WO2008053745A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2008053745A1
WO2008053745A1 PCT/JP2007/070608 JP2007070608W WO2008053745A1 WO 2008053745 A1 WO2008053745 A1 WO 2008053745A1 JP 2007070608 W JP2007070608 W JP 2007070608W WO 2008053745 A1 WO2008053745 A1 WO 2008053745A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
radiator
refrigerant
evaporator
heat
Prior art date
Application number
PCT/JP2007/070608
Other languages
French (fr)
Japanese (ja)
Inventor
Masahisa Otake
Hiroshi Mukaiyama
Toshikazu Ishihara
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Publication of WO2008053745A1 publication Critical patent/WO2008053745A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Definitions

  • the present invention relates to an air conditioner that cools a chamber to be conditioned by air exchanged with an evaporator.
  • this type of air conditioner comprises a refrigeration cycle including a compressor, a radiator, a decompressor, an evaporator, and the like. Then, the refrigerant compressed by the compressor is dissipated by the radiator, depressurized by the decompressor, and then evaporated by the evaporator. At this time, the air (cold air) cooled by the evaporation of the refrigerant is harmonized. The room to be conditioned is air-conditioned (cooled).
  • an HFC refrigerant has conventionally been generally used.
  • the HFC refrigerant has a high global warming potential, it tends to be refrained from use in recent years.
  • carbon dioxide refrigerant is known to be in a supercritical state on the high pressure side of the refrigerant circuit. That is, the refrigerant compressed by the compressor becomes supercritical and radiates heat by the radiator. At this time, the refrigerant dissipates heat while maintaining the supercritical state without changing its state.
  • the temperature of the refrigerant decreases due to heat dissipation in the radiator. Then, the refrigerant whose temperature has been reduced by the radiator is made into a two-phase mixed state of gas and liquid in the decompression process in the decompression device, evaporates in the evaporator, and then repeats the cycle returning to the compressor (for example, see Patent Document 1).
  • the carbon dioxide is being generally adopted as a refrigerant for a heat pump for hot water supply.
  • a cooling application such as an air conditioner
  • the efficiency of the refrigeration cycle is higher than that of an HFC refrigerant. Since it fell remarkably, it did not reach practical use.
  • the air conditioner including the moisture absorbing member
  • the moisture in the outside air is absorbed through the moisture absorbing member, and then flows into the evaporator, thereby improving the efficiency of the refrigeration cycle using the carbon dioxide refrigerant.
  • the moisture removal of the outside air by the hygroscopic material is an isenthalpy change, so even if the latent heat load can be reduced, the sensible heat load increases accordingly, that is, the air temperature after moisture removal increases. Therefore, the total cooling load that must be cooled by the refrigeration cycle is hardly changed, and as a result, the efficiency of the entire apparatus cannot be effectively improved.
  • Patent Document 1 Japanese Patent Publication No. 7-18602
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-241693
  • the present invention has been made to solve the problems of the related art, and an object of the present invention is to improve the efficiency of the refrigeration cycle and improve the efficiency of the entire air conditioner.
  • the air conditioner of the invention of claim 1 includes a compressor, a radiator, a decompressor, and an evaporator, and includes a refrigerant circuit that operates at a supercritical pressure on the high-pressure side, and exchanges heat with the evaporator.
  • the air to be conditioned is cooled, the outside air is introduced into the room to be conditioned, and the air in the room to be conditioned is exhausted to the outside.
  • a second radiator is installed on the side to heat the air to be conditioned room exhausted and the second radiator. It is made to exchange.
  • the air conditioning apparatus of the invention of claim 2 includes a refrigerant circuit configured to include a compressor, a radiator, a decompression device, and an evaporator, and cools the conditioned chamber by air exchanged with the evaporator.
  • a moisture absorbing member capable of absorbing and releasing moisture is absorbed, and after moisture in the outside air is absorbed by the moisture absorbing member, the conditioned room is ventilated by flowing into the evaporator and heat exchange with the radiator is performed.
  • a heat exchanger is provided that allows the moisture absorbed by the hygroscopic member to be released by flowing air into the hygroscopic member, and that exchanges heat between the air flowing into the evaporator and the outside air via the hygroscopic member. It is characterized by.
  • An air conditioner according to a third aspect of the present invention is the air conditioner according to the second aspect, wherein the air in the chamber to be conditioned is discharged to the outside, and a second radiator is provided on the refrigerant downstream side of the radiator. Heat exchange is performed between the air discharged from the conditioning room and the second radiator.
  • the air conditioner of the invention of claim 4 is the first heat radiator in which the radiator is located upstream of the refrigerant in the invention of claim 2 or claim 3, and the refrigerant of the first radiator. It is divided into a third radiator located on the downstream side, and air that has exchanged heat with the first radiator is allowed to flow into the moisture absorption member, and heat exchange between the third radiator and outside air is possible. To do.
  • the invention of claim 1 is configured to include a compressor, a radiator, a decompression device, and an evaporator, and includes a refrigerant circuit that operates at a supercritical pressure on the high-pressure side, and exchanges heat with the evaporator.
  • An air conditioner that cools a conditioned room with air, introduces outside air into the conditioned room, and ventilates air by discharging the air in the conditioned room to the outside.
  • a second radiator is provided on the downstream side to exchange heat between the air discharged from the conditioned room force and the second radiator, so that the refrigerant specific enthalpy at the evaporator inlet can be reduced. This increases the refrigeration effect and improves the efficiency of the refrigeration cycle. Therefore, the efficiency of the entire air conditioner can be improved.
  • the refrigerant circuit including the compressor, the radiator, the pressure reducing device, and the evaporator is provided, and the conditioned chamber is cooled by the air exchanged with the evaporator.
  • a moisture absorbing member capable of absorbing and releasing moisture is absorbed. After moisture in the outside air is absorbed by the moisture absorbing member, the conditioned room is ventilated by flowing into the evaporator, and heat exchange with the radiator is performed.
  • An air conditioner that discharges moisture absorbed by the hygroscopic member by flowing air into the hygroscopic member, and includes a heat exchanger that exchanges heat between the air flowing into the evaporator and the outside air via the hygroscopic member.
  • the cooling load of the refrigeration cycle can be reduced, the evaporation temperature and the evaporation pressure of the refrigeration cycle are increased, and the efficiency of the refrigeration cycle can be improved. Therefore, the energy consumption efficiency of the entire air conditioner can be improved.
  • the air in the conditioned room is discharged to the outside, and a second radiator is provided on the downstream side of the refrigerant of the radiator, so that the air discharged from the conditioned room and the second By exchanging heat with the radiator, the specific enthalpy of the refrigerant at the evaporator inlet can be reduced. This increases the refrigeration effect and improves the efficiency of the refrigeration cycle. Furthermore, by providing a second radiator on the downstream side of the radiator, the refrigerant temperature in the radiator is increased, and the air temperature for drying and regenerating the moisture absorbing member is increased, improving the efficiency of the moisture absorbing member. To do. In general, the efficiency of the entire air conditioner can be further improved.
  • the radiator is divided into a first radiator located on the refrigerant upstream side and a third radiator located on the refrigerant downstream side of the first radiator, If air that has been heat-exchanged with the first heatsink flows into the hygroscopic member and heat is exchanged between the third heatsink and the outside air, the air temperature for drying and regenerating the hygroscopic agent can be further increased. Therefore, the efficiency of the hygroscopic member can be further improved, and the efficiency of the entire air conditioner can be further improved.
  • FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention.
  • 1 is a refrigeration cycle apparatus of the air conditioner X of the present embodiment
  • 2 is a conditioned room cooled by the evaporator 16 of the refrigeration cycle apparatus 1.
  • the air conditioner X cools the conditioned room 2 with air (cold air) cooled by exchanging heat with the evaporator 16 of the refrigeration cycle apparatus 1, and introduces outside air and introduces it from outside air.
  • the air in the conditioned room 2 is maintained by ventilating the air in the conditioned room 2 corresponding to the amount of the air discharged to the outside.
  • the refrigeration cycle apparatus 1 has a refrigerant circuit in which a compressor 10, a radiator 12, a second radiator 13, an expansion valve 14 (decompression device), and an evaporator 16 are sequentially connected by refrigerant piping. It is configured. That is, the refrigerant discharge pipe 32 of the compressor 10 is connected to the inlet of the radiator 12. A second radiator 13 is connected to the outlet side of the radiator 12, and the refrigerant pipe 34 connected to the outlet of the second radiator 13 reaches the expansion valve 14 (the pressure reducing device in the present invention).
  • the force that uses the expansion valve 14 as the pressure reducing device may be any pressure reducing device of the present invention as long as it can depressurize the cooling medium. This can be used as a capillary tube.
  • a refrigerant pipe 35 exiting from the expansion valve 14 is connected to the inlet of the evaporator 16.
  • a refrigerant introduction pipe 30 of the compressor 10 is connected to the outlet of the evaporator 16 to form an annular closed circuit.
  • carbon dioxide is sealed as a refrigerant in the refrigerant circuit.
  • the radiator 12, the second radiator 13 and the evaporator 16 are all heat exchangers for exchanging heat between refrigerant and air.
  • a so-called tube fin type heat exchanger composed of a copper tube and aluminum fins Alternatively, a so-called microchannel type heat exchanger using an aluminum porous tube is used.
  • a fan (not shown) is installed as a blowing means.
  • the radiator 12 is provided outside the conditioned room 2 (outdoors) and is arranged so as to be able to exchange heat with the outside air.
  • the second heat radiator 13 is a second heat radiating means provided on the refrigerant downstream side of the heat radiator 12 of the refrigerant circuit, as shown in FIG. 1, and discharges air discharged from the conditioned chamber 2 to the outside.
  • the passage 42 heat is exchanged with the air discharged from the conditioned room 2 to the outside.
  • the evaporator 16 is interposed in an introduction passage 41 for outside air introduced into the conditioned room 2. Therefore, air (external air) that exchanges heat with the refrigerant flowing through the evaporator 16 is introduced into the conditioned chamber 2.
  • 3 is an air passage for flowing the air in the conditioned chamber 2 to the evaporator 16, one end of the air passage 3 is connected to the conditioned chamber 2 and the other end is In the middle of the introduction passage 41, it is connected to the windward side of the evaporator 16.
  • the air in the conditioned chamber 2 flows into the evaporator 16 through the air passage 3 and the introduction passage 41, is cooled by exchanging heat with the refrigerant flowing through the evaporator 16 and then cooled. Return to Room 2. in this way By circulating the air in the conditioned room 2, the conditioned room 2 can be cooled.
  • the air introduced from the outside is connected to the connection portion between the other end of the introduction passage 41 and the air passage 3.
  • Outside air and air volume adjustment means such as a damper (not shown) are attached to adjust the amount of air in the conditioned room 2, and ventilation operation that introduces air from outside, and introduction of air from outside None, it is assumed that the cooling operation in which only the air in the conditioned room 2 is circulated or the cooling operation in which the air in the conditioned room 2 is circulated while introducing air from the outside can be switched.
  • the operation of the air conditioner X of the present embodiment with the above configuration will be described with reference to the ph diagram (Mollier diagram) of FIG.
  • a cooling operation in which air in the conditioned room 2 is circulated while performing ventilation by introducing air from the outside will be described.
  • the compressor 10 is started by the control means (not shown) of the air conditioner X
  • the low-temperature and low-pressure refrigerant is sucked into the compressor 10 from the refrigerant introduction pipe 30 (state e6 in FIG. 2).
  • the refrigerant sucked into the compressor 10 is compressed into high-temperature and high-pressure refrigerant gas, and is discharged from the refrigerant discharge pipe 32.
  • the high-temperature and high-pressure refrigerant discharged from the refrigerant discharge pipe 32 is in the state of al in FIG. That is, the refrigerant becomes a supercritical state by compression in the compressor 10.
  • the refrigerant discharged to the refrigerant discharge pipe 32 flows into the radiator 12, where it exchanges heat with the outside air blown by a fan (not shown) to dissipate the heat and exits the radiator 12.
  • the temperature of the refrigerant decreases (state a3 in FIG. 2).
  • the refrigerant discharged from the radiator 12 flows into the second radiator 13, where it exchanges heat with the air in the conditioned chamber 2 blown by a fan provided in the vicinity of the second radiator 13. To further dissipate heat.
  • the air in the conditioned room 2 blown to the second radiator 13 is air cooled by the evaporator 16 and is lower in temperature than the outside air that exchanges heat with the refrigerant in the radiator 12. Then, the refrigerant radiated by the radiator 12 can be further cooled. In addition, since the refrigerant dissipates heat while maintaining supercriticality, the temperature of the refrigerant further decreases (state a4 in Fig. 2).
  • the second radiator 13 is provided on the refrigerant downstream side of the radiator 12, so that the refrigerant and the conditioned room are provided.
  • the refrigerant exiting the second radiator 13 enters the expansion valve 14 via the refrigerant pipe 34, and is decompressed there. At this time, the refrigerant is depressurized from the state a4 to the state e5 in FIG. 2 to be in a gas-liquid two-phase state. In this state, the refrigerant flows into the evaporator 16 and evaporates by taking heat from the air ventilated there (as described above, the mixture of the outside air and the air from the conditioned chamber 2). In addition, air (cold air) cooled by removing heat from the refrigerant in the evaporator 16 is discharged into the conditioned room 2. Thereby, the inside of the conditioned room 2 is cooled (cooled).
  • the specific enthalpy of the refrigerant changes from the state e5 to the state e6 in FIG. That is, since the specific heat enthalpy of the refrigerant can be further reduced by the second radiator 13, it is possible to secure a sufficient specific enthalpy difference by evaporation in the evaporator 16.
  • FIG. 2 is a ph diagram of an air conditioner having a conventional configuration in which the air conditioner is not provided or outside air is not introduced (that is, ventilation is not performed) and the second radiator 13 is not provided.
  • the refrigerant coming out of the radiator 12 is in the state of c4 in FIG. 2, and when it is evaporated in the evaporator 16 in this state, the refrigerant changes from the state of f5 to the state of f6 in FIG.
  • the specific enthalpy of the refrigerant at the inlet of the evaporator 16 is increased, and as a result, a sufficient specific enthalpy difference cannot be ensured in the evaporator 16.
  • the evaporator 16 Since the air to be heat-exchanged is only air in the conditioned room 2 having a low temperature, the evaporating temperature and evaporating pressure of the refrigerant in the evaporator 16 were low! /.
  • FIG. 2 is a ph diagram of an air conditioner when introduced in FIG. As indicated by the broken line (broken line connecting e6, cl, c4, e'5), the outside air introduced into the conditioned room 2 is cooled by the evaporator 16 of the refrigerant circuit and then introduced into the conditioned room 2. As a result, the temperature of the air that exchanges heat with the refrigerant in the evaporator 16 is significantly higher than when only the air in the conditioned chamber 2 is allowed to flow into the evaporator 16.
  • the specific enthalpy of the cooling medium at the inlet of the evaporator 16 can be reduced.
  • a sufficient specific enthalpy difference can be ensured in the evaporator 16, so that the refrigeration effect of the refrigeration cycle is increased and the efficiency can be improved.
  • the overall efficiency of the air conditioner X can be improved.
  • the refrigerant evaporated in the evaporator 16 exits the evaporator 16 and enters the refrigerant introduction pipe 30 and repeats the cycle of being sucked into the compressor 10.
  • the radiator 12 is installed outdoors and the second radiator 13 is discharged.
  • the force to be installed in the passage 42 not limited to this, the radiator 12 and the second radiator 13 may be configured as a single heat exchanger.
  • the refrigerant inlet side that is, the compressor 10 side is arranged outside the room, and the outlet side (expansion valve 14 side) extends from the outside through the wall surface of the discharge passage 42 to discharge the heat. It is configured to be placed in the passage 42.
  • FIG. 3 is a schematic configuration diagram of the air conditioner Y of the present embodiment. 3 that have the same reference numerals as those in FIG. 1 have the same or similar effects or actions, and will not be described here.
  • the refrigeration cycle apparatus 1 of the air-conditioning apparatus Y of the present embodiment shown in FIG. 3 includes a compressor 10, a radiator 12, a second radiator 13, an expansion valve 14 (decompression apparatus), and Evaporator 16
  • a refrigerant circuit is configured by sequentially connecting the refrigerant pipes. Further, carbon dioxide is sealed as a refrigerant in the refrigerant circuit as in the above-described embodiment.
  • reference numeral 43 denotes an air passage for blowing outside air to the radiator 12 and blowing the air after passing through the radiator 12 to a part of the desiccant rotor 5. That is, the radiator 12 of this embodiment is disposed on the inlet side of the air passage 43 formed outside the conditioned room 2.
  • the desiccant rotor 5 is a rotary moisture absorbing member that includes a moisture absorbent that absorbs and can release moisture.
  • the hygroscopic agent is made of a material that absorbs moisture at room temperature (or below room temperature) and releases moisture when heated, such as silica gel, zeolite, and cross-linked polyethylene. It is comprised by forming in a shape.
  • the desiccant rotor 5 rotates around the flow direction of the air from the air passage 43 and the air from the introduction passage, and rotates the introduction passage 41 and the air passage 43 arranged in parallel to the introduction passage 41 by rotation. It is arranged so that it can pass next.
  • the drying and absorption efficiency of the desiccant rotor 5 can be improved. Therefore, the efficiency of the entire air conditioner Y can be further improved. Furthermore, the efficiency of drying and absorption of the desiccant rotor 5 is improved, so that the same effect can be exhibited even if a desiccant port 5 smaller than the conventional desiccant rotor is used. The power of miniaturization is possible. As a result, the entire air conditioner Y can be made compact.
  • the desiccant rotor 5 can introduce fresh outside air into the room with little energy loss, so that the air quality in the room can be improved in addition to the effect of suppressing the generation of bacteria.
  • the desiccant rotor 5 can remove moisture from the air introduced into the conditioned room 2 and reduce the humidity, so that the air in the conditioned room 2 is raised while maintaining comfort. That power S. This also reduces the cooling load, so that energy consumption for cooling can be reduced.
  • FIG. 2 a broken line connecting points a6, dl, d4, and d5 is a double-rotor type conventional air conditioner using a sensible heat rotor (heat exchanger 7 is not installed).
  • This is a p-h diagram. That is, only the moisture is removed by the desiccant rotor 5 and the air cooled by the sensible heat rotor is supplied to the evaporator 16, and the heat is recovered to the radiator 12 by the sensible heat rotor and becomes high temperature. Air will be supplied.
  • the high-temperature air recovered by the sensible heat rotor is supplied to the radiator 12.
  • the temperature of the air flowing through the radiator 12 increased, and the specific enthalpy of the refrigerant at the outlet of the radiator 12 could not be reduced.
  • sufficient enthalpy difference cannot be secured by evaporation in the evaporator, and the efficiency of the refrigeration cycle is significantly reduced. Therefore, it is a force that cannot effectively improve the efficiency of the entire air conditioner.
  • the introduction is on the leeward side of the desiccant rotor 5, on the leeward side of the evaporator 16, and on the leeward side of the connection portion at the other end of the air passage 3.
  • a heat exchanger 7 is provided in the passage 41 to exchange heat between the air flowing into the evaporator 16 through the desiccant rotor 5 and the outside air.
  • the heat exchanger 7 is used to reduce the sensible heat load of the outside air flowing into the evaporator 16 by exchanging heat between the air after moisture is removed by the desiccant rotor 5 and the outside air.
  • the type of the heat exchanger 7 may be, for example, a plate type or a tube fin type, or may be constituted by a heat pipe or the like, and is not particularly limited. That is, in this embodiment, after the moisture is removed by the desiccant rotor 5 to the evaporator 16, the air exchanged with the outside air by the heat exchanger 7 is supplied.
  • FIG. 4 is a diagram showing the absolute humidity and dry bulb temperature of air in each part.
  • the compressor 10 is started by the control means (not shown) of the air conditioner Y, the low-temperature and low-pressure refrigerant is sucked into the compressor 10 from the refrigerant introduction pipe 30 (state a6 in FIG. 2).
  • the refrigerant sucked into the compressor 10 is compressed to become high-temperature and high-pressure refrigerant gas, and is discharged from the refrigerant discharge pipe 32.
  • the high-temperature and high-pressure refrigerant discharged from the refrigerant discharge pipe 32 is in the state of al in FIG. That is, the refrigerant becomes a supercritical state by compression in the compressor 10.
  • the refrigerant discharged to the refrigerant discharge pipe 32 flows into the heat radiator 12, where it exchanges heat with the outside air blown by a fan (not shown) to radiate heat, and exits the heat radiator 12.
  • the temperature of the refrigerant decreases (state a3 in FIG. 2).
  • the refrigerant discharged from the radiator 12 flows into the second radiator 13, where it exchanges heat with the air in the conditioned chamber 2 blown by a fan provided in the vicinity of the second radiator 13. To further dissipate heat.
  • the air in the conditioned room 2 blown to the second radiator 13 is air cooled by the evaporator 16 and is lower in temperature than the outside air that exchanges heat with the refrigerant in the radiator 12. Then, the refrigerant radiated by the radiator 12 can be further cooled. In addition, since the refrigerant dissipates heat while maintaining supercriticality, the temperature of the refrigerant further decreases (state a4 in Fig. 2).
  • the second radiator 13 is provided on the downstream side of the refrigerant of the radiator 12, and heat is exchanged between the refrigerant and the air from the conditioned chamber 2, thereby further radiating the refrigerant.
  • S can.
  • the high pressure side of the refrigerant circuit is operated at a supercritical pressure, such as carbon dioxide refrigerant
  • the temperature decreases as the refrigerant radiates heat, so the air and heat in the conditioned room 2 that is cooler than the outside air.
  • the temperature of the refrigerant can be further reduced, and the specific enthalpy of the refrigerant is / J, and the force S is reduced.
  • the refrigerant that has exited the second radiator 13 enters the expansion valve 14 via the refrigerant pipe 34 and is decompressed there. At this time, the refrigerant is decompressed from the state a4 in FIG. 2 to the state a5 to be in a gas-liquid two-phase state. In this state, the refrigerant flows into the evaporator 16, and takes heat from the air that is ventilated there (a mixture of the air that has passed through the desiccator 5 and the heat exchanger 7 and the air from the conditioned chamber 2). Evaporate.
  • the relative humidity of the air introduced from outside air is set to 40%
  • the outside air temperature is set to + 35 ° C.
  • this embodiment will be described by taking this temperature and relative humidity as an example.
  • outside air having a relative humidity of 40% and an outside air temperature of + 35 ° C is introduced from the introduction passage 41 (state A1 in FIG. 4).
  • the outside air introduced into the introduction passage 41 passes through the desiccant rotor 5, and moisture is removed by the desiccant rotor 5.
  • the air after passing through the desiccant rotor 5 is in the state of A2 shown in FIG. 4, and the relative humidity is 10%.
  • the latent heat in the outside air can be reduced.
  • the sensible heat rises as the latent heat is reduced in the desiccant rotor 5, and in this embodiment the air temperature rises to + 50 ° C.
  • the air in the introduction passage 41 passes through the heat exchanger 7 and is cooled by exchanging heat with the outside air in the heat exchanger 7 to be in the state A3 shown in FIG.
  • the relative humidity of the air after passing through the heat exchanger 7 is 20%, and the temperature is + 38 ° C. This can reduce the sensible heat of air.
  • the air introduced from the outside air merges with the air circulated from inside the conditioned room 2 to be in the state of A4 shown in FIG.
  • the relative humidity of the air in the conditioned room 2 is 45% and the temperature is + 27 ° C. Therefore, the relative humidity of the air after merging is 35% and the temperature is + 30 ° C.
  • the merged air is then flowed into the evaporator 16.
  • the air that exchanges heat with the refrigerant in the evaporator 16 is air that has reduced latent heat and sensible heat as described in detail above, and accordingly, the latent heat load and sensible heat load in the evaporator 16 are reduced accordingly. can do.
  • the total cooling load that must be cooled by the refrigeration cycle can be reduced, and the energy consumption for cooling can be reduced.
  • the pressure ratio in the compressor 10 can be reduced.
  • the refrigerant at the inlet of the compressor 10 is in the state of e6.
  • the force S that needs to be compressed in this embodiment, the refrigerant at the inlet of the compressor 10 is in the state of a6, and accordingly, the compression work in the compressor 10 can be reduced. As a result, the efficiency of the refrigerated site can be improved.
  • the specific enthalpy of the refrigerant changes from the state a5 to the state a6 in FIG. That is, since the specific enthalpy of the refrigerant can be further reduced by the second radiator 13, it is possible to secure a sufficient specific enthalpy difference by evaporation in the evaporator 16. As a result, a sufficient difference in specific resonance can be ensured by evaporation in the evaporator 16, so that the refrigeration effect of the refrigeration cycle is increased and the efficiency S can be improved.
  • the air cooled by removing heat from the refrigerant evaporated in the evaporator 16 is in the state of A5 shown in FIG.
  • the relative humidity of the air after passing through the evaporator 16 is 60%, and the temperature is + 20 ° C.
  • the air cooled by the evaporator 16 is discharged into the conditioned room 2, thereby cooling (cooling) the conditioned room 2.
  • a broken line connecting points a6, cl, c4, and c5 is a ph diagram of the air conditioner when the second radiator 13 is deleted from the configuration of the present embodiment. In this case, the refrigerant discharged from the radiator 12 is in the state of c4 in FIG.
  • the refrigerant changes from the state of c5 in FIG. 2 to the state of a6. That is, a sufficient specific enthalpy difference could not be secured by evaporation in the evaporator 16 where the refrigerant has a large specific enthalpy at the inlet of the evaporator 16. Further, the pressure ratio of the compressor 10 was also large.
  • the specific enthalpy of the refrigerant at the inlet of the evaporator 16 can be reduced.
  • a sufficient specific enthalpy difference can be secured by evaporation in the evaporator 16, so that the refrigeration effect of the refrigeration cycle is increased and efficiency can be improved.
  • the pressure ratio can be reduced. Therefore, the performance coefficient (COP) of the refrigeration cycle expressed by the ratio of the refrigeration effect to the compression work can also be improved.
  • air in the conditioned room 2 corresponding to the air introduced into the conditioned room 2 is discharged from the conditioned room 2.
  • the discharged air enters the discharge passage 42, passes through the second radiator 13 and is heated by exchanging heat with the refrigerant flowing through the second radiator 13, and is in the state of D1 shown in FIG. To D2.
  • the relative humidity of the air is 30% and the temperature is + 35 ° C, and it is discharged outside in this state.
  • the desiccant rotor 5 that has absorbed moisture in the introduction passage 41 rotates as described above to move from the introduction passage 41 to the air passage 43, and releases moisture to the air heated by the radiator 12.
  • the second radiator 13 is provided on the outlet side of the refrigerant circuit of the radiator 12 so that heat can be exchanged with the air in the conditioned room 2. The degree becomes higher. Therefore, the outside air flowing in from the inlet of the air passage 43 (in the state of C1 shown in FIG. 4 and the same as the outside air in the state of A1 in FIG. 4 introduced into the introduction passage 41) is used as the refrigerant 12 and the refrigerant. It can be heated sufficiently by heat exchange (state C2 in Fig. 4). At this time, the relative humidity of the air heated by the radiator 12 is 15%, and the temperature is + 55 ° C.
  • the sufficiently heated air flows into the desiccant rotor 5 provided in the air passage 43. Then, the moisture of the desiccant rotor 5 absorbed by the introduction passage 41 is released into this air (state C3 shown in FIG. 4). This desiccant rotor 5 receives moisture.
  • the relative humidity of the removed air is 35% and the temperature is + 43 ° C.
  • the outside air is heated to a higher temperature and flows into the desiccant rotor 5 provided in the air passage 43, so that the moisture of the desiccant rotor 5 is in the air. And can be efficiently dried and regenerated. As a result, the moisture removal efficiency of the desiccant rotor 5 is also improved, and the latent heat load in the evaporator 16 can be reduced.
  • the sensible heat load in the evaporator 16 can be reduced, the total cooling load of the refrigeration cycle can be reduced, and the refrigeration cycle evaporation temperature and The evaporating pressure increases, and the efficiency of the refrigeration cycle can be improved. As a result, the energy consumption efficiency of the entire air conditioner Y is improved.
  • the relative humidity and temperature of each part described in the present embodiment are merely examples, and it goes without saying that they vary depending on the outside air temperature, the operating status of the refrigeration cycle apparatus 1, the air flow of the fan, the size and arrangement of the apparatus, and the like. Yes.
  • the heat exchanger 7 is a water-cooled heat exchanger that exchanges heat between air and water from the desiccant rotor 5 using a cooling tower or the like in addition to an air-cooled type that exchanges heat with the outside air. It is effective even when applied.
  • the air conditioner Y of the present embodiment includes, for example, a second radiator 13, an indoor unit U1 including an expansion valve 14 and an evaporator 16, a radiator 12, You may comprise two units, the outdoor unit U2 which consists of the heat exchanger 7 and the desiccant rotor 5.
  • the indoor unit U1 is installed in the conditioned room 2
  • the outdoor unit U2 is installed outside the conditioned room 2.
  • the same reference numerals as those in FIGS. 1 to 4 have the same or similar effects or actions, and the description thereof is omitted here.
  • FIG. 6 shows an example in which the indoor unit U 1 including the second radiator 13, the expansion valve 14, and the evaporator 16 is arranged in the conditioned room 2 as described above.
  • reference numeral 20 denotes a cover that covers the indoor unit U 1 disposed in the conditioned room 2 of the air conditioning apparatus Y, and is attached to the wall W of the conditioned room 2. Further, the inside of the cover 20 is partitioned by a partition member 21 into a space 41A on the introduction passage 41 side where the evaporators 16 and 16 are provided and a space 42A on the discharge passage 42 side where the second radiator 13 is provided.
  • reference numeral 16F designates cool air exchanged with the evaporator 16 installed in the space 41A on the introduction passage 41 side, into the conditioned room 2. It is a fan as a ventilation means for taking out.
  • the cover 20 has an intake port (not shown) for introducing the air in the conditioned chamber 2 into the space 41A on the introduction passage 41 side in the cover 20 and the space 42A on the discharge passage 42 side.
  • An inlet (not shown) for introducing the air in the Japanese room 2 and an outlet 23 for discharging the cold air exchanged with the refrigerant flowing through the evaporator 16 in the space 41A in the introduction passage 41 into the conditioned room 2 are provided. Is formed.
  • the wall W has a communication hole 24 that communicates the space 42A on the discharge passage 42 side in the cover 20 and the outside of the chamber 2 to be conditioned, and a space 41A on the introduction passage 41 side in the cover 20 to be harmonized.
  • a communication hole 25 communicating with the outside of the chamber 2 is formed. Then, the air in the conditioned chamber 2 that has flowed into the space 42A in the cover 20 through an air inlet (not shown) formed in the cover 20 exchanges heat with the refrigerant in the second radiator 13 provided there. Then, after being heated, it is discharged out of the conditioned room 2 through the communication hole 24.
  • the communication hole 25 is connected to the introduction passage 41 for introducing the air that has passed through the desiccant rotor 5 and the heat exchanger 7 of the outdoor unit U2, and moisture is introduced from the introduction passage 41 by the desiccator rotor 5.
  • the air radiated in the heat exchanger 7 air from the outside air
  • the fan At 16F the outlet 23 force is also discharged into the conditioned room 2.
  • the space 41A in the introduction passage 41 has a force S in which two evaporators 16 and 16 are provided, and one evaporator 16 as shown in FIGS. It can be configured.
  • FIG. 7 is a schematic configuration diagram of the air conditioner Z of the present embodiment.
  • the same reference numerals as those in FIGS. 1 to 6 have the same or similar effects or operations, and will not be described here.
  • the air conditioner Z of the present embodiment includes a first radiator 12A in which the radiator 12 is located on the refrigerant upstream side, and a third radiator located on the refrigerant downstream side of the first radiator 12A. It is divided into 12B. Then, the air heat-exchanged with the first radiator 12A located on the refrigerant upstream side of the radiator 12 flows into the desiccant rotor 5, and the third radiator 1 located on the refrigerant downstream side.
  • the air exchanged with 2B is configured to be discharged outside without flowing to the desiccant rotor 5.
  • the first heat radiator 12A and the third heat radiator 12B are constituted by an integrated heat exchanger (heat radiator 12), which are connected to the refrigerant upstream side and the refrigerant downstream side. It is divided into two categories.
  • the first radiator 12A on the upstream side of the refrigerant of the radiator 12 is disposed in the vicinity of the inlet in the discharge passage 42
  • the third radiator 12B on the downstream side of the refrigerant is arranged in parallel with the discharge passage 42. Place in air passage 44.
  • the radiator 12 of the present embodiment extends from one end (first radiator 12A) contacting the one wall surface of the discharge passage 42 to the side of the air passage 44 provided side by side and extends to the other side of the discharge passage 42.
  • the wall surface and one wall surface of the air passage 44 that contacts the wall surface are penetrated, and the other end (third radiator 12B) is disposed so as to contact the other wall surface of the air passage 44.
  • Air outside air is introduced into the air passage 44 from the outside, and after passing through the third radiator 12B, it can be discharged outside.
  • the introduction of the outside air into the third radiator 12B may be shared with a fan (not shown) that introduces the outside air into the first radiator 12A, or may be individually attached to the fan. It doesn't matter.
  • a damper may be attached to the air passage 44 to adjust the air volume of the outside air introduced into the third radiator 12B.
  • the operation of the air conditioner Z of the present embodiment with the above configuration will be described with reference to the ph diagram of FIG.
  • the compressor 10 is started by the control means (not shown) of the air conditioner Z
  • the low-temperature and low-pressure refrigerant is sucked into the compressor 10 from the refrigerant introduction pipe 30 (state a6 in FIG. 2).
  • the refrigerant sucked into the compressor 10 is compressed into high-temperature and high-pressure refrigerant gas and discharged from the refrigerant discharge pipe 32.
  • the high-temperature and high-pressure refrigerant discharged from the refrigerant discharge pipe 32 is in the state of al in FIG. That is, the refrigerant becomes a supercritical state by compression in the compressor 10.
  • the refrigerant discharged to the refrigerant discharge pipe 32 flows into the first heat radiator 12A on the refrigerant upstream side of the radiator 12, and exchanges heat with the outside air blown by a fan (not shown).
  • the heat is dissipated and the state a2 in Fig. 2 is obtained.
  • the refrigerant is transferred to the third radiator 12B on the downstream side of the refrigerant, where heat is exchanged with the outside air blown by a fan (not shown) to further dissipate heat, resulting in the state of a3 in FIG.
  • the refrigerant dissipates heat while maintaining supercriticality in the radiator 12, Temperature drops.
  • the refrigerant discharged from the radiator 12 flows into the second radiator 13, and the air in the conditioned room 2 blown by a fan provided in the vicinity of the second radiator 13. Heat exchange to further dissipate heat.
  • the air in the conditioned room 2 blown to the second radiator 13 is air cooled by the evaporator 16 and is lower in temperature than the outside air that exchanges heat with the refrigerant in the radiator 12.
  • the refrigerant radiated by the radiator 12 can be further cooled.
  • the temperature of the refrigerant further decreases to a4 in FIG.
  • the second radiator 13 is provided on the downstream side of the refrigerant of the radiator 12, and heat is exchanged between the refrigerant and the air from the conditioned room 2, thereby further radiating the refrigerant.
  • S can.
  • the high pressure side of the refrigerant circuit is operated at a supercritical pressure, such as carbon dioxide refrigerant
  • the temperature decreases as the refrigerant radiates heat, so the air and heat in the conditioned room 2 that is cooler than the outside air.
  • the temperature of the refrigerant can be further reduced, and the specific enthalpy of the refrigerant is / J, and the force S is reduced.
  • the refrigerant that has exited the second radiator 13 enters the expansion valve 14 via the refrigerant pipe 34 and is decompressed there. At this time, the refrigerant is decompressed from the state a4 in FIG. 2 to the state a5 to be in a gas-liquid two-phase state. In this state, the refrigerant flows into the evaporator 16, and takes heat from the air that is ventilated there (a mixture of the air that has passed through the desiccator 5 and the heat exchanger 7 and the air from the conditioned chamber 2). Evaporate.
  • the desiccant rotor 5 that has absorbed moisture in the introduction passage 41 rotates as described above to move from the introduction passage 41 to the air passage 43, and releases moisture to the air heated by the radiator 12.
  • the second radiator 13 is provided on the outlet side of the refrigerant circuit of the radiator 12 so that heat can be exchanged with the air in the conditioned room 2. The degree becomes higher.
  • the radiator 12 is divided into a first radiator 12A on the upstream side of the refrigerant and a third radiator 12B on the downstream side of the refrigerant, and exchanges heat with the first radiator 12A on the upstream side of the refrigerant. Since only the conditioned air is flowing into the desiccant rotor 5, the desiccant rotor 5 is dried. The regenerating air temperature can be further increased.
  • the refrigerant flowing through the first radiator 12A is the highest temperature refrigerant that has flowed out of the compressor 10.
  • the refrigerant that exchanges heat with the outside air in the radiator 12 is in the state a3 from the state al shown in FIG. 2, whereas the first radiator 12A in the present embodiment.
  • the refrigerant that exchanges heat with the outside air is the refrigerant from the state a to the state a2 shown in FIG. That is, since the air used for drying regeneration in the desiccant rotor 5 can exchange heat with the refrigerant in the highest temperature range, it can be heated to a higher temperature than in the second embodiment.
  • the air temperature for drying and regenerating the desiccant rotor 5 is increased, so that the efficiency of drying and absorption of the desiccant rotor 5 can be further improved. Therefore, the efficiency of the entire air conditioner Z can be further improved. Further, the efficiency of drying and absorption of the desiccant rotor 5 is further improved, so that the same effect can be achieved even if the desiccant rotor 5 is smaller than the desiccant rotor of the second embodiment. become. As a result, the desiccant rotor 5 can be further miniaturized and the entire air conditioner can be further downsized.
  • the desiccant rotor 5 that has been dried and regenerated absorbs moisture from the outside air again in the introduction passage 41.
  • the air from which moisture has been removed by the desiccant rotor 5 is cooled by heat exchange with the outside air by the heat exchanger 7 as in the second embodiment.
  • the sensible heat load in the evaporator 16 can also be reduced, the cooling load of the refrigeration cycle can be reduced, and the evaporation temperature and the evaporation pressure of the refrigeration cycle are increased, thereby improving the efficiency of the refrigeration cycle.
  • the energy consumption efficiency of the entire air conditioner Z can also be improved.
  • the first radiator 12A and the third radiator 12B are constituted by an integrated heat exchanger (heat radiator 12), and these are connected to the refrigerant upstream side and the refrigerant downstream side. Even if the first heat radiator 12A and the third heat radiator 12B are configured by separate heat exchangers and arranged separately, the present invention is effective.
  • the third radiator 12B of the present embodiment is an air-cooled heat exchanger that exchanges heat between the refrigerant flowing through the third radiator 12B and the outside air, but is not limited thereto, and a cooling tower or the like is used. It is safe to use a water-cooled heat exchanger that exchanges heat between the refrigerant and water.
  • FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a Ph diagram of the refrigerant flowing through the refrigeration cycle apparatus of the air-conditioning apparatus of Example 1 and Example 2 of the present invention.
  • FIG. 3 is a schematic configuration diagram of an air conditioner according to a second embodiment of the present invention.
  • FIG. 4 is a diagram showing the absolute humidity and dry bulb temperature of air flowing in the air conditioning apparatus of the second embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram showing an example in which the air conditioner of the present invention is configured by an indoor unit and an outdoor unit.
  • FIG. 6 A diagram showing an example of the arrangement of the indoor unit of the air conditioner of the present invention.
  • FIG. 7 is a schematic configuration diagram of an air conditioner according to a third embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Central Air Conditioning (AREA)

Abstract

Efficiency of a refrigeration cycle is improved to increase efficiency of the entire air conditioner. The air conditioner (X) cools a room (2) by air subjected to heat exchange with an evaporator (16), has a dessicant rotor ((5), moisture absorption member) capable of absorbing and releasing moisture, ventilates the room (2) by allowing moisture in the outside air to flow into the evaporator (16) after absorbing the moisture by the dessicant rotor (5), and releases the moisture absorbed by the dessicant rotor (5) by causing air having been subjected to heat exchange with a radiator (12) to flow into the dessicant rotor (5). The air conditioner (X) has a heat exchanger (7) for heat exchange between the outside air and the air flowing into the evaporator (16) via the dessicant rotor (5). Air in the room (2) is discharged to the outside. A second radiator (13) is provided in a refrigerant flow downstream of the radiator (12), and heat exchange is caused between the air discharged from the room (2) and the second radiator (13).

Description

明 細 書  Specification
空気調和装置  Air conditioner
技術分野  Technical field
[0001] 本発明は、蒸発器と熱交換した空気により被調和室を冷却する空気調和装置に関 するものである。  The present invention relates to an air conditioner that cools a chamber to be conditioned by air exchanged with an evaporator.
背景技術  Background art
[0002] 従来よりこの種空気調和装置は、圧縮機、放熱器、減圧装置及び蒸発器などから 冷凍サイクルが構成される。そして、圧縮機にて圧縮された冷媒を放熱器にて放熱さ せ、減圧装置にて減圧した後、蒸発器にて蒸発させ、このとき冷媒の蒸発により冷却 された空気 (冷気)を被調和室に供給し、当該被調和室内を空調 (冷房)するもので あった。  Conventionally, this type of air conditioner comprises a refrigeration cycle including a compressor, a radiator, a decompressor, an evaporator, and the like. Then, the refrigerant compressed by the compressor is dissipated by the radiator, depressurized by the decompressor, and then evaporated by the evaporator. At this time, the air (cold air) cooled by the evaporation of the refrigerant is harmonized. The room to be conditioned is air-conditioned (cooled).
[0003] ところで、このような冷凍サイクルを備えた装置では、従来 HFC冷媒が一般的に使 用されていたが、当該 HFC系冷媒は温暖化係数が高いため近年使用を控える傾向 にある。そして、この HFC冷媒の代替冷媒の 1つとして、温暖化係数が低ぐ地球環 境に優しレ、二酸化炭素を用いる試みがなされて!/、る。係る二酸化炭素冷媒は冷媒回 路の高圧側が超臨界状態となることが知られている。即ち、圧縮機で圧縮された冷媒 は超臨界状態となり、放熱器にて放熱する。このとき冷媒は状態変化すること無しに 超臨界状態を維持したまま放熱する。これにより、放熱器における放熱で冷媒の温 度が低下することとなる。そして、放熱器にて温度低下した冷媒は、減圧装置におけ る減圧過程で気体と液体の二相混合状態とされ蒸発器にて蒸発した後、圧縮機に 戻るサイクルを繰り返すものであった (例えば、特許文献 1参照)。  [0003] By the way, in an apparatus equipped with such a refrigeration cycle, an HFC refrigerant has conventionally been generally used. However, since the HFC refrigerant has a high global warming potential, it tends to be refrained from use in recent years. As an alternative to this HFC refrigerant, an attempt has been made to use carbon dioxide, which is superior to the global environment with a low global warming potential! Such carbon dioxide refrigerant is known to be in a supercritical state on the high pressure side of the refrigerant circuit. That is, the refrigerant compressed by the compressor becomes supercritical and radiates heat by the radiator. At this time, the refrigerant dissipates heat while maintaining the supercritical state without changing its state. As a result, the temperature of the refrigerant decreases due to heat dissipation in the radiator. Then, the refrigerant whose temperature has been reduced by the radiator is made into a two-phase mixed state of gas and liquid in the decompression process in the decompression device, evaporates in the evaporator, and then repeats the cycle returning to the compressor ( For example, see Patent Document 1).
[0004] ところで、当該二酸化炭素は、給湯用ヒートポンプの冷媒としては一般的に採用さ れつつあるが、空調装置のような冷房用途に使用した場合、 HFC冷媒に比べて冷 凍サイクルの効率が著しく低下するため、実用には至っていなかった。  [0004] By the way, the carbon dioxide is being generally adopted as a refrigerant for a heat pump for hot water supply. However, when used for a cooling application such as an air conditioner, the efficiency of the refrigeration cycle is higher than that of an HFC refrigerant. Since it fell remarkably, it did not reach practical use.
[0005] 一方、空気調和装置にお!/、て被調和室に蒸発器と熱交換した外気を導入する場 合、外気中に含まれる水分が負荷となるため、デシカントなどの吸湿部材を通過させ て外気中の水分を吸収した後、蒸発器に流入させることで、蒸発器における潜熱負 荷を低下させる試みもなされて来て!/、る。 [0005] On the other hand, when the outside air exchanged with the evaporator is introduced into the conditioned room, the moisture contained in the outside air becomes a load, so that it passes through a moisture absorbing member such as a desiccant. After absorbing moisture in the outside air, it is allowed to flow into the evaporator so that the latent heat in the evaporator is negative. Attempts have also been made to lower the load!
[0006] 上記吸湿部材を備えた空気調和装置により、吸湿部材を通過させて外気中の水分 を吸収した後、蒸発器に流入させることで、二酸化炭素冷媒を用いた冷凍サイクルの 効率を改善することができるものと期待されていた。し力もながら、係る外気の吸湿部 材による水分除去は、等ェンタルピー変化であるため、潜熱負荷は低減できても、そ の分、顕熱負荷が増大、即ち、水分除去後の空気温度が上昇するため、冷凍サイク ルにより冷却しなければならない全冷却負荷は殆ど変わらず、その結果、装置全体 の効率を効果的に向上させることができなかった。  [0006] With the air conditioner including the moisture absorbing member, the moisture in the outside air is absorbed through the moisture absorbing member, and then flows into the evaporator, thereby improving the efficiency of the refrigeration cycle using the carbon dioxide refrigerant. It was expected to be possible. However, the moisture removal of the outside air by the hygroscopic material is an isenthalpy change, so even if the latent heat load can be reduced, the sensible heat load increases accordingly, that is, the air temperature after moisture removal increases. Therefore, the total cooling load that must be cooled by the refrigeration cycle is hardly changed, and as a result, the efficiency of the entire apparatus cannot be effectively improved.
[0007] そこで、吸湿部材にて水分除去した外気を顕熱ロータを用いて冷却した後、蒸発器 に流入させる装置も開発されて来ている(例えば、特許文献 2参照)。  [0007] In view of this, an apparatus has been developed that cools the outside air from which moisture has been removed by the hygroscopic member using a sensible heat rotor and then flows it into the evaporator (see, for example, Patent Document 2).
特許文献 1:特公平 7— 18602号公報  Patent Document 1: Japanese Patent Publication No. 7-18602
特許文献 2:特開 2001— 241693号公報  Patent Document 2: Japanese Patent Laid-Open No. 2001-241693
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] しかしながら、上記のように顕熱ロータを用いた場合には、当該顕熱ロータで回収し て高温となった空気が放熱器に供給され、放熱器にて冷媒と熱交換する空気温度が 上昇するため、その結果、放熱器における冷媒の放熱能力が低下し、放熱器出口の 比ェンタルピを充分に小さくすることができなくなる。従って、当該装置は、冷凍サイ クルの特性を充分に生力、して!/、るとは言えず、空気調和装置全体のエネルギー消費 効率を向上させる効果も小さいものであった。 However, when a sensible heat rotor is used as described above, the air temperature recovered from the sensible heat rotor and heated to a high temperature is supplied to the radiator, and heat is exchanged with the refrigerant in the radiator. As a result, the heat dissipating ability of the refrigerant in the radiator decreases, and the specific enthalpy at the radiator outlet cannot be made sufficiently small. Therefore, it cannot be said that the apparatus is sufficiently vigorous in the characteristics of the refrigeration cycle, and the effect of improving the energy consumption efficiency of the entire air conditioner is small.
[0009] 本発明は、係る従来技術の課題を解決するために成されたものであり、冷凍サイク ルの効率を改善して、空気調和装置全体の効率を向上することを目的とする。 [0009] The present invention has been made to solve the problems of the related art, and an object of the present invention is to improve the efficiency of the refrigeration cycle and improve the efficiency of the entire air conditioner.
課題を解決するための手段  Means for solving the problem
[0010] 請求項 1の発明の空気調和装置は、圧縮機、放熱器、減圧装置及び蒸発器を備え て構成され、高圧側が超臨界圧力で運転される冷媒回路を備え、蒸発器と熱交換し た空気により被調和室を冷却すると共に、この被調和室に外気を導入し、且つ、当該 被調和室の空気を外部に排出することにより換気を行うものであって、放熱器の冷媒 下流側に第 2の放熱器を設け、被調和室力 排出される空気と第 2の放熱器とを熱 交換させることを特徴とする。 [0010] The air conditioner of the invention of claim 1 includes a compressor, a radiator, a decompressor, and an evaporator, and includes a refrigerant circuit that operates at a supercritical pressure on the high-pressure side, and exchanges heat with the evaporator. The air to be conditioned is cooled, the outside air is introduced into the room to be conditioned, and the air in the room to be conditioned is exhausted to the outside. A second radiator is installed on the side to heat the air to be conditioned room exhausted and the second radiator. It is made to exchange.
[0011] 請求項 2の発明の空気調和装置は、圧縮機、放熱器、減圧装置及び蒸発器を備え て構成された冷媒回路を備え、蒸発器と熱交換した空気により被調和室を冷却する と共に、水分の吸収と放出が可能な吸湿部材を備え、外気中の水分を前記吸湿部 材で吸収した後、蒸発器に流入させることにより被調和室の換気を行い、放熱器と熱 交換した空気を吸湿部材に流入させることにより当該吸湿部材が吸収した水分を放 出させるものであって、吸湿部材を経て蒸発器に流入する空気と外気とを熱交換さ せる熱交換器を設けたことを特徴とする。  [0011] The air conditioning apparatus of the invention of claim 2 includes a refrigerant circuit configured to include a compressor, a radiator, a decompression device, and an evaporator, and cools the conditioned chamber by air exchanged with the evaporator. In addition, a moisture absorbing member capable of absorbing and releasing moisture is absorbed, and after moisture in the outside air is absorbed by the moisture absorbing member, the conditioned room is ventilated by flowing into the evaporator and heat exchange with the radiator is performed. A heat exchanger is provided that allows the moisture absorbed by the hygroscopic member to be released by flowing air into the hygroscopic member, and that exchanges heat between the air flowing into the evaporator and the outside air via the hygroscopic member. It is characterized by.
[0012] 請求項 3の発明の空気調和装置は、請求項 2に記載の発明において被調和室の 空気を外部に排出すると共に、放熱器の冷媒下流側に第 2の放熱器を設け、被調和 室から排出される空気と第 2の放熱器とを熱交換させることを特徴とする。  [0012] An air conditioner according to a third aspect of the present invention is the air conditioner according to the second aspect, wherein the air in the chamber to be conditioned is discharged to the outside, and a second radiator is provided on the refrigerant downstream side of the radiator. Heat exchange is performed between the air discharged from the conditioning room and the second radiator.
[0013] 請求項 4の発明の空気調和装置は、請求項 2又は請求項 3に記載の発明において 放熱器を冷媒上流側に位置する第 1の放熱器と、この第 1の放熱器の冷媒下流側に 位置する第 3の放熱器とに区分し、第 1の放熱器と熱交換した空気を吸湿部材に流 入させると共に、第 3の放熱器と外気とを熱交換させることを特徴とする。  [0013] The air conditioner of the invention of claim 4 is the first heat radiator in which the radiator is located upstream of the refrigerant in the invention of claim 2 or claim 3, and the refrigerant of the first radiator. It is divided into a third radiator located on the downstream side, and air that has exchanged heat with the first radiator is allowed to flow into the moisture absorption member, and heat exchange between the third radiator and outside air is possible. To do.
発明の効果  The invention's effect
[0014] 請求項 1の発明によれば、圧縮機、放熱器、減圧装置及び蒸発器を備えて構成さ れ、高圧側が超臨界圧力で運転される冷媒回路を備え、蒸発器と熱交換した空気に より被調和室を冷却すると共に、この被調和室に外気を導入し、且つ、当該被調和 室の空気を外部に排出することにより換気を行う空気調和装置であって、放熱器の 冷媒下流側に第 2の放熱器を設け、被調和室力 排出される空気と第 2の放熱器と を熱交換させるので、蒸発器入口における冷媒の比ェンタルピを小さくすることがで きる。これにより、冷凍効果が増大し、冷凍サイクルの効率が向上する。従って、空気 調和装置全体の効率の向上を図ることができる。  [0014] According to the invention of claim 1, it is configured to include a compressor, a radiator, a decompression device, and an evaporator, and includes a refrigerant circuit that operates at a supercritical pressure on the high-pressure side, and exchanges heat with the evaporator. An air conditioner that cools a conditioned room with air, introduces outside air into the conditioned room, and ventilates air by discharging the air in the conditioned room to the outside. A second radiator is provided on the downstream side to exchange heat between the air discharged from the conditioned room force and the second radiator, so that the refrigerant specific enthalpy at the evaporator inlet can be reduced. This increases the refrigeration effect and improves the efficiency of the refrigeration cycle. Therefore, the efficiency of the entire air conditioner can be improved.
[0015] 請求項 2の発明によれば、圧縮機、放熱器、減圧装置及び蒸発器を備えて構成さ れた冷媒回路を備え、蒸発器と熱交換した空気により被調和室を冷却すると共に、 水分の吸収と放出が可能な吸湿部材を備え、外気中の水分を前記吸湿部材で吸収 した後、蒸発器に流入させることにより被調和室の換気を行い、放熱器と熱交換した 空気を吸湿部材に流入させることにより当該吸湿部材が吸収した水分を放出させる 空気調和装置であって、吸湿部材を経て蒸発器に流入する空気と外気とを熱交換さ せる熱交換器を設けたので、冷凍サイクルの排熱を利用して導入する外気の潜熱負 荷及び顕熱負荷を低減することができる。これにより、冷凍サイクルの冷却負荷を低 減でき、且つ、冷凍サイクルの蒸発温度及び蒸発圧力が上昇し、冷凍サイクルの効 率の向上を図ることができる。従って、空気調和装置全体のエネルギー消費効率の 向上を図ることができるようになる。 [0015] According to the invention of claim 2, the refrigerant circuit including the compressor, the radiator, the pressure reducing device, and the evaporator is provided, and the conditioned chamber is cooled by the air exchanged with the evaporator. A moisture absorbing member capable of absorbing and releasing moisture is absorbed. After moisture in the outside air is absorbed by the moisture absorbing member, the conditioned room is ventilated by flowing into the evaporator, and heat exchange with the radiator is performed. An air conditioner that discharges moisture absorbed by the hygroscopic member by flowing air into the hygroscopic member, and includes a heat exchanger that exchanges heat between the air flowing into the evaporator and the outside air via the hygroscopic member. Therefore, it is possible to reduce the latent heat load and sensible heat load of the outside air introduced using the exhaust heat of the refrigeration cycle. As a result, the cooling load of the refrigeration cycle can be reduced, the evaporation temperature and the evaporation pressure of the refrigeration cycle are increased, and the efficiency of the refrigeration cycle can be improved. Therefore, the energy consumption efficiency of the entire air conditioner can be improved.
[0016] また、請求項 3の如く被調和室の空気を外部に排出すると共に、放熱器の冷媒下 流側に第 2の放熱器を設け、被調和室力 排出される空気と第 2の放熱器とを熱交 換させることで、蒸発器入口における冷媒の比ェンタルピを小さくすることができる。 これにより、冷凍効果が増大し、冷凍サイクルの効率が向上する。更に、放熱器の冷 媒下流側に第 2の放熱器を設けることにより、放熱器における冷媒温度が高くなり、 吸湿部材を乾燥再生するための空気温度が上昇するので、吸湿部材の効率が向上 する。総じて、空気調和装置全体の効率をより一層向上できる。  [0016] Further, as described in claim 3, the air in the conditioned room is discharged to the outside, and a second radiator is provided on the downstream side of the refrigerant of the radiator, so that the air discharged from the conditioned room and the second By exchanging heat with the radiator, the specific enthalpy of the refrigerant at the evaporator inlet can be reduced. This increases the refrigeration effect and improves the efficiency of the refrigeration cycle. Furthermore, by providing a second radiator on the downstream side of the radiator, the refrigerant temperature in the radiator is increased, and the air temperature for drying and regenerating the moisture absorbing member is increased, improving the efficiency of the moisture absorbing member. To do. In general, the efficiency of the entire air conditioner can be further improved.
[0017] 更にまた、請求項 4の如く放熱器を冷媒上流側に位置する第 1の放熱器と、この第 1の放熱器の冷媒下流側に位置する第 3の放熱器とに区分し、第 1の放熱器と熱交 換した空気を吸湿部材に流入させると共に、第 3の放熱器と外気とを熱交換させるも のとすれば、吸湿剤を乾燥再生するための空気温度を更に上昇できるので、吸湿部 材の効率がより一層向上し、空気調和装置全体の効率を更に向上することができる。 発明を実施するための最良の形態  [0017] Further, as in claim 4, the radiator is divided into a first radiator located on the refrigerant upstream side and a third radiator located on the refrigerant downstream side of the first radiator, If air that has been heat-exchanged with the first heatsink flows into the hygroscopic member and heat is exchanged between the third heatsink and the outside air, the air temperature for drying and regenerating the hygroscopic agent can be further increased. Therefore, the efficiency of the hygroscopic member can be further improved, and the efficiency of the entire air conditioner can be further improved. BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、図面に基づき本発明の実施形態を詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
実施例 1  Example 1
[0019] 図 1は、本発明の一実施例の空気調和装置の概略構成図である。図 1において、 1 は本実施例の空気調和装置 Xの冷凍サイクル装置、 2は冷凍サイクル装置 1の蒸発 器 16にて冷却される被調和室である。即ち、空気調和装置 Xは、冷凍サイクル装置 1 の蒸発器 16と熱交換して冷却された空気(冷気)により被調和室 2を冷却するもので あり、外気を導入し、且つ、外気から導入した量に相当する当該被調和室 2の空気を 外部に排出することにより換気を行って、該被調和室 2内の空気質を維持している。 [0020] 実施例の冷凍サイクル装置 1は、圧縮機 10、放熱器 12、第 2の放熱器 13、膨張弁 14 (減圧装置)及び蒸発器 16を冷媒配管により順次接続することにより冷媒回路が 構成されている。即ち、圧縮機 10の冷媒吐出管 32は放熱器 12の入口に接続されて いる。放熱器 12の出口側には第 2の放熱器 13が接続され、第 2の放熱器 13の出口 に接続された冷媒配管 34は膨張弁 14 (本発明における減圧装置)に至る。尚、本実 施例では減圧装置として膨張弁 14を用いるものとした力 本発明の減圧装置は、冷 媒を減圧することができるものであればどのようなものであっても良ぐ例えば、キヤピ ラリチューブを用いるものとしても差し支えなレ、。 FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention. In FIG. 1, 1 is a refrigeration cycle apparatus of the air conditioner X of the present embodiment, and 2 is a conditioned room cooled by the evaporator 16 of the refrigeration cycle apparatus 1. In other words, the air conditioner X cools the conditioned room 2 with air (cold air) cooled by exchanging heat with the evaporator 16 of the refrigeration cycle apparatus 1, and introduces outside air and introduces it from outside air. The air in the conditioned room 2 is maintained by ventilating the air in the conditioned room 2 corresponding to the amount of the air discharged to the outside. [0020] The refrigeration cycle apparatus 1 according to the embodiment has a refrigerant circuit in which a compressor 10, a radiator 12, a second radiator 13, an expansion valve 14 (decompression device), and an evaporator 16 are sequentially connected by refrigerant piping. It is configured. That is, the refrigerant discharge pipe 32 of the compressor 10 is connected to the inlet of the radiator 12. A second radiator 13 is connected to the outlet side of the radiator 12, and the refrigerant pipe 34 connected to the outlet of the second radiator 13 reaches the expansion valve 14 (the pressure reducing device in the present invention). In this embodiment, the force that uses the expansion valve 14 as the pressure reducing device may be any pressure reducing device of the present invention as long as it can depressurize the cooling medium. This can be used as a capillary tube.
[0021] 膨張弁 14から出た冷媒配管 35は、蒸発器 16の入口に接続されている。そして、蒸 発器 16の出口には圧縮機 10の冷媒導入管 30が接続されて環状の閉回路が構成さ れている。また、冷媒回路には冷媒として二酸化炭素が封入されている。上記放熱 器 12、第 2の放熱器 13及び蒸発器 16は共に、冷媒と空気とを熱交換する熱交換器 であり、例えば、銅管とアルミフィンから成る所謂チューブフィンタイプの熱交換器、或 いは、アルミ多孔管を用いた所謂マイクロチャンネルタイプの熱交換器等が使用され る。放熱器 12、第 2の放熱器 13及び蒸発器 16の近傍には送風手段としてのファン( 図示せず)が設置されて!/、る。  A refrigerant pipe 35 exiting from the expansion valve 14 is connected to the inlet of the evaporator 16. A refrigerant introduction pipe 30 of the compressor 10 is connected to the outlet of the evaporator 16 to form an annular closed circuit. In addition, carbon dioxide is sealed as a refrigerant in the refrigerant circuit. The radiator 12, the second radiator 13 and the evaporator 16 are all heat exchangers for exchanging heat between refrigerant and air. For example, a so-called tube fin type heat exchanger composed of a copper tube and aluminum fins, Alternatively, a so-called microchannel type heat exchanger using an aluminum porous tube is used. In the vicinity of the radiator 12, the second radiator 13, and the evaporator 16, a fan (not shown) is installed as a blowing means.
[0022] 放熱器 12は、被調和室 2外 (屋外)に設けられ、外気と熱交換可能に配置されてい る。第 2の放熱器 13は、図 1に示すように冷媒回路の放熱器 12の冷媒下流側に設け られた第 2の放熱手段であり、被調和室 2内から外部に排出される空気の排出通路 4 2内に当該被調和室 2から外部に排出される空気と熱交換可能に配設されている。ま た、蒸発器 16は被調和室 2内に導入する外気の導入通路 41内に介設されている。 従って、被調和室 2内には蒸発器 16を流れる冷媒と熱交換した空気 (外気)が導入さ れることとなる。  [0022] The radiator 12 is provided outside the conditioned room 2 (outdoors) and is arranged so as to be able to exchange heat with the outside air. The second heat radiator 13 is a second heat radiating means provided on the refrigerant downstream side of the heat radiator 12 of the refrigerant circuit, as shown in FIG. 1, and discharges air discharged from the conditioned chamber 2 to the outside. In the passage 42, heat is exchanged with the air discharged from the conditioned room 2 to the outside. Further, the evaporator 16 is interposed in an introduction passage 41 for outside air introduced into the conditioned room 2. Therefore, air (external air) that exchanges heat with the refrigerant flowing through the evaporator 16 is introduced into the conditioned chamber 2.
[0023] また、図 1において 3は、被調和室 2内の空気を蒸発器 16に流すための空気通路 であり、当該空気通路 3の一端は、被調和室 2に接続され、他端は前記導入通路 41 の途中部であって、蒸発器 16の風上側に接続されている。これにより、被調和室 2内 の空気は、当該空気通路 3、導入通路 41を介して蒸発器 16に流入し、この蒸発器 1 6を流れる冷媒と熱交換して冷却された後、被調和室 2内に戻ることとなる。このように 、被調和室 2内の空気を循環させることで、被調和室 2内を冷房することができる。 Further, in FIG. 1, 3 is an air passage for flowing the air in the conditioned chamber 2 to the evaporator 16, one end of the air passage 3 is connected to the conditioned chamber 2 and the other end is In the middle of the introduction passage 41, it is connected to the windward side of the evaporator 16. As a result, the air in the conditioned chamber 2 flows into the evaporator 16 through the air passage 3 and the introduction passage 41, is cooled by exchanging heat with the refrigerant flowing through the evaporator 16 and then cooled. Return to Room 2. in this way By circulating the air in the conditioned room 2, the conditioned room 2 can be cooled.
[0024] 更に、導入通路 41と空気通路 3の他端の接続箇所には、外部から導入される空気 [0024] Furthermore, the air introduced from the outside is connected to the connection portion between the other end of the introduction passage 41 and the air passage 3.
(外気)及び被調和室 2内の空気の量を調節するため、図示しないダンバ等の空気 量調節手段が取り付けられており、外部から空気を導入する換気運転、外部から空 気を導入すること無しに、被調和室 2の空気のみを循環する冷房運転、或いは、外部 から空気を導入しながら被調和室 2の空気を循環する冷房運転を切換可能に構成さ れているものとする。  (Outside air) and air volume adjustment means such as a damper (not shown) are attached to adjust the amount of air in the conditioned room 2, and ventilation operation that introduces air from outside, and introduction of air from outside None, it is assumed that the cooling operation in which only the air in the conditioned room 2 is circulated or the cooling operation in which the air in the conditioned room 2 is circulated while introducing air from the outside can be switched.
[0025] 以上の構成で次に本実施例の空気調和装置 Xの動作を図 2の p— h線図(モリエノレ 線図)を用いて説明する。尚、本実施例では、外部から空気を導入する換気を行い ながら被調和室 2の空気を循環する冷房運転について説明する。先ず、空気調和装 置 Xの図示しない制御手段により、圧縮機 10が起動されると、冷媒導入管 30から圧 縮機 10内に低温低圧冷媒が吸い込まれる(図 2の e6の状態)。圧縮機 10に吸い込 まれた冷媒は、圧縮されて高温高圧の冷媒ガスとなり、冷媒吐出管 32から吐出され る。このとき、冷媒吐出管 32から吐出される高温高圧の冷媒は、図 2の alの状態とな る。即ち、冷媒は圧縮機 10における圧縮で超臨界状態となる。  Next, the operation of the air conditioner X of the present embodiment with the above configuration will be described with reference to the ph diagram (Mollier diagram) of FIG. In this embodiment, a cooling operation in which air in the conditioned room 2 is circulated while performing ventilation by introducing air from the outside will be described. First, when the compressor 10 is started by the control means (not shown) of the air conditioner X, the low-temperature and low-pressure refrigerant is sucked into the compressor 10 from the refrigerant introduction pipe 30 (state e6 in FIG. 2). The refrigerant sucked into the compressor 10 is compressed into high-temperature and high-pressure refrigerant gas, and is discharged from the refrigerant discharge pipe 32. At this time, the high-temperature and high-pressure refrigerant discharged from the refrigerant discharge pipe 32 is in the state of al in FIG. That is, the refrigerant becomes a supercritical state by compression in the compressor 10.
[0026] 冷媒吐出管 32に吐出された冷媒はこの状態で放熱器 12に流入し、そこで図示し ないファンにて送風される外気と熱交換して放熱し、放熱器 12から出る。このとき、放 熱器 12にて冷媒は超臨界を維持したまま放熱するので、冷媒の温度が低下する(図 2の a3の状態)。そして、放熱器 12から出た冷媒は第 2の放熱器 13に流入し、そこで 当該第 2の放熱器 13の近傍に設けられたファンにて送風される被調和室 2内の空気 と熱交換して更に放熱する。このとき、第 2の放熱器 13に送風される被調和室 2内の 空気は蒸発器 16にて冷却された空気であり、前記放熱器 12にて冷媒と熱交換する 外気より低温であるため、放熱器 12にて放熱した冷媒を更に冷却することができる。 また、冷媒は超臨界を維持したまま放熱するので、更に冷媒の温度が低下する(図 2 の a4の状態)。  In this state, the refrigerant discharged to the refrigerant discharge pipe 32 flows into the radiator 12, where it exchanges heat with the outside air blown by a fan (not shown) to dissipate the heat and exits the radiator 12. At this time, since the refrigerant dissipates heat while maintaining supercriticality in the heat radiator 12, the temperature of the refrigerant decreases (state a3 in FIG. 2). Then, the refrigerant discharged from the radiator 12 flows into the second radiator 13, where it exchanges heat with the air in the conditioned chamber 2 blown by a fan provided in the vicinity of the second radiator 13. To further dissipate heat. At this time, the air in the conditioned room 2 blown to the second radiator 13 is air cooled by the evaporator 16 and is lower in temperature than the outside air that exchanges heat with the refrigerant in the radiator 12. Then, the refrigerant radiated by the radiator 12 can be further cooled. In addition, since the refrigerant dissipates heat while maintaining supercriticality, the temperature of the refrigerant further decreases (state a4 in Fig. 2).
[0027] このように、放熱器 12の冷媒下流側に第 2の放熱器 13を設けて、冷媒と被調和室  In this way, the second radiator 13 is provided on the refrigerant downstream side of the radiator 12, so that the refrigerant and the conditioned room are provided.
2内からの空気とを熱交換させることで、冷媒をより放熱させること力 Sできる。特に、二 酸化炭素冷媒のように冷媒回路の高圧側が超臨界圧力で運転される場合には、冷 媒の放熱と共に温度が低下するため、外気より温度の低い被調和室 2内の空気と熱 交換させることで、冷媒の温度をより一層低温とすることができ、冷媒の比ェンタルピ を/ J、さくすること力 Sでさる。 2. By exchanging heat with the air from inside, it is possible to dissipate more heat from the refrigerant. Especially when the high pressure side of the refrigerant circuit is operated at supercritical pressure, such as carbon dioxide refrigerant, Since the temperature decreases as the medium dissipates heat, heat exchange with the air in the conditioned room 2, which is cooler than the outside air, allows the refrigerant temperature to be further reduced, and the refrigerant specific enthalpy is / J, Crushing power S
[0028] 第 2の放熱器 13を出た冷媒は冷媒配管 34を経て膨張弁 14に入り、そこで減圧さ れる。このとき、冷媒は図 2の a4の状態から e5の状態まで減圧されて気液二相状態と なる。冷媒はこの状態で蒸発器 16に流入し、そこで通風される空気(前述したように 外気と被調和室 2内からの空気とが混合されたもの)から熱を奪って蒸発する。また、 蒸発器 16にて冷媒から熱を奪われて冷却された空気(冷気)は、被調和室 2内に吐 出される。これにより、当該被調和室 2内が冷却(冷房)されていく。  [0028] The refrigerant exiting the second radiator 13 enters the expansion valve 14 via the refrigerant pipe 34, and is decompressed there. At this time, the refrigerant is depressurized from the state a4 to the state e5 in FIG. 2 to be in a gas-liquid two-phase state. In this state, the refrigerant flows into the evaporator 16 and evaporates by taking heat from the air ventilated there (as described above, the mixture of the outside air and the air from the conditioned chamber 2). In addition, air (cold air) cooled by removing heat from the refrigerant in the evaporator 16 is discharged into the conditioned room 2. Thereby, the inside of the conditioned room 2 is cooled (cooled).
[0029] 一方、蒸発器 16における蒸発で、冷媒は図 2の e5の状態から e6の状態まで比ェン タルピーが変化する。即ち、前記第 2の放熱器 13により冷媒の比ェンタルピをより小 さくすることができたので、係る蒸発器 16における蒸発で十分な比ェンタルピー差を 確保することが可能となる。  On the other hand, due to the evaporation in the evaporator 16, the specific enthalpy of the refrigerant changes from the state e5 to the state e6 in FIG. That is, since the specific heat enthalpy of the refrigerant can be further reduced by the second radiator 13, it is possible to secure a sufficient specific enthalpy difference by evaporation in the evaporator 16.
[0030] 図 2において、 f6、 c l、 c4、 f 5を結ぶ破線は、被調和室 2外部の空気(外気)を直 接被調和室 2内に導入し、且つ、第 2の放熱器 13が設けられていない、或いは、外 気を導入せず(即ち、換気を行わない)、且つ、第 2の放熱器 13が無い従来の構成 の空気調和装置の p— h線図である。放熱器 12から出た冷媒は図 2の c4の状態であ り、この状態で蒸発器 16にて蒸発した場合、冷媒は図 2の f5の状態から f6の状態と なる。即ち、蒸発器 16の入口における冷媒の比ェンタルビが大きぐその結果、蒸発 器 16において十分な比ェンタルピー差を確保することができない。更に、被調和室 2 内に導入する外部からの空気(外気)を蒸発器 16に流入させない、或いは、被調和 室 2内に外部から空気を導入しない場合には、蒸発器 16にて冷媒と熱交換させる空 気は温度の低い被調和室 2の空気だけとなるので、蒸発器 16における冷媒の蒸発 温度及び蒸発圧力は低!/、ものであった。  [0030] In FIG. 2, the broken lines connecting f6, cl, c4, and f5 introduce the air outside the conditioned room 2 (outside air) directly into the conditioned room 2, and the second radiator 13 FIG. 2 is a ph diagram of an air conditioner having a conventional configuration in which the air conditioner is not provided or outside air is not introduced (that is, ventilation is not performed) and the second radiator 13 is not provided. The refrigerant coming out of the radiator 12 is in the state of c4 in FIG. 2, and when it is evaporated in the evaporator 16 in this state, the refrigerant changes from the state of f5 to the state of f6 in FIG. That is, the specific enthalpy of the refrigerant at the inlet of the evaporator 16 is increased, and as a result, a sufficient specific enthalpy difference cannot be ensured in the evaporator 16. Furthermore, when the outside air (outside air) introduced into the conditioned room 2 is not allowed to flow into the evaporator 16 or when no air is introduced into the conditioned room 2 from the outside, the evaporator 16 Since the air to be heat-exchanged is only air in the conditioned room 2 having a low temperature, the evaporating temperature and evaporating pressure of the refrigerant in the evaporator 16 were low! /.
[0031] そこで、図 2の e6、 c l、 c4、 e ' 5を結ぶ破線は、被調和室 2内に導入する外気を冷 媒回路の蒸発器 16にて冷却した後、被調和室 2内に導入した場合の空気調和装置 の p— h線図である。当該破線(e6、 c l、 c4、 e ' 5を結ぶ破線)で示すように被調和室 2内に導入する外気を冷媒回路の蒸発器 16にて冷却した後、被調和室 2内に導入 することで、蒸発器 16にて冷媒と熱交換する空気の温度は、被調和室 2内の空気の みを蒸発器 16に流入させた場合より、著しく高くなる。このため、外気を被調和室 2内 に直接導入する従来のものより蒸発器 16における冷媒の蒸発温度及び蒸発圧力を 高くすること力できる。従って、圧縮機 10に吸い込まれる冷媒の温度及び圧力も高く なるので、その分、圧縮機 10の圧力比が小さくなり、圧縮仕事も低減することができ て、冷凍サイクルの効率をより一層向上できる。 Therefore, the broken lines connecting e6, cl, c4, and e'5 in FIG. 2 indicate that the outside air introduced into the conditioned room 2 is cooled by the evaporator 16 of the cooling circuit, and then the conditioned room 2 FIG. 2 is a ph diagram of an air conditioner when introduced in FIG. As indicated by the broken line (broken line connecting e6, cl, c4, e'5), the outside air introduced into the conditioned room 2 is cooled by the evaporator 16 of the refrigerant circuit and then introduced into the conditioned room 2. As a result, the temperature of the air that exchanges heat with the refrigerant in the evaporator 16 is significantly higher than when only the air in the conditioned chamber 2 is allowed to flow into the evaporator 16. For this reason, it is possible to increase the evaporating temperature and evaporating pressure of the refrigerant in the evaporator 16 as compared with the conventional apparatus in which outside air is directly introduced into the conditioned chamber 2. Accordingly, since the temperature and pressure of the refrigerant sucked into the compressor 10 are also increased, the pressure ratio of the compressor 10 is reduced accordingly, the compression work can be reduced, and the efficiency of the refrigeration cycle can be further improved. .
[0032] 更に、本発明の如く第 2の放熱器 13を設けることで、蒸発器 16の入口における冷 媒の比ェンタルピを小さくすることができるようなる。これにより、蒸発器 16において十 分な比ェンタルピー差を確保することができるので、冷凍サイクルの冷凍効果が増大 し、効率の向上を図ることができる。総じて、空気調和装置 X全体の効率の向上を図 ることカでさるようになる。  Furthermore, by providing the second radiator 13 as in the present invention, the specific enthalpy of the cooling medium at the inlet of the evaporator 16 can be reduced. As a result, a sufficient specific enthalpy difference can be ensured in the evaporator 16, so that the refrigeration effect of the refrigeration cycle is increased and the efficiency can be improved. In general, the overall efficiency of the air conditioner X can be improved.
[0033] 他方、蒸発器 16にて蒸発した冷媒は(図 2の e6の状態)、蒸発器 16から出て冷媒 導入管 30に入り、圧縮機 10に吸い込まれるサイクルを繰り返す。  On the other hand, the refrigerant evaporated in the evaporator 16 (state e6 in FIG. 2) exits the evaporator 16 and enters the refrigerant introduction pipe 30 and repeats the cycle of being sucked into the compressor 10.
[0034] 尚、本実施例では放熱器 12及び第 2の放熱器 13とは別々に構成された独立の熱 交換器として、放熱器 12を室外に設置し、第 2の放熱器 13を排出通路 42に設置す るものとした力 これに限らず、放熱器 12及び第 2の放熱器 13を一台の熱交換器に て構成しても構わない。この場合、熱交換器は冷媒の入口側、即ち、圧縮機 10側を 室外に配置し、出口側(膨張弁 14側)を外部から排出通路 42の壁面を貫通して延在 させ、当該排出通路 42内に配置されるよう構成する。これにより、上記実施例の如く 外気と熱交換して温度低下した冷媒を被調和室 2内から排出される空気 (冷気)によ り効果的に低温にすることが可能となる。  [0034] In this embodiment, as an independent heat exchanger configured separately from the radiator 12 and the second radiator 13, the radiator 12 is installed outdoors and the second radiator 13 is discharged. The force to be installed in the passage 42 Not limited to this, the radiator 12 and the second radiator 13 may be configured as a single heat exchanger. In this case, in the heat exchanger, the refrigerant inlet side, that is, the compressor 10 side is arranged outside the room, and the outlet side (expansion valve 14 side) extends from the outside through the wall surface of the discharge passage 42 to discharge the heat. It is configured to be placed in the passage 42. As a result, it is possible to effectively reduce the temperature of the refrigerant whose temperature has been reduced by exchanging heat with the outside air as in the above embodiment, using the air (cold air) discharged from the conditioned chamber 2.
実施例 2  Example 2
[0035] 次に、図 3を用いて本発明の空気調和装置の他の実施例について説明する。図 3 は本実施例の空気調和装置 Yの概略構成図である。尚、図 3において図 1と同一の 符号が付されているものは同様或いは類似の効果若しくは作用を奏するものであり、 ここでは説明を省略する。  Next, another embodiment of the air conditioner of the present invention will be described with reference to FIG. FIG. 3 is a schematic configuration diagram of the air conditioner Y of the present embodiment. 3 that have the same reference numerals as those in FIG. 1 have the same or similar effects or actions, and will not be described here.
[0036] 図 3に示す本実施例の空気調和装置 Yの冷凍サイクル装置 1は、前記実施例同様 に圧縮機 10、放熱器 12、第 2の放熱器 13、膨張弁 14 (減圧装置)及び蒸発器 16を 冷媒配管により順次接続することに冷媒回路が構成されている。また、冷媒回路には 前記実施例同様に冷媒として二酸化炭素が封入されている。 [0036] The refrigeration cycle apparatus 1 of the air-conditioning apparatus Y of the present embodiment shown in FIG. 3 includes a compressor 10, a radiator 12, a second radiator 13, an expansion valve 14 (decompression apparatus), and Evaporator 16 A refrigerant circuit is configured by sequentially connecting the refrigerant pipes. Further, carbon dioxide is sealed as a refrigerant in the refrigerant circuit as in the above-described embodiment.
[0037] 図 3において、 43は、放熱器 12に外気を送風し、この放熱器 12通過後の空気をデ シカントロータ 5の一部に送風するための空気通路である。即ち、本実施例の放熱器 12は被調和室 2の外部に形成された空気通路 43の入口側に配設されている。また、 上記デシカントロータ 5は水分を吸収し、且つ、放出可能な吸湿剤を備える回転式の 吸湿部材である。吸湿剤は、シリカゲル、ゼォライト、架橋ポリエチレン等、常温 (或い は、常温以下)にて水分を吸収し、加熱することにより水分を放出する性質を有する 素材から成り、これを所定厚さの円盤状に形成することで構成される。デシカントロー タ 5は、空気通路 43からの空気及び導入通路からの空気の流れ方向を軸心として回 転し、導入通路 41とこの導入通路 41に並設された上記空気通路 43を回転により順 次通過可能に配置されている。  In FIG. 3, reference numeral 43 denotes an air passage for blowing outside air to the radiator 12 and blowing the air after passing through the radiator 12 to a part of the desiccant rotor 5. That is, the radiator 12 of this embodiment is disposed on the inlet side of the air passage 43 formed outside the conditioned room 2. The desiccant rotor 5 is a rotary moisture absorbing member that includes a moisture absorbent that absorbs and can release moisture. The hygroscopic agent is made of a material that absorbs moisture at room temperature (or below room temperature) and releases moisture when heated, such as silica gel, zeolite, and cross-linked polyethylene. It is comprised by forming in a shape. The desiccant rotor 5 rotates around the flow direction of the air from the air passage 43 and the air from the introduction passage, and rotates the introduction passage 41 and the air passage 43 arranged in parallel to the introduction passage 41 by rotation. It is arranged so that it can pass next.
[0038] 即ち、デシカントロータ 5の一部分に着目すると、図示しない電動機により回転され ることにより、上記一部分は導入通路 41から空気通路 43に移行し、再び導入通路 4 1に戻るサイクルが繰り返されるものである。そして、空気通路 43において、デシカン トロータ 5に流入する空気は、空気通路 43の入口側に配設された放熱器 12にて加 熱された空気であるため、導入通路 41にて外気から吸収した水分がここで放出され ることとなる。そして、デシカントロータ 5を通過して当該デシカントロータ 5の水分を吸 収した空気は、即ち、水分を多く含んだ空気は、出口から空気通路 43の外部に排出 されるよう構成されている。  That is, when focusing on a part of the desiccant rotor 5, a cycle in which the part is transferred from the introduction passage 41 to the air passage 43 and rotated back to the introduction passage 41 again by being rotated by an electric motor (not shown). It is. In the air passage 43, the air flowing into the desiccant rotor 5 is air heated by the radiator 12 disposed on the inlet side of the air passage 43, and is thus absorbed from the outside air by the introduction passage 41. Moisture is released here. The air that has passed through the desiccant rotor 5 and has absorbed the moisture of the desiccant rotor 5, that is, the air containing a large amount of moisture, is discharged from the outlet to the outside of the air passage 43.
[0039] 係る構成により、外気から導入通路 41に導入された空気中の水分を当該導入通路 41に位置するデシカントロータ 5にて吸収させ、このデシカントロータ 5が吸収した水 分を空気通路 43にて放熱器 12にて加熱された外気中に放出させることができる。  [0039] With this configuration, moisture in the air introduced from the outside air into the introduction passage 41 is absorbed by the desiccant rotor 5 located in the introduction passage 41, and the moisture absorbed by the desiccant rotor 5 is absorbed in the air passage 43. Thus, it can be discharged into the outside air heated by the radiator 12.
[0040] このように、デシカントロータ 5により外部から導入通路 41内に導入された空気中( 外気中)の水分を除去することができ、その後、蒸発器 16に流入させる空気の潜熱 を低減すること力 Sできる。また、デシカントロータ 5の乾燥再生には上述の如く放熱器 12にて冷媒と熱交換して加熱された空気(外気)が利用されるので、従来外部に排 出されていた放熱器 12の排熱を有効利用することができる。 [0041] 更に、この放熱器 12の出口側の冷媒回路に第 2の放熱器 13を設けることで、放熱 器 12を流れる冷媒温度が高くなり、この冷媒との熱交換により外気温度も上昇させる こと力 Sできる。即ち、デシカントロータ 5を乾燥再生するための空気温度が上昇するの で、デシカントロータ 5の乾燥、及び、吸収の効率を向上させることができる。従って、 空気調和装置 Y全体の効率をより一層向上できる。更に、デシカントロータ 5の乾燥、 及び、吸収の効率が向上することで、従来のデシカントロータより小型のデシカント口 ータ 5を用いても同様の効果を発揮させることができるので、デシカントロータ 5を小 型化すること力 Sできる。これにより、空気調和装置 Y全体をコンパクト化することも可能 となる。 [0040] In this manner, moisture in the air (in the outside air) introduced into the introduction passage 41 from the outside by the desiccant rotor 5 can be removed, and then the latent heat of the air flowing into the evaporator 16 is reduced. That power S. Also, as described above, air that has been heated by exchanging heat with the refrigerant in the radiator 12 (outside air) is used to dry and regenerate the desiccant rotor 5. Heat can be used effectively. [0041] Further, by providing the second radiator 13 in the refrigerant circuit on the outlet side of the radiator 12, the temperature of the refrigerant flowing through the radiator 12 is increased, and the outside air temperature is also increased by heat exchange with the refrigerant. That power S. That is, since the air temperature for drying and regenerating the desiccant rotor 5 increases, the drying and absorption efficiency of the desiccant rotor 5 can be improved. Therefore, the efficiency of the entire air conditioner Y can be further improved. Furthermore, the efficiency of drying and absorption of the desiccant rotor 5 is improved, so that the same effect can be exhibited even if a desiccant port 5 smaller than the conventional desiccant rotor is used. The power of miniaturization is possible. As a result, the entire air conditioner Y can be made compact.
[0042] 更にまた、デシカントロータ 5にて蒸発器 16に流入させる空気中の水分を予め除去 することで、蒸発器 16や蒸発器 16のフィルタ(図示されず)等に着く水分を未然に回 収すること力 Sできる。これにより、蒸発器 16やそのフィルタ等に水分が付着し、この水 分から細菌が発生する等の不都合を抑えることができる。更に、デシカントロータ 5に より、少ないエネルギー損失で新鮮な外気を室内に導入することが可能となるので、 上記細菌発生の抑制効果に加えて、室内の空気質の向上を図ることができる。  [0042] Furthermore, by removing the moisture in the air flowing into the evaporator 16 in advance with the desiccant rotor 5, the moisture that reaches the evaporator 16 and the filter (not shown) of the evaporator 16 is recirculated. Capturing power S As a result, it is possible to suppress problems such as moisture adhering to the evaporator 16 and its filter and the generation of bacteria from the water. Further, the desiccant rotor 5 can introduce fresh outside air into the room with little energy loss, so that the air quality in the room can be improved in addition to the effect of suppressing the generation of bacteria.
[0043] 更に、デシカントロータ 5により被調和室 2内に導入する空気の水分を除去し湿度を 低下させることができるので、快適性を維持しつつ、被調和室 2内の空気を上昇させ ること力 Sできる。このことによつても、冷房負荷を低減することができるので、冷房のた めのエネルギー消費を削減することができる。  [0043] Further, the desiccant rotor 5 can remove moisture from the air introduced into the conditioned room 2 and reduce the humidity, so that the air in the conditioned room 2 is raised while maintaining comfort. That power S. This also reduces the cooling load, so that energy consumption for cooling can be reduced.
[0044] ところで、上記の如くデシカントロータ 5にて水分を除去することで、蒸発器 16にお ける潜熱負荷を低減することが可能となる力、係る外気のデシカントロータ 5による水 分除去は、等ェンタルピー変化であるため、潜熱負荷は低減できても、その分、顕熱 負荷が増大、即ち、水分除去後の空気温度が上昇するため、冷凍サイクルにより冷 却しなければならない全冷却負荷は殆ど変わらなかった。  [0044] By the way, by removing the moisture by the desiccant rotor 5 as described above, the force that can reduce the latent heat load in the evaporator 16, the removal of water by the desiccant rotor 5 of the outside air is Even though the latent heat load can be reduced due to the isenthalpy change, the sensible heat load increases accordingly, that is, the air temperature after moisture removal increases, so the total cooling load that must be cooled by the refrigeration cycle is Almost unchanged.
[0045] また、図 2において点 a6、点 dl、点 d4、点 d5を結ぶ破線は、顕熱ロータを用いたダ ブルロータ式 (熱交換器 7は設置されていない)の従来の空気調和装置の p— h線図 である。即ち、蒸発器 16にはデシカントロータ 5にて水分のみが除去され、顕熱ロー タで冷却された空気が供給され、放熱器 12には顕熱ロータで熱回収して高温となつ た空気が供給されることとなる。 [0045] In FIG. 2, a broken line connecting points a6, dl, d4, and d5 is a double-rotor type conventional air conditioner using a sensible heat rotor (heat exchanger 7 is not installed). This is a p-h diagram. That is, only the moisture is removed by the desiccant rotor 5 and the air cooled by the sensible heat rotor is supplied to the evaporator 16, and the heat is recovered to the radiator 12 by the sensible heat rotor and becomes high temperature. Air will be supplied.
[0046] 当該破線で示す p— h線図からも明らかなように、上述する従来のダブルロータ式 の空気調和装置では、顕熱ロータで回収された高温空気が放熱器 12に供給される ため、放熱器 12に流れる空気温度が上昇し、放熱器 12出口における冷媒の比ェン タルピを小さくすることができな力 た。その結果、蒸発器における蒸発で充分なェン タルピー差を十分に確保できず、冷凍サイクルの効率が著しく低下することわかる。 従って、空気調和装置全体の効率を効果的に向上させることができな力、つた。更に、 図 2の点 a6、点 dl、点 d4、点 d5を結ぶ破線からもわかるように圧縮機における圧力 比も増大するため、空気調和装置全体のエネルギー消費効率の向上させる効果も 期待できな力、つた。 As is clear from the ph diagram indicated by the broken line, in the conventional double rotor type air conditioner described above, the high-temperature air recovered by the sensible heat rotor is supplied to the radiator 12. As a result, the temperature of the air flowing through the radiator 12 increased, and the specific enthalpy of the refrigerant at the outlet of the radiator 12 could not be reduced. As a result, it can be seen that sufficient enthalpy difference cannot be secured by evaporation in the evaporator, and the efficiency of the refrigeration cycle is significantly reduced. Therefore, it is a force that cannot effectively improve the efficiency of the entire air conditioner. Furthermore, as can be seen from the broken lines connecting point a6, point dl, point d4, and point d5 in Figure 2, the pressure ratio in the compressor also increases, so the effect of improving the energy consumption efficiency of the entire air conditioner cannot be expected. Power, ivy.
[0047] そこで、本実施例の空気調和装置 Yでは、デシカントロータ 5の風下側であって、蒸 発器 16の風上側で、且つ、空気通路 3の他端の接続箇所より風上側の導入通路 41 内に当該デシカントロータ 5を経て蒸発器 16に流入する空気と外気とを熱交換させる 熱交換器 7を設ける。この熱交換器 7は、デシカントロータ 5にて水分除去された後の 空気と外気とを熱交換させて、蒸発器 16に流入する外気の顕熱負荷を低減するた めのものである。熱交換器 7の型式は、例えば、プレート式やチューブフィンタイプで あっても良いし、ヒートパイプ等から構成しても良く特に限定されるものではない。即 ち、本実施例において蒸発器 16にはデシカントロータ 5にて水分が除去された後、 熱交換器 7にて外気と熱交換した空気が供給されることとなる。  [0047] Therefore, in the air conditioner Y of the present embodiment, the introduction is on the leeward side of the desiccant rotor 5, on the leeward side of the evaporator 16, and on the leeward side of the connection portion at the other end of the air passage 3. A heat exchanger 7 is provided in the passage 41 to exchange heat between the air flowing into the evaporator 16 through the desiccant rotor 5 and the outside air. The heat exchanger 7 is used to reduce the sensible heat load of the outside air flowing into the evaporator 16 by exchanging heat between the air after moisture is removed by the desiccant rotor 5 and the outside air. The type of the heat exchanger 7 may be, for example, a plate type or a tube fin type, or may be constituted by a heat pipe or the like, and is not particularly limited. That is, in this embodiment, after the moisture is removed by the desiccant rotor 5 to the evaporator 16, the air exchanged with the outside air by the heat exchanger 7 is supplied.
[0048] 以上の構成で次に本実施例の空気調和装置 Yの動作を前記図 2及び図 4を用い て説明する。図 4は各部における空気の絶対湿度と乾球温度を示す図である。先ず 、空気調和装置 Yの図示しない制御手段により、圧縮機 10が起動されると、冷媒導 入管 30から圧縮機 10内に低温低圧冷媒が吸い込まれる(図 2の a6の状態)。圧縮 機 10に吸い込まれた冷媒は、圧縮されて高温高圧の冷媒ガスとなり、冷媒吐出管 3 2から吐出される。このとき、冷媒吐出管 32から吐出される高温高圧の冷媒は、図 2 の alの状態となる。即ち、冷媒は圧縮機 10における圧縮で超臨界状態となる。  Next, the operation of the air conditioning apparatus Y of the present embodiment having the above configuration will be described with reference to FIGS. 2 and 4. FIG. 4 is a diagram showing the absolute humidity and dry bulb temperature of air in each part. First, when the compressor 10 is started by the control means (not shown) of the air conditioner Y, the low-temperature and low-pressure refrigerant is sucked into the compressor 10 from the refrigerant introduction pipe 30 (state a6 in FIG. 2). The refrigerant sucked into the compressor 10 is compressed to become high-temperature and high-pressure refrigerant gas, and is discharged from the refrigerant discharge pipe 32. At this time, the high-temperature and high-pressure refrigerant discharged from the refrigerant discharge pipe 32 is in the state of al in FIG. That is, the refrigerant becomes a supercritical state by compression in the compressor 10.
[0049] 冷媒吐出管 32に吐出された冷媒はこの状態で放熱器 12に流入し、そこで図示し ないファンにて送風される外気と熱交換して放熱し、放熱器 12から出る。このとき、放 熱器 12にて冷媒は超臨界を維持したまま放熱するので、冷媒の温度が低下する(図 2の a3の状態)。そして、放熱器 12から出た冷媒は第 2の放熱器 13に流入し、そこで 当該第 2の放熱器 13の近傍に設けられたファンにて送風される被調和室 2内の空気 と熱交換して更に放熱する。このとき、第 2の放熱器 13に送風される被調和室 2内の 空気は蒸発器 16にて冷却された空気であり、前記放熱器 12にて冷媒と熱交換する 外気より低温であるため、放熱器 12にて放熱した冷媒を更に冷却することができる。 また、冷媒は超臨界を維持したまま放熱するので、更に冷媒の温度が低下する(図 2 の a4の状態)。 [0049] In this state, the refrigerant discharged to the refrigerant discharge pipe 32 flows into the heat radiator 12, where it exchanges heat with the outside air blown by a fan (not shown) to radiate heat, and exits the heat radiator 12. At this time, release Since the refrigerant dissipates heat while maintaining supercriticality in the heater 12, the temperature of the refrigerant decreases (state a3 in FIG. 2). Then, the refrigerant discharged from the radiator 12 flows into the second radiator 13, where it exchanges heat with the air in the conditioned chamber 2 blown by a fan provided in the vicinity of the second radiator 13. To further dissipate heat. At this time, the air in the conditioned room 2 blown to the second radiator 13 is air cooled by the evaporator 16 and is lower in temperature than the outside air that exchanges heat with the refrigerant in the radiator 12. Then, the refrigerant radiated by the radiator 12 can be further cooled. In addition, since the refrigerant dissipates heat while maintaining supercriticality, the temperature of the refrigerant further decreases (state a4 in Fig. 2).
[0050] このように、放熱器 12の冷媒下流側に第 2の放熱器 13を設けて、冷媒と被調和室 2内からの空気とを熱交換させることで、冷媒をより放熱させること力 Sできる。特に、二 酸化炭素冷媒のように冷媒回路の高圧側が超臨界圧力で運転される場合には、冷 媒の放熱と共に温度が低下するため、外気より温度の低い被調和室 2内の空気と熱 交換させることで、冷媒の温度をより一層低温とすることができ、冷媒の比ェンタルピ を/ J、さくすること力 Sでさる。  [0050] In this manner, the second radiator 13 is provided on the downstream side of the refrigerant of the radiator 12, and heat is exchanged between the refrigerant and the air from the conditioned chamber 2, thereby further radiating the refrigerant. S can. In particular, when the high pressure side of the refrigerant circuit is operated at a supercritical pressure, such as carbon dioxide refrigerant, the temperature decreases as the refrigerant radiates heat, so the air and heat in the conditioned room 2 that is cooler than the outside air. By replacing it, the temperature of the refrigerant can be further reduced, and the specific enthalpy of the refrigerant is / J, and the force S is reduced.
[0051] 第 2の放熱器 13を出た冷媒は冷媒配管 34を経て膨張弁 14に入り、そこで減圧さ れる。このとき、冷媒は図 2の a4の状態から a5の状態まで減圧されて気液二相状態と なる。冷媒はこの状態で蒸発器 16に流入し、そこで通風される空気(デシカントロー タ 5、熱交換器 7を経た空気と被調和室 2内からの空気とが混合されたもの)から熱を 奪って蒸発する。  [0051] The refrigerant that has exited the second radiator 13 enters the expansion valve 14 via the refrigerant pipe 34 and is decompressed there. At this time, the refrigerant is decompressed from the state a4 in FIG. 2 to the state a5 to be in a gas-liquid two-phase state. In this state, the refrigerant flows into the evaporator 16, and takes heat from the air that is ventilated there (a mixture of the air that has passed through the desiccator 5 and the heat exchanger 7 and the air from the conditioned chamber 2). Evaporate.
[0052] 一方、空気の流れについて図 3及び図 4を用いて説明する。この場合、外気から導 入される空気の相対湿度を 40%、外気温度を + 35°Cとし、この温度及び相対湿度 を一例として本実施例を説明する。先ず、導入通路 41から相対湿度 40%、外気温 度 + 35°Cの外気が導入される(図 4の A1の状態)。そして、導入通路 41内に導入さ れた外気はデシカントロータ 5を通過する過程で、当該デシカントロータ 5により水分 が除去される。これにより、デシカントロータ 5を通過した後の空気は図 4に示す A2の 状態となり、相対湿度は 10%である。従って、外気中の潜熱を低下することができる 。しかしながら、デシカントロータ 5にて潜熱が低下した分、顕熱が上昇し、本実施例 では空気温度が + 50°Cに上昇する。 [0053] この状態で次に導入通路 41内の空気は熱交換器 7を通過し、熱交換器 7にて外気 と熱交換して冷却されて、図 4に示す A3の状態となる。このとき、熱交換器 7通過後 の空気の相対湿度は 20%、温度は + 38°Cとなる。これにより、空気の顕熱も低下す ること力 Sできる。その後、外気から導入された当該空気は、被調和室 2内から循環さ れる空気と合流して、図 4に示す A4の状態になる。本実施例において被調和室 2内 の空気の相対湿度は 45%、温度は + 27°Cであるため、合流後の空気の相対湿度 は 35%、温度は + 30°Cとなる。 On the other hand, the flow of air will be described with reference to FIGS. 3 and 4. In this case, the relative humidity of the air introduced from outside air is set to 40%, the outside air temperature is set to + 35 ° C., and this embodiment will be described by taking this temperature and relative humidity as an example. First, outside air having a relative humidity of 40% and an outside air temperature of + 35 ° C is introduced from the introduction passage 41 (state A1 in FIG. 4). Then, the outside air introduced into the introduction passage 41 passes through the desiccant rotor 5, and moisture is removed by the desiccant rotor 5. As a result, the air after passing through the desiccant rotor 5 is in the state of A2 shown in FIG. 4, and the relative humidity is 10%. Therefore, the latent heat in the outside air can be reduced. However, the sensible heat rises as the latent heat is reduced in the desiccant rotor 5, and in this embodiment the air temperature rises to + 50 ° C. In this state, the air in the introduction passage 41 passes through the heat exchanger 7 and is cooled by exchanging heat with the outside air in the heat exchanger 7 to be in the state A3 shown in FIG. At this time, the relative humidity of the air after passing through the heat exchanger 7 is 20%, and the temperature is + 38 ° C. This can reduce the sensible heat of air. Thereafter, the air introduced from the outside air merges with the air circulated from inside the conditioned room 2 to be in the state of A4 shown in FIG. In this embodiment, the relative humidity of the air in the conditioned room 2 is 45% and the temperature is + 27 ° C. Therefore, the relative humidity of the air after merging is 35% and the temperature is + 30 ° C.
[0054] 合流した空気は、その後蒸発器 16に流入される。このとき、蒸発器 16にて冷媒と熱 交換する当該空気は、上記に詳述した如く潜熱及び顕熱の低下した空気であるため 、その分、蒸発器 16における潜熱負荷及び顕熱負荷を低減することができる。これ により、冷凍サイクルにより冷却しなければならない全冷却負荷を低減でき、冷房の ためのエネルギー消費を削減することができる。更に、冷凍サイクルの蒸発温度及び 蒸発圧力が上昇するので、圧縮機 10における圧力比も小さくすることができる。即ち 、デシカントロータ 5と熱交換器 7を設置せずに、外気をそのまま蒸発器 16に流入さ せる構成では、圧縮機 10入口における冷媒は e6の状態であり、圧縮機 10にて alま で圧縮する必要がある力 S、本実施例では圧縮機 10入口における冷媒は a6の状態で あり、その分、圧縮機 10における圧縮仕事を減らすことができる。これにより、冷凍サ イタルの効率を向上させることができる。  [0054] The merged air is then flowed into the evaporator 16. At this time, the air that exchanges heat with the refrigerant in the evaporator 16 is air that has reduced latent heat and sensible heat as described in detail above, and accordingly, the latent heat load and sensible heat load in the evaporator 16 are reduced accordingly. can do. As a result, the total cooling load that must be cooled by the refrigeration cycle can be reduced, and the energy consumption for cooling can be reduced. Furthermore, since the evaporation temperature and the evaporation pressure of the refrigeration cycle increase, the pressure ratio in the compressor 10 can be reduced. That is, in a configuration in which the outside air is directly flowed into the evaporator 16 without installing the desiccant rotor 5 and the heat exchanger 7, the refrigerant at the inlet of the compressor 10 is in the state of e6. The force S that needs to be compressed, in this embodiment, the refrigerant at the inlet of the compressor 10 is in the state of a6, and accordingly, the compression work in the compressor 10 can be reduced. As a result, the efficiency of the refrigerated site can be improved.
[0055] 更に、蒸発器 16における蒸発で、冷媒は図 2の a5の状態から a6の状態まで比ェン タルピーが変化する。即ち、前記第 2の放熱器 13により冷媒の比ェンタルピをより小 さくすることができるので、係る蒸発器 16における蒸発で十分な比ェンタルピー差を 確保することが可能となる。これにより、蒸発器 16における蒸発で十分な比ェンタノレ ピー差を確保することができるので、冷凍サイクルの冷凍効果が増大し、効率の向上 を図ること力 Sでさる。  [0055] Further, due to the evaporation in the evaporator 16, the specific enthalpy of the refrigerant changes from the state a5 to the state a6 in FIG. That is, since the specific enthalpy of the refrigerant can be further reduced by the second radiator 13, it is possible to secure a sufficient specific enthalpy difference by evaporation in the evaporator 16. As a result, a sufficient difference in specific resonance can be ensured by evaporation in the evaporator 16, so that the refrigeration effect of the refrigeration cycle is increased and the efficiency S can be improved.
[0056] そして、蒸発器 16にて蒸発する冷媒から熱を奪われて冷却された空気は、図 4に 示す A5の状態になる。この蒸発器 16通過後の空気の相対湿度は 60%であり、温度 は + 20°Cである。このように、蒸発器 16にて冷却された空気は被調和室 2内に吐出 され、これによつて、被調和室 2内が冷却(冷房)されていく。 [0057] 図 2において点 a6、 cl、 c4、 c5を結ぶ破線は、本実施例の構成から第 2の放熱器 13を削除した場合の空気調和装置の p— h線図である。この場合、放熱器 12から出 た冷媒は図 2の c4の状態であり、この状態で蒸発器 16にて蒸発した場合、冷媒は図 2の c5の状態から a6の状態となる。即ち、蒸発器 16の入口における冷媒の比ェンタ ルビが大きぐ蒸発器 16における蒸発で十分な比ェンタルピー差を確保することが できなかった。また、圧縮機 10の圧力比も大きいものであった。 [0056] Then, the air cooled by removing heat from the refrigerant evaporated in the evaporator 16 is in the state of A5 shown in FIG. The relative humidity of the air after passing through the evaporator 16 is 60%, and the temperature is + 20 ° C. As described above, the air cooled by the evaporator 16 is discharged into the conditioned room 2, thereby cooling (cooling) the conditioned room 2. In FIG. 2, a broken line connecting points a6, cl, c4, and c5 is a ph diagram of the air conditioner when the second radiator 13 is deleted from the configuration of the present embodiment. In this case, the refrigerant discharged from the radiator 12 is in the state of c4 in FIG. 2, and when it is evaporated in the evaporator 16 in this state, the refrigerant changes from the state of c5 in FIG. 2 to the state of a6. That is, a sufficient specific enthalpy difference could not be secured by evaporation in the evaporator 16 where the refrigerant has a large specific enthalpy at the inlet of the evaporator 16. Further, the pressure ratio of the compressor 10 was also large.
[0058] しかしながら、本発明の如く第 2の放熱器 13を設けることで、蒸発器 16の入口にお ける冷媒の比ェンタルピを小さくすることができるようなる。これにより、蒸発器 16にお ける蒸発で十分な比ェンタルピー差を確保することができるので、冷凍サイクルの冷 凍効果が増大し、効率の向上を図ることができる。また、圧力比も小さくすることがで きる。従って、圧縮仕事に対する冷凍効果の比率で表される冷凍サイクルの成績係 数 (COP)も向上すること力 Sできる。  However, by providing the second radiator 13 as in the present invention, the specific enthalpy of the refrigerant at the inlet of the evaporator 16 can be reduced. As a result, a sufficient specific enthalpy difference can be secured by evaporation in the evaporator 16, so that the refrigeration effect of the refrigeration cycle is increased and efficiency can be improved. In addition, the pressure ratio can be reduced. Therefore, the performance coefficient (COP) of the refrigeration cycle expressed by the ratio of the refrigeration effect to the compression work can also be improved.
[0059] 一方、被調和室 2からは当該被調和室 2内に導入される空気に相当する被調和室 2内の空気が排出される。この場合、排出される空気は排出通路 42内に入り、第 2の 放熱器 13を通過して、第 2の放熱器 13を流れる冷媒と熱交換して加熱され、図 4に 示す D1の状態から D2の状態になる。このとき、空気の相対湿度は 30%、温度は + 35°Cとなり、この状態で外部に排出される。  On the other hand, air in the conditioned room 2 corresponding to the air introduced into the conditioned room 2 is discharged from the conditioned room 2. In this case, the discharged air enters the discharge passage 42, passes through the second radiator 13 and is heated by exchanging heat with the refrigerant flowing through the second radiator 13, and is in the state of D1 shown in FIG. To D2. At this time, the relative humidity of the air is 30% and the temperature is + 35 ° C, and it is discharged outside in this state.
[0060] 他方、導入通路 41にて水分を吸収したデシカントロータ 5は、前述したように回転し て導入通路 41から空気通路 43に移行し、放熱器 12にて加熱された空気に水分を 放出する。前述したように放熱器 12の冷媒回路の出口側には第 2の放熱器 13を設 けて、被調和室 2内の空気と熱交換可能に構成されているため、放熱器 12の冷媒温 度が高くなる。従って、空気通路 43の入口から流入した外気(図 4に示す C1の状態 であり、前記導入通路 41に導入される図 4の A1の状態の外気と同じ)を、放熱器 12 を冷媒との熱交換により充分に加熱することができる(図 4の C2の状態)。このとき、 放熱器 12にて加熱された空気の相対湿度は 15%、温度は + 55°Cである。  [0060] On the other hand, the desiccant rotor 5 that has absorbed moisture in the introduction passage 41 rotates as described above to move from the introduction passage 41 to the air passage 43, and releases moisture to the air heated by the radiator 12. To do. As described above, the second radiator 13 is provided on the outlet side of the refrigerant circuit of the radiator 12 so that heat can be exchanged with the air in the conditioned room 2. The degree becomes higher. Therefore, the outside air flowing in from the inlet of the air passage 43 (in the state of C1 shown in FIG. 4 and the same as the outside air in the state of A1 in FIG. 4 introduced into the introduction passage 41) is used as the refrigerant 12 and the refrigerant. It can be heated sufficiently by heat exchange (state C2 in Fig. 4). At this time, the relative humidity of the air heated by the radiator 12 is 15%, and the temperature is + 55 ° C.
[0061] また、上述の如く充分に加熱された空気が当該空気通路 43内に設けられたデシ力 ントロータ 5に流入する。そして、導入通路 41で吸収したデシカントロータ 5の水分が この空気中に放出される(図 4に示す C3の状態)。このデシカントロータ 5で水分を受 け取った空気の相対湿度は 35%、温度は + 43°Cである。 Further, as described above, the sufficiently heated air flows into the desiccant rotor 5 provided in the air passage 43. Then, the moisture of the desiccant rotor 5 absorbed by the introduction passage 41 is released into this air (state C3 shown in FIG. 4). This desiccant rotor 5 receives moisture. The relative humidity of the removed air is 35% and the temperature is + 43 ° C.
[0062] このように、冷凍サイクルの排熱を利用して外気をより高温に加熱し、空気通路 43 内に設けられたデシカントロータ 5に流入させることで、デシカントロータ 5の水分を空 気中に放出させて、効率よく乾燥再生することができる。これにより、デシカントロータ 5の水分除去効率も向上し、蒸発器 16における潜熱負荷を低減することができる。  [0062] In this way, by using the exhaust heat of the refrigeration cycle, the outside air is heated to a higher temperature and flows into the desiccant rotor 5 provided in the air passage 43, so that the moisture of the desiccant rotor 5 is in the air. And can be efficiently dried and regenerated. As a result, the moisture removal efficiency of the desiccant rotor 5 is also improved, and the latent heat load in the evaporator 16 can be reduced.
[0063] 更に、熱交換器 7にて外気と熱交換させることで、蒸発器 16における顕熱負荷も低 減でき、冷凍サイクルの全冷却負荷を低減でき、且つ、冷凍サイクルの蒸発温度及 び蒸発圧力が上昇し、冷凍サイクルの効率の向上を図ることができる。その結果、空 気調和装置 Y全体のエネルギー消費効率が向上する。  [0063] Furthermore, by exchanging heat with the outside air in the heat exchanger 7, the sensible heat load in the evaporator 16 can be reduced, the total cooling load of the refrigeration cycle can be reduced, and the refrigeration cycle evaporation temperature and The evaporating pressure increases, and the efficiency of the refrigeration cycle can be improved. As a result, the energy consumption efficiency of the entire air conditioner Y is improved.
[0064] 本実施例において記載された各部の相対湿度及び温度は一例であり、外気温度、 冷凍サイクル装置 1の運転状況、ファンの風量、或いは、装置の大きさや配置などに よって異なることは言うまでもない。また、本実施例において熱交換器 7は外気と熱交 換する空冷式のもの以外に、クーリングタワー等を用いてデシカントロータ 5からの空 気と水とを熱交換させる水冷式の熱交換器を適用しても有効である。  [0064] The relative humidity and temperature of each part described in the present embodiment are merely examples, and it goes without saying that they vary depending on the outside air temperature, the operating status of the refrigeration cycle apparatus 1, the air flow of the fan, the size and arrangement of the apparatus, and the like. Yes. In addition, in this embodiment, the heat exchanger 7 is a water-cooled heat exchanger that exchanges heat between air and water from the desiccant rotor 5 using a cooling tower or the like in addition to an air-cooled type that exchanges heat with the outside air. It is effective even when applied.
[0065] 尚、本実施例の空気調和装置 Yを、例えば、図 5に示すように第 2の放熱器 13と、 膨張弁 14及び蒸発器 16から成る室内機ユニット U1と、放熱器 12、熱交換器 7及び デシカントロータ 5から成る室外機ユニット U2の 2つのユニットから構成しても良い。 この場合、当該室内機ユニット U1は被調和室 2内に設置され、室外機ユニット U2は 被調和室 2外に設置される。尚、図 5において図 1乃至図 4と同一の符号が付されて いるものは同様或いは類似の効果又は作用を奏するものとしてここでは説明を省略 する。  [0065] Note that the air conditioner Y of the present embodiment includes, for example, a second radiator 13, an indoor unit U1 including an expansion valve 14 and an evaporator 16, a radiator 12, You may comprise two units, the outdoor unit U2 which consists of the heat exchanger 7 and the desiccant rotor 5. FIG. In this case, the indoor unit U1 is installed in the conditioned room 2, and the outdoor unit U2 is installed outside the conditioned room 2. In FIG. 5, the same reference numerals as those in FIGS. 1 to 4 have the same or similar effects or actions, and the description thereof is omitted here.
[0066] また、図 6は上述のように第 2の放熱器 13、膨張弁 14及び蒸発器 16から成る室内 機ユニット U1を被調和室 2に配置した一例を示すものである。図 6において、 20は空 気調和装置 Yの被調和室 2内に配置される室内機ユニット U1を被覆するカバーであ り、被調和室 2の壁 Wに取り付けられている。また、カバー 20内は区画部材 21により 蒸発器 16、 16が設けられた導入通路 41側の空間 41Aと第 2の放熱器 13が設けら れた排出通路 42側の空間 42Aに仕切られている。尚、図 6において、 16Fは、導入 通路 41側の空間 41Aに設置された蒸発器 16と熱交換した冷気を被調和室 2内に吐 出するための送風手段としてのファンである。 FIG. 6 shows an example in which the indoor unit U 1 including the second radiator 13, the expansion valve 14, and the evaporator 16 is arranged in the conditioned room 2 as described above. In FIG. 6, reference numeral 20 denotes a cover that covers the indoor unit U 1 disposed in the conditioned room 2 of the air conditioning apparatus Y, and is attached to the wall W of the conditioned room 2. Further, the inside of the cover 20 is partitioned by a partition member 21 into a space 41A on the introduction passage 41 side where the evaporators 16 and 16 are provided and a space 42A on the discharge passage 42 side where the second radiator 13 is provided. . In FIG. 6, reference numeral 16F designates cool air exchanged with the evaporator 16 installed in the space 41A on the introduction passage 41 side, into the conditioned room 2. It is a fan as a ventilation means for taking out.
[0067] そして、カバー 20には当該カバー 20内の導入通路 41側の空間 41Aに被調和室 2 内の空気を導入するための図示しない吸気口と、排出通路 42側の空間 42Aに被調 和室 2内の空気を導入するための図示しない吸気口と、導入通路 41内の空間 41A の蒸発器 16を流れる冷媒と熱交換した冷気を被調和室 2内に吐出するための吐出 口 23が形成されている。  [0067] The cover 20 has an intake port (not shown) for introducing the air in the conditioned chamber 2 into the space 41A on the introduction passage 41 side in the cover 20 and the space 42A on the discharge passage 42 side. An inlet (not shown) for introducing the air in the Japanese room 2 and an outlet 23 for discharging the cold air exchanged with the refrigerant flowing through the evaporator 16 in the space 41A in the introduction passage 41 into the conditioned room 2 are provided. Is formed.
[0068] 更に、壁 Wにはカバー 20内の上記排出通路 42側の空間 42Aと被調和室 2外とを 連通する連通孔 24と、カバー 20内の導入通路 41側の空間 41Aと被調和室 2外とを 連通する連通孔 25が形成されている。そして、カバー 20に形成された図示しない吸 気口を経てカバー 20内の空間 42Aに流入した被調和室 2内の空気は、そこに設け られた第 2の放熱器 13にて冷媒と熱交換して加熱された後、連通孔 24から被調和室 2外に排出されることとなる。  [0068] Further, the wall W has a communication hole 24 that communicates the space 42A on the discharge passage 42 side in the cover 20 and the outside of the chamber 2 to be conditioned, and a space 41A on the introduction passage 41 side in the cover 20 to be harmonized. A communication hole 25 communicating with the outside of the chamber 2 is formed. Then, the air in the conditioned chamber 2 that has flowed into the space 42A in the cover 20 through an air inlet (not shown) formed in the cover 20 exchanges heat with the refrigerant in the second radiator 13 provided there. Then, after being heated, it is discharged out of the conditioned room 2 through the communication hole 24.
[0069] また、上述した連通孔 25には室外機ユニット U2のデシカントロータ 5、熱交換器 7 を経た空気を導入する導入通路 41が接続され、この導入通路 41からデシカントロー タ 5にて水分が除去され、熱交換器 7にて放熱した空気(外気からの空気)が空間 41 A内の導入され、この空間 41A内に設けられた蒸発器 16と熱交換して冷却された後 、ファン 16Fにて排出口 23力も被調和室 2内に吐出されるのである。尚、図 6におい て、導入通路 41内の空間 41Aには 2台の蒸発器 16、 16を設けている力 S、前記各図 1乃至図 5に示すように 1台の蒸発器 16にて構成しても差し支えない。  [0069] The communication hole 25 is connected to the introduction passage 41 for introducing the air that has passed through the desiccant rotor 5 and the heat exchanger 7 of the outdoor unit U2, and moisture is introduced from the introduction passage 41 by the desiccator rotor 5. After the air is removed and the air radiated in the heat exchanger 7 (air from the outside air) is introduced into the space 41A and is cooled by exchanging heat with the evaporator 16 provided in the space 41A, the fan At 16F, the outlet 23 force is also discharged into the conditioned room 2. In FIG. 6, the space 41A in the introduction passage 41 has a force S in which two evaporators 16 and 16 are provided, and one evaporator 16 as shown in FIGS. It can be configured.
実施例 3  Example 3
[0070] 次に、図 7を用いて本実施例の空気調和装置のもう一つの他の実施例について説 明する。図 7は本実施例の空気調和装置 Zの概略構成図である。尚、図 7において 図 1乃至図 6と同一の符号が付されているものは同様或いは類似の効果若しくは作 用を奏するものであり、ここでは説明を省略する。  Next, another embodiment of the air conditioning apparatus of the present embodiment will be described with reference to FIG. FIG. 7 is a schematic configuration diagram of the air conditioner Z of the present embodiment. In FIG. 7, the same reference numerals as those in FIGS. 1 to 6 have the same or similar effects or operations, and will not be described here.
[0071] 本実施例の空気調和装置 Zは、放熱器 12が冷媒上流側に位置する第 1の放熱器 12Aと、この第 1の放熱器 12Aの冷媒下流側に位置する第 3の放熱器 12Bとに区分 されている。そして、放熱器 12の冷媒上流側に位置する第 1の放熱器 12Aと熱交換 した空気が前記デシカントロータ 5に流入し、冷媒下流側に位置する第 3の放熱器 1 2Bと熱交換した空気がデシカントロータ 5に流れることなぐ外部に排出されるよう構 成されている。 [0071] The air conditioner Z of the present embodiment includes a first radiator 12A in which the radiator 12 is located on the refrigerant upstream side, and a third radiator located on the refrigerant downstream side of the first radiator 12A. It is divided into 12B. Then, the air heat-exchanged with the first radiator 12A located on the refrigerant upstream side of the radiator 12 flows into the desiccant rotor 5, and the third radiator 1 located on the refrigerant downstream side. The air exchanged with 2B is configured to be discharged outside without flowing to the desiccant rotor 5.
[0072] 本実施例では、第 1の放熱器 12Aと第 3の放熱器 12Bとを一体型の熱交換器 (放 熱器 12)にて構成し、これらを冷媒上流側と冷媒下流側とに 2つに区分するものとす る。この場合、放熱器 12の冷媒上流側の第 1の放熱器 12Aを前記排出通路 42内の 入口付近に配置し、冷媒下流側の第 3の放熱器 12Bを排出通路 42に並設された空 気通路 44に配置する。即ち、本実施例の放熱器 12は排出通路 42の一方の壁面に 当接する一端(第 1の放熱器 12A)から並設された空気通路 44側に延在して排出通 路 42の他方の壁面及びこの壁面に当接する空気通路 44の一方の壁面を貫通し、 他端(第 3の放熱器 12B)が空気通路 44の他方の壁面に当接するよう配置されてい る。この空気通路 44には外部から空気(外気)が導入され、第 3の放熱器 12Bを通過 した後、外部に排出可能に構成されている。  [0072] In the present embodiment, the first heat radiator 12A and the third heat radiator 12B are constituted by an integrated heat exchanger (heat radiator 12), which are connected to the refrigerant upstream side and the refrigerant downstream side. It is divided into two categories. In this case, the first radiator 12A on the upstream side of the refrigerant of the radiator 12 is disposed in the vicinity of the inlet in the discharge passage 42, and the third radiator 12B on the downstream side of the refrigerant is arranged in parallel with the discharge passage 42. Place in air passage 44. That is, the radiator 12 of the present embodiment extends from one end (first radiator 12A) contacting the one wall surface of the discharge passage 42 to the side of the air passage 44 provided side by side and extends to the other side of the discharge passage 42. The wall surface and one wall surface of the air passage 44 that contacts the wall surface are penetrated, and the other end (third radiator 12B) is disposed so as to contact the other wall surface of the air passage 44. Air (outside air) is introduced into the air passage 44 from the outside, and after passing through the third radiator 12B, it can be discharged outside.
[0073] この第 3の放熱器 12Bへの外気の導入は、第 1の放熱器 12Aに外気を導入する図 示しないファンと共有するもので有っても良いし、個別にファンを取り付けても構わな い。また、一台のファンを共有する場合には、空気通路 44にダンバを取り付けて、第 3の放熱器 12Bに導入される外気の風量を調節するものとしても差し支えない。  [0073] The introduction of the outside air into the third radiator 12B may be shared with a fan (not shown) that introduces the outside air into the first radiator 12A, or may be individually attached to the fan. It doesn't matter. When a single fan is shared, a damper may be attached to the air passage 44 to adjust the air volume of the outside air introduced into the third radiator 12B.
[0074] 以上の構成で次に本実施例の空気調和装置 Zの動作を前記図 2の p— h線図を用 いて説明する。先ず、空気調和装置 Zの図示しない制御手段により、圧縮機 10が起 動されると、冷媒導入管 30から圧縮機 10内に低温低圧冷媒が吸い込まれる(図 2の a6の状態)。圧縮機 10に吸い込まれた冷媒は、圧縮されて高温高圧の冷媒ガスとな り、冷媒吐出管 32から吐出される。このとき、冷媒吐出管 32から吐出される高温高圧 の冷媒は、図 2の alの状態となる。即ち、冷媒は圧縮機 10における圧縮で超臨界状 態となる。  Next, the operation of the air conditioner Z of the present embodiment with the above configuration will be described with reference to the ph diagram of FIG. First, when the compressor 10 is started by the control means (not shown) of the air conditioner Z, the low-temperature and low-pressure refrigerant is sucked into the compressor 10 from the refrigerant introduction pipe 30 (state a6 in FIG. 2). The refrigerant sucked into the compressor 10 is compressed into high-temperature and high-pressure refrigerant gas and discharged from the refrigerant discharge pipe 32. At this time, the high-temperature and high-pressure refrigerant discharged from the refrigerant discharge pipe 32 is in the state of al in FIG. That is, the refrigerant becomes a supercritical state by compression in the compressor 10.
[0075] 冷媒吐出管 32に吐出された冷媒はこの状態で放熱器 12の冷媒上流側の第 1の放 熱器 12Aに流入し、そこで図示しないファンにて送風される外気と熱交換して放熱し 、図 2の a2の状態となる。更に、冷媒は冷媒下流側の第 3の放熱器 12Bに移行し、そ こで図示しないファンにて送風される外気と熱交換して更に放熱して、図 2の a3の状 態となる。このとき、放熱器 12にて冷媒は超臨界を維持したまま放熱するので、冷媒 の温度が低下する。そして、放熱器 12から出た冷媒は第 2の放熱器 13に流入し、そ こで当該第 2の放熱器 13の近傍に設けられたファンにて送風される被調和室 2内の 空気と熱交換して更に放熱する。このとき、第 2の放熱器 13に送風される被調和室 2 内の空気は蒸発器 16にて冷却された空気であり、前記放熱器 12にて冷媒と熱交換 する外気より低温であるため、放熱器 12にて放熱した冷媒を更に冷却することができ る。また、冷媒は超臨界を維持したまま放熱するので、更に冷媒の温度が低下して、 図 2の a4の状態となる。 In this state, the refrigerant discharged to the refrigerant discharge pipe 32 flows into the first heat radiator 12A on the refrigerant upstream side of the radiator 12, and exchanges heat with the outside air blown by a fan (not shown). The heat is dissipated and the state a2 in Fig. 2 is obtained. Further, the refrigerant is transferred to the third radiator 12B on the downstream side of the refrigerant, where heat is exchanged with the outside air blown by a fan (not shown) to further dissipate heat, resulting in the state of a3 in FIG. At this time, since the refrigerant dissipates heat while maintaining supercriticality in the radiator 12, Temperature drops. Then, the refrigerant discharged from the radiator 12 flows into the second radiator 13, and the air in the conditioned room 2 blown by a fan provided in the vicinity of the second radiator 13. Heat exchange to further dissipate heat. At this time, the air in the conditioned room 2 blown to the second radiator 13 is air cooled by the evaporator 16 and is lower in temperature than the outside air that exchanges heat with the refrigerant in the radiator 12. Then, the refrigerant radiated by the radiator 12 can be further cooled. In addition, since the refrigerant dissipates heat while maintaining supercriticality, the temperature of the refrigerant further decreases to a4 in FIG.
[0076] このように、放熱器 12の冷媒下流側に第 2の放熱器 13を設けて、冷媒と被調和室 2内からの空気とを熱交換させることで、冷媒をより放熱させること力 Sできる。特に、二 酸化炭素冷媒のように冷媒回路の高圧側が超臨界圧力で運転される場合には、冷 媒の放熱と共に温度が低下するため、外気より温度の低い被調和室 2内の空気と熱 交換させることで、冷媒の温度をより一層低温とすることができ、冷媒の比ェンタルピ を/ J、さくすること力 Sでさる。  [0076] In this manner, the second radiator 13 is provided on the downstream side of the refrigerant of the radiator 12, and heat is exchanged between the refrigerant and the air from the conditioned room 2, thereby further radiating the refrigerant. S can. In particular, when the high pressure side of the refrigerant circuit is operated at a supercritical pressure, such as carbon dioxide refrigerant, the temperature decreases as the refrigerant radiates heat, so the air and heat in the conditioned room 2 that is cooler than the outside air. By replacing it, the temperature of the refrigerant can be further reduced, and the specific enthalpy of the refrigerant is / J, and the force S is reduced.
[0077] 第 2の放熱器 13を出た冷媒は冷媒配管 34を経て膨張弁 14に入り、そこで減圧さ れる。このとき、冷媒は図 2の a4の状態から a5の状態まで減圧されて気液二相状態と なる。冷媒はこの状態で蒸発器 16に流入し、そこで通風される空気(デシカントロー タ 5、熱交換器 7を経た空気と被調和室 2内からの空気とが混合されたもの)から熱を 奪って蒸発する。  [0077] The refrigerant that has exited the second radiator 13 enters the expansion valve 14 via the refrigerant pipe 34 and is decompressed there. At this time, the refrigerant is decompressed from the state a4 in FIG. 2 to the state a5 to be in a gas-liquid two-phase state. In this state, the refrigerant flows into the evaporator 16, and takes heat from the air that is ventilated there (a mixture of the air that has passed through the desiccator 5 and the heat exchanger 7 and the air from the conditioned chamber 2). Evaporate.
[0078] 一方、空気調和装置 Zの被調和室 2内に導入される空気、被調和室 2内を循環す る空気、及び、被調和室 2から排出される空気の流れについては前記図 4に示す実 施例 2と同様であるためここでは説明を省略する。  [0078] On the other hand, the flow of the air introduced into the conditioned room 2 of the air conditioning apparatus Z, the air circulating in the conditioned room 2, and the flow of the air discharged from the conditioned room 2 is shown in FIG. Since this is the same as Example 2 shown in FIG.
[0079] 他方、導入通路 41にて水分を吸収したデシカントロータ 5は、前述したように回転し て導入通路 41から空気通路 43に移行し、放熱器 12にて加熱された空気に水分を 放出する。前述したように放熱器 12の冷媒回路の出口側には第 2の放熱器 13を設 けて、被調和室 2内の空気と熱交換可能に構成されているため、放熱器 12の冷媒温 度が高くなる。更に、本実施例では放熱器 12を冷媒上流側の第 1の放熱器 12Aと冷 媒下流側の第 3の放熱器 12Bとに区分し、冷媒上流側の第 1の放熱器 12Aと熱交換 した空気のみをデシカントロータ 5に流入させているので、デシカントロータ 5を乾燥 再生する空気温度を更に上昇することができる。 [0079] On the other hand, the desiccant rotor 5 that has absorbed moisture in the introduction passage 41 rotates as described above to move from the introduction passage 41 to the air passage 43, and releases moisture to the air heated by the radiator 12. To do. As described above, the second radiator 13 is provided on the outlet side of the refrigerant circuit of the radiator 12 so that heat can be exchanged with the air in the conditioned room 2. The degree becomes higher. Furthermore, in this embodiment, the radiator 12 is divided into a first radiator 12A on the upstream side of the refrigerant and a third radiator 12B on the downstream side of the refrigerant, and exchanges heat with the first radiator 12A on the upstream side of the refrigerant. Since only the conditioned air is flowing into the desiccant rotor 5, the desiccant rotor 5 is dried. The regenerating air temperature can be further increased.
[0080] 即ち、第 1の放熱器 12Aを流れる冷媒は圧縮機 10から出た最も温度の高い冷媒で ある。具体的には、前記実施例 2では放熱器 12にて外気と熱交換する冷媒は図 2に 示す alの状態から a3の状態であるのに対して、本実施例の第 1の放熱器 12Aにお いて外気と熱交換する冷媒は図 2に示す alの状態から a2の状態の冷媒である。即ち 、デシカントロータ 5にて乾燥再生に利用される空気を、最も高温域の冷媒と熱交換 させること力 Sできるので、前記実施例 2の場合より高温に加熱することができる。  That is, the refrigerant flowing through the first radiator 12A is the highest temperature refrigerant that has flowed out of the compressor 10. Specifically, in the second embodiment, the refrigerant that exchanges heat with the outside air in the radiator 12 is in the state a3 from the state al shown in FIG. 2, whereas the first radiator 12A in the present embodiment. In this case, the refrigerant that exchanges heat with the outside air is the refrigerant from the state a to the state a2 shown in FIG. That is, since the air used for drying regeneration in the desiccant rotor 5 can exchange heat with the refrigerant in the highest temperature range, it can be heated to a higher temperature than in the second embodiment.
[0081] これにより、デシカントロータ 5を乾燥再生するための空気温度を上昇するので、デ シカントロータ 5の乾燥、及び、吸収の効率をより一層向上させることができる。従って 、空気調和装置 Z全体の効率を更に向上することができるようになる。また、デシカン トロータ 5の乾燥、及び、吸収の効率が更に向上することで、上記実施例 2のデシ力 ントロータより更に小型のデシカントロータ 5を用いても同様の効果を発揮させること 力 Sできるようになる。その結果、デシカントロータ 5を更に小型化し、空気調和装置全 体をより一層コンパクト化することが可能となる。  As a result, the air temperature for drying and regenerating the desiccant rotor 5 is increased, so that the efficiency of drying and absorption of the desiccant rotor 5 can be further improved. Therefore, the efficiency of the entire air conditioner Z can be further improved. Further, the efficiency of drying and absorption of the desiccant rotor 5 is further improved, so that the same effect can be achieved even if the desiccant rotor 5 is smaller than the desiccant rotor of the second embodiment. become. As a result, the desiccant rotor 5 can be further miniaturized and the entire air conditioner can be further downsized.
[0082] 尚、乾燥再生されたデシカントロータ 5は、再び導入通路 41にて外気から水分を吸 収する。当該デシカントロータ 5にて水分が除去された空気は、前記実施例 2と同様 に熱交換器 7にて外気と熱交換して冷却される。これにより、蒸発器 16における顕熱 負荷も低減でき、冷凍サイクルの冷却負荷を低減でき、且つ、冷凍サイクルの蒸発温 度及び蒸発圧力が上昇し、冷凍サイクルの効率の向上を図ることができる。これによ り、空気調和装置 Z全体のエネルギー消費効率も向上することができる。  It should be noted that the desiccant rotor 5 that has been dried and regenerated absorbs moisture from the outside air again in the introduction passage 41. The air from which moisture has been removed by the desiccant rotor 5 is cooled by heat exchange with the outside air by the heat exchanger 7 as in the second embodiment. As a result, the sensible heat load in the evaporator 16 can also be reduced, the cooling load of the refrigeration cycle can be reduced, and the evaporation temperature and the evaporation pressure of the refrigeration cycle are increased, thereby improving the efficiency of the refrigeration cycle. As a result, the energy consumption efficiency of the entire air conditioner Z can also be improved.
[0083] 本実施例では、第 1の放熱器 12Aと第 3の放熱器 12Bとを一体型の熱交換器 (放 熱器 12)にて構成し、これらを冷媒上流側と冷媒下流側とに 2つに区分するものとし た力 この第 1の放熱器 12Aと第 3の放熱器 12Bとを別々の熱交換器にて構成し、個 別に配置しても本発明は有効である。また、本実施例の第 3の放熱器 12Bは当該第 3の放熱器 12Bを流れる冷媒と外気とを熱交換させる空冷式の熱交換器としたが、こ れに限らず、クーリングタワー等を用いて冷媒と水とを熱交換させる水冷式の熱交換 器を採用しても差し支えなレ、。  [0083] In this embodiment, the first radiator 12A and the third radiator 12B are constituted by an integrated heat exchanger (heat radiator 12), and these are connected to the refrigerant upstream side and the refrigerant downstream side. Even if the first heat radiator 12A and the third heat radiator 12B are configured by separate heat exchangers and arranged separately, the present invention is effective. The third radiator 12B of the present embodiment is an air-cooled heat exchanger that exchanges heat between the refrigerant flowing through the third radiator 12B and the outside air, but is not limited thereto, and a cooling tower or the like is used. It is safe to use a water-cooled heat exchanger that exchanges heat between the refrigerant and water.
図面の簡単な説明 [図 1]本発明の一実施例の空気調和装置の概略構成図である。 Brief Description of Drawings FIG. 1 is a schematic configuration diagram of an air conditioner according to an embodiment of the present invention.
[図 2]本発明の実施例 1及び実施例 2の空気調和装置の冷凍サイクル装置を流れる 冷媒の P— h線図である。  FIG. 2 is a Ph diagram of the refrigerant flowing through the refrigeration cycle apparatus of the air-conditioning apparatus of Example 1 and Example 2 of the present invention.
[図 3]本発明の第 2実施例の空気調和装置の概略構成図である。  FIG. 3 is a schematic configuration diagram of an air conditioner according to a second embodiment of the present invention.
[図 4]本発明の第 2実施例の空気調和装置内を流れる空気の絶対湿度と乾球温度を 示す図である。  FIG. 4 is a diagram showing the absolute humidity and dry bulb temperature of air flowing in the air conditioning apparatus of the second embodiment of the present invention.
園 5]本発明の空気調和装置を室内機ユニットと室外機ユニットにて構成した一例を 示す概略構成図である。 FIG. 5 is a schematic configuration diagram showing an example in which the air conditioner of the present invention is configured by an indoor unit and an outdoor unit.
園 6]本発明の空気調和装置の室内機ユニットの配置の一例を示す図である。 6] A diagram showing an example of the arrangement of the indoor unit of the air conditioner of the present invention.
[図 7]本発明の第 3実施例の空気調和装置の概略構成図である。 FIG. 7 is a schematic configuration diagram of an air conditioner according to a third embodiment of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 圧縮機、放熱器、減圧装置及び蒸発器を備えて構成され、高圧側が超臨界圧力で 運転される冷媒回路を備え、前記蒸発器と熱交換した空気により被調和室を冷却す ると共に、該被調和室に外気を導入し、且つ、当該被調和室の空気を外部に排出す ることにより換気を行う空気調和装置であって、  [1] A compressor, a radiator, a decompression device, and an evaporator are provided, and a refrigerant circuit that operates at a supercritical pressure is provided on the high-pressure side, and the conditioned chamber is cooled by air that exchanges heat with the evaporator. And an air conditioner for ventilating by introducing outside air into the conditioned room and discharging the air in the conditioned room to the outside,
前記放熱器の冷媒下流側に第 2の放熱器を設け、前記被調和室から排出される空 気と前記第 2の放熱器とを熱交換させることを特徴とする空気調和装置。  An air conditioner characterized in that a second radiator is provided on the refrigerant downstream side of the radiator, and heat exchange is performed between the air discharged from the conditioned room and the second radiator.
[2] 圧縮機、放熱器、減圧装置及び蒸発器を備えて構成された冷媒回路を備え、前記 蒸発器と熱交換した空気により被調和室を冷却すると共に、水分の吸収と放出が可 能な吸湿部材を備え、外気中の水分を前記吸湿部材で吸収した後、前記蒸発器に 流入させることにより前記被調和室の換気を行い、前記放熱器と熱交換した空気を 前記吸湿部材に流入させることにより当該吸湿部材が吸収した水分を放出させる空 気調和装置であって、  [2] A refrigerant circuit including a compressor, a radiator, a decompressor, and an evaporator is provided, and the conditioned chamber is cooled by air exchanged with the evaporator, and moisture can be absorbed and released. A moisture absorbing member, and after absorbing moisture in the outside air by the moisture absorbing member, ventilates the conditioned room by flowing it into the evaporator, and flows air exchanged with the radiator into the moisture absorbing member An air conditioner that releases moisture absorbed by the moisture absorbing member,
前記吸湿部材を経て前記蒸発器に流入する空気と外気とを熱交換させる熱交換 器を設けたことを特徴とする空気調和装置。  An air conditioner provided with a heat exchanger for exchanging heat between air flowing into the evaporator through the moisture absorbing member and outside air.
[3] 前記被調和室の空気を外部に排出すると共に、前記放熱器の冷媒下流側に第 2 の放熱器を設け、前記被調和室力 排出される空気と前記第 2の放熱器とを熱交換 させることを特徴とする請求項 2に記載の空気調和装置。  [3] The air in the conditioned room is discharged to the outside, and a second radiator is provided on the refrigerant downstream side of the radiator, and the air discharged from the conditioned room force and the second radiator are provided. The air conditioning apparatus according to claim 2, wherein heat exchange is performed.
[4] 前記放熱器を冷媒上流側に位置する第 1の放熱器と、該第 1の放熱器の冷媒下流 側に位置する第 3の放熱器とに区分し、前記第 1の放熱器と熱交換した空気を前記 吸湿部材に流入させると共に、前記第 3の放熱器と外気とを熱交換させることを特徴 とする請求項 2又は請求項 3に記載の空気調和装置。  [4] The radiator is divided into a first radiator located on the refrigerant upstream side and a third radiator located on the refrigerant downstream side of the first radiator, and the first radiator The air conditioner according to claim 2 or 3, wherein heat-exchanged air is allowed to flow into the moisture absorbing member and heat exchange is performed between the third radiator and outside air.
PCT/JP2007/070608 2006-11-01 2007-10-23 Air conditioner WO2008053745A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006298087A JP5311734B2 (en) 2006-11-01 2006-11-01 Air conditioner
JP2006-298087 2006-11-01

Publications (1)

Publication Number Publication Date
WO2008053745A1 true WO2008053745A1 (en) 2008-05-08

Family

ID=39344088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070608 WO2008053745A1 (en) 2006-11-01 2007-10-23 Air conditioner

Country Status (2)

Country Link
JP (1) JP5311734B2 (en)
WO (1) WO2008053745A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113167484A (en) * 2018-12-07 2021-07-23 大金工业株式会社 Air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5611079B2 (en) * 2011-02-21 2014-10-22 高砂熱学工業株式会社 Outside air treatment equipment using desiccant rotor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346396A (en) * 1999-06-10 2000-12-15 Ebara Corp Method and device for dehumidification
JP2001263731A (en) * 2000-03-24 2001-09-26 Daikin Ind Ltd Air-conditioning system
JP2005055165A (en) * 2003-07-22 2005-03-03 Daikin Ind Ltd Humidity controller
JP2005114294A (en) * 2003-10-09 2005-04-28 Daikin Ind Ltd Air conditioner
JP2006250414A (en) * 2005-03-09 2006-09-21 Sanyo Electric Co Ltd Air-conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4353859B2 (en) * 2004-06-15 2009-10-28 三洋電機株式会社 Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346396A (en) * 1999-06-10 2000-12-15 Ebara Corp Method and device for dehumidification
JP2001263731A (en) * 2000-03-24 2001-09-26 Daikin Ind Ltd Air-conditioning system
JP2005055165A (en) * 2003-07-22 2005-03-03 Daikin Ind Ltd Humidity controller
JP2005114294A (en) * 2003-10-09 2005-04-28 Daikin Ind Ltd Air conditioner
JP2006250414A (en) * 2005-03-09 2006-09-21 Sanyo Electric Co Ltd Air-conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113167484A (en) * 2018-12-07 2021-07-23 大金工业株式会社 Air conditioner
CN113167484B (en) * 2018-12-07 2022-12-20 大金工业株式会社 Air conditioner

Also Published As

Publication number Publication date
JP5311734B2 (en) 2013-10-09
JP2008116087A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP4169747B2 (en) Air conditioner
JP5068235B2 (en) Refrigeration air conditioner
US6675601B2 (en) Air conditioner
JP2012037216A (en) Air conditioner
JP3668786B2 (en) Air conditioner
JP4321650B2 (en) Humidity control device
WO2010029724A1 (en) Humidity control device
JP2009275955A (en) Desiccant air-conditioning device
JP2001241693A (en) Air conditioner
JP3861902B2 (en) Humidity control device
JP3891207B2 (en) Humidity control device
WO2013026255A1 (en) Vapor compression type air conditioner of refrigeration combined with desiccant wheel dehumidification
JP5868416B2 (en) Refrigeration air conditioner and humidity control device
JP5228336B2 (en) Hybrid dehumidifier
JP2009180492A (en) Dehumidifying unit and air conditioner
JP3695417B2 (en) Humidity control device
JP2002022291A (en) Air conditioner
JP2006266518A (en) Air conditioning system
JP2007327684A (en) Desiccant air conditioner
JP5228337B2 (en) Hybrid dehumidifier
JP5311734B2 (en) Air conditioner
JP2005291535A (en) Humidifier
JP2002018228A (en) Humidity controlling apparatus
JP5917787B2 (en) Air conditioning system
JP2013032911A (en) Air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830342

Country of ref document: EP

Kind code of ref document: A1