耐 溶剤接着強度や耐水接着強度に優れておりさらに高品質であった。特に、耐水接着 強度が著しく改善された。 In the method of Example 1, the coating liquid is applied in the polyester film manufacturing process. A polyester film was obtained in the same manner as in Example 1 except that the removal was performed. Both sides of the obtained polyester film are subjected to corona treatment, and the coating liquid used in Example 13 is applied to both sides of the corona treatment so that the thickness after drying using a coater is 0. ll rn on both sides. The coated polyester film for rubber lamination was obtained by coating. A rubber'polyester film laminate was obtained in the same manner as in Example 5 using the coated polyester film for rubber lamination obtained in this example. The results are shown in Table 3. The rubber / polyester film laminate obtained in this example was superior to the rubber / polyester film laminate obtained in Example 5 in solvent resistance and water resistance, and was of higher quality. In particular, the water-resistant adhesive strength was significantly improved.
[0180] (実施例 16)  [0180] (Example 16)
実施例 15の方法において、塗布液の NBR変性ポリウレタンとイソシァネート系架橋 剤であるミリォネート(登録商標) MR (日本ポリウレタン社製)の組成比を固形分質量 比で 100 : 10になるように変更する以外は、実施例 15と同様にしてゴム積層用被覆 フィルム及びゴム 'ポリエステルフィルム積層体を得た。結果を表 3に示す。本実施例 で得られたゴム ·ポリエステルフィルム積層体は、実施例 15で得られたゴム ·ポリエス テルフィルム積層体より接着特性が劣る力 S、実施例 5と同等の特性を有しており高品 質であった。  In the method of Example 15, the composition ratio of NBR-modified polyurethane in the coating solution and myonate (registered trademark) MR (manufactured by Nippon Polyurethane Co., Ltd.), which is an isocyanate cross-linking agent, is changed to a solid content mass ratio of 100: 10. Except for the above, a coated film for rubber lamination and a rubber 'polyester film laminate were obtained in the same manner as in Example 15. The results are shown in Table 3. The rubber / polyester film laminate obtained in this example has the same strength S as that of Example 5 with a lower adhesive strength S than the rubber / polyester film laminate obtained in Example 15, and has high properties. It was quality.
[0181] (実施例 17)  [0181] (Example 17)
実施例 15の方法において、塗布液の NBR変性ポリウレタンとイソシァネート系架橋 剤であるミリォネート(登録商標) MR (日本ポリウレタン社製)の組成比を固形分質量 比で 100 : 100になるように変更する以外は、実施例 15と同様にしてゴム積層用被覆 フィルム及びゴム 'ポリエステルフィルム積層体を得た。結果を表 3に示す。本実施例 で得られたゴム ·ポリエステルフィルム積層体は、実施例 15で得られたゴム ·ポリエス テルフィルム積層体と同等の特性を有しており、極めて高品質であった。  In the method of Example 15, the composition ratio of NBR-modified polyurethane in the coating solution and myonate (registered trademark) MR (manufactured by Nippon Polyurethane Co., Ltd.), which is an isocyanate crosslinking agent, is changed so that the solid mass ratio is 100: 100. Except for the above, a coated film for rubber lamination and a rubber 'polyester film laminate were obtained in the same manner as in Example 15. The results are shown in Table 3. The rubber / polyester film laminate obtained in this example had the same properties as the rubber / polyester film laminate obtained in Example 15, and was of very high quality.
[0182] (実施例 18)  [0182] (Example 18)
実施例 15の方法において、塗布液のイソシァネート系架橋剤をコロネート(登録商 標) L (日本ポリウレタン社製)の組成比を固形分質量比で 100: 250になるように変更 し、かつ架橋高分子層の層厚みを乾燥後の厚みとして 0. 02 mに変更する以外は 、実施例 15と同様にしてゴム積層用被覆フィルム及びゴム'ポリエステルフィルム積 層体を得た。結果を表 3に示す。本実施例で得られたゴム'ポリエステルフィルム積層 体は、実施例 15で得られたゴム 'ポリエステルフィルム積層体と同等の特性を有して おり、極めて高品質であった。 In the method of Example 15, the isocyanate-based crosslinking agent of the coating solution was changed so that the composition ratio of coronate (registered trademark) L (manufactured by Nippon Polyurethane Co., Ltd.) was 100: 250 in terms of the solid content mass ratio, and the crosslinking Other than changing the layer thickness of the molecular layer to 0.02 m as the thickness after drying In the same manner as in Example 15, a rubber laminated coating film and a rubber / polyester film laminate were obtained. The results are shown in Table 3. The rubber 'polyester film laminate obtained in this example had the same characteristics as the rubber' polyester film laminate obtained in Example 15, and was extremely high quality.
[0183] (実施例 19)  [0183] (Example 19)
繊維強化熱可塑性樹脂シートからなる芯層として、連続ガラス繊維マット (スワール 状ロービングマットにニードルパンチを施したもの)にポリプロピレン樹脂を溶融含浸 してなるガラス繊維強化ポリプロピレン樹脂シート (厚さ: 3. 7mm、繊維含有量: 40 質量0 /0)を用いた。実施例 1等の方法で得られた EPDMゴム層を積層したゴム'ポリ エステルフィルム積層体のゴム層との反対表面に印刷で装飾し、かつ EPDMゴム層 表面に実施例 1にお!/、て用いた EPDMゴム溶液を乾燥後厚みで 3 mとなるように 積層したゴム'ポリエステルフィルム積層体を上記芯層の両面にゴム'ポリエステルフ イルム積層体のゴム層面側が芯層側になるように積層し、これを曲面の金型に揷入し て、熱プレスにより温度 200°C X圧力 10kg/cm2で加熱加圧して芯層と表層を熱融 着させた。次いで、冷却して、曲面構造のプラスチック成型体 (以下、成型体と略称 する)を得た。得られたプラスチック成型体の表面は、写像が映し出されるような、高 度な平滑表面を有しており印刷の見栄えが極めて優れていた。また、成型体の寸法 精度が良ぐかつ形状の歪みもなかった。 Glass fiber reinforced polypropylene resin sheet (thickness: 3.) as a core layer made of fiber reinforced thermoplastic resin sheet, melted and impregnated with polypropylene resin on continuous glass fiber mat (swirl roving mat with needle punch). 7 mm, fiber content: 40 mass 0/0) were used. The rubber layer obtained by laminating the EPDM rubber layer obtained by the method of Example 1 or the like is decorated on the surface opposite to the rubber layer of the polyester film laminate, and the surface of the EPDM rubber layer is the same as in Example 1! /, The rubber 'polyester film laminate obtained by drying the EPDM rubber solution used to be 3 m in thickness after drying is placed on both sides of the core layer so that the rubber layer side of the rubber' polyester film laminate is the core layer side. The laminate was inserted into a curved mold and heated and pressed at a temperature of 200 ° C. and a pressure of 10 kg / cm 2 by hot pressing to heat-bond the core layer and the surface layer. Next, cooling was performed to obtain a plastic molded body having a curved surface structure (hereinafter abbreviated as a molded body). The surface of the obtained plastic molding had a highly smooth surface on which a mapping was projected, and the printing appearance was extremely excellent. Also, the dimensional accuracy of the molded body was good and there was no distortion of the shape.
[0184] (比較例 7)  [0184] (Comparative Example 7)
実施例 19の方法において、ゴム'ポリエステルフィルム積層体を積層することなく実 施例 19と同様の方法でプラスチック成型体を得た。得られたプラスチック成型体は、 ガラス繊維の浮き出し等の表面凹凸があり表面状態が良くなかった。従って、該成型 体の表面に実施例 19において用いたゴム'ポリエステルフィルム積層体に施したと同 様の印刷をしたが見栄えがよくなかった。  In the method of Example 19, a plastic molded product was obtained in the same manner as in Example 19 without laminating the rubber / polyester film laminate. The obtained plastic molding had surface irregularities such as glass fiber embossing and the surface condition was not good. Accordingly, although the same printing as that applied to the rubber / polyester film laminate used in Example 19 was performed on the surface of the molded body, it did not look good.
[0185] (比較例 8) [0185] (Comparative Example 8)
実施例 19の方法において、ゴム.ポリエステルフィルム積層体に替え、厚さ 250 mの EPDMゴムシートを積層して、実施例 19と同様にしてプラスチック成型体との複 合体を得た。得られた成型体との複合体の表面状態は比較例 7で得られた成型体よ りは良好であつたが、部分的にガラス繊維の浮き出し等の表面凹凸があり、実施例 1 9で得られたプラスチック成型体との複合体に比べると表面状態がよくな力 た。また 、本比較例においては、 EPDMゴムシートが薄ぐかつポリエステルフィルムが一体 化されて!/、な!/、ために取り扱いに《プラスチック成型体製造時の操業性が劣って!/ヽ た。 In the method of Example 19, instead of the rubber / polyester film laminate, an EPDM rubber sheet having a thickness of 250 m was laminated to obtain a composite with a plastic molding in the same manner as in Example 19. The surface state of the composite with the obtained molded body is the same as that of the molded body obtained in Comparative Example 7. Although the surface roughness was good, the surface was partially uneven, such as the glass fiber being raised, and the surface condition was better than the composite with the plastic molded body obtained in Example 19. In addition, in this comparative example, the EPDM rubber sheet was thin and the polyester film was integrated! /,!, And so on.
[0186] (比較例 9)  [0186] (Comparative Example 9)
実施例 19の方法において、ゴム.ポリエステルフィルム積層体に替え、ゴム層の積 層を取り止めたポリエステル層のみの単層フィルムを用いて、実施例 19と同様にして プラスチック成型体との複合体を得た。得られたプラスチック成型体との複合体の表 面状態は良好であつたが、プラスチック成型体の寸法精度や形状歪みが実施例 19 で得られたプラスチック成型体よりは劣っていた。  In the method of Example 19, a rubber / polyester film laminate was used, and a single layer film of only a polyester layer with the rubber layer being removed was used to form a composite with a plastic molding in the same manner as in Example 19. Obtained. Although the surface state of the composite with the obtained plastic molding was good, the dimensional accuracy and shape distortion of the plastic molding were inferior to those of the plastic molding obtained in Example 19.
[0187] (実施例 20) [Example 20]
各辺が経糸、緯糸のいずれかと平行な 1辺 300mmの正方形となるようカットした炭 素繊維織物 4plyを型に積層し、その上にピールプライと樹脂配分媒体を積層した。 次に、ナイロン製フィルムを用いてパギングし、真空ポンプを用いて [大気圧— 0· 1] (MPa)に減圧した後、型を 90°Cに保持し、 "ェピコート (登録商標)" 828 (ジャパン エポキシレジン社製、ビスフエノール A型エポキシ樹脂) 100質量%に、 "キュアゾー ノレ (登録商標)" 2E4MZ (品番、四国化成工業 (株)製、 2—ェチルー 4一メチルイミ ダゾール) 3質量%を配合した、  Carbon fiber woven fabric 4ply cut so that each side is a square with a side of 300mm parallel to either warp or weft was laminated in a mold, and peel ply and resin distribution medium were laminated on it. Next, after pugging with a nylon film and reducing the pressure to [atmospheric pressure—0 · 1] (MPa) using a vacuum pump, the mold was held at 90 ° C., and “Epicoat®” 828 (Japan Epoxy Resin, bisphenol A type epoxy resin) 100% by mass, "Cuazo Nore (registered trademark)" 2E4MZ (Product No., Shikoku Kasei Kogyo Co., Ltd., 2-ethyl 4-methylimidazole) 3% by mass Blended,
次いで、液状のエポキシ樹脂組成物 RTM用樹脂組成物を注入した。 RTM用樹脂 組成物が型内に流入してから 5分後に注入を終了し、 RTM用樹脂組成物が型内に 流入してから 40分後に脱型を開始し、繊維強化プラスチック部材よりなる芯層を得た 。得られた芯層の両面に実施例 5等で得られた NBRゴム層を積層したゴム'ポリエス テルフィルム積層体 (使用直前に NBRゴム層表面をプラズマ処理した)のゴム層面側 が芯層側になるように積層し、これを曲面の金型に揷入して、熱プレスにより温度 17 0°C X圧力 10kg/cm2で 2時間加熱加圧して成型と硬化を行った後に冷却して、曲 面構造のプラスチック成型体を得た。得られたプラスチック成型体の表面は写像が映 し出される用な高度な平滑表面を有していた。また、成型体の寸法精度が良ぐかつ 形状の歪みもなかった。 Next, a liquid epoxy resin composition RTM resin composition was injected. The injection was completed 5 minutes after the RTM resin composition flowed into the mold, and demolding started 40 minutes after the RTM resin composition flowed into the mold. Got a layer. The rubber layer side of the rubber layer obtained by laminating the NBR rubber layer obtained in Example 5 etc. on both surfaces of the obtained core layer (the NBR rubber layer surface was plasma-treated immediately before use) is the core layer side. Is laminated into a curved mold, and heated and pressed by a hot press at a temperature of 170 ° CX pressure of 10 kg / cm 2 for 2 hours to form and cure, then cooled, A plastic molded body with a curved structure was obtained. The surface of the obtained plastic molding had a highly smooth surface for displaying a map. In addition, the dimensional accuracy of the molded body is good and There was no distortion of the shape.
上記方法で得られたプラスチック成型体表面をイソプロピルアルコールで洗浄し、メ ラミン系焼付け塗料を塗膜の厚みが乾燥後 35 ΐηとなるように塗布した。その後、室 温で 30分間放置し、さらに 140°Cのオーブン中で 30分間乾燥焼付けを行った。塗 装膜の見栄えは極めて良好であった。また、塗装膜の接着性や接着耐久性も良好で あった。  The surface of the plastic molded body obtained by the above method was washed with isopropyl alcohol, and a melamine-based baking paint was applied so that the thickness of the coating film was 35 ΐη after drying. Then, it was left at room temperature for 30 minutes, and further dried and baked in an oven at 140 ° C for 30 minutes. The appearance of the coating film was very good. Also, the adhesion and durability of the paint film were good.
[0188] (比較例 10) [0188] (Comparative Example 10)
実施例 20の方法において、ゴム'ポリエステルフィルム積層体を積層することなく実 施例 20と同様の方法でプラスチック成型体を得た。得られたプラスチック成型体は、 炭素繊維の浮き出し等の表面凹凸があり表面状態が良くな力 た。従って、該プラス チック成型体表面に実施例 20と同様の印刷をした力 見栄えがよくな力 た。  In the method of Example 20, a plastic molded product was obtained in the same manner as in Example 20 without laminating the rubber / polyester film laminate. The obtained plastic molding had surface irregularities such as carbon fiber embossing and had a good surface condition. Accordingly, the same printing force as in Example 20 was applied to the surface of the plastic molded body.
[0189] (比較例 11) [0189] (Comparative Example 11)
実施例 20の方法において、ゴム 'ポリエステルフィルム積層体に替え、厚さ 250 mの NBRゴムシートを積層して、実施例 20と同様にしてプラスチック成型体を得た。 得られたプラスチック成型体の表面状態は比較例 10で得られたプラスチック成型体 よりは良好であつたが、部分的に炭素繊維の浮き出し等の表面凹凸があり、実施例 2 0で得られた成型体に比べると表面状態がよくな力 た。また、比較例 8と同様に、 N BRゴムシートが薄ぐかつポリエステルフィルムが一体化されていないために取り扱 いにくぐプラスチック成型体製造時の操業性が劣って!/、た。  In the method of Example 20, instead of the rubber and polyester film laminate, an NBR rubber sheet having a thickness of 250 m was laminated, and a plastic molded article was obtained in the same manner as in Example 20. The surface state of the obtained plastic molded body was better than that of the plastic molded body obtained in Comparative Example 10, but there were surface irregularities such as partly raised carbon fibers, which were obtained in Example 20. Compared to the molded body, the surface condition was better. Further, as in Comparative Example 8, the NBR rubber sheet was thin and the polyester film was not integrated, so that the operability at the time of manufacturing a plastic molded product that was difficult to handle was inferior! /.
[0190] (比較例 12) [0190] (Comparative Example 12)
実施例 20の方法において、ゴム 'ポリエステルフィルム積層体に替え、ゴム層の積 層を取り止めたポリエステルのみの単層フィルムを用いて、実施例 20と同様にしてプ ラスチック成型体との複合体を得た。得られたプラスチック成型体との複合体の表面 状態は良好であつたが、成型体の寸法精度や形状歪みが実施例 20で得られたブラ スチック成型体よりは劣っていた。また、塗装工程においてプラスチック成型体の歪 が増大した。  In the method of Example 20, in place of the rubber 'polyester film laminate, a single-layer film made only of polyester with the rubber layer stacked off was used to form a composite with a plastic molded body in the same manner as in Example 20. Obtained. Although the surface condition of the composite with the obtained plastic molding was good, the dimensional accuracy and shape distortion of the molding were inferior to those of the plastic molding obtained in Example 20. In addition, the distortion of the plastic molding increased during the painting process.
[0191] (実施例 21) [0191] (Example 21)
実施例 20の方法において、 NBRゴム層を積層したゴム 'ポリエステルフィルム積層 体の両面に繊維強化プラスチック部材よりなる芯層を積層し、実施例 20と同様にして 成型し、 NBRゴムを積層したゴム ·ポリエステルフィルム積層体が中間層とした曲面 構造のプラスチック成型体を得た。得られたプラスチック成型体の表面の平滑性は実 施例 20で得られた成型体よりは若干劣る力 比較例 10で得られたプラスチック成型 体よりは格段に優れていた。 In the method of Example 20, NBR rubber layer laminated rubber 'polyester film lamination A core layer made of fiber reinforced plastic material is laminated on both sides of the body, molded in the same way as in Example 20, and a plastic molded body with a curved structure with a rubber / polyester film laminate laminated with NBR rubber as an intermediate layer is obtained. It was. The surface smoothness of the obtained plastic molded body was slightly inferior to the molded body obtained in Example 20. The plastic molded body obtained in Comparative Example 10 was remarkably superior.
[表 1] [table 1]
Figure imgf000077_0001
Figure imgf000077_0001
[表 2] 比较例 比較 « 実脑 実施例 実施例 実施例 実施例 実施例 実施例 5 6 5 6 7 8 9 1 0 1 1 面配向度 0. 138 0. 138 0. 081 0.081 0.081 0. 081 0.081 0. 08 ! 0. 081 [Table 2] Comparative Examples Comparison «Actual Examples Examples Examples Examples Examples Examples Examples Examples 5 6 5 6 7 8 9 1 0 1 1 Degree of Orientation 0. 138 0. 138 0. 081 0.081 0.081 0. 081 0.081 0. 08! 0. 081
110/ 100 U 0/100 80/85 80/85 80/8S 80/85 30/85 80/85 80/85 初期接着強度  110/100 U 0/100 80/85 80/85 80 / 8S 80/85 30/85 80/85 80/85 Initial bond strength
6 界面出し 6 Interfacing
10 16 16 18 15 15 13 10 16 16 18 15 15 13
不可 耐港剤接着強度 出し  Not possible Port resistance adhesive strength
3 4 13 V 14 i f 界面  3 4 13 V 14 if interface
11 1 !  11 1!
(Ν/2θ8ΐβι} 不可 耐水接着強度  (Ν / 2θ8ΐβι} Impossible Water-resistant adhesive strength
< 1 <1 5 5 6 4 4 6 界面出し 不可 金型成型性 O X @ © @ @ @ @ @ 真空成型性 X O O O O O 〇 O 耐溶剤性 o O o Q O o o O o ィンキ密着性 0 o X O o o 0 o [0194] [表 3] <1 <1 5 5 6 4 4 6 Interfacing not possible Mold formability OX @ © @ @ @ @ @ Vacuum formability XOOOOO 〇 O Solvent resistance o O o QO oo O o Ink adhesion 0 o XO oo 0 o [0194] [Table 3]
Figure imgf000078_0001
Figure imgf000078_0001
産業上の利用の可能性  Industrial applicability
[0195] 本発明のゴム積層用被覆ポリエステルフィルムは層厚みの薄い架橋高分子膜層で ポリエステルフィルムとゴム層の接着性を向上させており、接着剤層を排除しているの で層厚みの厚い接着剤層により引き起こされる成型性の低下を回避することができる 。その上に、該ポリエステルフィルムとゴム層との接着力が高ぐかつ接着力の耐久性 に優れたゴム 'ポリエステルフィルム積層体を得ることができる。  [0195] The coated polyester film for rubber lamination of the present invention is a cross-linked polymer film layer having a thin layer thickness, which improves the adhesion between the polyester film and the rubber layer, and eliminates the adhesive layer. The moldability degradation caused by the thick adhesive layer can be avoided. In addition, a rubber / polyester film laminate having a high adhesive force between the polyester film and the rubber layer and an excellent durability of the adhesive force can be obtained.
また、本発明のゴム 'ポリエステルフィルム積層体は、優れた成型性を有するので、 例えば、プラスチック成型体用部材として使用した場合にプラスチック成型体の成型 性を低下させることがない。さらに、本発明のゴム'ポリエステルフィルム積層体は、ゴ ム層が積層されているので、例えば、該プラスチック成型体の部材として使用した場 合においてプラスチック成型体の成型の折に発生する歪をゴム層の弾性を利用して 緩和することができるので、例えば、プラスチック成型体の表面状態を改善することが でき、かつ該プラスチック成型体の使用において成型体に加わる外力をゴム層の有 する弾性で緩和することが可能であり、例えば、プラスチック成型体の外観や耐久性 を向上させることができる等の効果を付与することができる。また、本発明のゴム'ポリ エステルフィルム積層体はポリエステルフィルムが積層されているのでゴム層単体品 に比べて取り扱!/、性に優れて!/、る。 Further, since the rubber / polyester film laminate of the present invention has excellent moldability, for example, when used as a member for a plastic molded body, the moldability of the plastic molded body is not lowered. Furthermore, since the rubber layer of the polyester film laminate of the present invention has a rubber layer laminated, for example, when it is used as a member of the plastic molded body, the distortion generated in the molding of the plastic molded body is reduced. Since the elasticity of the layer can be relaxed, for example, the surface state of the plastic molded body can be improved, and the external force applied to the molded body in the use of the plastic molded body can be improved by the elasticity of the rubber layer. For example, effects such as improving the appearance and durability of the plastic molded body can be imparted. In addition, the rubber 'poly of the present invention The polyester film laminate is laminated with a polyester film, so it is easier to handle and better than a single rubber layer product!
また、本発明のゴム'ポリエステルフィルム積層体は、ゴムとポリエステルフィルムの 接着性や接着性の耐久性が優れているので、例えば、プラスチック成型体用部材と して使用した場合にプラスチック成型体の耐久性が向上する。  In addition, since the rubber / polyester film laminate of the present invention is excellent in adhesion between rubber and polyester film and durability of adhesiveness, for example, when used as a member for plastic molding, Durability is improved.
また、本発明のゴム'ポリエステルフィルム積層体は、基材ポリエステルフィルムの両 面に架橋高分子膜層が形成された形態も含まれるので、ゴム層との接着性や接着耐 久 1·生のみでなぐゴム層を積層した面との反対面においても、例えば、印刷インキと の接着性や接着耐久性も向上できるという利点を有する。したがって、本発明のゴム 'ポリエステルフィルム積層体のポリエステルフィルム表面に、印刷、塗装あるいは金 属の蒸着等により装飾を施す場合に、印刷インク、塗料、あるいは金属薄膜等とポリ エステルフィルムとの接着性や接着耐久性が向上するという利点を有している。また In addition, the rubber / polyester film laminate of the present invention includes a form in which a cross-linked polymer film layer is formed on both sides of the base polyester film, so that the adhesiveness to the rubber layer and the adhesive durability are only 1 life. Even on the surface opposite to the surface on which the rubber layer is laminated, there is an advantage that, for example, adhesion to printing ink and adhesion durability can be improved. Therefore, when decorating the polyester film surface of the rubber 'polyester film laminate of the present invention by printing, painting or metal deposition, etc., the adhesion between the printing ink, paint, metal thin film, etc. and the polyester film And has the advantage of improved adhesion durability. Also
、ゴム層を積層した面との反対面にフィルム、織物、不織布あるいは成型体等の他素 材とを貼り合せる場合に、該素材とポリエステルフィルムとの接着性や接着耐久性が 向上するとレ、う利点も有して!/、る。 When the other material such as a film, woven fabric, non-woven fabric or molded body is bonded to the surface opposite to the surface on which the rubber layer is laminated, the adhesion and durability of the material to the polyester film are improved. It also has an advantage!
また、本発明のプラスチック成型体は、上記ゴム'ポリエステルフィルム積層体をプラ スチック成型体の一構成部材として用いているので、以下のような特徴を有する。  The plastic molded body of the present invention has the following characteristics because the rubber / polyester film laminate is used as a constituent member of the plastic molded body.
(1)プラスチック成型体の成形において発生する歪をゴム層の弾性を利用して緩和 すること力 Sできるので、例えば、プラスチック成型体の表面状態を改善することができ (1) Since it is possible to reduce the strain generated in the molding of a plastic molded body by utilizing the elasticity of the rubber layer, the surface condition of the plastic molded body can be improved, for example.
、かつ成型時に発生する歪を緩和することができ、さらに、該プラスチック成型体の使 用において成型体に加わる外力をゴム層の有する弾性で緩和することが可能であり 、例えば、プラスチック成型体の耐久性を向上させることができる。 In addition, it is possible to relieve distortion generated during molding, and further, it is possible to relieve external force applied to the molded body by using the plastic molded body by the elasticity of the rubber layer. Durability can be improved.
(2)上記ゴム.ポリエステルフィルム積層体はポリエステルフィルムが積層されている のでプラスチック成型体の強度等を高める補強効果を発現する。  (2) The above-mentioned rubber polyester film laminate exhibits a reinforcing effect that enhances the strength and the like of the plastic molding because the polyester film is laminated.
(3)上記ゴム.ポリエステルフィルム積層体はポリエステルフィルムが積層されている ので、プラスチック成型体のガスノ リア一性等のバリアー性を改善できることがある。  (3) Since the polyester film laminate is laminated with the rubber polyester film laminate described above, it may be possible to improve the barrier properties such as gas-noirity of the plastic molding.
(4)上記ゴム'ポリエステルフィルム積層体のポリエステルフィルム面プラスチック成 型体の表面に上記ゴム'ポリエステルフィルム積層体のポリエステルフィルム面側が 表層となるように積層した場合は、ポリエステルフィルムの表面平滑性及びゴム層に よるプリントスルー効果により極めて高度な表面平滑性が得られるという利点を有する 。そのため、プラスチック成型体の表面に加飾処理した場合に品位の高い表面装飾 が可能となる。 (4) The polyester film surface side of the rubber 'polyester film laminate is placed on the surface of the plastic molded body of the rubber' polyester film laminate. When laminated so as to be a surface layer, there is an advantage that extremely high surface smoothness can be obtained due to the surface smoothness of the polyester film and the print-through effect of the rubber layer. Therefore, high-quality surface decoration is possible when the surface of the plastic molding is decorated.
(5)上記特性を有したゴム'ポリエステルフィルム積層体を用いているので、被覆ポ リエステルフィルムとゴム層との接着力が高ぐかつ接着力の耐久性に優れているの で、例えば、自動車用外板等の耐久性が求められる成型体の構成部材として好適に 使用すること力でさる。  (5) Since the rubber / polyester film laminate having the above characteristics is used, the adhesive strength between the coated polyester film and the rubber layer is high and the durability of the adhesive strength is excellent. It can be used with a force suitable for use as a structural member of a molded body that requires durability such as an outer plate.
また、例えば、ゴム ·ポリエステルフィルム積層体単膜あるいは他の素材と積層した 形で、ゴム.ポリエステルフィルム複合体のゴム層の有するクッション性、緩衝性及び グリップ性を活力もて、各種機器や装置のシール材、クッション材及び表皮材等とし ても好適に使用すること力できる。特に、上記したごとぐ本発明のゴム.ポリエステル フィルム積層体は、ポリエステルフィルムとゴム層との接着性や接着耐久性に優れて V、るので、上記用途にお!/、て接着性や接着耐久性の要求の厳しレ、用途にぉレ、て特 に好適に使用可能である。従って、産業界に寄与することが大である。  In addition, for example, a rubber / polyester film laminate single layer or laminated with other materials, the rubber layer of rubber / polyester film composites can be used for various devices and devices with vitality of cushioning, cushioning and gripping properties. It can also be used suitably as a sealing material, cushioning material, and skin material. In particular, the rubber according to the present invention as described above, the polyester film laminate is excellent in the adhesion between the polyester film and the rubber layer and the adhesion durability V. It can be used particularly suitably for strict durability requirements and applications. Therefore, it is important to contribute to the industry.

Claims

請求の範囲 The scope of the claims
[I] 面配向度が 0· 005—0. 15であるポリエステルフィルムの少なくとも片面に厚み 0.  [I] The thickness of at least one surface of the polyester film having a plane orientation degree of 0 · 005−0.15 is 0.1.
003〜5 111の架橋高分子膜を有し、フィルムの長手方向及び幅方向における 10% 伸長時応力(25°C)が 20〜200MPaであることを特徴とするゴム積層用被覆ポリエス テルフィルム。  A coated polyester film for rubber lamination, having a cross-linked polymer film of 003 to 5111 and having a 10% elongation stress (25 ° C.) in the longitudinal and width directions of 20 to 200 MPa.
[2] 架橋高分子膜がポリエステル、ポリウレタン及びアクリル系ポリマーより選ばれた少 なくとも 1種の樹脂よりなる請求項 1記載のゴム積層用被覆ポリエステルフィルム。  [2] The coated polyester film for rubber lamination according to [1], wherein the cross-linked polymer film comprises at least one resin selected from polyester, polyurethane and acrylic polymer.
[3] 架橋高分子膜が架橋剤により架橋されてなる請求項 1又は 2記載のゴム積層用被 覆ポリエステノレフイノレム。  [3] The rubber laminated covered polyester resin according to claim 1 or 2, wherein the crosslinked polymer film is crosslinked with a crosslinking agent.
[4] 架橋剤が、メラミン系架橋剤、ォキサゾリン系架橋剤、イソシァネート系架橋剤、アジ リジン系架橋剤、エポキシ系架橋剤、メチロール化あるいはアルキロール化した尿素 系、アクリルアミド系、ポリアミド系樹脂、アミドエポキシ化合物、シランカップリング剤 及びチタネート系カップリング剤より選ばれた少なくとも 1種である請求項 3に記載の ゴム積層用被覆ポリエステルフィルム。  [4] The crosslinking agent is a melamine crosslinking agent, an oxazoline crosslinking agent, an isocyanate crosslinking agent, an aziridine crosslinking agent, an epoxy crosslinking agent, a methylolated or alkylolized urea, acrylamide, polyamide resin, 4. The coated polyester film for rubber lamination according to claim 3, which is at least one selected from an amide epoxy compound, a silane coupling agent, and a titanate coupling agent.
[5] 架橋高分子膜を構成する樹脂と架橋剤との比が架橋剤/樹脂の重量比で 0. 5以 上である請求項 3又は 4に記載のゴム積層用被覆ポリエステルフィルム。  [5] The coated polyester film for rubber lamination according to [3] or [4], wherein the ratio of the resin constituting the crosslinked polymer film to the crosslinking agent is 0.5 or more in terms of the weight ratio of the crosslinking agent / resin.
[6] 架橋高分子膜が、自己架橋型のポリエステル、ポリウレタン及びアクリル系ポリマー よりなる群から選択される 1種以上の自己架橋型ポリマーが、自己架橋したものを含 んでいる請求項 2〜5のいずれかに記載のゴム積層用被覆ポリエステルフィルム。  [6] The cross-linked polymer film includes one or more self-cross-linked polymers selected from the group consisting of self-cross-linked polyester, polyurethane and acrylic polymers. The covering polyester film for rubber | gum lamination in any one of.
[7] 架橋高分子膜がポリエステルフィルムの両面に形成されてなる請求項 1〜6のいず れかに記載のゴム積層用被覆ポリエステルフィルム。  7. The coated polyester film for rubber lamination according to any one of claims 1 to 6, wherein the crosslinked polymer film is formed on both sides of the polyester film.
[8] 請求項 1〜6のいずれかに記載のゴム積層用被覆ポリエステルフィルムとゴムを積 層してなるゴム'ポリエステルフィルム積層体。  [8] A rubber'polyester film laminate comprising a rubber laminate-coated polyester film according to any one of claims 1 to 6 and rubber.
[9] 被覆ポリエステルフィルムとゴム層とを接着剤を介することなく直接積層してなる請 求項 8記載のゴム'ポリエステルフィルム積層体。  [9] The rubber'polyester film laminate according to claim 8, wherein the coated polyester film and the rubber layer are directly laminated without using an adhesive.
[10] 被覆ポリエステルフィルムとゴム層との接着強度が 9N/20mm以上である請求項 8 又は 9に記載のゴム'ポリエステルフィルム積層体。  10. The rubber / polyester film laminate according to claim 8 or 9, wherein the adhesive strength between the coated polyester film and the rubber layer is 9 N / 20 mm or more.
[I I] トルエン浸漬後(25°C、 72時間)の被覆ポリエステルフィルムとゴム層との接着強度 力 N/20mm以上である請求項 8〜10のいずれかに記載のゴム 'ポリエステルフィ ルム積層体。 [II] Adhesive strength between coated polyester film and rubber layer after immersion in toluene (25 ° C, 72 hours) The rubber 'polyester film laminate according to any one of claims 8 to 10, wherein the force is N / 20 mm or more.
[12] 明細書中で定義した方法で耐水耐久処理をした後の被覆ポリエステルフィルムとゴ ム層との接着強度が 8N/20mm以上である請求項 8〜; 11のいずれかに記載のゴム .ポリエステルフィルム積層体。  [12] The rubber according to any one of [8] to [11], wherein the adhesive strength between the coated polyester film and the rubber layer after the water-resistant durability treatment by the method defined in the specification is 8 N / 20 mm or more. Polyester film laminate.
[13] 面配向度が 0. 005—0. 15であるポリエステルフィルムの少なくとも片面に厚み 0.  [13] The thickness of at least one surface of the polyester film having a plane orientation degree of 0.005—0.15 is 0.1.
003〜5 mの架橋高分子膜を有する、フィルムの長手方向及び幅方向における 10 10 in the longitudinal and width directions of the film with a 003-5 m cross-linked polymer membrane
%伸長時応力(25°C)が 20〜200MPaであるポリエステルフィルムの前記架橋高分 子膜の表面に未架橋ゴム層を積層し、次!、で未架橋ゴム層を架橋してなる請求項 8An uncrosslinked rubber layer is laminated on the surface of the crosslinked polymer film of a polyester film having a% elongation stress (25 ° C) of 20 to 200 MPa, and the uncrosslinked rubber layer is crosslinked with 8
〜; 12に記載のゴム ·ポリエステルフィルム積層体の製造方法。 ~; The method for producing a rubber-polyester film laminate according to 12.
[14] 未架橋ゴム層に接着性改良剤が配合されてなる請求項 13に記載のゴム'ポリエス テルフィルム積層体の製造方法。 14. The method for producing a rubber / polyester film laminate according to claim 13, wherein an adhesion improver is blended in the uncrosslinked rubber layer.
[15] 請求項 8〜 12のいずれかに記載のゴム'ポリエステルフィルム積層体とプラスツチッ ク成型体との複合体。 [15] A composite of the rubber 'polyester film laminate according to any one of claims 8 to 12 and a plastic molding.
[16] 最表面にポリエステルフィルムを配してなる請求項 15に記載の複合体。 16. The composite according to claim 15, wherein a polyester film is disposed on the outermost surface.
[17] ポリエステルフィルム表面に印刷インキ、金属薄膜、無機薄膜及び塗料より選ばれ た少なくとも 1種よりなる加飾層を設けてなる請求項 16記載の複合体。 17. The composite according to claim 16, wherein a decorative layer made of at least one selected from printing ink, metal thin film, inorganic thin film and paint is provided on the surface of the polyester film.
[18] ゴム ·ポリエステルフィルム積層体をプラスッチック成型体の中間層として用いてなる 請求項 15に記載の複合体。 18. The composite according to claim 15, wherein the rubber / polyester film laminate is used as an intermediate layer of the plastic molding.
[19] プラスチック成型体がシート状である請求項 15〜; 18のいずれかに記載の複合体。 [19] The composite according to any one of [15] to [18], wherein the plastic molding is in the form of a sheet.
[20] プラスチック成型体が湾曲部分を有してなる請求項 19に記載の複合体。 20. The composite according to claim 19, wherein the plastic molded body has a curved portion.
PCT/JP2007/070701 2006-10-30 2007-10-24 Polyester coating film for use in rubber laminate, rubber-polyester film laminate, process for production of the laminate, and composite material WO2008053756A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008542059A JP4905458B2 (en) 2006-10-30 2007-10-24 Coated polyester film for rubber lamination, rubber / polyester film laminate and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006294027 2006-10-30
JP2006-294027 2006-10-30
JP2006296030 2006-10-31
JP2006-296030 2006-10-31

Publications (1)

Publication Number Publication Date
WO2008053756A1 true WO2008053756A1 (en) 2008-05-08

Family

ID=39344098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070701 WO2008053756A1 (en) 2006-10-30 2007-10-24 Polyester coating film for use in rubber laminate, rubber-polyester film laminate, process for production of the laminate, and composite material

Country Status (2)

Country Link
JP (1) JP4905458B2 (en)
WO (1) WO2008053756A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005807A (en) * 2008-06-24 2010-01-14 Toyobo Co Ltd Resin composite
JP2010143202A (en) * 2008-12-22 2010-07-01 Toyobo Co Ltd Laminated polyester film for facing material, and composite molding improved in touch using the same
WO2012144418A1 (en) * 2011-04-18 2012-10-26 三菱樹脂株式会社 Coated film
CN108559125A (en) * 2018-05-06 2018-09-21 厦门市韬至知识产权服务有限公司 A kind of polyester film preparation process of enhancing aluminium coated binding force
EP3858599A4 (en) * 2018-09-28 2021-11-24 Teijin Limited Surface-coated film, surface-coated fiber-reinforced resin molded product, and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226022A (en) * 1997-02-13 1998-08-25 Kureha Elastomer Kk Polyester and rubber composite film and its molding
JP2002053687A (en) * 2000-08-09 2002-02-19 Teijin Ltd Easily adhesive polyester film
JP2005290354A (en) * 2003-09-03 2005-10-20 Toyobo Co Ltd Polyester film for forming

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3868114B2 (en) * 1998-05-12 2007-01-17 クレハエラストマー株式会社 Composite rubber film for sticking
JP4496601B2 (en) * 2000-05-15 2010-07-07 東レ株式会社 Biaxially stretched film for laminating rubber and laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226022A (en) * 1997-02-13 1998-08-25 Kureha Elastomer Kk Polyester and rubber composite film and its molding
JP2002053687A (en) * 2000-08-09 2002-02-19 Teijin Ltd Easily adhesive polyester film
JP2005290354A (en) * 2003-09-03 2005-10-20 Toyobo Co Ltd Polyester film for forming

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010005807A (en) * 2008-06-24 2010-01-14 Toyobo Co Ltd Resin composite
JP2010143202A (en) * 2008-12-22 2010-07-01 Toyobo Co Ltd Laminated polyester film for facing material, and composite molding improved in touch using the same
WO2012144418A1 (en) * 2011-04-18 2012-10-26 三菱樹脂株式会社 Coated film
JP2012224696A (en) * 2011-04-18 2012-11-15 Mitsubishi Plastics Inc Coated film
CN108559125A (en) * 2018-05-06 2018-09-21 厦门市韬至知识产权服务有限公司 A kind of polyester film preparation process of enhancing aluminium coated binding force
EP3858599A4 (en) * 2018-09-28 2021-11-24 Teijin Limited Surface-coated film, surface-coated fiber-reinforced resin molded product, and manufacturing method thereof
US11787129B2 (en) 2018-09-28 2023-10-17 Teijin Limited Surface-coated film, surface-coated fiber-reinforced resin molded product, and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2008053756A1 (en) 2010-02-25
JP4905458B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP5170160B2 (en) Polyester film for molding
JP2009184284A (en) Laminated film
JP5428830B2 (en) Hard coat film for molding
WO2008053756A1 (en) Polyester coating film for use in rubber laminate, rubber-polyester film laminate, process for production of the laminate, and composite material
JP5297101B2 (en) Resin composite
JP2009073057A (en) Laminated polyester film for rubber composite, and rubber polyester film composite body
JP4766122B2 (en) Hard coat film for molding
JP5297180B2 (en) Laminated polyester film for skin material and composite molded body with improved tactile sensation using the same
JP5135762B2 (en) Plastic molding
JP4957182B2 (en) Polyester film for rubber composite and polyester film laminate
JP5226411B2 (en) Laminated polyester film for skin material and composite molded body with improved tactile sensation using the same
JP6350623B2 (en) Laminated film
JP5651929B2 (en) Polyester film for easy adhesion molding and rubber / polyester film laminate for molding
JP5428829B2 (en) Hard coat film for molding
JP2010264643A (en) Easily adhesive polyester film, and rubber/polyester film laminate
JP6265220B2 (en) Method for producing laminated polyester film
JP4512987B2 (en) Polyester film for membrane switch
JP2010264644A (en) Easily adhesive white polyester film and rubber/white polyester film laminate
JP6439746B2 (en) Laminated polyester film
JP2010265376A (en) Easily adhesive polyester film for forming and rubber/polyester film laminated product for forming
JP6428879B2 (en) Laminated film
JP6380459B2 (en) Laminated polyester film
JP6288160B2 (en) Method for producing laminated polyester film for window pasting
JP6296129B2 (en) Method for producing laminated film
JP6168106B2 (en) Laminated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830435

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008542059

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830435

Country of ref document: EP

Kind code of ref document: A1