WO2008053567A1 - Optical receiver apparatus and received optical signal dispersion compensating method - Google Patents

Optical receiver apparatus and received optical signal dispersion compensating method Download PDF

Info

Publication number
WO2008053567A1
WO2008053567A1 PCT/JP2006/322026 JP2006322026W WO2008053567A1 WO 2008053567 A1 WO2008053567 A1 WO 2008053567A1 JP 2006322026 W JP2006322026 W JP 2006322026W WO 2008053567 A1 WO2008053567 A1 WO 2008053567A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion compensation
dispersion
optical
line
signal
Prior art date
Application number
PCT/JP2006/322026
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroki Ooi
George Ishikawa
Hiroshi Onaka
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2006/322026 priority Critical patent/WO2008053567A1/en
Publication of WO2008053567A1 publication Critical patent/WO2008053567A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion

Definitions

  • the present invention relates to an optical receiver and a dispersion compensation method for a received optical signal. More specifically, for example, in order to reduce distortion due to chromatic dispersion that occurs on a transmission line when transmitting a high-speed optical signal such as 40 Gbps, The present invention relates to an optical receiver that performs dispersion compensation on a device side, and a dispersion compensation method.
  • an optical communication system includes an optical transmission device, an optical reception device, and a transmission path such as an optical fiber connecting these devices.
  • the optical transmission line is equipped with an optical amplifier as a repeater connected only by an optical fiber, and a dispersion compensating fiber (DCF) for compensating distortion caused by chromatic dispersion occurring on the transmission line.
  • DCF dispersion compensating fiber
  • a 40Gbps transmission system is planned to replace the lOGbps (Gigabit Z second) optical transmission system in order to increase capacity, reduce size, reduce costs, and improve high-frequency utilization efficiency.
  • the tolerance of chromatic dispersion in such a 40 Gbps transmission system is 1Z16 of tolerance in an lOGbps transmission system, and it is difficult to achieve appropriate dispersion compensation only with a dispersion compensation fiber placed on a transmission line where dispersion compensation conditions are very strict. Therefore, it is necessary to arrange a tunable dispersion compensator on the optical receiver side to perform highly accurate dispersion compensation.
  • FIG. 30 is an explanatory diagram of a conventional example of an optical communication system using an OUPSR (Optical Directional 'Pass'Switched' Ring) method as a typical protection method.
  • OUPSR Optical Directional 'Pass'Switched' Ring
  • the transmission optical signal is branched by the optical power bra, and the same signal is sent to both the working line and the protection line.
  • the signal on the working line is selected by the one-wave optical switch on the receiving side, and the working line fails.
  • communication is performed by switching the one-wave optical switch to the protection line side and selecting the optical signal on the protection line side. Note that it is specified that such line switching to the protection line should be completed within 50 ms so that, for example, the receiving-side client does not perceive a signal disconnection state.
  • the line lengths of the working line and the protection line are not necessarily the same, and the residual dispersion amount in each line is not the same. Therefore, when a failure occurs on the working line and the wiring is switched to the protection line side, it is necessary to optimize the dispersion compensation amount corresponding to the residual dispersion on the protection line side, and this optimization is performed. Otherwise, there was a problem that the reliability of the communication system would be greatly impaired, such as disconnection of the optical signal.
  • Patent Document 1 As a conventional technique related to dispersion compensation in an optical communication system in which the routing of an optical transmission line is changed in this way.
  • the received signal light is photoelectrically converted, the total dispersion amount in the transmission path is estimated from the result, and the identification threshold value and the identification timing of the received data are determined in accordance with the result.
  • a technique is disclosed for performing dispersion compensation and responding to a change in routing of an optical transmission line.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-15552 “Optical Receiver and Transbonder”
  • the object of the present invention is to perform highly accurate dispersion compensation using the dispersion compensation amount for an actual line, and to switch the line after switching. Is to enable highly accurate dispersion compensation using an appropriate dispersion compensation amount for
  • the optical receiver of the present invention includes at least a dispersion compensator, an optical switch, and a dispersion compensation control unit.
  • the optical switch selects the input optical signal of the working line or protection line power, and the dispersion compensator
  • the dispersion compensation control unit detects the optimum dispersion compensation amount for each of the working line and the protection line, stores the detection result, and selects the optimum value corresponding to the input signal selection result of the optical switch.
  • the dispersion compensation amount is set in the dispersion compensator, and the dispersion compensator performs dispersion compensation on the received optical signal using the set optimum dispersion compensation amount.
  • the optical communication system including the optical receiver is started up, the optimum dispersion compensation amount for the working line and the protection line is detected, and the optical switch selects the received optical signal from the working line.
  • the optimum dispersion compensation amount corresponding to the working line is set for the dispersion compensator.
  • the dispersion compensator On the other hand, the optimum dispersion compensation amount corresponding to the protection line is set, and dispersion compensation for the received optical signal is performed.
  • the optical receiver of the present invention includes a dispersion compensator for a working line that performs dispersion compensation for an optical signal having a working line power, and a dispersion compensator for a protection line that performs dispersion compensation for an optical signal having a protection line power.
  • the optical receiving device further includes at least an optical switch and a dispersion compensation control unit 9.
  • the optical switch selects one of the optical signal output from the dispersion compensator for the working line or the protection compensator for the protection line, and the dispersion compensation control unit includes the working line and the protection line.
  • the optimum dispersion compensation amount is detected for each of these, and the detection results are set in the dispersion compensator 6 for the working line and the dispersion compensator for the protection line.
  • the dispersion compensator for the working line and the dispersion compensator for the protection line are Then, dispersion compensation for the received optical signal is performed using the optimal dispersion compensation amount set for each.
  • the optimum dispersion compensation amount detected at the time of system startup is set in the dispersion compensator for the working line and the dispersion compensator for the protection line, respectively.
  • the output of the dispersion compensator for the line is selected by the optical switch, and when the failure occurs in the working line and switching to the protection line is performed, the output of the dispersion compensator for the protection line is selected by the optical switch.
  • the present invention for example, by using the optimum dispersion compensation amount that is actually detected for each of the working line and the protection line when the system is started up, optical transmission with low dispersion tolerance is used. Also in the system, dispersion compensation for chromatic dispersion on the transmission line It becomes possible to carry out with high precision. In addition, even when a failure occurs on the working line and switching to the protection line is performed, it becomes possible to perform dispersion compensation for the received optical signal at high speed using an appropriate dispersion compensation amount for the protection line. This greatly contributes to improving the reliability of high-speed optical communication systems.
  • FIG. 1 is a block diagram showing the principle configuration of an optical signal receiving apparatus according to the present invention.
  • FIG. 2 is a diagram showing a configuration example of a communication system in a first dispersion compensation control method.
  • FIG. 3 is a configuration block diagram of a first embodiment of an optical transceiver in the first control method.
  • FIG. 4 is a diagram showing an optimum dispersion compensation amount detection and VDC setting sequence in the first control method.
  • FIG. 5 is an explanatory diagram of a method for detecting optimum dispersion compensation amount on the protection line side.
  • FIG. 6 is an explanatory diagram of a method for detecting the optimum dispersion compensation amount on the working line side.
  • FIG. 7 is an explanatory view of a method (part 1) for optimal adjustment of coarse dispersion compensation amount.
  • FIG. 8 is an explanatory diagram of an optimal dispersion compensation amount coarse adjustment method (part 2).
  • FIG. 9 is a configuration block diagram of a second embodiment of the optical receiver in the first control scheme.
  • FIG. 10 is an explanatory diagram of a method for coarse adjustment of the optimum dispersion compensation amount in FIG.
  • FIG. 11 is a configuration block diagram of a third embodiment of the optical receiver in the first control scheme.
  • FIG. 12 is a simulation result of received clock strength characteristics corresponding to FIG.
  • FIG. 13 is a configuration block diagram of a fourth embodiment of the optical receiver in the first control scheme.
  • FIG. 14 is a simulation result of optical clock intensity characteristics corresponding to FIG.
  • FIG. 15 is a diagram showing a configuration example of a communication system in a second dispersion compensation control method.
  • FIG. 16 is a block diagram showing the configuration of an embodiment of the optical receiver in the second control method.
  • FIG. 17 is a diagram showing a sequence for detecting an optimum dispersion compensation amount and setting to VDC in the second control method.
  • FIG. 18 is an explanatory diagram of a protection line side optimum dispersion compensation amount detection method in the second control method.
  • FIG. 19 is an explanatory diagram of a method for detecting the optimum dispersion compensation amount on the working line side in the second control method.
  • FIG. 20 is an explanatory diagram of a dispersion compensation fine adjustment method at the time of switching to a protection line.
  • FIG. 21 is an explanatory diagram of the optimum dispersion compensation amount constant detection method (part 1) on the protection line side.
  • FIG. 22 is an explanatory diagram of a dispersion monitoring signal in FIG.
  • FIG. 23 is an explanatory diagram of the optimum dispersion compensation amount constant detection method (part 2) on the protection line side.
  • FIG. 24 is an explanatory diagram of a dispersion monitoring signal in FIG.
  • FIG. 25 is an explanatory diagram of a method for estimating a variation with time of a dispersion compensation amount with respect to a wavelength multiplexed signal.
  • FIG. 26 is an explanatory diagram of a method (part 1) for selecting the optimum dispersion compensation amount detection wavelength.
  • FIG. 27 is an explanatory diagram of a method (part 2) for selecting the optimum dispersion compensation amount detection wavelength.
  • FIG. 28 is an explanatory diagram of an application example of the present invention to a mesh network.
  • FIG. 29 is an explanatory diagram of the application of the present invention to a measure for trouble transfer.
  • FIG. 30 is an explanatory diagram of a conventional example of a line switching method when a failure occurs in an optical communication system.
  • FIG. 1 is a block diagram showing the principle configuration of an optical receiver according to the present invention. This figure is a block diagram of the principle configuration of an optical receiver having a dispersion compensator that performs dispersion compensation on the received optical signal.
  • FIG. 1 (a) corresponds to the first dispersion control method described later, and
  • FIG. FIG. 6 is a block diagram illustrating the principle configuration of an optical receiver that supports a second dispersion control method.
  • the optical receiver 1 includes at least a dispersion compensator 2, an optical switch 3, and a dispersion compensation controller 4.
  • the optical switch 3 selects an input optical signal from the working line or the protection line and gives it to the dispersion compensator 2.
  • the dispersion compensation control unit 4 is the optimum dispersion compensation for each of the working line and the protection line. Is detected, the detection result is stored, and the optimum dispersion compensation amount corresponding to the input signal selection result of the optical switch 3 is set in the dispersion compensator 2.
  • the dispersion compensator 2 is set to the optimum dispersion Dispersion compensation for the received optical signal is performed using the compensation amount.
  • an optical receiver 5 performs dispersion compensation for an optical signal from the working line, and a standby circuit that performs dispersion compensation for the optical signal from the working line power compensation.
  • An optical receiver including a line dispersion compensator 7, and further including at least an optical switch 8 and a dispersion compensation controller 9.
  • the optical switch 8 selects either the optical signal output from the dispersion compensator 6 for the working line or the dispersion compensator 7 for the protection line, and the dispersion compensation control unit 9 includes the working line, The optimum dispersion compensation amount for each of the protection lines is detected, and the detection result is set in the dispersion compensator 6 for the working line and the dispersion compensator 7 for the protection line.
  • the dispersion compensator 6 for the working line and the protection line The dispersion compensator 7 performs dispersion compensation on the received optical signal using the set optimum dispersion compensation amount.
  • the optimum dispersion compensation amount for the working line and the protection line is detected when the optical communication system including the optical receiver is started up.
  • the optimum dispersion compensation amount detected by the dispersion compensation control unit 4 is stored, and when the optical switch 3 selects the received optical signal having the working line power and outputs it to the dispersion compensator 2, the dispersion compensation
  • the optimal dispersion compensation amount corresponding to the working line is set for the compensator 2 and a failure occurs in the working line and the switching to the protection line is performed, the dispersion compensator 2 corresponds to the protection line.
  • the optimum dispersion compensation amount is set, and dispersion compensation for the received optical signal is performed.
  • Fig. 1 (b) the optimum dispersion compensation amounts detected at system start-up are also set in the dispersion compensator 6 for the working line and the dispersion compensator 7 for the protection line, respectively.
  • the output of the dispersion compensator 6 for the working line is selected by the optical switch 8, and when the failure occurs in the working line and switching to the protection line is performed, the output of the dispersion compensator 7 for the protection line is changed to the optical switch. Will be selected by 8.
  • FIG. 2 is a configuration example of an optical communication system in which the first dispersion compensation control method is used.
  • WDM wavelength division multiplexing
  • this first control method an optical signal whose transmission side power is also sent using a working line or a protection line, generally a wavelength division multiplexed signal, is selected by one optical switch, and 1 is selected for the selected optical signal.
  • Dispersion compensation is performed on the receiving side by a variable dispersion compensator, ie VDC (variable 'dispersion' compensator).
  • VDC variable 'dispersion' compensator
  • the signal input from the sending client 11 to the sending OADM (optical 'drop / drop' multiplexer, optical add / drop multiplexer) 12 is the transponder 13 and optical switch 14.
  • the optical signal on the working line 15 is input to the receiving side OADM 17 via the relay OADM 16, and the optical signal on the protection line 25 is input to the receiving side OADM 17 via the relay OADM 26.
  • dispersion compensation using a dispersion compensation fiber DCF can be performed as necessary.
  • the signal from the working line 15 is given to the one-wave optical switch 19 via the optical switch 18, and the signal from the backup a line is given to the one-wave optical switch 19.
  • the signal from the working line 15 is selected by the one-wave optical switch 19 and applied to the VDC 20 for dispersion compensation. Is given to the receiving client 22 via.
  • the one-wave optical switch 19 is switched to the protection line 25 side, that is, the optical switch 18 side b, and is applied to the signal power VDC20 from the protection line 25 to perform dispersion compensation.
  • the transbonder 21 To the receiving client 22 through the transbonder 21.
  • FIG. 3 is a block diagram of the configuration of the first embodiment of the optical receiver.
  • the input optical signal selected by the one-wave optical switch 19 is given to the optical receiving unit 30 via the VDC 20.
  • the configuration of the optical receiving unit 30 will be described later as necessary, and an output signal from the optical receiving unit 30 is given to a framer 31 that performs frame-by-frame processing with frame synchronization.
  • the framer 31 includes an FEC (forward error correction) unit 34 that performs error correction on the received signal.
  • the FEC unit 34 controls the number of error corrections to the VDC control unit 33 that controls VDC20.
  • the signal shown is given as a monitor signal for adjusting the dispersion compensation amount.
  • failure occurrence information from the optical receiving unit 30, that is, failure occurrence information indicating optical power disconnection, abnormality notification signal, and the like is given to the VDC control unit 33 by the failure occurrence detection unit 32.
  • the VDC control unit 33 receives an error correction number from the FEC unit 34, an error correction number detection unit 36, and a working line dispersion compensation amount memory 37 that stores optimum dispersion compensation amounts for the working line 15 and the protection line 25, respectively.
  • a VDC dispersion compensation amount setting unit 39 for receiving failure occurrence information from the protection line dispersion compensation amount memory 38 and the failure occurrence detection unit 32.
  • the VDC control unit 33 uses the detection result by the error correction number detection unit 36 to start up the communication system including the optical receiver as described later (initial setting) ),
  • the optimum dispersion compensation amount is detected corresponding to the working line and the protection line and stored in the two memories 37 and 38.
  • the VDC dispersion compensation amount setting unit 39 sets the optimum dispersion compensation amount as the stored content of the dispersion compensation amount memory 37 for the working line to VDC20 at the start of service operation using the working line. If it is determined from the failure occurrence information that a failure has occurred on the working line, the one-wave optical switch 19 is switched to the protection line side and the optimum compensation amount stored in the dispersion compensation amount memory 38 for the protection line is read.
  • FIG. 4 is an explanatory diagram of an optimum dispersion compensation amount detection and VDC setting sequence corresponding to the first embodiment of the optical receiver of FIG. This sequence is basically executed by the VDC dispersion compensation amount setting unit 39 in FIG.
  • steps S1 to S9 are processes required at the time of initial setting (system startup), that is, before service operation. These processes will be described with reference to FIGS.
  • step S1 the one-wave optical switch 19 is switched to the protection line 25 side as shown in FIG. 5, and the optimum dispersion compensation amount Dp on the protection line side is detected in steps S2 and S3. That is, in FIG. 3, the number of error corrections for the optical signal transmitted on the transmission side is detected by the error correction number detection unit 36, and the optimum dispersion compensation amount on the protection line side is detected corresponding to the number of error corrections. As a method for this, the dispersion compensation amount by VDC20 is changed, and the dispersion compensation amount where the error correction number is less than a certain value is detected as the optimum dispersion compensation amount.
  • Force Step S2 is a rough adjustment
  • Step S3 is a fine adjustment.
  • Step S3 is finely adjusted as necessary.For example, if the coarse adjustment ends when the number of error corrections falls below a certain value, the dispersion compensation amount is further reduced in the vicinity of the fine adjustment. By changing the force, the optimum dispersion compensation value is detected. Whether or not to make a fine adjustment is determined by the dispersion tolerance value and the time required for the adjustment (response speed).
  • step S4 the detected value Dp of the protection line side optimum dispersion compensation amount Dp is stored in the protection line dispersion compensation amount memory 38 by the VDC dispersion compensation amount setting unit 39 in Fig. 3, and adjusted on the protection line side.
  • step S5 the one-wave optical switch 19 is switched to the working line side as shown in FIG.
  • steps S6 to S8 the detection of the optimum dispersion compensation amount on the working line side is detected by coarse adjustment or fine adjustment as necessary, and the detected value Dw of the optimum dispersion compensation amount is detected as dispersion compensation for the working line. It is stored in the quantity memory 37, and this value Dw is set to VDC20 in step S9.
  • this value Dw is set to VDC20 in step S9.
  • the adjustment from step S1 to S4 and the adjustment from S5 to S8 can be interchanged.
  • step S 10 in FIG. 4 service operation is started using the working line, and in step S 11, fine adjustment of the dispersion compensation amount for the working line, for example, is repeated at regular intervals. For example, this fine adjustment is performed in response to the detection result by giving the error correction count detection result from the error correction count detection unit 36 to the VDC dispersion compensation amount setting unit 39 during service operation in FIG. Then, fine adjustment of the dispersion compensation amount is performed.
  • step S12 When a failure occurs on the active line side, the failure is detected in step S12, and in step S13, the one-wave optical switch 19 is switched to the protection line side, and the dispersion compensation amount by VDC20 is the dispersion compensation amount memory for the protection line. 38, the value Dp is set to VDC, and if necessary, the dispersion compensation amount is finely adjusted in step S15, and the operation on the protection line side is started in step S16. The fine adjustment of the dispersion compensation amount in step S15 will be described later.
  • the service recovery speed is determined in advance because the value of the force Dp, which is limited by the response speed of the VDC, is obtained in advance, so that a relatively high speed recovery is possible.
  • FIGS. 7 and 8 show optimum dispersion compensation amount detection (coarse adjustment) in the first embodiment of the optical receiver. It is explanatory drawing of.
  • the optimum dispersion compensation amount is detected using the pulling method.
  • the dispersion compensation amount due to VDC20 is continuously changed in steps below the dispersion tolerance, and the dispersion compensation amount when the number of error corrections falls below a predetermined value, for example, (4), (5), and (6 ),
  • the dispersion compensation value in (5) with the smallest number of error corrections is detected as the optimum value.
  • This insertion method is effective even when the operating speed of the VDC is low because the amount of step change in the dispersion compensation amount is small.
  • the optimum dispersion compensation amount is detected using the binary search method.
  • the range between (2) and (3) is set as the variation range of the dispersion compensation amount.
  • the number of error corrections is detected at the intermediate value (1), then ( 2), then (3), then (3) between (3) and (1), then (4), then (2) and (5) between (1), the number of error corrections
  • the dispersion compensation value at this time is detected as the optimum value. Since this binary search method has few monitor signal detection points, it is effective even when the monitor signal stability is slow or the detection speed is low.
  • FIG. 9 is a block diagram of the configuration of the second embodiment of the optical receiver in the first dispersion compensation control system.
  • the optimum dispersion compensation amount is detected according to the detection results of various alarm signals as the dispersion amount monitor signal and set to the value DC20.
  • an alarm signal related to clock synchronization As a signal output from the optical receiver 30, and a frame synchronization is used as a signal from the framer 31.
  • Alarm signals and the like are used. These alarm signals are given to the alarm detection unit 41 inside the VDC control unit 33, and the optimum value of the dispersion compensation amount is detected by the VDC dispersion compensation amount setting unit 39 according to the detection result of the alarm signal, It is assumed that data is written to the two memories 37 and 38 at the time of initial setting, that is, before the start of system operation.
  • the alarm signal related to clock synchronization output from the optical receiver 30 is an alarm signal indicating that the clock signal transmitted from the transmission side cannot be synchronized with the local clock signal on the reception device side, and
  • the alarm signal related to delay interferometer control is This alarm signal indicates that the feedback control for the interferometer is properly performed.
  • the alarm signal related to frame synchronization output from the framer 31 is, for example, an alarm signal indicating that the time position of the synchronization signal in the header of the frame is shifted. Then, the detection of the optimum dispersion compensation amount written in the two dispersion compensation amount memories 37 and 38 is obtained from a range in which such an alarm signal is not given to the alarm detection unit 41.
  • the monitoring method using an alarm signal related to delay interferometer control is, for example, a power applied to a communication system using a phase modulation method such as the DPSK method or the DQPSK method.
  • the monitoring method using alarm signals related to clock synchronization and frame synchronization can be applied to systems that use any modulation method including intensity modulation methods such as NRZ and RZ.
  • FIG. 10 is an explanatory diagram of the coarse adjustment for detecting the optimum dispersion compensation amount in the second embodiment of the optical receiver.
  • the alarm signal is not output with the dispersion compensation amount values of (4), (5), and (6). If it is a range where the alarm is released, for example, the optimum value of the dispersion compensation amount is detected as the value of (5) at the center of the range.
  • FIG. 11 is a configuration block diagram of a third embodiment of the optical receiver in the first dispersion compensation control method.
  • the DQPSK system is used as the signal modulation system.
  • a delay interferometer is provided inside the optical receiver.
  • the intensity of the clock signal as an electrical signal is detected from the signal on the output side of the delay interferometer.
  • the optimal dispersion compensation amount is detected according to the value of the clock strength signal (monitor signal).
  • the output of VDC 20 is amplified by the optical amplifier 43 and supplied to the two delay interferometers 44 and 44.
  • the received optical signal of 40Gbps is two 20 giga thin a b
  • Each of them is given to two delay interferometers as a baud rate signal.
  • the outputs of the delay interferometers 44, 44 are the photodiode 45, amplifier 46, or
  • DESER deserializer
  • the output of the photodiode 45 is given.
  • the output of the photodiode 45 is given.
  • the output of the amplifier 46 is given to the clock recovery unit 49, and the recovered clock signal is 2: 1
  • the clock strength signal which is supplied to the power sensor 50 and output from the power sensor 50 is supplied to the clock strength detection unit 52 in the VDC control unit 33.
  • the optical receiving unit 30 of FIG. 3 includes an optical amplifier 43, delay interferometers 44 and 44, and a photodiode 45 in FIG. 45, amplifier 46,
  • FIG. 12 shows the simulation result of the clock signal strength characteristics as the output of the power sensor 50 in the third embodiment of FIG. It can be seen that a stable clock signal can be obtained even when the operating point of the delay interferometer in Fig. 11 is changed by ⁇ 22.5 °, centered on ⁇ ⁇ 4 with no phase shift.
  • the power at which the dispersion value is “0” and the clock intensity is minimized The optimum dispersion compensation amount can be set according to the center position of the two peaks on both sides. The compensation amount can be detected at high speed without depending on the operating point of the delay interferometer, that is, without waiting for its operation stability.
  • FIG. 13 is a configuration block diagram of a fourth embodiment of the optical receiver in the first dispersion compensation control method.
  • the optimum dispersion compensation amount is detected in accordance with the intensity of the optical clock signal (monitor signal) before being converted into the electric signal in the receiving apparatus.
  • the output of VDC 20 is given to the optical clock monitor 55, and the clock is regenerated and the optical clock intensity is detected.
  • the output of V DC20 is given to the photodiode 56, converted into an electrical signal, and given to GHz2 ⁇ and ⁇ is 40 GHz, it is given to the 2-to-1 multiplexer 47 as a clock signal via the 20 GHz bandpass filter 57 and power
  • the clock intensity is detected by the sensor 58 and given to the clock intensity detector 52.
  • the bandpass filter 57 is, for example, 20 It shall have a pass band in the range of GHz ⁇ 2%.
  • FIG. 14 shows the simulation result of the optical clock strength characteristic in the 40 Gbps DQPSK signal as in FIG.
  • the optical clock intensity signal is detected as the dispersion monitor signal on the upstream side of the delay interferometer, the peak value shown in FIG. 14 is not waited for the delay interferometer to stabilize its operation.
  • the optimum dispersion compensation amount can be detected at high speed.
  • FIG. 15 is a configuration example of an optical transmission / reception system in the second control method.
  • a VDC 20 and a protection line corresponding to the working line 15 as a variable dispersion compensator inside the receiving side OA DM 17
  • VDC20 With VDC20 corresponding to 25, one of two VDC20, 20 outputs 1
  • FIG. 2 shows the first method in that one is selected by the one-wave optical switch 19 and is given to the client 22 on the receiving side via the transbonder 21.
  • two VDCs are required.
  • FIG. 16 is a configuration block diagram of an embodiment of the optical receiver in the second dispersion compensation control method. Comparing this figure with FIG. 3 as the first embodiment of the optical receiver in the first dispersion compensation control method, the VDC control unit 33 receives the error correction number received from the FEC unit 34. Number detector 36 and optimal for each of the two VDC20, 20
  • the optimum dispersion compensation amount is set for each of VDC20 and 20 at system startup.
  • the input to the optical receiver 30 is switched from the active line side to the protection line side by the one-wave optical switch 19.
  • FIG. 17 shows the detection of the optimal dispersion amount and the setting to VDC in the second dispersion compensation control method.
  • FIG. 18 and FIG. 19 are diagrams for explaining the connection of the one-wave optical switch 19 at the time of initial setting.
  • VDC itself may be relatively slower than in the first method. Since two VDCs are required, when implementing an actual system, whether to select a deviation method considering the requirements for failure recovery speed, the requirements for the size and cost of the receiving device, the response speed of VDC, etc. Need to be determined.
  • step S15 in FIG. 4 when a failure occurs in the working line, switching to the protection line side is performed.
  • the optimum stored in the dispersion compensation amount memory 38 for the protection line is used.
  • Dispersion compensation value, Fig. 16 shows the VDC20 for protection line at initial setting.
  • the optimal dispersion compensation value that has been set is not necessarily the optimum value even when the line is switched.
  • the optimum dispersion compensation amount on the protection line may have changed due to changes in the transmission line temperature during system operation. Therefore, as shown in step S33 of FIG. 17, it is desirable to finely adjust the value of the optimum dispersion compensation value Dp detected at the time of system startup, that is, at the initial setting. Such fine adjustment is effective even if there is a difference between the first and second distributed compensation control methods.
  • FIG. 20 is an explanatory diagram of this dispersion compensation amount fine adjustment method.
  • the optimum dispersion compensation value is the power that can be switched from the value Dw for the working line side to the value Dp at the time of starting up the system on the protection line side, that is, the initial setting value.
  • the value of (2) may not allow the dispersion monitor value such as the number of error corrections to be below the allowable value.
  • the dispersion compensation amount in (5) Value for protection line VDC20 It is possible to respond appropriately to changes over time such as temperature changes on the protection line side by resetting to
  • the optimum dispersion compensation amount is finely adjusted when switching from the working line to the protection line, for example, to cope with a change with time in the signal transmission state due to a temperature change.
  • the optimum dispersion compensation amount on the protection line side is always detected, and the dispersion compensation amount set on the protection line side VDC20 is detected. It is possible to always control to the optimum value b
  • FIG. 21 and FIG. 22 are explanatory diagrams of such a continuous detection method of the optimum dispersion compensation amount on the protection line side.
  • Figure 21 shows the system configuration for continuous detection of the optimum dispersion compensation amount on the protection line side, and it is assumed that the dispersion fluctuation value is detected for each span of the optical fiber including the active line.
  • each span is added in addition to the wavelength multiplexed signal to be transmitted to the reception side which is originally output from the transmission side OADM 12 to the protection line 25 as well.
  • a separate dispersion monitoring signal is prepared as shown in Fig. 22.
  • the motor signal from transmitter 70 for dispersion monitoring is optically combined.
  • the optical signal on the protection line 25 is multiplexed by the bra 72, the optical signal on the protection line 25 is separated by the separation cover 73, and the dispersion monitoring signal is received by the monitoring receiver 71.
  • the amount of variation is detected.
  • the amount of dispersion fluctuation is detected for span # 2
  • the optimum dispersion compensation amount to compensate for dispersion fluctuation of protection line 25 is always detected by adding the respective dispersion fluctuation amounts for the two spans. It becomes possible to do.
  • the wavelength multiplexed signal sent from the transmission side by the protection line 25 is input up to VDC20 b
  • the 1-wave optical switch 19 is connected to the VDC 20 side.
  • the dispersion compensation amount cannot always be adjusted according to the number of error corrections, for example, as described in FIG.
  • the method described in Fig. 21 and Fig. 22 for continuous detection of the optimal dispersion amount The formula is considered very effective.
  • FIG. 23 to FIG. 25 are explanatory diagrams of another method for constantly detecting the optimum dispersion compensation amount on the protection line side.
  • the dispersion monitor signal from the monitor transmitter 75 is wavelength-multiplexed by the optical switch 14 inside the transmission side ODAM 12, and the optical switch 18 power inside the reception side OADM 17 is also dispersed by the monitor receiver 76.
  • Monitor signal is extracted b
  • the optimum dispersion compensation amount is always detected.
  • one signal among the wavelength multiplexed signals is assigned to the dispersion monitor signal, and depending on the number of error corrections to the dispersion monitor signal on the monitor receiver 76 side, etc.
  • the curve showing the relationship between the number of error corrections and the amount of dispersion compensation changes during system operation from the time the system is started up, and the time-dependent fluctuation ⁇ D is detected as shown in Fig. 25.
  • a curve indicating the relationship between the error correction number for the wavelength multiplexed signal and the optimum dispersion compensation amount can be obtained.
  • the change in position is obtained as shown in Fig. 25, and the amount of dispersion compensation can be optimized.
  • the monitor signal transmitter and the receiver of claim 6 correspond to the monitor receiver 71 and the separation power bra 72.
  • the monitor transmitter 75 and optical switch 14 of FIG. 23, the monitor receiver 76 and optical switch of FIG. 18 is equivalent to bb.
  • the time required for switching to the protection line when a failure occurs on the working line is defined as 50 ms or less, and within this time, the optimum dispersion compensation amount is obtained again for all combinations of signal paths and wavelengths. For example, when the signal path is determined, the optimum dispersion compensation amount is actually detected for several powers of the WDM signal, and the detection result power for other wavelengths is detected. It is practical to estimate.
  • FIG. 26 and FIG. 27 are explanatory diagrams of such an optimum dispersion compensation amount estimation method for each wavelength.
  • the optimum dispersion compensation amount is actually detected at the maximum value and the minimum value among the wavelengths of the WDM signal, and the optimum dispersion compensation amount is linearly approximated for each wavelength in the meantime. Can be sought.
  • Such a method can be applied to cases where the relationship between the amount of residual dispersion and the wavelength is determined only by the residual dispersion slope.
  • Figure 27 shows an estimation method when the relationship between residual dispersion and wavelength cannot be linearly approximated.
  • the optimum dispersion compensation amount is detected for three or more wavelengths of the WDM signal.
  • the optimal dispersion compensation amount can be estimated by quadratic function approximation, or by approximation with a higher order function if necessary.
  • FIG. 28 is an explanatory diagram of an application example of the present invention to a mesh network. This figure shows an example when the 1 + 1 method is applied as a protection method in a mesh network.
  • An optical switch is provided at the end point of the working line and the protection line, and the selection result of the switch is given to VDC. That is, here, the first dispersion compensation control method described above is used.
  • the protection method is not limited to the 1 + 1 method, and various methods such as a 1: 1 method can be used, which is optimal for all protection paths assumed at the time of system startup. Occurrence of failure by obtaining dispersion compensation amount in advance Sometimes it is possible to achieve fast recovery.
  • the dispersion compensation amount control method using the protection line when a failure occurs in the working line has been described, but the dispersion compensation amount adjustment method in the present embodiment is For example, it can also be used as a countermeasure when the amount of dispersion on the transmission line exceeds the dispersion tolerance in response to switching of the line accompanying the movement of the utility pole, that is, the transfer of trouble.
  • FIG. 29 is an explanatory diagram of a dispersion compensation amount adjustment method as a countermeasure against such trouble transfer.
  • the dotted line indicates the relationship between, for example, the number of error corrections and the amount of dispersion compensation before the failure transfer, and the solid line indicates the same relationship after the failure transfer.
  • the value of (1) that is, Dw
  • the error correction count is allowed as shown in (2) for the same Dw value after the trouble transfer.
  • the dispersion compensation amount is slightly changed until the number of error corrections is less than the allowable value, and the dispersion compensation amount Dw 'when the error correction number falls below the allowable value in (5) is set as the optimum dispersion compensation amount. System operation can be resumed.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

To allow a precise dispersion compensation to be performed by using a dispersion compensation amount required for an actual channel and also allow a precise dispersion compensation to be performed after switching channels. There are included an optical switch that selects an input optical signal from a currently used channel or an auxiliary channel to output the selected input optical signal to a variable dispersion compensator; and a dispersion compensation control part that determines and stores dispersion compensation amounts required for the respective ones of the currently used and auxiliary channels and that sets, to the variable dispersion compensator, one of the dispersion compensation amounts in accordance with a result of the selection of the optical switch. The variable dispersion compensator then uses the set dispersion compensation amount to perform a dispersion compensation of the received optical signal.

Description

明 細 書  Specification
光受信装置、および受信光信号に対する分散補償方法  Optical receiver and dispersion compensation method for received optical signal
技術分野  Technical field
[0001] 本発明は、光受信装置、および受信光信号に対する分散補償方式に係り、さらに 詳しくは例えば 40Gbpsなどの高速光信号の伝送時に伝送路上で生ずる波長分散 による歪みを低減するために、受信装置側で分散補償を行う光受信装置、および分 散補償方法に関する。  TECHNICAL FIELD [0001] The present invention relates to an optical receiver and a dispersion compensation method for a received optical signal. More specifically, for example, in order to reduce distortion due to chromatic dispersion that occurs on a transmission line when transmitting a high-speed optical signal such as 40 Gbps, The present invention relates to an optical receiver that performs dispersion compensation on a device side, and a dispersion compensation method.
背景技術  Background art
[0002] 一般に光通信システムは、光送信装置、光受信装置、およびこれらの装置を結ぶ 光ファイバなどの伝送路によって構成される。光伝送路には、光ファイバだけでなぐ 中継器としての光増幅器や、伝送路上で生ずる波長分散によって引き起こされる歪 みを補償するための分散補償ファイノく(DCF: Dispersion compensating fiber)が備え られる。  In general, an optical communication system includes an optical transmission device, an optical reception device, and a transmission path such as an optical fiber connecting these devices. The optical transmission line is equipped with an optical amplifier as a repeater connected only by an optical fiber, and a dispersion compensating fiber (DCF) for compensating distortion caused by chromatic dispersion occurring on the transmission line.
[0003] 近年、大容量化、小型化、低コスト化、および高周波利用効率向上などのために、 lOGbps (ギガビット Z秒)光伝送システムに代わって、 40Gbps伝送システムの導入 が予定されている。このような 40Gbps伝送システムにおける波長分散のトレランスは 、 lOGbps伝送システムにおけるトレランスの 1Z16となり、分散補償の条件が非常に 厳しぐ伝送路上に配置される分散補償ファイバのみでは適切な分散補償が困難と なり、光受信装置側に可変波長分散補償器を配置して高精度の分散補償を行うこと が必要となる。  [0003] In recent years, a 40Gbps transmission system is planned to replace the lOGbps (Gigabit Z second) optical transmission system in order to increase capacity, reduce size, reduce costs, and improve high-frequency utilization efficiency. The tolerance of chromatic dispersion in such a 40 Gbps transmission system is 1Z16 of tolerance in an lOGbps transmission system, and it is difficult to achieve appropriate dispersion compensation only with a dispersion compensation fiber placed on a transmission line where dispersion compensation conditions are very strict. Therefore, it is necessary to arrange a tunable dispersion compensator on the optical receiver side to perform highly accurate dispersion compensation.
[0004] またこのような光通信システムでは、通信信頼性を確保し、伝送路における障害発 生時のサービス復旧を高速ィ匕するために、各種のプロテクション方式が用いられてき た。図 30は、代表的なプロテクション方式としての OUPSR (オプティカル'ュ-ディレ クショナル 'パス'スィッチド 'リング)方式が用いられた光通信システムの従来例の説 明図である。同図において送信側では、光力ブラによって送信光信号を分岐し、同 一の信号を現用回線と予備回線の両方に送出する。受信側では通常運用時には 1 波光スィッチによって現用回線側の信号を選択し、現用回線に障害が発生した場合 には 1波光スィッチを予備回線側に切り替え、予備回線側の光信号を選択して通信 が行われる。なおこのような予備回線側への回線切り替えは、例えば受信側クライア ントが信号切断状態を知覚することのないように、 50ms以内に終了すべきことが規 定されている。 [0004] In such an optical communication system, various protection methods have been used in order to ensure communication reliability and to speed up service restoration when a failure occurs in a transmission line. FIG. 30 is an explanatory diagram of a conventional example of an optical communication system using an OUPSR (Optical Directional 'Pass'Switched' Ring) method as a typical protection method. In the figure, on the transmission side, the transmission optical signal is branched by the optical power bra, and the same signal is sent to both the working line and the protection line. In normal operation, the signal on the working line is selected by the one-wave optical switch on the receiving side, and the working line fails. In this case, communication is performed by switching the one-wave optical switch to the protection line side and selecting the optical signal on the protection line side. Note that it is specified that such line switching to the protection line should be completed within 50 ms so that, for example, the receiving-side client does not perceive a signal disconnection state.
[0005] 図 30のような光通信システムにおいて、一般に現用回線と予備回線との回線長な どは必ずしも同じではなぐまた各回線における残留分散量も同一ではない。したが つて現用回線に障害が発生し、予備回線側に配線を切り替える場合には、予備回線 側の残留分散に対応して分散補償量の最適化を行う必要があり、この最適化が行わ れないと、光信号の切断など、通信システムの信頼性が大きく損なわれてしまうという 問題点があった。  [0005] In the optical communication system as shown in FIG. 30, generally, the line lengths of the working line and the protection line are not necessarily the same, and the residual dispersion amount in each line is not the same. Therefore, when a failure occurs on the working line and the wiring is switched to the protection line side, it is necessary to optimize the dispersion compensation amount corresponding to the residual dispersion on the protection line side, and this optimization is performed. Otherwise, there was a problem that the reliability of the communication system would be greatly impaired, such as disconnection of the optical signal.
[0006] このように光伝送路のルーティング変更が行われる光通信システムにおける分散補 償に関する従来技術として次の特許文献 1がある。この特許文献 1では、受信信号光 を光電変換して、その結果から伝送路における総分散量を見積もり、その結果に対 応して受信データの識別閾値と識別タイミングとを決定することによって、等価的に分 散補償を行って、光伝送路のルーティング変更に対応する技術が開示されて 、る。  [0006] There is the following Patent Document 1 as a conventional technique related to dispersion compensation in an optical communication system in which the routing of an optical transmission line is changed in this way. In this patent document 1, the received signal light is photoelectrically converted, the total dispersion amount in the transmission path is estimated from the result, and the identification threshold value and the identification timing of the received data are determined in accordance with the result. A technique is disclosed for performing dispersion compensation and responding to a change in routing of an optical transmission line.
[0007] し力しながらこのような従来技術を用いても、回線切り替えを検出することなく総分 散量を見積もって、その結果に対応して分散補償を行うために、ルーティングの変更 後に最適な分散補償量に安定するまでに時間を要し、長時間の通信切断状態が生 じる可能性があるという問題点を解決することはできな力つた。  [0007] However, even if such a conventional technique is used, the total dispersion amount is estimated without detecting line switching, and dispersion compensation is performed according to the result. It took a long time to stabilize the dispersion compensation amount, and it was impossible to solve the problem that a long communication cut-off state may occur.
特許文献 1:特開 2004— 15552号「光受信器およびトランスボンダ」  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-15552 “Optical Receiver and Transbonder”
発明の開示  Disclosure of the invention
[0008] 本発明の目的は、上述の問題点に鑑み、実際の回線に対する分散補償量を用い て高精度の分散補償を行うことと、回線の切り替えが行われた場合にも切り替え後の 回線に対する適切な分散補償量を用いて高精度の分散補償を可能とすることである  [0008] In view of the above-mentioned problems, the object of the present invention is to perform highly accurate dispersion compensation using the dispersion compensation amount for an actual line, and to switch the line after switching. Is to enable highly accurate dispersion compensation using an appropriate dispersion compensation amount for
[0009] 本発明の光受信装置は少なくとも分散補償器、光スィッチ、および分散補償制御 部を備える。 The optical receiver of the present invention includes at least a dispersion compensator, an optical switch, and a dispersion compensation control unit.
光スィッチは、現用回線、または予備回線力 の入力光信号を選択し、分散補償器 に与えるものであり、分散補償制御部は、現用回線と予備回線とのそれぞれに対す る最適分散補償量を検出してその検出結果を記憶し、光スィッチの入力信号選択結 果に対応する最適分散補償量を分散補償器に設定するものであり、分散補償器は 設定された最適分散補償量を用いて受信光信号に対する分散補償を行う。 The optical switch selects the input optical signal of the working line or protection line power, and the dispersion compensator The dispersion compensation control unit detects the optimum dispersion compensation amount for each of the working line and the protection line, stores the detection result, and selects the optimum value corresponding to the input signal selection result of the optical switch. The dispersion compensation amount is set in the dispersion compensator, and the dispersion compensator performs dispersion compensation on the received optical signal using the set optimum dispersion compensation amount.
[0010] そして例えば、光受信装置を含む光通信システムの立ち上げ時に現用回線、およ び予備回線に対する最適分散補償量の検出が行われ、光スィッチが現用回線から の受信光信号を選択して分散補償器に出力する時には、分散補償器に対して現用 回線に対応する最適分散補償量が設定され、現用回線に障害が発生して予備回線 への切り替えが行われる時には、分散補償器に対して予備回線に対応する最適分 散補償量が設定されて、受信光信号に対する分散補償が行われる。  [0010] Then, for example, when the optical communication system including the optical receiver is started up, the optimum dispersion compensation amount for the working line and the protection line is detected, and the optical switch selects the received optical signal from the working line. When the output is output to the dispersion compensator, the optimum dispersion compensation amount corresponding to the working line is set for the dispersion compensator. When the working line fails and is switched to the protection line, the dispersion compensator On the other hand, the optimum dispersion compensation amount corresponding to the protection line is set, and dispersion compensation for the received optical signal is performed.
[0011] また本発明の光受信装置は現用回線力 の光信号に対する分散補償を行う現用 回線用分散補償器と、予備回線力ゝらの光信号に対する分散補償を行う予備回線用 分散補償器とを備える光受信装置であって、さらに少なくとも光スィッチと分散補償 制御部 9とを備える。  [0011] Further, the optical receiver of the present invention includes a dispersion compensator for a working line that performs dispersion compensation for an optical signal having a working line power, and a dispersion compensator for a protection line that performs dispersion compensation for an optical signal having a protection line power. The optical receiving device further includes at least an optical switch and a dispersion compensation control unit 9.
[0012] 光スィッチは、現用回線用分散補償器、または予備回線用分散補償器カゝら出力さ れる光信号のいずれかを選択するものであり、分散補償制御部は現用回線、予備回 線のそれぞれに対する最適分散補償量を検出し、その検出結果を現用回線用分散 補償器 6、予備回線用分散補償器に設定するものであり、現用回線用分散補償器、 予備回線用分散補償器は、それぞれ設定された最適分散補償量を用いて、受信光 信号に対する分散補償を行う。  [0012] The optical switch selects one of the optical signal output from the dispersion compensator for the working line or the protection compensator for the protection line, and the dispersion compensation control unit includes the working line and the protection line. The optimum dispersion compensation amount is detected for each of these, and the detection results are set in the dispersion compensator 6 for the working line and the dispersion compensator for the protection line. The dispersion compensator for the working line and the dispersion compensator for the protection line are Then, dispersion compensation for the received optical signal is performed using the optimal dispersion compensation amount set for each.
[0013] そして前述と同様にシステムの立ち上げ時に検出された最適分散補償量が、それ ぞれ現用回線用分散補償器と予備回線用分散補償器に設定され、現用回線の運用 中には現用回線用分散補償器の出力が光スィッチによって選択され、現用回線に障 害が発生し、予備回線への切り替えが行われる時には、予備回線用分散補償器の 出力が光スィッチによって選択される。  [0013] As described above, the optimum dispersion compensation amount detected at the time of system startup is set in the dispersion compensator for the working line and the dispersion compensator for the protection line, respectively. The output of the dispersion compensator for the line is selected by the optical switch, and when the failure occurs in the working line and switching to the protection line is performed, the output of the dispersion compensator for the protection line is selected by the optical switch.
[0014] 本発明によれば、例えばシステムの立ち上げ時に現用回線、および予備回線のそ れぞれに対して実際に検出される最適分散補償量を用いることによって、分散トレラ ンスの小さい光伝送システムにおいても、伝送路上の波長分散に対する分散補償を 高精度で行うことが可能となる。また現用回線に障害が発生し、予備回線への切り替 えが行われる場合にも、予備回線に適切な分散補償量を用いて受信光信号に対す る分散補償を高速に行うことが可能となり、高速光通信システムの信頼性向上に寄与 するところが大きい。 [0014] According to the present invention, for example, by using the optimum dispersion compensation amount that is actually detected for each of the working line and the protection line when the system is started up, optical transmission with low dispersion tolerance is used. Also in the system, dispersion compensation for chromatic dispersion on the transmission line It becomes possible to carry out with high precision. In addition, even when a failure occurs on the working line and switching to the protection line is performed, it becomes possible to perform dispersion compensation for the received optical signal at high speed using an appropriate dispersion compensation amount for the protection line. This greatly contributes to improving the reliability of high-speed optical communication systems.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の光信号受信装置の原理構成ブロック図である。 FIG. 1 is a block diagram showing the principle configuration of an optical signal receiving apparatus according to the present invention.
[図 2]第 1の分散補償制御方式における通信システムの構成例を示す図である。  FIG. 2 is a diagram showing a configuration example of a communication system in a first dispersion compensation control method.
[図 3]第 1の制御方式における光送受信装置の第 1の実施例の構成ブロック図である FIG. 3 is a configuration block diagram of a first embodiment of an optical transceiver in the first control method.
[図 4]第 1の制御方式における最適分散補償量検出と VDCへの設定シーケンスを示 す図である。 FIG. 4 is a diagram showing an optimum dispersion compensation amount detection and VDC setting sequence in the first control method.
[図 5]予備回線側最適分散補償量検出方法の説明図である。  FIG. 5 is an explanatory diagram of a method for detecting optimum dispersion compensation amount on the protection line side.
[図 6]現用回線側最適分散補償量検出方法の説明図である。  FIG. 6 is an explanatory diagram of a method for detecting the optimum dispersion compensation amount on the working line side.
[図 7]最適分散補償量粗調整の方法 (その 1)の説明図である。  FIG. 7 is an explanatory view of a method (part 1) for optimal adjustment of coarse dispersion compensation amount.
[図 8]最適分散補償量粗調整の方法 (その 2)の説明図である。  FIG. 8 is an explanatory diagram of an optimal dispersion compensation amount coarse adjustment method (part 2).
[図 9]第 1の制御方式における光受信装置の第 2の実施例の構成ブロック図である。  FIG. 9 is a configuration block diagram of a second embodiment of the optical receiver in the first control scheme.
[図 10]図 9における最適分散補償量粗調整の方法の説明図である。  FIG. 10 is an explanatory diagram of a method for coarse adjustment of the optimum dispersion compensation amount in FIG.
[図 11]第 1の制御方式における光受信装置の第 3の実施例の構成ブロック図である。  FIG. 11 is a configuration block diagram of a third embodiment of the optical receiver in the first control scheme.
[図 12]図 11に対応する受信クロック強度特性のシミュレーション結果である。  FIG. 12 is a simulation result of received clock strength characteristics corresponding to FIG.
[図 13]第 1の制御方式における光受信装置の第 4の実施例の構成ブロック図である。  FIG. 13 is a configuration block diagram of a fourth embodiment of the optical receiver in the first control scheme.
[図 14]図 13に対応する光クロック強度特性のシミュレーション結果である。  FIG. 14 is a simulation result of optical clock intensity characteristics corresponding to FIG.
[図 15]第 2の分散補償制御方式における通信システムの構成例を示す図である。  FIG. 15 is a diagram showing a configuration example of a communication system in a second dispersion compensation control method.
[図 16]第 2の制御方式における光受信装置の実施例の構成ブロック図である。  FIG. 16 is a block diagram showing the configuration of an embodiment of the optical receiver in the second control method.
[図 17]第 2の制御方式における最適分散補償量の検出と VDCへの設定シーケンス を示す図である。  FIG. 17 is a diagram showing a sequence for detecting an optimum dispersion compensation amount and setting to VDC in the second control method.
[図 18]第 2の制御方式における予備回線側最適分散補償量検出方法の説明図であ る。  FIG. 18 is an explanatory diagram of a protection line side optimum dispersion compensation amount detection method in the second control method.
[図 19]第 2の制御方式における現用回線側最適分散補償量検出方法の説明図であ る。 FIG. 19 is an explanatory diagram of a method for detecting the optimum dispersion compensation amount on the working line side in the second control method. The
[図 20]予備回線への切り替え時における分散補償量微調整方法の説明図である。  FIG. 20 is an explanatory diagram of a dispersion compensation fine adjustment method at the time of switching to a protection line.
[図 21]予備回線側での最適分散補償量常時検出方法 (その 1)の説明図である。  FIG. 21 is an explanatory diagram of the optimum dispersion compensation amount constant detection method (part 1) on the protection line side.
[図 22]図 21における分散モニタ用信号の説明図である。  22 is an explanatory diagram of a dispersion monitoring signal in FIG.
[図 23]予備回線側での最適分散補償量常時検出方法 (その 2)の説明図である。  FIG. 23 is an explanatory diagram of the optimum dispersion compensation amount constant detection method (part 2) on the protection line side.
[図 24]図 23における分散モニタ用信号の説明図である。  FIG. 24 is an explanatory diagram of a dispersion monitoring signal in FIG.
[図 25]波長多重信号に対する分散補償量の経時変動量の推定方法の説明図である  FIG. 25 is an explanatory diagram of a method for estimating a variation with time of a dispersion compensation amount with respect to a wavelength multiplexed signal.
[図 26]最適分散補償量検出波長の選択方法 (その 1)の説明図である。 FIG. 26 is an explanatory diagram of a method (part 1) for selecting the optimum dispersion compensation amount detection wavelength.
[図 27]最適分散補償量検出波長の選択方法 (その 2)の説明図である。  FIG. 27 is an explanatory diagram of a method (part 2) for selecting the optimum dispersion compensation amount detection wavelength.
[図 28]メッシュネットワークへの本発明の応用例の説明図である。  FIG. 28 is an explanatory diagram of an application example of the present invention to a mesh network.
[図 29]本発明の支障移転対策への応用の説明図である。  FIG. 29 is an explanatory diagram of the application of the present invention to a measure for trouble transfer.
[図 30]光通信システムにおける障害発生時の回線切り替え方式の従来例の説明図 である。  FIG. 30 is an explanatory diagram of a conventional example of a line switching method when a failure occurs in an optical communication system.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 図 1は、本発明の光受信装置の原理構成ブロック図である。同図は受信光信号に 対する分散補償を行う分散補償器を備える光受信装置の原理構成ブロック図であり 、図 1 (a)は後述する第 1の分散制御方式に対応し、(b)は第 2の分散制御方式に対 応する光受信装置の原理構成ブロック図である。  FIG. 1 is a block diagram showing the principle configuration of an optical receiver according to the present invention. This figure is a block diagram of the principle configuration of an optical receiver having a dispersion compensator that performs dispersion compensation on the received optical signal. FIG. 1 (a) corresponds to the first dispersion control method described later, and FIG. FIG. 6 is a block diagram illustrating the principle configuration of an optical receiver that supports a second dispersion control method.
[0017] 図 1 (a)において、光受信装置 1は少なくとも分散補償器 2、光スィッチ 3、および分 散補償制御部 4を備える。  In FIG. 1 (a), the optical receiver 1 includes at least a dispersion compensator 2, an optical switch 3, and a dispersion compensation controller 4.
光スィッチ 3は、現用回線、または予備回線からの入力光信号を選択し、分散補償 器 2に与えるものであり、分散補償制御部 4は、現用回線と予備回線とのそれぞれに 対する最適分散補償量を検出してその検出結果を記憶し、光スィッチ 3の入力信号 選択結果に対応する最適分散補償量を分散補償器 2に設定するものであり、分散補 償器 2は設定された最適分散補償量を用いて受信光信号に対する分散補償を行う。  The optical switch 3 selects an input optical signal from the working line or the protection line and gives it to the dispersion compensator 2. The dispersion compensation control unit 4 is the optimum dispersion compensation for each of the working line and the protection line. Is detected, the detection result is stored, and the optimum dispersion compensation amount corresponding to the input signal selection result of the optical switch 3 is set in the dispersion compensator 2. The dispersion compensator 2 is set to the optimum dispersion Dispersion compensation for the received optical signal is performed using the compensation amount.
[0018] 図 1 (b)において、光受信装置 5は現用回線からの光信号に対する分散補償を行う 現用回線用分散補償器 6と、予備回線力ゝらの光信号に対する分散補償を行う予備回 線用分散補償器 7とを備える光受信装置であって、さらに少なくとも光スィッチ 8と分 散補償制御部 9とを備える。 In FIG. 1 (b), an optical receiver 5 performs dispersion compensation for an optical signal from the working line, and a standby circuit that performs dispersion compensation for the optical signal from the working line power compensation. An optical receiver including a line dispersion compensator 7, and further including at least an optical switch 8 and a dispersion compensation controller 9.
[0019] 光スィッチ 8は、現用回線用分散補償器 6、または予備回線用分散補償器 7から出 力される光信号のいずれかを選択するものであり、分散補償制御部 9は現用回線、 予備回線のそれぞれに対する最適分散補償量を検出し、その検出結果を現用回線 用分散補償器 6、予備回線用分散補償器 7に設定するものであり、現用回線用分散 補償器 6、予備回線用分散補償器 7は、それぞれ設定された最適分散補償量を用い て、受信光信号に対する分散補償を行う。  The optical switch 8 selects either the optical signal output from the dispersion compensator 6 for the working line or the dispersion compensator 7 for the protection line, and the dispersion compensation control unit 9 includes the working line, The optimum dispersion compensation amount for each of the protection lines is detected, and the detection result is set in the dispersion compensator 6 for the working line and the dispersion compensator 7 for the protection line. The dispersion compensator 6 for the working line and the protection line The dispersion compensator 7 performs dispersion compensation on the received optical signal using the set optimum dispersion compensation amount.
[0020] 本実施形態においては、光受信装置を含む光通信システムの立ち上げ時に現用 回線、および予備回線に対する最適分散補償量の検出が行われる。  In the present embodiment, the optimum dispersion compensation amount for the working line and the protection line is detected when the optical communication system including the optical receiver is started up.
図 1 (a)においては、分散補償制御部 4によって検出された最適分散補償量が記憶 され、光スィッチ 3が現用回線力 の受信光信号を選択して分散補償器 2に出力する 時には、分散補償器 2に対して現用回線に対応する最適分散補償量が設定され、現 用回線に障害が発生して予備回線への切り替えが行われる時には、分散補償器 2に 対して予備回線に対応する最適分散補償量が設定されて、受信光信号に対する分 散補償が行われる。  In FIG. 1 (a), the optimum dispersion compensation amount detected by the dispersion compensation control unit 4 is stored, and when the optical switch 3 selects the received optical signal having the working line power and outputs it to the dispersion compensator 2, the dispersion compensation When the optimal dispersion compensation amount corresponding to the working line is set for the compensator 2 and a failure occurs in the working line and the switching to the protection line is performed, the dispersion compensator 2 corresponds to the protection line. The optimum dispersion compensation amount is set, and dispersion compensation for the received optical signal is performed.
[0021] 図 1 (b)においては、同様にシステムの立ち上げ時に検出された最適分散補償量 力 それぞれ現用回線用分散補償器 6と予備回線用分散補償器 7に設定され、現用 回線の運用中には現用回線用分散補償器 6の出力が光スィッチ 8によって選択され 、現用回線に障害が発生し、予備回線への切り替えが行われる時には、予備回線用 分散補償器 7の出力が光スィッチ 8によって選択されることになる。  [0021] In Fig. 1 (b), the optimum dispersion compensation amounts detected at system start-up are also set in the dispersion compensator 6 for the working line and the dispersion compensator 7 for the protection line, respectively. The output of the dispersion compensator 6 for the working line is selected by the optical switch 8, and when the failure occurs in the working line and switching to the protection line is performed, the output of the dispersion compensator 7 for the protection line is changed to the optical switch. Will be selected by 8.
[0022] 図 2は、第 1の分散補償制御方式が用いられる光通信システムの構成例である。同 図においては、例えば波長分割多重 (WDM、ウェーブレングス 'ディビ一ジョン'マ ルチプレクシング)方式を用いた通信が行われるものとする。この第 1の制御方式で は、現用回線、または予備回線を用いて送信側力も送られた光信号、一般には波長 多重信号が 1つの光スィッチによって選択され、選択された光信号に対して 1台の可 変分散補償器、すなわち VDC (バリアブル'ディスパーシヨン'コンペンセータ)によつ て受信側で分散補償が行われる。これによつて、光信号装置は VDCを 1台だけ備え ればよぐ装置の小型化、低コスト化に有利である。 FIG. 2 is a configuration example of an optical communication system in which the first dispersion compensation control method is used. In the figure, for example, it is assumed that communication using a wavelength division multiplexing (WDM, wave length 'division' multiplexing) method is performed. In this first control method, an optical signal whose transmission side power is also sent using a working line or a protection line, generally a wavelength division multiplexed signal, is selected by one optical switch, and 1 is selected for the selected optical signal. Dispersion compensation is performed on the receiving side by a variable dispersion compensator, ie VDC (variable 'dispersion' compensator). As a result, the optical signal device has only one VDC. This is advantageous in reducing the size and cost of the device.
[0023] 図 2にお 、て、送信側のクライアント 11から送信側 OADM (オプティカル 'アツド ·ド ロップ 'マルチプレクサ、光挿入 ·分岐マルチプレクサ) 12に入力された信号は、トラ ンスボンダ 13、光スィッチ 14、および光スィッチ 14を介して現用回線 15と予備回線 a b  [0023] In FIG. 2, the signal input from the sending client 11 to the sending OADM (optical 'drop / drop' multiplexer, optical add / drop multiplexer) 12 is the transponder 13 and optical switch 14. , And working line 15 and protection line ab through optical switch 14
25に出力される。  Output to 25.
[0024] 現用回線 15上の光信号は、中継用 OADM16を介して、また予備回線 25上の光 信号は中継用 OADM26を介してそれぞれ受信側 OADM17に入力される。中継用 の OADM16、または 26においては、必要に応じて分散補償ファイバ DCFを用いた 分散補償を行うこともできる。  The optical signal on the working line 15 is input to the receiving side OADM 17 via the relay OADM 16, and the optical signal on the protection line 25 is input to the receiving side OADM 17 via the relay OADM 26. In the relay OADM 16 or 26, dispersion compensation using a dispersion compensation fiber DCF can be performed as necessary.
[0025] 受信側 OADM17においては、現用回線 15からの信号が光スィッチ 18、予備回 a 線からの信号が光スィッチ 18を介して、それぞれ 1波光スィッチ 19に与えられる。現 b  In the receiving side OADM 17, the signal from the working line 15 is given to the one-wave optical switch 19 via the optical switch 18, and the signal from the backup a line is given to the one-wave optical switch 19. Current b
用回線に障害が発生して ヽな 、場合には、 1波光スィッチ 19によって現用回線 15か らの信号が選択され、 VDC20に与えられて分散補償が行われ、その結果の信号は トランスボンダ 21を介して受信側のクライアント 22に与えられる。現用回線 15に障害 が発生した場合には、 1波光スィッチ 19は予備回線 25側、すなわち光スィッチ 18側 b に切り替えられ、予備回線 25からの信号力VDC20に与えられ、分散補償が行われ て、トランスボンダ 21を介して受信側クライアント 22に与えられる。  If the main line is faulty, the signal from the working line 15 is selected by the one-wave optical switch 19 and applied to the VDC 20 for dispersion compensation. Is given to the receiving client 22 via. When a failure occurs in the working line 15, the one-wave optical switch 19 is switched to the protection line 25 side, that is, the optical switch 18 side b, and is applied to the signal power VDC20 from the protection line 25 to perform dispersion compensation. To the receiving client 22 through the transbonder 21.
[0026] 続いて第 1の分散補償制御方式における光受信装置の実施例について説明する。 [0026] Next, an embodiment of the optical receiver in the first dispersion compensation control system will be described.
図 3は、光受信装置の第 1の実施例の構成ブロック図である。同図において、図 2に おけると同様に 1波光スィッチ 19によって選択された入力光信号は、 VDC20を介し て光受信部 30に与えられる。光受信部 30の構成は必要に応じて後述することとし、 光受信部 30からの出力信号はフレーム同期をとつてフレーム単位の処理を行うフレ 一マ 31に与えられる。フレーマ 31の内部には、受信信号に対するエラー訂正を行う FEC (フォワード ·エラ一 ·コレクション)部 34が備えられ、 FEC部 34から VDC20の制 御を行う VDC制御部 33に対してエラー訂正数を示す信号が、分散補償量調整のた めのモニタ信号として与えられる。また光受信部 30からの障害発生情報、すなわち 光パワーの切断や、異常通知信号などを示す障害発生情報が、障害発生検出部 32 によって VDC制御部 33に与えられる。 [0027] VDC制御部 33は、 FEC部 34からのエラー訂正数を受け取るエラー訂正数検出部 36、それぞれ現用回線 15、予備回線 25に対する最適分散補償量を記憶する現用 回線用分散補償量メモリ 37、予備回線用分散補償量メモリ 38、および障害発生検 出部 32からの障害発生情報を受け取る VDC分散補償量設定部 39を備えている。 FIG. 3 is a block diagram of the configuration of the first embodiment of the optical receiver. In the same figure, as in FIG. 2, the input optical signal selected by the one-wave optical switch 19 is given to the optical receiving unit 30 via the VDC 20. The configuration of the optical receiving unit 30 will be described later as necessary, and an output signal from the optical receiving unit 30 is given to a framer 31 that performs frame-by-frame processing with frame synchronization. The framer 31 includes an FEC (forward error correction) unit 34 that performs error correction on the received signal. The FEC unit 34 controls the number of error corrections to the VDC control unit 33 that controls VDC20. The signal shown is given as a monitor signal for adjusting the dispersion compensation amount. Also, failure occurrence information from the optical receiving unit 30, that is, failure occurrence information indicating optical power disconnection, abnormality notification signal, and the like is given to the VDC control unit 33 by the failure occurrence detection unit 32. [0027] The VDC control unit 33 receives an error correction number from the FEC unit 34, an error correction number detection unit 36, and a working line dispersion compensation amount memory 37 that stores optimum dispersion compensation amounts for the working line 15 and the protection line 25, respectively. , And a VDC dispersion compensation amount setting unit 39 for receiving failure occurrence information from the protection line dispersion compensation amount memory 38 and the failure occurrence detection unit 32.
[0028] 図 3の第 1の実施例では、 VDC制御部 33によって、エラー訂正数検出部 36による 検出結果などを用いて、後述するように光受信装置を含む通信システムの立ち上げ ( 初期設定)に当たって最適分散補償量が現用回線と予備回線とに対応して検出され 、 2つのメモリ 37、 38に記憶される。 VDC分散補償量設定部 39は、現用回線を用い たサービスの運用開始時に現用回線用分散補償量メモリ 37の記憶内容としての最 適分散補償量を VDC20に設定し、障害発生検出部 32からの障害発生情報によつ て現用回線に対する障害が発生したものと判定すると、 1波光スィッチ 19を予備回線 側に切り替えさせると共に、予備回線用分散補償量メモリ 38に記憶されている最適 補償量を読出し、 VDC20に設定する。現用回線側の障害が回復し、再び現用回線 が用いられる時には、 1波光スィッチ 19を現用回線側に切替させると共に、現用回線 用分散補償量メモリ 37に記憶されている最適補償量を VDC20に設定することにな る。なお、図 3の 1波光スィッチ 19、 VDC20を除く構成要素は図 2のトランスボンダ 2 1に相当する。  In the first embodiment shown in FIG. 3, the VDC control unit 33 uses the detection result by the error correction number detection unit 36 to start up the communication system including the optical receiver as described later (initial setting) ), The optimum dispersion compensation amount is detected corresponding to the working line and the protection line and stored in the two memories 37 and 38. The VDC dispersion compensation amount setting unit 39 sets the optimum dispersion compensation amount as the stored content of the dispersion compensation amount memory 37 for the working line to VDC20 at the start of service operation using the working line. If it is determined from the failure occurrence information that a failure has occurred on the working line, the one-wave optical switch 19 is switched to the protection line side and the optimum compensation amount stored in the dispersion compensation amount memory 38 for the protection line is read. Set to VDC20. When the working line side recovers and the working line is used again, switch the 1-wave optical switch 19 to the working line side, and set the optimum compensation amount stored in the dispersion compensation amount memory 37 for the working line to VDC20. Will be. The components other than the one-wave optical switch 19 and VDC 20 in FIG. 3 correspond to the transbonder 21 in FIG.
[0029] 図 4は、図 3の光受信装置の第 1の実施例に対応する最適分散補償量検出、およ び VDCへの設定シーケンスの説明図である。このシーケンスは、基本的に図 3の VD C分散補償量設定部 39によって実行される。同図においてステップ S1から S9は、初 期設定 (システム立ち上げ)時、すなわちサービス運用前に必要な処理であり、これら の処理について図 5、図 6を用いて説明する。  FIG. 4 is an explanatory diagram of an optimum dispersion compensation amount detection and VDC setting sequence corresponding to the first embodiment of the optical receiver of FIG. This sequence is basically executed by the VDC dispersion compensation amount setting unit 39 in FIG. In the figure, steps S1 to S9 are processes required at the time of initial setting (system startup), that is, before service operation. These processes will be described with reference to FIGS.
[0030] まずステップ S1で、図 5に示すように 1波光スィッチ 19が予備回線 25側に切り替え られ、ステップ S2、および S3で予備回線側の最適分散補償量 Dpの検出が行われる 。すなわち図 3において送信側力 送られた光信号に対するエラーの訂正数がエラ 一訂正数検出部 36によって検出され、そのエラー訂正数に対応して予備回線側の 最適分散補償量が検出される。その方法として、 VDC20による分散補償量を変化さ せ、エラー訂正数がある値以下となる分散補償量が最適分散補償量として検出され る力 ステップ S2では粗調整、ステップ S3では微調整が行われるものとする。ステツ プ S3の微調整は必要に応じて行われるものとし、例えばエラー訂正数がある値以下 になった時に粗調整が終了するものとすると、微調整としてはさらにその近辺で分散 補償量を細力べ変化させて、さらに最適な分散補償量の値を検出することになる。微 調整を行うか否かは、分散トレランスの値や、調整に必要な時間 (応答速度)などによ つて決定される。 First, in step S1, the one-wave optical switch 19 is switched to the protection line 25 side as shown in FIG. 5, and the optimum dispersion compensation amount Dp on the protection line side is detected in steps S2 and S3. That is, in FIG. 3, the number of error corrections for the optical signal transmitted on the transmission side is detected by the error correction number detection unit 36, and the optimum dispersion compensation amount on the protection line side is detected corresponding to the number of error corrections. As a method for this, the dispersion compensation amount by VDC20 is changed, and the dispersion compensation amount where the error correction number is less than a certain value is detected as the optimum dispersion compensation amount. Force Step S2 is a rough adjustment, and Step S3 is a fine adjustment. Step S3 is finely adjusted as necessary.For example, if the coarse adjustment ends when the number of error corrections falls below a certain value, the dispersion compensation amount is further reduced in the vicinity of the fine adjustment. By changing the force, the optimum dispersion compensation value is detected. Whether or not to make a fine adjustment is determined by the dispersion tolerance value and the time required for the adjustment (response speed).
[0031] ステップ S4で、検出された予備回線側最適分散補償量の値 Dpが図 3の VDC分散 補償量設定部 39によって、予備回線用分散補償量メモリ 38に格納され、予備回線 側の調整を終了し、ステップ S5で 1波光スィッチ 19が現用回線側に、図 6で示すよう に切り替えられる。  [0031] In step S4, the detected value Dp of the protection line side optimum dispersion compensation amount Dp is stored in the protection line dispersion compensation amount memory 38 by the VDC dispersion compensation amount setting unit 39 in Fig. 3, and adjusted on the protection line side. In step S5, the one-wave optical switch 19 is switched to the working line side as shown in FIG.
[0032] ステップ S6から S8で、現用回線側の最適分散補償量の検出が粗調整、あるいは 必要に応じて微調整によって検出され、検出された最適分散補償量の値 Dwが現用 回線用分散補償量メモリ 37に格納され、ステップ S9でこの値 Dwが VDC20に設定 される。なおステップ S1から S4までと、 S5から S8までの調整は当然その順序の入れ 替えが可能である。  [0032] In steps S6 to S8, the detection of the optimum dispersion compensation amount on the working line side is detected by coarse adjustment or fine adjustment as necessary, and the detected value Dw of the optimum dispersion compensation amount is detected as dispersion compensation for the working line. It is stored in the quantity memory 37, and this value Dw is set to VDC20 in step S9. Of course, the adjustment from step S1 to S4 and the adjustment from S5 to S8 can be interchanged.
[0033] 図 4のステップ S 10でサービスの運用が現用回線を用いて開始され、ステップ S11 で、例えば現用回線用の分散補償量の微調整が一定時間毎に繰り返される。この微 調整は、例えば図 3においてサービス運用中にエラー訂正数検出部 36から VDC分 散補償量設定部 39に対して、エラー訂正数の検出結果を与えることによって、その 検出結果に対応して、分散補償量の微調整が行われる。  In step S 10 in FIG. 4, service operation is started using the working line, and in step S 11, fine adjustment of the dispersion compensation amount for the working line, for example, is repeated at regular intervals. For example, this fine adjustment is performed in response to the detection result by giving the error correction count detection result from the error correction count detection unit 36 to the VDC dispersion compensation amount setting unit 39 during service operation in FIG. Then, fine adjustment of the dispersion compensation amount is performed.
[0034] 現用回線側に障害が発生すると、ステップ S12で障害発生が検出され、ステップ S 13で予備回線側に 1波光スィッチ 19が切り替えられ、 VDC20による分散補償量が 予備回線用分散補償量メモリ 38から読み出され、その値 Dpが VDCに設定され、必 要に応じてステップ S 15で分散補償量の微調整が行われ、ステップ S 16で予備回線 側の運用が開始される。ステップ S15における分散補償量微調整については後述す る。なお、サービス復旧の速度は VDCの応答速度によって制限される力 Dpの値が 予め求められて 、るため、比較的高速の復旧が可能となる。  [0034] When a failure occurs on the active line side, the failure is detected in step S12, and in step S13, the one-wave optical switch 19 is switched to the protection line side, and the dispersion compensation amount by VDC20 is the dispersion compensation amount memory for the protection line. 38, the value Dp is set to VDC, and if necessary, the dispersion compensation amount is finely adjusted in step S15, and the operation on the protection line side is started in step S16. The fine adjustment of the dispersion compensation amount in step S15 will be described later. The service recovery speed is determined in advance because the value of the force Dp, which is limited by the response speed of the VDC, is obtained in advance, so that a relatively high speed recovery is possible.
[0035] 図 7、図 8は、光受信装置の第 1の実施例における最適分散補償量検出 (粗調整) の説明図である。図 7においては、揷引法を用いて最適分散補償量の検出が行われ る。すなわち VDC20による分散補償量を分散トレランス以下のステップで連続的に 変化させ、エラー訂正数が予め定められた値以下となった時の分散補償量、例えば (4)、(5)、および (6)の中で、エラー訂正数が最小となる(5)における分散補償量の 値が最適な値として検出される。この挿引法では分散補償量のステップ変化量が小 έ 、ため、 VDCの動作速度が小さ 、場合にも有効である。 FIGS. 7 and 8 show optimum dispersion compensation amount detection (coarse adjustment) in the first embodiment of the optical receiver. It is explanatory drawing of. In Fig. 7, the optimum dispersion compensation amount is detected using the pulling method. In other words, the dispersion compensation amount due to VDC20 is continuously changed in steps below the dispersion tolerance, and the dispersion compensation amount when the number of error corrections falls below a predetermined value, for example, (4), (5), and (6 ), The dispersion compensation value in (5) with the smallest number of error corrections is detected as the optimum value. This insertion method is effective even when the operating speed of the VDC is low because the amount of step change in the dispersion compensation amount is small.
[0036] 図 8では二分探索法を用いて最適分散補償量の検出が行われる。同図において は(2)と (3)の間が分散補償量の変化範囲として設定されて 、るものとし、まずこれら の中間の値の(1)でエラー訂正数が検出され、次に(2)、次に(3)、その次には(3) と(1)の中間の(4)、さらにその次に(2)と(1)の中間の(5)でエラー訂正数が検出さ れ、(5)の条件でエラー訂正数が定められた値以下となったことにより、この時の分散 補償量の値が最適値として検出される。この二分探索法ではモニタ信号検出ポイント が少ないため、モニタ信号安定ィ匕が遅い場合や検出速度が小さい場合にも有効で ある。 In FIG. 8, the optimum dispersion compensation amount is detected using the binary search method. In the figure, the range between (2) and (3) is set as the variation range of the dispersion compensation amount. First, the number of error corrections is detected at the intermediate value (1), then ( 2), then (3), then (3) between (3) and (1), then (4), then (2) and (5) between (1), the number of error corrections When the number of error corrections is less than or equal to the value determined under condition (5), the dispersion compensation value at this time is detected as the optimum value. Since this binary search method has few monitor signal detection points, it is effective even when the monitor signal stability is slow or the detection speed is low.
[0037] 図 9は、第 1の分散補償制御方式における光受信装置の第 2の実施例の構成プロ ック図である。この第 2の実施例においては、分散量のモニタ信号としての各種のァ ラーム信号の検出結果に応じて最適分散補償量が検出され、その値力 DC20に設 定されるものとする。  FIG. 9 is a block diagram of the configuration of the second embodiment of the optical receiver in the first dispersion compensation control system. In the second embodiment, it is assumed that the optimum dispersion compensation amount is detected according to the detection results of various alarm signals as the dispersion amount monitor signal and set to the value DC20.
[0038] アラーム信号としては、光受信部 30から出力される信号として、クロック同期に関す るアラーム信号、遅延干渉計制御に関するアラーム信号などが用いられ、またフレー マ 31からの信号として、フレーム同期に関するアラーム信号などが用いられる。これ らのアラーム信号は VDC制御部 33の内部のアラーム検出部 41に与えられ、アラー ム信号の検出結果に対応して、分散補償量の最適値が VDC分散補償量設定部 39 によって検出され、初期設定時、すなわちシステムの運用開始前に 2つのメモリ 37、 38に書き込まれるものとする。  [0038] As an alarm signal, an alarm signal related to clock synchronization, an alarm signal related to delay interferometer control, or the like is used as a signal output from the optical receiver 30, and a frame synchronization is used as a signal from the framer 31. Alarm signals and the like are used. These alarm signals are given to the alarm detection unit 41 inside the VDC control unit 33, and the optimum value of the dispersion compensation amount is detected by the VDC dispersion compensation amount setting unit 39 according to the detection result of the alarm signal, It is assumed that data is written to the two memories 37 and 38 at the time of initial setting, that is, before the start of system operation.
[0039] 光受信部 30から出力されるクロック同期に関するアラーム信号は、送信側から送ら れるクロック信号と受信装置側のローカルなクロック信号との同期が取れないことを示 すアラーム信号であり、また遅延干渉計制御に関するアラーム信号は、後述する遅 延干渉計に対するフィードバック制御が適切に行われて ヽな ヽことを示すアラーム信 号である。またフレーマ 31から出力されるフレーム同期に関するアラーム信号は、例 えばフレームのヘッダ内にある同期用信号の時間的位置がずれていることを示すァ ラーム信号である。そして 2つの分散補償量メモリ 37、 38に書き込まれる最適分散補 償量の検出は、このようなアラーム信号がアラーム検出部 41に与えられない範囲か ら求められる。 [0039] The alarm signal related to clock synchronization output from the optical receiver 30 is an alarm signal indicating that the clock signal transmitted from the transmission side cannot be synchronized with the local clock signal on the reception device side, and The alarm signal related to delay interferometer control is This alarm signal indicates that the feedback control for the interferometer is properly performed. The alarm signal related to frame synchronization output from the framer 31 is, for example, an alarm signal indicating that the time position of the synchronization signal in the header of the frame is shifted. Then, the detection of the optimum dispersion compensation amount written in the two dispersion compensation amount memories 37 and 38 is obtained from a range in which such an alarm signal is not given to the alarm detection unit 41.
[0040] なお、このようなアラーム信号のうちで、遅延干渉計制御に関するアラーム信号によ るモニタ方式は、例えば DPSK方式や DQPSK方式などの位相変調方式が用いら れる通信システムに適用される力 クロック同期やフレーム同期に関するアラーム信 号によるモニタ方式は NRZや RZなどの強度変調方式を含むあらゆる変調方式が用 V、られるシステムに適用可能である。  [0040] Among such alarm signals, the monitoring method using an alarm signal related to delay interferometer control is, for example, a power applied to a communication system using a phase modulation method such as the DPSK method or the DQPSK method. The monitoring method using alarm signals related to clock synchronization and frame synchronization can be applied to systems that use any modulation method including intensity modulation methods such as NRZ and RZ.
[0041] 図 10は、光受信装置の第 2の実施例における最適分散補償量検出の粗調整の説 明図である。図 7におけると同様に、最適分散補償量の値をステップ的に連続的に 変化させた場合、(4)、(5)、(6)の分散補償量の値でアラーム信号が出力されない 、すなわちアラームが解除される範囲であるとすると、例えばその範囲の中心の(5) の値として分散補償量の最適値が検出される。  FIG. 10 is an explanatory diagram of the coarse adjustment for detecting the optimum dispersion compensation amount in the second embodiment of the optical receiver. As in Fig. 7, when the value of the optimum dispersion compensation amount is changed continuously in steps, the alarm signal is not output with the dispersion compensation amount values of (4), (5), and (6). If it is a range where the alarm is released, for example, the optimum value of the dispersion compensation amount is detected as the value of (5) at the center of the range.
[0042] 図 11は、第 1の分散補償制御方式における光受信装置の第 3の実施例の構成ブ ロック図である。この第 3の実施例においては、信号変調方式として DQPSK方式が 用いられているものとする。この DQPSK方式では、光受信装置の内部に遅延干渉 計が備えられるが、第 3の実施例ではこの遅延干渉計の出力側の信号から、電気信 号としてのクロック信号の強度が検出され、このクロック強度信号 (モニタ信号)の値に 応じて最適分散補償量の検出が行われるものとする。  FIG. 11 is a configuration block diagram of a third embodiment of the optical receiver in the first dispersion compensation control method. In the third embodiment, it is assumed that the DQPSK system is used as the signal modulation system. In this DQPSK system, a delay interferometer is provided inside the optical receiver. In the third embodiment, the intensity of the clock signal as an electrical signal is detected from the signal on the output side of the delay interferometer. The optimal dispersion compensation amount is detected according to the value of the clock strength signal (monitor signal).
[0043] 図 11においては、 VDC20の出力が光増幅器 43によって増幅され、 2つの遅延干 渉計 44、 44に与えられる。すなわち 40Gbpsの受信光信号は 2つの 20ギガのシン a b  In FIG. 11, the output of VDC 20 is amplified by the optical amplifier 43 and supplied to the two delay interferometers 44 and 44. In other words, the received optical signal of 40Gbps is two 20 giga thin a b
ボルレートの信号として、それぞれ 2つの遅延干渉計に与えられる。  Each of them is given to two delay interferometers as a baud rate signal.
[0044] 遅延干渉計 44、 44の出力は、それぞれフォトダイオード 45、増幅器 46、または [0044] The outputs of the delay interferometers 44, 44 are the photodiode 45, amplifier 46, or
a b a a フォトダイオード 45、増幅器 46を介して 2対 1マルチプレクサ 47に与えられ、再び 4  a b a a Provided to the 2-to-1 multiplexer 47 via the photodiode 45 and the amplifier 46, and again 4
b b  b b
OGbpsの信号としてデシリアライザ (DESER) 48に与えられ、低速の信号に変換さ れて、フレーマ 31に与えられる。 It is given to the deserializer (DESER) 48 as an OGbps signal and converted to a low-speed signal. And given to Framer 31.
[0045] 障害発生検出部 32に対しては、 2つの遅延干渉計 44、 44をそれぞれ介する信 [0045] To the fault occurrence detection unit 32, signals transmitted through two delay interferometers 44 and 44, respectively.
a b  a b
号経路の中で、例えばフォトダイオード 45の出力が与えられる。また同様に、例えば  In the signal path, for example, the output of the photodiode 45 is given. Similarly, for example
b  b
増幅器 46の出力がクロック再生部 49に与えられ、再生されたクロック信号は 2対 1マ  The output of the amplifier 46 is given to the clock recovery unit 49, and the recovered clock signal is 2: 1
b  b
ルチプレクサ 47に与えられると共に、パワーセンサ 50に与えられ、パワーセンサ 50 の出力するクロック強度信号が VDC制御部 33の内部のクロック強度検出部 52に与 えられる。  In addition to being supplied to the multiplexer 47, the clock strength signal which is supplied to the power sensor 50 and output from the power sensor 50 is supplied to the clock strength detection unit 52 in the VDC control unit 33.
[0046] 図 11の第 3の実施例を図 3の第 1の実施例と比較すると、図 3の光受信部 30は、図 11では光増幅器 43、遅延干渉計 44、 44、フォトダイオード 45、 45、増幅器 46、  Compared to the third embodiment of FIG. 11 and the first embodiment of FIG. 3, the optical receiving unit 30 of FIG. 3 includes an optical amplifier 43, delay interferometers 44 and 44, and a photodiode 45 in FIG. 45, amplifier 46,
a b a b a a b a b a
46、 2対 1マルチプレクサ 47、デシリアライザ 48、およびクロック再生部 49によって b 46, 2 to 1 multiplexer 47, deserializer 48, and clock recovery unit 49 b
構成されること〖こなる。  Being composed is a bit different.
[0047] 図 12は、図 11の第 3の実施例におけるパワーセンサ 50の出力としてのクロック信 号強度特性のシミュレーション結果である。図 11における遅延干渉計の動作点を、 位相ずれのない π Ζ4を中心として、 ± 22. 5° 変化させた場合にも安定したクロック 信号が得られることがわかる。分散の値が" 0"でクロック強度が極小となる力 両側の 2つのピークの中央の位置にあわせて最適分散補償量を設定することができる。遅 延干渉計の動作点に依存せずに、すなわちその動作安定ィ匕を待たずに補償量を高 速に検出できる。  FIG. 12 shows the simulation result of the clock signal strength characteristics as the output of the power sensor 50 in the third embodiment of FIG. It can be seen that a stable clock signal can be obtained even when the operating point of the delay interferometer in Fig. 11 is changed by ± 22.5 °, centered on π Ζ4 with no phase shift. The power at which the dispersion value is “0” and the clock intensity is minimized The optimum dispersion compensation amount can be set according to the center position of the two peaks on both sides. The compensation amount can be detected at high speed without depending on the operating point of the delay interferometer, that is, without waiting for its operation stability.
[0048] 図 13は、第 1の分散補償制御方式における光受信装置の第 4の実施例の構成ブ ロック図である。この第 4の実施例においては、受信装置内で電気信号に変換される 以前の光クロック信号 (モニタ信号)の強度に対応して、最適分散補償量の検出が行 われるものとする。  FIG. 13 is a configuration block diagram of a fourth embodiment of the optical receiver in the first dispersion compensation control method. In the fourth embodiment, it is assumed that the optimum dispersion compensation amount is detected in accordance with the intensity of the optical clock signal (monitor signal) before being converted into the electric signal in the receiving apparatus.
[0049] すなわち図 13においては、図 11の第 3の実施例とは異なって、 VDC20の出力が 光クロックモニタ 55に与えられ、クロックの再生と光クロック強度の検出が行われる。 V DC20の出力は、フォトダイオード 56に与えられ、電気信号に変換され、 ΒΖ2Ηζ、 Β を 40GHzとすると 20GHzのバンドパスフィルタ 57を介して、クロック信号として 2対 1 マルチプレクサ 47に与えられると共に、パワーセンサ 58によってクロック強度が検出 され、クロック強度検出部 52に与えられる。なお、バンドパスフィルタ 57は、例えば 20 GHz± 2%の範囲の通過帯域を持つものとする。 That is, in FIG. 13, unlike the third embodiment of FIG. 11, the output of VDC 20 is given to the optical clock monitor 55, and the clock is regenerated and the optical clock intensity is detected. The output of V DC20 is given to the photodiode 56, converted into an electrical signal, and given to GHz2Ηζ and Β is 40 GHz, it is given to the 2-to-1 multiplexer 47 as a clock signal via the 20 GHz bandpass filter 57 and power The clock intensity is detected by the sensor 58 and given to the clock intensity detector 52. The bandpass filter 57 is, for example, 20 It shall have a pass band in the range of GHz ± 2%.
[0050] 図 14は、図 12におけると同様に 40Gbpsの DQPSK信号における光クロック強度 特性のシミュレーション結果である。図 13においては遅延干渉計の前段側で分散の モニタ信号としての光クロック強度信号を検出しているために、遅延干渉計の動作安 定化を待たずに、図 14に示すピークの値に対応して高速に最適分散補償量を検出 することが可能となる。 FIG. 14 shows the simulation result of the optical clock strength characteristic in the 40 Gbps DQPSK signal as in FIG. In FIG. 13, since the optical clock intensity signal is detected as the dispersion monitor signal on the upstream side of the delay interferometer, the peak value shown in FIG. 14 is not waited for the delay interferometer to stabilize its operation. Correspondingly, the optimum dispersion compensation amount can be detected at high speed.
[0051] 次本発明における第 2の分散補償制御方式について説明する。図 15は、第 2の制 御方式における光送受信システムの構成例である。この第 2の方式では、受信側 OA DM 17の内部に可変分散補償器として現用回線 15に対応する VDC20と予備回線  Next, a second dispersion compensation control method in the present invention will be described. FIG. 15 is a configuration example of an optical transmission / reception system in the second control method. In this second method, a VDC 20 and a protection line corresponding to the working line 15 as a variable dispersion compensator inside the receiving side OA DM 17
a  a
25に対応する VDC20とが備えられ、 2つの VDC20、 20の出力のうちいずれか 1  With VDC20 corresponding to 25, one of two VDC20, 20 outputs 1
b a b  b a b
つが 1波光スィッチ 19によって選択され、トランスボンダ 21を介して受信側のクライア ント 22に与えられる点が第 1の方式を示す図 2と異なっている。これによつて VDCが 2台必要となるが、予備回線側の VDCにあらかじめ最適分散補償量を設定しておく ことにより、現用回線の障害発生時の復旧を高速ィ匕することができる。  This is different from FIG. 2 showing the first method in that one is selected by the one-wave optical switch 19 and is given to the client 22 on the receiving side via the transbonder 21. As a result, two VDCs are required. By setting the optimal dispersion compensation amount in advance on the VDC on the protection line side, it is possible to speed up recovery when a failure occurs on the active line.
[0052] 図 16は、第 2の分散補償制御方式における光受信装置の実施例の構成ブロック図 である。同図を第 1の分散補償制御方式における光受信装置の第 1の実施例として の図 3と比較すると、 VDC制御部 33が、 FEC部 34から出力されるエラー訂正数を受 け取るエラー訂正数検出部 36と、 2つの VDC20、 20のそれぞれに対して最適分 FIG. 16 is a configuration block diagram of an embodiment of the optical receiver in the second dispersion compensation control method. Comparing this figure with FIG. 3 as the first embodiment of the optical receiver in the first dispersion compensation control method, the VDC control unit 33 receives the error correction number received from the FEC unit 34. Number detector 36 and optimal for each of the two VDC20, 20
a b  a b
散補償量を設定する 2つの VDC分散補償量設定部 61、 62だけを備え、また障害発 生検出部 32からの障害発生情報が 1波光スィッチ 19に与えられる点が異なっている 。すなわちシステムの立ち上げ時に VDC20、 20にそれぞれ最適分散補償量が設  Only the two VDC dispersion compensation setting units 61 and 62 for setting the dispersion compensation amount are provided, and the failure occurrence information from the failure occurrence detection unit 32 is given to the one-wave optical switch 19. In other words, the optimum dispersion compensation amount is set for each of VDC20 and 20 at system startup.
a b  a b
定され、障害が発生すると 1波光スィッチ 19によって光受信部 30への入力が現用回 線側から予備回線側に切り替えられることになる。  When a failure occurs, the input to the optical receiver 30 is switched from the active line side to the protection line side by the one-wave optical switch 19.
[0053] なお、この第 2の制御方式に対してはエラー訂正数を最適分散補償量調整のため のモニタ信号として用いる実施例だけを説明したが、第 1の制御方式に対すると同様 に他の各種のモニタ信号、すなわちアラーム信号、受信クロック強度、または光クロッ ク強度をモニタ信号として用いる実施例も当然可能である。 [0053] It should be noted that only the embodiment using the error correction number as a monitor signal for adjusting the optimum dispersion compensation amount has been described for the second control method, but other examples are similar to those for the first control method. An embodiment in which various monitor signals, that is, an alarm signal, reception clock intensity, or optical clock intensity are used as the monitor signal is naturally possible.
[0054] 図 17は、第 2の分散補償制御方式における最適分散量の検出と VDCへの設定の シーケンスの説明図であり、図 18、図 19は初期設定時の 1波光スィッチ 19の接続の 説明図である。 [0054] Fig. 17 shows the detection of the optimal dispersion amount and the setting to VDC in the second dispersion compensation control method. FIG. 18 and FIG. 19 are diagrams for explaining the connection of the one-wave optical switch 19 at the time of initial setting.
[0055] 図 17を第 1の分散補償制御方式における図 4と比較すると、図 4のステップ S4で D pの値をメモリに記憶させる代わりに、ステップ S24で VDC20に設定し、またステツ  [0055] Comparing FIG. 17 to FIG. 4 in the first dispersion compensation control method, instead of storing the value of Dp in the memory in step S4 of FIG.
b  b
プ S8で Dwの値をメモリに記憶させる代わりに、ステップ S28で VDC20に設定する  Instead of storing the Dw value in memory at step S8, set to VDC20 at step S28.
a  a
ことと、ステップ S14における VDCに対する分散補償量の設定値の切り替えが不必 要となることが異なって 、る。  This differs from the fact that it is not necessary to switch the dispersion compensation amount setting value for VDC in step S14.
[0056] なお、図 15〜図 19で説明した第 2の分散補償制御方式を第 1の分散補償制御方 式と比較すると、 VDC自体は第 1の方式におけるよりも比較的低速でよいが、 VDC を 2台必要とするため、実際のシステム実現時には、障害復旧速度への要求、受信 装置のサイズ ·コストへの要求、 VDCの応答速度などを考慮して 、ずれの方式を選 択するかを決定する必要がある。  [0056] When comparing the second dispersion compensation control method described in FIGS. 15 to 19 with the first dispersion compensation control method, VDC itself may be relatively slower than in the first method. Since two VDCs are required, when implementing an actual system, whether to select a deviation method considering the requirements for failure recovery speed, the requirements for the size and cost of the receiving device, the response speed of VDC, etc. Need to be determined.
[0057] 図 4のステップ S15でも説明したように、現用回線に障害が発生すると予備回線側 への切り替えが行われるが、例えば図 3では予備回線用分散補償量メモリ 38に記憶 されている最適分散補償量の値、図 16では初期設定時に予備回線用 VDC20に  [0057] As described in step S15 in FIG. 4, when a failure occurs in the working line, switching to the protection line side is performed. In FIG. 3, for example, the optimum stored in the dispersion compensation amount memory 38 for the protection line is used. Dispersion compensation value, Fig. 16 shows the VDC20 for protection line at initial setting.
b 設定された最適分散補償量の値が、回線切り替え時にも最適な値であるとは限らな い。例えばシステム運用中の伝送路温度変化などによって、予備回線側の分散補償 量の最適値が変化している可能性がある。そこで図 17のステップ S33にも示したよう に、システム立ち上げ時、すなわち初期設定時において検出された最適分散補償量 の値 Dpの値の微調整を行うことが望ましい。このような微調整は、第 1、第 2の分散補 償制御方式の 、ずれにお!ヽても有効である。  b The optimal dispersion compensation value that has been set is not necessarily the optimum value even when the line is switched. For example, the optimum dispersion compensation amount on the protection line may have changed due to changes in the transmission line temperature during system operation. Therefore, as shown in step S33 of FIG. 17, it is desirable to finely adjust the value of the optimum dispersion compensation value Dp detected at the time of system startup, that is, at the initial setting. Such fine adjustment is effective even if there is a difference between the first and second distributed compensation control methods.
[0058] 図 20は、この分散補償量微調整方法の説明図である。同図において最適分散補 償量の値は、現用回線側に対する値 Dwから予備回線側のシステム立ち上げ時、す なわち初期設定時における値 Dpに切り替えられることになる力 予備回線側の分散 補償特性が点線力も実線のように変化しているとすると、(2)の値では、例えばエラ 一訂正数などの分散モニタ値が許容値以下とならな 、可能性がある。このため例え ばエラー訂正数が許容値以下となるまで、分散補償量を (2)の近傍で微小変化させ 、(5)で許容値以下となった場合に、(5)の分散補償量の値を予備回線用 VDC20 に再設定し、予備回線の運用を開始することによって、予備回線側での温度変化な どの経時変動に適切に対応することが可能となる。 FIG. 20 is an explanatory diagram of this dispersion compensation amount fine adjustment method. In this figure, the optimum dispersion compensation value is the power that can be switched from the value Dw for the working line side to the value Dp at the time of starting up the system on the protection line side, that is, the initial setting value. Assuming that the characteristics of the dotted line force change as shown by the solid line, the value of (2) may not allow the dispersion monitor value such as the number of error corrections to be below the allowable value. For this reason, for example, when the dispersion compensation amount is slightly changed in the vicinity of (2) until the number of error corrections is less than or equal to the allowable value, and becomes less than the allowable value in (5), the dispersion compensation amount in (5) Value for protection line VDC20 It is possible to respond appropriately to changes over time such as temperature changes on the protection line side by resetting to
[0059] 本実施形態においては、図 20で説明したように現用回線から予備回線への切り替 えにあたって最適分散補償量を微調整することにより、例えば温度変化による信号伝 送状態の経時変動に対応することができるが、さらに予備回線への切り替え以前の 現用回線による運用中にお 、ても、予備回線側の最適分散補償量を常時検出し、 予備回線側 VDC20に設定される分散補償量を常に最適な値に制御することも可 b  In the present embodiment, as described with reference to FIG. 20, the optimum dispersion compensation amount is finely adjusted when switching from the working line to the protection line, for example, to cope with a change with time in the signal transmission state due to a temperature change. However, even during operation with the working line before switching to the protection line, the optimum dispersion compensation amount on the protection line side is always detected, and the dispersion compensation amount set on the protection line side VDC20 is detected. It is possible to always control to the optimum value b
能である。なお、このような予備回線側の最適分散補償量常時検出を含めた以下の 説明の技術は第 1、第 2の分散補償制御方式のいずれにも適用可能である。  Noh. Note that the technology described below, including the continuous detection of the optimum dispersion compensation amount on the protection line side, can be applied to both the first and second dispersion compensation control methods.
[0060] 図 21、図 22は、このような予備回線側での最適分散補償量の常時検出方式の説 明図である。図 21は、予備回線側での最適分散補償量常時検出のためのシステム 構成を示し、現用回線を含めて光ファイバのスパン毎に分散変動の値を検出するも のとする。 FIG. 21 and FIG. 22 are explanatory diagrams of such a continuous detection method of the optimum dispersion compensation amount on the protection line side. Figure 21 shows the system configuration for continuous detection of the optimum dispersion compensation amount on the protection line side, and it is assumed that the dispersion fluctuation value is detected for each span of the optical fiber including the active line.
[0061] ここでは予備回線側における最適分散補償量の常時検出を行うために、本来送信 側 OADM12から予備回線 25上にも出力されている受信側に送信すべき波長多重 信号に加えて各スパン毎に、図 22に示す様に分散モニタ用信号を別に用意して、例 えば予備回線 25のスパン # 1に対してはこの分散モニタ用の送信機 70からのモ- タ信号を光合波力ブラ 72によって予備回線 25上の光信号に合波し、また分離カブ ラ 73によって予備回線 25から分離し、モニタ用受信機 71で分散モニタ用信号を受 信することによって、スパン # 1における分散変動の量が検出される。同様にしてスパ ン # 2に対しても分散変動量が検出され、 2つのスパンに対するそれぞれの分散変 動量を加算することによって、予備回線 25の分散変動を補償すべき最適分散補償 量を常時検出することが可能となる。  [0061] Here, in order to always detect the optimum dispersion compensation amount on the protection line side, each span is added in addition to the wavelength multiplexed signal to be transmitted to the reception side which is originally output from the transmission side OADM 12 to the protection line 25 as well. Each time, a separate dispersion monitoring signal is prepared as shown in Fig. 22. For example, for span # 1 of protection line 25, the motor signal from transmitter 70 for dispersion monitoring is optically combined. The optical signal on the protection line 25 is multiplexed by the bra 72, the optical signal on the protection line 25 is separated by the separation cover 73, and the dispersion monitoring signal is received by the monitoring receiver 71. The amount of variation is detected. Similarly, the amount of dispersion fluctuation is detected for span # 2, and the optimum dispersion compensation amount to compensate for dispersion fluctuation of protection line 25 is always detected by adding the respective dispersion fluctuation amounts for the two spans. It becomes possible to do.
[0062] 予備回線 25によって送信側から送られる波長多重信号は、 VDC20まで入力され b  [0062] The wavelength multiplexed signal sent from the transmission side by the protection line 25 is input up to VDC20 b
る力 現用回線 15の運用中には 1波光スィッチ 19が VDC20側に接続されているた a  During operation of the working line 15, the 1-wave optical switch 19 is connected to the VDC 20 side.
めにトランスボンダ 21には与えられず、例えば図 3で説明したようにトランスボンダ 21 側で、例えばエラー訂正数に対応して分散補償量を常時調整することはできず、予 備回線 25側での最適分散量の常時検出のために図 21、および図 22で説明した方 式が極めて有効と考えられる。 Therefore, the dispersion compensation amount cannot always be adjusted according to the number of error corrections, for example, as described in FIG. The method described in Fig. 21 and Fig. 22 for continuous detection of the optimal dispersion amount The formula is considered very effective.
[0063] 図 23から図 25は、予備回線側での最適分散補償量の常時検出のための別の方 式の説明図である。図 23では、送信側 ODAM12の内部の光スィッチ 14によってモ b ユタ用送信機 75からの分散モニタ用信号が波長多重され、受信側 OADM17の内 部の光スィッチ 18力もモニタ用受信機 76によって分散モニタ用信号が取り出される b  FIG. 23 to FIG. 25 are explanatory diagrams of another method for constantly detecting the optimum dispersion compensation amount on the protection line side. In FIG. 23, the dispersion monitor signal from the monitor transmitter 75 is wavelength-multiplexed by the optical switch 14 inside the transmission side ODAM 12, and the optical switch 18 power inside the reception side OADM 17 is also dispersed by the monitor receiver 76. Monitor signal is extracted b
こと〖こよって、最適分散補償量の常時検出が行われる。  In other words, the optimum dispersion compensation amount is always detected.
[0064] すなわち、この方式では図 24に示すように波長多重信号の中の 1つの信号が分散 モニタ用信号に割り当てられ、モニタ用受信機 76側での分散モニタ信号に対するェ ラー訂正数などによってエラー訂正数と分散補償量との関係を示す曲線がシステム 立ち上げ時から現用回線の運用中に変化し、図 25に示すようにその経時変動 Δ D が検出される。図 24で示す分散モニタ用信号以外の波長多重信号に対する経時変 動も同じ値 A Dとなるものと推定することによって、波長多重信号に対するエラー訂 正数と最適分散補償量との関係を示す曲線の位置の変化が図 25に示すように求め られ、分散補償量の最適化が可能となる。  That is, in this method, as shown in FIG. 24, one signal among the wavelength multiplexed signals is assigned to the dispersion monitor signal, and depending on the number of error corrections to the dispersion monitor signal on the monitor receiver 76 side, etc. The curve showing the relationship between the number of error corrections and the amount of dispersion compensation changes during system operation from the time the system is started up, and the time-dependent fluctuation Δ D is detected as shown in Fig. 25. By estimating that the time-dependent changes for wavelength multiplexed signals other than the dispersion monitoring signal shown in Fig. 24 also have the same value AD, a curve indicating the relationship between the error correction number for the wavelength multiplexed signal and the optimum dispersion compensation amount can be obtained. The change in position is obtained as shown in Fig. 25, and the amount of dispersion compensation can be optimized.
[0065] なお、ここでは予備回線 25の全体に対して分散モニタ用信号を用いた最適分散補 償量の経時変動を常時検出するものとしたが、図 21で説明したように、このような検 出をファイバスパン毎に行うことも可能である。ただし、信号経路が異なる場合には信 号経路毎に経時変動の検出を行う必要があり、多重された各波長の信号の中で経 路の異なる信号がある場合には、経路毎の分散補償量の検出が必要となる。  Here, it is assumed that the variation over time of the optimum dispersion compensation amount using the dispersion monitoring signal is always detected for the entire protection line 25, but as described with reference to FIG. It is also possible to perform detection for each fiber span. However, if the signal path is different, it is necessary to detect the temporal variation for each signal path. If there are signals with different paths among the multiplexed signals, dispersion compensation for each path is required. Quantity detection is required.
[0066] 図 21と図 23に関連して、本発明の特許請求の範囲、請求項 6のモニタ信号送信部 と受信部は、図 21のモニタ用送信機 70および合波力ブラ 72と、モニタ用受信機 71 および分離力ブラ 72に相当し、請求項 5のモニタ信号送信部と受信部は、図 23のモ ユタ用送信機 75および光スィッチ 14と、モニタ用受信機 76および光スィッチ 18に b b 相当する。  [0066] In relation to FIG. 21 and FIG. 23, the monitor signal transmitter and the receiver of claim 6, the monitor signal transmitter and the receiver of FIG. The monitor signal transmitter and receiver of claim 5 correspond to the monitor receiver 71 and the separation power bra 72. The monitor transmitter 75 and optical switch 14 of FIG. 23, the monitor receiver 76 and optical switch of FIG. 18 is equivalent to bb.
[0067] 波長多重信号に対する最適分散補償量の検出においては、前述のように信号経 路が異なる場合には、それぞれの信号経路に対応して分散補償量を検出する必要 力 Sあり、厳密には波長多重信号の中のそれぞれの波長に対しても最適な分散補償 量を検出する必要がある。例えばシステムの立ち上げ時には WDM信号の各波長ご とに、また各経路毎に最適分散補償量を検出するものとすると、信号波長や信号経 路の組合せが膨大になると初期設定に非常に時間が力かる恐れがある。また前述の ように現用回線の障害発生時に予備回線に切り替えるまでの時間は 50ms以内と規 定されており、この時間内に信号経路と波長の全ての組合せに対して最適分散補償 量を再び求めることは困難であり、例えば信号経路が決まっている場合には WDM 信号のうちのいくつ力の信号に対して最適分散補償量を実際に検出し、その他の波 長に対してはその検出結果力 推定することが実用的である。 [0067] In the detection of the optimum dispersion compensation amount for the wavelength division multiplexed signal, when the signal path is different as described above, there is a necessary force S for detecting the dispersion compensation amount corresponding to each signal path. Therefore, it is necessary to detect the optimum dispersion compensation amount for each wavelength in the wavelength multiplexed signal. For example, at the time of system startup, each wavelength of the WDM signal In addition, if the optimum dispersion compensation amount is detected for each path, if the number of combinations of signal wavelengths and signal paths becomes enormous, initial setting may take a long time. In addition, as described above, the time required for switching to the protection line when a failure occurs on the working line is defined as 50 ms or less, and within this time, the optimum dispersion compensation amount is obtained again for all combinations of signal paths and wavelengths. For example, when the signal path is determined, the optimum dispersion compensation amount is actually detected for several powers of the WDM signal, and the detection result power for other wavelengths is detected. It is practical to estimate.
[0068] 図 26、図 27は、このような波長毎の最適分散補償量推定方式の説明図である。図 26においては、 WDM信号の波長のうち、最大の値え と最小の値え とにおいて実 際に最適分散補償量を検出し、その間の各波長に対しては最適分散補償量を直線 近似によって求めることができる。このような方法は残留分散スロープのみで残留分 散量と波長との関係が決定されることがわ力つているような場合に適用することができ る。 FIG. 26 and FIG. 27 are explanatory diagrams of such an optimum dispersion compensation amount estimation method for each wavelength. In Fig. 26, the optimum dispersion compensation amount is actually detected at the maximum value and the minimum value among the wavelengths of the WDM signal, and the optimum dispersion compensation amount is linearly approximated for each wavelength in the meantime. Can be sought. Such a method can be applied to cases where the relationship between the amount of residual dispersion and the wavelength is determined only by the residual dispersion slope.
[0069] 図 27は、残留分散量と波長の関係が線形近似できないような場合の推定法であり 、WDM信号の波長のうちで 3つ以上の波長に対して実際に最適分散補償量の検出 を行い、その他の波長に対しては二次関数近似、あるいは必要に応じてさらに高次 の関数での近似によって、最適分散補償量を推定することが可能である。  [0069] Figure 27 shows an estimation method when the relationship between residual dispersion and wavelength cannot be linearly approximated. Actually, the optimum dispersion compensation amount is detected for three or more wavelengths of the WDM signal. For other wavelengths, the optimal dispersion compensation amount can be estimated by quadratic function approximation, or by approximation with a higher order function if necessary.
[0070] 以上の説明においては、リングネットワークにおいて OUPSRプロテクション方式が 用いられている場合を例にとって本発明の実施形態を説明したが、本発明はこのよう なネットワーク、あるいはプロテクション方式に限定されることなぐ他の種類のネットヮ ークに対しても適用可能である。図 28は、メッシュネットワークへの本発明の適用例 の説明図である。同図は、メッシュネットワークにおいてプロテクション方式として 1 + 1 方式を適用した場合の例であり、現用回線と予備回線との終点に光スィッチが設けら れ、そのスィッチの選択結果が VDCに与えられる。すなわちここでは、前述の第 1の 分散補償制御方式が用いられて ヽる。  [0070] In the above description, the embodiment of the present invention has been described by taking the case where the OUPSR protection scheme is used in the ring network as an example. However, the present invention is limited to such a network or the protection scheme. It can also be applied to other types of networks. FIG. 28 is an explanatory diagram of an application example of the present invention to a mesh network. This figure shows an example when the 1 + 1 method is applied as a protection method in a mesh network. An optical switch is provided at the end point of the working line and the protection line, and the selection result of the switch is given to VDC. That is, here, the first dispersion compensation control method described above is used.
[0071] なお、プロテクション方式についても 1 + 1方式に限らず、例えば 1 : 1方式など、各 種の方式を用いることができ、システムの立ち上げ時において想定されるあらゆるプ ロテクシヨンパスに対して最適分散補償量を予め求めておくことによって、障害発生 時に高速復旧を実現することが可能となる。 [0071] The protection method is not limited to the 1 + 1 method, and various methods such as a 1: 1 method can be used, which is optimal for all protection paths assumed at the time of system startup. Occurrence of failure by obtaining dispersion compensation amount in advance Sometimes it is possible to achieve fast recovery.
[0072] 以上の説明にお 、ては、現用回線に障害が発生した場合の予備回線を用いた分 散補償量の制御方式について説明したが、本実施形態における分散補償量の調整 方式は、例えば電柱の移動に伴う回線の切り替え、すなわち支障移転に対応して伝 送路上の分散量が分散トレランス以上となってしまう場合の対策として用いることも可 能である。  In the above description, the dispersion compensation amount control method using the protection line when a failure occurs in the working line has been described, but the dispersion compensation amount adjustment method in the present embodiment is For example, it can also be used as a countermeasure when the amount of dispersion on the transmission line exceeds the dispersion tolerance in response to switching of the line accompanying the movement of the utility pole, that is, the transfer of trouble.
[0073] 図 29は、そのような支障移転に対する対策としての分散補償量の調整方式の説明 図である。同図において点線は支障移転前の、例えばエラー訂正数と分散補償量と の関係を示し、実線は支障移転後の同じ関係を示すものとする。支障移転前には最 適分散補償量として(1)の値、すなわち Dwが設定されているものとすると、支障移転 後には同じ Dwの値では(2)に示す様にエラー訂正数が許容値を超えてしまうため、 エラー訂正数が許容値以下となるまで分散補償量を微小変化させ、(5)で許容値以 下となった時の分散補償量 Dw'の値を最適分散補償量として、システムの運用を再 開することができる。  FIG. 29 is an explanatory diagram of a dispersion compensation amount adjustment method as a countermeasure against such trouble transfer. In the figure, the dotted line indicates the relationship between, for example, the number of error corrections and the amount of dispersion compensation before the failure transfer, and the solid line indicates the same relationship after the failure transfer. Assuming that the value of (1), that is, Dw, is set as the optimal dispersion compensation amount before the trouble transfer, the error correction count is allowed as shown in (2) for the same Dw value after the trouble transfer. The dispersion compensation amount is slightly changed until the number of error corrections is less than the allowable value, and the dispersion compensation amount Dw 'when the error correction number falls below the allowable value in (5) is set as the optimum dispersion compensation amount. System operation can be resumed.
[0074] なお、このような支障移転前後の分散補償量の調整については、例えば支障移転 の前後の伝送路分散量の差分のデータが予め得られる場合には、支障移転後にそ の差分だけ最適分散補償量をシフトさせる方法をとることも当然可能であり、また支 障移転後に図 7、図 8で説明したような方法を用いて最適分散補償量の粗調整を行う ことも当然可能である。  [0074] Note that, for such adjustment of the dispersion compensation amount before and after the failure transfer, for example, when difference data of the transmission line dispersion amount before and after the failure transfer is obtained in advance, only the difference is optimal after the failure transfer. Naturally, it is possible to shift the dispersion compensation amount, and it is also possible to perform rough adjustment of the optimum dispersion compensation amount using the method described in FIGS. 7 and 8 after the failure transfer. .

Claims

請求の範囲 The scope of the claims
[1] 受信光信号に対する分散補償を行う分散補償器を備える光受信装置であって、 現用回線、または予備回線力 の入力光信号のいずれかを選択し、前記分散補償 器に出力する光スィッチと、  [1] An optical receiver including a dispersion compensator that performs dispersion compensation on a received optical signal, and selects either an active line or an input optical signal having a protection line power and outputs the selected optical signal to the dispersion compensator. When,
該現用回線と予備回線のそれぞれの入力光信号に対する最適分散補償量を検出 し、該検出した最適分散補償量を記憶すると共に、前記光スィッチの選択結果の入 力光信号に対応する分散補償量を前記分散補償器に設定する分散補償制御部とを 備え、  The optimum dispersion compensation amount for each of the input optical signals of the working line and the protection line is detected, the detected optimum dispersion compensation amount is stored, and the dispersion compensation amount corresponding to the input optical signal as a result of the selection of the optical switch is stored. A dispersion compensation control unit for setting the dispersion compensator in the dispersion compensator,
該分散補償器が、該設定された最適分散補償量を用いて受信光信号に対する分 散補償を行うことを特徴とする光受信装置。  An optical receiver characterized in that the dispersion compensator performs dispersion compensation on a received optical signal using the set optimum dispersion compensation amount.
[2] 前記分散補償制御部が、前記光受信装置の立ち上げ時に、前記現用回線と予備 回線のそれぞれの入力光信号に対する最適分散補償量を検出することを特徴とする 請求項 1記載の光受信装置。  2. The optical system according to claim 1, wherein the dispersion compensation control unit detects an optimum dispersion compensation amount for each of the input optical signals of the working line and the protection line when the optical receiver is started up. Receiver device.
[3] 前記分散補償制御部が、前記光信号受信装置内のエラー訂正の数、アラーム信 号の発生、または受信クロック信号の強度に対応して、前記最適分散補償量の検出 を行うことを特徴とする請求項 2記載の光受信装置。 [3] The dispersion compensation control unit detects the optimum dispersion compensation amount in accordance with the number of error corrections in the optical signal receiving apparatus, the generation of an alarm signal, or the strength of the received clock signal. The optical receiver according to claim 2, characterized in that:
[4] 前記現用回線の障害発生に伴う現用回線から予備回線への回線切り替え時に、 前記分散補償制御部が、前記立ち上げ時に記憶した最適分散補償量の近傍で、該 補償量の微調整を行!ヽ、該微調整の結果を前記分散補償器に設定することを特徴 とする請求項 2記載の光受信装置。 [4] When the line is switched from the working line to the protection line due to the occurrence of a failure in the working line, the dispersion compensation control unit performs fine adjustment of the compensation amount in the vicinity of the optimum dispersion compensation amount stored at the time of startup. 3. The optical receiver according to claim 2, wherein a result of the fine adjustment is set in the dispersion compensator.
[5] 前記光受信装置を含む光通信システム内に、前記予備回線上の信号に分散量モ ユタ用信号を挿入、および分岐する 1組のモニタ信号用送信部,受信部をさらに備え 前記現用回線の運用時において、前記分散補償制御部が、前記予備回線を用い て送信側から送られるモニタ用信号の分散量を検出し、該検出結果に対応する分散 補償量を前記立ち上げ時に記憶した分散補償量に代わって記憶することを特徴とす る請求項 2記載の光受信装置。 [5] The optical communication system including the optical receiver further includes a pair of monitor signal transmitters and receivers that insert and branch a dispersion amount monitor signal into the signal on the protection line. During line operation, the dispersion compensation control unit detects the dispersion amount of the monitor signal sent from the transmission side using the protection line, and stores the dispersion compensation amount corresponding to the detection result at the time of startup. 3. The optical receiver according to claim 2, wherein the optical receiver is stored in place of the dispersion compensation amount.
[6] 前記光受信装置を含む光通信システム内に、前記予備回線を構成するファイバス パン毎に予備回線上の信号に分散量モニタ用信号を合波、および分離し、該フアイ バスパン毎の分散量を検出する 1組以上のモニタ信号送信部 ·受信部をさらに備え、 前記現用回線の運用時において、前記分散補償制御部が、伝送路温度変化に比 ベて短い時間間隔で最適分散補償量を検出することで、予備回線の分散補償量を 常時最適化することを特徴とする請求項 2記載の光受信装置。 [6] In an optical communication system including the optical receiver, a fiber that constitutes the protection line is provided. The working line is further provided with at least one monitor signal transmitting unit / receiving unit that combines and separates the dispersion amount monitoring signal from the signal on the protection line for each pan and detects the dispersion amount for each fiber pan. In operation, the dispersion compensation control unit constantly optimizes the dispersion compensation amount of the protection line by detecting the optimum dispersion compensation amount at a time interval shorter than the transmission line temperature change. The optical receiver according to claim 2.
[7] 前記受信光信号が波長多重信号であるとき、前記分散補償制御部が、該多重信 号内で多重されている複数の信号の各波長のうちの 1部の波長に対する分散補償量 を検出し、該検出結果を用いて該 1部の波長以外に対する分散補償量を近似的に 求めることを特徴とする請求項 2記載の光受信装置。 [7] When the received optical signal is a wavelength division multiplexed signal, the dispersion compensation control unit calculates a dispersion compensation amount for one of the wavelengths of the plurality of signals multiplexed in the multiplexed signal. 3. The optical receiving apparatus according to claim 2, wherein the optical compensation device is detected, and a dispersion compensation amount with respect to a wavelength other than the one part wavelength is approximately obtained using the detection result.
[8] 現用回線からの受信光信号に対する分散補償を行う現用回線用分散補償器と、予 備回線力ゝらの受信光信号に対する分散補償を行う予備回線用分散補償器とを備え る光受信装置であって、 [8] Optical reception including a dispersion compensator for the working line that performs dispersion compensation for the received optical signal from the working line, and a dispersion compensator for the protection line that performs dispersion compensation for the received optical signal of the reserved line power A device,
該現用回線用分散補償器、または予備回線用分散補償器カゝら出力される光信号 のいずれかを選択して、前記光受信装置内の光受信部に出力する光スィッチと、 該現用回線、予備回線のそれぞれに対する最適分散補償量を検出し、該検出結 果を前記現用回線用分散補償器、予備回線用分散補償器のそれぞれに設定する 分散補償制御部とを備え、  An optical switch that selects either the optical signal output from the dispersion compensator for the working line or the dispersion compensator for the protection line and outputs the selected optical signal to the optical receiving unit in the optical receiving device, and the working line A dispersion compensation control unit that detects an optimum dispersion compensation amount for each of the protection channels and sets the detection result in each of the active channel dispersion compensator and the protection channel dispersion compensator,
該現用回線用分散補償器、予備回線用分散補償器のそれぞれが、該設定された 分散補償量を用いて、受信光信号に対する分散補償を行うことを特徴とする光受信 装置。  An optical receiving apparatus, wherein each of the working line dispersion compensator and the protection line dispersion compensator performs dispersion compensation for a received optical signal by using the set dispersion compensation amount.
[9] 現用回線と予備回線とのそれぞれに対する最適分散補償量を検出し、該検出結果 をメモリに格納し、  [9] The optimum dispersion compensation amount for each of the working line and the protection line is detected, and the detection result is stored in the memory.
現用回線、または予備回線力 の入力光信号のいずれかを選択し、該選択結果に 対応して、該メモリに格納された分散補償量を分散補償器に設定し、  Select either the working line or the protection line power input optical signal, and set the dispersion compensation amount stored in the memory in the dispersion compensator according to the selection result,
該分散補償器が、設定された分散補償量を用いて、該選択された入力光信号に対 する分散補償を行うことを特徴とする受信光信号に対する分散補償方法。  A dispersion compensation method for a received optical signal, wherein the dispersion compensator performs dispersion compensation on the selected input optical signal using a set dispersion compensation amount.
[10] 現用回線からの受信光信号に対する分散補償を行う現用回線用分散補償器と、予 備回線力ゝらの受信光信号に対する分散補償を行う予備回線用分散補償器とを備え る光受信装置における分散補償方法であって、 [10] A dispersion compensator for the working line that performs dispersion compensation for the received optical signal from the working line and a dispersion compensator for the protection line that performs dispersion compensation for the received optical signal from the reserved line power A dispersion compensation method for an optical receiver comprising:
該現用回線、予備回線のそれぞれに対する分散補償量を検出し、該検出結果を 前記現用回線用分散補償器、予備回線用分散補償器のそれぞれに設定し、 該現用回線用分散補償器、予備回線用分散補償器のそれぞれが、該設定された 分散補償量を用いて、受信光信号に対する分散補償を行 ヽ、  Dispersion compensation amount for each of the working line and the protection line is detected, and the detection result is set in each of the dispersion compensator for the working line and the dispersion compensator for the protection line, and the dispersion compensator for the working line and the protection line Each of the dispersion compensators for use performs dispersion compensation for the received optical signal using the set dispersion compensation amount,
該現用回線用分散補償器、または予備回線用分散補償器カゝら出力される光信号 のいずれかを選択して、前記光受信装置内の光受信部に出力することを特徴とする 受信光信号に対する分散補償方法。  One of the optical signals output from the dispersion compensator for the working line or the dispersion compensator for the protection line is selected and output to the optical receiving unit in the optical receiver. Dispersion compensation method for signals.
PCT/JP2006/322026 2006-11-02 2006-11-02 Optical receiver apparatus and received optical signal dispersion compensating method WO2008053567A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/322026 WO2008053567A1 (en) 2006-11-02 2006-11-02 Optical receiver apparatus and received optical signal dispersion compensating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/322026 WO2008053567A1 (en) 2006-11-02 2006-11-02 Optical receiver apparatus and received optical signal dispersion compensating method

Publications (1)

Publication Number Publication Date
WO2008053567A1 true WO2008053567A1 (en) 2008-05-08

Family

ID=39343926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322026 WO2008053567A1 (en) 2006-11-02 2006-11-02 Optical receiver apparatus and received optical signal dispersion compensating method

Country Status (1)

Country Link
WO (1) WO2008053567A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011087011A (en) * 2009-10-13 2011-04-28 Fujitsu Ltd Optical transmission device and dispersion compensation method
JPWO2009081449A1 (en) * 2007-12-20 2011-05-06 富士通株式会社 Wavelength division multiplexing apparatus and optical signal dispersion compensation method
JP2011097518A (en) * 2009-11-02 2011-05-12 Fujitsu Telecom Networks Ltd Optical transmission system
JP2013197777A (en) * 2012-03-19 2013-09-30 Fujitsu Ltd Optical transmission device
JP2013197648A (en) * 2012-03-16 2013-09-30 Fujitsu Ltd Optical transmission device and characteristics compensation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321805A (en) * 1994-08-02 1996-12-03 Fujitsu Ltd Light transmission system, light multiplex transmission system and its peripheral technology
JPH11346191A (en) * 1998-03-30 1999-12-14 Fujitsu Ltd Method for setting signal light wavelength of optical transmission system
WO2004045114A1 (en) * 2002-11-14 2004-05-27 Fujitsu Limited Optical receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321805A (en) * 1994-08-02 1996-12-03 Fujitsu Ltd Light transmission system, light multiplex transmission system and its peripheral technology
JPH11346191A (en) * 1998-03-30 1999-12-14 Fujitsu Ltd Method for setting signal light wavelength of optical transmission system
WO2004045114A1 (en) * 2002-11-14 2004-05-27 Fujitsu Limited Optical receiver

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009081449A1 (en) * 2007-12-20 2011-05-06 富士通株式会社 Wavelength division multiplexing apparatus and optical signal dispersion compensation method
JP2011087011A (en) * 2009-10-13 2011-04-28 Fujitsu Ltd Optical transmission device and dispersion compensation method
JP2011097518A (en) * 2009-11-02 2011-05-12 Fujitsu Telecom Networks Ltd Optical transmission system
US8422888B2 (en) 2009-11-02 2013-04-16 Fujitsu Telecom Networks Limited Optical transmission system
JP2013197648A (en) * 2012-03-16 2013-09-30 Fujitsu Ltd Optical transmission device and characteristics compensation method
JP2013197777A (en) * 2012-03-19 2013-09-30 Fujitsu Ltd Optical transmission device

Similar Documents

Publication Publication Date Title
US8131155B2 (en) Optical signal transmission apparatus
US7848646B2 (en) Optical, network, node apparatus and method for recovery path fault
US20040213564A1 (en) Optical network
JP3905083B2 (en) Optical communication system
EP2391035B1 (en) Optical receiver and optical transfer apparatus
US7890000B2 (en) Optical receiving apparatus
JPH10322287A (en) Output port switching device in n-wdm system
US20100247095A1 (en) Wavelength division multiplexing apparatus and dispersion compensating method for optical signal
JPWO2001080466A1 (en) Optical wavelength multiplex transmission apparatus and optical output control method for optical wavelength multiplex transmission apparatus
JP4118091B2 (en) Preamplifier gain setting method using ASE light and WDM optical transmission apparatus applying the same
WO2008053567A1 (en) Optical receiver apparatus and received optical signal dispersion compensating method
WO2005046092A1 (en) Wdm system
JP4625284B2 (en) Optical transmission equipment
EP3267603B1 (en) Signal transmission device and signal transmission method
JP2006279355A (en) Wavelength division multiplex transmission system, wavelength division multiplex transmission device, and method of controlling the same
JP4648363B2 (en) Optical transmission device and optical transmission device control method
EP3611847B1 (en) Optical transmission path switching device, optical transmission system, and transmission path switching method
EP1511331B1 (en) Controller for switching wavelength-division multiplex optical signal
JP5445603B2 (en) Variable dispersion compensation control method and variable dispersion compensation control apparatus
JP2000174730A (en) Wavelength multiplexed optical transmission equipment
JP2006033213A (en) Method and system for optical transmission
WO2004077701A1 (en) Method and device for switching between active and auxiliary circuits for optical transmission
JP5942935B2 (en) Transmission system, transmission apparatus, and reception level adjustment method
EP2367304B1 (en) Method for restoring a connection
JPH08293854A (en) Optical submarine cable equipment with standby line by multi-wavelength and its communication equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06822944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP